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ABSTRACT 

 

INS/GPS INTEGRATION AND ADAPTIVE FILTERING METHODS FOR 

GUIDED MUNITIONS 

 

 

 

Eroğlu, Nur Sıla 

Master of Science, Aerospace Engineering 

Supervisor: Assoc. Prof. Dr.Halil Ersin Söken 

 

 

 

September 2023, 81 pages 

 

INS/GPS integration is a widely used application in aerospace to obtain navigation 

solutions. Both sensors have complementing properties, and navigation solution 

improves significantly when INS and GPS are utilized together. This study applies 

INS/GPS integration on a guided munition by loosely and tightly coupled integration 

techniques. Error-state Kalman filters are used in INS/GPS integration. Even though 

GPS provides measurements with high precision, GPS can be prone to outside 

effects, and the measurements from GPS can become unreliable. For these situations, 

adaptive Kalman filter is implemented. This adaptive method calculates scale factors 

for the measurement noise covariance matrix. If a faulty measurement is detected, 

these scale factors are multiplied with the measurement noise covariance matrix. 

Scale factors can be singular (SSF) or multiple (MSF), meaning it can be a scalar or 

a diagonal matrix. It is illustrated that MSF helps to obtain better navigation solutions 

in all cases compared to the faulty measurement and SSF. On the other SSF provides 

better navigation solutions in several cases than the faulty measurement. It is 

concluded that if GPS measurements are faulty, using MSF adaptive Kalman filter 

helps to obtain better navigation solutions for a guided munition. 
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ÖZ 

 

GÜDÜMLÜ MÜHİMMATLAR İÇİN ANS/KKS TÜMLEŞTİRİLMESİ VE 

ADAPTİF FİLTRELEME YÖNTEMLERİ 

 

 

 

Eroğlu, Nur Sıla 

Yüksek Lisans, Havacılık ve Uzay Mühendisliği 

Tez Yöneticisi: Doçent Dr.Halil Ersin Söken 

 

 

 

Eylül 2023, 81 sayfa 

 

ANS/KKS tümleştirilmesi, navigasyon çözümleri elde etmek için havacılık ve uzay 

sektöründe yaygın olarak kullanılan bir uygulamadır. Sensörler birbirlerini 

tamamlayıcı özelliğe sahiptir ve ANS ve KKS birlikte kullanıldığında navigasyon 

çözümü önemli ölçüde gelişir. Bu çalışmada gevşek tümleştirilmiş ve sıkı 

tümleştirilmiş ANS/KKS tümleştirilmeleri güdümlü mühimmatlar üzerinde 

uygulanmıştır. Hata durumlu Kalman filtresi ANS/KKS tümleştirilmesinde 

kullanılmıştır. KKS yüksek hassasiyette ölçümler sağlasa da dış etkilere açık olabilir 

ve KKS ölçümleri güvenilmez hale gelebilir. Bu durumlar için adaptif Kalman 

filtresi uygulanmıştır. Bu adaptif yöntem ölçüm gürültüsü kovaryans matrisi için 

ölçek çarpanları hesaplar. Eğer hatalı bir ölçüm tespit edilirse, ölçek çarpanları 

ölçüm gürültüsü kovaryans matrisi ile çarpılır. Ölçek çarpanları tekil veya çoklu 

olabilir. Tüm durumlarda çoklu çarpanın hatalı ölçüm durumuna veya tekil çarpana 

göre daha iyi navigasyon çözümü ürettiği gösterilmiştir. Bazı durumlarda ise tekil 

çarpan hatalı duruma göre daha iyi sonuç verir. Sonuç olarak KKS ölçümleri 

hatalıysa, çoklu ölçek çarpanlı adaptif Kalman filtresi güdümlü bir mühimmat için 

daha iyi navigasyon sonuçları elde edilmesine yardımcı olur. 
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CHAPTER 1  

1 INTRODUCTION  

1.1 Motivation 

INS/GNSS integration is applied for many aerospace applications to have better 

navigation solutions. INS and GNSS both have their advantages and disadvantages. 

However, if they are utilized together, they can offer better navigation solutions. 

INS/GNSS integration can be achieved with different tools and integration methods. 

One of the widely used tools is the Kalman filter, which is implemented in this study. 

Both loosely coupled and tightly coupled integration methods are adapted. For 

guided munition applications, even though INS/GNSS can be helpful, GNSS can be 

prone to spoofing, which results in faulty measurements. In this case, one way can 

be rejecting the faulty measurement and using only INS update for the navigation 

solutions. On the other hand, an adaptive Kalman filter can be applied to decrease 

the faulty measurement effect while still using valuable measurements from GNSS. 

This thesis aims to show that in the case of GNSS spoofing, an adaptive Kalman 

filter can provide a better navigation solution instead of using INS update only in 

some scenarios. 

1.2 Literature Review 

Precision guided munition’s definition is a guided weapon with the purpose of 

exterminating a target and also decreasing unwanted casualties, according to [1]. 

PGMs were introduced in WW II; however, their operational use was in the Vietnam 

War [2]. They can be categorized as air-launched, ground-launched, and naval-

launched. PGMs use INS, GNSS, and laser guidance [2]. In this study, an air-
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launched PGM with no thrust, which has the INS and GNSS receiver is the point of 

interest. INS and GNSS receiver are two important components of the guided 

munition. INS is composed of three mutually orthogonal accelerometers, three 

mutually orthogonal gyroscopes, and a navigation processor [3], [4], [5]. 

Accelerometers measure the specific force, which is the acceleration of the body 

minus the gravity in that direction. Gyroscopes measure the angular rate of the body 

with respect to the inertial frame. While accelerometers and gyroscopes provide the 

specific force and angular rate, the navigation processor calculates the position, 

velocity, and attitude of the body, which will be used in guidance and autopilot 

algorithms of the guided munition.  

INS is utilized in most aerospace vehicles because it is a dead-reckoning system, 

meaning it does not need external references [3], [4]. INS calculates orientation and 

position by integrating the measurements with a known initial condition. However, 

this introduces a disadvantage of accumulating errors with time [5]. INS provides a 

navigation solution in high frequency, at least 50 Hz, according to [5]. GNSS 

includes the constellation of satellites orbiting the Earth, which helps a vehicle with 

a receiver to calculate its position and velocity. Some examples of GNSS 

constellations are GPS, GLONASS, and Galileo. The most used constellation is 

GPS, which belongs to the United States; GLONASS belongs to Russia, and Galileo 

belongs to the European Union [3]. These satellites transmit signals with the 

information of their position, velocity, and the exact time that the signal is sent. The 

vehicle with the GNSS receiver uses this signal to obtain its position and velocity 

from at least four different satellites [3], [4]. One of the advantages of GNSS is that 

it can provide positionforbita and velocity with high accuracy for the long term. 

However, the measurement frequency is low compared to INS, typically between 1-

10 Hz [6]. Another disadvantage of GNSS is that it is highly affected by outside 

conditions. These conditions can block the signal transmitted, or some interference 

from other signal sources can occur. This is where INS/GNSS integration could be 

beneficial. Both INS and GNSS have their advantages and disadvantages when both 

of their measurements are utilized, better navigation solutions could be provided. 
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INS/GNSS integration could be categorized according to the coupling degree 

between them, which are loosely coupled, tightly coupled, and ultra-tightly coupled 

integration. While loosely coupled and tightly coupled integration are the points of 

interest of this study, ultra-tightly coupled integration is not. GNSS receivers can 

provide measurements in different ways, such as direct position and velocity or 

pseudorange and pseudorange-rate measurements. If position and velocity solutions 

from the GNSS receiver are used directly, loosely coupled integration is adapted [3]. 

If pseudorange and pseudorange-rate measurements are used, then tightly coupled 

INS/GNSS integration is applied [3].  In the case of pseudorange and pseudorange-

rate estimations, they are fed back to the GNSS  receiver’s tracking loop, and then 

an ultra-tightly coupled integration method is utilized [3]. 

INS/GNSS integration can be achieved by using different tools such as Kalman 

filters and particle filters. Particle filters can be beneficial in case of non-Gaussian 

noise distribution. On the other hand, Kalman filters are optimal estimators for the 

Gaussian noise characteristics. The particle filter and Kalman filter are compared in 

[7]; while the particle filter provides a robust trajectory, the Kalman filter has shorter 

computation time. Kalman filters are widely used in INS/GNSS integration 

literature. The main types of Kalman filters used in INS/GNSS integration are 

linearized Kalman filters, extended Kalman filters, and unscented Kalman filters, 

also known as sigma-point Kalman filters. These Kalman filters differ in system and 

measurement models and their computational loads. Linear KF is an optimal 

estimator for linear systems. Since all systems are nonlinear in real-life navigation 

applications, using linear systems and measurement models may not be preferable 

for certain reasons. In this case, extended KFs can be introduced. Nonlinear systems 

or measurement models can be linearized using Taylor series expansion around the 

estimated state vector [8]. An EKF is used for INS/GPS navigation systems in [9], 

because of the nonlinear dynamics of GPS measurements. However, when a GPS 

outage exists, the algorithm switches to the linear KF. Unscented KF guesses the 

random variable statistics using sigma points [8]. The results in [8] illustrate that 
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UKF has better performance than EKF to some degree. On the other hand, the 

computational load that UKF brings compared to EKF is higher [8]. 

KF applications vary in using full-state or error-state in its system and measurement 

model. Error state utilization is possible with small perturbation theory. By using the 

error-state, equations become linear, and optimal KF can be achieved [10]. One 

major drawback of using error-state is that the errors due to linearization can grow 

with time. Due to the relatively short time of flight of the guided munition, an error-

state extended Kalman filter is applied in this thesis. In [11], a tightly coupled 

INS/GPS integration is applied for a guided munition. Different trajectories are 

studied in [11]; short range trajectories have some problems because of lack of time 

sufficient for INS calibration and alignment. INS/GPS tightly and deeply integration 

are applied on guided munition, and their performances are compared under GPS 

jamming in [12]. It turns out deeply integration architecture has better performance 

compared to tightly coupled integration. 

As stated before, GNSS is prone to suffer from outside effects such as spoofing and 

jamming. The measurements from GNSS are tested to detect any malfunction. One 

solution to this problem is using INS update only and rejecting the GNSS 

measurements. Another solution is that utilizing adaptive KFs. In [13], adaptive 

Kalman filters, which are multiple-model-based adaptive estimation (MMAE) and 

innovation-based adaptive estimation (IAE), are reviewed. MMAE has different KFs 

running at the same time with different process noise and/or measurement noise 

matrices. In the beginning, all KFs have the same weight factor. After a while, 

MMAE learns which KF has better noise matrices, and its weighting factor increases 

while others go to zero [13]. On the other hand, by using statistical information, 

theoretical values for process and measurement covariance matrices are calculated 

and adapted throughout the process [13]. The adaptive KF method used in this thesis 

is innovation-based R-adaptation applied from [14]. This method includes 

calculating a scale factor to multiply with the measurement noise covariance matrix. 

According to the designer's choice, this scale factor can be single or multiple. The 

measurement noise covariance matrix is adapted if there is a malfunction in the 
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measurements. This malfunction can be detected with different methods. In this 

thesis, integrity monitoring is achieved by using the chi-square test.  
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CHAPTER 2  

2 PRELIMINARIES 

2.1 Reference Frames 

Reference frames are used to indicate relative positions or velocities of vectors [15]. 

In navigation, relative frame descriptions are important for mechanization equations. 

The reference frames utilized in this thesis are given in the following subsections. 

2.1.1 Earth-Centered Inertial Frame 

An inertial frame should be non-rotating and have a fixed origin. For navigation 

purposes, the earth-centered inertial frame is used. Although Earth’s orbit has a 

centripetal acceleration, it is assumed to be negligible [5]. The origin of the inertial 

frame coincides with the center of mass of the Earth. The z-axis of the Earth-centered 

inertial frame is towards the north pole. The x-axis and y-axis lie on the equatorial 

plane, while the x-axis is to the vernal equinox; the y-axis completes the right-handed 

coordinate system. 

2.1.2 Earth-Centered Earth-Fixed Frame 

The earth-fixed frame rotates with the Earth. However, it has the same origin and z-

axis as the inertial frame [4]. The x-axis of the Earth-fixed frame is towards the 

intersection point between the Greenwich meridian and the equatorial plane. The y-

axis completes the right-handed coordinate system. Both the inertial frame and 

Earth-fixed frame are illustrated in Figure 2-1. Where 𝜔𝑒 states the Earth’s angular 

rotation velocity. 
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Figure 2-1. Earth-Centered Inertial Frame and Earth-Centered Earth-Fixed Frame 

2.1.3 Navigation Frame 

The navigation frame has its origin at the IMU location, even though, in some 

applications, it can be placed at the center of mass [5]. The z-axis of the navigation 

frame, which is referred to as down, points to the center of the Earth. Gravity is 

assumed to be in the z-axis [4]. The x-axis of the frame points to the North Pole and 

is referred to as North. The y-axis completes the right-handed coordinate system, 

which results in pointing East. Throughout this thesis, the navigation frame may be 

referred to as the NED-frame (North-East-Down). 
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2.1.4 Body Frame 

The body frame has its origin at the IMU location, which coincides with the 

navigation frame’s origin. The x-axis points to the nose of the guided munition, while 

the y-axis points to the right side of the guided munition. The z-axis completes the 

right-handed coordinate system. Both the navigation frame and body frame are 

illustrated in Figure 2-2. 

 

Figure 2-2. Navigation Frame and Body Frame 

2.2 Reference Frame Transformations 

Vectors have different representations in different reference frames. In navigation, 

these representations are needed because measurements are provided in different 

frames. The direction cosine matrices (DCMs) are created according to the rotation 

angle and rotation axis for a vector to have a representation in another reference 

frame. Sometimes, more than one rotation is needed to obtain the vector 

representation from one frame to the other. Multiplying the matrices is a way of 

creating the overall DCM. An important and useful property of the DCM is that the 

inverse of the DCM is equal to its transpose [3]. 
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2.2.1 Euler Angles 

One frame’s orientation can be obtained by applying three rotations around the z, y, 

and x axes of another frame. In aerospace applications, Euler angles are defined as 

three angles that are obtained by rotation from the navigation frame to the body 

frame. The rotations are explained below and illustrated in Figure 2-3, Figure 2-4, 

and Figure 2-5. 

1) The first rotation is around the z-axis of the navigation frame, and the angle 

is denoted by 𝜓. 

 

 

Figure 2-3 Euler Angles – First Rotation -The Top View 

2) The second rotation is around the y-axis of the new frame obtained after the 

first rotation and denoted by 𝜃. 
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Figure 2-4 Euler Angles – Second Rotation -The Side View 

3) The third rotation is around the x-axis of the new frame obtained after the 

second rotation and denoted by 𝜙. 

 

Figure 2-5 Euler Angles – Third Rotation – The Front View 
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2.2.2 Transformation From Inertial Frame to Earth-Fixed Frame 

As stated in Chapter 2.1.2, Earth-fixed frame and inertial frame have the same origin 

and share their z-axes. Therefore, a rotation matrix around the z-axis, including the 

Earth’s rotation rate multiplied with time, is sufficient for the transformation from 

an inertial frame to an Earth-fixed frame [3]. 

𝐶𝑖
𝑒 = [

cos𝜔𝑒𝑡 sin 𝜔𝑒𝑡 0
− sin𝜔𝑒𝑡 cos𝜔𝑒𝑡 0

0 0 1

] (2.1) 

𝐶𝑒
𝑖 = (𝐶𝑖

𝑒)𝑇 (2.2)  

2.2.3 Transformation From Earth-Fixed Frame to Navigation Frame 

The earth frame and navigation frame are illustrated in Figure 2-6. The first rotation 

for the transformation of the Earth frame to the navigation frame is around the z-axis 

and by the angle longitude. The second rotation is around the y-axis and by 90°. The 

final rotation is around the z-axis and by the angle of longitude.  
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Figure 2-6. Earth Frame and Navigation Frame 

DCM that transforms a vector from the Earth frame to the navigation frame is created 

by multiplying three rotation matrices and given as in Eq. (2.3) and as stated in [16]. 

𝐶𝑒
𝑛 = [

cos𝜑 0 sin𝜑
0 1 0

− sin𝜑 0 cos𝜑
] [

0 0 1
0 1 0

−1 0 0
] [

cos 𝜆 sin 𝜆 0
− sin 𝜆 cos 𝜆 0

0 0 1
] (2.3) 

𝐶𝑒
𝑛 = [

−𝑠𝑖𝑛𝜑 cos 𝜆 −𝑠𝑖𝑛𝜑 sin 𝜆 cos𝜑
−sin 𝜆 cos𝜑 0

− cos𝜑 cos 𝜆 − cos𝜑 sin 𝜆 − sin𝜑
] (2.4) 

𝐶𝑛
𝑒 = (𝐶𝑒

𝑛)𝑇 (2.5) 

2.2.4 Transformation From Navigation Frame to Body Frame 

The transformation from the navigation frame to the body frame is achieved by Euler 

angles, which are explained in detail in Chapter 2.2.1. The DCM is created by 
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multiplying three rotation matrices utilizing the Euler angles as given in Eq. (2.6) as 

stated in [16]. As explained before, the rotation sequence is z, y, and x axes, which 

also can be referred to as 3-2-1 rotation. 

𝐶𝑛
𝑏 = [

1 0 0
0 cos𝜙 sin𝜙
0 − sin𝜙 cos𝜙

] [
cos 𝜃 0 − sin 𝜃

0 1 0
sin 𝜃 0 cos 𝜃

] [
cos𝜓 sin𝜓 0

−sin𝜓 cos𝜓 0
0 0 1

] (2.6) 

𝐶𝑛
𝑏 = [

cos 𝜃 cos 𝜓 cos 𝜃 sin𝜓 − sin 𝜃
− cos𝜙 sin 𝜓 + sin𝜙 sin 𝜃 cos𝜓 cos𝜙 cos𝜓 + sin 𝜙 sin 𝜃 sin𝜓 sin𝜙 cos 𝜃
sin𝜙 sin𝜓 + cos 𝜙 sin 𝜃 cos𝜓 − sin 𝜙 cos𝜓 + cos𝜙 sin 𝜃 sin𝜓 cos𝜙 cos 𝜃

] (2.7) 

𝐶𝑏
𝑛 = (𝐶𝑛

𝑏)𝑇 (2.8) 

2.3 The Deflection Angle Representation 

In conventional air vehicles, primary deflection angles are aileron, elevator, and 

rudder, which are responsible for the control of the vehicle’s roll, pitch, and yaw 

motion [16]. Guided munitions can have front or rear control surfaces. In this study, 

the guided munition has rear control surfaces called tail fins, as illustrated in Figure 

2-7 [17]. To understand the effect of the control surfaces on the guided munition, the 

representation of the conventional control surfaces in terms of tail fin deflections is 

given in Eq. (2.9), (2.10), and (2,11). 
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Figure 2-7: Tail Control Surfaces [16] 

𝛿𝑎 =
1

4
(𝛿1 + 𝛿2 + 𝛿3 + 𝛿4) (2.9) 

𝛿𝑟 =
1

2
(𝛿2 − 𝛿4) (2.10)  

𝛿𝑒 =
1

2
(𝛿1 − 𝛿3) (2.11)
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CHAPTER 3  

3 METHODOLOGY 

3.1 6-DOF Simulation Model of The Guided Munition 

A simulation model is created to analyze the dynamics of the guided munition within 

Matlab-Simulink. The model has two main parts: one part is the real world, and the 

other part is the guided munition part, as can be observed from Figure 3-1. 

 

Figure 3-1. 6-DOF Simulation Model Representation 

In the real world part, environment, aerodynamics, and equations of motion are 

modeled. In the guided  munition part, avionics, navigation, autopilot, and guidance 

are modeled. For both parts, relationships between their subparts are illustrated in 

Figure 3-2 and Figure 3-3. 
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Figure 3-2. Real World Illustration of The Simulation Model 

 

 

Figure 3-3. Guided Munition Illustration of The Simulation Model 
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3.1.1 Environment 

In the environment section of the simulation model, gravity and atmosphere 

parameters are modeled. For gravity, the WGS84 Gravity Model (a Matlab-Simulink 

built-in block) is used. The inputs of this block are the latitude, longitude, and 

altitude of the guided munition, and the output is the gravity vector in the navigation 

frame. For the atmosphere, the ISA Atmosphere Model (a Matlab-Simulink built-in 

block) is used. The input of this block is the altitude of the guided munition, and the 

outputs are temperature, speed of sound, air pressure, and air density. WGS84 

Gravity Model and ISA Atmosphere Model blocks are shown in Figure 3-4. 

 

 

 

Figure 3-4. Gravity and Atmosphere Blocks From Matlab-Simulink 

3.1.2 Aerodynamics 

In the aerodynamics section of the simulation model, aerodynamic forces, moments, 

and parameters are calculated.  
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3.1.2.1 Forces and Moments 

Aerodynamic forces and moments acting on the guided munition’s body are 

illustrated in Figure 3-5.  

 

Figure 3-5. Aerodynamic Forces and Moments 

Note that aerodynamic forces and moments are represented in Eq. (3.1) and (3.2) to 

be compatible with the literature. 

𝐹𝑏 = [𝐹𝑋 𝐹𝑌 𝐹𝑍]𝑇 = [𝑋 𝑌 𝑍]𝑇 (3.1) 

𝑀𝑏 = [𝑀𝑋 𝑀𝑌 𝑀𝑍]𝑇 = [𝐿 𝑀 𝑁]𝑇 (3.2) 

Aerodynamic forces and moments are calculated by using static and dynamic 

aerodynamic coefficients. Aerodynamic coefficients are obtained (by Roketsan) with 

the Digital Datcom program. Except that 𝐶𝑋 and 𝐶𝑌, aerodynamic coefficients 

include both static and dynamic parts as stated below. Static coefficients are 

dependent on the variables given in Table 3.1.  

𝐶𝑋 = 𝐶𝑋𝑠𝑡𝑎𝑡𝑖𝑐
(3.3) 

𝐶𝑌 = 𝐶𝑌𝑠𝑡𝑎𝑡𝑖𝑐
(3.4) 

𝐶𝑍 = 𝐶𝑍𝑠𝑡𝑎𝑡𝑖𝑐
+ 𝐶𝑍𝑑𝑦𝑛𝑎𝑚𝑖𝑐

(3.5) 
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𝐶𝐿 = 𝐶𝐿𝑠𝑡𝑎𝑡𝑖𝑐
+ 𝐶𝐿𝑑𝑦𝑛𝑎𝑚𝑖𝑐

(3.6) 

𝐶𝑀 = 𝐶𝑀𝑠𝑡𝑎𝑡𝑖𝑐
+ 𝐶𝑀𝑑𝑦𝑛𝑎𝑚𝑖𝑐

(3.7) 

𝐶𝑁 = 𝐶𝑁𝑠𝑡𝑎𝑡𝑖𝑐
+ 𝐶𝑁𝑑𝑦𝑛𝑎𝑚𝑖𝑐

(3.8) 

Table 3.1 Static Coefficients and Their Dependent Variables 

Static 

Coefficients 

Dependent 

Variables 

𝐶𝑋𝑠𝑡𝑎𝑡𝑖𝑐
 𝑀,𝛼, 𝛽, 𝛿𝑒 , 𝛿𝑟 

𝐶𝑌𝑠𝑡𝑎𝑡𝑖𝑐
 𝑀,𝛼, 𝛽, 𝛿𝑟 

𝐶𝑍𝑠𝑡𝑎𝑡𝑖𝑐
 𝑀,𝛼, 𝛽, 𝛿𝑒 

𝐶𝐿𝑠𝑡𝑎𝑡𝑖𝑐
 𝑀, 𝛼, 𝛽, 𝛿𝑎 

𝐶𝑀𝑠𝑡𝑎𝑡𝑖𝑐
 𝑀,𝛼, 𝛽, 𝛿𝑒 

𝐶𝑁𝑠𝑡𝑎𝑡𝑖𝑐
 𝑀,𝛼, 𝛽, 𝛿𝑟 

 

Dynamic coefficients are obtained by using aerodynamic derivatives as given in eq 

ref. Dynamic derivatives are dependent only on Mach number. 

𝐶𝑍𝑑𝑦𝑛𝑎𝑚𝑖𝑐
=

𝐶𝑧𝑞
qLref

2𝑉
(3.9) 

𝐶𝐿𝑑𝑦𝑛𝑎𝑚𝑖𝑐
=

𝐶𝑙𝑝pLref

2𝑉  
(3.10) 

𝐶𝑀𝑑𝑦𝑛𝑎𝑚𝑖𝑐
=

𝐶𝑚𝑞
𝑞𝐿𝑟𝑒𝑓

2𝑉
+

𝐶𝑚�̇�
�̇�𝐿𝑟𝑒𝑓

2𝑉
(3.11) 

𝐶𝑁𝑑𝑦𝑛𝑎𝑚𝑖𝑐
=

𝐶𝑛𝑟
𝑟𝐿𝑟𝑒𝑓

2𝑉
+

𝐶𝑛�̇�
�̇�𝐿𝑟𝑒𝑓

2𝑉
(3.12) 

Aerodynamic forces and moments are calculated by using aerodynamic coefficients, 

reference length (𝐿𝑟𝑒𝑓), reference area (𝑆𝑟𝑒𝑓) ,and dynamic pressure (𝑄) as in eq 
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ref. Note that for guided munitions, 𝐿𝑟𝑒𝑓 is the diameter of the body and 𝑆𝑟𝑒𝑓 is the 

cross-sectional area of the body.  

𝑋 = 𝑄𝑆𝑟𝑒𝑓𝐶𝑋 (3.13) 

𝑌 = 𝑄𝑆𝑟𝑒𝑓𝐶𝑌 (3.14) 

𝑍 = 𝑄𝑆𝑟𝑒𝑓𝐶𝑍 (3.15) 

𝐿 = 𝑄𝑆𝑟𝑒𝑓𝐿𝑟𝑒𝑓𝐶𝐿 (3.16) 

𝑀 = 𝑄𝑆𝑟𝑒𝑓𝐿𝑟𝑒𝑓𝐶𝑀 (3.17) 

𝑁 = 𝑄𝑆𝑟𝑒𝑓𝐿𝑟𝑒𝑓𝐶𝑁 (3.18) 

3.1.2.2 Parameters 

In the aerodynamic parameters section of the simulation model, Mach number, angle 

of attack and sideslip angle is calculated using velocity resolved in the body frame, 

total velocity, and speed of sound. The angle of attack and sideslip angle are 

illustrated in Figure 3-6. 



 

 

23 

 

Figure 3-6. Angle of Attack and Sideslip Angle 

Angle of attack (𝛼), sideslip angle (𝛽), and Mach number (𝑀) is calculated as in 

Eq. (3.19), (3.20), and (3.21) [15]. 

𝛼 = atan
𝑤

𝑢
(3.19) 

𝛽 = asin
𝑣

𝑉
(3.20) 

𝑀 =
𝑉

𝑎
(3.21) 

Where: 

𝑉𝑒𝑏
𝑏 = [𝑉𝑥 𝑉𝑦 𝑉𝑧]𝑇 = [𝑢 𝑣 𝑤]𝑇 (3.22) 

𝑉 = ‖𝑉𝑒𝑏
𝑏 ‖ (3.23) 
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3.1.3 Equations of Motion 

The equations of motion part of the simulation is divided into two subparts, which 

are translational and rotational. Both parts include a main differential equation. 

While the translational part aims to obtain the velocity of the body, the rotational 

part aims to obtain the angular velocity of the body. 

3.1.3.1 Translational 

The main differential equation used in this part is given in Eq. (3.24) adapted from 

[16]. Note that the angular velocities in the equation are calculated in the rotational 

part. 

�̇�𝑒𝑏
𝑏 =

𝐹𝑏

𝑚
+ 𝑔𝑏 − (𝜔𝑖𝑏

𝑏 + 𝜔𝑖𝑒
𝑏 ) × 𝑣𝑒𝑏

𝑏 (3.24) 

The velocity of the guided munition wrt the Earth is found by integrating the above 

expression Eq. (3.24). Then, the velocity resolved in the Earth frame is found by 

multiplying the DCM from the body frame to the Earth frame. 

𝑉𝑒𝑏
𝑒 = 𝐶𝑏

𝑒𝑉𝑒𝑏
𝑏 (3.25) 

To calculate latitude(𝜑), longitude (𝜆), and altitude (ℎ) of the guided munition, the 

position vector should be resolved in the Earth frame as in Eq. (3.26) 

𝑟𝑒𝑏
𝑒 = ∫ 𝑣𝑒𝑏

𝑒 (3.26) 

𝜆 = atan(
𝑟𝑒𝑏

𝑒 (2)

𝑟𝑒𝑏
𝑒 (1)

) (3.27) 

There are several methods to calculate geodetic latitude. The Bowring Method is 

used to calculate in this model from [18]. It is an iterative method, and an initial 

guess of reduced latitude (�̅�0) and geodetic latitude (𝜑0) is needed as given in Eq. 

(3.28) and (3.29). 
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�̅�0 = atan(
𝑟𝑒𝑏

𝑒 (3)

(1 − 𝑓)𝑠
) (3.28) 

𝜑0 = atan(
𝑟𝑒𝑏

(𝑒)(3) +
𝑒2(1 − 𝑓)
(1 − 𝑒2)

𝑅(sin �̅�0)
3
 

𝑠 − 𝑒2𝑅(cos �̅�0)
3 ) (3.29) 

Where 𝑎 is equatorial radius of the Earth, 𝑒 is the square of the first eccentricity, 𝑓 is 

the flattening of the Earth, and s is given in Eq. (3.30).  

𝑠 = √(𝑟𝑒𝑏
𝑒 (1))

2

+ (𝑟𝑒𝑏
𝑒 (2))

2
(3.30) 

𝑎 = 6378137.0 𝑚 (3.31) 

𝑓 = 0.00335281 (3.32) 

𝑒2 = 1 − (1 − 𝑓)2 (3.33) 

The reduced latitude (�̅�) is calculated using the Eq. (3.34). Until the geodetic latitude 

(𝜑) converges, Eq. (3.34) is repeated. 

�̅� = atan(
(1 − 𝑓) sin𝜑

cos𝜑
) (3.34) 

The altitude (ℎ) is calculated as in Eq. (3.35): 

ℎ = 𝑠 cos𝜑 + (𝑟𝑒𝑏
𝑒 (3) + 𝑒2𝑅𝑁 sin 𝜑 ) sin𝜑 − 𝑅𝑁 (3.35) 

Where 𝑅𝑁 is the normal radius, also known as the radius of curvature of the prime 

vertical: 

𝑅𝑁 =
𝑎

√1 − 𝑒2(sin𝜑)2
(3.36) 

3.1.3.2 Rotational 

The main differential equation used in this part is given in Eq. (3.37) [16]: 
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�̇�𝑖𝑏
(𝑏)

= [𝐼𝑏]−1(𝑀𝑏 − 𝜔𝑖𝑏
𝑏 𝐼𝑏𝜔𝑖𝑏

𝑏 ) (3.37) 

Where inertia matrix: 

𝐼𝑏 = [

𝐼𝑥𝑥 −𝐼𝑥𝑦 −𝐼𝑧𝑥

−𝐼𝑥𝑦 𝐼𝑦𝑦 −𝐼𝑦𝑧

−𝐼𝑧𝑥 −𝐼𝑦𝑧 𝐼𝑧𝑧

] (3.38)

Note that for the guided munition 𝐼𝑥𝑦 ≈ 𝐼𝑦𝑧 ≈ 𝐼𝑥𝑧 ≈ 0 because of their symmetry, 

and inertia matrix becomes: 

𝐼𝑏 = [

𝐼𝑥𝑥 0 0
0 𝐼𝑦𝑦 0

0 0 𝐼𝑧𝑧

] (3.39) 

The direction cosine matrices (DCM) that transform vectors from one reference 

frame to another reference frame are created under this part of the simulation model. 

DCM integration method is applied to calculate the DCM as in Eq. (3.40). 

�̇�𝑏
𝑛 = 𝐶𝑏

𝑛𝑠𝑘𝑒𝑤(𝜔𝑛𝑏
𝑏 ) (3.40) 

Where the skew-symmetric matrix of the angular rate of body wrt to the NED-frame: 

𝑠𝑘𝑒𝑤(𝜔𝑛𝑏
𝑏 ) = [

0 −𝜔𝑛𝑏
𝑏 (3) 𝜔𝑛𝑏

𝑏 (2)

𝜔𝑛𝑏
𝑏 (3) 0 −𝜔𝑛𝑏

𝑏 (1)

−𝜔𝑛𝑏
𝑏 (2) −𝜔𝑛𝑏

𝑏 (2) 0

] (3.41) 

𝜔𝑛𝑏
𝑏 = 𝜔𝑖𝑏

𝑏 − 𝐶𝑒
𝑏𝜔𝑖𝑒

𝑒 − 𝐶𝑛
𝑏𝜔𝑒𝑛

𝑛 (3.42) 

The angular rate of the navigation frame wrt to Earth frame resolved in the 

navigation frame is found by Eq. (3.43) [3]: 

𝜔𝑒𝑛
𝑛 =

[
 
 
 
 
 
 

𝑉𝑒𝑏
𝑛 (2)

𝑅𝑁 + ℎ

−𝑉𝑒𝑏
𝑛 (1)

𝑅𝑀 + ℎ

𝑉𝑒𝑏
𝑛 (2) tan𝜑

𝑅𝑁 + ℎ ]
 
 
 
 
 
 

(3.43) 
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Where the velocity of the body wrt Earth resolved in navigation frame (𝑉𝑒𝑏
𝑛 ), the 

radius of curvature of the prime vertical (𝑅𝑀), the angular velocity of the Earth wrt 

to the inertial frame resolves in Earth frame (𝜔𝑖𝑒
𝑒 ) are defined in Eq. (3.44), (3.45) 

and (3.46). 

𝑉𝑒𝑏
𝑛 = 𝐶𝑏

𝑛𝑉𝑒𝑏
𝑏 (3.44) 

𝑅𝑀 =
𝑎(1 − 𝑒2)

(1 − 𝑒2 sin2 𝜇)
3
2

(3.45) 

𝜔𝑖𝑒
𝑒 = [

0
0
𝜔𝑒

] (3.46) 

𝜔𝑒 = 7.292115 x 10−5
rad

s
(3.47) 

DCM that transforms vectors from Earth frame to the navigation frame is given in 

Eq. (3.48), which is explained in detail in Chapter 2.2.3. Latitude and longitude of 

the munition are needed, which is calculated under the translational part of the 

simulation model. 

𝐶𝑒
𝑛 = [

− sin𝜑 cos 𝜆 − sin𝜑 sin 𝜆 − cos𝜑
−sin 𝜆 cos 𝜆 0

− cos𝜑 cos 𝜆 − cos𝜑 sin 𝜆 − sin𝜑
] (3.48) 

Finally, DCM that transforms vectors from the  Earth frame to the body frame is 

found by multiplying two transformation matrices as follows: 

𝐶𝑒
𝑏 = 𝐶𝑛

𝑏𝐶𝑒
𝑛 (3.50) 
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3.1.4 Avionics 

3.1.4.1 Control Actuation System 

Control actuation system (CAS) is an electromechanical system that moves the 

control surfaces of the guided munition according to the commanded autopilot 

outputs. The control surfaces of the guided munition are tail fins in this study, as 

stated before in Chapter 2.3. The relationship between the deflection angle command 

and the deflection angle is modeled as a second-order control system. The Laplace 

representation of the control system is given in eq ref. 

𝛿

𝛿𝑐
=

𝜔𝑛𝐶𝐴𝑆
2

𝑠2 + 2휁𝐶𝐴𝑆𝜔𝑛𝐶𝐴𝑆
𝑠 + 𝜔𝑛𝐶𝐴𝑆

2
(3.51) 

3.1.4.2 Inertial Measurement Unit 

Three-axis accelerometer and three-axis gyroscope constitute an inertial 

measurement unit. When accelerometers measure the specific force, gyroscopes 

measure the rotational velocity of the body with respect to the inertial frame. A 

tactical grade IMU is chosen for the guided munition. The specifications of the IMU 

are given in Table 3.2. 

Table 3.2 Tactical Grade IMU Specifications 

Specifications Gyroscope Accelerometer 

Bias Repeatability 2.5 °/ℎ  0.16 𝑚𝑔 

Bias Instability 0.5 °/ℎ 0.1 𝑚𝑔 

Random Walk 0.1°/√ℎ 0.12 𝑚/𝑠/√ℎ 

Scale Factor Error 330 𝑝𝑝𝑚 166 𝑝𝑝𝑚 

 



 

 

29 

The gyroscope and accelerometer measurements are created in the simulation model 

given in Eq. (3.52) and (3.53). Bias and noise terms are added to the specific force 

and angular velocity according to the IMU specifications, which are obtained from 

the real world part of the simulation. As stated in Chapter 1, specific force is obtained 

by subtracting the gravity from the acceleration of the body. 

�̃�𝑖𝑏
𝑏 = 𝜔𝑖𝑏

𝑏 + 𝑏𝑔 + 휀𝑔 (3.52) 

𝑓𝑖𝑏
𝑏 = 𝑓𝑖𝑏

𝑏 + 𝑏𝑎 + 휀𝑎 (3.53) 

3.1.4.3 Global Navigation Satellite System Receiver 

Global navigation satellite system receiver determines its own position and velocity 

by using signals from the satellites which contain information of the satellites’ 

position, velocity, and time. Several satellites’ position and velocity data are created 

by using two-line element data set. More information regarding this can be found in 

[19]. By using satellites’ position and velocity data, pseudo-range and pseudo-range 

rate measurements are created as in Eq. (3.54) and (3.56) [3]. 

𝜌𝐺𝑁𝑆𝑆
𝑚 = 𝑟𝑚 + 𝑏𝐺𝑁𝑆𝑆

𝑚 + ε̃𝜌
𝑚 (3.54) 

Where the range between the satellite and the receiver is 𝑟𝑚 and line of sight unit 

vector 1𝐿𝑂𝑆
𝑚  is defined as: 

𝑟𝑚 = ‖(𝑟𝑒𝑏
𝑒 − 𝑟𝐺𝑁𝑆𝑆

𝑚 )‖ (3.55)  

1𝐿𝑂𝑆
𝑚 =

(𝑟𝑒𝑏
𝑒 − 𝑟𝐺𝑁𝑆𝑆

𝑚 )

𝑟𝑚
(3.56) 

�̇�𝐺𝑁𝑆𝑆
𝑚 = (𝑣𝐺𝑁𝑆𝑆

𝑚 − 𝑣𝑒𝑏
𝑒 ). 1𝐿𝑂𝑆

𝑚 + 𝑑𝐺𝑁𝑆𝑆
𝑚 + ε̃�̇�

𝑚 (3.56) 

Pseudo-range and pseudo-range rate measurements can be used directly in tightly 

coupled INS/GNSS integration. For loosely coupled INS/GNSS integration, position 

and velocity estimation from the GNSS receiver is necessary and found by using the 
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least squares algorithm. More information regarding this can be found in Appendix 

A. 

3.1.5 Navigation 

In the navigation section of the simulation model, the position, velocity, and attitude 

of the guided munition are calculated by using IMU measurements and/or INS/GPS 

integration. IMU measurements are used in the equations given in Chapter 3.1.3. The 

only difference is that instead of using aerodynamic forces and moments, specific 

force and angular velocity measurements from the IMU are utilized. INS/GPS 

integration is achieved with both loosely coupled and tightly coupled integration 

methods. For both methods, the error-state Kalman filter is utilized. INS/GPS 

integration is explained in detail in Chapter 3.2. 

3.1.6 Autopilot 

Autopilots are designed for pitch, yaw, and roll dynamics separately. Full state-

feedback autopilots are designed, and with the purpose of decreasing the steady state 

error, an integral is added to the system. While the aim of pitch and yaw autopilots 

is achieving the commanded acceleration from the guidance, roll autopilot tries to 

keep the body roll angle (𝜙) at zero. During the design of the autopilots, 

aerodynamic derivatives are obtained from the aerodynamic database, and linear 

matrices belonging to the three separate dynamics of the guided munition are created 

using equations of motion. The derivation of the linear matrices is given in Appendix 

B. Control system model with linear matrices (𝐴, 𝐵, 𝐶, 𝐷) is given in Eq. (3.57) and 

(3.58). 

�̇� = 𝐴𝑥 + 𝐵𝑢 (3.57) 

𝑦 = 𝐶𝑥 + 𝐷𝑢 (3.58) 
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The state-space control system with an integrator structure is given in Figure 3-7 

[20]. 

 

Figure 3-7. State-Space Control System with An Integrator [20] 

The linear system matrices for pitch dynamics are given in Eq. (3.59) and (3.60): 

[

𝑎�̇�

�̇�

�̇�
�̈�

] =

[
 
 
 
 
 
 
𝑍𝛼

𝑚𝑢
+

𝑍𝑞𝑀𝛼

𝑍𝛼𝐼𝑦

𝑍𝛼

𝑚
+

𝑍𝑞𝑀𝑞

𝑚𝐼𝑦
−

𝑍𝑞
2𝑀𝛼

𝑍𝛼𝑚𝐼𝑦
−

𝑍𝑞𝑀𝛼𝑍𝛿

𝑍𝛼𝑚𝐼𝑦
+

𝑍𝑞𝑀𝛿

𝑚𝐼𝑦

𝑍𝛿

𝑚

𝑀𝛼𝑚

𝐼𝑦𝑍𝛼

𝑀𝑞

𝐼𝑦
−

𝑀𝛼𝑍𝑞

𝑍𝛼𝐼𝑦

𝑀𝛿

𝐼𝑦
−

𝑀𝛼𝑍𝛿 

𝑍𝛼𝐼𝑦
0

0 0 0 1
0 0 −𝜔𝑛

2 −2휁𝜔𝑛
2]
 
 
 
 
 
 

[

𝑎𝑍

𝑞
𝛿
�̇�

]

+ [

0
0
0
𝜔𝑛

2

] 𝛿𝑐 (3.59)

 

 

𝑎𝑍 = [1 0 0 0] [

𝑎𝑍

𝑞
𝛿
�̇�

] (3.60) 

The linear system matrices for yaw dynamics are given in Eq. (3.61) and (3.62): 
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[

𝑎�̇�

�̇�
�̇�
�̈�

] =

[
 
 
 
 
 
 
𝑌𝛽

𝑚𝑉
+

𝑌𝑟𝑁𝛽

𝑌𝛽𝐼𝑧
−

𝑌𝛽

𝑚
+

𝑌𝑟𝑁𝑟  

𝑚𝐼𝑧
−

𝑌𝑟
2𝑁𝛽

𝑌𝛽𝑚𝐼𝑧
−

𝑌𝑟𝑁𝛽 𝑌𝛿

𝑌𝛽𝑚𝐼𝑧
+

𝑌𝑟𝑁𝛿

𝑚𝐼𝑧

𝑌𝛿

𝑚

𝑁𝛽𝑚

𝑌𝛽𝐼𝑧

𝑁𝑟

𝐼𝑧
−

𝑁𝛽𝑌𝑟

𝑌𝛽𝐼𝑧

𝑁𝛿

𝐼𝑧
−

𝑁𝛽𝑌𝛿

𝑌𝛽𝐼𝑧
0

0 0 0 1
0 0 −𝜔𝑛

2 −2휁𝜔𝑛
2]
 
 
 
 
 
 

[

𝑎𝑌

𝑟
𝛿
�̇�

]

+ [

0
0
0
𝜔𝑛

2

] 𝛿𝑐 (3.61)

 

𝑎𝑌 = [1 0 0 0] [

𝑎𝑌

𝑞
𝛿
�̇�

] (3.62) 

The linear system matrices for roll dynamics are given in Eq. (3.63) and (3.64): 

[
 
 
 
�̇�
�̇�

�̇�
�̈� ]
 
 
 
=

[
 
 
 
 
0 1 0 0

0
𝐿𝑝

𝐼𝑥

𝐿𝛿

𝐼𝑥
0

0 0 0 1
0 0 −𝜔𝑛

2 −2휁𝜔𝑛
2]
 
 
 
 

[

𝜙
𝑝
𝛿
�̇�

] + [

0
0
0
𝜔𝑛

2

] 𝛿𝑐 (3.63) 

𝜙 = [1 0 0 0] [

𝜙
𝑝
𝛿
�̇�

] (3.64) 

3.1.7 Guidance 

The proportional navigation guidance law is applied in this study. This law states 

that if the interceptor closes to the target such that the line-of-sight vector does not 

rotate with respect to the initial reference frame then the interceptor can have a 

successful collision with the target [21]. In other words, the interceptor should have 

acceleration such that the angular rate of the line-of-sight vector is equal to zero. A 

guidance schematic is given in Figure 3-8.  
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Figure 3-8. Guidance Schematic [21] 

The line-of-sight angular rate is calculated as in Eq. (3.65). 

𝜔𝐿𝑂𝑆 =
𝑟𝑏𝑡

𝑛 × 𝑉𝑏𝑡
𝑛

‖𝑟𝑏𝑡‖2
(3.65) 

The acceleration command is calculated as in Eq. (3.66): 

𝑎𝑐𝑜𝑚
𝑛 = 𝑁𝑃𝑁𝐺𝜔𝐿𝑂𝑆 × 𝑉𝑒𝑏

𝑛 (3.66) 

𝑎𝑐𝑜𝑚
𝑏 = 𝐶𝑛

𝑏𝑎𝑐𝑜𝑚
𝑛 (3.67) 

3.2 INS/GPS Integration 

In this study, both loosely coupled and tightly coupled approaches are applied for 

the INS/GPS integration. Error-state Kalman filter is utilized for both approaches. 

These integration methods differ in system models and measurement models, that 

are explained in Chapter 3.2.1.2 and 3.2.2.2. 
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3.2.1 Loosely Coupled Integration 

In loosely coupled integration, both INS and GNSS provide separate position and 

velocity solutions, and then, with the help of error-state Kalman solutions from both 

sensors are combined to have better navigation solutions. A schematic from [3] is 

given in Figure 3-9. 

 

Figure 3-9. Loosely Coupled INS/GNSS integration [3] 

3.2.1.1 System Model 

The continuous system model of the error state Kalman filter for loosely coupled 

architecture is given below [22]. Where 𝛿𝑥 is the error-state vector, 𝐹 is the dynamic 

coefficient matrix, 𝑢 is the forcing vector, and 𝐵 is the design matrix. 

𝛿�̇� = 𝐹𝛿𝑥 + 𝐵𝑢 (3.68) 

Where the vectors are defined as: 

𝛿𝑥 = [𝛿𝑟 𝛿𝑣𝑛 𝛿𝛼]𝑇 (3.69) 

𝛿𝑟 = [𝛿𝜑 𝛿𝜆 𝛿ℎ]𝑇 (3.70) 

𝛿𝑣𝑛 = [𝛿𝑣𝑁 𝛿𝑣𝐸 𝛿𝑣𝐷]𝑇 (3.71) 
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𝛿𝛼 = [𝛿𝜙 𝛿𝜃 𝛿𝜓]𝑇 (3.72) 

𝑢 = [𝛿𝑓𝑖𝑏
𝑏 𝛿𝜔𝑖𝑏

𝑏 ] (3.73) 

𝛿𝑓𝑖𝑏
𝑏 = [𝑏𝑎 𝑏𝑎 𝑏𝑎]𝑇 (3.74) 

𝛿𝜔𝑖𝑏
𝑏 = [𝑏𝑔 𝑏𝑔 𝑏𝑔]𝑇 (3.75) 

The dynamic coefficient matrix and design matrix are illustrated in Eq. (3.76) and 

(3.77). 

𝐹 = [

𝐹𝑟𝑟 𝐹𝑟𝑣 03𝑥3

𝐹𝑣𝑟 𝐹𝑣𝑣 𝑠𝑘𝑒𝑤(𝑓𝑖𝑏
𝑛)

𝐹𝛼𝑟 𝐹𝛼𝑣 −𝑠𝑘𝑒𝑤(𝜔𝑖𝑛
𝑛 )

] (3.76) 

𝐵 = [

03𝑥3 03𝑥3

𝐶𝑏
𝑛 03𝑥3

03𝑥3 −𝐶𝑏
𝑛
] (3.77) 

The elements of the dynamic coefficient matrix for the position part (𝐹𝑟𝑟 , 𝐹𝑟𝑣) are 

given in Eq. (3.78) and (3.79). 

𝐹𝑟𝑟 =

[
 
 
 
 0 0 −

𝑣𝑁

(𝑅𝑀 + ℎ)2

𝑣𝐸 sin 𝜑

(𝑅𝑁 + ℎ)
0 −

𝑣𝐸

(𝑅𝑁 + ℎ)2 cos𝜑
0 0 0 ]

 
 
 
 

(3.78) 

𝐹𝑟𝑣 =

[
 
 
 
 

1

𝑅𝑀 + ℎ
0 0

0
1

(𝑅𝑁 + ℎ) cos𝜑
0

0 0 −1]
 
 
 
 

(3.79) 

The elements of the dynamic coefficient matrix for the velocity part (𝐹𝑣𝑟 , 𝐹𝑣𝑣) given 

below. 
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𝐹𝑣𝑟 =

[
 
 
 
 
 
 −2𝑣𝐸𝜔𝑒 cos𝜑 −

𝑣𝐸
2

(𝑅𝑁 + ℎ) cos2 𝜑
0 −

𝑣𝑁𝑣𝐷

(𝑅𝑀 + ℎ)2
+

𝑣𝐸
2 tan𝜑

(𝑅𝑁 + ℎ)2

2𝜔𝑒(𝑣𝑁 cos𝜑 − 𝑣𝐷 sin𝜑) 0 −
𝑣𝐸𝑣𝐷

(𝑅𝑁 + ℎ)2
−

𝑣𝑁𝑣𝐸 tan𝜑

(𝑅𝑁 + ℎ)2

2𝑣𝐸𝜔𝑒 sin𝜑 0
𝑣𝐸

2

(𝑅𝑁 + ℎ)2
+

𝑣𝑁
2

(𝑅𝑀 + ℎ)2
−

2𝛾

(𝑅 + ℎ)]
 
 
 
 
 
 

(3.80) 

𝐹𝑣𝑣 =

[
 
 
 
 
 
 

𝑣𝐷

𝑅𝑀 + ℎ
−2𝜔𝑒 sin𝜑 −

2𝑣𝐸 tan𝜑

𝑅𝑁 + ℎ

𝑣𝑁

𝑅𝑀 + ℎ

2𝜔𝑒 sin𝜑 +
𝑣𝐸 tan𝜑

𝑅𝑁 + ℎ

𝑣𝐷 + 𝑣𝑁 tan𝜑

𝑅𝑁 + ℎ
2𝜔𝑒 cos𝜑 +

𝑣𝐸

𝑅𝑁 + ℎ

−
2𝑣𝑁

𝑅𝑀 + ℎ
−2𝜔𝑒 cos𝜑 −

2𝑣𝐸

𝑅𝑁 + ℎ
0

]
 
 
 
 
 
 

(3.81) 

𝑠𝑘𝑒𝑤(𝑓𝑖𝑏
𝑛) = [

0 −𝑓𝐷 𝑓𝐸
𝑓𝐷 0 −𝑓𝑁
−𝑓𝐸 𝑓𝑁 0

] (3.82) 

The elements of the dynamic coefficient matrix for the attitude part (𝐹𝛼𝑟 , 𝐹𝛼𝑣) given 

below. 

𝐹𝛼𝑟 =

[
 
 
 
 
 −𝜔𝑒 sin𝜑 0 −

𝑣𝐸

(𝑅𝑁 + ℎ)2

0 0
𝑣𝑁

(𝑅𝑀 + ℎ)2

−𝜔𝑒 cos 𝜑 −
𝑣𝐸

(𝑅𝑁 + ℎ) cos2 𝜑
0

𝑣𝐸 tan𝜑

(𝑅𝑁 + ℎ)2 ]
 
 
 
 
 

(3.83) 

𝐹𝛼𝑣 =

[
 
 
 
 
 
 0

1

𝑅𝑁 + ℎ
0

−1

𝑅𝑀 + ℎ
0 0

0
− tan 𝜑

𝑅𝑁 + ℎ
0
]
 
 
 
 
 
 

(3.84) 

By utilizing the continuous system model, the discrete system model of the error-

state Kalman filter for loosely coupled integration is found as below. 

𝛿𝑥𝑘+1 = (𝐼9𝑥9 + 𝐹Δ𝑡)𝛿𝑥𝑘 + 𝑤𝑘 (3.85) 

Where: 
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𝐸[𝑤𝑘𝑤𝑖
𝑇] = {

𝑄𝑘 𝑖 = 𝑘
0 𝑖 ≠ 𝑘

(3.86) 

3.2.1.2 Measurement Model 

The measurement model of the error-state Kalman filter for loosely coupled 

INS/GPS integration is given in discrete form [22].  

𝛿𝑧𝑘 = 𝐻𝑘𝛿𝑥𝑘 + 𝑒𝑘 (3.87) 

Where: 

𝛿𝑧𝑘 = [
𝑟𝐼𝑁𝑆

𝑛 − 𝑟𝐺𝑃𝑆
𝑛

𝑣𝐼𝑁𝑆
𝑛 − 𝑣𝐺𝑃𝑆

𝑛 ] (3.88) 

𝐻𝑘 = [
𝐼3𝑥3 03𝑥3 03𝑥3

03𝑥3 𝐼3𝑥3 03𝑥3
] (3.89) 

𝐸[𝑒𝑘𝑒𝑖
𝑇] = {

𝑅𝑘 𝑖 = 𝑘
0 𝑖 ≠ 𝑘

(3.90) 

𝐸[𝑤𝑘𝑒𝑖
𝑇] = 0        ∀𝑖, 𝑘 (3.91) 

3.2.2 Tightly Coupled Integration 

In tightly coupled integration, GNSS measures pseudo-range and pseudo-range rates, 

and by using INS navigation solutions, pseudo-range and pseudo-range rate 

measurements are imitated. Both measurements are used in an error state Kalman 

filter. Tightly coupled INS/GNSS integration is illustrated in Figure 3-10 from [3]. 
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Figure 3-10. Tightly Coupled INS/GNSS Integration [3] 

3.2.2.1 System Model 

For the system model of the tightly coupled integration, states related to the GPS 

measurements are added to the system matrix and state vector. GNSS states include 

GPS clock bias and drift. The time derivative of the GPS measurement bias is 

modeled as the drift. The other parts are the same as the loosely coupled system, 

which can be found in detail in Chapter 3.2.1.1. The system model for the GNSS part 

is given as [3] in Eq. (3.92): 

𝛿�̇�𝐺 = 𝐹𝐺𝛿𝑥𝐺 + 𝐺𝐺𝑤𝐺 (3.92) 

Where: 

𝛿𝑥 = [𝛿𝑏𝐺 𝛿𝑑𝐺]𝑇 (3.93) 

𝐹𝐺 = [
0 1
0 0

] (3.94) 

𝐺𝐺 = [𝜎𝑏 𝜎𝑑]𝑇 (3.95) 

Together with the loosely coupled system matrix: 

𝐹 = [
𝐹𝐿𝐶 0
0 𝐹𝐺

] (3.96) 
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3.2.2.2 Measurement Model 

The measurement model of the error-state Kalman filter for tightly coupled 

INS/GNSS integration is given in discrete form. While the loosely coupled 

measurement model considers the position and velocity differences from INS and 

GPS as measurements, the tightly coupled measurement model considers pseudo-

range and pseudo-range rate differences from INS and GNSS. For this purpose, 

pseudo-range and pseudo-range rate measurements are imitated by using INS 

measurements, as shown in Eq. (3.104) and (3.106). 

𝛿𝑧𝑘 = 𝐻𝑘𝛿𝑥𝑘 + ek (3.97) 

Where: 

𝐻𝑘 = [
𝐻𝑀𝑥3

𝜌
0𝑀𝑥3 0𝑀𝑥3 −𝑜𝑛𝑒𝑠(𝑀, 1) 0𝑀𝑥1

0𝑀𝑥3 𝐻𝑀𝑥3
�̇�

0𝑀𝑥3 0𝑀𝑥1 −𝑜𝑛𝑒𝑠(𝑀, 1)
] (3.98) 

𝐻𝜌 = 𝐺𝑀𝑥3𝑇3𝑥3 (3.99) 

𝐺 =

[
 
 
 
(1𝐿𝑂𝑆

1 )𝑇

(1𝐿𝑂𝑆
2 )𝑇

⋮
(1𝐿𝑂𝑆

𝑀 )𝑇]
 
 
 

(3.100) 

𝑇 = [

−(𝑅𝑁 + ℎ) sin𝜑 cos 𝜆 −(𝑅𝑁 + ℎ) cos𝜑 sin 𝜆 cos𝜑𝑐𝑜𝑠𝜆

−(𝑅𝑁 + ℎ) sin𝜑 sin 𝜆 (𝑅𝑁 + ℎ) cos𝜑 cos 𝜆 𝑐𝑜𝑠𝜑 sin 𝜆

{𝑅𝑁(1 − 𝑒2) + ℎ} cos𝜑 0 sin𝜑

] (3.101) 

𝐻�̇� = 𝐺𝑀𝑥3𝐶𝑛
𝑒 (3.102)  

𝛿𝑧𝑘 = [
𝛿𝑧𝜌

𝛿𝑧�̇�
] =

[
 
 
 
 
 
𝜌𝐼𝑁𝑆

1 − 𝜌𝐺𝑁𝑆𝑆
1

⋮
𝜌𝐼𝑁𝑆

𝑀 − 𝜌𝐺𝑁𝑆𝑆
𝑀

�̇�𝐼𝑁𝑆
1 − �̇�𝐺𝑁𝑆𝑆

1

⋮
�̇�𝐼𝑁𝑆

𝑀 − �̇�𝐺𝑁𝑆𝑆
𝑀 ]

 
 
 
 
 

(3.103) 

Where: 
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𝜌𝐼𝑁𝑆
𝑚 = ‖(𝑟𝑒𝑏,𝐼𝑁𝑆

𝑒 − 𝑟𝐺𝑁𝑆𝑆
𝑚 )‖ (3.104) 

1𝐿𝑂𝑆,𝐼𝑁𝑆
𝑚 =

(𝑟𝑒𝑏,𝐼𝑁𝑆
𝑒 − 𝑟𝐺𝑁𝑆𝑆

𝑚 )

‖(𝑟𝑒𝑏,𝐼𝑁𝑆
𝑒 − 𝑟𝐺𝑁𝑆𝑆

𝑚 )‖
(3.105) 

�̇�𝐼𝑁𝑆
𝑚 = (𝑣𝑒𝑏,𝐼𝑁𝑆

𝑚 − 𝑣𝐺𝑁𝑆𝑆
𝑚 ). 1𝐿𝑂𝑆,𝐼𝑁𝑆

𝑚 (3.106) 

3.3 Error-State Kalman Filter 

For the error-state Kalman filter, system and measurement models are provided in 

Chapters 3.2.1 and 3.2.2. To implement the Kalman filter, time update and 

measurement update equations are necessary.  

3.3.1 Time Update 

𝛿𝑥− = (𝐼 + 𝐹𝑘Δ𝑡)𝛿𝑥𝑘−1 (3.107) 

𝑃𝑘+1
− = (𝐼 + 𝐹𝑘Δ𝑡)𝑃𝑘(𝐼 + 𝐹𝑘Δ𝑡)𝑇 + 𝑄𝑘 (3.108) 

3.3.2 Measurement Update 

𝐾𝑘 = 𝑃𝑘
−𝐻𝑘

𝑇(𝐻𝑘𝑃𝑘
−𝐻𝑘

𝑇 + 𝑅𝑘)
−1

(3.109) 

𝛿𝑥𝑘 = 𝛿𝑥𝑘
− + 𝐾𝑘(𝛿𝑧𝑘 − 𝐻𝑘𝛿𝑥𝑘

−) (3.110) 

𝑃𝑘 = (𝐼 − 𝐾𝑘𝐻𝑘)𝑃𝑘
− (3.111) 

3.4 Adaptive Kalman Filter 

Adaptive Kalman filtering is achieved by innovation-based 𝑅-adaptation by both 

single-scale factor (SSF) and multiple-scale factor (MSF) from [13].  The faulty 

measurement can be detected with the help of a statistical function, 𝛽𝑘 [13]. Without 

the faulty measurement, the statistical function must follow the square of normal 
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distribution and have a value lower than a defined threshold. In case of a faulty 

measurement, 𝛽𝑘 value increases significantly. When 𝛽𝑘 is higher than a specific 

value found from chi-square table, then the measurement noise covariance matrix 

(𝑅𝑘) could be adapted by using SSF and MSF approaches [14]. The calculation of 

the statistical function (𝛽𝑘) involves residual, which is a measure of the difference 

between measurement and the estimated value. 

𝛽𝑘 = �̃�𝑘
𝑇(𝐻𝑘𝑃𝑘|𝑘−1𝐻𝑘

𝑇 + 𝑅𝑘)
−1

�̃�𝑘 (3.112) 

Where the residual is defined as in Eq. (3.113): 

�̃�𝑘 = 𝑦𝑘 − 𝐻𝑘�̂�𝑘|𝑘−1 (3.113) 

3.4.1 Single Scale Factor 

Single scale factor is calculated as in Eq. (3.114) and the resultant is a scalar which 

is multiplied with the measurement noise covariance matrix (𝑅𝑘) as in Eq. (3.115).  

𝑆𝑘 =
�̃�𝑘

𝑇�̃�𝑘 − 𝑡𝑟{𝐻𝑘𝑃𝑘|𝑘−1𝐻𝑘
𝑇} 

𝑡𝑟{𝑅𝑘}
(3.114) 

𝑅𝑘 = 𝑆𝑘𝑅𝑘 (3.115) 

3.4.2 Multiple Scale Factor 

Multiple scale factor is calculated as in Eq. (3.114) and the resultant is a scalar which 

is multiplied with the measurement noise covariance matrix (𝑅𝑘) as in Eq. (3.115). 

MSF could be beneficial in case some of the measurements are faulty; some valuable 

measurements are unwanted to be lost. 

𝑆𝑘 = (�̃�𝑘
𝑇�̃�𝑘 − 𝐻𝑘𝑃𝑘|𝑘−1𝐻𝑘

𝑇)𝑅𝑘
−1 (3.116) 

𝑅𝑘 = 𝑆𝑘𝑅𝑘 (3.117) 
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However, MSF matrix, 𝑆𝑘, sometimes can be non-diagonal or have values less than 1 which 

decreases some values of the measurement noise covariance matrix [14]. Both cases are 

undesired and need to be fixed. For this purpose, a rule is defined as in Eq. (3.118) [14]: 

𝑆𝑘
∗ = 𝑑𝑖𝑎𝑔(𝑠1

∗ 𝑠2
∗ ⋯ 𝑠𝑛

∗) (3.118) 

Where: 

𝑠𝑖
∗ = max{1, 𝑆𝑖𝑖} (3.119) 
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CHAPTER 4  

4 RESULTS AND DISCUSSION 

4.1 The Guided Munition Scenario 

Navigation results are obtained by using the simulation model. Errors are created by 

calculating the difference between the real world and KF navigation results. In the 

scenario studied, the guided munition is released from a host vehicle from 6000 m 

to the target in 10 km downrange and 500 m cross range, as can be observed from 

Figure 4-1.  

  

Figure 4-1 Flight Trajectories 

In Figure 4-2, the Mach number, angle of attack, and side slip angle of the guided 

munition are presented. The guided munition is released with a Mach number of 0.85 

and it has positive angle of attack during flight. 
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Figure 4-2 Mach Number, Angle of Attack and Sideslip Angle 

In Figure 4-3, Euler angles and body angular rates are illustrated. As expected, the 

body roll angle is zero during flight, thanks to the roll autopilot. Pitch and yaw angles 

are the natural outcome of the scenario and guidance law. 

  

Figure 4-3 Euler Angles and Angular Rates 

Acceleration commands and responses for pitch and yaw channels are illustrated in 

Figure 4-4. Both autopilots successfully follow the acceleration commands as 

observed.  
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Figure 4-4 Acceleration Commands and Responses 

4.2 Navigation Errors with Loosely Coupled Integration 

Navigation errors for position, velocity, and attitude are provided in Figure 4-5, 

Figure 4-6, and Figure 4-7. Except for the second Euler angle, all of the errors stay 

in the theoretical 3𝜎 bounds when no GPS measurement faults are present. 
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Figure 4-5 Loosely Coupled Integration Position Errors 

 

Figure 4-6 Loosely Coupled Integration Velocity Errors 
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Figure 4-7 Loosely Coupled Integration Attitude Errors 

  

4.3 Navigation Errors with Tightly Coupled Integration 

For tightly coupled integration, navigation errors of position, velocity, and attitude 

are provided in Figure 4-8, Figure 4-9, and Figure 4-10. Every error stays in the 

theoretical 3𝜎 bounds when no GPS measurement faults are present. 
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Figure 4-8 Tightly Coupled Integration Position Errors 

 

Figure 4-9 Tightly Coupled Integration Velocity Errors 
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Figure 4-10 Tightly Coupled Integration Attitude Errors 

4.4 Navigation Errors Under GNSS Spoofing 

To create a GNSS spoofing error case, one of the measurements from the GPS is 

disrupted at the 20th second by adding some bias for 5 seconds. The goal was to 

compare the navigation errors for both loosely coupled and tightly coupled 

integration methods in case of faulty measurements and then observe the 

improvement with the adaptive KF if there are any. However, for the same error 

comparison, the least squares algorithm, which is utilized in loosely coupled 

integration methods to obtain the guided munition’s position and velocity using 

pseudo-range and pseudo-range rate measurements, cannot provide any reasonable 

solutions in the case of faulty measurements. The guided munition position and bias 

solution found by the least squares algorithm is provided in Figure 4-11 and Figure 

4-12. As soon as GPS pseudo-range and pseudo-range rate errors are introduced, the 

position and bias solution increases excessively.  
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Figure 4-11 Least Squares Position Solution 

 

Figure 4-12 Least Squares Bias Solution 

Similar to the position case, the least squares algorithm fails to provide an 

appropriate velocity and drift solution, which are obtained in Figure 4-13 and 

Figure 4-14. 
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Figure 4-13 Least Squares Velocity Solution 

 

 

Figure 4-14 Least Squares Drift Solution 

 

The investigation under faulty GPS measurements is done separately for loosely 

coupled and tightly coupled integration methods because the least squares algorithm 

cannot provide a proper navigation solution to use in loosely coupled integration. 

Solution errors are imposed directly in position and velocity for loosely coupled 

integration, as in Eq. (4.1). 

[𝜑 𝜆 ℎ] = [𝜑 𝜆 ℎ] + [𝑏𝜑 𝑏𝜆 𝑏ℎ] (4.1) 
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[𝑣𝑁 𝑣𝐸 𝑣𝐷] = [𝑣𝑁 𝑣𝐸 𝑣𝐷] + [𝑏𝑣𝑁
 𝑏𝑣𝐸

𝑏𝑣𝐷] (4.2) 

For a tightly coupled integration method, the spoofing error is created by adding bias 

to the pseudo-range and pseudo-range rate measurements, as stated before. 

𝜌𝑚 = 𝜌𝑚 + 𝑏𝜌 (4.3) 

�̇�𝑚 = �̇�𝑚 + 𝑏�̇� (4.4) 

4.4.1 AKF with Loosely Coupled Integration 

In case of faulty measurements from GPS, a statistical function to determine whether 

adaptive KF should be used or not is calculated and illustrated in Figure 4-15 for 

both SSF and MSF. As can be observed from the figure, 𝛽𝑘 value is much higher for 

SSF than the MSF. In Figure 4-16 and Figure 4-17, SSF and MSF for position values 

are illustrated. The scale factor for the altitude is higher than the latitude and 

longitude. 

 

Figure 4-15 Statistical Function Value For Loosely Coupled Integration 
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Figure 4-16 Single Scale Factor for Loosely Coupled Integration 

 

Figure 4-17 Multiple Scale Factors for Position 



 

 

54 

Figure 4-18, Figure 4-20, and Figure 4-21 show the navigation errors without 

adaptive filter and SSF and MSF. As can be observed from these figures, MSF gives 

the best results. MSF changes the measurement noise covariance matrix elements 

proportional to the error existing in that state. On the other hand, SSF multiplies the 

whole measurement noise covariance matrix with a scalar. In Figure 4-18, it is 

observed that when the GPS measurement error exists (between 20th and 25th 

seconds) and after the GPS error, MSF has the best position solutions. Even though 

SSF provides better position solutions compared to the case where AKF is not used 

during GPS error, after 25 seconds of the flight, their error magnitudes become 

almost the same. 

 

Figure 4-18 Loosely Coupled Integration Position Errors with AKF 

 

Figure 4-19 shows the MSF values for velocity in loosely coupled integration for the 

guided munition. Since there exists a protection for the MSF values lower than 1. 

Even though the algorithm calculates the values lower than 1, the protection prevents 

them from having those values. Note that, in the case of GPS error for a loosely 
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coupled system, MSF for the velocities does not affect the elements related to the 

velocity in the measurement noise covariance matrix.   

 

Figure 4-19 Multiple Scale Factors for Velocity 

In Figure 4-20, it is observed during the whole flight, MSF has the best velocity 

solutions. SSF provides a better velocity solution compared to the GPS error case 

during flight. At the end of the flight, their errors become closer. It is concluded that 

their velocity errors converge to the same point if the flight time was longer. 
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Figure 4-20 Loosely Coupled Integration Velocity Errors with AKF 

In Figure 4-21, it is illustrated that MSF provides the best attitude solutions during 

the whole flight. SSF provides a better attitude solution compared to the GPS error 

case during flight. At the end of the flight, their errors become closer. It is concluded 

that if the flight time was longer, their attitude errors could converge to the same 

point. 
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Figure 4-21 Loosely Coupled Integration Attitude Errors with AKF 

 

Since the results of MSF cannot be observed from the above figures, separate figures 

are created to state how MSF produces the best navigation solutions in Figure 4-22, 

Figure 4-23, and Figure 4-24. 
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Figure 4-22 Loosely Coupled Integration Position Errors with MSF 

 

Figure 4-23 Loosely Coupled Integration Velocity Errors with MSF 
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Figure 4-24 Loosely Coupled Integration Attitude Errors with MSF 

 

4.4.2 AKF with Tightly Coupled Integration 

In case of faulty measurements from GPS, a statistical function to determine whether 

adaptive KF should be used or not is calculated and illustrated in Figure 4-25 for 

both SSF and MSF. As can be observed from the figure, 𝛽𝑘 value is similar for SSF 

and MSF in tightly coupled integration.  
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Figure 4-25 Statistical Function Value For Tightly Coupled Integration 

 

In Figure 4-26 and Figure 4-27, SSF and MSF for pseudo-range values are 

illustrated. As can be observed from MSF values, the scale factor for the GPS number 

5, which has the measurement error, is much higher than other satellites, as expected. 
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Figure 4-26 Single Scale Factor For Tightly Coupled Integration 

 

Figure 4-27 Multiple Scale Factors for Pseudo-Range Measurements 
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In case of faulty pseudo-range and pseudo-range rate measurements from GPS, 

Figure 4-28, Figure 4-30, and Figure 4-31 show the navigation errors without 

adaptive filter and SSF and MSF. As can be observed from these figures, MSF gives 

the best results. MSF changes the measurement noise covariance matrix elements 

proportional to the error existing in that state. On the other hand, SSF multiplies the 

whole measurement noise covariance matrix with a scalar. Figure 4-28 shows that 

SSF provides a better position solution during GPS error (between the 20th and 25th 

seconds of the flight) compared to the no AKF case; after a certain point, SSF 

position errors become larger than no AKF case. 

 

Figure 4-28 Tightly Coupled Integration Position Errors with AKF 

Figure 4-29 shows the MSF values for pseudo-range rate measurements in tightly 

coupled integration for the guided munition. Since there exists a protection for the 

MSF values lower than 1. Even though the algorithm calculates the values lower than 

1, the protection prevents them from having those values.  
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Figure 4-29 Multiple Scale Factors for Pseudo-Range Rate Measurements 

 

Figure 4-30 Tightly Coupled Integration Velocity Errors with AKF 
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Figure 4-31 Tightly Coupled Integration Attitude Errors with AKF 

 

Since the results of MSF cannot be observed from the above figures, separate figures 

are created to state how MSF produces the best navigation solutions in Figure 4-32, 

Figure 4-33, and Figure 4-34. 
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Figure 4-32 Tightly Coupled Integration Position Errors with MSF 

 

Figure 4-33 Tightly Coupled Integration Velocity Errors with MSF 
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Figure 4-34 Tightly Coupled Integration Attitude Errors with MSF 
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CHAPTER 5  

5 CONCLUSIONS 

In this study, a simulation model for the guided munition is created to examine 

INS/GPS integration with different integration architectures, and adaptive KF is 

utilized to overcome GPS spoofing. Both loosely coupled and tightly coupled 

integration methods are applied, GPS spoofing is modeled, and navigation errors are 

illustrated for all cases. In the case of  GPS spoofing, AKF is achieved with both SSF 

and MSF. Since MSF adapts the diagonal elements of the measurement noise 

covariance matrices, it has some advantages over SSF. Loosely coupled and tightly 

coupled integration methods differ in measurment models and this results in 

calculated MSF affect different types of measurements. In loosely coupled 

integration, MSF adapts the position and velocity elements of the measurement noise 

covariance matrix. In tightly coupled integration, pseudo-range and pseudo range 

rate measurements are affected by MSF. This study shows that, while single scale 

factor could be used for loosely coupled integration, it şs not suggested for the tightly 

coupled integartion method. Because when a measurement is faulty in loosely 

coupled system it affects all position and velocity information and multiplying a SSF 

with measurement noise covariance matrix is acceptable. On the other hand, if only 

one of the GPS measurements are faulty in tightly coupled integration, it does not 

affect all measurements. In that case, if SSF is multiplied with measurement noise 

covariance matrix, the result is losing the valuable information from other satelleties. 

When GPS spoofing results in malfunction only position or only velocity, adapting 

the related element preserves the important information to be lost completely. 
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APPENDICES 

A. Least Squares Method 

The least squares algorithm is applied to obtain the position and velocity 

measurements of the GPS by using pseudo-range and pseudo-range rate 

measurements. These position and velocity solutions are necessary in the loosely 

coupled integration method. The algorithm is based on using minimum of four 

satellites’ measurements and estimating GPS position, bias, velocity, and drift as 

follows [3]: 

[
 
 
 
 
 
𝛿𝜌1

⋮
𝛿�̇�𝑀

𝛿�̇�1

⋮
𝛿�̇�𝑀]

 
 
 
 
 

=

[
 
 
 
 
 
(1𝑒𝑠𝑡

1 )𝑇 1 03𝑥1 0
⋮ ⋮ ⋮ ⋮

(1𝑒𝑠𝑡
1 )𝑇 1 03𝑥1 0

03𝑥1 0 (1𝑒𝑠𝑡
1 )𝑇 1

⋮ ⋮ ⋮ ⋮
03𝑥1 0 (1𝑒𝑠𝑡
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1

⋮
휀�̇�

𝑀
]
 
 
 
 
 
 

(𝐴. 1) 

𝛿𝑧2𝑀𝑥1 = 𝐺2𝑀𝑥8𝛿𝑆8𝑥1 + 휀2𝑀𝑥1 (𝐴. 2) 

If there are four or more satellites, the least squares solution as in Eq. (A.3): 

𝛿𝑆 = (𝐺𝑇𝐺)−1𝐺𝑇𝛿𝑧 (𝐴. 3) 

𝑟𝑒𝑠𝑡,𝑘 = 𝑟𝑒𝑠𝑡,𝑘−1 + 𝛿𝑟 (𝐴. 4) 

𝑏𝑒𝑠𝑡,𝑘 = 𝑏𝑒𝑠𝑡,𝑘−1 + 𝛿𝑏 (𝐴. 5) 

𝛿𝑣𝑒𝑠𝑡,𝑘 = 𝛿𝑣𝑒𝑠𝑡,𝑘 + 𝛿𝑣 (𝐴. 6) 

𝑑𝑒𝑠𝑡,𝑘 = 𝛿𝑑𝑒𝑠𝑡,𝑘−1 + 𝛿𝑑 (𝐴. 7) 

This algorithm is repeated, until 𝛿𝑆 is in the given tolerances [3]. Then, the GPS 

position and velocity solutions are obtained to be used in loosely coupled INS/GPS 

integration. 
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B. Derivation of Linear Autopilot Matrices 

The linear autopilot matrices are created by using force and moment equations acting 

on a flying vehicle. The forces acting on a body include aerodynamical and 

gravitational forces as stated in Eq. (B.1) [16]: 

𝐹𝑎𝑒𝑟𝑜 + 𝐹𝑔𝑟𝑎𝑣 = 𝑚(�̇�𝑒𝑏
𝑏 + 𝜔𝑖𝑏

𝑏  ×  𝑣𝑒𝑏
𝑏 ) (𝐵. 1) 

[
𝑋
𝑌
𝑍
] + 𝐶𝑛

𝑏 𝑚 [
0
0
𝑔
] = 𝑚 ([

�̇�
�̇�
�̇�

] + [

0 −𝑟 𝑞
𝑟 0 −𝑝

−𝑞 𝑝 0
] [

𝑢
𝑣
𝑤

]) (𝐵. 2) 

𝑋 − 𝑚𝑔 sin 𝜃 =  𝑚(�̇� + 𝑞𝑤 − 𝑟𝑣) (𝐵. 3) 

𝑌 + 𝑚𝑔 cos 𝜃 sin 𝜙  = 𝑚(�̇� + 𝑟𝑢 − 𝑝𝑤) (𝐵. 4) 

𝑍 + 𝑚𝑔 cos 𝜃 cos𝜙 = 𝑚(�̇� + 𝑝𝑣 − 𝑞𝑢) (𝐵. 5) 

The moments acting on a flying vehicle are stated in Eq. (B.6) [16]: 

𝑀𝑏 = 𝐼�̇�𝜔𝑖𝑏
𝑏 + 𝐼𝑏�̇�𝑖𝑏

𝑏 + 𝜔𝑖𝑏
𝑏  ×  𝐼𝑏𝜔𝑖𝑏

𝑏 (𝐵. 6) 

[
𝐿
𝑀
𝑁

] = [

𝐼�̇�𝑥 −𝐼�̇�𝑦 −𝐼�̇�𝑥

−𝐼�̇�𝑦 𝐼�̇�𝑦 −𝐼�̇�𝑧

−𝐼�̇�𝑥 −𝐼�̇�𝑧 𝐼�̇�𝑧

] [
𝑝
𝑞
𝑟
] + [

𝐼𝑥𝑥 −𝐼𝑥𝑦 −𝐼𝑧𝑥

−𝐼𝑥𝑦 𝐼𝑦𝑦 −𝐼𝑦𝑧

−𝐼𝑧𝑥 −𝐼𝑦𝑧 𝐼𝑧𝑧

] [
𝑝
𝑞
𝑟
]

+ [

0 −𝑟 𝑞
𝑟 0 −𝑝

−𝑞 𝑝 0
] [

𝐼𝑥𝑥 −𝐼𝑥𝑦 −𝐼𝑧𝑥

−𝐼𝑥𝑦 𝐼𝑦𝑦 −𝐼𝑦𝑧

−𝐼𝑧𝑥 −𝐼𝑦𝑧 𝐼𝑧𝑧

] [
𝑝
𝑞
𝑟
] (𝐵. 7)

 

 

Note that, for a guided munition 𝐼𝑥𝑧 ≈ 𝐼𝑦𝑧 ≈ 𝐼𝑥𝑦 ≈ 0 since it is symmetric wrt two 

axes and also by taking small inertia change, 𝐼(̇𝑏) ≈ 0, equations become: 

𝐿 = 𝐼𝑥�̇� − (𝐼𝑦𝑦 − 𝐼𝑧𝑧)𝑞𝑟 (𝐵. 8) 

𝑀 = 𝐼𝑦�̇� − (𝐼𝑧𝑧 − 𝐼𝑥𝑥)𝑟𝑝 (𝐵. 9) 

𝑁 = 𝐼𝑧�̇� − (𝐼𝑥𝑥 − 𝐼𝑦𝑦)𝑝𝑞 (𝐵. 10) 
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For the pitch dynamics, the definition of angle of attack is the starting point of 

creating the linear matrices. 

𝛼 = arctan (
𝑤

𝑢
) (𝐵. 11) 

For small angle of attack assumption: 

𝛼 ≈
𝑤

𝑢
(𝐵. 12) 

�̇� =
�̇�𝑢 − 𝑤�̇�

𝑢2
(𝐵. 13) 

Instead of �̇� expression from Eq. (B.5) is used: 

�̇� =
(
𝑍
𝑚 + 𝑞𝑢)𝑢 − 𝑤�̇�

𝑢2
(𝐵. 14) 

Note that Z-force can be expressed in terms of aerodynamic derivatives and some 

parameteres as in Eq. (B.15): 

𝑍 = 𝑍𝛼𝛼 + 𝑍𝑞𝑞 + 𝑍𝛿𝛿 (𝐵. 15) 

�̇� = (
𝑍𝛼

𝑚𝑢
−

�̇�

𝑢
)𝛼 + (

𝑍𝑞

𝑚𝑢
+ 1) 𝑞 +

𝑍𝛿

𝑚𝑢
𝛿 (𝐵. 16)  

For 𝑟 = 𝑝 = 0, from Eq. (B.9): 

�̇� =
𝑀

𝐼𝑦
(𝐵. 17) 

Note that M-moment can be expressed in terms of aerodynamic derivatives and some 

parameteres as in Eq. (B.18): 

𝑀 = 𝑀𝛼𝛼 + 𝑀𝑞𝑞 + 𝑀𝛿𝛿 (𝐵. 18) 

Putting Eq. (B.18) into the Eq. (B.17): 

�̇� =
𝑀𝛼

𝐼𝑦
𝛼 +

𝑀𝑞

𝐼𝑦
𝑞 +

𝑀𝛿

𝐼𝑦
𝛿 (𝐵. 19)  
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Finally acceleration in z direction is found by dividing the Z-force to the guided 

munition’s mass: 

𝑎𝑍 =
𝑍𝛼

𝑚
𝛼 +

𝑍𝑞

𝑚
𝑞 +

𝑍𝛿

𝑚
𝛿 (𝐵. 20) 

�̇�𝑍 =
𝑍𝛼

𝑚
�̇� +

𝑍𝑞

𝑚
�̇� +

𝑍𝛿

𝑚
�̇� (𝐵. 21) 

�̇�𝑍 =
𝑍𝛼

𝑚
((

𝑍𝛼

𝑚𝑢
−

�̇�

𝑢
)𝛼 + (

𝑍𝑞

𝑚𝑢
+ 1) 𝑞 +

𝑍𝛿

𝑚𝑢
𝛿 )

+
𝑍𝑞

𝑚
(
𝑀𝛼

𝐼𝑦
𝛼 +

𝑀𝑞

𝐼𝑦
𝑞 +

𝑀𝛿

𝐼𝑦
𝛿 ) +

𝑍𝛿

𝑚
�̇� (𝐵. 22)

 

With the manipulation of Eq. (B.20) angle of attack becomes: 

𝛼 =
𝑚

𝑍𝛼
𝑎𝑧 −

𝑍𝑞

𝑍𝛼
𝑞 −

𝑍𝛿

𝑍𝛼
𝛿 (𝐵. 23) 

Putting Eq. (B.23) into the Eq. (B.22): 

�̇�𝑍 = (
𝑍𝛼

𝑚𝑢
+

𝑍𝑞𝑀𝛼

𝑍𝛼𝐼𝑦
−

�̇�

𝑢
)𝑎𝑍 + (

𝑍𝛼

𝑚
+

𝑍𝑞�̇�

𝑚𝑢
+

𝑍𝑞𝑀𝑞

𝑚𝐼𝑦
−

𝑍𝑞
2𝑀𝛼

𝑍𝛼𝑚𝐼𝑦
)𝑞

+(
𝑍𝛿�̇�

𝑚𝑢
−

𝑍𝑞𝑀𝛼𝑍𝛿

𝑍𝛼𝑚𝐼𝑦
+

𝑍𝑞𝑀𝛿

𝑚𝐼𝑦
) 𝛿 +

𝑍𝛿

𝑚
�̇� (𝐵. 24)

 

Putting Eq. (B.23) into the Eq. (B.19): 

�̇� = (
𝑀𝛼𝑚

𝐼𝑦𝑍𝛼
)𝑎𝑍 + (

𝑀𝑞

𝐼𝑦
−

𝑀𝛼𝑍𝑞

𝑍𝛼𝐼𝑦
)𝑞 + (

𝑀𝛿

𝐼𝑦
−

𝑀𝛼𝑍𝛿 

𝑍𝛼𝐼𝑦
)𝛿 (𝐵. 25)  

By adding the CAS dynamics into the system linear matrices for the pitch dynamics 

can be written as in Eq (B.26): 
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[

𝑎�̇�

�̇�

�̇�
�̈�

] =

[
 
 
 
 
 
 
𝑍𝛼

𝑚𝑢
+

𝑍𝑞𝑀𝛼

𝑍𝛼𝐼𝑦
−

�̇�

𝑢

𝑍𝛼

𝑚
+

𝑍𝑞�̇�

𝑚𝑢
+

𝑍𝑞𝑀𝑞

𝑚𝐼𝑦
−

𝑍𝑞
2𝑀𝛼

𝑍𝛼𝑚𝐼𝑦

𝑍𝛿�̇�

𝑚𝑢
−

𝑍𝑞𝑀𝛼𝑍𝛿

𝑍𝛼𝑚𝐼𝑦
+

𝑍𝑞𝑀𝛿

𝑚𝐼𝑦

𝑍𝛿

𝑚

𝑀𝛼𝑚

𝐼𝑦𝑍𝛼

𝑀𝑞

𝐼𝑦
−

𝑀𝛼𝑍𝑞

𝑍𝛼𝐼𝑦

𝑀𝛿

𝐼𝑦
−

𝑀𝛼𝑍𝛿 

𝑍𝛼𝐼𝑦
0

0 0 0 1
0 0 −𝜔𝑛

2 −2휁𝜔𝑛
2]
 
 
 
 
 
 

[

𝑎𝑍

𝑞
𝛿
�̇�

]

+ [

0
0
0
𝜔𝑛

2

] 𝛿𝑐 (𝐵. 26)

 

For the yaw dynamics, the definition of sideslip angle is the starting point of creating 

the linear matrices. 

𝛽 = arcsin (
𝑣

𝑉
) (𝐵. 27) 

For small sideslip angle assumption: 

𝛽 ≈
𝑣

𝑉
(𝐵. 28) 

Time derivative of the sideslip angle isgiven in Eq. (B.29): 

�̇� =
�̇�𝑉 − 𝑣�̇�

𝑉2
(𝐵. 29) 

Instead of �̇� expression from Eq. (B.4) is used: 

�̇� =
(
𝑌
𝑚 − 𝑟𝑢)𝑉 − 𝑣�̇�

𝑉2
(𝐵. 30) 

Note that Y-force can be expressed in terms of aerodynamic derivatives and some 

parameteres as in Eq. (B.31): 

𝑌 = 𝑌𝛽𝛽 + 𝑌𝑟𝑟 + 𝑌𝛿𝛿 (𝐵. 31) 

Assuming that, munition has biggest velocity in the x direction. Hence 𝑢 ≈ 𝑉 Eq. 

(B.30) becomes: 

�̇� = (
𝑌𝛽

𝑚𝑉
−

�̇�

𝑉
)𝛽 + (

𝑌𝑟

𝑚𝑉
− 1) 𝑟 +

𝑌𝛿

𝑚𝑉
𝛿 (𝐵. 32)  

For 𝑝 = 𝑞 = 0, Eq. (B.10): 
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�̇� =
𝑁

𝐼𝑧
(𝐵. 33) 

Note that N-moment can be expressed in terms of aerodynamic derivatives and some 

parameteres as in Eq. (B.34): 

𝑁 = 𝑁𝛽𝛽 + 𝑁𝑟𝑟 + 𝑁𝛿𝛿 (𝐵. 34) 

Putting Eq. (B.34) into the Eq. (B.33): 

�̇� =
𝑁𝛽

𝐼𝑧
𝛽 +

𝑁𝑟

𝐼𝑧
𝑟 +

𝑁𝛿

𝐼𝑧
𝛿 (𝐵. 35)  

Finally acceleration in y direction is found by dividing the Y-force to the guided 

munition’s mass: 

𝑎𝑌 =
𝑌𝛽

𝑚
𝛽 +

𝑌𝑟

𝑚
𝑟 +

𝑌𝛿

𝑚
𝛿 (𝐵. 36) 

�̇�𝑌 =
𝑌𝛽

𝑚
�̇� +

𝑌𝑟

𝑚
�̇� +

𝑌𝛿

𝑚
�̇� (𝐵. 37) 

�̇�𝑌 =
𝑌𝛽

𝑚
((

𝑌𝛽

𝑚𝑉
−

�̇�

𝑉
)𝛽 + (

𝑌𝑟

𝑚𝑉
− 1) 𝑟 +

𝑌𝛿

𝑚𝑉
𝛿 )

+
𝑌𝑟

𝑚
(
𝑁𝛽

𝐼𝑧
𝛽 +

𝑁𝑟

𝐼𝑧
𝑟 +

𝑁𝛿

𝐼𝑧
𝛿  ) +

𝑌𝛿

𝑚
�̇� (𝐵. 38)

 

With the manipulation of 𝐸𝑞. (𝐶. 36) sideslip angle becomes: 

𝛽 =
𝑚

𝑌𝛽
𝑎𝑌 −

𝑌𝑟

𝑌𝛽
𝑟 −

𝑌𝛿

𝑌𝛽
𝛿 (𝐵. 39) 

Putting Eq. (B.39) into the Eq. (B.38): 

�̇�𝑌 = (
𝑌𝛽

𝑚𝑉
+

𝑌𝑟𝑁𝛽

𝑌𝛽𝐼𝑧
−

�̇�

𝑉
)𝑎𝑌 + (−

𝑌𝛽

𝑚
+

𝑌𝑟�̇�

𝑚𝑉
+

𝑌𝑟𝑁𝑟  

𝑚𝐼𝑧
−

𝑌𝑟
2𝑁𝛽

𝑌𝛽𝑚𝐼𝑧
)𝑟 

+(
𝑌𝛿�̇�

𝑚𝑉
−

𝑌𝑟𝑁𝛽 𝑌𝛿

𝑌𝛽𝑚𝐼𝑧
+

𝑌𝑟𝑁𝛿

𝑚𝐼𝑧
)𝛿 +

𝑌𝛿

𝑚
�̇� (𝐵. 40) 

Putting Eq. (B.39) into the Eq. (B.35): 
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�̇� = (
𝑁𝛽𝑚

𝑌𝛽𝐼𝑧
)𝑎𝑌 + (

𝑁𝑟

𝐼𝑧
−

𝑁𝛽𝑌𝑟

𝑌𝛽𝐼𝑧
) 𝑟 + (

𝑁𝛿

𝐼𝑧
−

𝑁𝛽𝑌𝛿

𝑌𝛽𝐼𝑧
)𝛿 (𝐵. 41)  

By adding the CAS dynamics into the system linear matrices for the yaw dynamics 

can be written as in Eq (B.42): 

[

𝑎�̇�

�̇�
�̇�
�̈�

] =

[
 
 
 
 
 
 
𝑌𝛽

𝑚𝑉
+

𝑌𝑟𝑁𝛽

𝑌𝛽𝐼𝑧
−

�̇�

𝑉
−

𝑌𝛽

𝑚
+

𝑌𝑟�̇�

𝑚𝑉
+

𝑌𝑟𝑁𝑟   

𝑚𝐼𝑧
−

𝑌𝑟
2𝑁𝛽

𝑌𝛽𝑚𝐼𝑧

𝑌𝛿�̇�

𝑚𝑉
−

𝑌𝑟𝑁𝛽 𝑌𝛿

𝑌𝛽𝑚𝐼𝑧
+

𝑌𝑟𝑁𝛿

𝑚𝐼𝑧

𝑌𝛿

𝑚

𝑁𝛽𝑚

𝑌𝛽𝐼𝑧

𝑁𝑟

𝐼𝑧
−

𝑁𝛽𝑌𝑟

𝑌𝛽𝐼𝑧

𝑁𝛿

𝐼𝑧
−

𝑁𝛽𝑌𝛿

𝑌𝛽𝐼𝑧
0

0 0 0 1
0 0 −𝜔𝑛

2 −2휁𝜔𝑛
2]
 
 
 
 
 
 

[

𝑎𝑌

𝑟
𝛿
�̇�

]

+ [

0
0
0
𝜔𝑛

2

] 𝛿𝑐 (𝐵. 42)

 

For the roll dynamics, Eq. (B.8) becomes: 

�̇� =
𝐿

𝐼𝑥
(𝐵. 43) 

Note that L-moment can be expressed in terms of aerodynamic derivatives and some 

parameteres as in Eq. (B.44): 

𝐿 = 𝐿𝑝𝑝 + 𝐿𝛿𝛿 (𝐵. 44) 

Putting Eq. (B.44) into the Eq. (B.43): 

�̇� =
𝐿𝑝

𝐼𝑥
𝑝 +

𝐿𝛿

𝐼𝑥
𝛿 (𝐵. 45) 

The relationship between Euler angles and body angular rates are as follows [16]: 

�̇� = 𝑝 + 𝑞 sin𝜙 tan 𝜃 + 𝑟 cos𝜙 tan 𝜃 (𝐵. 46) 

With the assumption of 𝑞 ≈ 𝑟 ≈ 0: 

�̇� = 𝑝 (𝐵. 47) 

By adding the CAS dynamics into the system linear matrices for the roll dynamics 

can be written as in Eq (B.48): 
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[
 
 
 
�̇�
�̇�

�̇�
�̈� ]
 
 
 
=

[
 
 
 
 
0 1 0 0

0
𝐿𝑝

𝐼𝑥

𝐿𝛿

𝐼𝑥
0

0 0 0 1
0 0 −𝜔𝑛

2 −2휁𝜔𝑛
2]
 
 
 
 

[

𝜙
𝑝
𝛿
�̇�

] + [

0
0
0
𝜔𝑛

2

] 𝛿𝑐 (𝐵. 48)
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