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ABSTRACT

INS/GPS INTEGRATION AND ADAPTIVE FILTERING METHODS FOR
GUIDED MUNITIONS

Eroglu, Nur Sila
Master of Science, Aerospace Engineering
Supervisor: Assoc. Prof. Dr.Halil Ersin Soken

September 2023, 81 pages

INS/GPS integration is a widely used application in aerospace to obtain navigation
solutions. Both sensors have complementing properties, and navigation solution
improves significantly when INS and GPS are utilized together. This study applies
INS/GPS integration on a guided munition by loosely and tightly coupled integration
techniques. Error-state Kalman filters are used in INS/GPS integration. Even though
GPS provides measurements with high precision, GPS can be prone to outside
effects, and the measurements from GPS can become unreliable. For these situations,
adaptive Kalman filter is implemented. This adaptive method calculates scale factors
for the measurement noise covariance matrix. If a faulty measurement is detected,
these scale factors are multiplied with the measurement noise covariance matrix.
Scale factors can be singular (SSF) or multiple (MSF), meaning it can be a scalar or
a diagonal matrix. Itis illustrated that MSF helps to obtain better navigation solutions
in all cases compared to the faulty measurement and SSF. On the other SSF provides
better navigation solutions in several cases than the faulty measurement. It is
concluded that if GPS measurements are faulty, using MSF adaptive Kalman filter

helps to obtain better navigation solutions for a guided munition.



Keywords: INS/GPS Integration, Loosely Coupled, Tightly Coupled, Adaptive

Kalman Filters, Guided Munitions
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0z

GUDUMLU MUHIMMATLAR ICIN ANS/KKS TUMLESTIRILMESI VE
ADAPTIF FILTRELEME YONTEMLERI

Eroglu, Nur Sila
Yiksek Lisans, Havacilik ve Uzay Miihendisligi
Tez Yoneticisi: Dogent Dr.Halil Ersin Soken

Eylul 2023, 81 sayfa

ANS/KKS tiimlestirilmesi, navigasyon ¢oziimleri elde etmek icin havacilik ve uzay
sektoriinde yaygin olarak kullanilan bir uygulamadir. Sensorler birbirlerini
tamamlayici1 6zellige sahiptir ve ANS ve KKS birlikte kullanildiginda navigasyon
¢0zUml onemli oOlclide gelisir. Bu ¢alismada gevsek tlimlestirilmis ve siki
timlestirilmis ANS/KKS tiimlestirilmeleri gidimli  muihimmatlar (zerinde
uygulanmigtir. Hata durumlu Kalman filtresi ANS/KKS tiimlestirilmesinde
kullanmilmistir. KKS yiiksek hassasiyette dlgiimler saglasa da dis etkilere acik olabilir
ve KKS olgumleri glvenilmez hale gelebilir. Bu durumlar icin adaptif Kalman
filtresi uygulanmigtir. Bu adaptif yontem 6lglim gurultust kovaryans matrisi icin
Olgek c¢arpanlar1 hesaplar. Eger hatali bir dl¢lim tespit edilirse, dlgek carpanlar
olgiim giiriiltiisii kovaryans matrisi ile garpilir. Olgek carpanlar tekil veya c¢oklu
olabilir. Tiim durumlarda ¢oklu ¢arpanin hatali 6l¢iim durumuna veya tekil ¢carpana
gore daha iyi navigasyon ¢Oziimii iirettigi gosterilmistir. Baz1 durumlarda ise tekil
carpan hatali duruma gore daha iyi sonug¢ verir. Sonug¢ olarak KKS olgiimleri
hataliysa, ¢oklu dlgek ¢arpanli adaptif Kalman filtresi giidimli bir mihimmat igin

daha 1yi navigasyon sonugclari elde edilmesine yardimei olur.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

INS/GNSS integration is applied for many aerospace applications to have better
navigation solutions. INS and GNSS both have their advantages and disadvantages.
However, if they are utilized together, they can offer better navigation solutions.
INS/GNSS integration can be achieved with different tools and integration methods.
One of the widely used tools is the Kalman filter, which is implemented in this study.
Both loosely coupled and tightly coupled integration methods are adapted. For
guided munition applications, even though INS/GNSS can be helpful, GNSS can be
prone to spoofing, which results in faulty measurements. In this case, one way can
be rejecting the faulty measurement and using only INS update for the navigation
solutions. On the other hand, an adaptive Kalman filter can be applied to decrease
the faulty measurement effect while still using valuable measurements from GNSS.
This thesis aims to show that in the case of GNSS spoofing, an adaptive Kalman
filter can provide a better navigation solution instead of using INS update only in

some scenarios.

1.2 Literature Review

Precision guided munition’s definition is a guided weapon with the purpose of
exterminating a target and also decreasing unwanted casualties, according to [1].
PGMs were introduced in WW 11; however, their operational use was in the Vietnam
War [2]. They can be categorized as air-launched, ground-launched, and naval-
launched. PGMs use INS, GNSS, and laser guidance [2]. In this study, an air-



launched PGM with no thrust, which has the INS and GNSS receiver is the point of
interest. INS and GNSS receiver are two important components of the guided
munition. INS is composed of three mutually orthogonal accelerometers, three
mutually orthogonal gyroscopes, and a navigation processor [3], [4], [5].
Accelerometers measure the specific force, which is the acceleration of the body
minus the gravity in that direction. Gyroscopes measure the angular rate of the body
with respect to the inertial frame. While accelerometers and gyroscopes provide the
specific force and angular rate, the navigation processor calculates the position,
velocity, and attitude of the body, which will be used in guidance and autopilot
algorithms of the guided munition.

INS is utilized in most aerospace vehicles because it is a dead-reckoning system,
meaning it does not need external references [3], [4]. INS calculates orientation and
position by integrating the measurements with a known initial condition. However,
this introduces a disadvantage of accumulating errors with time [5]. INS provides a
navigation solution in high frequency, at least 50 Hz, according to [5]. GNSS
includes the constellation of satellites orbiting the Earth, which helps a vehicle with
a receiver to calculate its position and velocity. Some examples of GNSS
constellations are GPS, GLONASS, and Galileo. The most used constellation is
GPS, which belongs to the United States; GLONASS belongs to Russia, and Galileo
belongs to the European Union [3]. These satellites transmit signals with the
information of their position, velocity, and the exact time that the signal is sent. The
vehicle with the GNSS receiver uses this signal to obtain its position and velocity
from at least four different satellites [3], [4]. One of the advantages of GNSS is that
it can provide positionforbita and velocity with high accuracy for the long term.
However, the measurement frequency is low compared to INS, typically between 1-
10 Hz [6]. Another disadvantage of GNSS is that it is highly affected by outside
conditions. These conditions can block the signal transmitted, or some interference
from other signal sources can occur. This is where INS/GNSS integration could be
beneficial. Both INS and GNSS have their advantages and disadvantages when both

of their measurements are utilized, better navigation solutions could be provided.



INS/GNSS integration could be categorized according to the coupling degree
between them, which are loosely coupled, tightly coupled, and ultra-tightly coupled
integration. While loosely coupled and tightly coupled integration are the points of
interest of this study, ultra-tightly coupled integration is not. GNSS receivers can
provide measurements in different ways, such as direct position and velocity or
pseudorange and pseudorange-rate measurements. If position and velocity solutions
from the GNSS receiver are used directly, loosely coupled integration is adapted [3].
If pseudorange and pseudorange-rate measurements are used, then tightly coupled
INS/GNSS integration is applied [3]. In the case of pseudorange and pseudorange-
rate estimations, they are fed back to the GNSS receiver’s tracking loop, and then
an ultra-tightly coupled integration method is utilized [3].

INS/GNSS integration can be achieved by using different tools such as Kalman
filters and particle filters. Particle filters can be beneficial in case of non-Gaussian
noise distribution. On the other hand, Kalman filters are optimal estimators for the
Gaussian noise characteristics. The particle filter and Kalman filter are compared in
[7]; while the particle filter provides a robust trajectory, the Kalman filter has shorter
computation time. Kalman filters are widely used in INS/GNSS integration
literature. The main types of Kalman filters used in INS/GNSS integration are
linearized Kalman filters, extended Kalman filters, and unscented Kalman filters,
also known as sigma-point Kalman filters. These Kalman filters differ in system and
measurement models and their computational loads. Linear KF is an optimal
estimator for linear systems. Since all systems are nonlinear in real-life navigation
applications, using linear systems and measurement models may not be preferable
for certain reasons. In this case, extended KFs can be introduced. Nonlinear systems
or measurement models can be linearized using Taylor series expansion around the
estimated state vector [8]. An EKF is used for INS/GPS navigation systems in [9],
because of the nonlinear dynamics of GPS measurements. However, when a GPS
outage exists, the algorithm switches to the linear KF. Unscented KF guesses the

random variable statistics using sigma points [8]. The results in [8] illustrate that



UKF has better performance than EKF to some degree. On the other hand, the
computational load that UKF brings compared to EKF is higher [8].

KF applications vary in using full-state or error-state in its system and measurement
model. Error state utilization is possible with small perturbation theory. By using the
error-state, equations become linear, and optimal KF can be achieved [10]. One
major drawback of using error-state is that the errors due to linearization can grow
with time. Due to the relatively short time of flight of the guided munition, an error-
state extended Kalman filter is applied in this thesis. In [11], a tightly coupled
INS/GPS integration is applied for a guided munition. Different trajectories are
studied in [11]; short range trajectories have some problems because of lack of time
sufficient for INS calibration and alignment. INS/GPS tightly and deeply integration
are applied on guided munition, and their performances are compared under GPS
jamming in [12]. It turns out deeply integration architecture has better performance
compared to tightly coupled integration.

As stated before, GNSS is prone to suffer from outside effects such as spoofing and
jamming. The measurements from GNSS are tested to detect any malfunction. One
solution to this problem is using INS update only and rejecting the GNSS
measurements. Another solution is that utilizing adaptive KFs. In [13], adaptive
Kalman filters, which are multiple-model-based adaptive estimation (MMAE) and
innovation-based adaptive estimation (IAE), are reviewed. MMAE has different KFs
running at the same time with different process noise and/or measurement noise
matrices. In the beginning, all KFs have the same weight factor. After a while,
MMAE learns which KF has better noise matrices, and its weighting factor increases
while others go to zero [13]. On the other hand, by using statistical information,
theoretical values for process and measurement covariance matrices are calculated
and adapted throughout the process [13]. The adaptive KF method used in this thesis
is innovation-based R-adaptation applied from [14]. This method includes
calculating a scale factor to multiply with the measurement noise covariance matrix.
According to the designer's choice, this scale factor can be single or multiple. The

measurement noise covariance matrix is adapted if there is a malfunction in the



measurements. This malfunction can be detected with different methods. In this

thesis, integrity monitoring is achieved by using the chi-square test.






CHAPTER 2

PRELIMINARIES

2.1 Reference Frames

Reference frames are used to indicate relative positions or velocities of vectors [15].
In navigation, relative frame descriptions are important for mechanization equations.

The reference frames utilized in this thesis are given in the following subsections.

211 Earth-Centered Inertial Frame

An inertial frame should be non-rotating and have a fixed origin. For navigation
purposes, the earth-centered inertial frame is used. Although Earth’s orbit has a
centripetal acceleration, it is assumed to be negligible [5]. The origin of the inertial
frame coincides with the center of mass of the Earth. The z-axis of the Earth-centered
inertial frame is towards the north pole. The x-axis and y-axis lie on the equatorial
plane, while the x-axis is to the vernal equinox; the y-axis completes the right-handed

coordinate system.

212 Earth-Centered Earth-Fixed Frame

The earth-fixed frame rotates with the Earth. However, it has the same origin and z-
axis as the inertial frame [4]. The x-axis of the Earth-fixed frame is towards the
intersection point between the Greenwich meridian and the equatorial plane. The y-
axis completes the right-handed coordinate system. Both the inertial frame and
Earth-fixed frame are illustrated in Figure 2-1. Where w, states the Earth’s angular

rotation velocity.
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Figure 2-1. Earth-Centered Inertial Frame and Earth-Centered Earth-Fixed Frame

2.1.3 Navigation Frame

The navigation frame has its origin at the IMU location, even though, in some
applications, it can be placed at the center of mass [5]. The z-axis of the navigation
frame, which is referred to as down, points to the center of the Earth. Gravity is
assumed to be in the z-axis [4]. The x-axis of the frame points to the North Pole and
is referred to as North. The y-axis completes the right-handed coordinate system,
which results in pointing East. Throughout this thesis, the navigation frame may be
referred to as the NED-frame (North-East-Down).



214 Body Frame

The body frame has its origin at the IMU location, which coincides with the
navigation frame’s origin. The x-axis points to the nose of the guided munition, while
the y-axis points to the right side of the guided munition. The z-axis completes the
right-handed coordinate system. Both the navigation frame and body frame are

illustrated in Figure 2-2.

n/

Figure 2-2. Navigation Frame and Body Frame

2.2 Reference Frame Transformations

Vectors have different representations in different reference frames. In navigation,
these representations are needed because measurements are provided in different
frames. The direction cosine matrices (DCMs) are created according to the rotation
angle and rotation axis for a vector to have a representation in another reference
frame. Sometimes, more than one rotation is needed to obtain the vector
representation from one frame to the other. Multiplying the matrices is a way of
creating the overall DCM. An important and useful property of the DCM is that the

inverse of the DCM is equal to its transpose [3].



2.2.1 Euler Angles

One frame’s orientation can be obtained by applying three rotations around the z, y,
and x axes of another frame. In aerospace applications, Euler angles are defined as
three angles that are obtained by rotation from the navigation frame to the body
frame. The rotations are explained below and illustrated in Figure 2-3, Figure 2-4,

and Figure 2-5.

1) The first rotation is around the z-axis of the navigation frame, and the angle
is denoted by .

Figure 2-3 Euler Angles — First Rotation -The Top View

2) The second rotation is around the y-axis of the new frame obtained after the

first rotation and denoted by 6.
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z”L z

Figure 2-4 Euler Angles — Second Rotation -The Side View

3) The third rotation is around the x-axis of the new frame obtained after the

second rotation and denoted by ¢.

Figure 2-5 Euler Angles — Third Rotation — The Front View
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222 Transformation From Inertial Frame to Earth-Fixed Frame

As stated in Chapter 2.1.2, Earth-fixed frame and inertial frame have the same origin
and share their z-axes. Therefore, a rotation matrix around the z-axis, including the
Earth’s rotation rate multiplied with time, is sufficient for the transformation from

an inertial frame to an Earth-fixed frame [3].

cosw,t sinw,t 0

Cf =|—sinw,t cosw,t 0 (2.1)
0 0 1
Ce = (" (2.2)
2.2.3 Transformation From Earth-Fixed Frame to Navigation Frame

The earth frame and navigation frame are illustrated in Figure 2-6. The first rotation
for the transformation of the Earth frame to the navigation frame is around the z-axis
and by the angle longitude. The second rotation is around the y-axis and by 90°. The

final rotation is around the z-axis and by the angle of longitude.

12



n

n.

0° ¥ equatorial
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e

y

Figure 2-6. Earth Frame and Navigation Frame

DCM that transforms a vector from the Earth frame to the navigation frame is created

by multiplying three rotation matrices and given as in Eg. (2.3) and as stated in [16].

cosp 0 sin@]f0 0 1][cosA sind 0
C=| 0 1 0 0 1 0||-sinA2 cosd 0 (2.3)
—sing 0 cosepll-1 0 O 0 0 1
—singpcosA —singsindA  cos¢
cl= [ —sinA cos @ 0 (2.4)
—Ccos@cosA —cos@psind —sing
Cq =" (2.5)
2.2.4 Transformation From Navigation Frame to Body Frame

The transformation from the navigation frame to the body frame is achieved by Euler

angles, which are explained in detail in Chapter 2.2.1. The DCM is created by

13



multiplying three rotation matrices utilizing the Euler angles as given in Eq. (2.6) as
stated in [16]. As explained before, the rotation sequence is z, y, and x axes, which

also can be referred to as 3-2-1 rotation.

Cp =

1 0 0 J[cos®@ 0 —sinf][cosy siny O
0 cos¢ sing 0 1 0 —siny cosy O (2.6)
0 —sing cosgllsind 0 cosé 0 0 1

cos 8 cosp cos @ siny —sinf
ch = [— cos¢siny +singsinfcosy cos¢pcosy +singsinfsiny  sin ¢ cos 0] 2.7
singsiny + cos¢psinfcosyp —singcosyp +cosgpsinfsiny cosg¢cosh

Gy =)' (2.8)

2.3 The Deflection Angle Representation

In conventional air vehicles, primary deflection angles are aileron, elevator, and
rudder, which are responsible for the control of the vehicle’s roll, pitch, and yaw
motion [16]. Guided munitions can have front or rear control surfaces. In this study,
the guided munition has rear control surfaces called tail fins, as illustrated in Figure
2-7 [17]. To understand the effect of the control surfaces on the guided munition, the
representation of the conventional control surfaces in terms of tail fin deflections is
given in Eq. (2.9), (2.10), and (2,11).
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Figure 2-7: Tail Control Surfaces [16]

1
661 == Z (61 + 62 + 63 + 64_) (29)
1
by =5 (62 = 84) (2.10)
1
be =5 (61 — 63) (2.11)
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CHAPTER 3

METHODOLOGY

3.1 6-DOF Simulation Model of The Guided Munition

A simulation model is created to analyze the dynamics of the guided munition within
Matlab-Simulink. The model has two main parts: one part is the real world, and the

other part is the guided munition part, as can be observed from Figure 3-1.

real world guided munition

6-DOF simulation model

Figure 3-1. 6-DOF Simulation Model Representation

In the real world part, environment, aerodynamics, and equations of motion are
modeled. In the guided munition part, avionics, navigation, autopilot, and guidance

are modeled. For both parts, relationships between their subparts are illustrated in

Figure 3-2 and Figure 3-3.
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Figure 3-2. Real World Illustration of The Simulation Model
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Figure 3-3. Guided Munition Illustration of The Simulation Model
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3.1.1 Environment

In the environment section of the simulation model, gravity and atmosphere
parameters are modeled. For gravity, the WGS84 Gravity Model (a Matlab-Simulink
built-in block) is used. The inputs of this block are the latitude, longitude, and
altitude of the guided munition, and the output is the gravity vector in the navigation
frame. For the atmosphere, the ISA Atmosphere Model (a Matlab-Simulink built-in
block) is used. The input of this block is the altitude of the guided munition, and the
outputs are temperature, speed of sound, air pressure, and air density. WGS84

Gravity Model and ISA Atmosphere Model blocks are shown in Figure 3-4.

TKP

WGS84
a(m/s) P

g

Juth(m) l g (mis?) P >h(rn)Q 7N
ISA P (Pa)p
(Taylor Series)

p (kg!m3)>

Figure 3-4. Gravity and Atmosphere Blocks From Matlab-Simulink

3.1.2 Aerodynamics

In the aerodynamics section of the simulation model, aerodynamic forces, moments,

and parameters are calculated.
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3.1.21 Forces and Moments

Aerodynamic forces and moments acting on the guided munition’s body are

illustrated in Figure 3-5.

4

Figure 3-5. Aerodynamic Forces and Moments

Note that aerodynamic forces and moments are represented in Eq. (3.1) and (3.2) to

be compatible with the literature.
FP=[Fx Fy F|"=[Xx v ZI" (3.1)
MP =[My My Mz]"=[L M NJI" (3.2)

Aerodynamic forces and moments are calculated by using static and dynamic
aerodynamic coefficients. Aerodynamic coefficients are obtained (by Roketsan) with
the Digital Datcom program. Except that Cy and Cy, aerodynamic coefficients
include both static and dynamic parts as stated below. Static coefficients are

dependent on the variables given in Table 3.1.

CX = CXstatic (33)
CY = Cystatic (34)
CZ = CZstatic + CZdynamic (35)
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CL = CLstatic + CLdynamic (36)
CM = CMstatic + CMdynamic (37)
CN = CNstatic + CNdynamic (38)

Table 3.1 Static Coefficients and Their Dependent Variables

Static Dependent
Coefficients Variables
Xstatic M,a,B, 8, 6y
Vstatic M,a,pB, 6r
Zstatic M,a,pB, 6,
Lstatic M, a,p,6q
Matatic M,a,pB, 6,
Nstatic M,a, B, 6r

Dynamic coefficients are obtained by using aerodynamic derivatives as given in eq

ref. Dynamic derivatives are dependent only on Mach number.

Caymamic = Czqzq; = (3.9)
Craynamic = Cl”ZI:,Lref (3.10)
Chtymamic = Cm"quL "~y Cm""deL il (3.11)
Chiaymamic = Cnr;iref + Cnﬁf‘f il (3.12)

Aerodynamic forces and moments are calculated by using aerodynamic coefficients,

reference length (L,.f), reference area (S,.) ,and dynamic pressure (Q) as in eq
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ref. Note that for guided munitions, L, is the diameter of the body and S, is the

cross-sectional area of the body.

X = QSrefCX
Y = QSrefCY
Z= QSrefCZ

L= QSrefLrefCL
M = QSrefLrefCM

N = QSrefLrefCN

3.1.2.2 Parameters

(3.13)
(3.14)
(3.15)
(3.16)
(3.17)

(3.18)

In the aerodynamic parameters section of the simulation model, Mach number, angle

of attack and sideslip angle is calculated using velocity resolved in the body frame,

total velocity, and speed of sound. The angle of attack and sideslip angle are

illustrated in Figure 3-6.
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Figure 3-6. Angle of Attack and Sideslip Angle

Angle of attack (a), sideslip angle (B), and Mach number (M) is calculated as in
Eg. (3.19), (3.20), and (3.21) [15].

— atan— (3.19)
a = atan » .
— asin— (3.20)
B = asmV .
vV
M=— (3.21)
a
Where:
vh =V V, L"T=[u v w]" (3.22)
v=|vi| (3.23)
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3.13 Equations of Motion

The equations of motion part of the simulation is divided into two subparts, which
are translational and rotational. Both parts include a main differential equation.
While the translational part aims to obtain the velocity of the body, the rotational

part aims to obtain the angular velocity of the body.

3.1.31 Translational

The main differential equation used in this part is given in Eq. (3.24) adapted from
[16]. Note that the angular velocities in the equation are calculated in the rotational
part.
b
b F

vl = — + gb — (a)f’b + wf’e) X v, (3.24)

The velocity of the guided munition wrt the Earth is found by integrating the above
expression Eq. (3.24). Then, the velocity resolved in the Earth frame is found by
multiplying the DCM from the body frame to the Earth frame.

eeb = levebb (3-25)

To calculate latitude(¢), longitude (1), and altitude (k) of the guided munition, the

position vector should be resolved in the Earth frame as in Eq. (3.26)

5 = v (3.26)
_ Tep(2)
A = atan <m> (3.27)

There are several methods to calculate geodetic latitude. The Bowring Method is

used to calculate in this model from [18]. It is an iterative method, and an initial
guess of reduced latitude (EO) and geodetic latitude (¢,) is needed as given in Eq.
(3.28) and (3.29).
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By = atan ( (I:i(;;s> (3.28)

(e)(3) + e( ‘(1 - f) R(sm ,30)
@, = atan (3.29)

s — ezR(cos BO)

Where a is equatorial radius of the Earth, e is the square of the first eccentricity, f is

the flattening of the Earth, and s is given in Eq. (3.30).

s = \/ (r;b(n)z + (r:b(Z))z (3.30)
a = 6378137.0m (3.31)
f = 0.00335281 (3.32)
e2=1—(1-f)? (3.33)

The reduced latitude (,67) is calculated using the Eq. (3.34). Until the geodetic latitude
(¢) converges, Eq. (3.34) is repeated.

E = atan <w> (3.34)

cos ¢
The altitude (h) is calculated as in Eq. (3.35):
h=scosg + (r5(3) + e?Ry sing )sing — Ry (3.35)

Where Ry is the normal radius, also known as the radius of curvature of the prime

vertical:

a
R = \/1 — e?(sin @)? (3:36)

3.1.3.2 Rotational

The main differential equation used in this part is given in Eq. (3.37) [16]:
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d)i(ll))) = [Ib]_l(Mb — wh P w}, (3.37)
Where inertia matrix:

Ixx _Ixy _sz
1°"=\-Ly, L, -1, (3.38)
_sz _Iyz IZZ
Note that for the guided munition 1., = I,,, = I, = 0 because of their symmetry,

and inertia matrix becomes:

L, 0 0
Ib == O Iyy 0 (339)
0 0 I,

The direction cosine matrices (DCM) that transform vectors from one reference
frame to another reference frame are created under this part of the simulation model.
DCM integration method is applied to calculate the DCM as in Eq. (3.40).

Cl = CPskew(w?,) (3.40)

Where the skew-symmetric matrix of the angular rate of body wrt to the NED-frame:

0 _wﬁb (3) wﬁb 2)
skew(why) = | w2,(3) 0 —wb, (1) (3.41)
_‘Ugb (2) —‘Uﬁb (2) 0
Wy = 0f — Cwf, = CRwl, (3.42)

The angular rate of the navigation frame wrt to Earth frame resolved in the

navigation frame is found by Eq. (3.43) [3]:

Vey(2)
Ry+h
Ry+h
p(2) tang
Ry+h

(3.43)
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Where the velocity of the body wrt Earth resolved in navigation frame (V}), the
radius of curvature of the prime vertical (R,,), the angular velocity of the Earth wrt
to the inertial frame resolves in Earth frame (w{,) are defined in Eq. (3.44), (3.45)
and (3.46).

Vi =Ccrvy (3.44)
a(l—e?
(1 —e?sin? )2

0
w¢, = [ 0 ] (3.46)

we

rad

w, = 7.292115x107° o (3.47)

DCM that transforms vectors from Earth frame to the navigation frame is given in
Eqg. (3.48), which is explained in detail in Chapter 2.2.3. Latitude and longitude of
the munition are needed, which is calculated under the translational part of the
simulation model.
—sinpcosd —singsind —cos¢
C} = —sinA cos A 0 (3.48)
—cos@pcosA —cos@psind —sing
Finally, DCM that transforms vectors from the Earth frame to the body frame is

found by multiplying two transformation matrices as follows:

cb = cbcnr (3.50)
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3.14 Avionics

3.14.1  Control Actuation System

Control actuation system (CAS) is an electromechanical system that moves the
control surfaces of the guided munition according to the commanded autopilot
outputs. The control surfaces of the guided munition are tail fins in this study, as
stated before in Chapter 2.3. The relationship between the deflection angle command
and the deflection angle is modeled as a second-order control system. The Laplace
representation of the control system is given in eq ref.

6 wrleAS

° . (3.51)
66 s2 4+ Z{CASwnCASS + wrleAS

3.14.2 Inertial Measurement Unit

Three-axis accelerometer and three-axis gyroscope constitute an inertial
measurement unit. When accelerometers measure the specific force, gyroscopes
measure the rotational velocity of the body with respect to the inertial frame. A
tactical grade IMU is chosen for the guided munition. The specifications of the IMU

are given in Table 3.2.

Table 3.2 Tactical Grade IMU Specifications

Specifications Gyroscope Accelerometer
Bias Repeatability 2.5°/h 0.16 mg
Bias Instability 0.5°/h 0.1mg
Random Walk 0.1°/vVh 0.12m/s/Vh
Scale Factor Error 330 ppm 166 ppm
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The gyroscope and accelerometer measurements are created in the simulation model
given in Eq. (3.52) and (3.53). Bias and noise terms are added to the specific force
and angular velocity according to the IMU specifications, which are obtained from
the real world part of the simulation. As stated in Chapter 1, specific force is obtained

by subtracting the gravity from the acceleration of the body.
~b _ b
Wy = wy, + by + &4 (3.52)

flll; = ﬁ?) + b+ &, (3.53)

3.1.4.3  Global Navigation Satellite System Receiver

Global navigation satellite system receiver determines its own position and velocity
by using signals from the satellites which contain information of the satellites’
position, velocity, and time. Several satellites’ position and velocity data are created
by using two-line element data set. More information regarding this can be found in
[19]. By using satellites’ position and velocity data, pseudo-range and pseudo-range

rate measurements are created as in Eq. (3.54) and (3.56) [3].
Penss =T + beyss + & (3.54)

Where the range between the satellite and the receiver is ™ and line of sight unit

vector 17 is defined as:

r™ = ||(rep — Tenss) |l (3.55)
(rep — Ténss)
1705 = er—m (3.56)
pinss = (Wanss — Vep)- 1Los + dinss + 5,2” (3.56)

Pseudo-range and pseudo-range rate measurements can be used directly in tightly
coupled INS/GNSS integration. For loosely coupled INS/GNSS integration, position

and velocity estimation from the GNSS receiver is necessary and found by using the
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least squares algorithm. More information regarding this can be found in Appendix
A.

3.15 Navigation

In the navigation section of the simulation model, the position, velocity, and attitude
of the guided munition are calculated by using IMU measurements and/or INS/GPS
integration. IMU measurements are used in the equations given in Chapter 3.1.3. The
only difference is that instead of using aerodynamic forces and moments, specific
force and angular velocity measurements from the IMU are utilized. INS/GPS
integration is achieved with both loosely coupled and tightly coupled integration
methods. For both methods, the error-state Kalman filter is utilized. INS/GPS

integration is explained in detail in Chapter 3.2.

3.1.6 Autopilot

Autopilots are designed for pitch, yaw, and roll dynamics separately. Full state-
feedback autopilots are designed, and with the purpose of decreasing the steady state
error, an integral is added to the system. While the aim of pitch and yaw autopilots
is achieving the commanded acceleration from the guidance, roll autopilot tries to
keep the body roll angle (¢) at zero. During the design of the autopilots,
aerodynamic derivatives are obtained from the aerodynamic database, and linear
matrices belonging to the three separate dynamics of the guided munition are created
using equations of motion. The derivation of the linear matrices is given in Appendix
B. Control system model with linear matrices (4, B, C, D) is given in Eq. (3.57) and
(3.58).

x = Ax + Bu (3.57)

y=Cx+ Du (3.58)
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The state-space control system with an integrator structure is given in Figure 3-7
[20].

r £ £ u X y
—b—@’-]—h—-h-ﬁ-@-ﬁ-ﬁ J =— c >

Figure 3-7. State-Space Control System with An Integrator [20]

The linear system matrices for pitch dynamics are given in Eq. (3.59) and (3.60):

[Zo ZqMy Z, Z M, ZgMa ZqMoyZs Z4Ms Zs
. — — - - + -
dy mu  Zgl, m ml, Z,ml, Zoml, ml, m az
q]_ M,m M, MyZ, Ms M,Zs 0 q
s | T T o
§ 1, Zq L,  Z,l, I, Zoly, 5
9 0 0 0 1
0 0 —w? —2Jw?]
0
0
+ 0 O¢ (3.59)
wp
az
_ q
az=[1 0 0 0] 5 (3.60)
)

The linear system matrices for yaw dynamics are given in Eq. (3.61) and (3.62):
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Yy YN
a1 |mv ' v,
a _ Nﬁm
6 Ygl,
g 0
0

Yg
m

Y,N,  Y?Ng Y,NsYs Y,Ns
My CYml,  Yyml, ' ml,
N, NgY, Ns  NgYs
1, Y, 1, Y,

0 0
0 —w?
0
o s
(1)2

—2{w

2

n-

S O R

(3.61)

(3.62)

The linear system matrices for roll dynamics are given in Eq. (3.63) and (3.64):

!
;

:
3

—_—

3.1.7 Guidance

1 0
L, Ls
L I
0 0
0 —w?
dp=[1 0

0
0
1

—2{w?]

0 0]

(3.63)

(3.64)

The proportional navigation guidance law is applied in this study. This law states

that if the interceptor closes to the target such that the line-of-sight vector does not

rotate with respect to the initial reference frame then the interceptor can have a

successful collision with the target [21]. In other words, the interceptor should have

acceleration such that the angular rate of the line-of-sight vector is equal to zero. A

guidance schematic is given in Figure 3-8.
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Figure 3-8. Guidance Schematic [21]

The line-of-sight angular rate is calculated as in Eq. (3.65).

Tpe X Vi
Wros = t—zt (3.65)
75l

The acceleration command is calculated as in Eq. (3.66):
atom = Npng@ros X Ve (3.66)

a?om = Crlza?om (3.67)

3.2 INS/GPS Integration

In this study, both loosely coupled and tightly coupled approaches are applied for
the INS/GPS integration. Error-state Kalman filter is utilized for both approaches.
These integration methods differ in system models and measurement models, that
are explained in Chapter 3.2.1.2 and 3.2.2.2.
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3.2.1 Loosely Coupled Integration

In loosely coupled integration, both INS and GNSS provide separate position and
velocity solutions, and then, with the help of error-state Kalman solutions from both
sensors are combined to have better navigation solutions. A schematic from [3] is

given in Figure 3-9.

RF S GPS GPS Navigation
ignal P n GPS Position, Velocit i

gn ; Kalma y Solution .
Processing Filter

Integration
Kalman Filter

Integrated
Navigation
Solution

IMU L—»| Mechanization

INS Position, Velocity,

Attitude
A A s ¢

Bias corrections Position, Velocity, Attitude Corrections

Figure 3-9. Loosely Coupled INS/GNSS integration [3]

3.21.1  System Model

The continuous system model of the error state Kalman filter for loosely coupled
architecture is given below [22]. Where §, is the error-state vector, F is the dynamic

coefficient matrix, u is the forcing vector, and B is the design matrix.

6x = Féx + Bu (3.68)
Where the vectors are defined as:
Sx = [6r Sv" Sal” (3.69)
5r=[8¢ 61 &h]T (3.70)
Sv" = [6vy Ovg Svp]T (3.71)
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sa=1[6¢p 80 &Y (3.72)

u=I[5ft Swh] (3.73)
8fip =[ba be bal" (3.74)
Sw?b=[bg by bg]" (3.75)

The dynamic coefficient matrix and design matrix are illustrated in Eq. (3.76) and
(3.77).

F;"r F;"v O3x3
F=|Fy Fy Skew(fig) (3.76)
Fyr Fy —skew(wl,)
O3x3 03x3
B=|C} 034 (3.77)
0353 _Cl?

The elements of the dynamic coefficient matrix for the position part (E.,, E.,) are
given in Eq. (3.78) and (3.79).

Un
N
E., =|vgsing Vg (3.78)
(Ry + h) B (Ry + h)?cos ¢
0 0 0
1
Ry +h 0 0
Fo=| 1 (3.79)

(Ry + h)cosg
0 -1

The elements of the dynamic coefficient matrix for the velocity part (E,,, F,,,) given

below.
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vi

UnVUp

vitang

T2VEWe COSQ — (Ry + h) cos? ¢

~ (Ry + h)?
VEVp

(Ry + h)?
vy Vg tan @

2w, (vy cos @ — vy sin @) 0

~ (Ry

vi

0

T Ryt hz |80

VR 2y

2Vpw, Sin @

(Ry + h)?

Up
Ry +h
vgtan @
Ry+h
2vy
Ry +h

2vg tang
Ry +h
vp + vy tang
Ry+h
2vg
Ry +h

—2w, Sinp —

=|2w, sing +

—2w, COS P —

0

fo
~fE

~/fp
0

fn

skew(fp) =

TR, + 2 R+ D)

Un
Ry +h

Vg
Ry+h

2w, COS @ + (3.81)

0

fe

fn (3.82)

0

The elements of the dynamic coefficient matrix for the attitude part (F,,, F,,) given

below.
[ —w, Sin @ 0
F, = 0 0
Vg
| T @e COS P (Ry + h) cos2 ¢
1
0
Ry+h
Ry =|— 0
¥ " |Ry+h
— tan
0 2
Ry +h

Vg .
(Ry + h)?
Un
(Ry + h)?
vptan @
(Ry + h)? |

(3.83)

(3.84)

By utilizing the continuous system model, the discrete system model of the error-

state Kalman filter for loosely coupled integration is found as below.

6xk+1 = (ngg + FAt)6xk + Wi

Where:
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Elwew]] = {QO" i N i (3.86)

3.21.2 Measurement Model

The measurement model of the error-state Kalman filter for loosely coupled

INS/GPS integration is given in discrete form [22].

6Zk = Hk5xk + (9 (387)
Where:
_ [rins — Tgps]

bz = [vInNS — Vgps (3:88)

I3z O3y 03x3]
H, = 3.89
k O3x3 I3x3 03x3 ( )

R i =k

Elexell = { 0" i Lk (3.90)
Elwgel1=0 Vi k (3.91)

3.2.2 Tightly Coupled Integration

In tightly coupled integration, GNSS measures pseudo-range and pseudo-range rates,
and by using INS navigation solutions, pseudo-range and pseudo-range rate
measurements are imitated. Both measurements are used in an error state Kalman
filter. Tightly coupled INS/GNSS integration is illustrated in Figure 3-10 from [3].
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Figure 3-10. Tightly Coupled INS/GNSS Integration [3]

3.2.2.1  System Model

For the system model of the tightly coupled integration, states related to the GPS
measurements are added to the system matrix and state vector. GNSS states include
GPS clock bias and drift. The time derivative of the GPS measurement bias is
modeled as the drift. The other parts are the same as the loosely coupled system,
which can be found in detail in Chapter 3.2.1.1. The system model for the GNSS part
is given as [3] in Eqg. (3.92):

(SJ'C'G = FG(SxG + GGWG (392)
Where:
6x = [SbG SdG]T (393)
[0 1
Fe = [o 0 (3.94)
Ge =[0p 0a]” (3.95)

Together with the loosely coupled system matrix:

F = [F (L)C F(Z; ] (3.96)
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3.2.2.2 Measurement Model

The measurement model of the error-state Kalman filter for tightly coupled
INS/GNSS integration is given in discrete form. While the loosely coupled
measurement model considers the position and velocity differences from INS and
GPS as measurements, the tightly coupled measurement model considers pseudo-
range and pseudo-range rate differences from INS and GNSS. For this purpose,
pseudo-range and pseudo-range rate measurements are imitated by using INS
measurements, as shown in Eq. (3.104) and (3.106).

(SZk = Hkak + ey (397)
Where:
H? 0 0 —ones(M, 1 0
H = | M I\Zx3 Mx3 M, 1) Mx1 (3.98)
Omxs  Hyxs  Omas Opmx1 —ones(M, 1)
HP = Gpx3T3x3 (3.99)
(170s)"
(105"
G =|\'los (3.100)
(17657
—(Ry +h)singpcosdA —(Ry+ h)cos@sind cos@cosi
T=|—-(Ry+h)singsindA (Ry+h)cosepcosd cospsind| (3.101)
{Ry(1 —e?) + h}cos @ 0 sin g
HP = Gy,3CE (3.102)
[Pins = PGnss]
5z oM _ oM
Sz = I(Szf’l = | Pins ™ Penss (3.103)
p PiNs — PGNss
piNs — Pnss!
Where:
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Pins = ”(reeb,INS - rcnllvss)” (3.104)

_ (Teeb,uvs - Tg?vss)

1m = (3.105)
FOSINS ” (reeb,INS - TGT;IVSS) ”
Pihs = (V3h s — Vihss)- 1lbsins (3.106)

3.3 Error-State Kalman Filter

For the error-state Kalman filter, system and measurement models are provided in
Chapters 3.2.1 and 3.2.2. To implement the Kalman filter, time update and

measurement update equations are necessary.

3.3.1 Time Update

52~ = (I + F A8 %4 (3.107)

Pioy = (I + FADP (I + FADT + Qp (3.108)

3.3.2 Measurement Update

Ki = Py HL (Hi PO HE + Ry) (3.109)
(ka = 65('\]: + Kk(6Zk - HR(S?’C\]:) (3110)
P, = (I — K Hy )P (3.111)

3.4  Adaptive Kalman Filter

Adaptive Kalman filtering is achieved by innovation-based R-adaptation by both
single-scale factor (SSF) and multiple-scale factor (MSF) from [13]. The faulty
measurement can be detected with the help of a statistical function, g, [13]. Without

the faulty measurement, the statistical function must follow the square of normal
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distribution and have a value lower than a defined threshold. In case of a faulty
measurement, [, value increases significantly. When B, is higher than a specific
value found from chi-square table, then the measurement noise covariance matrix
(Ry) could be adapted by using SSF and MSF approaches [14]. The calculation of
the statistical function (B;) involves residual, which is a measure of the difference

between measurement and the estimated value.
. -1,
B = & (HPrk-1Hi, +Ry) & (3.112)

Where the residual is defined as in Eq. (3.113):

€ = Y — HiXyjre-1 (3.113)

34.1 Single Scale Factor

Single scale factor is calculated as in Eq. (3.114) and the resultant is a scalar which

is multiplied with the measurement noise covariance matrix (R;) as in Eq. (3.115).

5 = ékTék — tT{HkPk|k—1H£}
k tr{R}

(3.114)

Ry = SiRy (3.115)

3.4.2 Multiple Scale Factor

Multiple scale factor is calculated as in Eq. (3.114) and the resultant is a scalar which
is multiplied with the measurement noise covariance matrix (R;) as in Eq. (3.115).
MSF could be beneficial in case some of the measurements are faulty; some valuable

measurements are unwanted to be lost.
Sie = (&x" &, — HyPyi—1 Hy, )Ric* (3.116)

Rk :SkRk (3117)
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However, MSF matrix, S, sometimes can be non-diagonal or have values less than 1 which
decreases some values of the measurement noise covariance matrix [14]. Both cases are

undesired and need to be fixed. For this purpose, a rule is defined as in Eq. (3.118) [14]:
Sy =diag(sy s3 ** Sp) (3.118)
Where:

s; = max{1,S;;} (3.119)
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CHAPTER 4

RESULTS AND DISCUSSION

4.1 The Guided Munition Scenario

Navigation results are obtained by using the simulation model. Errors are created by
calculating the difference between the real world and KF navigation results. In the
scenario studied, the guided munition is released from a host vehicle from 6000 m
to the target in 10 km downrange and 500 m cross range, as can be observed from

Figure 4-1.

Vertical Trajectory Horizontal Trajectory
6000 5001
—guided munition
I * target
5000 400}
4000t E
£ o 300F
© 2
T 30007} ©
= 2}
= @ 200f
20007 3]
1000 } [—guided munition 1001
* target
0 : 0 : !
0 5000 10000 0 5000 10000
downrange [m] downrange

Figure 4-1 Flight Trajectories

In Figure 4-2, the Mach number, angle of attack, and side slip angle of the guided
munition are presented. The guided munition is released with a Mach number of 0.85

and it has positive angle of attack during flight.
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Figure 4-2 Mach Number, Angle of Attack and Sideslip Angle

In Figure 4-3, Euler angles and body angular rates are illustrated. As expected, the
body roll angle is zero during flight, thanks to the roll autopilot. Pitch and yaw angles

are the natural outcome of the scenario and guidance law.

10 Euler Angles 15¢ Body Angular Rates
— P
4N — 10} d
10 @
8 2 ° ‘
5'20 = - {“
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® 30 = " B
—phi \\ 5}
-40[ |—theta T |
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-50 L L L ' -10 L L L .
0 10 20 30 40 0 10 20 30 40
time [s] time [s]

Figure 4-3 Euler Angles and Angular Rates

Acceleration commands and responses for pitch and yaw channels are illustrated in
Figure 4-4. Both autopilots successfully follow the acceleration commands as

observed.
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Figure 4-4 Acceleration Commands and Responses

4.2 Navigation Errors with Loosely Coupled Integration

Navigation errors for position, velocity, and attitude are provided in Figure 4-5,
Figure 4-6, and Figure 4-7. Except for the second Euler angle, all of the errors stay

in the theoretical 30 bounds when no GPS measurement faults are present.
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Figure 4-6 Loosely Coupled Integration Velocity Errors
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Figure 4-7 Loosely Coupled Integration Attitude Errors

4.3  Navigation Errors with Tightly Coupled Integration

For tightly coupled integration, navigation errors of position, velocity, and attitude
are provided in Figure 4-8, Figure 4-9, and Figure 4-10. Every error stays in the

theoretical 3¢ bounds when no GPS measurement faults are present.
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Figure 4-10 Tightly Coupled Integration Attitude Errors
4.4  Navigation Errors Under GNSS Spoofing

To create a GNSS spoofing error case, one of the measurements from the GPS is
disrupted at the 20" second by adding some bias for 5 seconds. The goal was to
compare the navigation errors for both loosely coupled and tightly coupled
integration methods in case of faulty measurements and then observe the
improvement with the adaptive KF if there are any. However, for the same error
comparison, the least squares algorithm, which is utilized in loosely coupled
integration methods to obtain the guided munition’s position and velocity using
pseudo-range and pseudo-range rate measurements, cannot provide any reasonable
solutions in the case of faulty measurements. The guided munition position and bias
solution found by the least squares algorithm is provided in Figure 4-11 and Figure
4-12. As soon as GPS pseudo-range and pseudo-range rate errors are introduced, the

position and bias solution increases excessively.
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Figure 4-11 Least Squares Position Solution
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Figure 4-12 Least Squares Bias Solution

Similar to the position case, the least squares algorithm fails to provide an
appropriate velocity and drift solution, which are obtained in Figure 4-13 and
Figure 4-14.
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Figure 4-13 Least Squares Velocity Solution
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Figure 4-14 Least Squares Drift Solution

The investigation under faulty GPS measurements is done separately for loosely
coupled and tightly coupled integration methods because the least squares algorithm
cannot provide a proper navigation solution to use in loosely coupled integration.
Solution errors are imposed directly in position and velocity for loosely coupled
integration, as in Eq. (4.1).

[¢ 2 hl=[e A h]l+[by, ba bn] (4.1
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[V Ve Vp]=[Vn Ve Vp]+[byy Dby, Dbyl (4.2)

For a tightly coupled integration method, the spoofing error is created by adding bias
to the pseudo-range and pseudo-range rate measurements, as stated before.

p™ =p™+b, (4.3)

p™ = p™ + b, (4.4)

44.1 AKF with Loosely Coupled Integration

In case of faulty measurements from GPS, a statistical function to determine whether
adaptive KF should be used or not is calculated and illustrated in Figure 4-15 for
both SSF and MSF. As can be observed from the figure, B, value is much higher for
SSF than the MSF. In Figure 4-16 and Figure 4-17, SSF and MSF for position values
are illustrated. The scale factor for the altitude is higher than the latitude and

longitude.
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Figure 4-15 Statistical Function Value For Loosely Coupled Integration
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Figure 4-17 Multiple Scale Factors for Position
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Figure 4-18, Figure 4-20, and Figure 4-21 show the navigation errors without
adaptive filter and SSF and MSF. As can be observed from these figures, MSF gives
the best results. MSF changes the measurement noise covariance matrix elements
proportional to the error existing in that state. On the other hand, SSF multiplies the
whole measurement noise covariance matrix with a scalar. In Figure 4-18, it is
observed that when the GPS measurement error exists (between 20" and 25%
seconds) and after the GPS error, MSF has the best position solutions. Even though
SSF provides better position solutions compared to the case where AKF is not used
during GPS error, after 25 seconds of the flight, their error magnitudes become

almost the same.
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Figure 4-18 Loosely Coupled Integration Position Errors with AKF

Figure 4-19 shows the MSF values for velocity in loosely coupled integration for the
guided munition. Since there exists a protection for the MSF values lower than 1.
Even though the algorithm calculates the values lower than 1, the protection prevents
them from having those values. Note that, in the case of GPS error for a loosely
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coupled system, MSF for the velocities does not affect the elements related to the

velocity in the measurement noise covariance matrix.
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Figure 4-19 Multiple Scale Factors for Velocity

In Figure 4-20, it is observed during the whole flight, MSF has the best velocity
solutions. SSF provides a better velocity solution compared to the GPS error case
during flight. At the end of the flight, their errors become closer. It is concluded that

their velocity errors converge to the same point if the flight time was longer.
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Figure 4-20 Loosely Coupled Integration Velocity Errors with AKF

In Figure 4-21, it is illustrated that MSF provides the best attitude solutions during
the whole flight. SSF provides a better attitude solution compared to the GPS error
case during flight. At the end of the flight, their errors become closer. It is concluded
that if the flight time was longer, their attitude errors could converge to the same
point.
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Figure 4-21 Loosely Coupled Integration Attitude Errors with AKF

Since the results of MSF cannot be observed from the above figures, separate figures
are created to state how MSF produces the best navigation solutions in Figure 4-22,
Figure 4-23, and Figure 4-24.
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Figure 4-22 Loosely Coupled Integration Position Errors with MSF
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Figure 4-23 Loosely Coupled Integration Velocity Errors with MSF
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Figure 4-24 Loosely Coupled Integration Attitude Errors with MSF

4.4.2 AKF with Tightly Coupled Integration

In case of faulty measurements from GPS, a statistical function to determine whether
adaptive KF should be used or not is calculated and illustrated in Figure 4-25 for
both SSF and MSF. As can be observed from the figure, ) value is similar for SSF
and MSF in tightly coupled integration.
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Figure 4-25 Statistical Function Value For Tightly Coupled Integration

In Figure 4-26 and Figure 4-27, SSF and MSF for pseudo-range values are
illustrated. As can be observed from MSF values, the scale factor for the GPS number
5, which has the measurement error, is much higher than other satellites, as expected.
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Figure 4-27 Multiple Scale Factors for Pseudo-Range Measurements
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In case of faulty pseudo-range and pseudo-range rate measurements from GPS,
Figure 4-28, Figure 4-30, and Figure 4-31 show the navigation errors without
adaptive filter and SSF and MSF. As can be observed from these figures, MSF gives
the best results. MSF changes the measurement noise covariance matrix elements
proportional to the error existing in that state. On the other hand, SSF multiplies the
whole measurement noise covariance matrix with a scalar. Figure 4-28 shows that
SSF provides a better position solution during GPS error (between the 20" and 25%
seconds of the flight) compared to the no AKF case; after a certain point, SSF

position errors become larger than no AKF case.
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Figure 4-28 Tightly Coupled Integration Position Errors with AKF

Figure 4-29 shows the MSF values for pseudo-range rate measurements in tightly
coupled integration for the guided munition. Since there exists a protection for the
MSF values lower than 1. Even though the algorithm calculates the values lower than

1, the protection prevents them from having those values.

62



MSF

—GPS 5

15 20 25 30
time [s]

35 40

Figure 4-29 Multiple Scale Factors for Pseudo-Range Rate Measurements

Navigation Errors - Velocity
L T

T L] L] T T
— 400 F I |—error
= ——error - SSF
 200F y error - MSF
£ 0 -
- -200 £ I L 1 1 1 I R -
0 5 10 15 20 25 30 35 40
time [s]
100 Ll 1 I 1 1 L 1
- ——error
= ——error - SSF
W B50F - error - MSF
:‘d of i
L 1 1 1 1 1 1 ‘_L_
0 5 10 15 20 25 30 35 40
time [s]
40 T 1 L L] T T 1
— ——error
= ——error - SSF
= 20 -
o 4‘_’_/'\/ error - MSF
= W
20 1 1 1 1 1
0 5 10 15 20 25 30 35 40
time [s]

Figure 4-30 Tightly Coupled Integration Velocity Errors with AKF
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Figure 4-31 Tightly Coupled Integration Attitude Errors with AKF

Since the results of MSF cannot be observed from the above figures, separate figures
are created to state how MSF produces the best navigation solutions in Figure 4-32,

Figure 4-33, and Figure 4-34.
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Figure 4-32 Tightly Coupled Integration Position Errors with MSF
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Figure 4-33 Tightly Coupled Integration Velocity Errors with MSF
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Figure 4-34 Tightly Coupled Integration Attitude Errors with MSF
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CHAPTER 5

CONCLUSIONS

In this study, a simulation model for the guided munition is created to examine
INS/GPS integration with different integration architectures, and adaptive KF is
utilized to overcome GPS spoofing. Both loosely coupled and tightly coupled
integration methods are applied, GPS spoofing is modeled, and navigation errors are
illustrated for all cases. In the case of GPS spoofing, AKF is achieved with both SSF
and MSF. Since MSF adapts the diagonal elements of the measurement noise
covariance matrices, it has some advantages over SSF. Loosely coupled and tightly
coupled integration methods differ in measurment models and this results in
calculated MSF affect different types of measurements. In loosely coupled
integration, MSF adapts the position and velocity elements of the measurement noise
covariance matrix. In tightly coupled integration, pseudo-range and pseudo range
rate measurements are affected by MSF. This study shows that, while single scale
factor could be used for loosely coupled integration, it §s not suggested for the tightly
coupled integartion method. Because when a measurement is faulty in loosely
coupled system it affects all position and velocity information and multiplying a SSF
with measurement noise covariance matrix is acceptable. On the other hand, if only
one of the GPS measurements are faulty in tightly coupled integration, it does not
affect all measurements. In that case, if SSF is multiplied with measurement noise
covariance matrix, the result is losing the valuable information from other satelleties.
When GPS spoofing results in malfunction only position or only velocity, adapting
the related element preserves the important information to be lost completely.
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APPENDICES

A. Least Squares Method

The least squares algorithm is applied to obtain the position and velocity
measurements of the GPS by using pseudo-range and pseudo-range rate
measurements. These position and velocity solutions are necessary in the loosely
coupled integration method. The algorithm is based on using minimum of four

satellites’ measurements and estimating GPS position, bias, velocity, and drift as

follows [3]:
(6pt1 (L) 1 03 0] (& ]
: Lo e |
SpM _ (16135t)T 1 03x1 0f|6b €p
4= DT +| (4.1)
6.0 O3x1 0 (1est) 1]|6v Ep
: :o: o iledl |
oo Lose 0 amor b [
0Zymx1 = Gomxs0Ssx1 + E2mx1 (4.2)

If there are four or more satellites, the least squares solution as in Eq. (A.3):

5S = (GTG)" G782 (A.3)
Testk = Testk—1 1 OT (A.4)
bestx = Dest k-1 + b (A.5)
SVest k = OVesex + 6V (A.6)

destx = 0dese -1 +6d (A.7)

This algorithm is repeated, until &S is in the given tolerances [3]. Then, the GPS
position and velocity solutions are obtained to be used in loosely coupled INS/GPS

integration.
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B. Derivation of Linear Autopilot Matrices

The linear autopilot matrices are created by using force and moment equations acting
on a flying vehicle. The forces acting on a body include aerodynamical and
gravitational forces as stated in Eq. (B.1) [16]:

Faero + Egrav = m(ﬁgb + w?b X vé)b) (B.1)
X 0 u 0 —-r q7ru
Y|+ Clm 0]=m(1’7 +|r 0 —p“vl) (B.2)
Z g w —-q p 01w
X —mgsinf = m(u+qw —rv) (B.3)
Y +mgcosfsing =m@+ru—pw) (B.4)
Z +mgcos @ cosp = m(w + pv — qu) (B.5)

The moments acting on a flying vehicle are stated in Eq. (B.6) [16]:

MP = [Pwh + 1P@f) + by x 1Y), (B.6)
L Ixx _ij _jzx P Lx _Ixy —lpx p
M| = _Ixy Iyy _Iyz [Ql+ _Ixy Iyy _IyZ lQl
NI -0,
0
+|r 0 —p] [ (B.7)
—q P —sz

Note that, for a guided munition I,, = I,,, = I,,, = 0 since it is symmetric wrt two

axes and also by taking small inertia change, ® ~ o, equations become:

L=15Lp— (L, —1I.)qr (B.8)
M=1,q - (Izz — Le)TD (B.9)
N =17 — (L — Ly )pq (B.10)
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For the pitch dynamics, the definition of angle of attack is the starting point of

creating the linear matrices.
w
a = arctan (—) (B.11)
u

For small angle of attack assumption:

w
a~— (B.12)
u
. wu—wu
@ =—7— (B.13)
Instead of W expression from Eq. (B.5) is used:
(% + qu) u—wu
Q= (B.14)

u2

Note that Z-force can be expressed in terms of aerodynamic derivatives and some

parameteres as in Eq. (B.15):

Z = Zoa + 2,q + 256 (B.15)
Z u Z Z
a=(—“——)a+<—q+1)q+—55 (B.16)
mu u mu mu

Forr =p = 0, from Eq. (B.9):

g = (B.17)

=

Note that M-moment can be expressed in terms of aerodynamic derivatives and some
parameteres as in Eq. (B.18):

M = Mya + Myq + Msé (B.18)

Putting Eq. (B.18) into the Eq. (B.17):

. Ma Mq M6
g=—a+—q+—96 (B.19)
Iy Iy Iy
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Finally acceleration in z direction is found by dividing the Z-force to the guided

munition’s mass:

Zy  Zg Zs
a;=—a+—q+—06 (B.20)
m m m
Z Z Zs .
a,="2q+-24+24 (B.21)
m m m
Z, (12, u Z Z
aZ=—“<(—“——)a+(—q+1>q+—56>
m mu u mu mu
Z, (M M M Zs .
L N e Vi PR 0 L (B.22)
m\ I, I I m

With the manipulation of Eq. (B.20) angle of attack becomes:

m Zq Zs
LA ALY B.23

Putting Eq. (B.23) into the Eq. (B.22):
Z ZoM, u Zo Zou Z;M Z:M
PP (A el PSRN Gl ki il .
mu  Zgl, u m mu ml, Z,ml,

Zsu Z MyZs Z M Zs .
T e L e R (B.24)
mu  Zzml, ml, m

Putting Eq. (B.23) into the Eq. (B.19):

A Mam Mq Ma,Zq M5 Ma25
q=< )az+<—— g+ (=2- 5 (B.25)
1,7, I, Zgl, I, Z,

By adding the CAS dynamics into the system linear matrices for the pitch dynamics

can be written as in Eq (B.26):
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[Za , ZaMa i Zo  Zgit | ZyM Z |
a'.Z I u Zgl, u m mu ml, Zml, mu Z,ml, ml, m Iaz
q - M,m M, M,Z, Ms MyZs o | q
5|~ T T 6
o | L,Z, L, Zl, L,  Z.l, | 5
é 0 0 0 1
[ 0 0 —w? —2¢w2]
0
0
o 6, (B.26)
Wy

For the yaw dynamics, the definition of sideslip angle is the starting point of creating

the linear matrices.

B = arcsin (;) (B.27)

For small sideslip angle assumption:

d (B.28)
By .
Time derivative of the sideslip angle isgiven in Eq. (B.29):
. vV =V
Instead of v expression from Eq. (B.4) is used:
(% - ru) V-V
(B.30)

Note that Y-force can be expressed in terms of aerodynamic derivatives and some

parameteres as in Eq. (B.31):

Y =Y3B + Y,r+ Y58 (B.31)
Assuming that, munition has biggest velocity in the x direction. Hence u = V Eq.

(B.30) becomes:

mv v mV mV

mV V

3=<Yﬁ V)ﬁ+(i—1)r+£6 (B.32)

Forp = q = 0, Eq. (B.10):
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(B.33)

=

Note that N-moment can be expressed in terms of aerodynamic derivatives and some

parameteres as in Eq. (B.34):
N = Ngf + N,7 + Nsb (B.34)
Putting Eq. (B.34) into the Eq. (B.33):

Ny N. N
F=Lp+—Lr+-25 (B.35)
I, I, I,

Finally acceleration in y direction is found by dividing the Y-force to the guided

munition’s mass:

Yo Y, Y
ay =—f+—r+—94 (B.36)
m m m
Y. Y Ys .
ay=Lp+Li+26 (B.37)
m m m
Ys((Ys V Y, Y,
. Ip B ( r ) 5
==ll—=-= )8+ (—=—-1)r+—=36
%y m((mV V)ﬁ mV r mV )
Y, /N N, N, Ys .
+—r(—ﬁﬁ+—rr+—56>+—56 (B.38)
m\1, 1, 1, m

With the manipulation of Eq. (C.36) sideslip angle becomes:

m YT‘ Y5
B=—ay,——r—26 (B.39)
Yg Yoo Y

Putting Eq. (B.39) into the Eq. (B.38):

Y. Y.N, V Y. Y.V Y.N Y2N,
aY:<_ﬁ'+rﬁ )Y<__B+r+rr_rﬁ>r

—=]ay +
mV - Ypl, V m mV  ml, Ygml,

YsV Y.N.Ys Y.N Ys .
(5 Sl 5)‘”%55 (B. 40)

mV  Ypml, mli,

Putting Eq. (B.39) into the Eq. (B.35):
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Ngym N, NgY, N NpY,
. B r Lir S5 pL1é

— +l———)r+|———|6 B.41
" < )ay (IZ Y.'LgIZ)r <IZ YﬁIZ> ( )

By adding the CAS dynamics into the system linear matrices for the yaw dynamics

can be written as in Eq (B.42):

[ Y5 YrNﬁ_z R/ YV YN, YN YS_V_YrNﬁYS Y, Ny Y ]
m |

a] |mV Y, Vo om mV' ml, Yyml, mV Yyml, mi, ay
i Nym N, NgY, Ny Ng¥s A
8 | Y1, [ L, Y, | g
6 0 0 0 1
[ 0 0 —w? —2¢w2]
0
0
+[ o |5 (B.42)
wh

For the roll dynamics, Eq. (B.8) becomes:

L
p=r (B.43)
X

Note that L-moment can be expressed in terms of aerodynamic derivatives and some

parameteres as in Eq. (B.44):
L=L,p+Ls6 (B. 44)
Putting Eq. (B.44) into the Eq. (B.43):

. Lp L5
Iy Iy

The relationship between Euler angles and body angular rates are as follows [16]:
¢ =p+gsingtand + rcos ¢ tan 6 (B.46)
With the assumption of g = r = 0:

¢=p (B.47)

By adding the CAS dynamics into the system linear matrices for the roll dynamics
can be written as in Eq (B.48):
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(B.48)

[\]

n
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