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Abstract
Aggregation, the gathering of individuals into a single group as observed in animals such as birds, bees, and amoeba, is known
to provide protection against predators or resistance to adverse environmental conditions for the whole. Cue-based
aggregation, where environmental cues determine the location of aggregation, is known to be challenging when the swarm
density is low. Here, we propose a novel aggregation method applicable to real robots in low-density swarms. Previously,
Landmark-Based Aggregation (LBA) method had used odometric dead-reckoning coupled with visual landmarks and
yielded better aggregation in low-density swarms. However, the method’s performance was affected adversely by od-
ometry drift, jeopardizing its application in real-world scenarios. In this article, a novel Reinforcement Learning-based
Aggregation method, RLA, is proposed to increase aggregation robustness, thus making aggregation possible for real robots
in low-density swarm settings. Systematic experiments conducted in a kinematic-based simulator and on real robots have
shown that the RLA method yielded larger aggregates, is more robust to odometry noise than the LBA method, and adapts
better to environmental changes while not being sensitive to parameter tuning, making it better deployable under real-
world conditions.
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1. Introduction

Aggregation, defined as the gathering of individuals into a
single group, is beneficial for the survival of animals since it
provides protection against predators (Camazine et al.,
2003; Grünbaum & Okubo, 1994) and increases resis-
tance to adverse environmental conditions (Krause et al.,
2002; Rappel et al., 1999). It is often regarded as a pre-
requisite for most cooperative behaviors in swarm systems,
hence poses a fundamental challenge toward deploying
swarm robotic systems in real-world scenarios.

Aggregation behaviors fall into two main categories:
self-organized and cue-based. In self-organized aggrega-
tion, the location of the aggregate is independent of the
environment, as observed in the murmuration of starlings
(Goodenough et al., 2017), flocking of birds (Halloy et al.,
2007), and it is triggered and governed by the interaction
among the individuals. In cue-based aggregation, however,
aggregation is triggered by an external environmental cue,
such as locations with optimal temperatures within the hive
of honeybees (Barmak et al., 2023; Frank et al., 2015).

The development of self-organized and cue-based ag-
gregation behaviors that can be deployed on physical robots
is an active line of research (Garnier et al., 2008; Misir &
Gökrem, 2021; Na et al., 2021; Schmickl & Hamann, 2011;
Sion et al., 2022; Tang et al., 2021). Garnier et al. (2008)
modeled a self-organized aggregation behavior of cock-
roaches and then transferred to a swarm of micro-robots.
Inspired by the aggregation behavior of young honey bees
(Heran, 1952), a cue-based aggregation method,
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BEECLUST, was proposed in Schmickl and Hamann
(2011). The BEECLUST method imitates the aggregation
behavior of honey bees in swarm robots. In this method, a
robot moves randomly and stops when it encounters another
robot for a particular time. The waiting time depends on the
intensity of the cue where robots encountered. It was shown
that the BEECLUST method performed well in real-world
scenarios such as contamination source detection in extreme
environments (Sadeghi Amjadi et al., 2020).

In most studies on cue-based aggregation, the swarm
density is chosen high enough to trigger and sustain ag-
gregation. In Arvin et al. (2016), the BEECLUST method
was studied under various environmental conditions.
Among these factors, swarm density defined as the average
number of individuals per unit area, is shown to affect the
aggregation performance the most. In high swarm density
settings, the probability of robot-to-robot encounters is high
enough to support forming and growth of aggregates on the
cue. However, in low swarm density settings, robot-to-robot
encounter has a low probability; thus, formation and growth
of aggregation become a major challenge (Arvin et al.,
2016). We aim to overcome this limitation as this would
allow implementing, for example, bio-hybrid systems
where a few robots interact with the biological agents to
influence their behavior (Stefanec et al., 2022). So far, most
robot-insect interaction is performed in a centralized way
using specially designed manipulators (Rekabi-Bana et al.,
2023), which limits the studies to laboratory environments.

An example of a study focused on enhancing aggregation
performance is the work conducted by Vardy (2016). In this
study, ODOCLUST method was proposed using odometry
sensors in the robots. The results showed that the ODO-
CLUST method outperformed the BEECLUST method.
Odometry sensors were also used in a foraging task to boost
the performance of the swarm. In Gutiérrez et al. (2010),
foraging performance was improved by social odometry in
which robots share their odometry data with the other robots
locally.

In nature, animals such as honey bees use visual (Collett,
1996) and olfactory landmarks (Reinhard et al., 2004a,
2004b) for navigation in complex environments
(Srinivasan, 2010). Robotic systems use landmark-based
navigation to move along known landmarks using vision,
odometry, and memory-based representations (Kumar et al.,
2021; Saleh Teymouri & Bhattacharya, 2021). These sys-
tems proved to have better robustness to landmark defi-
ciency, adverse conditions, and environmental change
compared to methods based on metric localization and
mapping (Furgale & Barfoot, 2010; Halodová et al., 2019;
Krajnı́k et al., 2010; Paton et al., 2018). In swarm robotics,
such navigation methods were implemented in foraging
tasks. As an instance, in Lemmens and Tuyls (2009), an
adaptive foraging method was proposed based on landmark-
based navigation using RFID tags as landmarks.

In the LBA method (Sadeghi Amjadi et al., 2021), a cue-
based aggregation algorithm using landmark-based navi-
gation technique was proposed to increase aggregation
performance in low-robot density settings. Despite the in-
creased aggregation performance, the LBA method still
heavily depends on odometry for navigation. This depen-
dence is a major drawback since odometry is subject to drift
and it is not precise when the robots have to move in uneven
terrain, which would limit the use of the LBA in real-world
scenarios.

In this article, we propose a new aggregation method,
Reinforcement Learning-based Aggregation (RLA) which
applies reinforcement learning techniques to choose the
optimal action based on the perceived landmarks, removing
the dependency on odometry.

The contributions of this article are:

1. A novel reinforcement-learning cue-based aggre-
gation method (RLA) is proposed. To the best of our
knowledge, this is the first use of RL for cue-based
aggregation in swarm robotics.

2. A cyclical parameter update schedule is proposed to
balance exploration-exploitation trade-off of con-
troller update, thereby reducing sensitivity of the
performance to the RL parameter choice.

The rest of the article is organized as follows: In
Section 2, the BEECLUST method, Landmark-Based
Aggregation method, and state-of-the-art on reinforce-
ment learning are discussed. In Section 3, the proposed
RLA method and a cyclical parameter update schedule
are introduced. In Section 4, the simulation and real-robot
experimental setup for evaluating the performance of the
proposed method and baselines were introduced. The
results of the simulations and real-robot experiments
were given and discussed in Section 5. Finally, the
conclusion of the work and future works were provided in
Section 6.

2. Background

2.1. BEECLUST aggregation

Schmickl and Hamann (2011) modeled cue-based aggre-
gation using three behaviors: (1) move forward, (2) avoid
obstacles, (3) wait for ws. The focal robot moves forward
until it detects an object. If the object is an obstacle, the focal
robot avoids it and continues its motion. If the object is a
robot, the focal robot stops and waits. The waiting time, ws,
is calculated as

ws ¼ wmax
Ic

2

Ic
2 þ c

, (1)
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where wmax is the maximum waiting time, and c is a positive
constant. Ic is the cue intensity. Once the waiting time is
over, the focal robot turns θ°, a random variable with a
uniform distribution. The BEECLUST method is shown in
Figure 1.

The waiting time is higher inside the cue, where cue
intensity is non-zero, causing robots to wait longer
there. The higher the cue intensity is, the longer robots
wait, and thus, robot-robot encounter probability in-
creases. Consequently, a more stable aggregation is
observed in regions with higher cue intensity. Since the
BEECLUST method relies on robot-robot encounter
probability, in low swarm densities, the probability
decreases and affects the aggregation performance
adversely.

2.2. Landmark-based aggregation

In the LBA method, when the subject robot detects a
landmark for the first time, such as the kth landmark, it
measures its distance d and angle f with respect to the
landmark. Then, it calculates its relative position vector ðR!Þ
with respect to the landmark as: R

!¼ d∠f.
The robot turns to a random angle and starts to move

forward. When it detects an obstacle, it calculates its dis-
placement, S

!
i
k , where i is the index of the displacement

vector. The subject robot uses its odometry sensors to
measure the distance it traveled and the angle it turned. This
process happens each time the robot detects an obstacle. i
varies in the range of [1, y], where y indicates the total
number of displacement vectors. The process continues until
the subject robot encounters another robot. If the encountered
robot is inside the regionwith non-zero cue intensity (referred
to as cue), all the displacement vectors are summed to cal-

culate the total displacement vector, S
!

total
k : Hence, the total

displacement vector represents the relative position of the cue
with respect to the kth landmark, S

!
total
k ¼ l∠ψ. When the

robot detects the kth landmark again, it moves towards the cue
by following S

!
total
k : If the robot cannot find the cue after

following S
!

total
k , the error variable ek associated with that

vector is incremented. When ek becomes larger than the error
threshold parameter τe, S

!
total
k is reset, and the robot must

recalculate S
!

total
k again.

There are three conditions that a robot cannot find the cue
by following the previously calculated S

!
total
k : (1) The en-

vironment might have changed, (2) the location of the cue
might have moved, and (3) the accumulated odometry error
might be high since the summation of the displacement
vectors to calculate the total displacement vector brings
vulnerability to odometry noise.

2.3. Reinforcement learning in swarm robotics

As RL gained popularity in solving discrete problems,
researchers were motivated to study its capabilities in
complex real-world cases. However, in complex and con-
tinuous real-world problems, dimensionality and scalability
of RL methods impose some disadvantages. Modular RL
(Doya et al., 2002) was proposed to decompose a mono-
lithic task into simpler sub-tasks that can be solved in
parallel. In Wang et al. (2021), a state evaluation-based
weighting method was proposed for determining the mixing
weights of two sub-policies. Their experiments on maze
tasks showed that the proposed method outperformed other
studied approaches and improved the training time. In the
context of swarm robots and cooperative learning, two
fundamental properties of swarm robotics challenge the
cooperative learning scheme, which are: (1) interchange-
ability of agents and (2) irrelevancy of the exact number of
agents. In Hüttenrauch et al. (2019), the mean embedding
representation of local observation of each agent is used to
enable information exchange among agents despite the
aforementioned challenges. Young and La (2020) proposed
a cooperative RL scheme to flock the swarm away from the
predators. In Franzoni et al. (2020), a swarm of hexagonal
robots using the Q-learning scheme was used to interact
with humans to maintain social distancing in public areas to
avoid the spread of COVID-19 disease. Another study in
cooperative reinforcement learning is the GridWorld (Pham
et al., 2018) and box pushing (Rahimi et al., 2018). Ad-
ditionally, a reinforcement learning-based controller for a
swarm robotic system is proposed in Na et al. (2022) for
autonomous operation of the robots in a real-world scenario.

3. Methodology

3.1. Reinforcement learning-based aggregation

The RLA method is proposed to alleviate susceptibility of
LBA method on the odometry noise. The essence of the
RLA method is the use of reinforcement learning to choose
the best action based on the detected landmark. This choice
of action leads to higher robustness to sensory noise. In the
RLA method, robots move randomly and aggregate, just as
in the BEECLUST method (colored in red) as shown in
Figure 2. On top of the BEECLUST method, the RLA
method incorporates action selection based on the detected

Figure 1. Flowchart of the BEECLUST method.
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landmark and Q-value updates for the selected action. The
swarm aggregation is formulated as an episodic Q-learning
problem where each state is considered as a separate bandit
problem (Sutton & Barto, 2018).

When the focal robot detects a landmark (LM), the
landmark is set as the state of the focal robot,
S ¼ fLM1,LM2, ::,LMmg where m is the total number of
landmarks. The focal robot chooses an action from the
action space based on its state and the policy function.
Based on the detected landmark, the focal robot endeavors
to acquire knowledge regarding the action that will guide it
from the current landmark state towards the cue. In the rare
scenario where multiple landmarks are detected (which is
less probable due to the distance between landmarks and
robots’ field of view), the focal robot will randomly select
one landmark and make a decision on the action to be taken
based on that chosen landmark. To incentivize exploration,
the ε-greedy method is used as the policy function (Watkins
& Dayan, 1992).

The action space consists of discrete displacement
vectors A ¼ f a!1, a

!
2,… a!ng, where n is the number of

actions that a robot can perform in a given state. Each
displacement vector starts at the center of a landmark and
points to a location inside the arena, including the cue, as
shown in Figure 3. The vectors are discretized to reduce
complexity and computational cost. Each displacement
vector can be written as a!k

i ¼ l∠ψ, ψ 2 2, l2L. Since
each displacement vector, a!k

i , starts from the center of
the kth landmark, the relative location of the focal robot

with respect to the detected landmark ðR!Þ should be
added to the displacement vector. By adding this vector,
the focal robot reaches the endpoint of the displacement
vector by following the target vector T

!
calculated as:

T
!¼ a!k

i þ R
!
.

There exist three potential outcomes for the reward
received by the focal robot. Upon successfully following
target vector T

!
without encountering collisions with

walls or other robots, the reward corresponds to the in-
tensity of the sensed cue after traversing T

!
. If the focal

robot fails to reach the cue, a reward of zero (r = 0) is
given. In the event of a wall collision during action
execution, a reward of r = �1 is given. Moreover, if the
focal robot detects the presence of another robot during
its action, it ceases to follow the target vector T

!
, executes

a random turn, and resumes movement within the arena
without receiving any reward. Consequently, the reward
acquired by the focal robot falls within the range of r 2
[�1, 255].

After receiving the reward, the focal robot updates its
Q-table using the following recursive update rule

Qtþ1ðst, atÞ←ð1� αÞQtðst, atÞ þ αrtþ1 (2)

where α 2 (0, 1], is the learning rate.
In the BEECLUST method, upon reaching the cue, if

a robot collides with another robot, it will wait for a
designated duration based on the intensity of the sensed
cue at the collision location. In the LBA and RLA

Figure 2. Flowchart of the RLA method. Red steps (from 1 to 5) refer to the steps of the BEECLUST method. Snapshots of the
kinematic simulation are illustrated in images on the right side. The number specified in the top right corner of the snapshot
corresponds to the number of state in the flowchart. (7) A robot detects a landmark and chooses an action. (8) The chosen action of the
robot, indicated by the red vector a!i, is executed. Executing an action stands for following the displacement vector T

!
(green vector)

which is derived by summing the chosen action ai
! (red vector) and robots’ relative position to landmarks, R

!
(blue vector). (9) The

Action_completed() function assesses the robot’s ability to effectively track vector T
!

and complete the traversal process unhindered by
wall collisions or interruptions from other robots. (12) Another robot detected while executing the action. (13) A wall detected while
executing an action. (10) Following action led robot to cue and robot receives a positive reward.
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methods, extra steps were added on top of the BEECLUST
method upon reaching the cue. In the LBA method, in
addition to waiting at the cue when encountering another
robot, if a robot has previously encountered a landmark
before reaching the cue, it will calculate and learn the
displacement vector required to navigate from that land-
mark to the cue. In the RLA method, apart from pausing at
the cue when a collision occurs, if a robot reaches cue as a
result of executing and action, it will receive a reward
based on the sensed cue intensity at the corresponding
location.

3.2. Exploration-exploitation dilemma

In order to increase the performance of the RLA method,
one of the most important issues is to find the best al-
gorithm for the exploration-exploitation dilemma. In
RLA, once a robot detects a landmark, it uses the policy
function πt(st) to choose an action. A policy function
maps the state space to an action space π :S→A. Action
can be chosen either randomly (exploration) or by se-
lecting the best (exploitation). If an agent always takes
random actions, it would explore and learn various
possibilities, but it will never use the learned knowledge.
On the other hand, if an agent always exploits its
knowledge to choose the best action, it will not explore
most of the environment’s possibilities, and the chances
of received rewards being restricted by local minimum
are high. Therefore, a balance is required between ex-
ploration and exploitation. This problem is called the
exploration-exploitation dilemma. In our case, robots
explore environmental possibilities by trying out all
possible actions within the action space upon detecting a

landmark, encompassing cases where an action leads to a
collision with a wall or directs the robot to any position
within or outside the cue area. By exploring these diverse
possibilities, the robots acquire knowledge regarding
which actions are more likely to lead to locations with
higher cue intensities. Exploring becomes significantly
crucial in dynamic environments since actions after de-
tecting a landmark that lead to the highest intensity of the
cue can change.

A simple and effective solution for solving this problem
is the ε-greedy method (Watkins, 1989) in which the chance
of taking a random action is determined by the parameter 0 ≤
ε ≤ 1 and the probability of taking a greedy action is 1� ε. In
our study, ε parameter plays a vital role in the performance
of the swarm.

3.2.1. Adaptive ε-greedy. In Tokic (2010), an adaptive
ε-greedy concept called Value-Difference Based Explora-
tion (VDBE) was proposed. In the VDBE approach, an
agents’ certainty about the environment is measured by the
difference between the value functions of the current and
previous steps. Equations (3) and (4) represent the update
formula for ε in VDBE schedule

f
�
st, a

k
i , σ

� ¼ 1� e
�jQtþ1ðst , aki Þ�Qtðst , aki Þj

σ

1þ e
�jQtþ1ðst , aki Þ�Qtðst , aki Þj

σ

(3)

εtþ1ðstÞ ¼ δf
�
st, a

k
i , σ

�þ ð1� δÞεtðstÞ (4)

The parameter ε is updated using the difference be-
tween value functions in two consecutive time steps,
jQtþ1ðst, aki Þ � Qtðst, aki Þj. The parameter δ controls the ε
rate of change was chosen as the inverse of the number of
actions in the current state, δ ¼ 1=jAj. The inverse
sensitivity parameter σ adjusts how sensitive an agent
should be to changes in the environment. For the VDBE
schedule, σ is the only parameter that needs to be tuned.
Higher σ values will act like constant ε, which means
changes in the environment will not affect ε consider-
ably. On the other hand, lower σ values will change ε
drastically even if a small change happens in the envi-
ronment. Thus, depending on the conditions of the en-
vironment, σ must be tuned to obtain the best
performance.

3.3. Proposed ε schedule

We propose a new ε schedule inspired by the cyclical
learning rate changing scheme proposed in Smith (2017). In
this schedule, ε is changed periodically regardless of the
state of the agent

Figure 3. Action space of a robot in the RLA method. The red
vector represents the relative location of the robot with respect
to the landmark. Each green vector is the action ð a!k

i Þ that a robot
executes by following T

!¼ R
!þ a!k

i , where superscript k
represents the kth landmark and index i 2 [1, 44] represents the
ith action. The green arc represents the camera field of view of the
robot. Red dashed circle on the left and right demonstrates the cue
before and after tchange, respectively.
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εt ¼ AMP

�
1þ cos 2πλ

p

�

2
, (5)

where εt is the value of ε at time t. and λ is the epoch count
which is incremented each time a robot detects a landmark
and executes an action. For simplicity, we used cosine
function. The parameters amplitude AMP 2 (0, 1] and
period p 2 (0, ∞) determine how ε change in time.

4. Experiments

To evaluate RLA method, experiments on kinematic-based
simulator and real-robots were conducted. The experiments
were repeated 5 times with randomized initialization
conditions.

The learning rate is set to a constant value α = .1; since
the environment is non-stationary and noisy, a small,
constant value for α will cause slow but guaranteed con-
vergence (Sutton & Barto, 2018).

The performance of aggregation was assessed using the
Normalized Aggregation Size (NAS) metric, which is de-
fined as the number of robots inside the cue divided by the
population size, NAS 2 [0, 1].

4.1. Kinematic-based simulator experiments

Kinematic simulation was implemented using Python
programming language. Robots were modeled as circles, as
shown in Figure 3. The parameters of the robots were
chosen such that their size and speed were the same as the
Kobot robots (Turgut et al., 2007) used in the real-robot
experiments. The radius of the robots were Rr = .06 m,
collision detection range was Rcol = .06 m with a 360°

collision detection angle. At each time step k, the location of
ith robot is updated according to

2
664
x j
kþ1

y j
kþ1

θ j
kþ1

3
775 ¼

2
664
1 0 0 v j

kcos θ
j
k

0 1 0 v j
ksin θ

j
k

0 0 1 ϵ j
k

3
775

2
666664

x j
k

y j
k

θ j
k

Δt

3
777775
, (6)

where x j
k , y

j
k , and θ j

k are the location and orientation of
robot, v j

k 2 ½�0:14; 0:14� m/s is the forward velocity of a
robot, and ϵ j

k 2 ½�2π, 2π� rad/s is its angular speed. Δt is
taken as .512 s.

A rectangular arena with dimensions of 2.82 m × 5.65 m
was used for all the experiments. The robots were identical
and their number was N = 10 in order to create a low-robot
density condition. The cue was represented as a dark circle
inside the arena with a radius of Rc = 1 m. The intensity of
the cue reduces towards its perimeter, and its distribution
along its radius was considered to be a 2D Gaussian

centered at the center of the cue, as shown in Figure 3. In
order to test the performance of the methods in non-
stationary environments, the location of the cue was
moved during the experiment from (1.41 m, 1.41 m) (the
left-hand side of the arena) to (1.41 m, 4.23 m) (the right-
hand side of the arena) at time t = tchange.

The duration of each experiment, denoted as ttotal, was
determined to be sufficiently long for all the methods to reach
a steady-state. This decision was made through empirical
observation, considering the need for the swarm to achieve a
steady-state and maintain it for a certain period. At the same
time, it was important to ensure that the experiments could be
completed within a reasonable timeframe. The location of the
cue was changed at half time of the whole experiment du-
ration, tchange = ttotal/2. For the LBA method, the error
threshold parameter was τe = 4, since this choice has the
benefit of both good adaptation characteristics for non-
stationary environments and robustness to odometry noise
as discussed in Sadeghi Amjadi et al. (2021).

In order to study the robustness of the LBA method to
odometry noise, noise was added to the angle of the total
displacement as described in Sadeghi Amjadi et al. (2021).
If the actual angle of the displacement vector is βki , the noisy
angle ~βi

k is calculated using

~βi
k ¼ βki þ σnη

k
i , (7)

where η is a uniformly distributed random variable between
�1 ≤ η ≤ 1. σn is the strength of noise in the range of [0°,
180°]. The reason that noise was only added to the angle of
the displacement vectors is that in the LBA method when a
robot detects the kth landmark, it moves along the displacement
vector, S

!k

total, until it detects an obstacle or another robot.
Therefore, the length of the vector is not important.

In the arena, three landmarks were placed at equal
distances from each other on each side of the arena, making
a total of six landmarks, m = 6, as shown in Figure 3. It was
assumed that robots could detect landmarks up to .5 m.

The action space, A, was designed to have n = 44 dis-
placement vectors. The length and angle of action vectors
are discretized as l2L ¼ f1:25; 2:5; 3:75; 5g m and ψ 2
2 = {0°, 18°, 36°, …, 180°}. Angles are measured in the
right-handed body-fixed coordinate frame of each land-
mark, such that the orthogonal vector towards a landmark is
ψ = 90°. The parameters used in the kinematic simulation
are shown in Table 1.

The following three experiments were performed using
the kinematic-based simulator:

· Environment Experiment: In this experiment, the
BEECLUST, LBA, and RLA (with VDBE and cy-
clical ε schedules) methods were compared. First, this
comparison was made without considering any od-
ometry noise. Then, a nominal noise, σn = 15°, was

6 Adaptive Behavior 0(0)



added to displacement vectors based on equation (7).
Moreover, the performance of the methods was
evaluated in non-stationary environments. Time
evolution of NAS values was plotted.

· Noise Experiment: In this experiment, the robustness
of the methods against noise was studied. Noise was
added using equation (7) with σn 2 {0°, 5°, 15°, 30°,
45°, 60°, 90°, 135°, 180°}. For this experiment, the
steady-state NAS values were plotted for the sake of
clarity of the plots, which were calculated by using
the last 100 NAS values of each run.

· Parameter Sensitivity Experiment: In this experiment,
the sensitivity of ε schedules for the RLA method to
different parameter values was evaluated. Two sched-
ules were implemented for ε, which are VDBE and
cyclical schedule. VDBE schedule has only one free
parameter σ, whereas the cyclical schedule has two free
parameters p and AMP. As in the previous test case,
steady-state NAS values were considered. For backing
up the statements made in this experiment, the average
of rewards that the swarm has received and the change
of the ε parameter were also plotted over time.

4.2. Real-robot experiment

In real-robot experiments, the Kobot V2 robots (Turgut
et al., 2007), a differentially driven CD-sized mobile robot

designed specifically for swarm robotic research, Figure 4,
was used.

The ArUco markers (Garrido-Jurado et al., 2014) was
chosen as the landmarks due to their simplicity, relatively
low computational requirements, robustness to occlusion,
and low rate of false positive detection. The OpenCV
library (Baggio et al., 2012) was used to calculate the
position and orientation of the ArUco markers in five
steps: (1) Image segmentation: the most distinguishable
edges are extracted. (2) Contour filtering: a counter ex-
traction method (Suzuki et al., 1985) followed by a po-
lygonal approximation (Douglas & Peucker, 1973) is
applied. (3) Marker code extraction: the internal code of
detected regions is analyzed to obtain their internal code.
(4) Marker identification and error correction: the en-
vironment is distinguished from markers. (5) Corner re-
finement and pose estimation.

Detection of ArUco markers was implemented on
Raspberry Pi 3B + running Raspbian OS and ROS Melodic
(Quigley et al., 2009) with the Raspberry Pi Camera v2.1.
Kobot robots can detect markers with a .05 m edge up to 2 m
distance and from skew angles up to 80°. Nevertheless,
detection distance was limited to .5 m to be consistent with
the simulations and to avoid detecting landmarks from
inside the cue.

Four IR sensors were placed at the bottom of the robot to
sense the cue intensity on the floor. IR sensors were

Table 1. Parameters and their value used in kinematic simulation experiments.

Par Description Value/range

wa Arena width 2.82 m
ha Arena height 5.65 m
Rc Cue radius 1 m
Rr Radius of a robot .06 m
rcol Sensing range for robots/obstacles .06 m
Ic Measured cue intensity [0 255]
wmax Maximum waiting time 120 s
c Constant in equation (1) 5000
ttotal Total length of each experiment 100000 s
tchange The moment when the location of the cue is changed 50000 s
N Number of robots 10 robots
m Number of landmarks 6
τe Error threshold for LBA method 4
AMP Amplitude of cyclical waves {0.12, .25, .37, .5, .62, .75, .87, 1}
p Period of cyclical waves {0.01, .1, 1, 10, 50, 100, 150, 200, 500}
σn Angular noise {0°, 5°, 15°, 30°, 45°, 60°, 90°, 135°, 180°}
σ Inverse sensitivity of VDBE method {0.01, .05, .1, .5, 1, 5, 10, 50}
γ Discount factor of RLA 0
α Learning rate of RLA 0.1
l Length of action vectors for RLA {1.25, 2.5, 3.75, 5}m
ψ Angle of action vectors for RLA f0°, 18°, 36°, 54°, 72°, 90°, 108°, 126°, 144°, 162°, 180°g
Δt Duration of each step of simulation .512 s
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calibrated to read 0 from the lowest intensity zone (the
carpet on the floor) and 255 from the highest intensity zone
(the brightest zone at the center of the cue). Four readings
were taken at each location and averaged to compensate for the
tilt of the robot and for the non-uniformity of the floor. Optical
encoders coupled to the two DC motors were used as od-
ometry sensors. Obstacle and robot detection were performed
using the legacy range and bearing system that has 8 modu-
lated IR sensors. The range and bearing system has a range of
20 cm, and it is able to distinguish robots from obstacles.

During the experiments, all robots relied on on-board
sensory data and computational resources, and there was no
communication between the robots. Only high-level com-
mands such as experiment start, end, and debugging
messages were transferred to Kobot robots from the main
computer. In terms of battery and power source, 2S (7.4 V
Nominal) Li-Po 1300 mAh battery was used in the robots.
With this battery, Kobot robots could run up to 2 hours with
a CPU load of 50% of the main controller.

In order to calculate the NAS values during the exper-
iment, 2-D poses of each robot were tracked using Opti-
Track motion capture system (OptiTrack, US) with 8 USB
cameras. The pose information from the camera array was
transferred to the main computer running ROS Melodic for
real-time NAS calculation and monitoring the current state
of the experiment. By observing the real-time NAS value
during the experiment, the time at which NAS reached a
steady-state value was noted, and the experiment duration
was set accordingly. The setup for real-robot experiment is
shown in Figure 5.

The experimental setup consisted of a rectangular arena
with six landmarks placed on the two sides of the rectangle
and a circular cue with a white gradient indicating higher
intensity regions, as shown in Figure 6. The maximum
speed of robots was set to be vj = .14 m�s�1. Real-robot
experiments were conducted in two different swarm sizes,
N = {4, 6} robots, to study the performance of the methods

Figure 4. Kobot swarm robotic platform. The diameter and
height of a Kobot are 12 cm and 11 cm, respectively.

Figure 5. Real-robot experiment setup. Position of each robot is calculated by eight pose cameras (Optitrack) located around the arena.
Then, this data is sent to the main computer in order to calculate the number of robots inside the cue for derivation of NAS
performance. A webcam is also located in the arena to record the experiments for documentation purposes. Kobots are utilized with
on-board camera to detect the ArUco marker, that is, landmarks.
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in two different population densities. The arena for N =
4 robots case was a 2.8 m × 1.4 m with a cue radius of .3 m.
For the N = 6 robots case, arena was 2.8 m × 2.8 m with a
cue radius of .45 m. The arena for N = 6 robots setup is
illustrated in Figure 6. For all three methods, the maximum
waiting time was set to be wmax = 90 s. The reason for
choosing this waiting time is that a lower waiting time will
hamper the aggregation of robots, and no proper aggre-
gation would be formed. On the other hand, time limitation
forced by battery life of robots demands a low waiting time.
Otherwise, robots would be waiting most of the time inside
the cue until their battery dies. Through empirical inves-
tigation, we determined that a suitable compromise for the
maximum waiting time is 90 s, considering both sufficient
lengths of battery life and aggregation performance. Table 2
shows the parameters used in the real-robot experiment.

Three aggregation methods were implemented on the
real robots: BEECLUST, LBA, and RLA, with cyclical
schedule for ε. The error threshold parameter for the LBA
method was τe = 3, and for the RLA method, amplitude and
period of cycles were chosen as AMP = 1, p = 100, re-
spectively. For the real-robot experiments, only static en-
vironment was studied, and no noise was added during the
experiment. However, noise still existed due to wheel
slippage and odometry errors. Different than the kinematic
simulation setup where action space A consists of 44 dis-
placement vectors, in real-robot experiments, due to time
limitation, the size of the action space was reduced to
6 vectors. This reduced the learning time for the rein-
forcement learning algorithm considerably. The action
space for the N = 4 robots setup is l 2L ¼ f1; 1:4gm and ψ
2 2 = {36°, 90°, 144°} and for the N = 6 robots setup is

l2L ¼ f1; 1:4g m and ψ 2 2 = {60°, 90°, 120°}. Action
space was chosen in a way that displacement vectors could
span the arena properly.

A new set of kinematic-based simulations were per-
formed with the same settings as the real-robot experiments
for comparison. The only difference was that noise of σn =
30° was added in kinematic-based simulations to match the
inherent noise in real robots. Results were reported as
steady-state values of NAS. Each experiment was repeated
five times to make sure that the results were less dependent
on the initial conditions. Thus, the experiments produced
total 60 hours of data used for further analysis of the
proposed method performance. Such a duration is com-
parable to experiments in works that explicitly address long-
term performance of robotic swarms.

5. Results and discussion

5.1. Kinematic-based simulator experiments

5.1.1. Environment experiments. Time evolution of the NAS
values for the three methods with and without odometry
noise is plotted in Figure 7. In the experiments without
noise, as shown in Figure 7(a), all the methods, except the
BEECLUST method, showed a similar steady-state per-
formance during the first half of the experiment reaching a
NAS value of .7. When the cue location was changed, the
LBA method adapted to the change faster than the RLA
method. The BEECLUST method performed worst with a
NAS value of .37 since the low-robot density decreased the
probability of robot-robot encounters. On the other hand, its
performance was not affected by the change of cue. The
reason is the random nature of the BEECLUST method;
since it does not exploit any information for finding the

Figure 6. Arena setup for N = 6 robots experiment. A 2.8 m ×
2.8 m rectangular arena with six landmarks is surrounded by
eight pose cameras (Optitrack) which are used for evaluating the
number of robots inside the cue. Robots are calibrated in a way
that the grey color of carpet is read as zero cue intensity.

Table 2. Parameters and their value used in real robot
experiments.

Par Description Value/range

wa Arena width 2.82 m
ha Arena height {2.82, 1.4}m
Rc Cue radius {0.3, .45}m
wmax Maximum waiting time 90 s
ttotal Duration of each experiment 7200 s
N Number of robots {4, 6} robots
m Number of landmarks 6
τe Error threshold for LBA 3
AMP Amplitude of cyclical waves 1
p Period of cyclical waves 100
γ Discount factor of RLA 0
α Learning rate of RLA 0.1
l Length of action vectors {1, 1.4}m
Ψ Angle of action vectors {36°, 60°, 90°, 120°, 144°}
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location of the cue, altering the cue location does not affect
the BEECLUST method.

The RLA method with VDBE and cyclical schedule was
able to reach the performance of the LBA method. The
response of the RLA method is slower than the LBA
method, and it also adapts slower to the change of cue
position. This is because it takes time for the robots to
explore and learn the environment to form the Q-table. In
addition, the learning speed is controlled by the learning
rate, α, and it is taken as a fixed value, α = .1 in this article.

To further show whether the RLA method allows robots
to learn appropriate actions using maximum Q-values, the
actions with maximum Q-values for each landmark ob-
servation are investigated with an experiment. In the ex-
periment, the robots learn the Q-table implementing the
RLA method under the setting of zero noise strength, σn =
0 and with cyclical ε schedule with period p = 100 and
amplitude AMP = 1. The Q-tables of all robots were av-
eraged at steady-state and for each landmark, action with
maximum Q-value was shown as a red vector in Figure 8.
The results indicate that the learned actions with the RLA
method lead the robots towards the cue region with a higher
cue intensity compared to other actions.

The results of the experiments with odometry noise,
σn = 15°, are shown in Figure 7(b). When compared to the
experiments without noise, the performance of all methods
except the BEECLUSTmethod decreased. The LBAmethod
has the most drastic decrease from a NAS value of .7 to .55,
whereas the RLAmethod showed a slight decrease from .7 to
.67. The reason is the performance of the LBA method
depends heavily on the odometry data. Therefore, a slight
amount of noise like σn = 15° affects the LBA method
considerably. On the other hand, the RLA method also uses
the odometry data to execute an action, but it does not

integrate displacement vectors. Therefore, it is more robust to
odometry noise.

5.1.2. Noise experiments. The results of the noise experi-
ments are shown in Figure 9. In the zero noise case, the LBA
method performed best with a NAS value of approximately
.7. However, its performance decreased dramatically as
noise increased since the LBA method depends heavily on
the odometer readings. The performance of the RLA
method also decreased due to noise, especially in higher
noise regions, but still, it is more robust to noise than the
LBA method. Since the BEECLUST method does not use
the odometry readings, its performance did not change and
stayed around .37 in all the settings. When σn = 180°, the
performance of all methods converged to BEECLUST
because the information acquired from landmark is not
exploitable anymore due to the intense amount of noise.

5.1.3. Parameter sensitivity experiments. The experimental
results investigating the sensitivity of the cyclical and
VDBE ε schedules with respect to their parameters revealed
that the cyclical schedule is less affected by changes in its
period and amplitude of ε oscillations compared to varia-
tions in the σ parameter of the VDBE schedule. The results
show that the cyclical scheduling is more effective in the
dynamic environments, and the VDBE scheduling is more
beneficial with its fine-tuned parameter in the static
environments.

The steady-state values of NAS versus the model pa-
rameters are shown in Figure 10. The first and second rows
plot the steady-state values before and after the change of
location of the cue. The leftmost and middle columns are the
plots of the period, p, and amplitude, AMP, parameters of the
cyclic schedule, and the last column are the plots of the

Figure 7. Environment Experiments. Time evolution of the NAS values of the BEECLUSTmethod, the LBAmethod with τe = 4, the RLA
method with the cyclical schedule, p = 100, and with the VDBE schedule, σ = 1 are shown. (a) The NAS values without odometry noise
and (b) the NAS values with odometry noise, σn = 15°. Shades represent the first and third quartiles, and the solid lines are the median of
5 trials. Duration of each experiment is ttotal = 100,000 s. The location of the cue is changed at tchange = 50,000 s, indicated by the vertical
dashed line. In order to smoothen the results, moving average with a window of [ts, ts + 500] is used.
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inverse sensitivity parameter, σ for the VDBE schedule. In
case of cyclical schedule, the period did not affect the
aggregation performance when p ≤ 10. When p ≥ 10, the
performance increased considerably and remained around a
NAS value of .65, indicating that NAS performance does
not change considerably when p ≥ 10. Although large
periods did not affect the steady-state value of the perfor-
mance, they cause oscillations of NAS values as shown in
Figure 11. In case of the amplitude parameter, it did not

affect the performance for AMP ≥.37, and the NAS value
remained around .6. For both cyclical schedule parameters,
p and AMP, the results were the same before and after the
change of the cue, meaning that the cyclical schedule is
adaptive to environmental changes.

However, in case of the VDBE schedule, σ drastically
changes the performance of aggregation. Before the change

Figure 8. Representation of the learned actions that yield the
maximum Q-value (shown as red vectors) for each state,
compared to the other actions (shown as pink vectors) in steady-
state.

Figure 9. Noise Experiments. The steady-state values of NAS are
shown for the BEECLUST, LBA, RLA with cyclical schedule, and
RLA with VDBE schedule methods with respect to the odometry
noise, σn 2 {0°, 5°, 15°, 30°, 45°, 60°, 90°, 135°, 180°}. Bars
represent the first and third quartiles, and lines are the median
of 5 trails. The experiments are static and duration of each
experiment is: ttotal = 50,000 s. The x-axis is not drawn to scale.

Figure 10. Parameter Sensitivity Experiments. The steady-state
values of NAS are shown for different model parameters of RLA
method with cyclic schedule and RLA method with VDBE
schedule. Top and bottom rows show the results before and after
the change of cue location, respectively. Leftmost and middle
columns show the results for the period, p (AMP is taken as 1), and
amplitude, AMP (p is taken as 100) parameters of the cyclic
schedule, respectively. The rightmost column shows the results
for the inverse sensitivity (σ) parameter of the VDBE schedule.
Bars represent the first and third quartiles, and lines are the
median of 5 trails. Duration of each experiment is ttotal =
100,000 s. The location of the cue is changed at tchange = 50,000 s.
The leftmost and rightmost plots are drawn in semi-log scale.

Figure 11. Demonstration of effect of period parameter, p, of
cyclical schedule of the RLA method on performance of the
swarm. Shades demonstrate the first and third quartiles, and lines
are the mean of 5 trials of the experiment.
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of the location of the cue, higher σ values yielded better
results, indicating better performance of VDBE schedule in
static environments. However, after the location of the cue
was changed, higher σ values failed to put robots back to the
exploration state, decreasing the aggregation performance.
For instance, when σ = 50, the NAS value before the change
of the cue was approximately .7, and after the change, it
dropped to .3, which is even worse than the performance of
the BEECLUST method (NAS = .37). This is because
robots do not return to the exploration mode; hence, they use
the previously learned Q-table in the new environment, and
performance becomes worse than the random choice.

In order to understand the performance difference be-
tween the two schedules, the time evolution of ε for the
cyclical schedule with p = 100 and AMP = 1 and the VDBE
schedule with σ = 50 using the data from a randomly se-
lected robot is depicted in Figure 12. For the cyclical
schedule, ε changes periodically based on p and AMP.
VDBE schedule updates ε for each state separately, one line
was drawn for each state making a total of six lines.

Rewards received by a randomly selected robot for the
cyclical and VDBE schedules are depicted in Figure 13.
Rewards that VDBE schedule receives were higher than the
cyclical schedule before the change of the cue, which in-
dicates superior performance of the VDBE schedule in static
environments. However, after environment change, the
VDBE schedule keeps ε low, as shown in Figure 12 and
fails to adapt to the new location of the cue showing
better adaptability of the cyclical schedule to dynamic
environments.

5.2. Real-robot experiments

The BEECLUST, LBA, and RLA methods were im-
plemented using the real robots. For the sake of comparison,
the same experimental setup was also implemented using the
kinematic-based simulator. The steady-state NAS values for
the real-robot and the simulation-based experiments with N =
4 and N = 6 robots are shown in Figure 14(a) and (b),

Figure 12. Evolution of ε during time for VDBE schedule with σ =
50 and cyclical schedule with p = 100 for a randomly selected
robot. Occasional straight line regions in ε is due to the fact that ε
is updated at every epoch, that is, when the robot detected a
landmark. So, ε is a function of epoch, not time.

Figure 13. Average reward received by robots during time for
RLA method with cyclical ε schedule with a period of p =
100 and an amplitude of AMP = 1 and VDBE schedule with σ = 50.
Shades represent the first and third quartiles, and lines are the
median of 5 trails. Duration of each experiment is ttotal =
100,000 s. The location of the cue is changed at tchange = 50,000 s,
indicated by the vertical dashed line.

Figure 14. Steady-state values of NAS performance of the
BEECLUST, LBA, and RLAmethods for real robots experiments
with (a) N = 4 robots and (b) N = 6 robots. RLA method is
implemented with cyclic schedule using AMP = 1 and p = 100. The
boxes represent the median, first, and third quartiles. Whiskers
are the minimum and maximum values. The pink boxes represent
the results of kinematic-based simulation results, and the blue
boxes are real-robot experiment results. Experiments are
repeated five times.
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respectively. In N = 4 robots experiment, the BEECLUST
method had the lowest performance with a steady-state NAS
value of .45, the LBAmethod had a steady-state performance
of .58, and the RLA method had the best performance
reaching up to .62. InN = 6 robots experiment, a similar trend
in performance has been observed. The results of kinematic-
based simulation experiments are in accordance with the real-
robot experiments.

5.3. Discussion

In the environment experiments, since the robot density was
low, the BEECLUST method had the worst performance, as
shown in Figure 7. For the experiments without noise, the
LBA method showed the best performance. However, its
performance dropped drastically in the experiments with
even a slight amount of noise (Figure 9). The RLA method
was more robust to noise than the LBA method. This is also
observed in real-robot experiments (Figure 14) where od-
ometry noise was inherently present. From the performance
perspective, these results imply that the RLA method
managed to aggregate most of the robots on the cue despite
the presence of inaccuracy and drift in odometry. This result
proves the robustness of RLA method to sensory noise and
its applicability in real-world scenarios.

The RLA method uses the Q-learning technique, and
ε-greedy policy was chosen as the policy to tackle the
exploration-exploitation dilemma. In order to use the
ε-greedy policy effectively in noisy and dynamic envi-
ronments, ε must be scheduled. VDBE (Tokic, 2010)
scheduling schemes were implemented, and a new cyclical
schedule was proposed using the results in Smith (2017).
The RLA method with VDBE schedule achieved the
highest performance with proper tuning of the model pa-
rameters (Figure 9). However, its performance is very
sensitive to model parameters (Figure 10). On the other
hand, the RLAmethod with cyclical schedule is more robust
to odometry noise (Figure 9), less sensitive to model pa-
rameters (Figure 10), and performs better in non-stationary
environments (Figure 7). Furthermore, the cyclical schedule
requires less computational power and memory, suitable for
simple swarm robots (Figure 14). The result on the cyclical
schedule showed that it improves the performance of the
RLA method and makes it more applicable in real-world
scenarios.

Swarm robotic systems can be used for the tasks
dealing with hazardous substances or items that could be
dangerous for humans and that are challenging for a
single robot (Huang et al., 2019). For example, a swarm
robotic system using the RLA method can be used to
decontaminate chemical leakage in a damaged factory,
where human operators or a single robot are not sufficient
to deal with this task. Furthermore, the RLA method is
likely to be robust on any sensory noises inside the

damaged factory, such as the low quality camera input
due to poor light condition and high degree of odometry
error due to harsh conditions inside the factory. The
advantage of the RLA method in real-world applications
is further supported by the research on swarm robotic
aggregation for pipeline inspection on water, oil, waste,
and chemical reactor vessels. In Duisterwinkel et al.
(2018); Andraud et al. (2018), the results suggest that
the aggregation of robot swarms for inspection in harsh
environments must be robust against sensor noise. The
effect of environmental conditions on the robot swarm
aggregation is also reported in Na et al. (2021). There-
fore, RLA method can provide viable solution for robot
swarm aggregation tasks in such hazardous environ-
ments under high sensory environmental noise.

In the VDBE schedule, the inverse sensitivity pa-
rameter, σ, needs fine-tuning, which is one of the dis-
advantages of VDBE. The other disadvantage of VDBE is
that each state requires its own independent ε, which
makes ε a function of the state, s. Consequently, as the
number of states grows, the VDBE schedule will require
more memory to store ε parameters for each state. For
environments with a large state space size, the VDBE
schedule consumes a considerable amount of memory to
keep track of each ε independently.

It should also be noted that the learning rate was set to a
fixed value α = .1. Although a constant choice of α will
restrict the convergence speed of the model and prevent it
from reaching its best performance, studying adaptive and
more advanced schedules for α is beyond the scope of this
article, and it is considered a future work.

Moreover, the length of action vectors in the RLA
method, l, depends on the arena size. More vectors will span
the arena better, and chances of finding actions with higher
rewards will increase. However, since increasing the size of
the action space will increase the Q-table size, training time
will grow. On the other hand, a smaller action space size will
cause faster learning, but the arena will not be spanned
properly. Choosing the size of the action space as 44 is a fair
trade-off between not having a large Q-table and spanning
the arena sufficiently. In reality, the aggregation problem has
continuous action space, but solving the aggregation
problem in continuous space is beyond the scope of this
article.

It should be noted that since landmarks represent the
states of the Q-learning algorithm, increasing the number of
landmarks will increase the size of the Q-table hence in-
creasing the training time. On the other hand, choosing
fewer landmarks will reduce the probability of their de-
tection and hinder the performance of the LBA and RLA
methods. By selecting the number of landmarks asm = 6 for
our test cases, the Q-table does not become too large, and
still, the performance of the LBA and RLA methods are at
acceptable levels.
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To address the similarity of the RLA method to Si-
multaneous Localization AndMapping methods (SLAM), it
is worth bearing in mind that the distribution of the land-
marks in the arena is sparse, causing the robots to detect
them only occasionally and detecting only one landmark at a
time. This is analogous to low visibility situations (e.g., in
disaster scenarios, adverse weather, or crowded locations),
where SLAM struggle (Cadena et al., 2016; Gomez-Ojeda
et al., 2020; Li et al., 2020).

6. Conclusion

In this article, a novel cue-based aggregation method was
proposed (RLA) based on Q-learning and ε-greedy policy.
Through systematic analysis with the kinematic-based
simulations and real robots experiments, it was shown
that the proposed method shows better performance in the
presence of odometry noise and environment uncertainties
when compared to the BEECLUST method (Schmickl &
Hamann, 2011) and the LBA method (Sadeghi Amjadi
et al., 2021); and it is applicable in real robots. A new
approach to solve the exploration-exploitation dilemma was
proposed to schedule ε parameter of ε-greedy policy. The
proposed cyclical schedule was compared to the other state-
of-the-art approaches, and it was shown that cyclical up-
dates are less sensitive to model parameters and do not
require fine-tuning. Additionally, cyclical updates of εmake
robots more robust to changes in the environment.

Nevertheless, the proposed aggregation method requires
a priori information about the dimensions of the arena.
Therefore, as future work, the Deep Deterministic Policy
Gradient algorithm (Lillicrap et al., 2015) will be used to
avoid requiring a priori information about dimensions of the
arena. Furthermore, an adaptive approach will be consid-
ered to tune the learning speed of the algorithm.

We plan to deploy the proposed approach in scenarios of
robot-insect interaction, where groups of robots aggregate
around key agents of social insect colonies to affect their
behavior and overall colony activity (Stefanec et al., 2022).
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