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Recently, Jacobson and Visser [Partition Function for a Volume of Space, Phys. Rev. Lett. 130, 221501
(2023).] calculated the quantum partition function of a fixed, finite volume of a region with the topology of
a ball in the saddle point approximation within the context of Einstein’s gravity with or without a
cosmological constant. The result can be interpreted as the dimension of Hilbert space of the theory. Here
we extend their computation to a theory defined in principle with infinitely many powers of curvature in
three dimensions. We confirm their result: The partition function of a spatial region in the leading saddle
point approximation is given as the exponential of the Bekenstein-Hawking or the Wald entropy of the
boundary of the finite spatial region both in the case of zero and finite cosmological constant. In the latter
case, the effective Newton’s constant appears in the entropy formula. The calculations lend support to the
holographic nature of gravity for finite regions of space with a boundary.
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I. INTRODUCTION

Over the last five decades, we have come to understand
that the gravitational field has typically a finite (nonzero)
entropy, but which kinds of gravitational fields have
entropy and how this entropy is defined is a subtle problem.
However, the fact that entropy has both macroscopic and
microscopic definitions, and its microscopic description is
most probably tied to the quantum version of the theory,
makes it an invaluable tool in understanding some proper-
ties of low energy quantum gravity. In the original
incarnation [1,2], the entropy of the gravitational field
was assigned to black hole horizons. For example, the
Bekenstein-Hawking entropy of a Schwarzschild black
hole is

SBH ¼ kBc3

4Gℏ
AH; ð1Þ

where AH is the area of the event horizon. Gibbons and
Hawking [3] extended this result to the case of de Sitter
horizons

SGH ¼ kBc3

4Gℏ
AdS ¼

3πkBc3

GℏΛ
; ð2Þ

where AdS is the area of the cosmological horizon located at
rH ¼ ffiffiffiffiffiffiffiffiffi

3=Λ
p

in the usual coordinates. Note also that Λ is
defined as Λ ¼ R=4 with R being the constant scalar
curvature of the de Sitter spacetime. In the same work,
Gibbons and Hawking argue that the gravitational field of a
stationary star has zero entropy. The physical meaning of
the de Sitter entropy is not so clear; for example, in [4]
seven possible interpretations were given. Here we will
follow the interpretation advocated in [5,6] which states
that de Sitter entropy is equal to the logarithm of the
dimension of the Hilbert space. One can understand the
viability of this interpretation as follows: The trace of
the unit operator (Tr1) which, for a finite-dimensional
Hilbert space, is equal to the dimension of the Hilbert
space. For de Sitter space, which does not have a boundary,
the total Hamiltonian vanishes identically and one has
(dimH ¼ Tr1 ¼ Tre−βĤ). The right-hand side at the same
time is the partition function, which can be evaluated in the
Euclidean path integral formulation. The new and exciting
development in this subject is the work of Jacobson and
Visser [7] where the entropy of a spatial region of space
with a fixed proper volume and a boundary was defined in
Einstein’s theory with or without a cosmological constant.
See [8] for more details. They show that in the saddle point
approximation, the quantum gravity path integral under the
fixed volume condition is dominated by the so-called
constrained instantons [9,10] of which the Euclidean action
is minus the Bekenstein-Hawking entropy calculated for
the area bounding the spatial volume. As long as Einstein’s
gravity is correct as an effective field theory, this compu-
tation is robust with only one caveat: There is a mild
singularity in the Ricci tensor and the energy-momentum
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tensor in the boundary which does not make the action
divergent. This divergence is expected to be cured when
higher powers of curvature are added. This point motivated
us to carry out an analogous computation in a higher
curvature theory which has rather nice properties and
extends Einstein’s gravity to infinitely many curvatures.
The mild singularity observed in [7] is not cured, but the
results of the computations lend strong support to [7].

II. PARTITION FUNCTION FOR A FIXED
VOLUME OF SPACE

The quantum gravity partition function with a constraint
in the general form can be written as

Z ¼
Z

Dge−IEðgÞ

¼
Z

Dμ

Z
Dξ

Z
Dge−IEðgÞþ

1
ℏ

R
dϕξðϕÞðCðgÞ−μÞ; ð3Þ

where IEðgÞ represents the Euclidean action that is
under investigation, ξ is the Lagrange multiplier, and
CðgÞ − μ ¼ 0 is the constraint equation. We shall consider
the three-dimensional gravity introduced in [11]. In 2þ 1
dimensions, Einstein’s gravity with or without a cosmo-
logical constant has no local degrees of freedom. Hence,
it has no resemblance to four-dimensional Einstein theory.
In [12], a massive three-dimensional gravity theory was
introduced which has two propagating degrees of freedom,
just like four-dimensional Einstein gravity. The action of
this new massive gravity theory (NMG) is

INMG ¼ 1

κ2

Z
d3x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðgÞ

p
×

�
σRþ 1

m2

�
RμνRμν −

3

8
R2

�
− 2λ0m2

�
; ð4Þ

where σ ¼ �1. Here, λ0 is the bare dimensionless cosmo-
logical constant. In [11], this theory was extended in
principle to infinite powers in the curvature expansion,
and the new action is defined as

IBI−NMG ¼ −
4m2

κ2

Z
d3x

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det

�
gþ σ

m2
G

�s

−
�
1 −

λ0
2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðgÞ

p �
; ð5Þ

where Gμν ¼ Rμν − 1
2
gμνR. This theory has the following

rather nice properties which we take from [13].
(1) For λ0 ¼ 0, unlike any generic finite-order theory

besides Einstein’s gravity with a cosmological con-
stant, it has a unique maximally symmetric vacuum
with an effective cosmological constant Λ ¼ m2λ
given as [14,15]

λ ¼ −σλ0
�
1 −

λ0
4

�
; λ0 < 2: ð6Þ

For λ0 ¼ 0, the flat space is the unique vacuum. The
uniqueness of the vacuum in this higher derivative
theory is the same as in general relativity. This
uniqueness property is not easily achievable in
higher curvature gravity theories: For example,
NMG has two maximally symmetric vacua.

(2) The theory has a unitary massive spin-2 degree of
freedom (with �2 modes) in flat space with mass
mg ¼ m and with mass mg ¼ m

ffiffiffiffiffiffiffiffiffiffiffi
1þ λ

p
around the

anti–de Sitter (AdS) backgrounds. This provides an
infinite-order extension of the quadratic NMGwhich
has the same perturbative properties.

(3) In three dimensions, the Riemann and the Ricci
tensors both carry six independent components;
hence, a generic gravity theory built from the
contractions and the powers of the Ricci curvature
is of the form [16]

I ¼
Z

d3x
ffiffiffiffiffiffi
−g

p �
1

κ
ðR − 2Λ0Þ

þ
X∞
n¼2

Xn
i¼0
i≠1

X
j

ajniðRμ
νÞijRn−i

�
; ð7Þ

where i in ðRμ
νÞij represents the number of Ricci

tensors, and j represents the number of possible
ways to contract the i number of Ricci tensors.
Generically, each higher curvature combination has
a different dimensionful coupling constant denoted
by ajni. This theory generically has many maximally
symmetric vacua, many massive degrees of freedom,
and is nonunitary at the tree level about its constant
curvature vacua. However, due to the determinantal
nature of the Lagrangian, Born-Infeld new massive
gravity (BINMG) (5) as a very specific example of the
generic theory (7) is consistent at infinite order or at
any finite truncation in powers of curvature. By
consistency, we mean it reproduces, up to desired
order in the curvature expansion, the extended NMG
theories that are consistent with the AdS=CFT duality
and that have a c-function [14,17,18]. See [19] for
details of these calculations.

(4) The BINMG action appears as a counterterm in AdS4
[20] andmight have a supersymmetric extension [21].

All these considerations encourage us to study the
Euclidean version of the BINMG theory following [7].
Going back to the partition function, for the spatial

volume constraint (here it is actually an area of the disk, yet
we will use the word volume to conform with the higher-
dimensional cases) we have CðgÞ ¼ R

d2x
ffiffiffi
γ

p
and μ ¼ V

where the induced metric on the spatial disk is
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γμν ≔ gμν − N2ð∂μϕÞð∂νϕÞ; N ≔ ðgμνð∂μϕÞð∂νϕÞÞ−1
2:

ð8Þ

Therefore, in the end, the constraint can be written as

1

ℏ

Z
dϕξðϕÞ

�Z
d2x

ffiffiffi
γ

p
− V

�
; ð9Þ

which reduces the partition function to

ZðV;Λ; m2Þ ¼
Z Z

DgDξe−IEðgÞþ
1
ℏ

R
dϕξðϕÞð

R
d2x

ffiffi
γ

p −VÞ:

ð10Þ

In the next section, we will evaluate this partition function
in the saddle point approximation, which is dominated by
constrained instantons. For this purpose, we first need to
find the field equations.

A. Field equations

When the constraint equation is satisfied, CðgÞ ¼ V, the
field equations can be obtained from the variation of the
action at the saddle point approximation,

δIEðgÞ −
1

ℏ

Z
dϕξðϕÞδðCðgÞ − μÞ ¼ 0: ð11Þ

From the constraint equation, we get

δ

�
1

ℏ

Z
dϕξðϕÞðCðgÞ − μÞ

�
¼ 1

ℏ

Z
dϕξðϕÞδCðgÞ ð12Þ

and

δCðgÞ ¼
Z

d2xδð ffiffiffi
γ

p Þ ¼
Z

d2x

�
−

1

2N
ffiffiffi
g

p
γμνδgμν

�
: ð13Þ

The field equations of BINMG are rather cumbersome,
but fortunately, they were found in [14]. Following that
computation verbatim, one first writes the Euclidean form
of the BINMG action (5) in a more convenient way as

IE ¼ −
4m2

κ2

Z
d3x

ffiffiffiffiffiffiffiffiffiffiffiffi
detðgÞ

p
FðR;K; SÞ; ð14Þ

where the Lagrangian is

FðR;K; SÞ ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

σ

2m2

�
Rþ σ

m2
K −

1

12m4
S

�s

−
�
1 −

λ0
2

�
; ð15Þ

and the curvature invariants are defined as

K ≔ RμνRμν −
1

2
R2; S ≔ 8RμνRμαRα

ν − 6RRμνRμν þ R2:

ð16Þ

Hence, one can get the variation of the action as

δIEðgÞ ¼ −
4m2

κ2

Z
d3x

�
δ

ffiffiffiffiffiffiffiffiffiffiffiffi
detðgÞ

p
F þ

ffiffiffiffiffiffiffiffiffiffiffiffi
detðgÞ

p
δF

�

¼ −
4m2

κ2

Z
d3x

ffiffiffiffiffiffiffiffiffiffiffiffi
detðgÞ

p �
−
1

2
gμνFδgμν þ

∂F
∂R

δR

þ ∂F
∂K

δK þ ∂F
∂S

δS

�
: ð17Þ

The final form of the action variation including the
constraint part is

−
4m2

κ2

Z
d3x

ffiffiffiffiffiffiffiffiffiffiffiffi
detðgÞ

p
δgμν

�
−
1

2
gμνF þ ∂F

∂R
δR
δgμν

þ ∂F
∂K

δK
δgμν

þ ∂F
∂S

δS
δgμν

−
κ2

8m2ℏ
λ̃ðϕÞ
N

γμν

�
; ð18Þ

which yields the field equations

Eμν ¼
κ2

8m2ℏ
Tμν; ð19Þ

where

Eμν ≔ −
1

2
gμνF þ ∂F

∂R
δR
δgμν

þ ∂F
∂K

δK
δgμν

þ ∂F
∂S

δS
δgμν

; ð20Þ

and the constraint acts as a source of perfect fluid without
an energy density but with pressure

Tμν ≔
ξðϕÞ
N

γμν: ð21Þ

To be able to find the constrained instanton solution, we
still need the explicit form of the field equations which
were given in [14] as
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κ2

8m2ℏ2
Tμν ¼ −

1

2
Fgμν þ ðgμν□ −∇μ∇νÞFR þ FRRμν −

σ

m2
f2∇α∇μðFRRα

νÞ − gμν∇β∇αðFRRαβÞ −□ðFRRμνÞ

− 2FRRν
αRμα þ gμν□ðFRRÞ −∇μ∇νðFRRÞ þ FRRRμνg −

1

2m4

	
4FRRρ

μRραRα
ν þ 2gμν∇α∇βðFRRβρRα

ρÞ

þ 2□ðFRRν
ρRμρÞ − 4∇α∇μðFRRν

ρRα
ρÞ þ 2∇α∇μðFRRRα

νÞ − gμν∇α∇βðFRRRαβÞ −□ðFRRRμνÞ

− 2FRRRν
ρRμρ − gμν□ðFRR2

αβÞ þ∇ν∇μðFRR2
αβÞ − FRR2

αβRμν þ
1

2
gμν□ðFRR2Þ

−
1

2
∇μ∇νðFRR2Þ þ 1

2
FRR2Rμν



; ð22Þ

where

FR ≔
∂F
∂R

¼ −
σ

4m2½F þ ð1 − λ
2
Þ� : ð23Þ

Next, we will solve these equations for a particular saddle
point that has two Killing symmetries. From now on, we
will work in the units for which ℏ ¼ c ¼ 1.

B. Saddle point metric

Let us consider a metric with ϕ and θ as Killing
coordinates such that λ̃ðϕÞ ¼ λ̃:

ds2 ≔ N2ðrÞdϕ2 þ hðrÞdr2 þ r2dθ2: ð24Þ

NðrÞ and hðrÞ are to be determined from (22) and the
boundary conditions to be discussed. When (24) is plugged
into (22), the resulting differential equations are still highly
complicated. Therefore, guided by the discussion in [7], we
take the following ansatz:

hðrÞ ≔ 1

1 − r2

L2

¼ 1

1 − Λr2
; ð25Þ

where L is the dS radius defined as L2 ¼ 1=Λ. Given this
hðrÞ in this saddle point metric, one can determine NðrÞ,
but the ordinary differential equation is still highly non-
linear, and it pays to discuss the boundary conditions first.
We expect the lapse function NðrÞ to vanish on the surface
of the constraint volume NðRVÞ ¼ 0, where RV can be
found by using the constraint equation

R
d2x

ffiffiffi
γ

p ¼ V.
Analogous to the discussion given in [7], to remove the
canonical singularity at the surface of the constraint
boundary, we impose

dN
dl

����
l¼0

¼ 1; ð26Þ

where l is the distance from the horizon, i.e., the constraint
volume surface l ¼ RV − r.

III. λ0 = 0 SOLUTION

For the flat spacetime, λ0 ¼ 0, Λ ¼ 0 and hðrÞ ¼ 1.
When we insert (24) into (22), one finds that in order to
obtain Eϕϕ ¼ 0 since Tϕϕ ¼ 0, the lapse function should be
of the form NðrÞ ¼ αr2 þ β, where α and β are to be found
from the boundary conditions. The first boundary con-
dition, namely, the lapse function should vanish on the
surface of the volume constraint, givesNðrÞ ¼ αðr2 − R2

VÞ.
For the second boundary condition, we have

dNðlÞ
dl

����
l¼0

¼ ð2αl − 2αRVÞl¼0 ¼ −2αRV ¼ 1 ð27Þ

yielding NðrÞ ¼ 1
2RV

ðR2
V − r2Þ. From the constraint equa-

tion, we have

Z
d2x

ffiffiffiffiffiffiffiffiffiffiffiffi
detðγÞ

p
¼

Z
RV

0

Z
2π

0

drdθr ¼ πR2
V ¼ V; ð28Þ

so RV ¼
ffiffiffi
V
π

q
. In conclusion, the metric we obtained for the

flat spacetime at the Euclidean saddle becomes

ds2 ¼ 1

4R2
V
ðR2

V − r2Þ2dϕ2 þ dr2 þ r2dθ2: ð29Þ

Finally, for this constrained instanton, we get

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det

�
gþ σ

m2
G

�s
¼ rðr2 − R2

V þ 2
m2Þ

2RV
;

ffiffiffiffiffiffiffiffiffiffiffiffi
detðgÞ

p
¼ rðr − RVÞðrþ RÞ

2RV
; ð30Þ

and the action becomes

IE ¼ −
4m2

κ2

Z
d3x

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det

�
gþ σ

m2
G

�s
−

ffiffiffiffiffiffiffiffiffiffiffiffi
detðgÞ

p #

¼ −
8π2

κ2
RV: ð31Þ

AYDIN TAVLAYAN and BAYRAM TEKIN PHYS. REV. D 108, L041902 (2023)

L041902-4



The circumference of the disk has the “area” AV ¼ 2πRV .
As a result, the action in terms of the area can be written as

IE ¼ −
8π2

κ2
RV ¼

�
−
4π

κ2

�
AV ¼ −

AV

4G3

; ð32Þ

where in the last equality, we introduced the three-
dimensional Newton’s constant G3 as

G3 ¼
κ2

16π
: ð33Þ

This result is the same as the Bekenstein-Hawking or
Gibbons-Hawking results, except here we calculated not for
a black hole or de Sitter horizon but for a bounded disk.
Hence, the dimension of the Hilbert space is Z ¼ expð AV

4G3
Þ.

As a final step, for completeness, let us calculate the
Lagrange multiplier ξ. We know that

Err ¼
1

m2ðR2
V − r2Þ ; Trr ¼

2RV

R2
V − r2

ξ: ð34Þ

This component of the field equations yields

ξ ¼ 1

4πG3RV
: ð35Þ

IV. λ0 ≠ 0 SOLUTION

We again take the metric as (24) with hðrÞ ¼ 1

1−r2

L2

.

Let us make a change of variables to simplify the ensuing
discussion and define r ¼ L sin χ and u ¼ sin χ for which
the metric becomes

ds2 ¼ L2N2ðuÞdϕ2 þ L2

1 − u2
du2 þ L2u2dθ2: ð36Þ

We assume NðχÞ ¼ α cos χ þ β. The first boundary con-
dition on the lapse function discussed in the previous
section gives NðχÞ ¼ αðcos χ − cos χVÞ. From the second
boundary condition, one determines α ¼ 1

sin χV
. As a result,

the lapse function becomes

NðχÞ ¼ cos χ − cos χV
sin χV

; so

NðuÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − u2

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − u2V

p
uV

; ð37Þ

and the metric becomes

ds2 ¼ L2

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − u2

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − u2V

p
uV

�2

dϕ2 þ L2

1 − u2
du2

þ L2u2dθ2: ð38Þ

We still need to determine the relation between L2, m2,
and the bare cosmological constant λ0. This follows from
Eϕϕ ¼ κ2

8m2ℏTϕϕ ¼ 0, and we get

λ0 ¼ −
2Lmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

L2m2 − σ
p þ 2σ

Lm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2m2 − σ

p þ 2; ð39Þ

or in a more compact form,

1

L2
¼ Λ ¼ m2σλ0

�
1 −

λ0
4

�
; ð40Þ

which is the same result obtained in [14]. The next order of
business is to evaluate the action of the constrained
instanton metric (38). In the u coordinate, the action looks
a little cumbersome, but in the χ coordinate, it becomes

IE ¼ −
4m2

κ2

Z
d3x

�
−
σ sin χ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2m2 − σ

p

m3 sin χV

�

¼ 4σ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2m2 − σ

p

κ2m sin χV

Z
2π

0

Z
χV

0

Z
2π

0

dϕdχdθ sin χ

¼ πσ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2m2 − σ

p

mG3 sin χV
ð1 − cos χVÞ; ð41Þ

where in the last equality we used κ2 ¼ 16πG3. Now,
we can turn to our constraint equation and calculate the
“volume” and area of the disk. For the volume of the
boundary, one has

V ¼
Z

d2x
ffiffiffi
γ

p ¼ 2πL2ð1 − cos χVÞ; ð42Þ

and the area of the boundary becomes

AV ¼
Z

2π

0

dθL sin χV ¼ 2πL sin χV: ð43Þ

In terms of these, the action (41) becomes

IE ¼
�

π

G3

V
AV

�
σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

σ

L2m2

r
: ð44Þ

For a generic n-ball, one has V ¼ RV
2
AV ¼ L sin χV

2
AV .

Therefore, (44) becomes

IE ¼ AV

4G3

σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

σΛ
m2

r
: ð45Þ

This is an interesting result: For Λ ¼ 0 and σ ¼ −1, it
reduces to (32). Therefore, from now on we set σ ¼ −1. For
Λ ≠ 0, this is exactly the same as the Wald entropy [22]
defined as
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SW ¼ −2π
I �

∂L
∂Rρσ

gμνεμρενσ

�
d3x; ð46Þ

where εμρ is the binormal vector to the constraint boundary
surface. It is shown in [23] that the Wald entropy for the
BINMG in the de Sitter spacetime becomes1

SW ¼ A
4

1

G3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Λ

m2

r
: ð47Þ

Therefore, the Euclidean action of the constrained instanton
is exactly equal to the minus of the Wald entropy evaluated
not at the de Sitter horizon but at the constraint boundary.
Moreover, we can also relate the result to the Bekenstein-
Hawking or Gibbons-Hawking result as follows. In the
BINMG theory, one needs to define the effective gravita-
tional constant as [23,24]

1

Geff
≔

1

G3

R̄μν

R̄

�
∂L
∂Rμν

�
R̄

¼ 1

G3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Λ

m2

r
: ð48Þ

Hence, as a result, the Wald entropy is just like the
Bekenstein-Hawking entropy

SW ¼ A
4Geff

: ð49Þ

In conclusion, the entropy that we have calculated for the
constrained volume is equivalent to the Wald or
Bekenstein-Hawking entropies, and the dimension of the
Hilbert space is given as

ZðΛ; V;m2Þ ¼ e−IE ¼ e
AV
4G3

ffiffiffiffiffiffiffiffi
1þ Λ

m2

p
¼ e

AV
4Geff : ð50Þ

Let us note that, even though the constrained instanton has
a finite action, as in the case of [7], for both λ0 ¼ 0 and
λ0 ≠ 0 cases, there is a mild singularity at the boundary for
the Ricci tensor and the stress-energy tensor.
As a final step, for completeness, let us calculate the

Lagrange multiplier ξ. By using the relation

Eμν ¼
κ2

8m2
Tμν ¼

2πG3

m2

ξ

NðχÞ γμν; ð51Þ

and the explicit forms of Err and γrr, one can find

ξ ¼ −
cot χV

4πG3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2m2 þ 1

p ¼ −
1

4πG3

1

mRV

cos χVffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Λ

m2

q : ð52Þ

V. CONCLUSIONS AND DISCUSSION

Following Jacobson and Visser [7], who generalized
the notion of the gravitational entropy of horizons to the
constrained finite spatial volume of n-ball topologies in
(cosmological) Einstein gravity, we computed the quantum
gravity partition function at the saddle point approximation
in an infinite-order gravity theory of the Born-Infeld form
in 2þ 1 dimensions. The theory has 2 propagating degrees
of freedom at the perturbative level and is locally nontrivial,
unlike three-dimensional Einstein gravity. Our computa-
tions support the conclusions of [7]: The dimension of the
Hilbert space of all states of a given disk with a boundary is
equal to the exponential of the Bekenstein-Hawking,
Gibbons-Hawking, or Wald entropy of it. These results
are encouraging: In a coming work, we shall give a similar
analysis in the n-dimensional Born-Infeld gravity theory
that has the same perturbative and vacuum structure as
Einstein’s theory [25–27].

[1] J. D. Bekenstein, Black holes and entropy, Phys. Rev. D 7,
2333 (1973).

[2] S. W. Hawking, Particle creation by black holes, Commun.
Math. Phys. 43, 199 (1975); 46, 206(E) (1976).

[3] G.W. Gibbons and S.W. Hawking, Action integrals and
partition functions in quantum gravity, Phys. Rev. D 15,
2752 (1977).

[4] V. Balasubramanian, P. Horava, and D. Minic, Deconstruct-
ing de Sitter, J. High Energy Phys. 05 (2001) 043.

[5] W. Fischler, Taking de Sitter seriously, in Proceedings of the
Role of Scaling Laws in Physics and Biology (celebrating
the 60th birthday of Geoffrey West), Santa Fe, 2000
(unpublished).

[6] T. Banks, Cosmological breaking of supersymmetry?, Int. J.
Mod. Phys. A 16, 910 (2001).

[7] T. Jacobson and R. M. Visser, Partition Function
for a Volume of Space, Phys. Rev. Lett. 130, 221501
(2023).

1Note that in [23] the overall sign of the Wald entropy is
opposite because the action in that work is written with the
pseudo-Riemannian metric.

AYDIN TAVLAYAN and BAYRAM TEKIN PHYS. REV. D 108, L041902 (2023)

L041902-6

https://doi.org/10.1103/PhysRevD.7.2333
https://doi.org/10.1103/PhysRevD.7.2333
https://doi.org/10.1007/BF02345020
https://doi.org/10.1007/BF02345020
https://doi.org/10.1007/BF01608497
https://doi.org/10.1103/PhysRevD.15.2752
https://doi.org/10.1103/PhysRevD.15.2752
https://doi.org/10.1088/1126-6708/2001/05/043
https://doi.org/10.1142/S0217751X01003998
https://doi.org/10.1142/S0217751X01003998
https://doi.org/10.1103/PhysRevLett.130.221501
https://doi.org/10.1103/PhysRevLett.130.221501


[8] E. K. Morvan, J. P. van der Schaar, and R. M. Visser, On the
Euclidean action of de Sitter black holes and constrained
instantons, SciPost Phys. 14, 022 (2023).

[9] I. Affleck, On constrained instantons, Nucl. Phys. B191,
429 (1981).

[10] J. Cotler and K. Jensen, Gravitational constrained instan-
tons, Phys. Rev. D 104, 081501 (2021).

[11] I. Gullu, T. C. Sisman, and B. Tekin, Born-Infeld extension
of new massive gravity, Classical Quantum Gravity 27,
162001 (2010).

[12] E. A. Bergshoeff, O. Hohm, and P. K. Townsend, Massive
Gravity in Three Dimensions, Phys. Rev. Lett. 102, 201301
(2009).

[13] B. Tekin, A tribute to S. Deser: Conserved quantities in
generic gravity theories, arXiv:2307.12758.

[14] I. Gullu, T. C. Sisman, and B. Tekin, c-functions in the
Born-Infeld extended new massive gravity, Phys. Rev. D 82,
024032 (2010).

[15] S. Nam, J. D. Park, and S. H. Yi, AdS black hole solutions in
the extended new massive gravity, J. High Energy Phys. 07
(2010) 058.

[16] M. Gurses, T. C. Sisman, and B. Tekin, Some exact
solutions of all fðR=mu=nuÞ theories in three dimensions,
Phys. Rev. D 86, 024001 (2012).

[17] A. Sinha, On the new massive gravity and AdS=CFT,
J. High Energy Phys. 06 (2010) 061.

[18] M. F. Paulos, New massive gravity extended with an
arbitrary number of curvature corrections, Phys. Rev. D
82, 084042 (2010).

[19] T. Ç. Şişman, Born-Infeld gravity theories in D-dimensions,
Ph.D. thesis, Middle East Technical University, 2012.

[20] D. P. Jatkar and A. Sinha, New Massive Gravity and AdS4
Counterterms, Phys. Rev. Lett. 106, 171601 (2011).

[21] E. Bergshoeff and M. Ozkan, 3D Born-Infeld gravity and
supersymmetry, J. High Energy Phys. 08 (2014) 149.

[22] R. M. Wald, Black hole entropy is the Noether charge, Phys.
Rev. D 48, R3427 (1993).

[23] D. G. Ozen, S. Kurekci, and B. Tekin, Entropy in Born-
Infeld gravity, Phys. Rev. D 96, 124038 (2017).

[24] R. Brustein, D. Gorbonos, and M. Hadad, Wald’s entropy
is equal to a quarter of the horizon area in units of the
effective gravitational coupling, Phys. Rev. D 79, 044025
(2009).

[25] I. Gullu, T. C. Sisman, and B. Tekin, Born-Infeld gravity
with a unique vacuum and a massless graviton, Phys. Rev. D
92, 104014 (2015).

[26] I. Gullu, T. C. Sisman, and B. Tekin, Born-Infeld gravity
with a massless graviton in four dimensions, Phys. Rev. D
91, 044007 (2015).

[27] I. Gullu, T. C. Sisman, and B. Tekin, Unitarity analysis of
general Born-Infeld gravity theories, Phys. Rev. D 82,
124023 (2010).

PARTITION FUNCTION OF A VOLUME OF SPACE IN A … PHYS. REV. D 108, L041902 (2023)

L041902-7

https://doi.org/10.21468/SciPostPhys.14.2.022
https://doi.org/10.1016/0550-3213(81)90307-2
https://doi.org/10.1016/0550-3213(81)90307-2
https://doi.org/10.1103/PhysRevD.104.L081501
https://doi.org/10.1088/0264-9381/27/16/162001
https://doi.org/10.1088/0264-9381/27/16/162001
https://doi.org/10.1103/PhysRevLett.102.201301
https://doi.org/10.1103/PhysRevLett.102.201301
https://arXiv.org/abs/2307.12758
https://doi.org/10.1103/PhysRevD.82.024032
https://doi.org/10.1103/PhysRevD.82.024032
https://doi.org/10.1007/JHEP07(2010)058
https://doi.org/10.1007/JHEP07(2010)058
https://doi.org/10.1103/PhysRevD.86.024001
https://doi.org/10.1007/JHEP06(2010)061
https://doi.org/10.1103/PhysRevD.82.084042
https://doi.org/10.1103/PhysRevD.82.084042
https://doi.org/10.1103/PhysRevLett.106.171601
https://doi.org/10.1007/JHEP08(2014)149
https://doi.org/10.1103/PhysRevD.48.R3427
https://doi.org/10.1103/PhysRevD.48.R3427
https://doi.org/10.1103/PhysRevD.96.124038
https://doi.org/10.1103/PhysRevD.79.044025
https://doi.org/10.1103/PhysRevD.79.044025
https://doi.org/10.1103/PhysRevD.92.104014
https://doi.org/10.1103/PhysRevD.92.104014
https://doi.org/10.1103/PhysRevD.91.044007
https://doi.org/10.1103/PhysRevD.91.044007
https://doi.org/10.1103/PhysRevD.82.124023
https://doi.org/10.1103/PhysRevD.82.124023

