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Bose mixture quantum droplets display a fascinating stability that relies on quantum fluctuations
to prevent collapse driven by mean-field effects. Most droplet research focuses on untrapped or
weakly trapped scenarios, where the droplets exhibit a liquid-like flat density profile. When weakly
trapped droplets rotate, they usually respond through center-of-mass motion or splitting instability.
Here, we study rapidly rotating droplets in the strong external confinement limit where the external
potential prevents splitting and the center-of-mass excitation. We find that quantum droplets form
a triangular vortex lattice as in single-component repulsive Bose-Einstein condensates (BEC), but
the overall density follows the analytical Thomas-Fermi profile obtained from a cubic equation. We
observe three significant differences between rapidly rotating droplets and repulsive BECs. First,
the vortex core size changes markedly at finite density, visible in numerically obtained density
profiles. We analytically estimate the vortex core sizes from the droplets’ coherence length and
find good agreement with the numerical results. Second, the change in the density profile gives
a slight but observable distortion to the lattice, which agrees with the distortion expected due
to nonuniform superfluid density. Lastly, unlike a repulsive BEC, which expands substantially as
the rotation frequency approaches the trapping frequency, rapidly rotating droplets show only a
fractional change in their size. We argue that this last point can be used to create clouds with lower
filling factors, which may facilitate reaching the elusive strongly correlated regime.

I. INTRODUCTION

Rotating a Bose-Einstein condensate (BEC) results in
non-classical phenomena due to the irrotational nature
of superfluid flow in the absence of density singularities
[1, 2]. A phase-coherent BEC carries angular momen-
tum through quantized vortices, forming a regular vortex
lattice to mimic solid body rotation. Single-component
BECs with repulsive interactions were experimentally ob-
served to create a triangular lattice of singly quantized
vortices when rotated in an isotropic harmonic trap [3–
5]. The rotation frequency and superfluid density depen-
dence of the vortex core size, vortex density, and con-
densate radius of the rotating repulsive BECs are the-
oretically studied for both the Thomas-Fermi (TF) and
the lowest Landau level (LLL) regimes [6]. On the other
hand, BECs of attractively interacting atoms are only
metastable under harmonic confinement, and they carry
angular momentum via center-of-mass (COM) rotation
rather than vortices [7].

Vortex lattices of two-component BEC mixtures were
investigated for various intracomponent g11, g22, and
intercomponent interactions g12 [6, 8–10]. Depending
on the strength of the repulsive g12 > 0, the mixture
can exhibit coincident or displaced lattices with trian-
gular, square, or rectangular symmetries. For the at-
tractive intercomponent g12 < 0 and mechanically sta-
ble |g12| < √

g11g22 Bose mixtures, both components co-
incide and form a triangular lattice [8]. However, the
mean-field (MF) treatment of the Bose mixture problem
predicts that the condensate is unstable towards collapse
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for g12 < 0 and |g12| < √
g11g22 [1]. The mixture can be

metastable for a small number of particles if it is confined
by a harmonic trap.

Quantum fluctuations can drastically modify the
mean-field prediction toward collapse. Bose mixture
quantum droplets are mechanically stable self-trapped
phases without any external confinement, where attrac-
tive MF interaction ∝ −δgn2 is countered by the effec-
tively repulsive beyond mean-field (BMF) fluctuations
∝ gBMFn

5/2 [11]. Here, δg = |g12| − √
g11g22 and n

is the condensate density. For large particle numbers N ,
the interaction energy dominates the ground state, and
the equilibrium density profile is almost like an incom-
pressible liquid with a constant density [11]. For smaller
N , the droplet can still stabilize itself, but the ground
state exhibits a smoothly decaying density profile. There
is a critical particle number below which the kinetic en-
ergy cost is too large and the droplet cannot sustain itself
against expansion if it is not trapped.

The quantum droplet has features of both the attrac-
tively interacting BEC due to mean-field and the repul-
sively interacting BEC due to fluctuations. The response
of a quantum droplet to rotation is not straightforward.
Specifically, the competition between the mean-field in-
teraction and the quantum fluctuations gives rise to a
new length scale, which is determined by the droplet’s
equilibrium density. Recent investigations of the prob-
lem mainly concentrated on weakly trapped condensates.
Angular momentum is primarily carried by the COM ro-
tation for the liquid-like flat-density droplets in weak ex-
ternal confinement [12, 13]. This way, the droplet con-
serves the ground-state interaction energy by preserving
the flat-top density profile. By the same physical reason-
ing, the droplets experience splitting instability under
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a density perturbation, i.e., the droplet tends to break
into smaller fragments [14–17]. However, vortices can be
locally stable within the unconfined flat-top droplets if
phase imprinted [14, 15] or the external confinement is
adiabatically removed [16]. Even weak confinement can
help avoid splitting instability and make vortex states
stable. A rotating droplet under harmonic confinement
is recently predicted to show a combination of COM ro-
tation and vortex states [12, 13].

The literature on quantum droplets mostly focuses on
their self-trapping property, making the confinement po-
tential mostly irrelevant. Here, we first classify the phys-
ical regimes for a trapped droplet by investigating the
energy scales in the problem. Relative strengths of the
potential and interaction energies and the interplay be-
tween the free equilibrium density and particle number
decide the significance of the confining potential for the
rotating problem. We argue that a strongly confined
droplet can be driven into the rapidly rotating regime,
forming a large vortex lattice.

We study such rapidly rotating droplets in the strongly
confined TF regime by numerical and approximate ana-
lytical methods. We numerically find that the confined
droplet exhibits a triangular vortex lattice under rapid
rotation. Strong confinement ensures that the splitting
instability is avoided even when the rotation frequency
is close to the trap frequency. The density profile of the
vortex lattice closely follows the TF profile, with a con-
vex peak at the center and a rapid fall at the TF radius.
As the rotation frequency approaches trapping frequency
Ω̃ → 1, the effective confinement ∝ (1 − Ω̃2) weakens,
and the density profile of the vortex lattice converges to
flat-top droplet density. Contrary to the diverging size
of rapidly rotating repulsive BECs [18, 19], the strongly
confined TF droplet converges to a finite radius at the
limit Ω̃ → 1. Thus, the physics of self-trapping plays an
important role in the rapid rotation limit.

Our numerical simulations show that the vortex core
sizes near the center and the edge of the droplet are
noticeably different. We develop an approximate ana-
lytical formula for the density dependence of the core
size. The vortex cores in the repulsive BECs scales
ζ ∝ 1/

√
n0, where n0 is the condensate density. For

the strongly confined TF droplet, however, we find the
core size ζ ∝ 1

√
n0

√
n
1/2
0 −n1/2

c

, where the pole in the de-

nominator nc is approximately equal to the equilibrium
density of the unconfined droplet. The divergence at a
finite density creates an observable difference in the core
size in different regions of the vortex lattice. We also cal-
culate the deviation of the vortex lattice from a perfect
triangular lattice. While this deviation remains small, it
is observable and agrees with numerical results. Finally,
we argue that the rapidly rotating droplets present an
opportunity to realize BECs where the number of par-
ticles is within an order of magnitude of the number of
vortices in the condensate. While the GP equation and
our assumptions about local energy of fluctuations are ex-

pected to break down in this limit, we argue that rapidly
rotating droplets may facilitate reaching the strongly cor-
related regime.
This paper is organized as follows. In Section II, we

introduce the effective GP equation of mixture droplets
and tabulate different parameter regimes of the problem.
In Section III, we discuss the TF solution for the strongly
confined droplet and compare it with the numerical re-
sults of the Gross-Pitaevskii (GP) equation. In Section
IV, we obtain a formula for the vortex core size and com-
pare it with the numerical solution. We also discuss the
corrections to the uniform triangular lattice. In Section
V, we discuss the possibility of obtaining a vortex lat-
tice with lower filling factors. In Section VI, we discuss
the experimental parameters required to realize the sug-
gested phenomena and outline future research directions.

II. MODEL AND PARAMETER REGIMES

We consider a weakly interacting binary BEC with
equal masses m1 = m2 = m and wavefunctions Ψ1(r) =
Ψ2(r) = Ψ(r), and equal number of atoms N1 = N2 = N .
Intracomponent s-wave scattering lengths are also as-
sumed equal and repulsive a11 = a22 ≡ a > 0 but the
intercomponent scattering length is negative a12 < −a.
This gives a slightly attractive MF interaction such that
effectively repulsive BMF energy becomes significant for
the condensate’s mechanical stability [11]. We assume
that the density gradient is sufficiently low throughout
the condensate such that the local density approximation
(LDA) holds [11, 20, 21]. The droplet is confined radially
with angular frequency ω⊥ and along the z-axis with an
angular frequency ωz. The total energy functional of the
mixture is:

E =

∫
dV

{
ℏ2

2m
|∇Ψ|2 + 1

2
mw2

zz
2|Ψ|2 + 1

2
mw2

⊥r
2|Ψ|2

+
g(1− αs)

4
|Ψ|4 + 8

√
2

15
√
π
ga3/2(1 + αs)

5/2|Ψ|5
}
,(1)

where r = (x, y) is the position vector, αs = |a12|/a is
the ratio of the scattering lengths, and g = 4πℏ2a/m is
the coupling constant. The first and second terms in the
second line of Eq. (1) are the MF and BMF energies,
respectively. Note that the MF energy becomes attrac-
tive when αs becomes slightly greater than one. In the
experiments, αs can be tuned via Feschbach resonance.
We assume tight confinement in z-direction and inte-

grate the energy functional by assuming a Gaussian wave-

function ϕ0(z) = 1
(πaz)

1/4 e
−z2/2a2z , with az =

√
ℏ

mωz
,

i.e Ψ(r, z) = ψ(r)ϕ0(z). While tight confinement in
the third direction may seem to contrast with the LDA
assumption, recent works have shown that the transi-
tion from three- to two-dimensional behavior is smooth
[22, 23]. The integrated form of the local energy func-
tional in Eq. (1) is qualitatively similar to the strictly
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two-dimensional LDA functional where energy functional
has the form |Ψ|4 ln

(
|Ψ|2/√e

)
[15, 16]. They both feature

a shallow minimum below zero and a rapid rise after be-
coming positive. We also expect that integrating out the
z-axis provides better quantitative agreement with the
typical experimental confinement scenarios. In a frame
rotating with angular velocity Ω = Ωêz, minimization of
the functional E − ΩLz [24], with Lz being angular mo-
mentum, gives the dimensionless extended GP equation
scaled with the radial trapping frequency ω⊥ as

µ̃ψ̃ = −1

2
(∇̃ − Ω̃× r̃)2ψ̃ +

1

2
r̃2
(
1− Ω̃2

)
ψ̃ (2)

+ γint

[
(1− αs)|ψ̃|2 + βLHY |ψ̃|3

]
ψ̃,

where r̃ = r/a⊥, ∇̃ = a⊥∇, ψ̃ = a⊥ψ, Ω̃ = Ω/ω⊥. The

interaction parameters are γint ≡
√
2π a

az
and βLHY ≡

16
√
2

3
√
5π3/4

a3/2

a
1/2
z a⊥

(1+αs)
5/2, where a⊥ =

√
ℏ

mω⊥
. Note that

in the rapid rotation limit Ω̃ → 1, the gas is still me-
chanically stable due to the balance between mean-field
attraction and LHY quantum fluctuations, in stark con-
trast with regular BECs.

Physical scales in strictly two-dimensional limit are
determined by the oscillator length a⊥, the inter- and
intra-component scattering lengths a12, a, and the total
particle number N . The oscillator length a⊥, giving the
typical 2D cloud size in the trap is used as the unit of
length. The confinement along z creates an additional
length scale az, which will be used to tune effective two-
dimensional interaction γint ∼ a/az. The ratio of inter-
to-intracomponent interaction αs = |a12|/a controls the
attractive mean-field interaction, and droplet forms when
it is larger than 1 yet the gas remains dilute. Last but
not least, the dimensionless parameter βLHY determines
the importance of the Lee-Huang-Yang BMF repulsion
compared with the MF attraction. Although the param-
eters αs, βLHY , and γint seem to be inter-dependent at
first sight, each is a unique combination of s-wave scat-
tering, and the two oscillator lengths, and we choose to
consider them independent parameters in the following
for simplicity.

The limit of dominant interactions over both the ki-
netic and potential energies is a particularly important
regime for droplet physics. In this case, the GP equation
in (2) reduces to:

µ̃ψ̃ = γint

[
(1− αs)|ψ̃|2 + βLHY |ψ̃|3

]
ψ̃. (3)

The equilibrium density nmin can be found by minimiz-
ing the term in the square brackets in (3) with respect to

|ψ̃| as

nmin =
4(αs − 1)2

9β2
LHY

, (4)

which is the density of a self-trapped droplet. In “TF
droplet” regime, the kinetic energy is negligible and the

density is flat if the trap potential is weak. Stronger trap
potential squeeze the cloud to the center to minimize the
confinement energy, which gives a convex peak at the
center that rapidly falls near the surface. Outside the
TF regime, which we call the “weak droplet” regime, the
kinetic energy is non-negligible compared to the inter-
action energy, and the wavefunction gradient gradually
smears the flat-top profile. Here, the droplet is still self-
trapped but the density profile has deviations from nmin
due to the kinetic energy.
To quantify these regimes, we consider a constant den-

sity droplet with ψ̃(r̃) =
√
nminθ(RTF − r̃), where θ

is the Heaviside step function. For N particles uni-
formly filling a circle of radius R, the scaling is obtained
as Ek ∼ N/R2 for kinetic energy, Ep ∼ NR2 for po-
tential energy, EMF ∼ (N/R2)N MF interaction, and
ELHY ∼ (N/R2)3/2N for fluctuations. However, due to
the length scale corresponding to density nmin, the radius
and the particle number are not independent. Expression∫
nmind

2r̃ = N gives the TF radius of the flat-top droplet

RTF = 3βLHY

2
√
π(αs−1)

√
N and we find

Eint =
−14

135

γint|αs − 1|3
β2
LHY

N, (5)

Ep =
9

16π

β2
LHY

|αs − 1|2N
2, (6)

Ek =
2π

9

|αs − 1|2
β2
LHY

, (7)

where Eint is the total interaction energy. In the TF
regime, the total interaction energy is much larger than
the kinetic energy:

Ek
|Eint|

=
30π

14

1

γint|αs − 1|N ≪ 1, (8)

In the strong confinement regime, the potential energy is
larger than the interaction energy:

Ep
|Eint|

=
1215

224π

β4
LHY

γint|αs − 1|5N ≳ 1. (9)

Since γint independently scales the interaction energy,
one can drive the system into the weakly confined TF

TABLE I. Different regimes of the rotating confined droplet
problem. The conditions in Eqs. (8) and (9) are used to de-
termine the different regimes.

Strongly Confined Weakly Confined

TF Droplet 1
γint|αs−1|N ≪ 1 1

γint|αs−1|N ≪ 1
β4
LHY

γint|αs−1|5N ≳ 1
β4
LHY

γint|αs−1|5N ≪ 1

Weak Droplet 1
γint|αs−1|N ≈ 1 1

γint|αs−1|N ≈ 1
β4
LHY

γint|αs−1|5N ≳ 1
β4
LHY

γint|αs−1|5N ≪ 1
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regime by increasing γint ∝ a/az. Interaction energy (5)
and the potential (6) scale with N and N2, respectively,
whereas the kinetic energy (7) has a slower dependence
(considering the full GP equation rather than the estima-
tions Eq. (5)-(7)). Therefore, the strongly confined TF
regime can be achieved by large particle number N . Note
that the condition (8) for the TF regime is independent of
βLHY , since both the interaction (5) and kinetic (7) en-
ergies scale with βLHY . The different parameter regimes
are summarized in Table I. The strongly confined TF
regime, where kinetic energy is negligible but potential
energy causes a significant curvature in the equilibrium
density, is eventually realized for all parameters if the
number of particles is large enough.

III. STRONGLY CONFINED THOMAS-FERMI
REGIME

Rotating weakly confined droplet results in either
COM motion that preserve the cloud density profile
[12, 13], or so-called splitting instability that divides the
system into smaller fragments [14, 15]. Stronger con-
finement prevents both of these undesirable effects and
enables access to rapid rotation limits with stable vortex
lattices. In this section, we focus on strongly confined ro-
tating droplets in the TF regime and examine the coarse-
grained density profile of the cloud as a function of the
rotation frequency Ω̃.

When a regular vortex lattice is formed, the kinetic
energy of the rotating condensate is nearly equal to the
energy of a solid body rotating with angular velocity Ω.
The GP equation governing the coarse-grained density
profile is found by neglecting the first term in (2):

µ̃ψ̃ − 1

2
r̃2
(
1− Ω̃2

)
ψ̃

= γint

[
(1− αs)|ψ̃|2 + βLHY |ψ̃|3

]
ψ̃, (10)

which manifests that the rotation affects the density pro-
file mainly through centrifugal potential. The particles
are squeezed toward the center for strong confinement,
whereas the centrifugal potential soften the effective trap-
ping frequency (1− Ω̃2).

As shown in Fig. 1a, the local chemical potential µ̃loc
obtained from (10) as a function of |ψ̃| has negative min-

imum µ̃min at |ψ̃| = √
nmin, since αs > 1 and βLHY > 0.

Now consider the solution |ψ̃| of (10) for a given chem-
ical potential µ̃ > µ̃min. At the center of the trap
r̃ = 0, |ψ̃| takes its maximum value. As r̃ increases,

the value of |ψ̃| follows the path shown by the curved
arrow in Fig. 1a. For the radial position r̃ = R0 at
which |ψ̃(R0)| =

√
nmin, the local chemical potential

µ̃ − 1
2 r̃

2
(
1− Ω̃2

)
reaches its minimum, and then |ψ̃(r̃)|

abruptly falls to zero for r̃ > R0. We solve the cubic
equation analytically as shown in App. A. The solutions
of Eq. (10) for different rotation frequencies Ω̃ are shown
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FIG. 1. (a) The local chemical potential µloc(r̃) = µ̃ −
1
2
r̃2

(
1− Ω̃2

)
in (10) vs. |ψ̃| (Blue line). Since αs > 1 and

βLHY is positive, µloc shows a local negative minimum at
|ψ̃| = √

nmin, then monotonically increase with |ψ̃|. The so-
lution to (10) for µ̃ > µ̃min can be found by evaluating µloc(r̃)
for different r̃, along the curved arrow. The density jumps to
0 when the local chemical potential is equal to the minimum
value µmin. (b) The analytical solutions of the GP equation
(10) of the rotating Bose mixture droplets in the strongly con-

fined TF regime for various Ω̃. The parameters are αs = 1.05,
βLHY = 6 × 10−3, γint = 1, N = 105. The convexity due to
the strong confinement flattens and approaches the flat-top
profile as Ω̃ → 1.

in Fig. 1b, which demonstrate that the cloud flattens as
the rotation frequency approaches the limit Ω̃ → 1.

We verify the above qualitative description by solv-
ing the nonlinear GP equation (2) fully numerically in
the strongly confined TF regime for the rapid rota-
tions. We find the ground state in the rotating frame by
the imaginary time evolution iterated by the split-step
Fourier method [25, 26]. We consider a typical choice
of strongly confined TF regime parameters: αs = 1.05,
βLHY = 6 × 10−3, γint = 1, and N = 105. This choice

gives Ek

|Eint| = 1.37× 10−4,
Ep

|Eint| = 2.3× 103, nmin ≈ 30

and TF radius RTF ≈ 32. We tested the convergence of
the numerical routine by using random, Gaussian, and
Jacobi-theta initial wavefunctions [27]. Each resulted in
almost identical density profiles and locally triangular
vortex lattices with occasional dislocation defects. The
displayed results in Fig. 2 are for Jacobi-theta function
initial conditions, which have a perfectly periodic vor-
tex lattice with a single vortex per hexagonal unit cell.
This choice accelerates the convergence to minimum en-
ergy considerably and prevents unwanted dislocations in
the lattice. The lower panel of Fig. 2 shows the density
profiles of the cloud, which follows the solutions of the
TF equation (10) (solid lines) with remarkable accuracy.
With increasing rotation, the peak density at the center
decreases, and the overall profile flattens, whereas the
kinetic energy makes a marginal influence by smoothing
the jump at the edge of the cloud.

It is important to compare the course grained proper-
ties of the rapidly rotating droplet with the vortex lat-
tices in the usual repulsive BEC experiments. In ordi-
nary BECs, the TF profile always remains an inverted
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FIG. 2. The numerical solutions of the GP equation (2) of the rotating Bose mixture droplets for the parameters αs = 1.05,

βLHY = 6 × 10−3, γint = 1, N = 105, and (a) Ω̃ = 0.80,(b) Ω̃ = 0.90,(c) Ω̃ = 0.97. (upper panel) 2-D density profiles of
the vortex lattices, (lower panel) the density profile of the vortex lattices along the x-axis (orange lines), and the rotating TF
solution of the GP equation (10) (blue lines).

parabola, and its radius increases with increasing ro-
tation. For droplets, there is a finite density jump at
the surface and the functional form smoothly changes
from a high curvature profile to a flat profile with in-
creasing density. Notice that the cloud size of the ro-
tating droplet for Ω̃ = 0.8 and Ω̃ = 0.97 are not sub-
stantially different in Fig. 2. In fact, as Ω̃ increases
towards one, the cloud radius converges to the non-
rotating TF radius RTF , whereas it diverges for the re-
pulsive BECs in both TF and LLL regimes [9, 18, 19, 28].
This is a remnant of the celebrated self-trapping prop-
erty of the droplets, where in this case, the fast rota-
tion diminishes the external trapping potential but the
competition between MF attraction and LHY repulsion
constrains the increase of the cloud radius. More con-
cretely, for the repulsive BEC in TF and LLL regime, the
cloud radius scales with R(Ω̃)/R(0) = (1− Ω̃2)−3/10 and

R(Ω̃)/R(0) = (1 − Ω̃)−1/4, respectively [6]. For the TF

droplet, we calculate the radius for various Ω̃ from (10)
in Appendix A, and also estimate it from the full numer-
ical solutions of Eq. (2) as shown in Fig. 3. One can see
that the droplet radius remains much smaller than the
regular BEC cloud radius, even in the extremely rapid
rotation limit.

Most of the rotating BEC experiments were limited in
the upper rotation frequencies due to the imperfections
in the harmonic trap [29]. These imperfections are harder
to control away from the trap’s center, and as the cloud
radius gets larger, they dissipate angular momentum. We
believe that the small change in the size of the droplet

with rotation can make the rapid rotation limit easier to
reach.
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Droplet Simulation

FIG. 3. The comparison of the radius of the condensates
for the rotation frequency Ω̃ ∈ [0, 1]: Repulsive BEC in
TF regime (dotted), Repulsive BEC in LLL regime (solid),
and Droplet in the TF regime (dashed). The scattered data
present the radius of the simulation results. The droplet ra-
dius converges to a finite value as Ω̃ → 1, contrary to the
diverging behavior of the repulsive BECs.
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FIG. 4. Density profile of the vortex lattice with Ω̃ = 0.8 in
Fig.2(a). The insets show the 2D zooms of equal areas in the
vortex lattice near the edge (Z1) and the center (Z2) of the
droplet. The core size is larger, and the vortex unit cell area
decreases near the edge.

IV. PROPERTIES OF THE VORTEX LATTICE

The numerical results shown in Fig. 2 reveal that the
vortex core sizes are visibly different at the edge of the
droplet compared with the center. This sharply contrasts
with the repulsive BECs where the cores in the vortex
lattices are almost uniform in size throughout the system
[30]. In this section, we focus on the core sizes in the
rapidly rotating TF droplet, and also the related lattice
distortions previously known in the study of non-uniform
superfluids, to better understand these observations.

Substituting the chemical potential µ̃ = (1 − αs)n0 +

βLHY n
3/2
0 corresponding to a uniform bulk density n0 in

Eq. (3), one can obtain

1

2
∇̃2ψ̃ = (1− αs)

(
|ψ̃|2 − n0

)
ψ̃

+ βLHY

(
|ψ̃|3 − n

3/2
0

)
ψ̃. (11)

We consider a semi-infinite condensate filling the right
half-plane near an impenetrable surface to reduce this
equation to a one-dimensional form. Multiplying both
sides of Eq. (11) by ∂ψ̃/∂x̃ and assuming a positive real

wavefunction ψ̃(x̃) ≥ 0 for x̃ ≥ 0, we obtain

1

2

∂

∂x̃

(
∂ψ̃

∂x̃

)2

− ∂V

∂ψ̃

∂ψ̃

∂x̃
= 0, (12)

where

V [ψ̃] = (1− αs)

(
1

2
ψ̃4 − n0ψ̃

2

)
+ βLHY

(
2

5
ψ̃5 − n

3/2
0 ψ̃2

)
. (13)

This shows that 1
2 (∂ψ̃/∂x̃)

2 − V [ψ̃] is a constant of mo-
tion. Evaluating this constant for the limits x̃ → 0 and
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FIG. 5. (a) The vortex core area estimates by numerical solu-
tions of 1-D (solid line) and 2-D (dashed line) healing length
equation (11), analytical approximation (14) (dotted line) and

the simulation data for (filled points) Ω̃ = 0.8. The density
levels n0 for the numerical and analytical solutions to (11) and
(14) are taken from the strongly confined TF droplet equation
(10). The difference in the core size along the TF droplet is
more tractable than the repulsive BECs. (b) The vortex den-
sity of the rotating TF droplet calculated up to the first order
in (15) for Ω̃ = 0.80 (gray), Ω̃ = 0.90 (black), Ω̃ = 0.95 (blue),

and Ω̃ = 0.97 (red). The dotted lines represent the uniform

vortex densities nv0 = Ω̃/π. The scattered data shows the
vortex density computed on the simulation data of Fig. 2,
whereas the solid lines are the solutions to (15). The vortex
density closely follows the uniform limit with an agreement
on the corrections.

x̃ → ∞, where limx̃→0,∞ ψ̃ = 0,
√
n0, gives the healing

length scale of the condensate ζ ≈ √
n0/ limx̃→0

(
∂ψ
∂x̃

)
:

ζ =
1√

6γintβLHY

5 n0

(
n
1/2
0 − n

1/2
c

) , (14)

where nc = 25(αs−1)2

36β2
LHY

is the droplet density scale nmin

up to a numerical factor of order one. The analytical
approximation fails for densities n0 below nc, signaling
the splitting instability. For a better comparison, we
also calculate the coherence length by numerically solv-
ing Eq. (11) in 1D and 2D geometries with appropriate
boundary conditions, and extract independent estima-
tions from the simulations based on the imaginary time
evolution iterated by the split-step Fourier method. As
shown in Fig. 5, both the numerical estimates and the
analytical result using the TF density expression for n0
agree with the simulation data. The core size at the cen-
ter of the droplet is smaller with respect to the surface
of the cloud since the density of condensate decreases
towards the edge.
In the rapidly rotating repulsive BECs in the TF

regime, the core size ζ ∝
√

Ω̃/2gn0 [6] and the TF density

profile is inverse-parabola. For the TF droplet, the core
size scales with the form given in Eq. (14), and the den-
sity is still finite nmin near the surface. The density scale
nc at the denominator gives a greater sensitivity of the
core size to the density changes in the condensate. Fur-
thermore, the finite density near the surface makes the
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vortices near the surface more visible compared to the
surface of the inverse-parabola profile. We expect that
the differences in the vortex cores at the center and near
the surface of the condensate should be more observable
for the TF droplets with respect to the repulsive BECs.

Inhomogeneous superfluid density causes deviations
in the local lattice constant, and the vortex density of
an infinite uniform lattice given by Feynman relation
nv0 = Ω̃/π changes slightly. For rotating droplets, we
numerically calculate this local change in the triangular
lattice using image processing tools on simulation data
and observe similar deviations. To estimate such changes
in the vortex density, we follow the approach in Ref. [31]:

nv(r̃) =
Ω̃

π
+

1

8π
∇̃ ·
{

1

n(r̃)
∇̃
[
n(r̃) ln

(
e

πζ2(r̃)nv(r̃)

)]}
(15)

where nv(Ω̃) is the vortex density, n(r̃) is the condensate
density, and ζ(r̃) is the coherence length. The first term
in (15) is the uniform vortex density nv0 in dimensionless
form, and the second term is the aforementioned small
correction. We find the value of Eq. (15) numerically in
the strongly confined TF droplet regime using the an-
alytical superfluid density n(r̃) calculated in Appendix
(A2), and the coherence length ζ(r̃) calculated from (14)
by replacing n0 with n(r̃). As the system is still well de-
scribed by a single collective wavefunction, we expect the
deviation between the superfluid density and the particle
density to be small. We compare the results with the
vortex density profile of the simulation data for different
values of Ω̃ in Fig. 5(b).
The deviations from the uniform vortex density are

due to the gradient of the superfluid density. Since the
TF density profile becomes more flat as the rotation Ω̃
increases, the deviations from the uniform vortex den-
sity are greater for the slower rotations. Deviations be-
come larger close to the edge of the droplet due to the
convex profile. However, as Ω̃ → 1, the density profile
approaches a flat-top shape, and the vortex density gets
close to the uniform vortex density throughout the con-
densate. We expect an almost perfect triangular lattice
for the highest rapid rotation rates, unlike the radially
distorted vortex lattice in the repulsive TF BECs [31].

V. VORTEX LATTICES WITH LOW FILLING
FACTORS

Reaching the strongly correlated regime in rapidly ro-
tating ultracold gases to mimic the physics of electrons in
quantum Hall systems is one of the major challenges in
atomic, molecular, and optical physics [29, 32]. Recently,
the realization of fractional quantum Hall states are re-
ported for photons and Bose gases but only with few
particles [33, 34]. These experiments are far from simu-
lating the full many-body physics at the mesoscopic scale,
where some emergent properties, such as interaction-

induced incompressibility, can be observed. Rapid rota-
tion, which is the analog of the strong magnetic field in a
neutral cold atomic gas, effectively reduces the confining
potential for the repulsive BECs in a harmonic trap. As
Ω̃ increases, the condensate enters the MF LLL regime,
where intervortex spacing becomes comparable to vortex
core size. For a two-dimensional condensate uniform over
a length Z in the transverse direction, the cloud size is

given by R0 =
(

8Nad4⊥
Z(1−Ω̃)

)1/4
in the MF LLL regime [6],

which diverges as Ω̃ → 1. As the inter-particle distance
approaches the inter-vortex spacing, the quantum fluc-
tuations become relevant, and the GP MF description
becomes insufficient [29]. One may still ask, however,
whether some preliminary hints of many-body correla-
tions emerge from the GP approach before it breaks down
completely.
The importance of correlations is characterized by the

filling factor ν = N/Nv, where N and Nv are particle and
vortex numbers, respectively [35, 36]. For ν ≈ 5 − 10,
the quantum fluctuations are expected to melt vortex
lattice and drive the system into a fractional quantum
Hall phase [37]. In the MF LLL regime, the number of
vortices is given by Nv ≈ R2

0/a
2
⊥ and the corresponding

filling factor is [6, 29]:

ν ≡ N

Nv
=

√
Z(1− Ω̃)N

8a
. (16)

For typical values of Z/a ≈ 100, N ≈ 1000, rotation rates

Ω̃ > 0.99 is needed to achieve ν ∼ 5. For such high values
of Ω̃, the cloud size is much larger than the non-rotating
condensate size.
As discussed in the previous sections, a rotating

droplet’s size changes only fractionally in the strongly
confined TF limit, hinting at the possibility of achiev-
ing lower filling factors. Rotating droplet approaches a
flat-top particle density nmin whereas the approximate
vortex density is nv0 = Ω̃/π. Assuming that the radius
is close to the flat-top TF radius RTF , the filling factor
of the rotating droplet becomes:

ν =
N

πR2
TFnv

=
πnmin

Ω̃
. (17)

This shows that lower filling factor can be achieved via
smaller droplet density nmin. As an example, we con-
sider the parameters N = 500, αs = 1.25, βLHY = 0.15,
γint = 10, which theoretically result in a strongly con-
fined TF droplet with nmin ≈ 1.2, RTF = 11.5. For
Ω̃ = 0.99, the filling factor is close to ν ≈ 3.8. The full
numerical solution of the GP equation (2) is obtained for
these parameters, and the 2D density profile of the vor-
tex lattice is shown in Fig. 6, which displays about 70-80
vortices giving a filling factor ν ≈ 6.25. The difference
between the numerical result and the theoretical expec-
tation is due to the fact that the density profile is far
from the flat-top regime for this parameter choice.
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FIG. 6. The vortex lattice of a rotating strongly confined
droplet with a low filling factor. There are approximately 80
vortices for particle number N = 500, i.e. ν ≈ 6.25. The
parameters are αs = 1.25, βLHY = 0.15, γint = 10, and
Ω̃ = 0.99. The colorbar indicates the condensate density.

The vortex lattice in a droplet has two distinct insta-
bilities in the rapid rotation limit. At low filling factors,
quantum melting due to fluctuations destroys vortex lat-
tice paving the way for the strongly correlated phases.
The other possibility is that as the droplet density be-
comes flatter, a large portion of the density approach
nmin and vortex core sizes exceed the intervortex spac-
ing. This is the same mechanism of splitting as seen in
weakly trapped droplets. As our above example shows,
it is possible to get into the low filling factor regime while
avoiding the weakly trapped regime. We believe that the
tunability of the equilibrium density, as well as the weak
size change under rapid rotation, make droplets ideal sys-
tems to probe low filling factor physics.

VI. DISCUSSION, EXPERIMENTAL
REALIZATION AND CONCLUSION

The standard approach of using a modified GP equa-
tion to describe the system can break down in two ways.
On one hand, condensate wavefunction Ψ can be de-
stroyed in a strongly correlated phase giving rise to a
many-body phase without a local order parameter. On
the other hand, the vortex lattice can strongly modify
fluctuations so that the LDA assumption is violated even
before the onset of the strongly correlated regime. We do
not expect the GP equation to describe the system near
the transition quantitatively. However, we believe that
our calculations show that much lower filling factors than
what has been observed are possible with droplets.

There are several intriguing questions that require fur-
ther research. To achieve analog of electronic phases un-
der ultra-strong magnetic fields, it becomes essential to
import larger angular momenta into the system, resulting
in lower filling factors. The central challenge in cold atom

experiments, as discussed earlier, is the cancellation of
trapping potential due to the centrifugal potential. Our
work reveals that droplets can overcome this challenge
through self-trapping, a consequence of the balance be-
tween attractive MF interactions and effectively repulsive
LHY quantum fluctuations. It is important to note that
a low filling factor does not necessarily imply strongly
correlated physics for a droplet, as the GP formalism is
still a mean-field approach. Similarly, whether a rapidly
rotating quantum droplet can be described within the
LLL regime needs more investigation. The traditional
condition for the LLL regime, µ ≈ gn0 ≪ 2ℏω⊥, is not
applicable since the chemical potential of the self-trapped
droplet is negative. Consequently, the stabilization of the
cloud by quantum fluctuations and whether this stabi-
lization mechanism still exists in the LLL regime should
be explored.

The Bose mixture droplets without any trap are ex-
perimentally realized by several groups [38–41]. Similar
to our assumptions in this paper, the validity of the LDA
treatment of the MF and LHY terms, and the physics of
vortices and vortex lattices are theoretically established
in the recent work on dipolar droplets [42–47]. Further-
more, the vortex lattices are experimentally obtained in
rotating dipolar droplets [48, 49]. It is promising for
our proposal that the extended GP approach shows good
agreement between the numerical estimates and the ex-
perimental results [48, 49].

Let us consider the feasibility of an experiment to real-
ize the vortex lattices in the Bose mixture droplets. The
non-dimensional parameters which control the different

regimes of the problem are αs =
|a12|
a , γint ≡

√
2π a

az
, and

βLHY ≡ 16
√
2

3
√
5π3/4

a3/2

a
1/2
z a⊥

(1+αs)
5/2. To obtain results close

to the parameter choice of this paper, we consider a Bose
mixture of 39K atoms in states |1, 0⟩ and |1,−1⟩ with to-
tal particle number N = 105. The scattering lengths are
a = 60a0 and a12 = −63a0, where a0 is the Bohr radius.
The radial and vertical trap frequencies are ω⊥/2π = 10
kHz and ωz/2π = 40 kHz. The corresponding trap length
scales are az ≈ 80 nm and a⊥ ≈ 160 nm. These condi-
tions yield 1.5 − 2.5 µm size of the rotating droplet for
Ω̃ ∼ 0.80 − 0.97. Note that this particular choice of pa-
rameters is only illustrative. Similar phenomena can be
observed in a wide regime of parameters.

In summary, we find that a triangular vortex lattice is
obtained for a strongly confined TF droplet under rapid
rotation. The overall density profile of the cloud fol-
lows the TF form even in the presence of the lattice.
We investigated the lattice’s vortex core size and vortex
density and obtained good agreement between analyti-
cal and numerical results. The condensate size does not
diverge at extreme rapid rotation Ω̃ → 1, due to self-
trapping. This behavior can provide greater experimen-
tal feasibility to reach rapid rotation. Furthermore, the
lattices with low filling factors can be achieved by tuning
the droplet density. A more detailed investigation of the
rapidly rotating droplet phase is required to determine
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if the fluctuation-induced stability mechanism extends
to non-condensed bosonic phases such as the fractional
quantum Hall states.
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Appendix A: Analytical Solution of the Cubic TF
Equation

The cubic equation ax3 + bx2 + cx + d = 0 can be
reduced into the depressed form t3 + pt+ q = 0 with the

change of variables t = x + b
3a , where p = 3ac−b2

3a2 , and

q = 2b3−9abc+27a2d
27a3 . The real solution to the problem can

be found in the trigonometric form. Now consider the
GP equation (10) for the strongly confined TF droplet,
which is a cubic equation with c = 0. Apply the change
of variables t = |ψ̃| + 1−αs

βLHY
. The trigonometric solution

becomes:

|ψ̃(r̃ ≤ RTF )| =
2(αs − 1)

3βLHY
(A1)

×
{
1

2
+ cos

[
1

3
arccos

(
1 +

27β2
LHY µloc(r̃)

2γint(αs − 1)3

)]}

where the local chemical potential µloc(r̃) = µ − r̃2

2 (1 −
Ω̃2) and RTF is the TF radius of the strongly confined

TF droplet, at where |ψ̃(R̃TF )| =
√
nmin. We cal-

culate RTF , where the density falls rapidly, by using

|ψ̃(R̃TF )| = 2(αs−1)
3βLHY

:

RTF =

√(
µ+

4γint(αs − 1)3

27β2
LHY

)
2

1− Ω̃2

=

√
2(µ− µmin)

1− Ω̃2
(A2)

where µmin = − 4γint(αs−1)3

27β2
LHY

is the chemical potential of

the flat-top droplet. Consider the limit Ω̃ → 1, in which
the external trap is effectively removed by the centrifugal
effect, and the droplet approaches the flat-top profile.
Hence, the divergence of the droplet radius is prevented
as limΩ̃→1 µ = µmin. In fact, one should recover the

flat-top radius RTF = 3βLHY

2
√
π(αs−1)

√
N at the limit Ω̃ → 1.
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