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Abstract: This paper explores the novel concept of discontinuous unpredictable and Poisson-stable
motions within impulsive inertial neural networks. The primary focus is on a specific neural network
architecture where impulses mimic the structure of the original model, that is, continuous and discrete
parts are symmetrical. This unique modeling decision aligns with the real-world behavior of systems,
where voltage typically remains smooth and continuous but may exhibit sudden changes due to
various factors such as switches, sudden loads, or faults. The paper introduces the representation of
these abrupt voltage transitions as discontinuous derivatives, providing a more accurate depiction
of real-world scenarios. Thus, the focus of the research is a model, exceptional in its generality. To
study Poisson stability, the method of included intervals is extended for discontinuous functions and
B-topology. The theoretical findings are substantiated with numerical examples, demonstrating the
practical feasibility of the proposed model.

Keywords: impulsive inertial neural networks; symmetry of differential and impulsive parts;
unpredictable oscillations; Poisson-stable oscillations; unpredictable input–output; Poisson couple;
the method of included intervals; Poincaré chaos; exponential stability

1. Introduction

The technology of neural computing networks has shown its effectiveness in solv-
ing problems of pattern recognition, data clustering, associative information retrieval in
databases, and in a number of other applications [1–7].

Nowadays, there are many models and types of artificial neural networks, different
in their structure and functionality. From the whole variety of neural network models
described by second-order ordinary differential equations, inertial neural networks are
distinguished. The original model was proposed by Babcock and Westervelt in 1986 [8].
In the next few years, many modified models of this neural network were investigated.
Inertial neural networks use second-order differential equations to introduce the concept
of inertia into the network’s dynamics. Inertia refers to the property of a system to resist
changes in its state, including the rate of change of the state. By incorporating inertia,
the network can better capture the temporal dependencies and dynamics in the data it
processes. Compared to traditional first-order neural networks, inertial neural networks
have higher complexity due to the inclusion of second-order differential equations. This
complexity enables them to model more intricate temporal relationships in the data.

It is known that when receptors feel pain or a change in temperature, they transmit
the corresponding signal (impulse) to the brain. Just like biological neurons, the state of
an artificial network can be subject to instantaneous failures and abrupt changes at certain
instants. To study the modeling of impact disturbances, moreover, to use them as a control
action on neural processes, models with impulses are effective.
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Impulsive networks are a type of model that incorporates “disruptions” in its compu-
tations. These networks are inspired by the way that neurons communicate in the brain,
where information is transmitted in the form of impacts or discrete events rather than
continuous signals. In an impulsive neural network, the processing is often event-driven,
and neurons react when certain conditions are met.

Let N,R, and Z be the sets of all natural and real numbers, and integers, respectively.
Inertial neural networks are of the following form [9,10]:

u′′i (t) = −aiu′i(t)− biui(t) +
m

∑
j=1

cij f j(uj(t)) + hi(t), (1)

where t, ui : R → R, i = 1, 2, . . . m, ui(t) is the state variable of the ith neuron at time t;
u′′i (t) is called an inertial term of system (1); ai > 0 is the damping coefficient; bi > 0 is the
rate with which the neurons self-regulate or reset their potential when isolated from inputs
and other networks; the constant cij is the synaptic connection weight of the neuron j on
the neuron i; f j is the activation function of incoming potentials of neuron j at time t; and
hi(t) is the external input of the network to the ith neuron.

In traditional neural networks, the focus is usually on continuous, smooth transfor-
mations of input data. However, in certain real-world scenarios, there are instances where
a system experiences sudden impulses or changes. Impulsive neural networks address
this by incorporating a mechanism to deal with such abrupt changes and disturbances.
Researchers and developers have been working on impulsive inertial neural networks to
improve their performance, efficiency, and applicability in real-world scenarios. There are
a few studies and techniques for designing and training of these networks [11–17].

In [11], stabilization of delayed inertial neural networks based on impulses was
investigated.

The reduced form of the model is the following inertial neural networks with impulsive
control and time delay,

ẋ(t) = −x(t) + y(t) + E1u1(t); t 6= tk,

∆x(t) = (F1 − I)x(t−) + E2u2(t); t = tk, (2)

ẏ(t) = Ay(t)− Bx(t) + C f (x(t)) + Dg(x(t− τ(t)) + E3u3(t); t 6= tk,

∆y(t) = (F2 − I)y(t−) + E4u4(t); t = tk.

In [12], delayed inertial neural networks with impulsive effects were considered,

d2xi(t)
dt2 = −D

dxi(t)
dt
− Cxi(t) + A f (xi(t)) + B f (xi(t− τ(t))) + J

+c
N

∑
j=1

GijΓ
(dxj(t)

dt
+ xj(t)

)
+ ui(t) t 6= tk,

∆xi(tk) = −δk · x(t−k ), ∆ẋi(tk) = −δk · ẋ(t−k ). (3)

Considering impact actions as limits of continuous processes of short duration, one
has to recognize that the functional structure of impulsive equations in the inertial systems
has to be the same as for the differential ones. In many real-world situations, continuous
processes can be interrupted by impulsive events or impacts. The symmetrical property
ensures that the mathematical model used to describe these processes accurately captures
their behavior, which is essential for understanding and predicting physical phenomena.
Nevertheless, the impulsive equations of systems (2) and (3) are linear, while the original
model is non-linear. That is, there is a strong dissonance between the structures of con-
tinuous and discrete compartments of the models (2) and (3). To bridge this gap, we are
proposing the concept of symmetrical impulsive inertial neural networks, where the com-
ponents of the impulsive equation mirror those of the differential one. Another essential
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deficiency of the models is jumps in the dynamics of the state variable, voltage. This is
contradictory to the electrical laws of physics.

Thus, it is obvious, that for adequate analysis and application of an inertial neural
network with impact actions, the models have to be elaborated. This is performed in the
present research.

The inertial network system that we will consider has the following symmetrical form:

u′′i (t) = aiu′i(t) + biui(t) +
m

∑
j=1

cij f j(uj(t)) + hi(t), t 6= θk,

∆u′i|t=θk = αiu′i(θk) + βiui(θk) +
p

∑
j=1

γijgj(uj(θk)) + πik, (4)

where components ui(t), ai, bi, cij, f j, and hi(t) for i, j = 1, 2, . . . , m, are of the type and the
role as in system (1), and solutions ui and functions hi(t), i = 1, 2, . . . m are from R to R.
In (4), the impulsive part is analogous to the differential part. That is, αi, βi, i = 1, 2, . . . , m
are the damping coefficients and the self-regulation constants for the units or reset of
potentials when the units are isolating, respectively; gj, j = 1, 2, . . . , m are impact activation
vectors; γij, i, j = 1, 2, . . . , p are the weights for connection between units j and i; and πik,
i = 1, 2, . . . , m, k ∈ Z are external impulses for the network.

Impulsive neural networks have attracted interest due to their ability to model certain
real-world phenomena better. For instance, in some biological processes, impulses can
represent abrupt changes in the system’s behavior [18–21]. The state variable of the model,
voltage ui(t), cannot be given by a discontinuous function, while its derivatives u′i and u′′i
can. From system (4), it is seen that the physical laws related to neural network dynamics
are completely satisfied in our research.

Recent research in the field of neuroscience has focused on the study of chaotic and
recurrent signals within a network. The introduction of unpredictable and Poisson-stable
functions is a notable development of the theory in [22–24]. Poisson-stable functions encom-
pass a broad range of quasi-periodic, almost periodic, and periodic functions. The concept
of unpredictability was introduced in 2016 [25], and it plays a significant role in the dynam-
ics of neural networks. Trajectories are characterized as Poincaré chaotic, and provide a
strong basis for the perspective of research considering both the theoretical and practical
implications of sophisticated behavior. It is a powerful instrument for chaos indication [24].

The proof of Poisson stability is based on the method of included intervals, which was
considered in [24,26] and appears to be an efficient instrument for verifying convergence.
In this paper, the method is used to show the existence and uniqueness of unpredictable
and Poisson-stable oscillations for impulsive inertial neural networks.

This article explores the existence and uniqueness of continuous solutions whose
derivatives are discontinuous, and all of them are unpredictable and Poisson-stable func-
tions. The article employs techniques for both ordinary differential and impulsive equations
to analyze inertial neural networks. That is, the goal is to prove the main results by utilizing
investigation methods of continuous as well as discontinuous functions. The novelty and
contributions of the research can be summarized as follows:

• The paper explores unpredictability and Poisson stability, which has been previously
studied for continuous neural networks and certain types of discontinuous network
systems described by first-order differential equations. The novelty here is that the
study delves into the unpredictability and Poisson stability of inertial neural networks,
which are second-order differential equations with impulsive actions.

• One of the key contributions of the research is the introduction of impulsive actions,
symmetrical in relation to the original neural network. This novel modeling approach
is applicable not only to inertial neural networks, but also other network models such
as BAM, Cohen–Grossberg-type neural networks, and others.
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• The selection of the structure of the impulsive part is based on a consideration of
physical characteristics. Specifically, the decision to consider the derivatives as discon-
tinuous functions, while maintaining the continuity of voltage, aligns with the realistic
behavior of the system. This choice ensures that the model accurately captures the
dynamics of the network under both continuous and impulsive conditions.

• The research employs the method of included intervals to establish the existence
and uniqueness of continuous solutions with discontinuous derivatives, which are
unpredictable and Poisson stable. This methodology provides new mathematical
opportunities for recurrent and chaotic dynamics.

2. Preliminaries

Our objective is mainly to find Poisson-stable and unpredictable oscillations of the
impulsive inertial neural network. To achieve this goal, we introduce special time sequences
in this section.

Let us give the basic definition of the Poisson-stable sequence.

Definition 1 ([22]). A sequence κi, i ∈ Z in R is called Poisson stable provided that it is bounded
and there exists a sequence ln → ∞, n ∈ N, of positive integers which satisfies κi+ln → κi as
n→ ∞ on bounded intervals of integers.

Also, we shall need definitions of Poisson stability [22] and unpredictability [24] for
continuous functions.

Definition 2 ([22]). A uniformly continuous and bounded function u : R→ Rm is Poisson stable
if there exists a sequence tn, which diverges to infinity such that u(t + tn) → u(t) as n → ∞
uniformly on compact subsets of R.

We use the norm ‖u‖ = max
1≤i≤m

|ui|, where | · | is the absolute value.

Definition 3 ([24]). A uniformly continuous and bounded function u : R→ Rm is unpredictable
if there exist positive numbers ε0, δ and sequences tn, sn, both of which diverge to infinity, such that
u(t + tn)→ u(t) as n→ ∞ uniformly on compact subsets of R and ‖u(t + tn)− u(t)‖ ≥ ε0 for
each t ∈ [sn − δ, sn + δ] and n ∈ N.

2.1. Description of the Poisson Couple

Consider sequences of real numbers tn, θk, n ∈ N, k ∈ Z. They are assumed to be
strictly increasing with regard to the index. Sequence θk, k ∈ Z is unbounded in both
directions. Moreover, it satisfies θ ≤ θk+1 − θk ≤ θ with positive numbers θ, θ.

We provide the description of a Poisson couple in the following definition.

Definition 4. A couple (tn, θk) of sequences tn, θk, n ∈ N, k ∈ Z is called a Poisson couple if there
exists a sequence ln, n ∈ N which diverges to infinity, such that

θk+ln − tn − θk → 0 as n→ ∞, (5)

uniformly on each bounded interval of integers k.

Definition 5 ([27]). A sequence τk, k ∈ Z is said to be with (w, p)-property if there exist a positive
real number w and integer p which satisfy τk+p − τk = w for all k ∈ Z.

Lemma 1. Assume that sequences tn, θk, n ∈ N, k ∈ Z, satisfy the following conditions

(i) sequence θk admits the (w, p)-property;
(ii) tn = nw, where n ∈ N.

Then, (tn, θk) is a Poisson couple.
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Proof. Since the (w, p)-property is true, θk+p = θk + w for each k ∈ Z. Taking ln = np
for n ∈ N, we obtain that θk+np = θk + nw. Now, one can easily check that sequence
θk+ln − tn − θk consists of zeros. Thus, the condition (5) is satisfied on each bounded
interval of integers k.

2.2. Description of Discontinuous Functions with Poisson Stability and Unpredictability Property

A piece-wise continuous function v(t) : R → Rm is said to be conditional uniform
continuous if for any given positive value ε, one can find another number σ > 0, such that
for two points t1 and t2 within the same continuity interval it is true that ‖v(t1)− v(t2)‖ < ε
provided |t1 − t2| < σ [28].

Let us consider the set D of conditional uniform continuous vector functions
v(t) = (v1(t), v2(t), . . . , vm(t)), vi(t) : R → R, i = 1, 2, . . . , m. The functions are contin-
uous except at a countable set of moments where they exhibit left-continuity. The sets
of discontinuity points are unbounded from both sides and do not have finite accumula-
tion points. There is no requirement for the discontinuity moments to be common across
functions ın D.

Two members, f (t) and g(t), of D are called ε-equivalent on a bounded open interval
J if discontinuity points of f (t) and g(t) in J can be numerated with multiplicity one, θ

f
i ,

and θ
g
i , i = 1, 2, . . . , l, such that |θ f

i − θ
g
i | < ε for each i = 1, 2, . . . , l, and ‖ f (t)− g(t)‖ < ε

for all t ∈ J, except possibly those between neighbors θ
f
i and θ

g
i , i = 1, 2, . . . , l. In the

case that f , g are ε-equivalent on J, we say that the functions are in ε-neighborhoods
of each other on J. The topology defined on the basis of ε-neighborhoods is said to be
B-topology [27].

Definition 6. An element v(t) of D with discontinuity moments θk, k ∈ Z is said to be a
discontinuous Poisson-stable function if there exists a sequence tn → ∞ of real numbers such that
(tn, θk), n ∈ N, k ∈ Z is a Poisson couple, and v(t + tn) → v(t) as n → ∞ on each bounded
interval of real numbers in B-topology.

The sequence tn in the last definition is called the Poisson or convergence sequence.
As one can see from Definition 6 for discontinuous Poisson stability, we need a conver-

gence sequence tn, which is common for both the function convergence and discontinuity
points θk, k ∈ Z, which are connected as a Poisson couple (tn, θk).

Denote by [̂ξ, ζ], ξ, ζ ∈ R the interval [ξ, ζ], if ξ ≤ ζ and interval [ζ, ξ], if ζ < ξ.

Definition 7. A discontinuous Poisson-stable function v(t) of D with discontinuity moments
θk, k ∈ Z and convergence sequence tn is said to be discontinuous unpredictable provided that
(tn, θk), n ∈ N, k ∈ Z is a Poisson couple, and there exist positive numbers ε0, δ and sequences
sn of real numbers and mn of integers, both of which diverge to infinity, such that interval
[sn − δ, sn + δ] ⊆ [ ̂θmn , (θmn+ln − tn)] does not contain discontinuity points of v(t) and v(t + tn),
and ‖v(t + tn)− v(t)‖ ≥ ε0 on the interval.

The divergence estimated by ε0 is said to be the separation property, and sn is the
divergence sequence.

In what follows, we shall say that v(t) is a discontinuous unpredictable function with
Poisson couple (tn, θk) and divergence sequence sn.

2.3. Reduced System

Next, we need the following transformation formula [10],

vi(t) = ϕiu′i(t) + ψiui(t), i = 1, · · · , m. (6)

Substituting (6) into (4), we can rewrite system (4) as
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u′i(t) = −
ψi
ϕi

ui(t) + 1
ϕi

vi(t),

v′i(t) = (ai +
ψi
ϕi
)vi(t) + (ϕibi − ψi(ai +

ψi
ϕi
))ui(t) + ϕi

m

∑
j=1

cij f j(uj(t)) + ϕihi(t),

∆vi|t=θk = αivi(θk) + (ϕiβi − ψiαi)ui(θk) + ϕi

p

∑
j=1

γijgj(uj(θk)) + ϕiπik, i = 1, · · · , m.

(7)

2.4. A Space of Discontinuous Functions

Let Ξ denote the space of 2m-dimensional vector functions ω(t) = (u(t), v(t)), where
u(t) = (u1(t), u2(t), . . . , um(t)) is a continuous function and v(t) = (v1(t), v2(t), . . . , vm(t))
is a piece-wise continuous function from D with discontinuity points θk, k = 0, 1, 2, . . .,
which are impulsive moments of e system (2). Introduce the norm ‖ω‖1 = sup

t∈R
‖ω(t)‖. The

functions of space satisfy the following properties:

(A1) Functions u(t) are Poisson stable with a common convergence sequence tn,
n = 1, 2, . . .;

(A2) Functions v(t) are discontinuous Poisson stable with the common convergence se-
quence tn, n = 1, 2, . . .;

(A3) Convergence sequence tn and discontinuity moments θk, k = 0, 1, 2, . . . make a Poisson
couple (tn, θk);

(A4) There exists a positive number H such that ‖ω‖1 < H for all functions of the space.

We need the following condition.

(C1) λi = (ai +
ψi
ϕi
) +

1
θ

ln |1 + αi| < 0 for all i = 1, 2, . . . , m.

Consider the following linear homogeneous impulsive systems{
v′i(t) = (ai +

ψi
ϕi
)vi(t),

∆vi|t=θk = αivi(θk), i = 1, 2, . . . , m,
(8)

joined with system (7), and the transition matrices for (8)

Vi(t, s) = e(ai+
ψi
ϕi
)(t−s)

(1 + αi)
i([s,t)), t ≥ s, i = 1, 2, . . . , m, (9)

where i([s, t)) denotes the number of moments θk in [s, t).
Due to (8), under condition (C1) there exists a number M ≥ 1 such that

|Vi(t, s)| ≤ Meλi(t−s), t ≥ s, (10)

for all i = 1, 2, . . . , m, [27].
The following conditions for (7) are assumed to be valid:

(C2) Inputs hi(t) ∈ Ξ, i = 1, 2, . . . , m, are Poisson stable and the sequence of convergence
tn, n ∈ N is common for them;

(C3) Sequences {πik}, i = 1, 2, . . . , m, k ∈ Z are Poisson stable with a common sequence of
convergence ln, n→ ∞;

(C4) | fi(u)− fi(v)| ≤ Li|u− v| and |gi(u)− gi(v)| ≤ L̄i|u− v| for all |u|, |v| < H, where
Li, L̄i are positive constants and i = 1, 2, . . . , m;

(C5) | fi(u)| < m f and |gi(u)| < mg, where m f , mg are positive numbers, i = 1, 2, . . . , m,
and |u| < H;

(C6) There exists a positive number ρ, such that sup
t∈R
|hi(t)| + sup

k∈Z
|πik| = ρ < ∞ for all

i = 1, 2, . . . , m;
(C7) |ψi| > 1, i = 1, 2, . . . , m;
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(C8) λi(1− eλiθ)+ M
(∣∣ϕibi−ψi(ai +

ψi
ϕi
)
∣∣(1− eλiθ)−

∣∣(ϕiβi−ψiαi)
∣∣λi
)
> 0, i = 1, 2, . . . , m;

(C9)

Mϕi

(
(mg

m

∑
j=1
|γij|+ ρ)λi − (m f

m

∑
j=1
|cij|+ ρ)(1− eλiθ)

)
λi(1− eλiθ) + M

(∣∣ϕibi − ψi(ai +
ψi
ϕi
)
∣∣(1− eλiθ)−

∣∣(ϕiβi − ψiαi)
∣∣λi
) < H,

i = 1, . . . , m;

(C10)
M
−λi

[∣∣ϕibi − ψi(ai +
ψi
ϕi
)
∣∣+ Li ϕi

m

∑
j=1
|cij|

]
+

M
1− eλiθ

[
|ϕiβi − ψiαi|+ L̄i ϕi

m

∑
j=1
|γij|

]
< 1,

i = 1, 2, . . . , m.

The following assertion is needed in the proof of the main result of the paper.

Lemma 2. Suppose that condition (C1) is valid, then for all i = 1, 2, . . . , m, the following inequality
holds

|Vi(t + tn, s + tn)−Vi(t, s)| ≤ Meλi(t−s), t ≥ s, (11)

whereM = M max(1, |αi|).

Proof. By using (9) and (10), we obtain that

|Vi(t + tn, s + tn)−Vi(t, s)| ≤
∣∣∣∣e(ai+

ψi
ϕi
)(t−s)

(1 + αi)
i([s+tn ,t+tn)) − e(ai+

ψi
ϕi
)(t−s)

(1 + αi)
i([s,t))

∣∣∣∣
≤
∣∣∣∣e(ai+

ψi
ϕi
)(t−s)

(1 + αi)
i([s,t))

∣∣∣∣∣∣∣(1 + αi)
|i([s+tn ,t+tn))−i([s,t))| − 1

∣∣∣ ≤ M max(1, |αi|)eλi(t−s),

for all t ≥ s, i = 1, 2, . . . , m.

Similar to the proof in the book [27], one can verify the validity of the following lemma.

Lemma 3. A function (u1(t), . . . , um(t), v1(t), . . . , vm(t)) is a bounded solution of (7) if and
only if it is a solution of the following integral equation:

ui(t) =
1
ϕi

t∫
−∞

e−
ψi
ϕi
(t−s)vi(s)ds, i = 1, · · · , m

vi(t) =
t∫

−∞

Vi(t, s)
[
(ϕibi − ψi(ai +

ψi
ϕi
))ui(s) + ϕi

m

∑
j=1

cij f j(uj(s)) + ϕihi(s)
]
ds

+ ∑
θk<t

Vi(t, θk+)
[
(ϕiβi − ψiαi)ui(θk) + ϕi

m

∑
j=1

γijgj(uj(θk)) + ϕiπik
]
, i = 1, · · · , m.

(12)

We introduce the operator Φ on Ξ such that Φω(t) = (Φ1ω1(t), Φ2ω2(t), . . .,
Φ2mω2m(t)), where

Φiωi(t) =



1
ϕi

t∫
−∞

e−
ψi
ϕi
(t−s)

ωi+m(s)ds, i = 1, · · · , m,

t∫
−∞

Vi−m(t, s)
[
(ϕi−mbi−m − ψi−m(ai−m +

ψi−m
ϕi−m

))ωi−m(s) + ϕi−m

m

∑
j=1

c(i−m)j f j(ωj(s)) + ϕi−mhi−m(s)
]
ds

+ ∑
θk<t

Vi−m(t, θk+)
[
(ϕi−mβi−m − ψi−mαi−m)ωi−m(θk) + ϕi−m

m

∑
j=1

γ(i−m)jgj(ωj(θk)) + ϕi−mπ(i−m)k
]
,

i = m + 1, · · · , 2m.

(13)

Lemma 4. ΦΞ ⊆ Ξ.
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Proof. For ωi(t) ∈ Ξ with fixed i = 1, · · · , m, we have that

|Φiωi(t)| =



∣∣∣ 1
ϕi

t∫
−∞

e−
ψi
ϕi
(t−s)

ωi+m(s)ds
∣∣∣ ≤ 1
|ψi|
|ωi+m(t)| ≤

H
|ψi|

, i = 1, · · · , m,

∣∣∣ t∫
−∞

Vi−m(t, s)
[
(ϕi−mbi−m − ψi−m(ai−m +

ψi−m
ϕi−m

))ωi−m(s) + ϕi−m

m

∑
j=1

c(i−m)j f j(ωj(s)) + ϕi−mhi−m(s)
]
ds
∣∣∣

+
∣∣∣ ∑

θk<t
Vi−m(t, θk+)

[
(ϕi−mβi−m − ψi−mαi−m)ωi−m(θk) + ϕi−m

m

∑
j=1

γ(i−m)jgj(πj(θk)) + ϕi−mπ(i−m)k
]∣∣∣

≤
t∫

−∞

|Vi−m(t, s)|
[
|ϕi−mbi−m − ψi−m(ai−m +

ψi−m
ϕi−m

)||ωi−m(s)|+ |ϕi−m

m

∑
j=1

c(i−m)j|| f j(ωj(s))|+ |ϕi−mhi−m(s)|
]
ds

+ ∑
θk<t
|Vi−m(t, θk+)|

[
|(ϕi−mβi−m − ψi−mαi−m)||ωi−m(θk)|+ |ϕi−m

m

∑
j=1

γ(i−m)j||gj(πj(θk))|+ |ϕi−mπ(i−m)k|
]

≤
t∫

−∞

Meλi−m(t−s)[∣∣ϕi−mbi−m − ψi−m(ai−m +
ψi−m
ϕi−m

)
∣∣H + ϕi−m

m

∑
j=1

c(i−m)jm f + ρϕi−m
]
ds

+ ∑
θk<t

Meλi−m(t−θk)
[∣∣(ϕi−mβi−m − ψi−mαi−m)

∣∣H + ϕi−m

m

∑
j=1

γ(i−m)jmg + ρϕi−m
]

≤ M
−λi−m

[∣∣ϕi−mbi−m − ψi−m(ai−m +
ψi−m
ϕi−m

)
∣∣H + ϕi−m

m

∑
j=1

c(i−m)jm f + ρϕi−m
]

+
M

1− eλi−mθ

[∣∣(ϕi−mβi−m − ψi−mαi−m)
∣∣H + ϕi−m

m

∑
j=1

γ(i−m)jmg + ρϕi−m
]
, i = m + 1, · · · , 2m.

On account of the above conditions (C1) and (C7)–(C9), this inequality satisfies
||Φω(t)||1 < H. It follows that the property (A4) is true for Φω(t).

Let us prove properties (A1)–(A3) for Φω(t). That is, we have to check that there exists
a sequence tn, tn → ∞ such that for each Φω(t) ∈ Ξ, Φω(t + tn) → Φω(t) uniformly on
each closed and bounded interval of the real axis. We will use the method of intervals
considered in [26] and other our papers. Fix a section [a, b], where a, b ∈ R with a < b and
a positive real number ε. It is sufficient, to prove the claim, to show that ||Φω(t + tn)−
Φω(t)|| < ε for t ∈ [a, b] and large n. We choose numbers c < a and ξ > 0 such that

2H
|ψi|

e−
ψi
ϕi
(a−c)

< ε/2, (14)

1
|ψi|

ξ < ε/2, (15)

M
−λi

[
H|ϕibi − ψi(ai +

ψi
ϕi
)|+ m f ϕi

m

∑
j=1
|cij|+ ρϕi

]
eλi(a−c) < ε/9, (16)

2M
1− eλiθ

[
H|ϕiβi − ψiαi|+ mg ϕi

m

∑
j=1
|γij|+ ρϕi

]
eλi(a−c) < ε/9, (17)

M(e−λiξ − 1)
−λi(1− eλiθ)

[
H|ϕibi − ψi(ai +

ψi
ϕi
)|+ m f ϕi

m

∑
j=1
|cij|+ ρϕi

]
< ε/9, (18)

Mξ

1− eλiθ

[
|ϕiβi − ψiαi|+ mg ϕi

m

∑
j=1
|γij|+ ϕi

]
< ε/9, (19)
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2M
−λi

[
H|ϕibi − ψi(ai +

ψi
ϕi
)|+ Li Hϕi

m

∑
j=1
|cij|+ ρϕi

]
eλi(a−c) < ε/9, (20)

2M
1− eλiθ

[
H|ϕiβi − ψiαi|+ HL̄i ϕi

m

∑
j=1
|γij|+ ρϕi

]
eλi−m(a−c) < ε/9, (21)

Mξ

−λi

[
|ϕibi−m − ψi(ai +

ψi
ϕi
)|+ Li ϕi

m

∑
j=1
|cij|+ ϕi

]
< ε/9, (22)

2M(e−λiξ − 1)
−λi(1− eλiθ)

[
H|ϕibi−m − ψi(ai +

ψi
ϕi
)|+ HLi ϕi

m

∑
j=1
|cij|+ ρϕi

]
< ε/9, (23)

Mξ

1− eλiθ

[
|ϕiβi−m − ψiαi|+ L̄i ϕi

m

∑
j=1
|γij|+ ϕi

]
< ε/9, (24)

for all i = 1, 2, . . . , m.
Take n large enough such that

∣∣θk+ln − tn − θk
∣∣ < ξ, |wi(θk+ln) − wi(θk)|

< ξ, |πi k+ln − πik| < ξ whenever θk ∈ [c, b], k ∈ Z and |hi(t + tn) − hi(t)| < ξ,
|wi(t + tn)− wi(t)| < ξ for all t ∈ [c, b], i = 1, 2, . . . , m. Then, for ω(t) ∈ Ξ, we obtain that

|Φiωi(t + tn)−Φiωi(t)| ≤



∣∣∣ 1
ϕi

t∫
−∞

e−
ψi
ϕi
(t−s)

[ωi+m(s + tn)−ωi+m(s)]ds
∣∣∣, i = 1, · · · , m,

t∫
−∞

∣∣∣Vi−m(t + tn, s + tn)−Vi−m(t, s)
∣∣∣[(ϕi−mbi−m − ψi−m(ai−m +

ψi−m
ϕi−m

)
)∣∣ωi−m(s + tn)

∣∣
+ϕi−m

m

∑
j=1

∣∣c(i−m)j
∣∣∣∣ f j(ωj(s + tn))

∣∣+ ϕi−m
∣∣hi−m(s + tn)

∣∣]ds

+ ∑
θk<t

∣∣∣Vi−m(t + tn, θk+ln+)−Vi−m(t, θk+)
∣∣∣[(ϕi−mβi−m − ψi−mαi−m)

∣∣ωi−m(θk+ln)
∣∣

+ϕi−m

m

∑
j=1

∣∣γ(i−m)j
∣∣∣∣gj(ωj(θk+ln))

∣∣+ ϕi−m
∣∣π(i−m)k+ln

∣∣]
t∫

−∞

∣∣∣Vi−m(t, s)
∣∣∣[(ϕi−mbi−m − ψi−m(ai−m +

ψi−m
ϕi−m

)
)∣∣ωi−m(s + tn)−ωi−m(s)

∣∣
+ϕi−m

m

∑
j=1

c(i−m)j
∣∣ f j(ωj(s + tn))− f j(ωj(s))

∣∣+ ϕi−m
∣∣hi−m(s + tn)− hi−m(s)

∣∣]ds

+ ∑
θk<t

∣∣∣Vi−m(t, θk+)
∣∣∣[(ϕi−mβi−m − ψi−mαi−m)

∣∣ωi−m(θk+ln)−ωi−m(θk)
∣∣

+ϕi−m

m

∑
j=1

γ(i−m)j
∣∣gj(ωj(θk+ln))− gj(ωj(θk))

∣∣+ ϕi−m
∣∣π(i−m)k+ln − π(i−m)k

∣∣],
i = m + 1, · · · , 2m.

Further, breaking up the integral into two sub-integrals, we obtain
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≤



∣∣∣ 1
ϕi

c∫
−∞

e−
ψi
ϕi
(t−s)

[ωi+m(s + tn)−ωi+m(s)]ds
∣∣∣+ ∣∣∣ 1

ϕi

t∫
c

e−
ψi
ϕi
(t−s)

[ωi+m(s + tn)−ωi+m(s)]ds
∣∣∣,

i = 1, · · · , m,∣∣∣ c∫
−∞

∣∣∣Vi−m(t + tn, s + tn)−Vi−m(t, s)
∣∣∣[∣∣ϕi−mbi−m − ψi−m(ai−m +

ψi−m
ϕi−m

)
∣∣∣∣ωi−m(s + tn)

∣∣
+ϕi−m

m

∑
j=1

∣∣c(i−m)j
∣∣∣∣ f j(ωj(s + tn))

∣∣+ ϕi−m
∣∣hi−m(s + tn)

∣∣]ds

+ ∑
−∞<θk<c

∣∣∣Vi−m(t + tn, θk+ln+)−Vi−m(t, θk+)
∣∣∣[∣∣ϕi−mβi−m − ψi−mαi−m

∣∣∣∣ωi−m(θk+ln)
∣∣

+ϕi−m

m

∑
j=1

∣∣γ(i−m)j
∣∣∣∣gj(ωj(θk+ln))

∣∣+ ϕi−m
∣∣π(i−m)k+ln

∣∣]
+

t∫
c

∣∣∣Vi−m(t + tn, s + tn)−Vi−m(t, s)
∣∣∣[∣∣ϕi−mbi−m − ψi−m(ai−m +

ψi−m
ϕi−m

)
∣∣∣∣ωi−m(s + tn)

∣∣
+ϕi−m

m

∑
j=1

∣∣c(i−m)j
∣∣∣∣ f j(ωj(s + tn))

∣∣+ ϕi−m
∣∣hi−m(s + tn)

∣∣]ds

+ ∑
c≤θk<t

∣∣∣Vi−m(t + tn, θk+ln+)−Vi−m(t, θk+)
∣∣∣[∣∣ϕi−mβi−m − ψi−mαi−m

∣∣∣∣ωi−m(θk+ln)
∣∣

+ϕi−m

m

∑
j=1

∣∣γ(i−m)j
∣∣∣∣gj(ωj(θk+ln))

∣∣+ ϕi−m
∣∣π(i−m)k+ln

∣∣]
+

c∫
−∞

∣∣∣Vi−m(t, s)
∣∣∣[∣∣ϕi−mbi−m − ψi−m(ai−m +

ψi−m
ϕi−m

)
∣∣∣∣ωi−m(s + tn)−ωi−m(s)

∣∣
+ϕi−m

m

∑
j=1
|c(i−m)j|

∣∣ f j(ωj(s + tn))− f j(ωj(s))
∣∣+ ϕi−m

∣∣hi−m(s + tn)− hi−m(s)
∣∣]ds

+ ∑
−∞<θk<c

∣∣∣Vi−m(t, θk+)
∣∣∣[∣∣ϕi−mβi−m − ψi−mαi−m

∣∣∣∣ωi−m(θk+ln)−ωi−m(θk)
∣∣

+ϕi−m

m

∑
j=1
|γ(i−m)j|

∣∣gj(ωj(θk+ln))− gj(ωj(θk))
∣∣+ ϕi−m

∣∣π(i−m)k+ln − π(i−m)k
∣∣]

+

t∫
c

∣∣∣Vi−m(t, s)
∣∣∣[∣∣ϕi−mbi−m − ψi−m(ai−m +

ψi−m
ϕi−m

)
∣∣∣∣ωi−m(s + tn)−ωi−m(s)

∣∣
+ϕi−m

m

∑
j=1
|c(i−m)j|

∣∣ f j(ωj(s + tn))− f j(ωj(s))
∣∣+ ϕi−m

∣∣hi−m(s + tn)− hi−m(s)
∣∣]ds

+ ∑
c≤θk<t

∣∣∣Vi−m(t, θk+)
∣∣∣[∣∣ϕi−mβi−m − ψi−mαi−m

∣∣∣∣ωi−m(θk+ln)−ωi−m(θk)
∣∣

+ϕi−m

m

∑
j=1
|γ(i−m)j|

∣∣gj(ωj(θk+ln))− gj(ωj(θk))
∣∣+ ϕi−m

∣∣π(i−m)k+ln − π(i−m)k
∣∣]

i = m + 1, · · · , 2m
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≤



∣∣∣ 1
ϕi

c∫
−∞

2He−
ψi
ϕi
(t−s)ds

∣∣∣+ ∣∣∣ 1
ϕi

s∫
t

ξe−
ψi
ϕi
(t−s)ds

∣∣∣, i = 1, · · · , m,

c∫
−∞

Meλi−m(t−s)
[

H|ϕi−mbi−m − ψi−m(ai−m +
ψi−m
ϕi−m

)|+ m f ϕi−m

m

∑
j=1
|c(i−m)j|+ ρϕi−m

]
ds

+
k−1

∑
r=−∞

2Meλi−m(t−θr)
[

H|ϕi−mβi−m − ψi−mαi−m|+ mg ϕi−m

m

∑
j=1
|γ(i−m)j|+ ρϕi−m

]

+
k+p−1

∑
r=k

θr+1+ln∫
θr+1

Meλi−m(t−s)
[

H|ϕi−mbi−m − ψi−m(ai−m +
ψi−m
ϕi−m

)|+ m f ϕi−m

m

∑
j=1
|c(i−m)j|+ ρϕi−m

]
ds

+
k+p−1

∑
r=k

Meλi−m(t−θr)ξ
[

H|ϕi−mbi−m − ψi−m(ai−m +
ψi−m
ϕi−m

)|+ mg ϕi−m

m

∑
j=1
|c(i−m)j|+ ρϕi−m

]
ds

+

c∫
−∞

Meλi−m(t−s)
[
2H|ϕi−mbi−m − ψi−m(ai−m +

ψi−m
ϕi−m

)|+ 2HLi ϕi−m

m

∑
j=1
|c(i−m)j|+ 2ρϕi−m

]
ds

+
k−1

∑
r=−∞

Meλi−m(t−θr)
[
2H|ϕi−mβi−m − ψi−mαi−m|+ 2HL̄i ϕi−m

m

∑
j=1
|γ(i−m)j|+ 2ρϕi−m

]
+

t∫
c

Meλi−m(t−s)
[
ξ|ϕi−mbi−m − ψi−m(ai−m +

ψi−m
ϕi−m

)|+ ξLi ϕi−m

m

∑
j=1
|c(i−m)j|+ ξϕi−m

]
ds

+
k+p−1

∑
r=k

θr+1+ln∫
θr+1

Meλi−m(t−s)
[
2H|ϕi−mbi−m − ψi−m(ai−m +

ψi−m
ϕi−m

)|+ 2HLi ϕi−m

m

∑
j=1
|c(i−m)j|+ 2ρϕi−m

]
ds

+
k+p−1

∑
r=k

Meλi−m(t−θr+1)
[
ξ|ϕi−mβi−m − ψi−mαi−m|+ ξ L̄i ϕi−m

m

∑
j=1
|γ(i−m)j|+ ξϕi−m

]
, i = m + 1, · · · , 2m

≤



2H
|ψi |

e−
ψi
ϕi
(a−c)

+
1
|ψi|

ξ, i = 1, · · · , m,

M
−λi−m

[
H|ϕi−mbi−m − ψi−m(ai−m +

ψi−m
ϕi−m

)|+ m f ϕi−m

m

∑
j=1
|c(i−m)j|+ ρϕi−m

]
eλi−m(a−c)

+
2M

1− eλi−mθ

[
H|ϕi−mβi−m − ψi−mαi−m|+ mg ϕi−m

m

∑
j=1
|γ(i−m)j|+ ρϕi−m

]
eλi−m(a−c)

+
M(e−λi−mξ − 1)
−λi−m(1− eλi−mθ)

[
H|ϕi−mbi−m − ψi−m(ai−m +

ψi−m
ϕi−m

)|+ m f ϕi−m

m

∑
j=1
|c(i−m)j|+ ρϕi−m

]
+

Mξ

1− eλi−mθ

[
H|ϕi−mβi−m − ψi−mαi−m|+ mg ϕi−m

m

∑
j=1
|γ(i−m)j|+ ϕi−m

]
+

2M
−λi−m

[
H|ϕi−mbi−m − ψi−m(ai−m +

ψi−m
ϕi−m

)|+ Li Hϕi−m

m

∑
j=1
|c(i−m)j|+ ρϕi−m

]
eλi−m(a−c)

+
2M

1− eλi−mθ

[
H|ϕi−mβi−m − ψi−mαi−m|+ HL̄i ϕi−m

m

∑
j=1
|γ(i−m)j|+ ρϕi−m

]
eλi−m(a−c)

+
Mξ

−λi−m

[
|ϕi−mbi−m − ψi−m(ai−m +

ψi−m
ϕi−m

)|+ Li ϕi−m

m

∑
j=1
|c(i−m)j|+ ϕi−m

]
+

2M(e−λi−mξ − 1)
−λi−m(1− eλi−mθ)

[
H|ϕi−mbi−m − ψi−m(ai−m +

ψi−m
ϕi−m

)|+ HLi ϕi−m

m

∑
j=1
|c(i−m)j|+ ρϕi−m

]
+

Mξ

1− eλi−mθ

[
|ϕi−mβi−m − ψi−mαi−m|+ L̄i ϕi−m

m

∑
j=1
|γ(i−m)j|+ ϕi−m

]
, i = m + 1, · · · , 2m.
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The inequalities (14)–(24) give that |Φiωi(t + tn)− Φiωi(t)| < ε for i = 1, 2, . . . , m,
t ∈ [a, b]. So, function Φω(t) satisfies properties (A1)–(A3). As a consequence, operator Φ
is invariant in Ξ.

Lemma 5. Operator Φ : Ξ→ Ξ is a contraction.

Proof. Consider functions ω, ν ∈ Ξ. We have that

|Φiωi(t)−Φiνi(t)| ≤



∣∣∣ 1
ϕi

t∫
−∞

e−
ψi
ϕi
(t−s)

[ωi+m(s)− νi+m(s)]ds
∣∣∣ ≤ 1
|ψi|
|ωi(t)− νi(t)|, i = 1, · · · , m,

∣∣∣ t∫
−∞

|Vi−m(t, s)|
[(

ϕi−mbi−m − ψi−m(ai−m +
ψi−m
ϕi−m

)
)
[ωi−m(s)− νi−m(s)]

+ϕi−m

m

∑
j=1

c(i−m)j[ f j(ωj(s))− f j(νj(s))]]ds
]∣∣∣

+
∣∣∣ ∑

θk<t
|Vi−m(t, θk+)|

[
(ϕi−mβi−m − ψi−mαi−m)[ωi−m(θk)− νi−m(θk)]

+ϕi−m

m

∑
j=1

γ(i−m)j[gj(ωj(θk))− gj(νj(θk))]
]∣∣∣

∣∣∣ t∫
−∞

Meλi−m(t−s)
[(

ϕi−mbi−m − ψi−m(ai−m +
ψi−m
ϕi−m

)
)
[ωi−m(s)− νi−m(s)]

+ϕi−m

m

∑
j=1

c(i−m)j[ f j(ωj(s))− f j(νj(s))]]ds
]∣∣∣

+
∣∣∣ ∑

θk<t
Meλi−m(t−θk)

[
(ϕi−mβi−m − ψi−mαi−m)[ωi−m(θk)− νi−m(θk)]

+ϕi−m

m

∑
j=1

γ(i−m)j[gj(ωj(θk))− gj(νj(θk))]
]∣∣∣

≤ M
−λi−m

[∣∣ϕi−mbi−m − ψi−m(ai−m +
ψi−m
ϕi−m

)
∣∣+ Li ϕi−m

m

∑
j=1
|c(i−m)j|

]
|ωi(t)− νi(t)|

+
M

1− eλi−mθ

[
|ϕi−mβi−m − ψi−mαi−m|+ L̄i ϕi−m

m

∑
j=1
|γ(i−m)j|

]
|ωi(t)− νi(t)|,

i = m + 1, · · · , 2m,

for all t ∈ R. So, it is true that ‖Φω − Φν‖1 = max
i

( 1
|ψi|

,
M
−λi

[∣∣ϕibi − ψi(ai +
ψi
ϕi
)
∣∣ +

Li ϕi

m

∑
j=1
|cij|

]
+

M
1− eλiθ

[
|ϕiβi − ψiαi|+ L̄i ϕi

m

∑
j=1
|γij|

])
‖ω− ν‖1, for all t ∈ R.

Consequently, by conditions (C7) and (C10) operator Φ : Ξ → Ξ is a contraction.
The lemma is proved.

3. Main Results

In this section, the existence of dynamics in a system of neural networks is discussed,
specifically focusing on Poisson-stable and unpredictable oscillations of impulsive inertial
neural networks. Additionally, the exponential stability of the solutions is obtained under
the specific conditions adopted during the research.

By using the 2m-dimensional function x(t) = (u1(t), . . . , um(t), v1(t), . . . , vm(t)), we
can rewrite system (7) in vector form,

dx
dt

= Ax + F(t, x), t 6= θk,

∆x|t=θk = Bx + Ik(x), (25)
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where A = diag
(
−ψ1

ϕ1
,−ψ2

ϕ2
, . . . ,−ψm

ϕm
, λ1, λ2, . . . , λm

)
and B = diag(0, 0, . . . , 0, α1, α2, . . . ,

αm) are constant 2m × 2m matrices, and F(t, x) = (F1(t, x), F2(t, x), . . . , F2m(t, x)) and
Ii(x) = (I1(x), I2(x), . . . , I2m(x)) are vector functions such that

Fi(t, x) =


1
ϕi

xi+m(t), i = 1, · · · , m(
ϕi−mbi−m − ψi−m(ai−m +

ψi−m
ϕi−m

)
)

xi−m(t) + ϕi−m

m

∑
j=1

c(i−m)j f j(xj(t)) + ϕi−mhi−m(t), i = m + 1, · · · , 2m

and

Ik(x) =


0, i = 1, · · · , m

(ϕi−mβi−m − ψi−mαi−m)xi−m(θk) + ϕi−m

m

∑
j=1

γ(i−m)jgj(xj(θk)) + ϕi−mπ(i−m)k, i = m + 1, · · · , 2m.

Let us consider the homogeneous system associated with (25),

dx
dt

= Ax, t 6= θk,

∆x|t=θk = Bx. (26)

Taking into account the commutativity of matrices A and B, we determine the transi-
tion matrix of (26) as follows [27]:

W(t, s) = diag
(

e−
ψ1
ϕ1

(t−s), e−
ψ2
ϕ2

(t−s), . . . , e−
ψm
ϕm (t−s), V1(t, s), V2(t, s), . . . Vm(t, s)

)
(27)

Considering the structure of matrix (27) we can easily find that

‖W(t, s)‖ ≤ Meµ(t−s), t ≥ s, (28)

where µ = max
(
−ψ1

ϕ1
,−ψ2

ϕ2
, . . . ,−ψm

ϕm
, λ1, λ2, . . . , λm

)
.

For simplicity, we shall use the following notation:

L f = max
i

(
1
|ϕi|

,
∣∣ϕibi − ψi(ai +

ψi
ϕi
)
∣∣+ ϕiLi

m

∑
j=1
|cij|

)
,

Lg = max
i

(
|ϕiβi − ψiαi|+ ϕi L̄i

m

∑
j=1
|γij|

)
, i = 1, · · · , m.

The following condition is to be assumed:

(C11) µ + ML f +
1
θ ln(1 + MLg) < 0.

Theorem 1. Suppose the conditions (C1)–(C11) are fulfilled. If input functions hi(t), i = 1, 2, . . . m
are Poisson stable with the convergence sequence tn, n = 1, 2, . . . , then impulsive system (4) has a
unique globally exponentially stable Poisson-stable solution.

Proof. The coordinate u(t) of system (7) is the desired Poisson-stable solution of the main
system (4). Therefore, we first prove the existence of such a unique exponentially stable,
discontinuous Poisson-stable solution of system (7).

We start with the proof of the completeness of the space Ξ. Denote a Cauchy se-
quence by ωl(t) = {ωl

i (t)}, i = 1, 2, . . . , m, l = 1, 2, . . ., in Ξ, where the limit of ωl(t)
as l tends to ∞ is ω(t) on R. Consider a closed and bounded interval J ⊂ R. Denote
θk, k = r, r + 1, . . . , r + m′, the discontinuity points ω(t) and ωl(t), and θn

k = θk+ln − tn,
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k = r, r + 1, . . . , r + m′, the discontinuity points ω(t + tn) and ωl(t + tn) in the interval J,
respectively. Let n be a large enough number such that |θn

k − θk| < ε, k = r, r + 1, · · · , r +m′.
Because of the convergence of ωl(t), we have that |ωi(t + tn) − ωl

i (t + tn)| < ε
3 and

|ωl
i (t) − ωi(t)| < ε

3 if l is sufficiently large. Since ωl(t) ∈ Ξ, for sufficiently large n
we have that |ωl

i (t + tn) − ωl
i (t)| <

ε
3 for t /∈ [θ̂k, θn

k ], i = 1, 2, . . . , m, j = 1, 2, . . . , n,
and |θn

k − θk| < ε, k = r, r + 1, . . . , r + m′. Thus, for sufficiently large n, l, and i = 1, 2, . . . , m,
it is true that

|ωi(t + tn)−ωi(t)| ≤ |ωi(t + tn)−ωl
i (t + tn)|+ |ωl

i (t + tn)−ωl
i (t)|+ |ωl

i (t)−ωi(t)| < ε (29)

for all t /∈ [θ̂k, θn
k ], and |θn

k − θk| < ε, k = r, r + 1, . . . , r + m′. That is, ω(t + tn) → ω(t)
uniformly in B-topology as n→ ∞ on J. So, the space Ξ is complete.

Under the assumptions of Lemmas 4 and 5, the operator Φ is a contraction and invari-
ant in Ξ . Owning to the the contraction mapping theorem, it is concluded that there exists
a unique discontinuous Poisson-stable solution y(t) = (u1(t), . . . , um(t), v1(t), . . . , vm(t))
of system (7). At the same time, the first coordinate u(t) = (u1(t), . . . , um(t)) is a unique
Poisson-stable solution of the desired impulsive system (4).

We shall next consider the stability of the solution y(t). We have that

y(t) = W(t, t0)y(t0) +
∫ t

t0

W(t, s)Fi(s, y(s))ds + ∑
t0≤θk<t

W(t, θk+)Ii(y(θk))

for all i = 1, 2, . . . m. If z(t) = colon(z1(t), z2(t), . . . , z2m(t)), z(t0) ∈ R2m is another solution
of the impulsive inertial neural network system (4), then

z(t) = W(t, t0)z(t0) +
∫ t

t0

W(t, s)Fi(s, z(s))ds + ∑
t0≤θk<t

W(t, θk+)Ii(z(θk))

By finding the difference

z(t)− y(t) = W(t, t0)[z(t0)− y(t0)] +
∫ t

t0

W(t, s)[Fi(s, z(s))− Fi(s, y(s))]ds

+ ∑
t0≤θk<t

W(t, θk+)[Ii(z(θk))− Ii(y(θk))]

we obtain that

‖z(t)− y(t)‖ ≤W(t, t0)‖z(t0)− y(t0)]‖+
∫ t

t0

W(t, s)‖Fi(s, z(s))− Fi(s, y(s))‖ds

+ ∑
t0≤θk<t

W(t, θk+)‖Ii(z(θk))− Ii(y(θk))‖.

Hence, we find that

‖z(t)− y(t)‖ ≤ Meµ(t−t0)‖z(t0)− y(t0)]‖+
∫ t

t0

Meµ(t−s)L f ‖z(s)− y(s)‖ds

+ ∑
t0≤θk<t

Meµ(t−θk)Lg‖z(θk)− y(θk)‖.

Applying the Gronwall–Bellman lemma [27] to the last inequality, we obtain that

‖z(t)− y(t)‖ ≤ M‖z(t0)− y(t0)‖e
(

µ+ML f +
1
θ ln(1+NLg)

)
(t−t0). (30)

According to condition (C11), we conclude that solution y(t) = (u1(t), . . . , um(t),
v1(t), . . . , vm(t)) of (7) is globally exponential stable. Thus, we have proved that system
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(7) has a unique globally exponentially stable discontinuous Poisson-stable solution, con-
sequently, the solution u(t) = (u1(t), . . . , um(t)) is a required unique globally exponential
stable Poisson-stable solution of (4). The theorem is proved.

The following separation property will be needed:

(C12) The functions hi(t), i = 1, 2, . . . m in system (7) belong to Ξ, and they are unpre-
dictable with positive numbers ε0, δ and divergence sequence sn, n ∈ N.

Theorem 2. Under the conditions (C1)–(C12) stated above, the system (4) has a unique globally
exponentially stable unpredictable solution.

In accordance with Theorem 1, system (4) has a unique exponentially stable Poisson-
stable solution u(t). So, to prove this theorem, we need to show that the solution of (4)
satisfies the separation property.

Let us prove that the function y(t) = (u1(t), . . . , um(t), v1(t), . . . , vm(t)) has the separa-
tion property. Corresponding to Definition 7, the interval [sn−σ, sn +σ] ⊆ [θ ̂mn , θmn+ln

− tn]
does not admit discontinuity points of functions y(t), y(t + tn). That is why studies of
unpredictability ignore the presence of discontinuity moments.

yi(t + tn)− yi(t) =



yi(sn + tn)− yi(sn)−
ψi
ϕi

t∫
sn

(yi(s + tn)− yi(s))ds

+

t∫
sn

1
ϕi
(yi+m(s + tn)− yi+m(s))ds, i = 1, · · · , m,

yi(sn + tn)− yi(sn)−
t∫

sn

(ai−m +
ψi−m
ϕi−m

)(yi(s + tn)− yi(s))ds

−
t∫

sn

(βi−m(ϕi−mbi−m − ψi−m(ai−m +
ψi−m
ϕi−m

))(yi−m(s + tn)− yi−m(s))ds

+

t∫
sn

ϕi−m

m

∑
j=1

c(i−m)j[ f j(yj(s + tn))− f j(yj(s))]ds

+

t∫
sn

ϕi−m(hi−m(s + tn)− hi−m(s))ds, i = m + 1, m + 2, · · · , 2m.

(31)

Let us check the unpredictability of this solution. We can choose a positive number η
and p, k ∈ N such that the following inequalities

η < δ, (32)

η
[ ϕi

2
−
[
(ai +

ψi
ϕi
) + |ϕibi − ψi(ai +

ψi
ϕi
)| (33)

+Lαi

m

∑
j=1
|cij|

]
(

1
p
+

2
k
) ≥ 3/2p, i = 1, · · · , m (34)

and
|yi(t + s)− yi(t)| < ε0 min{1/k, 1/4p}, |s| < η, t ∈ R, (35)

are satisfied.
Suppose that the numbers η, p, k, and n ∈ N are fixed.
Denote

∆ = |yi(sn + tn)− yi(tn)|
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and consider the cases: (a) ∆ ≥ ε0/p, (b) ∆ < ε0/p.
(a) If ∆ ≥ ε0/l holds, we have

|yi(t + s)− yi(t)| ≥ |yi(sn + tn)− yi(sn)| − |yi(sn)− yi(t)|
− |yi(t + tn)− yi(sn + tn)| (36)

> ε0/p− ε0/4p− ε0/4p = ε0/2p, i = m + 1, m + 2, · · · , 2m

for t ∈ [sn − η, sn + η], n ∈ N.
(b) If ∆ < ε0/p is true, it follows from (35) that

|yi(t + tn)− yi(t)| ≤ |yi(sn + tn)− yi(sn)|+ |yi(sn)− yi(t)|
+ |yi(t + tn)− yi(sn + tn)| (37)

< ε0/p + ε0/k + ε0/k = (1/p + 2/k)ε0, i = 1, 2, · · · , 2m,

for t ∈ [sn, sn + η].
Applying (32)–(35) and due to condition (C11), one can find that

|yi(t + tn)− yi(t)| ≥
∣∣ t∫

sn

ϕi−m(hi−m(s + tn)− hi−m(s))ds
∣∣

−
∣∣ t∫

sn

(ai−m +
ψi−m
ϕi−m

)(yi(s + tn)− yi(s))ds
∣∣

−
∣∣ t∫

sn

(ϕi−mbi−m − ψi−m(ai−m +
ψi−m
ϕi−m

))(yi−m(s + tn)− yi−m(s))ds
∣∣

−
∣∣ t∫

sn

ϕi−m

m

∑
j=1

c(i−m)j[ f j(yj(s + tn))− f j(yj(s))]ds
∣∣

− |yi(sn + tn)− yi(sn)|

≥ ϕi−mε0
η

2
− ε0(

1
p
+

2
k
)η
[
(ai−m +

ψi−m
ϕi−m

)

+ |ϕi−mbi−m − ψi(ai−m +
ψi−m
ϕi−m

)|+ Lϕi−m

m

∑
j=1
|c(i−m)j|

]
− ε0

p

for t ∈ [sn + η/2, sn + η], i = m + 1, m + 2, · · · , 2m.
At the end, we have by inequalities (32)–(35) that

|yj(t + tn)− yj(t)| ≥ αi−mε0
η

2
− ε0(

1
l
+

2
k
)η
[
(ai−m −

βi−m
αi−m

)

+ |βi−m(ai−m −
βi−m
αi−m

)− αi−mbi−m|+ Lαi−m

m

∑
j=1
|c(i−m)j|

]
− 2L̄αi−m

m

∑
j=1
|d(i−m)j|ηε0 −

ε0

l
≥ − ε0

l
+

3ε0

2l
≥ ε0

2p

for t ∈ [sn + η/2, sn + η], i = m + 1, m + 2, · · · , 2m. Thus, we obtain that

|yj(t + tn)− yj(t)| ≥
ε0

2p
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for t ∈ [sn +
η
2 , sn + η], i = m + 1, m + 2, · · · , 2m. Moreover,

|yi(t + tn)− yi(t)| ≥
∣∣ t∫

sn

1
αi
(yi+m(s + tn)− yi+m(s))ds

∣∣
− |yi(sn + tn)− yi(sn)|

−
∣∣ βi

αi

t∫
sn

(yi(s + tn)− yi(s))ds
∣∣

≥ 1
αi

η
ε0

2l
− ε0

p
− βi

αi
ηε0(

1
p
+

2
k
).

In accordance with the inequalities obtained in cases (a) and (b), we see that the
solution y(t) is discontinuous unpredictable with δ = η

4 and sn = sn +
3η
4 .

Since the first m coordinates of system (7) are the desired unpredictable solution of (4),
we have obtained the unpredictability of the solution of system (4).

4. Examples

Next, we will construct examples of unpredictable continuous and discontinuous
functions, then use the continuous ones of them as input for a neural network.

In [24], an unpredictable sequence was constructed as a solution to the logistic equation

χj+1 = νχj(1− χj). (38)

Moreover, it was proved that for each ν = [3 + (2/3)1/2, 4], there exists an unpre-
dictable solution zj ∈ [0, 1], j ∈ Z, of (38). That is, there exist sequences ln and mn which
diverge to infinity, and a number ε0 > 0 such that |zj+ln − zj| → 0 as n→ ∞ for each j in
bounded intervals of integers and |zmn+ln − zmn | ≥ ε0 for n ∈ N.

Example 1 (Discontinuous unpredictable function). Consider the function ζ(t) = µiξ(t−
ih), t ∈ (ih, (i + 1)h], i ∈ Z, where µi is an unpredictable solution of (38), ξ(t) : (0, h]→ R , is
a continuous function, and h is a positive number. Suppose that there exist positive numbers δ, ε1, s
such that [s− δ, s + δ] ⊂ (0, h] and ‖ξ(t)‖ > ε1 for each t ∈ [s− δ, s + δ].

Let us show the unpredictability of the function ζ(t). For that we need to prove the Poisson
stability.

Poisson stability
Fix a number i ∈ Z and an interval (α, β) such that (α, β) ⊂ ((i − 1)h, (i + s + 1)h] for

s ∈ N. For tn = lnh, n = 1, 2, . . . and t ∈ (jh, (j + 1)h], i − 1 ≤ j ≤ i + s, we have that
t + lnh ∈ ((j + ln)h, (j + ln + 1)h] and ξ(t− (j + ln)h) = ξ(t− jh).

Let us denote M = sup
t∈(0,h]

|ξ(t)|. For an arbitrary number ε > 0 and sufficiently large

number n, it is true that |µj+ln − µj| < ε
M , i − 1 ≤ j ≤ i + s. We fixed integer number

l in i − 1 ≤ l ≤ i + s. If t ∈ (lh, (l + 1)h], then ζ(t) = ξ(t − lh) = µl and ζ(t + tn)
= ζ(t + lnh) = ξ(t− (l + ln)h) = µl+ln . This is why for t ∈ (lh, (l + 1)h], l ∈ [i− 1, i + s], we
have that

|ζ(t + tn)− ζ(t)| = |ζ(t + lnh)− ζ(t)| =
|µl+ln ξ(t− (l + ln)h)− µlξ(t− lh)| ≤ |µl+ln − µl ||ξ(t− lh)| ≤
|µl+ln − µl |M < ε.

The inequality is valid for l ∈ [i − 1, i + s], and consequently, |ζ(t + tn) − ζ(t)| < ε,
t ∈ (α, β).

Unpredictability
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We have that there exists a number ε0 > 0 and the sequence mn which diverges to infinity
such that |zmn+ln − zmn | ≥ ε0 for n ∈ N.

From tn = lnh, n = 1, 2, . . . and t ∈ (mnh + s − δ, mnh + s + δ], it follows that t + tn
= t + lnh ∈ ((mn + ln)h + s− δ, (mn + ln)h + s + δ]. Hence, ξ(t + tn) = ξ(t− (mn + ln)h)
= ξ(t− lnh), n = 1, 2, · · · . We have that

|ζ(t + tn)− ζ(t)| = |µmn+ln ξ(t− (mn + ln)h)− µmn ξ(t−mnh)| ≤
|µmn+ln − µl ||ξ(t−mnh)| > ε0ε1,

for all t ∈ (mnh+ s− δ, mnh+ s+ δ], n = 1, 2, · · · . So, ζ(t) is a Poisson-stable and unpredictable
function.

Example 2 (Continuous unpredictable function). Using the function ζ(t), we construct an

integral function Z(t) =
∫ t

−∞
e−a(t−s)ζ(s)ds, with positive number a. The function Z(t) is

bounded on R. The Poisson stability and unpredictability of function Z(t) are proved by using the
method of included intervals, as in [24].

Example 3 (Three-dimensional impulsive inertial neural network). Finally, let us consider
the impulsive inertial neural network

u′′i (t) = aiu′i(t) + biui(t) +
m

∑
j=1

cij f j(uj(t)) + hi(t), t 6= θk,

∆u′i|t=θk = αiu′i(θk) + βiui(θk) +
p

∑
j=1

γijgj(uj(θk)) + πik, (39)

where m = 3, a1 = −4.5, a2 = −4.5, a3 = −5, b1 = −5, b2 = −5, b3 = −6, α1 = e−6 − 1,
α2 = e−3 − 1, α3 = e−3.6 − 1, β1 = −2.5, β2 = −2.5, β3 = −2.5, f (s) = 0.25 tanh( s

6 ),
g(s) = 0.25 tanh( s

4 ); the weights for connection between neurons j = 3 and i = 3: c11 c12 c13
c21 c22 c23
c31 c32 c33

 =

 0.3 0.7 0.4
0.2 0.5 0.1
0.6 0.3 0.2

,

 γ11 γ12 γ13
γ21 γ22 C23
γ31 γ32 γ33

 =

 0.6 0.3 0.1
0.9 0.2 0.1
0.6 0.5 0.4

,

and the external input functions are given by h1(t)
h2(t)
h3(t)

 =

 0.08Z3(t)
0.01Z(t)− 0.5
−0.18Z(t)3 + 0.1

,

 π1k(t)
π2k(t)
π3k(t)

 =

 12µk
−8µk
10µk

,

where µk, k ∈ R is an unpredictable sequence and Z(t) is an unpredictable function with the value
a = 3, from Example 2. The set of discontinuity moments of the system θk is defined by the sequence
θk =

1
6 (−1)k + k + 1

2 µk, k = 0, 1, 2, . . .
The conditions (C1)–(C12) are true for network (39) with ϕ1 = −2, ϕ2 = −2, ϕ3 = −2,

ψ1 = −4, ψ2 = −4, ψ3 = −4. It is not difficult to calculate that m f = mg = 0.25, ρ = 12.8,
Li = 0.042, L̄i = 0.062. Conditions (C1)–(C11) are satisfied for a system with λ1 = −11.5,
λ2 = −7.7, λ3 = −8.2, H = 86, and M = 1. Hence, there exists a Poisson-stable solution u(t) of
system (39). The exponential stability of the solution is satisfied for the values µ = −2, L f = 0.5,
and Lg = 0.9. Thus, it follows from Theorem 1 that there exists a unique exponentially stable
Poisson-stable solution. Moreover, according to Example 2, the inputs of the system satisfy condition
(C12), that is, they are unpredictable. Hence, by Theorem 2, there exists an unpredictable solution
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u(t) of system (39). Unpredictable behavior is highly sensitive to initial conditions, that is, it is
impossible to indicate the initial value of the solution. It is known that the asymptotic stability
refers to the behavior where solutions of a system approach a particular value or trajectory as time
goes to infinity. According to this property, to define the behavior of the unpredictable oscillation,
we consider the simulation of another solution u(t) = (u1(t), u2(t), u3(t)), with specific initial
conditions u1(0) = 9.125, u2(0) = −8.626, and u3(0) = −10.593.

Figures 1 and 2 show the graph and trajectory of a continuous unpredictable solution. The func-
tion φ(t) is a continuous function with discontinuous derivatives of the first order, moreover, it is
continuously differentiable on intervals [θk, θk+1), k ∈ Z. That is, we have a non-smoothness at
the discontinuity points θk, k ∈ Z. Remember that starting from the first derivative of the solution
we obtain a discontinuous function. In Figures 3 and 4, one can see the graph and trajectory of the
transformed function ϑ(t), consisting of the derivative of this unpredictable solution. Both cases
reveal the unpredictable dynamics of system (39).
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Figure 1. Coordinates of the continuous solution u(t).
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Figure 2. Trajectory of the continuous solution u(t).
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Figure 3. Coordinates of the discontinuous solution ϑ(t).
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Figure 4. The trajectory of the discontinuous solution ϑ(t).

5. Conclusions

The paper contains contributions to the study of unpredictability and Poisson stability
in inertial neural network systems. An innovation of this study is the concept of the
impulsive action symmetrical in relation to the original network model. This approach
is applicable not only for inertial neural networks but also has potential to be adapted
for use in other neural networks such as BAM and Cohen–Grossberg-type networks,
broadening its applicability. The research employs the method of included intervals to
establish the existence and uniqueness of simultaneously continuous and discontinuous
oscillations. The study extends the understanding of unpredictability and Poisson stability
for discontinuous systems and introduces innovative modeling techniques to impact broad
fields of neural network dynamics. Furthermore, we believe that the results presented
in this study can be further enhanced by leveraging Lyapunov methods [29], offering
opportunities for future improvements. The findings presented here contribute to a deeper
comprehension of complex neural network behaviors and offer new avenues for exploration
in this field.
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