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Examining Committee Members:

Prof. Dr. Sinan Kalkan
Computer Engineering, METU

Assoc. Prof. Dr. Hamdullah Yücel
Scientific Computing, METU

Assoc. Prof. Dr. Furkan Başer
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ABSTRACT

A STRATEGY BASED ON STATISTICAL MODELLING AND
MULTI-OBJECTIVE OPTIMIZATION TO DESIGN A DISHWASHER

CLEANING CYCLE

ANAPA, KORKUT
M.S., Department of Scientific Computing

Supervisor : Assoc. Prof. Dr. Hamdullah Yücel

Co-Supervisor : Dr. Songül Bayraktar

December 2023, 84 pages

This thesis proposes a novel approach based on statistical learning and multi-objective
optimization to reduce the need for experiments during the design phase of new clean-
ing cycles for household dishwashers. First, regression models are built that are as-
sociated with the feature selection methods to predict the outputs of a dishwasher
cleaning cycle by using the existing cleaning cycles’ program flows as input data and
the results of the performance laboratory tests of the related cleaning cycles as out-
put data. Then, a multi-objective optimization problem is defined by assigning the
regression models and chosen features as objective functions and unknown decision
variables, respectively. The obtained optimization problem is then solved using evo-
lutionary algorithms according to the designer’s preferences (or customers’ needs).

Keywords: Dishwasher Design, Feature Selection, Multi-Objective Optimization,
Evolutionary Algorithms, Statistical Modelling
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ÖZ

BULAŞIK MAKİNESİ TEMİZLEME DÖNGÜSÜ TASARLAMAK İÇİN
İSTATİSTİKSEL MODELLEMEYE VE ÇOK AMAÇLI OPTİMİZASYONA

DAYALI BİR STRATEJİ

ANAPA, KORKUT
Yüksek Lisans, Bilimsel Hesaplama Bölümü

Tez Yöneticisi : Doç. Dr. Hamdullah Yücel

Ortak Tez Yöneticisi : Dr. Songül Bayraktar

Aralık 2023, 84 sayfa

Bu tez, ev tipi bulaşık makineleri için yeni temizleme döngülerinin tasarım aşama-
sında, deney ihtiyacını azaltmak için istatistiksel öğrenmeye ve çok amaçlı optimi-
zasyona dayalı yeni bir yaklaşım önermektedir. İlk olarak, mevcut temizleme döngü-
lerinin program akışlarını girdi verileri olarak ve ilgili temizleme döngülerinin per-
formans laboratuvar testlerinin sonuçlarını çıktı olarak kullanarak, bulaşık makinesi
temizleme döngüsünün çıktılarını tahmin etmek için özellik seçim yöntemleriyle iliş-
kili regresyon modelleri oluşturulur. Daha sonra, regresyon modellerinin ve seçilen
özelliklerin sırasıyla amaç fonksiyonları ve bilinmeyen karar değişkenleri olarak atan-
masıyla çok amaçlı bir optimizasyon problemi tanımlanır. Elde edilen optimizasyon
problemi daha sonra tasarımcının tercihlerine (veya müşterilerin ihtiyaçlarına) göre
evrimsel algoritmalar kullanılarak çözülür.

Anahtar Kelimeler: Bulaşık Makinesi Tasarımı, İstatistiksel Modelleme, Öznitelik
Seçimi, Çok Amaçlı Optimizasyon, Evrimsel Algoritmalar
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CHAPTER 1

INTRODUCTION

Household dishwashers are humans’ most critical partners in kitchens and signifi-

cantly affect the sustainable world. Dishwashers can clean the dishes with 75% less

water and 25% less energy concerning hand-washing, with a satisfying result [11].

The result of a dishwasher cleaning cycle can be expressed with the Cleaning Per-

formance Index (CPI) and Drying Performance Index (DPI) according to EN 60436

standard, that is, "Electric dishwashers for household use - methods for measuring

the performance" [26].

Sinner’s Circle [64] explains the primary cleaning mechanism. Four factors are crit-

ical for hand-washing and dishwasher cleaning: chemistry, temperature, time, and

mechanical action. The interaction of these factors for cleaning performance is given

in Figure 1.1. Chemistry in the Sinner’s Circle is detergent, and the dishwasher per-

forms the cleaning process using an appropriate detergent specified in EN 60436 stan-

dard. The other factors in the Sinner’s Circle, i.e., time, temperature, and mechanical

actions, are the inputs of the cleaning cycle. They are designed and defined in the

dishwasher cleaning cycle (also called the program). According to the needs of cus-

tomers, there are different kinds of programs. The most important one is the eco

program which is the energy label program of the dishwasher. The eco program is

designed to use minimum energy and water to achieve acceptable CPI and DPI per-

formances. Therefore, its duration is relatively longer compared to other programs.

A designer should consider the customer’s needs and optimize the CPI, DPI, Energy

Consumption (EC), Water Consumption (WC), and Time Duration (TD) to satisfy

them. For example, in a fast program, the duration of the program needs to be short,

1



Figure 1.1: Sinner’s Circle for handwash (left), dishwasher (right).

but the CPI should still be good enough. On the other hand, in an intensive program

for heavily soiled pots and pans, the CPI and DPI must be perfect, but EC, WC, and

TD can be sacrificed. To achieve the desired performance values in the cleaning cycle

design, the designer needs to adjust the Sinner’s Circle factor values in the program

flow which will be the primary goal of this thesis.

Once a new cleaning cycle has been designed, it is important to verify the results. The

traditional and widely accepted method of verification involves conducting experi-

ments, which can be both costly and time-consuming. However, a predictive model

that predicts the CPI, DPI, EC, WC, and TD would significantly reduce the need

for experiments during the design phase of new cycles, making it a highly effective

solution.

In the literature, there are various studies about modelling the dishwashers. These

studies are fundamentally modelling the physical system by the components. The

study in [47] describes the development of a simulation model for the hydraulic sys-

tem of a commercial dishwasher. In [53], the study focuses on developing an inte-

grated model to predict performance. The aim of this study is to assess the effec-

tiveness of various cleaning agents in removing soil from soil surfaces, using a Fluid

Dynamic Gauge. The paper [63] focuses on developing a model that can predict the

energy, water usage, and duration of automatic dishwashing machines used in private

households across Europe. On the other hand, with the improvement of computer pro-

cess capacities, statistical learning approaches have begun to be used in the industrial

2



area. A statistical supervised learning problem can be defined to predict the outputs

of a cleaning cycle. In the literature, predictive models are given as a framework in

[7, 15, 38, 50, 53]. Instead of doing expensive and lengthy experiments, the designer

can predict the result of the designed cleaning cycle using the prediction models. In

general, the predictive models are the supervised learning models, and they are based

on the experiment results that have been done up to today.

The predictive models use the designed cleaning cycle’s steps as independent vari-

ables. Typically, a dishwasher cleaning cycle comprises ten blocks with different

steps. Each step is a dishwasher operation that considers factors from Sinner’s Circle,

such as temperature value, circulation time, fan, or waiting time. This thesis aims to

construct a framework to create a statistical model that predicts the dependent vari-

ables (CPI, DPI, EC, WC, TD) of a cleaning cycle from the independent variables,

which are the designed cleaning cycle steps. The proposed learning methodology is

a supervised learning since the data contain outputs of the performed experiments

for the specific cleaning cycles. Underlying learning data in this study consist of

154 cleaning cycles (number of samples), each with more than 450 steps, in where

these steps are the independent variables of the model. As the number of independent

variables exceeds the number of observations, a least-square methodology may not

be effective in predicting the outputs. This is called as a high-dimensional problem

[37, 54]. To overcome this issue, we will take an advantages of feature selection

methods [14], which are applied in various applications, such as in [52] for reservoir

characterisation, in [3, 67] for behaviour of tourists, in [51] for financial time series,

in [1] for bankruptcy, and in [75] for energy.

After selecting the essential features, (non)-linear regression models [37] can be stud-

ied to predict the outputs of the cleaning cycle. Linear regression with different types

of regularization, such as lasso and ridge, can be used if the high dimensionality prob-

lem exists. As a non-linear model, k-nearest neighbors and regression trees [15] are

good choices, while random forests and boosting methods are also prevalent nowa-

days as an ensembling method. The critical point is the selection of the model among

these alternatives. A goodness of fit measurement based on, for instance, mean abso-

lute error (MAE) or R-squared, can be used to select the model. In addition, all the

scores are calculated by cross-validation to detect overfitting.
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The prediction model can be considered as a digital twin of the performance labora-

tory that performs the experiments according to EN 60436 standard. By creating a

digital twin of the laboratory, there will be great effectiveness in the time and cost of

designing new dishwashers. According to the data provided by Arçelik A.Ş. [4], a

new dishwasher cleaning cycle needs approximately ten experiment sets with 5 rep-

etitions for both the test of the new dishwasher and the reference dishwasher with a

350-hours of time and 3 person-months cost. While a digital twin of a performance

laboratory can save this amount of time and cost, also the time to market for the new

designs is shortened.

After having statistical models to predict the CPI, DPI, EC, WC, and TD of a cleaning

cycle, we need to find an answer the following question: Can we use these models to

achieve the best, preferred cleaning cycle?

Up to now, the dishwasher cleaning cycles have been designed according to the

knowledge of domain experts by trial and error with lots of experiments. The de-

sign of the dishwasher cleaning cycle actually needs simultaneous optimization of

CPI, DPI, EC, WC, and TD in the incomparable units and conflict among them. Such

kinds of problems are called as multi-objective optimization problems. In a multi-

objective optimization problem, as one can easily understand, there are multiple op-

timum solutions, called as Pareto optimal solutions or non-dominated solutions [22].

However, in the real life, only one solution must be selected for the implementation.

In the multi-objective optimization problems, the decision maker (DM) chooses the

most preferred solution out of this set after finding a set of Pareto optimal solutions.

The importance of the designer (also called the decision maker) is now in play. If the

designer is looking forward to a cleaning cycle with an ecological interest, the DM

will choose low EC and WC and enough CPI and DPI with tolerable TD. However, if

DM is looking forward to a short program, the DM will choose low TD and enough

CPI, DPI with tolerable EC and WC. This is an exact definition of a multi-objective

problem. In this thesis, we will construct a framework to solve a multi-objective op-

timization problem designed by using statistical models for CPI, DPI, EC, WC, and

TD as objective functions.

Multi-objective optimization problems (MOOPs) can be solved in the literature by

4



using two basic methods: multi-criteria decision making (MCDM) [35] and evolu-

tionary multi-objective optimization (EMO) [12, 49]. MCDM is a mathematical pro-

gramming technique, which is based on the DM interaction with the solution, whereas

EMO, a population-based approach, finds an approximation of the whole Pareto front

in one run [22, 45].

Overall in this thesis, we aim to design an effective cleaning cycle for the dishwasher

based on the statistical approaches and multi-objective optimization techniques. The

prediction models with feature selection are used in a digital twin laboratory that

helps the designer to develop the new cycles. Then, the predicted models and se-

lected features are used as objective functions and unknown variables, respectively,

in the MOOPs to find the best cleaning cycle according to DM’s preferences. This

framework can be used in all types of household devices programs, and it can be an

initial step to intelligent household products. The schematic structure of the proposed

workflow is given in Figure 1.2.

Raw Data

- experimental results of
dishwashing performance tests

Data Cleaning
- designing blocks
- increasing interpretabil-
ity
- defining outputs
- removing duplicates

Pre- Feature
Selection

- elimination by variance
threshold and correlation

Predictive Models
- (non)linear regression

+
Feature Selection

- select-K-best with f regression
- genetic algorithm
- gradient boosting regressor
- eXtreme gradient boosting

Multi-Objective
Optimization

- set best predictive models as
objective functions
- set selected features as
decision variables

Solve MOOPs by
Evolutionary Algorithm

- NSGA-III, RVEA, C-TAEA

Design A New Cleaning Cycle
According to Customes’ Needs

Figure 1.2: Workflow of the proposed framework.

The rest of the thesis is given as follows:

• In Chapter 2, the preliminaries related to prediction models and multi-objective

optimization are given.

• In Chapter 3, the statistical modelling problem is solved, the results are given

in a systematic order, and a novel framework is developed to be used in the
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similar problems. Also, a digital twin of the performance laboratory is studied

in this chapter.

• In Chapter 4, the multi-objective optimization problem is solved, and the results

are given. A systematic methodology is provided to design a cleaning cycle. As

a case study, a design of a cleaning cycle with reduced EC is investigated.

• In Chapter 5, concluding remarks are given with possible future work.
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CHAPTER 2

PRELIMINARIES

In this thesis, we try to design a new cleaning cycle for a dishwasher. The idea is

first to predict the performance of the cleaning cycle and then, by using the prediction

models as the objective functions, to design a new cycle by solving the corresponding

optimization problem. Before all these discussions, some preliminaries needed for the

rest of the thesis will be presented in this chapter. We start with discussing the dish-

washers’ fundamental principles. After that, predictive models will be introduced and

discussed with the details. Last, the multi-objective optimization problems are stated

and the numerical algorithms in the literature to solve them are clearly presented and

compared.

2.1 Fundamentals for a Dishwasher

A dishwasher is a mechanical system that cleans dishes using water and detergent.

International standards and regulations are based on some principles, and companies

have to obey these rules. In this section, we introduce main principles of a dishwasher.

2.1.1 Cleaning Cycles

A standard dishwasher can be seen in Figure 2.1. The dishwashers have three fun-

damental functions: cleaning, rinsing, and drying. The dishwasher sprays the water

with detergent on the dishes for cleaning purposes, and rinsing is obtained by spraying

cold or hot water with rinse-aid on the dishes. Drying is removal of residual moisture
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from dishes through heating, evaporating, ventilating, and cooling.

Figure 2.1: A standard dishwasher [9].

Geetha and Tyagi [32] report that the demand for sustainable laundry and dishwash-

ing products is rapidly increasing due to the current environmental pressures, rapid

urbanization, and escalating prices of petrochemical feedstock. The number of dish-

washers used in households is also on the rise, with around 30 million dishwashers

being sold annually. Geetha and Tyagi further emphasize the importance of low en-

ergy and water consumption, as well as high-performance values when it comes to

purchasing automatic washing appliances, as these factors are crucial for consumers.

In general, the consumption and performance values of the dishwashers depend on

their program algorithms. Dishwashers are run according to the pre-designed pro-

grams that manage the cleaning cycle steps one by one.

As given in Figure 2.2, the cleaning cycle consists of six master blocks out of ten.

They are pre-wash block, main wash block, cold rinse block, two hot rinse blocks,

and drying block. Each block also consists of several steps. Each step is an operation

like heating, water inlet, drying, and circulation with an attribute of operation like

temperature, duration, rpm of the pump, and amount of water. A designer changes

these steps and develops a program to satisfy customer needs on the outputs.

We can define the crucial outputs of a cleaning cycle by analyzing today’s trends.

One of them is the pandemic’s effect; cleaning and hygiene are the customers’ shared

and topmost priorities in household dishwashing. Environmental awareness, sustain-
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Figure 2.2: A typical dishwasher cleaning cycle [5].

ability, and time are also in the focus of the customers. Hence, overall the outputs of

a dishwasher can be listed as follows:

• cleaning performance index (CPI),

• drying performance index (DPI),

• energy consumption (EC),

• water consumption (WC),

• duration of the cleaning cycle (TD).

Right now, the critical issue is how we can measure these outputs.

2.1.2 International Standards

The performance measurements are done by experiments defined according to inter-

national standards published by the European Standards (EN) and the International

Electrotechnical Commission (IEC). EN is a technical standard drafted and main-

tained by the European Committee for Standardization (CEN), the European Com-

mittee for Electrotechnical Standardization (CENELEC), and the European Telecom-

munications Standards Institute (ETSI). On the other hand, IEC is an international
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standard organization that prepares and publishes international standards for all elec-

trical, electronic, and related technologies [41].

The dishwashers are designed to satisfy the requirements of the Commission Reg-

ulation (EU) 2019/2022 of 1 October 2019 laying down ecodesign requirements for

household dishwashers under Directive 2009/125/EC of the European Parliament and

of the Council amending Commission Regulation (EC) No 1275/2008 and repealing

the Commission Regulation (EU) No 1016/2010 [73]. The object is to state and define

the principal performance characteristics of electric dishwashers.

The designers of the dishwashers should obey these standards and regulations before

presenting the new design to the market; due to these regulation, verification of a new

design becomes more challenging. Doing many expensive and lengthy experiments,

the current approach in this industry, is necessary and resulting in a long design-to-

market time with increasing design costs. The remedy is to model the cleaning cycle

of dishwasher and predict the output more efficiently.

2.2 Predictive Modelling

Mathematical models are constructed using mathematical concepts such as functions

and equations to represent real-world phenomena. The construction of mathematical

models involves moving from the concrete world into the abstract world of mathe-

matical concepts. These models are created to help understand, analyze, and predict

real-world phenomena [24]. Similarly, we can mathematically model a dishwasher’s

cleaning cycle and can predict the cycle’s output. Using mathematical models, we

can obtain the result of the new, manipulated cycles without doing experiments.

While making modelling, the critical issue is choosing a complex and non-interpretable

model or a simple and interpretable one. This phenomenon is a trade-off between a

white-box model and a black-box model. Accurate black-box models, such as neu-

ral networks and gradient boosting models, have excellent accuracy with low inter-

pretability; however, in traditional statistics models, simpler models such as linear re-

gression and decision trees have the less predictive capacity with clear interpretability.

In general, while making predictions, there is a conflict between accuracy and sim-
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plicity; see, e.g., [15] for more discussion.

Predictive modelling is a conceptual framework to construct a statistical model from

the data to predict the system’s future behaviour. It consists of exploring and cleaning

the data, selecting essential features from the data, training and evaluating models,

and selecting the best model among models according to evaluation criteria [72].

2.2.1 Explore and Clean the Data

In order to create accurate predictive models, the data needs to be in a specific format

and ready for use. However, in real-life scenarios, the data is often raw and problem-

atic. This can impact the performance of the predictive model. To address this issue,

the necessary steps for improving the quality of data for prediction modeling will be

discussed in the following sections.

2.2.1.1 Obtaining a Tidy Data Format

As a first step, the data must be in a tidy data format [70]. In this format, each variable

forms a column, each observation forms a row, and each type of observational unit

forms a table.

2.2.1.2 Elimination of Duplicate Data

Many datasets contain duplicate samples or rows. To ensure accuracy, it is necessary

to analyze the data and remove duplicates by keeping only one instance.

2.2.1.3 Elimination of Outlier/Anomaly Data

Various techniques exist for identifying outliers in the literature [10]. These methods

usually employ distance measures and clustering, and it is essential to understand the

samples’ outlier behaviour better before modelling. Outlier detection algorithms are

unsupervised, like one-class support vector machine (SVM) [2], and long short-term

memory (LSTM) [27].
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2.2.1.4 Elimination of Data with Low Variance

Independent variables with less than a given threshold variance value is dropped in

the statistical modelling to reduce the computational complexity. Variance is a metric

that shows the average distance between the individual points and the points’ mean,

formulated as follows:

σ2 =
1

n

n∑
i=1

(xi − x)2,

where x̄ is the mean and n is the number of points. According to the data’s character-

istics, the variance threshold value is determined.

2.2.1.5 Elimination of Data with Collinearity Problem

According to [43], the collinearity problem is a high correlation between independent

variables and affects the quality of the fitting. The primary way to avoid this issue

is to leave one feature and drop others among correlated independent variables. If

the Pearson correlation [34], a measure of linear correlation between two datasets, is

greater than 0.9 between two independent variables, one should be dropped.

2.2.1.6 Improvement on Imbalance Problem

Generally, the outputs must be in a normal distribution for a suitable fit quality; see,

e.g., [14] for more details. The dependent variables can be checked for normality by

the Anderson-Darling Normality test [65], which is a statistical test of whether a nor-

mal distribution can describe a given sample of data. If the set is not normal, Box-Cox

transformation [14], a methodology to transform non-normal dependent variables into

a standard shape, can be applied.

2.2.2 Feature Selection from the Data

Feature engineering is the most critical step in predictive machine learning. In edu-

cational issues, feature engineering has been completed in most datasets, and most of

12



the attention is on the methods. However, in real-life problems, datasets are raw and

need feature engineering.

In a predictive modelling problem, the sample size, n, and the number of independent

variables, p, play a significant role in the model’s accuracy. If n > p, prediction

accuracy will be suitable for linear regression models. If n = p, then the results will

not be suitable for least-squares. If p > n, there will no longer unique least-square

coefficient estimate [54]. Various fields are increasingly using these kind of data such

as genetic microarrays, chemometrics, medical imaging, text and face recognition,

and finance [28]. One of the methods to overcome the issue caused by the number

of samples is feature selection. Next, we review some feature selection methods by

following [37].

2.2.2.1 Subset Selection Methods

Subset selection methods determine a subset of p predictors (independent variables)

that best fit the response, probably smaller than the number of observations (sample

size) n. In the literature, there are different ways to determine the subsets. Some of

them are as follows:

• Best Subset Selection: A linear regression model is studied for each possible

combination of the p predictor. The best combinations are chosen based on

metrics like mean absolute error and R-squared. Here, there are 2p possibilities,

and for computational reasons, it is not efficient.

• Forward Stepwise Selection: Starting with a model that contains no predictors,

forward stepwise selection adds predictors one at a time until all predictors are

in the model. At each step, the variable that improves the model fit the most is

added.

• Backward Stepwise Selection: The model begins with the full least squares

model containing all p predictors. Then, model iteratively removes the least

helpful predictor, one at a time.

Especially, backward stepwise selection method is widely used in the feature selec-
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tion.

2.2.2.2 Shrinkage Methods

Shrinkage methods contain all p predictors and regularize the coefficient values to-

wards zero. The well-known methods are ridge, lasso, and elastic net regression.

• In ridge regression [43], one try to estimate the coefficients of multiple-regression

models in which the independent variables are highly correlated, and the prob-

lem is ill-posed. In the classical least-squares method, the residual sum of

squares (RSS) value is minimized by estimating βs as in

RSS =
n∑

i=1

(yi − β0 −
p∑

j=1

βjxij)
2,

where y is the response and x is a set of variables. On the other hand, ridge

regression is like least-squares, except that the coefficients βs are estimated by

minimizing the quantity

RSS + λ

p∑
j=1

β2
j ,

where λ ≥ 0 is a tuning parameter to be determined separately.

• Lasso (least absolute shrinkage and selection operator) is a regression analysis

method in the statistics and machine learning that performs both variable selec-

tion and regularization to enhance the prediction accuracy and interpretability

of the resulting statistical model [37]. In the ridge regression, all the p predic-

tors are in the final model. Lasso overcomes this disadvantage by minimizing

RSS + λ

p∑
j=1

|βj|.

Using the l1 penalty, some coefficients in the lasso become exactly zero, and

by doing this, lasso performs variable selection, and the result becomes much

more interpretable.

• In elastic net regression, the model tries to find a linear relationship between

the input features and the outcome variable by minimizing the sum of squared
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errors between the predicted and actual values, while also adding a penalty

term to control for overfitting. The penalty term consists of two parts: the l1

penalty (lasso regression) and the l2 penalty (ridge regression), which control

the number of non-zero coefficients and their magnitudes, respectively. The

amount of regularization applied can be controlled by a hyperparameter called

the elastic net mixing parameter (ratio), which determines the balance between

the l1 and l2 penalties.

2.2.2.3 Dimension Reduction Methods

Dimension reduction methods are approaches that transform the independent vari-

ables and then fit a least squares model using these transformed variables. In these

methods, the predictors/independent variables are not original ones. Principal com-

ponent regression and partial least-squares are the well-known dimension reduction

methods.

• Principal components regression (PCR) approach involves calculating the first

M principal components and using them as predictors in a linear regression

model [14, 37].

• Partial least squares (PLS) is a statistical technique that is used for both pre-

dictive modeling and dimension reduction. This method is particularly useful

when there are many independent/predictor variables, and only a few obser-

vations. PLS identifies latent variables, which are linear combinations of the

original predictor/independent variables, and utilizes them to predict the de-

pendent/response variable. The selection of these latent variables is based on

their ability to explain as much variation in the predictor variables as possible,

while remaining highly correlated with the response variable.

2.2.2.4 Genetic Algorithm

Genetic optimization [40] is a type of optimization algorithm inspired by natural se-

lection and genetics. In the context of feature selection for a regression model, ge-
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netic optimization involves the use of a population of candidate solutions (i.e., sets

of features) that undergo selection, crossover, and mutation to produce new candidate

solutions in a manner analogous to the way genes are inherited and modified in the

biological evolution.

The genetic optimization process starts with creating an initial population of can-

didate solutions, which are representing a set of features that can be used to train

a regression model. The fitness of each candidate solution is evaluated by training

a regression model using the selected features and measuring its performance on a

validation set.

The selection process involves choosing the fittest individuals from the population to

be used as parents for the next generation of candidate solutions. This is typically

done using a fitness-proportionate selection scheme, where individuals with higher

fitness scores are more likely to be selected as parents.

Next, crossover involves combining the selected parents to produce new candidate

solutions. This is done by randomly selecting a crossover point in the parent solu-

tions and by exchanging the features before and after that point to produce two new

candidate solutions.

Last, mutation involves randomly modifying one or more features in the candidate

solutions to introduce new variations. This can help explore new feature space areas

and avoid getting stuck in a local optima. The selection, crossover, and mutation

processes are repeated for a fixed number of generations or until a stopping criterion

is met.

At the end of the genetic optimization process, the best candidate solution (i.e., the

set of features that produced the highest fitness score) is selected as the final set of

features for the training the regression model. This can lead to improved model per-

formance and better generalization to new data.
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2.2.3 Explanatory Data Analysis and Feature Selection in Python

Up to now, the methods of explanatory data analysis and feature selection methods

are introduced. Now, libraries in Python are reviewed that are used in the numerical

solutions of the high dimensional problems: filter, wrapper, and embedded methods

[61].

2.2.3.1 Filter Methods in Python

In the filter methods, one sets all features, selects the best subset, and performs a

learning algorithm. Some of the filter methods are summarized below.

• Variance threshold feature selection method selects a feature with a higher vari-

ance than a threshold value to prevent the model from being biased.

• Univariate feature selection with SelectKBest method [44, 59] is based on the

univariate statistical test, e.g., chi2, Pearson correlation, etc. The base of Selec-

tKBest combines the univariate statistical test with selecting the k-number of

features based on the statistical result between the independent and dependent

variables.

2.2.3.2 Wrapper Methods in Python

In the wrapper methods, one sets all features, generates a subset, performs a learning

algorithm, and iterates until finding the best subset.

• Recursive feature elimination (RFE) [19, 57] is a feature selection method uti-

lizing a machine learning model to select the features by eliminating the least

important feature after the recursive training. That procedure is recursively re-

peated on the pruned set until the desired number of features to select is even-

tually reached.

• Sequential feature selection (SFS) [29, 58] is a feature selection method to

find the best features, either going forward or backwards, based on the cross-
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validation score of an estimator. SFS-Forward starts with zero features, whereas

SFS-Backward starts with all the features.

2.2.3.3 Embedded Methods in Python

In the embedded methods, learning algorithms have an inherent feature selection.

Popular embedded methods are decision tree-based algorithms (e.g., random for-

est, gradient boosting [60]) and regularisation methods (e.g., lasso, ridge, and elastic

[62]).

2.2.3.4 Advance Feature Selection Techniques in Python

In the atom-ml [6], the FeatureSelector class provides tooling to select the relevant

features from a dataset. The feature selection also consists of advanced feature selec-

tion methods, a collection of nature-inspired optimization algorithms that maximize

an objective function to select the relevant feature. Some of them are given briefly

below.

• Particle Swarm Optimization (PSO) is an algorithm that simulates swarm be-

havior to find the optimal solution to a problem [69]. Each potential solution

is represented as a particle, and the population of particles is used to search the

problem space. PSO can be also used for feature selection in machine learn-

ing by identifying a subset of features that optimize model performance. The

algorithm initializes a population of particles representing feature subsets and

updates their positions until the optimal subset is found.

• Harris Hawks Optimization (HHO) is a meta-heuristic algorithm that simulates

the hunting behaviour of Harris hawks to find the optimal solution for a given

problem [68]. In the context of feature selection for a regression model, HHO

can be used to identify a subset of features that optimize the model’s perfor-

mance.

• Grey wolf optimization (GWO) mimics the leadership hierarchy and hunting

mechanism of grey wolves in nature [25].
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• Dragonfly optimization (DFO) algorithm originates from static and dynamic

swarming behaviours [36].

Finally, we can summarize the data preparation procedure in the Figure 2.3.

Data Preperation

Rows Columns Columns and Values

Remove Duplicate Feature Selection Dimensionality Reduction

Data Sampling

Figure 2.3: Data preparation framework.

2.2.4 Train the Model

Prediction problems are classified into two categories according to the dependent

variables. If the dependent variables are numeric, then the prediction problem will

be regression. In the other case, the prediction problem will be classification if the

dependent variables are discrete. In this thesis, the regression models are in focus.

2.2.4.1 Multiple Linear Regression

Multiple linear regression is a statistical model that predicts the dependent variables

using the independent variables [43]. The technique models the linear relationship
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between the independent variables and dependent variables. This idea is based on the

ordinary least-squares method and can be shown as follows:

The defined problem has multiple outputs Y1, Y2, . . . , Yk that one tries to predict from

inputs X1, X2, . . . , Xp. Then, a linear model for each output is given by

Yk = β0k +

p∑
j=1

Xjβjk + ϵk,

= fk(x) + ϵk,

where ϵk is the error of prediction and f : X ∈ Rp → Y ∈ Rk. When we have

N training cases (observations), K dependent variables (output), and p independent

variables (input), the model is expressed in the matrix notation as

Y = XB + E,

where

Y ∈ RN×K , X ∈ RN×(p+1) , B ∈ R(p+1)×K , E ∈ RN×K .

If XT is invertible, the least squares estimate has the form

B = (XTX)−1XTY + XTE.

In this case, the multiple outputs do not affect one another’s least-square estimates.

The least-squares estimates often have low bias but large variance. Overall to achieve

the desired results, some assumptions are needed for multiple linear regressions that

can be summarized [37] :

• There should be a linear relationship between the dependent and independent

variables.

• The independent variables are not too highly correlated with each other.

• Residuals should be normally distributed with a mean of 0 and variance σ.

2.2.4.2 K-Nearest-Neighbor Regression (K-NN)

K-NN algorithm is a supervised machine learning algorithm, one of the non-parametric

regression methods. Parametric methods such as linear regression have disadvantages
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when the information is derived from data. On the other hand, K-NN can solve the

problem by being a more flexible approach for the regression [37].

K-NN uses similarity measures like distance or closeness. The distance between

a pair of data points, for instance, (p, q), can be calculated in three ways: Euclidean

distance, Manhattan distance, and Minkowski distance. Euclidean distance represents

the shortest distance between two points

De =

(
n∑

i=1

(pi − qi)
2

) 1
2

,

whereas Manhattan distance is the sum of absolute differences between points across

all the dimensions

Dm =

(
n∑

i=1

|pi − qi|

)
.

On the other hand, Minkowski distance is the generalized form of Euclidean and

Manhattan distances

D =

(
n∑

i=1

(pi − qi)
r

) 1
r

.

The basic idea of this approach is that for a fixed value of k, the predicted response

for the ith-observation is the average of the observed response of the k-closest obser-

vations:

yn =
1

k

k∑
i=1

yn,i.

Finding the optimum value of k is a crucial issue when working with k-nearest neigh-

bor algorithm. To determine the best k value, we can divide the data into train, val-

idation, and test sets. Starting with k = 1, we can calculate the accuracy of both

validation and test set. Then, we can increase the value of k by 1 and plot the error

graph using validation and test data. By analyzing the graph, we can identify the

optimal value of k where validation and test errors are close to each other.

2.2.4.3 Support Vector Regression

The article [74] states that support vector regression (SVR) is a supervised machine

learning technique for the regression problems. SVR is an extension of the support

vector machine (SVM) algorithm which is used for classification problems. SVR
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balances model complexity and prediction error and is good with high-dimensional

data. SVR can define how much error (ϵ) is acceptable in the model and find an

appropriate line (or hyperplane in higher dimensions) to fit the data. In the SVR, the

objective function and constraints can be defined as

min
β

1

2
|| β ||22 ,

s.t. |yi − βixi| ≤ ϵ,

where ϵ is the accepted error and β is the coefficient vector. Further, using a kernel,

SVR can efficiently handle a nonlinear regression problem by projecting the original

feature into a kernel space where data can be linearly discriminated.

2.2.4.4 Decision Tree Regression

Decision tree regression is a supervised machine learning technique used when the

interpretation is essential. The tree-based structure makes the model human-readable,

and models explain which attributes are used and how the attributes are used to reach

the predictions. The disadvantage is that the accuracy could be more competitive

with other methods. With the help of bagging, random forests, and boosting, which

are reviewed later, the accuracy of decision trees can be improved.

For a given dataset consisting of p inputs and n observations, that is, (xi, yi) for i =

1, 2, . . . , n with xi = (xi1, xi2, . . . , xip), the first step in the decision tree algorithm

[43] is to decide on the splitting variables and split points. Starting with M regions

R1, R2, . . . , RM , we model the response as a constant cm in each region as follows:

f(x) =
M∑

m=1

cmI(x ∈ Rm).

Then, we minimize the sum of squares of the error

n∑
i=1

(yi − f(xi))
2.

As we model the response as a constant cm in each region, the constant cm should be

just the average
(
ave(·)

)
of related response data points yi in region Rm as

cm = ave(yi : xi ∈ Rm).
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To find the best binary partition in terms of the minimum sum of squares of errors,

starting with all of the data, consider a splitting variable j and split point s, and define

the following pair of half-planes

R1(j, s) = {X : Xj ≤ s} and R2(j, s) = {X : Xj > s}.

Then, the splitting variable j and split point s are calculated by solving

min
j,s

min
c1

∑
xi∈R1(j,s)

(yi − c1)
2 +min

c2

∑
xi∈R2(j,s)

(yi − c2)
2

 .

For any j and s, the inner minimization is solved by

c1 = ave(yi : xi ∈ R1(j, s))

and

c2 = ave(yi : xi ∈ R2(j, s)).

Efficiently determining the split point s for each variable is possible. Therefore, by

scanning through all inputs, we can find the best pair (j, s). Once we have identified

the best split, we can partition the data into two regions and repeat the splitting process

on each region. This process is then repeated for all resulting regions.

This process ends with a large tree, and it can overfit the data. In this case, the remedy

is to stop the splitting according to the node size and, afterwards, prune the tree using

cost-complexity pruning.

2.2.4.5 Random Forest Regression

Random Forest is a tree-based supervised machine learning algorithm. The algorithm

uses ensemble learning by combining multiple decision trees to determine the final

output rather than looking at individual decision trees.

Random Forest [15] is a machine learning algorithm that is generally based on a tech-

nique called bagging or bootstrap aggregating, which aims to improve the stability

and accuracy of the model, reduce variance, and prevent overfitting. The bagging

technique consists of two steps. In the first step, bootstrap sampling is performed
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on the training data to obtain subsets of the data chosen randomly with replacement.

These subsets are then used to train decision trees. In the bagging process, n decision

trees are constructed using bootstrap sampling. This results in an ensemble of differ-

ent models [72]. In the second step, aggregation is performed. The outputs from all

the separate models are aggregated into a single prediction, which is simply the aver-

age of predicted outcome values. This process helps to further improve the accuracy

and reliability of the model.

In the random forest [43], different from bagging, a random sample of m predictors

is chosen as split candidates from the full set of p predictors when building decision

trees. This prevents one strong predictor from dominating all decision trees and pro-

ducing similar models. Overall, the random forest algorithm is a powerful tool that

can be used in a variety of applications, such as classification and regression prob-

lems.

2.2.4.6 XGBoost Regression

XGBoost is the first of The Big Three gradient boosting frameworks, released in

2014. The other two are LightGBM by Microsoft [46], launched in 2016, and Cat-

Boost [23] by Yandex, launched in 2017. These frameworks are well-known tools for

regression or classification problems [16].

The XGBoost regression method is a robust machine-learning algorithm that uses

an ensemble of decision trees to make predictions. The algorithm builds a series

of decision trees sequentially, where each subsequent tree corrects the errors of the

previous one.

The primary mathematical principles behind XGBoost regression are gradient boost-

ing and decision trees. Gradient boosting is an optimization algorithm that seeks to

minimize the loss function by iteratively adding new models trained to correct the

residuals (the difference between the predicted and actual values) of the previous

model. Decision trees, on the other hand, are a supervised learning technique that

recursively partitions the data into smaller subsets based on the values of the input

features.
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2.2.4.7 Neural Network Regression

Neural network regression is a type of machine learning algorithm that uses an artifi-

cial neural network to learn the relationship between input features and output values

[17]. In the regression tasks, the network is trained to predict a continuous output

variable given a set of input features. The network architecture typically consists of

one or more hidden layers of neurons that perform nonlinear transformations on the

input data, followed by an output layer that produces the final prediction. The weights

of the network are adjusted during training using backpropagation to minimize a loss

function that measures the difference between the predicted and actual output values.

One advantage of neural network regression is its ability to model complex nonlinear

relationships between the input features and output variables. Neural networks can

learn to extract relevant features from high-dimensional input data and can capture

subtle interactions between variables that may be difficult for other algorithms to de-

tect. Neural networks are also highly flexible and can be adapted to a wide range of

regression tasks by adjusting the number of layers, neurons, and activation functions

used. However, neural networks can be computationally expensive to train and may

require large amounts of data to achieve good performance. Overfitting is also a po-

tential issue with neural networks, especially when the model is large and the training

data is limited. Regularization techniques such as, dropout and weight decay, can

help prevent overfitting, but they can also add to the complexity and computational

cost of the model.

2.2.5 Evaluate the Model

One of the most common ways to evaluate the performance of a model is based on

accuracy [55]. Error metrics measure the dissimilarity between the actual solution y

and the predicted solution ŷ. To quantify the error, there are different metrics in the

literature [15, 37, 43], which will be reviewed next.
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2.2.5.1 Mean Absolute Error (MAE)

Mean absolute error, mean of the error for all samples, is

MAE =
1

n

n∑
i=1

|yi − ŷi|,

where n is the number of samples. This measure can be used to interpret the range

of predictions directly. For instance, if the MAE is 10 and the model predicts 100,

the prediction ranges between 90 and 110. This means the error of the model is ±10.

MAE is unsuitable when the deviation of predicted output is large and does a poor

job when the scale of the data is large.

2.2.5.2 Mean Squared Error (MSE)

Mean squared error computes a risk metric corresponding to the expected value of

the squared error. For given n samples, it is defined by

MSE =
1

n

n∑
i=1

(yi − ŷi)
2.

Although squaring emphasizes enormous differences, it is more convenient than MAE

since it effectively penalizes the outliers. For instance, if the error is 0.1, its magni-

tude effect as a whole will be 0.01, we can say it is negligible, and if the error is 10,

its magnitude effect will be 100, which is known as penalizing the outliers. Since we

want to penalize the outliers, MSE fulfills the desired property of regression models.

2.2.5.3 Maximum Error

Maximum error refers to the highest possible difference between the predicted value

and the true value. This metric is crucial in situations where accuracy is critical, such

as the medical industry. In a single output regression model that is perfectly fitted,

the maximum error would be 0 on the training set. However, this scenario is highly

unlikely in the real world. Generally, the maximum error indicates the level of error

that the model encountered during the fitting process. Mathematically, it is formulated

as follows

MaxError(y, ŷ) = max
1≤i≤n

|yi − ŷi|.
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Maximum error seeks to identify the highest level of error the model produces for a

single sample. It assists in determining the optimal model that encompasses all the

samples.

2.2.5.4 Root Mean Squared Error (RMSE)

Root mean squared error, the square root of MSE, is mainly used to scale the MSE

down. RMSE is a measure of how to spread out residuals. In other words, it shows

how concentrated the data is around the line of best fit.

2.2.5.5 Explained Variance Score

Explained Variance Score is calculated as follows

Explained V ariance(y, ŷ) = 1− V ar(y, ŷ)

V ar(y)
.

Here, 1 is the best evaluation score possible for a model, and a negative value is

considered to be not correctly trained models. This score gives information about the

variance of the whole model.

2.2.5.6 R-Squared Score

R-squared (R2) is a metric used to evaluate the performance of a model. It calculates

the coefficient of determination, which represents the percentage of variance in the

actual solution that is explained by the independent variables in the model. R-squared

indicates the goodness of fit of the model and measures how well it can predict unseen

test data by explaining the proportion of variance. However, it’s important to note

that the variance is highly dependent on the dataset, so R-squared scores should not

be compared across different datasets. Over n samples, R-squared can be calculated

as,

R2 = 1−

n∑
i=1

(ŷi − yi)
2

n∑
i=1

(yi − ȳ)2
,
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where ŷi is the predicted values and ȳ is the average of the real values. Here, the best

possible score is 1. The R-squared value can also be negative (since the model can

be arbitrarily worse). A constant model that always predicts the expected value of y,

disregarding the input features, would get an R-squared score of 0.

2.2.5.7 Cross Validation

After training a model, a numerical estimate of the difference between the predicted

and initial responses is done - this is known as the evaluation of the residuals [55].

This evaluation method is called the training error and only provides insight into how

well the model performs on the training data. However, this does not guarantee that

the model will perform well on new, unseen data, as it may be either underfitting or

overfitting the data. To address this issue, cross-validation is used to determine how

well the model will generalize to unseen data.

Cross-validation is a technique used in the regression modelling to assess the perfor-

mance and generalizability of the model. It involves partitioning the available data

into subsets, typically called "folds". The underlying model is trained on a subset of

the data, known as the training set, and then evaluated on the remaining subset, known

as the validation set. There are various cross-validation techniques in the literature;

such as the holdout method, k-fold cross-validation, or leave-p-out cross-validation

[43].

2.2.6 Accept the Model

When considering whether to accept a statistical regression model, it is essential to

take several steps. These include evaluating the model’s assumptions, assessing the

goodness of fit, and interpreting the results. We check for linearity, independence,

homoscedasticity, and normality to evaluate the assumptions. Diagnostic plots can

help with this. Assessing the goodness of fit involves measuring how well the model

fits the data, which can be done using metrics such as R-squared and RMSE. Finally,

interpreting the model’s results is done by a domain expert. The regression model

can be accepted if the assumptions are met, the goodness of fit is acceptable, and the
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results are interpretable.

2.3 Optimization

In general, optimization is finding feasible solutions corresponding to extreme values

of one or more objectives. We can classify optimization problems as single or multi-

objective optimization according to the number of objectives. If there is only one

objective in the scenario, then the optimization will be single-objective; if we have

more than one objective, the optimization will be multi-objective, which will be our

interest.

2.3.1 Multi-Objective Optimization Problems

Some problems in engineering require the simultaneous optimization of several ob-

jectives in incomparable units and conflict among them [45]. These problems are

called as multi-objective optimization problems (MOOPs) in the form of:

minimize or maximize fm(x), m = 1, 2, ...,M,

subject to gj(x) ≥ 0, j = 1, 2, ..., J,

hk(x) = 0, k = 1, 2, ..., K,

xl
i ≤ xi ≤ xu

i , i = 1, 2, ..., n,

where fm, m = 1, . . . ,M , are the objective functions, whereas gj, j = 1, . . . , J and

hk, k = 1, . . . , K are inequality and equality bounds, respectively. In addition, xl
i and

xu
i are box constraints for the unknown variables for i = 1, . . . , n . A solution x ∈ Rn

is a vector of n decision variables x = (x1, x2, ..., xn)
T . The solutions satisfying the

constraints and variable bounds constitute a feasible decision variable space S ⊂ Rn.

The objective functions fm, m = 1, . . . ,M , constitute a multi-dimensional space

called the objective space Z ⊂ RM . For each solution x in the decision variable

space, there exists a point z ∈ RM in the objective space and denoted by f(x) = z =

(z1, z2, ..., zM)T . To define the optimal solutions in the multi-objective optimization

problem, we need to set some definitions [22].

Definition 2.3.1. (Pareto Dominance Relation) A vector z1 Pareto dominates vector
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z2, denoted by z1 ≺pareto z
2, if and only if

∀i ∈ {1, ..., k} : z1i ≤ z2i ,

and

∃i ∈ {1, ..., k} : z1i < z2i .

All points not dominated by any other set member are called as the non-dominated

points. In Figure 2.4, vector z3 is strictly less than z2 in both objectives; therefore

z3 ≺pareto z2. Vector z3 also Pareto dominates z1 since with respect to f1 those

vectors are equal, but in f2, z3 is strictly less than z1. Since ≺pareto is not a total order

some elements can be incomparable like the case with z1 and z4, i.e., z1 ⊀pareto z4

and z4 ⊀pareto z
1. Similarly, z3 ≺pareto z

4, z1 ≺pareto z
2, and z4 ≺pareto z

2 [49].

Figure 2.4: Pareto dominance relation sample [49].

Definition 2.3.2. (Pareto Optimality) A solution x∗ ∈ X is Pareto optimal if there

does not exist another solution x ∈ X such that f(x) ≺pareto f(x
∗).

Definition 2.3.3. (Weak Pareto Optimality) A solution x∗ ∈ X is weakly Pareto op-

timal if there does not exist another solution x ∈ X such that f(x) < f(x∗) for all

i = 1, ..., k.

Definition 2.3.4. (Pareto Optimal Set) The Pareto optimal set, P ∗, is defined as:

P ∗ = {x ∈ X : ∄y ∈ X such that f(y) ⪯ f(x)}.
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Definition 2.3.5. (Pareto Front) For a Pareto optimal set P ∗, the Pareto front PF ∗,

is defined as:

PF ∗ = {(f(x) = f1(x), ..., fk(x)) : x ∈ P ∗}.

A graphical representation of Pareto optimal and Pareto front is also illustrated in

Figure 2.5.

Figure 2.5: Pareto optimal (left) and Pareto front (right) [49].

Definition 2.3.6. (Ideal and Nadir Points) The ideal point represents the lower bounds

of the Pareto front and is defined by z∗i = min
z∈Z

zi for all i = 1, ..., k. In turn, the

upper bounds of the Pareto front are defined by the nadir point, which is given by

znadi = max
z∈Z

zi for all i = 1, ..., k.

The points on the non-domination front are Pareto optimal points that are Pareto-

optimal solutions. The solutions are need:

• to lie on the Pareto optimal front, and

• to be diverse enough to represent the entire range of the Pareto optimal front.

MOOPs can be solved basically by using two techniques: mathematical programming

techniques and evolutionary algorithms. Mathematical programming techniques are

classified regarding how and when to incorporate preferences from the decision maker

(DM) into the search process. A critical issue is when the DM is required to provide

preference information. There are three ways of doing this [49]: a priori approaches

(e.g., goal programming [18], goal attainment method [42], lexicographic method

31



[45]), posteriori approaches (e.g., linear combination of weights [49], normal bound-

ary intersection [21], ϵ-constraint method [45], and method of weighted metrics), and

interactive approaches (e.g., method of Geoffrion-Dyer-Feinberg [33], Tchebycheff

method [66], reference point methods [71], and light beam search [49]). However,

these traditional techniques have several limitations to solve MOPs:

• they are needed to run many times to find the elements of Pareto optimal set.

• they can require domain knowledge in advance.

• they can sensitive to shape or continuity of the Pareto front.

Aforementioned reasons, we will focus on evolutionary algorithms to solve MOOPs

in this thesis.

2.3.2 Evolutionary Algorithms

Evolutionary multi-objective optimization (EMO) is an approach to solving multi-

objective optimization problems. An evolutionary algorithm is a stochastic direct

search algorithm that, in some sense, mimics natural evolution [8]. To achieve a

single solution in the mathematical programming techniques, DM preferences play an

important role in selecting the solution from the Pareto front [22]. On the other hand

multi-objective evolutionary algorithms (MOEAs) do not guarantee to find the actual

Pareto optimal set; in general, it finds a close approximation of the optimal set in a

single run. This issue is critical regarding computational time, and the MOEAs use

a reasonable time to find the approximate solution. In the EMO approach, finding an

approximation to the Pareto front has two aims [49]. One is minimizing the distance

of the solution to the actual Pareto front, and the second is maximizing the diversity

of the achieved Pareto front approximation. Diversity is critical since the solution can

be located in a narrow region of the actual Pareto front in MOEAs.

An EMO contains four steps: initialization, selection, genetic operators (crossover

and mutation), and termination. Initialization is creating the initial population of

solutions which is a random process. If there is knowledge of the task, the initial
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initializationselectiontermination

mutationcrossover

Figure 2.6: Flowchart of evolutionary algorithms.

population will be roughly centered around what is considered ideal. After the ini-

tialization, the population selection is in charge, and a fitness function evaluates the

members. The fitness of all members is calculated, and their selection is made ac-

cording to the top scores. Non-dominated sorting and rake selection are efficient

tools in the selection step. The selected population is then used to create the next

generations by genetic operators. In this step, the mutation prevents the method from

getting stuck in the local extrema. Eventually, the algorithm will end with either

the algorithm reaches maximum runtime or the algorithm reaches some performance

threshold. The flowchart of the EMO is given in Figure 2.6.

In general, evolutionary algorithms can be considered effective approaches to solve

multi-objective optimization problems due to the several reasons, which are summa-

rized as follow:

• Pareto Optimality: MOOPs involve optimizing multiple conflicting objectives

simultaneously, which often results in a set of solutions known as the Pareto

front or Pareto set. Evolutionary algorithms are well-suited for finding and

approximating this set since they maintain a diverse population of solutions

and can explore different regions of the search space.

• Global Search: Evolutionary algorithms, such as genetic algorithms, have in-

herent global search capabilities. They explore the search space by maintaining

a population of candidate solutions and applying evolutionary operators, such

as selection, crossover, and mutation. This enables them to search for solutions

in different regions of the objective space, helping to find a diverse set of Pareto

optimal solutions.
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• Handling Nonlinearity and Non-Convexity: MOOPs often involve nonlin-

earity and non-convexity due to the presence of multiple conflicting objectives.

Evolutionary algorithms are generally robust and can handle such complexi-

ties without requiring specific problem formulations or assumptions about the

objective functions. They can adaptively search for solutions in complex and

irregular Pareto fronts.

• Multi-Modality: Evolutionary algorithms can effectively handle MOOPs with

multiple modes or multiple Pareto optimal fronts. They are capable of main-

taining multiple subpopulation or niches, allowing them to explore and con-

verge to different Pareto-optimal solutions simultaneously. This ability to han-

dle multi-modality is especially useful when the Pareto front is fragmented or

has disconnected regions.

• Flexibility and Adaptability: Evolutionary algorithms offer flexibility in terms

of problem representation, allowing various types of decision variables and

constraints to be incorporated. They can handle both continuous and discrete

variables, making them applicable to a wide range of MOOPs. Additionally,

they can adapt their search strategy over time by adjusting parameters or oper-

ators, enhancing their convergence and exploration capabilities.

• Interactive Decision-Making: Evolutionary algorithms can be combined with

interactive decision-making methods to involve human preferences in the opti-

mization process. Techniques like interactive evolutionary multi-objective op-

timization allow decision-makers to provide feedback on solutions and guide

the search towards their preferred regions of the Pareto front.

Overall, the combination of global search, ability to handle complexity, multi-modality,

flexibility, and potential for interactive decision-making makes evolutionary algo-

rithms a powerful and widely used approach for solving MOOPs.

Next, we will review some well-used multi-objective evolutionary algorithms.
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2.3.2.1 Multi-Objective Genetic Algorithm

Multi-objective genetic algorithm (MOGA), developed by Fonseca and Fleming [31],

is a variant of a genetic algorithm that is used in the MOOPs. The MOGA consists

of the same steps as given in Figure 2.6 with differences in the selection step. In

the MOGA, selection is based on the multiple objective functions, and the goal is to

maintain a diverse population that contains Pareto optimal solutions for all objective

functions. The flowchart of the MOGA is also given in Figure 2.7.

population initialization

objective value evaluation

rank assignment based
on

Pareto dominance

niche count calculation

linearly scaled fitness
and

shared fitness assignment

maximum
generation?

roulette wheel selection crossover

mutation

objective value
evaluation

output Pareto
optimal solutions

No

Yes

Figure 2.7: Flowchart of MOGA.

2.3.2.2 Nondominated Sorting Genetic Algorithm II & III (NSGA-II & NSGA-

III)

An algorithm was developed by Kalyanmoy Deb and Himanshu Jain, which is de-

scribed in [12]. The algorithm is based on genetic algorithms but with some adjust-

ments to mating and survival selection. In NSGA-II, individuals are selected fron-

twise to ensure that not all individuals survive. Solutions in the splitting front are

chosen based on their crowding distance, calculated as the Manhattan Distance in the
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objective space. However, the extreme points are always kept in every generation and

assigned a crowding infinity distance. NSGA-II also uses a binary tournament mating

selection to increase selection pressure. Each individual is first compared by rank and

then by crowding distance to ensure the best possible outcome.

population initialization

objective value evaluation

fast nondominated sort

crowding-distance
assignment

maximum
generation?

binary tournament selection crossover

mutation

objective value
evaluation

output Pareto
optimal solutions

No

Yes

Figure 2.8: Flowchart of NSGA-II & NSGA-III.

While using NSGA-III, it is crucial to start the algorithm with reference directions.

The survival process involves non-dominated sorting, like in NSGA-II. The next step

is selecting solutions from the splitting front and prioritizing unrepresented reference

directions. If no solutions are assigned to a reference direction, the solution with

the smallest perpendicular distance in the normalized objective space is chosen. If

a second solution is added to a reference line, it is assigned randomly. The goal for

each reference line is to find a representative non-dominated solution. The flowchart

of NSGA-II & NSGA-III is given in Figure 2.8.

2.3.2.3 Reference Vector Guided Evolutionary Algorithm (RVEA)

Reference Vector Guided Evolutionary Algorithm (RVEA) is a multi-objective opti-

mization algorithm that aims to solve problems with multiple conflicting objectives

[20]. It combines concepts from evolutionary algorithms and reference vectors to

guide the search process.
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In the RVEA, a set of reference vectors is defined in the objective space to repre-

sent different trade-offs between the objectives. These reference vectors are evenly

distributed throughout the objective space and act as a guidance for the evolution pro-

cess. Each reference vector represents a potential solution that achieves a balanced

compromise between the objectives.

The algorithm starts with an initial population of candidate solutions, which are typi-

cally represented as a set of chromosomes or individuals. These individuals are eval-

uated based on their objective values and their distances to the reference vectors. The

distance metric is used to determine the individuals’ positions relative to the reference

vectors and to guide the search towards a diverse and well-distributed set of solutions.

During the evolution process, the algorithm applies variation operators such as mu-

tation and crossover to create new offspring solutions. These offspring solutions are

then evaluated and compared to the current population and the reference vectors. The

algorithm selects the individuals with the best objective values and distances to the

reference vectors to form the next generation.

By iteratively repeating the selection, variation, and evaluation steps, the RVEA ex-

plores the search space and converges towards a set of solutions that represents a good

compromise between the conflicting objectives. The final result is a diverse and well-

distributed Pareto front, which represents the optimal trade-off solutions for the given

multi-objective optimization problem.

2.3.2.4 Constrained Two-Achieve Evolutionary Algorithm (C-TAEA)

Different from the other evolutionary algorithms, there are two archives in C-TAEA

to manage the solutions: the convergence-oriented archive (CA) and the diversity-

oriented archive (DA) [48]. These play different roles in driving the optimization

process towards the Pareto front and maintaining population diversity.

Convergence-Oriented Archive (CA) is responsible for promoting convergence to-

wards the Pareto front, which represents the optimal trade-off solutions for the ob-

jectives. It stores solutions based on their objective values and aims to preserve the

best solutions found so far. It acts as a driving force to push the population towards
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the Pareto front by favoring solutions with better objective values. On the other hand,

diversity oriented archive (DA) focuses on maintaining population diversity, ensuring

that the solutions cover a wide range of the Pareto front. It stores solutions based on

their diversity measures; such as distance or spread. The DA helps prevent premature

convergence by encouraging exploration of the search space and preserving diverse

solutions that represent different regions of the Pareto front.

By combining the CA and DA, C-TAEA balances convergence towards the Pareto

front and maintaining diversity. This helps the algorithm to explore the search space

effectively and to discover a diverse set of high-quality solutions that are both Pareto-

optimal and feasible.

2.3.2.5 Multi-Objective Selection Based on Dominated Hypervolume Evolu-

tionary Algorithm (SMS-EMOA)

SMS-EMOA is indeed a variant of evolutionary algorithms that incorporates the dom-

inated hypervolume as a selection criterion for multi-objective optimization [39]. In

the SMS-EMOA, the dominated hypervolume is used as a measure to assess the qual-

ity of the solutions and guide the selection process. The algorithm aims to maximize

the hypervolume metric, which represents the volume of the objective space covered

by the non-dominated solutions (Pareto front). By maximizing the hypervolume,

SMS-EMOA encourages the generation of a diverse set of solutions that cover a large

portion of the Pareto front.

2.3.3 Hypervolume Metric to Compare the Methods

After summarizing the algorithms, we need a metric to compare them. Hypervolume

metric is a performance measure used in the evolutionary algorithms to evaluate and

compare the quality of different solutions generated by the evolutionary algorithms.

It is particularly useful for the multi-objective optimization problems, where the goal

is to optimize multiple conflicting objectives simultaneously.

In the multi-objective optimization, the solutions generated by an evolutionary algo-
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rithm form a set known as the Pareto front. The Pareto front represents a trade-off

between different objectives, where improving one objective generally leads to a de-

terioration in another. The hypervolume metric quantifies the extent of the solution

space covered by the Pareto front. The hypervolume metric works as follows:

• Reference Point: The hypervolume metric requires a reference point, which

serves as the origin of the objective space. The reference point should be set

based on the problem’s domain knowledge and the desired trade-off between

objectives.

• Dominance: Solutions in the Pareto front are compared using dominance re-

lations. A solution A is said to dominate another solution B if A is better than

B in at least one objective and not worse than B in any other objective. Domi-

nance determines the inclusion or exclusion of solutions from the hypervolume

calculation.

• Calculation: The hypervolume is calculated by computing the volume of the

portion of the objective space that is dominated by the Pareto front. It represents

the area between the Pareto front and the reference point. Various algorithms

and techniques; such as Monte Carlo sampling or grid-based approaches, can be

used to estimate this volume. In this thesis, we will use a grid-based approach

due to its simplicity and cheapness. It is noted that a finer grid yields a more

accurate approximation but it increases computation cost.

• Interpretation: A higher hypervolume value indicates a better performance of

the evolutionary algorithm. It signifies a greater coverage of the objective space

by the solutions in the Pareto front, indicating a diverse set of non-dominated

solutions that provide a range of trade-off options [12].
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CHAPTER 3

STATISTICAL MODELLING OF A DISHWASHER CYCLE

In this chapter, we use a supervised learning method to develop statistical models to

predict the outputs of a dishwasher cleaning cycle. In real-life applications, the data

is not ready, and therefore a significant effort will be necessary for data preparation,

explanatory data analysis, and feature selection.

The chapter starts with obtaining the essential features by using statistical feature

selection methods, then (non)linear regression models are constructed. After deter-

mining the features and models, a dishwasher cleaning cycle’s performance can be

predicted without doing experimental tests. The chapter ends with designing the dig-

ital twin laboratory and a case study about designing the best cleaning cycle.

3.1 Dishwasher Cleaning Cycle Program

In this study, our data is the dishwasher cleaning cycles and the outputs of them. From

here on out, we will refer to these cleaning cycles also as "the programs". These

programs are carefully crafted to meet the specific requirements and needs of the

customers. Additionally, the programs are designed based on the equipment’s type

and level of soil.

Programs can be customized by adjusting the program steps and parameters like wa-

ter amount, temperature, time, pressure, and water flow rate to achieve desired perfor-

mance goals. The designer selects them for optimal output. It is important to note that

these values may require adjustment and fine-tuning for optimal results. The physical
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properties of the dishwasher are also crucial in the program steps. Tub dimensions of

the dishwasher, such as compact size, slim size, and standard size tubs, change the

number of dishes that can be cleaned in the dishwasher (loading capacity) and the

dishwasher’s cleaning and energy transfer characteristics. Moreover, the dishwasher

can be designed as freestanding or built-in, affecting the heat transfer characteristics

and drying performance design. Overall, the designer has to optimize the cleaning

cycle program according to all these complex systems.

The following summarizes the main categories affecting a dishwasher program de-

sign.

3.1.1 Definition of the Program

Basically, a program is characterized with the following properties:

• Size of the Dishwasher: slim size, normal size, tall tub size.

• Type of the Dishwasher: free standing, built-in.

• Capacity of the Dishwasher: 8 to 16 place setting.

• Type of the Program: There are more than 15 program types today. These are

the preferences of the user or the aims of the programs. The program aims, for

example, minimum energy, minimum water usage, or to be fast. Types can be

exemplified as normal wash, eco, heavy duty, quick wash, express wash, rinse

only, auto or sensor wash, pots & pans, sanitize, half load, glassware cycle

throughout the world.

For example, a program can be an eco program for a slim size dishwasher and it is

coded with a program description like DWECO050 which is a unique definition. This

thesis uses the data of all type dishwashers; however the analysis is grouped by size of

the dishwasher and the studies are performed for normal & standard size dishwashers.
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3.1.2 Program Flow

The programs consist of blocks with a step by step operation flow. The ten program

blocks are:

• Pre-Wash (1PW): Pre-wash aims to remove coarse dirt from the system. In

some pre-wash programs, there can be heating and detergent use. Pre-wash is

an optional block, and some programs have no pre-wash.

• Main-Wash (2MW): A cleaning cycle block is mainly responsible for the clean-

ing. Temperature, mechanical, and chemical components of the Sinner Circle

are in this block.

• Micro-Filter Cleaning (3MF): This is also an optional block. If the dishwasher

has a function of micro-filter cleaning, the system washes the micro-filter in

this block.

• Rinse Steps:

– Cold Rinse (4CR): It is a cleaning cycle block that removes the excessive

detergent and soil residuals from the surface of the dishes. There is no

heating step in this block.

– Extra Rinse (5ER): The optional cleaning cycle block increases rinsing

efficiency.

– First Hot Rinse (6HR): It is also an optional cleaning cycle block for ad-

ditional rinsing by high temperature.

– Last (Second Hot) Rinse (7RS): Rinse aid is used in this step for better

drying performance.

• Water Storage Unit Filling (8DS): If there is a water storage unit option in the

dishwasher, this step is charged with filling the water tank.

• Resin Wash (9RY): This block is responsible for regenerating a water softener

resin in a dishwasher.

• Drying (10DY): Drying dishes are mainly obtained in this block. After rinse

blocks, the dishware is relatively hot, and this block aims for natural or forced
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convection. Some options in this block are natural, automatic door opening, or

fan drying.

The aforementioned blocks compose the cleaning cycles. All blocks consist of steps

and operations. Next the details of the program structure will be discussed.

Table 3.1: Input data of slim size dishwasher’s eco program DWECO050.

Block No Block Step Value Spray Arm Pump Heating Target
1 Pre-wash 1PW NA
2 Main-wash 2MW water-inlet 3,40
2 Main-wash 2MW circulation 8,00 2-2 mix 2600 0
2 Main-wash 2MW detergent 18,00
2 Main-wash 2MW circulation 3,00 3-0 lower 2600 0
2 Main-wash 2MW circulation 2,00 0-2 upper 2600 0
2 Main-wash 2MW circulation 4,00 2-2 mix 2400 0
2 Main-wash 2MW circulation 16,00 2-2 mix 2400 1 53
3 Micro-filter cleaning 3MF NA
4 Cold-rinse 4CR water-inlet 2,60
4 Cold-rinse 4CR circulation 8,00 2-2 mix 2200 0
5 Extra-rinse 5ER NA
. . . . . . . . . . . . . . . . . . . . . . . .

6 First hot rinse 6HR NA
7 Second hot rinse 7RS water-inlet 2,80
7 Second hot rinse 7RS circulation 10,00 2-2 mix 2200 0
7 Second hot rinse 7RS circulation 1,00 2-2 mix 2200 1 35
7 Second hot rinse 7RS rinse-aid 6,00
7 Second hot rinse 7RS circulation 4,50 2-2 mix 2200 1 37
7 Second hot rinse 7RS circulation 10,00 2-2 mix 2200 1 55
8 Water tank drain 8DS NA
9 Resin wash 9RY NA
10 Drying 10DY waiting 60,00

3.1.3 Program Operations

The basic operations of the blocks are water-inlet, circulation, detergent and rinse-aid

dosing, heating, and drying. All operations, also called program inputs, have different

properties based on their charge, and affect the outputs at different levels. A sample

of operation list for eco program DWECO050 is displayed in Table 3.1. We note that

NA stands for "Not Applicable" in the Table 3.1.
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3.1.4 Program Outputs

We have mainly five program outputs, whose descriptions are summarized below:

• Cleaning Performance Index (CPI): CPI values are 0 < CPI < 5,

• Drying Performance Index (DPI): DPI values are 0 < DPI < 100,

• Energy Consumption (EC): kilowatt hour (kWh),

• Water Consumption (WC): litre (l),

• Time Duration (TD): minute (min).

Table 3.2: Output data of slim size dishwasher’s eco program DWECO050.

Program CPI DPI TD EC WC
DWECO050 3.35 82 205 0.9 13.17

A sample for program outputs is displayed in Table 3.2. After introducing the input

and output of programs, we can continue with the data obtained from the physical

experiments.

3.2 The Data

The prediction model takes the program’s operations as input data and predicts the

program’s outputs (CPI, DPI, EC, TD, and WC). We have 2472 experimental data in

154 different programs, and approximately 16 repeated experiments have been done

for a program. The output is an average of these 16 repeated experiments for the

learning data. A sample of data is given in Table 3.3.

Table 3.3: Data of slim size dishwasher’s eco program DWECO050.

OUTPUTS INPUTS
Program CPI DPI TD EC WC I1 I2 . . . I448
DWECO050 3.35 82 205 0.9 13.17 DRAIN WATER . . . 0
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3.2.1 Input Data

The input data obtained from the programs consists of 10 blocks and 448 steps. Every

step is a feature/predictor/independent variable in the program. The feature vector

between I1 and I112 values are functions and categorical variables. The feature vector

between I113 and I224 are values of the functions and continuous data. The feature

vector between I225 and I336 are valve positions, and they are categorical variables.

The feature vector between I337 and I448 are pump speed in rpm values which are

continuous data. In general, the underlying data can be stated as a raw data. A sample

feature table is given in Table 3.4.

Table 3.4: Sample features of a dishwasher program.
Predictor No FUNCTION Predictor No VALUE Predictor No POS_OF_VALVE Predictor No CIRC_RPM
I1 DRAIN I113 0 I225 NO_ENERGY I337 0
I2 WATERINLET I114 0 I226 NO_ENERGY I338 0
I3 CIRCULATION I115 0 I227 NO_ENERGY I339 0
I4 WAIT I116 0 I228 NO_ENERGY I340 0
I5 CIRCULATION I117 0 I229 NO_ENERGY I341 0
I6 CIRCULATION_HEATER_DETERGENT I118 0 I230 NO_ENERGY I342 0
I7 CIRCULATION_HEATER I119 0 I231 NO_ENERGY I343 0
I8 CIRCULATION I120 0 I232 NO_ENERGY I344 0
I9 CIRCULATION I121 0 I233 NO_ENERGY I345 0
I10 CIRCULATION I122 0 I234 NO_ENERGY I346 0
I11 CIRCULATION_HEATER I123 0 I235 NO_ENERGY I347 0
I12 CIRCULATION I124 0 I236 NO_ENERGY I348 0
. . . . . . . . . . . . . . . . . . . . . . . .
I102 WAIT I214 0 I326 NO_ENERGY I438 0
I103 WAIT I215 0 I327 NO_ENERGY I439 0
I104 WATERINLET I216 0 I328 NO_ENERGY I440 0
I105 WAIT I217 0 I329 NO_ENERGY I441 0
I106 WAIT I218 0 I330 NO_ENERGY I442 0
I107 WAIT I219 0 I331 NO_ENERGY I443 0
I108 DRAIN I220 0 I332 NO_ENERGY I444 0
I109 DOOROPENING I221 0 I333 NO_ENERGY I445 0
I110 WAIT I222 0 I334 NO_ENERGY I446 0
I111 WAIT I223 0 I335 NO_ENERGY I447 0
I112 DRAIN I224 30 I336 NO_ENERGY I448 0

The categorical input variables are need to be encoded, and after encoding, the pre-

diction model can be stated as f : R448 → R5. The interpretability of the input data

with 448 features needs to be clarified. To increase the interpretability of the input

data, every block is analyzed, and necessary information is derived from these blocks.

Necessary attributes to define blocks, which are 16 in total, are listed in Table 3.5 ac-

cording to the knowledge of the domain expert.

Now, we can set our independent variables by 10 blocks times 16 attributes for each

block equal to 160 independent variables totally; see Table 3.6. A sample of the

independent variables from the set of 160 are also given in Table 3.7.
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Table 3.5: Cleaning cycle blocks attributes.
Abbreviation Name Unit
Closed_Cycle_Period Total Period of Closed Cycle Heating minutes
Period Total Period of Block minutes
Circulation_Period Total Period of Circulation minutes
WaterInlet Total Amount of Water Inlet litres
RPM Maximum Motor Speed RPM
Temperature Maximum Water Temperature C
Lower_Spray_Circulation_Period Total Period of Lower Spray Arm Circulation minutes
Upper_Spray_Circulation_Period Total Period of Upper Spray Arm Circulation minutes
Top_Spray_Circulation_Period Total Period of Ceiling Spray Arm Circulation minutes
Zone_Spray_Circulation_Period Total Period of Zone Spray Circulation minutes
Waiting Total Period of Waiting minutes
Fan Total Period of Fan Operation minutes
Door_Openening Total Period of Door Opening minutes
Fan_Flap Total Period of Fan and Valve minutes
Extra_Heater_Offset Total Period of Gaudi Offset Heating minutes
Extra_Heater_Nonoffset Total Period of Gaudi Non-Offset Heating minutes

Table 3.6: 160 independent variables in terms of blocks and attributes.
INDEPENDENT VARIABLES 1PW 2MW 3MF 4CR 5ER 6HR 7RS 8DS 9RY 10DY
Closed_Cycle_Period 1 2 3 4 5 6 7 8 9 10
Period 11 12 13 14 15 16 17 18 19 20
Circulation_Period 21 22 23 24 25 26 27 28 29 30
WaterInlet 31 32 33 34 35 36 37 38 39 40
RPM 41 42 43 44 45 46 47 48 49 50
Temperature 51 52 53 54 55 56 57 58 59 60
Lower_Spray_Circulation_Period 61 62 63 64 65 66 67 68 69 70
Upper_Spray_Circulation_Period 71 72 73 74 75 76 77 78 79 80
Top_Spray_Circulation_Period 81 82 83 84 85 86 87 88 89 90
Zone_Spray_Circulation_Period 91 92 93 94 95 96 97 98 99 100
Waiting 101 102 103 104 105 106 107 108 109 110
Fan 111 112 113 114 115 116 117 118 119 120
Door_Openening 121 122 123 124 125 126 127 128 129 130
Fan_Flap 131 132 133 134 135 136 137 138 139 140
Extra_Heater_Offset 141 142 143 144 145 146 147 148 149 150
Extra_Heater_Nonoffset 151 152 153 154 155 156 157 158 159 160

After the strategy mentioned above, we reduce the 448 input attributes to 160 inde-

pendent variables. All of the attributes are now continuous data, and all of them have

clear interpretability. Hence, the model becomes f : R160 → R5. After data prepara-

tion, we fully conform to a tidy data format explained in Section 2.2.1.1. Each vari-

able forms a column, and at the same time, each observation/sample program forms

a row. This formation is named as DATASET 0 with 160 independent variables, 5

dependent variables, and 154 samples.
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Table 3.7: A sample set of 160 independent variables.
Block Attribute Independent Variable Sample Value Unit
1PW WaterInlet 1PWWaterInlet 5 l
2MW RPM 2MWRPM 2800 rpm
2MW Temperature 2MWTemperature 52 C

3.2.2 Output Data

The output data consists of the cleaning cycles’ experimental results which are CPI,

DPI, EC, WC, and TD. Next, we will discuss the statistical analysis of the underlying

output data.

3.2.2.1 Cleaning Performance Index (CPI)

The CPI value is the cleaning performance index, and is between 0 and 5. After the

cleaning cycle ends, the evaluator points to all dishes individually and averages the

whole dishes’ evaluation according to EN 60436 standard. 0 indicates a lousy clean-

ing, while 5 indicates a perfect cleaning. The know-how in the dishwasher cleaning

technology states that 3.3 is accepted as a good value for customer expectations.

Figure 3.1: Statistical summary of CPI.

In the statistical summary of the CPI in Figure 3.1, the mean is 3.29, and the standard

deviation is 0.23. The 75% of the CPI value is between 3.27 and 3.58, caused by
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targeting 3.3. The CPI value less than 3.27 is only 25%; these programs are for

slightly dirty dishes. According to Anderson Darling Normality Test [56], the CPI is

not normally distributed and skewed. The skewness value is -3.56, which means that

the tail is on the left side of the distribution. This means that the data is imbalanced,

and therefore our regression model may suffer. The statistical summary also shows

us that there is no CPI value greater than 3.6.

In the regression model, the acceptable MAE value can be decided from the statistical

summary of CPI given in Figure 3.1. The range of the CPI value is 5, and according

to the domain experts, a difference of 0.15 is not sensitive to customers. Additional

data comes from the standard deviation of the CPI value in the repeated experiments,

as it is 0.03. Since there is no ideal method to decide the acceptable MAE value, we

can look for an MAE value smaller than 0.05 in the CPI prediction for acceptance.

3.2.2.2 Drying Performance Index (DPI)

The DPI value is the drying performance index, which is also taken from the results

of the experiments that are done according to EN 60436. An evaluator gives a point

between 0 and 100 to all unique dishes after the cleaning cycle ends, and 100 is the

best drying performance.

Figure 3.2: Statistical summary of DPI.

According to the know-how in dishwasher technology, 80 is accepted as a good value
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for DPI. The analysis of the DPI values for 154 cleaning programs is given in Fig-

ure 3.2. The statistical summary of the DPI data’s characteristics is very similar to the

CPI data’s characteristics. The mean of the data is 79.91, and the standard deviation

is 15.75. The high standard deviation comes from the short-period programs that do

not focus on drying. The 75% of the DPI value is higher than 81. The DPI is not

normally distributed and skewed. The skewness value is -3.64, which means that the

tail is on the left side of the distribution, like the CPI distribution.

The acceptable value for MAE in the DPI regression model can be studied according

to the range of the target variable, which is 100. However, the distribution is between

15 to 92. According to domain expert, 5 can be sensitive to the customer. Moreover,

the standard deviation of the repeated experiments in the DPI measurement is 1.45.

Using these factors, the acceptable MAE value in the DPI prediction can be decided

as 3.

3.2.2.3 Energy Consumption (EC), Water Consumption (WC), and Time Du-

ration (TD)

The EC value is the dishwasher’s energy consumption, the WC value is the dish-

washer’s water consumption, and the TD value is the dishwasher’s operating time in

the related cycle. The statistical summaries of the related values for 154 cleaning

programs are given in Figure 3.3 for EC, and in Figure 3.4 for TD and WC. All

Figure 3.3: Statistical summary of EC.
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distributions are close to normal according to the Andersen-Darling Normality Test

[56].

The values of WC and TD can be easily calculated by summing up the related features

of input data. Therefore, we expect a linear function for WC and TD models. The

acceptable MAE value of the EC prediction model can be 0.07. Using the same idea

up to now, from the previous studies and domain expert knowledge, the acceptable

MAE values for WC and TD can be taken as 0.5 and 5, respectively.

Figure 3.4: Statistical summary of TD (left) and WC (right).

As we figure out the acceptable MAE values, we also look at the R-squared value

in the regression models for acceptance. In general, there is no single "acceptable"

R-squared value for a regression prediction model, as it can depend on the specific

context and application of the model. In general, a higher R-squared value generally

indicates that the model is a better fit for the data and has more predictive power.

On the other hand, R-squared (close to 1) does not necessarily mean that the model

is the best (or optimal) fit for the data, as it could be overfitting the data and not

generalizing well to new data. Therefore, it is also important to consider other metrics

and diagnostics in addition to R-squared, such as residual plots, to assess the overall

quality and validity of the regression model.

In our numerical simulations, we consider 0.70 as the minimum acceptable R-squared

value; see Table 3.8 for the overall acceptable thresholds for the dependent variables.
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Table 3.8: Acceptable maximum MAE and minimum R-squared values for related
outputs.

Dependent Variable MAE R2

CPI 0.05 0.70
DPI 3 0.70
EC 0.07 0.70
WC 0.5 0.70
TD 5 0.70

3.3 Data Analysis

We will continue with the data analysis according to the predictive modelling frame-

work explained in Section 2.2. At the beginning, starting with DATASET 0, we have

154 samples of data. First, the data is checked for duplicate samples, and 60 sam-

ples are dropped, leaving 94 samples. Then, the independent variables are checked

for low variance, and independent variables with a variance value less than 0.05 are

dropped, left with 49 independent variables which is our first dataset, DATASET I;

see Table 3.9.

The rank of the obtained data matrix is 47 which implies that there is a rank defi-

ciency problem. Rank deficiency means that there is a collinearity problem in the

matrix. The inverse of the matrix cannot be computed, making it impossible to obtain

unique regression coefficients. One approach to overcome this issue is to remove one

or more correlated variables. The independent variables are checked for the collinear-

ity, and one of the independent variables with a Pearson correlation [13] higher than

0.9 among correlated independent variables are dropped, left with 37 independent

variables. In general, the dropped column is chosen by a domain expert according

to the model’s interpretability. But right now, we will continue choosing the dropped

column randomly. We note that the dropped variables are checked and approved by

the domain expert. We end up with 94 samples, and the data have 5 dependent vari-

ables and 37 independent variables, which generates our second data set, named as

DATASET II; see Table 3.9.

The properties of the DATASET II matrix can be summarized by the rank value of 37,

the determinant of 6.14e+107, and the condition number 114393. There is no rank-

deficiency problem in the input matrix right now. However, the condition number is
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Table 3.9: Independent variables of DATASET I and DATASET II.
No DATASET I No DATASET II No DATASET I No DATASET II
1 1PWRPM 1 1PWRPM 26 4CRPeriod 20 4CRPeriod
2 1PWTemperature 2 1PWTemperature 27 4CRTop_Spray_Circulation_Period 21 4CRTop_Spray_Circulation_Period
3 1PWLower_Spray_Circulation_Period 3 1PWLower_Spray_Circulation_Period 28 4CRUpper_Spray_Circulation_Period 22 4CRUpper_Spray_Circulation_Period
4 1PWWaiting 4 1PWWaiting 29 4CRWaterInlet 23 4CRWaterInlet
5 1PWCirculation_Period 5 1PWCirculation_Period 30 7RSRPM 24 7RSRPM
6 1PWClosed_Cycle_Period 6 1PWClosed_Cycle_Period 31 7RSTemperature 25 7RSTemperature
7 1PWPeriod 7 1PWPeriod 32 7RSLower_Spray_Circulation_Period 26 7RSLower_Spray_Circulation_Period
8 1PWTop_Spray_Circulation_Period 8 1PWTop_Spray_Circulation_Period 33 7RSWaiting dropped
9 1PWUpper_Spray_Circulation_Period dropped 34 7RSCirculation_Period dropped
10 1PWWaterInlet 9 1PWWaterInlet 35 7RSClosed_Cycle_Period 27 7RSClosed_Cycle_Period
11 2MWRPM 10 2MWRPM 36 7RSPeriod 28 7RSPeriod
12 2MWTemperature 11 2MWTemperature 37 7RSTop_Spray_Circulation_Period dropped
13 2MWLower_Spray_Circulation_Period 12 2MWLower_Spray_Circulation_Period 38 7RSUpper_Spray_Circulation_Period 29 7RSUpper_Spray_Circulation_Period
14 2MWCirculation_Period dropped 39 7RSWaterInlet dropped
15 2MWClosed_Cycle_Period 13 2MWClosed_Cycle_Period 40 8DSRPM 30 8DSRPM
16 2MWPeriod 14 2MWPeriod 41 8DSCirculation_Period dropped
17 2MWTop_Spray_Circulation_Period 15 2MWTop_Spray_Circulation_Period 42 8DSClosed_Cycle_Period 31 8DSClosed_Cycle_Period
18 2MWUpper_Spray_Circulation_Period dropped 43 8DSPeriod dropped
19 2MWWaterInlet 16 2MWWaterInlet 44 10DYWaiting 32 10DYWaiting
20 3MFPeriod 17 3MFPeriod 45 10DYFan 33 10DYFan
21 3MFWaterInlet dropped 46 10DYFan_Flap 34 10DYFan_Flap
22 4CRRPM 18 4CRRPM 47 10DYExtra_Heater_Offset 35 10DYExtra_Heater_Offset
23 4CRLower_Spray_Circulation_Period 19 4CRLower_Spray_Circulation_Period 48 10DYDoor_Openening 36 10DYDoor_Openening
24 4CRWaiting dropped 49 10DYPeriod 37 10DYPeriod
25 4CRCirculation_Period dropped

relatively high, which means high sensitivity in fitted the parameters to the input data.

This may emerge problems in the prediction process.

Now we first construct a standard linear regression (LR) model for all output by us-

ing DATASET I & II. Obtained results are provided in Table 3.10. The improvement

of the prediction quality can be seen with the evaluation metrics in terms of MAE

and R2. These are calculated by repeated k-fold cross-validation with the number

of splits being 5 and the number of repetitions being 3. Unfortunately, for CPI and

DPI models, the R2 values are negative, which means the models predict worse than

the mean of the target values. In addition, the MAE values of CPI and DPI predic-

tions are higher than the agreed acceptable values in Table 3.8 which are 0.05 and

3, respectively. The LR models with DATASET II are better however cannot be still

acceptable. Insufficient data or nonlinearity of the problem can be reasons for poor

prediction results obtained by the linear model. Therefore, we next try to improve the

model by selecting important features to overcome the insufficient data problem.

Table 3.10: Results of linear regression model for DATASET I and II.
Dependent Variable MAE R2

CPI 0.28 -8.62
DPI 14.25 -13.42
EC 0.16 -6.38
WC 1.39 -1.19
TD 10.38 0.85

(a) DATASET I

Dependent Variable MAE R2

CPI 0.13 -0.41
DPI 8.58 -1.55
EC 0.07 0.61
WC 0.73 0.42
TD 6.43 0.97

(b) DATASET II

53



3.3.1 Improving Prediction Quality by Feature Selection

In general, we need enough samples in the prediction models for each independent

variable. However, the number of independent variables and the sample size are

very close in our case, and therefore we need to decrease the number of independent

variables to solve the underlying problem. Feature selection methods introduced in

Section 2.2.2, which are, select k-best with f-regression, sequential backward, and ge-

netic algorithm, are applied to decrease the number of the features in the DATASET

II. In Table 3.11, we give the obtained results by using a linear model after the appli-

cation of the feature selection methods. We note that different features can be selected

for each output and U indicates the total number of features belong to all outputs.

Table 3.11: Results of linear regression prediction with feature selection methods.
Method CPI DPI EC WC TD U

Select K Best f-regression

# Features 24 2 30 30 12 36
MAE 0.09 7.48 0.06 0.56 3.41
R2 0.44 -1.02 0.74 0.81 0.99

Sequential Backward

# Features 19 18 9 8 5 31
MAE 0.10 4.48 0.05 0.46 3.32
R2 0.50 0.48 0.84 0.88 0.99

Genetic Algorithm

# Features 18 20 19 17 9 34
MAE 0.08 4.01 0.04 0.41 2.90
R2 0.66 0.59 0.89 0.89 1.00

Although select k-best with f-regression provides acceptable results for EC, TD, and

WC, it is not applicable since the R-squared values for CPI and DPI are negative

or not enough. Sequential backward feature selector makes improvement in both

MAE and R-squared, however R-squared value of CPI and DPI are still low. Last,

we apply a genetic algorithm for the feature selection, which yields the best results

based on the linear regression model. However, MAE and R2 values of CPI and

DPI are still not enough and require improvement. The selected features with genetic

algorithms belong to related output are listed with reference to DATASET II is given

in Table 3.12. The eliminated variables by genetic algorithm is assigned with "not

included" in Table 3.12.

Overall, the linear regression models provide reasonable results for the outputs EC,

WC, and TD since the physical background of their calculations might be linear.
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Table 3.12: Selected features by genetic algorithm for linear regression model on
DATASET II.

DATASET II CPI DPI EC WC TD
1PWRPM not included not included not included 1PWRPM not included
1PWTemperature not included not included not included 1PWTemperature not included
1PWLower_Spray_Circulation_Period not included not included 1PWLower_Spray_Circulation_Period not included not included
1PWWaiting not included not included not included not included 1PWWaiting
1PWCirculation_Period not included 1PWCirculation_Period 1PWCirculation_Period not included not included
1PWClosed_Cycle_Period not included not included 1PWClosed_Cycle_Period 1PWClosed_Cycle_Period not included
1PWPeriod 1PWPeriod not included 1PWPeriod not included 1PWPeriod
1PWTop_Spray_Circulation_Period not included 1PWTop_Spray_Circulation_Period not included not included not included
1PWWaterInlet not included 1PWWaterInlet 1PWWaterInlet 1PWWaterInlet not included
2MWRPM 2MWRPM 2MWRPM not included 2MWRPM not included
2MWTemperature 2MWTemperature 2MWTemperature 2MWTemperature not included not included
2MWLower_Spray_Circulation_Period not included not included 2MWLower_Spray_Circulation_Period not included not included
2MWClosed_Cycle_Period 2MWClosed_Cycle_Period 2MWClosed_Cycle_Period 2MWClosed_Cycle_Period 2MWClosed_Cycle_Period 2MWClosed_Cycle_Period
2MWPeriod not included 2MWPeriod 2MWPeriod not included 2MWPeriod
2MWTop_Spray_Circulation_Period not included 2MWTop_Spray_Circulation_Period not included not included not included
2MWWaterInlet 2MWWaterInlet 2MWWaterInlet not included 2MWWaterInlet not included
3MFPeriod not included not included not included not included not included
4CRRPM 4CRRPM not included 4CRRPM not included not included
4CRLower_Spray_Circulation_Period not included 4CRLower_Spray_Circulation_Period not included not included not included
4CRPeriod not included not included 4CRPeriod 4CRPeriod not included
4CRTop_Spray_Circulation_Period 4CRTop_Spray_Circulation_Period not included 4CRTop_Spray_Circulation_Period 4CRTop_Spray_Circulation_Period not included
4CRUpper_Spray_Circulation_Period 4CRUpper_Spray_Circulation_Period 4CRUpper_Spray_Circulation_Period 4CRUpper_Spray_Circulation_Period not included not included
4CRWaterInlet 4CRWaterInlet 4CRWaterInlet not included 4CRWaterInlet 4CRWaterInlet
7RSRPM 7RSRPM 7RSRPM not included 7RSRPM 7RSRPM
7RSTemperature 7RSTemperature 7RSTemperature 7RSTemperature not included not included
7RSLower_Spray_Circulation_Period 7RSLower_Spray_Circulation_Period 7RSLower_Spray_Circulation_Period 7RSLower_Spray_Circulation_Period 7RSLower_Spray_Circulation_Period not included
7RSClosed_Cycle_Period 7RSClosed_Cycle_Period 7RSClosed_Cycle_Period 7RSClosed_Cycle_Period 7RSClosed_Cycle_Period not included
7RSPeriod not included not included not included 7RSPeriod 7RSPeriod
7RSUpper_Spray_Circulation_Period not included not included not included not included not included
8DSRPM not included not included not included not included not included
8DSClosed_Cycle_Period not included not included not included 8DSClosed_Cycle_Period 8DSClosed_Cycle_Period
10DYWaiting 10DYWaiting 10DYWaiting 10DYWaiting not included not included
10DYFan 10DYFan 10DYFan 10DYFan not included not included
10DYFan_Flap 10DYFan_Flap not included not included not included not included
10DYExtra_Heater_Offset 10DYExtra_Heater_Offset not included not included 10DYExtra_Heater_Offset not included
10DYDoor_Openening 10DYDoor_Openening 10DYDoor_Openening 10DYDoor_Openening not included not included
10DYPeriod not included 10DYPeriod not included 10DYPeriod 10DYPeriod

While a perfect R-squared value for TD should be interpreted cautiously, however

in our case the GA chooses the all necessary attributes and TD prediction becomes

the sum of them. However, we think that the physical nature of CPI and DPI seems

nonlinear. Therefore, we move to nonlinear approaches.

3.3.2 Improving Prediction Quality by Solving Nonlinearity

We aim to improve the prediction models of CPI and DPI by using nonlinear mod-

els like k-nearest neighbors with k = 3 (3-NN) and like tree-based models such as

random forest regression (RFR), gradient boosting regression (GBR), and XGBoost.

Obtained results from nonlinear models with DATASET II are given in Table 3.13.

There is a significant improvement for CPI and DPI predictions as expected due to

solving the nonlinearity problem. In the CPI prediction, we are very close to our

targets for MAE and R2 values; see Table 3.8 for the target values. In DPI we have

acceptable models. As being linear functions, WC and TD the prediction performance

become worse in the non-linear models.

In the LR case, we have seen that feature selection with genetic algorithm has sig-

nificant effect on the prediction. Now, Table 3.14 displays the number of selected
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Table 3.13: Results of nonlinear regression predictions with DATASET II.
Method 3-NN RFR GBR XGB

CPI
MAE 0.10 0.07 0.06 0.06
R2 0.06 0.66 0.64 0.64

DPI
MAE 4.93 3.11 2.89 2.92
R2 0.26 0.74 0.79 0.81

EC
MAE 0.07 0.05 0.05 0.04
R2 0.60 0.81 0.80 0.80

WC
MAE 0.70 0.63 0.65 0.59
R2 0.66 0.77 0.75 0.73

TD
MAE 10.64 7.42 7.32 7.66
R2 0.95 0.97 0.98 0.97

features obtained by a genetic algorithm and the values of MAE and R2 for our out-

puts in the context of nonlinear regression predictor. It is noted that U indicates the

total number of features.

Table 3.14: Results of nonlinear regression predictions with genetic feature selection
on DATASET II.

Method 3-NN RFR GBR XGB

CPI

# Features 16 8 10 15
MAE 0.05 0.05 0.05 0.05
R2 0.83 0.83 0.85 0.84

DPI

# Features 15 12 7 4
MAE 2.11 2.56 2.18 2.15
R2 0.85 0.79 0.81 0.78

EC
# Features 10 14 8 5
MAE 0.04 0.05 0.04 0.04
R2 0.90 0.84 0.89 0.87

WC
# Features 11 8 9 14
MAE 0.57 0.54 0.47 0.52
R2 0.80 0.83 0.84 0.80

TD
# Features 16 11 9 10
MAE 5.50 5.38 5.10 5.14
R2 0.98 0.99 0.99 0.98

U # Features 30 28 27 31

The non-linear regression model GBR with GA feature selection achieves the best

performance among all models for CPI and DPI. Also for EC, 3-NN model with ge-

netic algorithm feature selection achieves the best performance with minimum num-

ber of features.
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Table 3.15: Selected prediction models and number of features for each output.

Dependent Variable # of Features Model R2 MAE
CPI 10 GBR w GA 0.85 0.05
DPI 7 GBR w GA 0.81 2.18
EC 10 3-NN w GA 0.90 0.04
WC 17 LR w GA 0.89 0.41
TD 9 LR w GA 1.00 2.90
U 30

Table 3.16: Selected features by genetic algorithm for regression models with best
regression performances on DATASET II.

DATASET II CPI with GBR DPI with GBR EC with 3-NN WC with LR TD with LR
1PWRPM not included not included 1PWRPM 1PWRPM not included
1PWTemperature 1PWTemperature 1PWTemperature not included 1PWTemperature not included
1PWLower_Spray_Circulation_Period not included not included not included not included not included
1PWWaiting 1PWWaiting not included not included not included 1PWWaiting
1PWCirculation_Period not included not included not included not included not included
1PWClosed_Cycle_Period not included not included not included 1PWClosed_Cycle_Period not included
1PWPeriod not included not included 1PWPeriod not included 1PWPeriod
1PWTop_Spray_Circulation_Period not included not included not included not included not included
1PWWaterInlet not included not included not included 1PWWaterInlet not included
2MWRPM 2MWRPM not included not included 2MWRPM not included
2MWTemperature not included not included not included not included not included
2MWLower_Spray_Circulation_Period not included not included 2MWLower_Spray_Circulation_Period not included not included
2MWClosed_Cycle_Period not included not included not included 2MWClosed_Cycle_Period 2MWClosed_Cycle_Period
2MWPeriod 2MWPeriod 2MWPeriod 2MWPeriod not included 2MWPeriod
2MWTop_Spray_Circulation_Period not included 2MWTop_Spray_Circulation_Period 2MWTop_Spray_Circulation_Period not included not included
2MWWaterInlet not included not included not included 2MWWaterInlet not included
3MFPeriod 3MFPeriod not included not included not included not included
4CRRPM 4CRRPM not included not included not included not included
4CRLower_Spray_Circulation_Period not included not included not included not included not included
4CRPeriod 4CRPeriod not included not included 4CRPeriod not included
4CRTop_Spray_Circulation_Period 4CRTop_Spray_Circulation_Period not included not included 4CRTop_Spray_Circulation_Period not included
4CRUpper_Spray_Circulation_Period not included not included not included not included not included
4CRWaterInlet not included not included not included 4CRWaterInlet 4CRWaterInlet
7RSRPM 7RSRPM not included not included 7RSRPM 7RSRPM
7RSTemperature not included not included 7RSTemperature not included not included
7RSLower_Spray_Circulation_Period not included not included not included 7RSLower_Spray_Circulation_Period not included
7RSClosed_Cycle_Period not included not included not included 7RSClosed_Cycle_Period not included
7RSPeriod not included not included not included 7RSPeriod 7RSPeriod
7RSUpper_Spray_Circulation_Period not included not included 7RSUpper_Spray_Circulation_Period not included not included
8DSRPM 8DSRPM not included not included not included not included
8DSClosed_Cycle_Period not included 8DSClosed_Cycle_Period 8DSClosed_Cycle_Period 8DSClosed_Cycle_Period 8DSClosed_Cycle_Period
10DYWaiting not included not included 10DYWaiting not included not included
10DYFan not included 10DYFan not included not included not included
10DYFan_Flap not included 10DYFan_Flap not included not included not included
10DYExtra_Heater_Offset not included 10DYExtra_Heater_Offset 10DYExtra_Heater_Offset 10DYExtra_Heater_Offset not included
10DYDoor_Openening not included not included not included not included not included
10DYPeriod not included not included not included 10DYPeriod 10DYPeriod

In this problem, we see the effect of feature selection in the regression performance

clearly. WC and TD cannot achieve an increase in prediction performance by non-

linear models since they are linear functions in nature. The best regression models for

WC and TD are linear regression with genetic algorithm feature selection. Overall,

the prediction models yielding the best performance in terms of MAE, R-squared, or

minimum feature for each dependent variable are given in Table 3.15 . Corresponding

features are displayed in Table 3.16. The eliminated variables by genetic algorithm

are assigned with "not included" in the Table 3.16. Further, we note that genetic

algorithm can select different features for different runs with acceptable results. Dif-

ferentiation in the selected features across different runs of a genetic algorithm can

be attributed to the random initialization, selection pressure, genetic operators, eval-
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uation criteria, convergence and exploration dynamics, and the algorithm’s inherent

stochasticity.

3.4 Verification of the Models

In the previous section, we have developed prediction models based on the experi-

ments. WC and TD outputs are formulated in a linear way, whereas CPI, DPI, and

EC are considered in a nonlinear structure. Models are accepted using the metrics

MAE, R-squared, and number of features. The acceptance limits of the MAE are

also determined by the experimental results and the domain expert’s knowledge; see

Table 3.8. Moreover, all the tests are done with k-fold cross validation methods.

In the verification step, the whole dataset of the dishwasher experimental data are pre-

dicted by the related models, and the corresponding error distributions are analyzed;

see Figure 3.5 for EC, WC, and TD and see Figure 3.7 for CPI and DPI.

Figure 3.5: Error distributions of EC, WC, and TD models from left to right.

Figure 3.6: Probability graph of EC, WC, and TD models’ errors from left to right.

Results show that the error distributions of the modeled outputs are in acceptable level

since the mean of the error is close to zero with a close to normal distribution even

some outliers exist. Probability graphs of the errors having a normal distribution are

also displayed in Figure 3.6 and Figure 3.8. When we fit a regression model to a

dataset, we assume that the residuals are normally distributed with a mean of zero
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and constant variance. If this assumption is not met, it can indicate that the model

is misspecified or that there are outliers in the data that are affecting the model’s

performance. When we analyse the outliers of CPI, we detect that the outliers are due

to the physical experiment errors.

Figure 3.7: Error distributions of CPI and DPI models from left to right.

Figure 3.8: Probability graph of CPI and DPI models’ errors from left to right.

Next, we extend the prediction models into the real-life case studies.

3.5 Digital Twin of Dishwasher Performance Laboratory

This scenario aims on predicting the outcomes of a new (unseen) dishwasher cleaning

cycle program without actually conducting laboratory experiments. This is a smart

and cost-effective approach since designing a new cleaning cycle requires a lot of trial

and error-based experiments, which can be time-consuming and expensive. To better

understand the steps involved in the trial and error-based design; see Figure 3.9. By

developing the prediction models, the designers can use them as a digital twin of the

performance laboratory, which makes the whole process more efficient.

With the advent of digital twin laboratory technology, designers can now take advan-

tage of the trial-and-error method without the need for traditional physical testing.

This has led to a significant reduction in the time to market period, as well as more
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efficient use of performance laboratories. In fact, up to 40% fewer tests are required

for new program designs in R&D department, resulting in up to 50% reductions in

time to market for new cleaning cycle designs. This has also led to a significant re-

duction in the cost of experiments, with up to 50% savings. With these advancements,

designers can now confidently develop and test new products with greater efficiency

and accuracy, resulting in improved performance and greater customer satisfaction.

Conceptual Design

Block and Step Design

Creating the Program and Software

Performance Test

Are Outputs OK?

Go to the Market

Yes

No

Figure 3.9: Design steps of dishwasher program.

Table 3.17: Results of test data obtained by digital twin performance laboratory using
selected features and models of CPI and DPI.

No CPI_e CPI_p Err % CPI DPI_e DPI_p Err % DPI
1 3.27 3.34 2.14% 83.23 83.25 0.02%
2 3.27 3.32 1.53% 65 68.53 5.43%
3 2.32 2.33 0.43% 15 15.46 3.07%
4 3.53 3.4 3.68% 84 84.2 0.24%
5 3.33 3.31 0.60% 91.67 87.01 5.08%
6 3.27 3.32 1.53% 65 68.53 5.43%
7 3.34 3.33 0.30% 85.39 84.38 1.18%
8 3.29 3.32 0.91% 85.67 87.48 2.11%
9 3.3 3.32 0.61% 84.11 86.42 2.75%

We select models with best regression performance and minimum number of features

in Section 3.4, based on the results in Table 3.15. We design the digital twin lab-

oratory by using the GBR model with selected 10 features for CPI, and selected 7

features for DPI; by using 3-NN model with selected 10 features for EC; by using LR

with selected 9 features for TD and selected 17 features for WC.
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Additional to MAE and R2 values of the selected models and features, the digital

twin laboratory is tested by using unseen test data. The experimental results of the

digital twin laboratory for the test data are given in Table 3.17 for CPI and DPI and

in Table 3.18 for EC, TD, and WC. We note that the subscript p denotes the predicted

values, whereas the subscript e corresponds to the physical experimental results.

Table 3.18: Results of test data obtained by digital twin performance laboratory using
selected features and models of EC, WC, and TD.

No EC_e EC_p Err% EC TD_e TD_p Err% TD WC_e WC_p Err% WC
1 0.88 0.9 2.27% 240 242 0.83% 8.75 9.57 9.37%
2 1.06 1.02 3.77% 58 56 3.45% 10.6 10.53 0.66%
3 0.64 0.65 1.56% 30 32 6.67% 10.8 10.6 1.85%
4 1.18 1.16 1.69% 148 147 0.68% 17.6 17.69 0.51%
5 0.95 0.92 3.16% 210 218 3.81% 9.68 9.67 0.10%
6 1.06 1.03 2.83% 58 56 3.45% 10.8 10.53 2.50%
7 0.83 0.85 2.41% 181 188 3.87% 11.44 11.56 1.05%
8 0.94 0.97 3.19% 215 218 1.40% 11.59 11.29 2.59%
9 1.05 0.98 6.67% 226 223 1.33% 12.11 11.28 6.85%

The acceptable levels for the prediction performance of unique tests are determined

by the sensitivity level of the customer that is explained in Section 3.2.2 and the

allowable error percentage of the test institutes. The level can be 10% for EC, WC,

and TD, whereas it can be 6% for CPI and DPI. Under these regulations all the results

in Table 3.17 and Table 3.18 seem acceptable.

During the design of the digital twin laboratory, another strategies can be using the

features selected by domain expert and all features in the dataset (DATASET II);

see Table 3.19 for using features in the data sets. All simulations are also proceed

by following the same selected models. The results are compared at Table 3.20.

As expected, the regression performance of the same models are better with feature

selection methods.

As being consistent, the test results of the domain expert features are given at Ta-

ble 3.21 and Table 3.22 and the test results of the all feature dataset are given at

Table 3.23 and Table 3.24.

61



Table 3.19: Selected features in DATASET II, domain expert dataset, and the dataset
producing best regression performance.

UNION ALL DATASET II DOMAIN EXPERT DATASET BEST REGRESSION PERFORMANCE
1PWCirculation_Period 1PWCirculation_Period 1PWCirculation_Period not included
1PWClosed_Cycle_Period 1PWClosed_Cycle_Period not included 1PWClosed_Cycle_Period
1PWLower_Spray_Circulation_Period 1PWLower_Spray_Circulation_Period 1PWLower_Spray_Circulation_Period not included
1PWPeriod 1PWPeriod 1PWPeriod 1PWPeriod
1PWRPM 1PWRPM 1PWRPM 1PWRPM
1PWTemperature 1PWTemperature 1PWTemperature 1PWTemperature
1PWTop_Spray_Circulation_Period 1PWTop_Spray_Circulation_Period 1PWTop_Spray_Circulation_Period not included
1PWUpper_Spray_Circulation_Period not included 1PWUpper_Spray_Circulation_Period not included
1PWWaiting 1PWWaiting 1PWWaiting 1PWWaiting
1PWWaterInlet 1PWWaterInlet 1PWWaterInlet 1PWWaterInlet
2MWCirculation_Period not included 2MWCirculation_Period not included
2MWClosed_Cycle_Period 2MWClosed_Cycle_Period not included 2MWClosed_Cycle_Period
2MWLower_Spray_Circulation_Period 2MWLower_Spray_Circulation_Period 2MWLower_Spray_Circulation_Period 2MWLower_Spray_Circulation_Period
2MWPeriod 2MWPeriod 2MWPeriod 2MWPeriod
2MWRPM 2MWRPM 2MWRPM 2MWRPM
2MWTemperature 2MWTemperature 2MWTemperature not included
2MWTop_Spray_Circulation_Period 2MWTop_Spray_Circulation_Period 2MWTop_Spray_Circulation_Period 2MWTop_Spray_Circulation_Period
2MWUpper_Spray_Circulation_Period not included 2MWUpper_Spray_Circulation_Period not included
2MWWaterInlet 2MWWaterInlet 2MWWaterInlet 2MWWaterInlet
3MFPeriod 3MFPeriod not included 3MFPeriod
4CRCirculation_Period not included 4CRCirculation_Period not included
4CRLower_Spray_Circulation_Period 4CRLower_Spray_Circulation_Period 4CRLower_Spray_Circulation_Period not included
4CRPeriod 4CRPeriod 4CRPeriod 4CRPeriod
4CRRPM 4CRRPM 4CRRPM 4CRRPM
4CRTop_Spray_Circulation_Period 4CRTop_Spray_Circulation_Period 4CRTop_Spray_Circulation_Period 4CRTop_Spray_Circulation_Period
4CRUpper_Spray_Circulation_Period 4CRUpper_Spray_Circulation_Period 4CRUpper_Spray_Circulation_Period not included
4CRWaterInlet 4CRWaterInlet 4CRWaterInlet 4CRWaterInlet
7RSCirculation_Period not included 7RSCirculation_Period not included
7RSClosed_Cycle_Period 7RSClosed_Cycle_Period 7RSClosed_Cycle_Period 7RSClosed_Cycle_Period
7RSLower_Spray_Circulation_Period 7RSLower_Spray_Circulation_Period 7RSLower_Spray_Circulation_Period 7RSLower_Spray_Circulation_Period
7RSPeriod 7RSPeriod 7RSPeriod 7RSPeriod
7RSRPM 7RSRPM 7RSRPM 7RSRPM
7RSTemperature 7RSTemperature 7RSTemperature 7RSTemperature
7RSTop_Spray_Circulation_Period not included 7RSTop_Spray_Circulation_Period not included
7RSUpper_Spray_Circulation_Period 7RSUpper_Spray_Circulation_Period 7RSUpper_Spray_Circulation_Period 7RSUpper_Spray_Circulation_Period
7RSWaterInlet not included 7RSWaterInlet not included
8DSClosed_Cycle_Period 8DSClosed_Cycle_Period not included 8DSClosed_Cycle_Period
8DSRPM 8DSRPM not included 8DSRPM
10DYDoor_Openening 10DYDoor_Openening 10DYDoor_Openening not included
10DYExtra_Heater_Offset 10DYExtra_Heater_Offset not included 10DYExtra_Heater_Offset
10DYFan 10DYFan 10DYFan 10DYFan
10DYFan_Flap 10DYFan_Flap 10DYFan_Flap 10DYFan_Flap
10DYPeriod 10DYPeriod 10DYPeriod 10DYPeriod
10DYWaiting 10DYWaiting 10DYWaiting 10DYWaiting

3.6 Designing Dishwasher Cleaning Cycle with Targeted Outputs

In the R&D department, one of the main goals of the designer is to create a new,

efficient dishwasher cycle. In this scenario, the designer is trying to achieve CPI

values of 3.65 and 3.80 for an intensive program. To do this, the designer will need

to manipulate the steps of the cleaning cycle, but there is no clear idea or guess about

which steps to manipulate.

Determining the intensive cleaning cycle steps for a cleaning cycle with 3.65 and 3.80

CPI will require the expertise of domain experts. They may have insights into which

steps are most effective at achieving these values. Once the designer achieves an

increase in CPI, they will need to determine the new values of DPI and EC. Overall,

creating a new dishwasher cycle can be a complex process, and it needs to optimize
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Table 3.20: Comparison of the regression models’ results with features selected by
domain expert, features selected by genetic algorithm, and all features.

Dependent Variable MAE R2

CPI 0.049 0.75
DPI 2.42 0.74
EC 0.033 0.88
WC 0.73 -1.010
TD 4.97 0.95

(a) Domain expert features

Dependent Variable MAE R2

CPI 0.044 0.84
DPI 2.14 0.80
EC 0.032 0.89
WC 0.37 0.91
TD 2.99 0.99

(b) Genetic algorithm features

Dependent Variable MAE R2

CPI 0.049 0.76
DPI 2.50 0.72
EC 0.033 0.88
WC 0.78 -0.29
TD 6.32 0.88

(c) All features

Table 3.21: Results of test data obtained by digital twin performance laboratory using
domain expert features and models of CPI and DPI.

No CPI_e CPI_p Err % CPI DPI_e DPI_p Err % DPI
1 3.27 3.33 1.83% 83.23 83.09 0.17%
2 3.27 3.32 1.53% 65 68.48 5.35%
3 2.32 2.32 0.00% 15 15.34 2.27%
4 3.53 3.44 2.55% 84 83.44 0.67%
5 3.33 3.33 0.00% 91.67 87.23 4.84%
6 3.27 3.32 1.53% 65 68.48 5.35%
7 3.34 3.31 0.90% 85.39 84.22 1.37%
8 3.29 3.32 0.91% 85.67 87.7 2.37%
9 3.3 3.34 1.21% 84.11 88.26 4.93%

multiple and conflicting objectives.

A brute force solution is to incrementally change the values of the independent vari-

ables of the known intensive program within limits. This is a search to find the best

cleaning cycles among millions of created programs. The steps of the case study can

be given as follows:

• A designer decides the independent variables that can be manipulated.
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Table 3.22: Results of test data obtained by digital twin performance laboratory using
domain expert features and models of EC, WC, and TD.

No EC_e EC_p Err% EC TD_e TD_p Err% TD WC_e WC_p Err% WC
1 0.88 0.9 2.27% 240 241 0.42% 8.75 9.63 10.06%
2 1.06 1.13 6.60% 58 56 3.45% 10.6 10.73 1.23%
3 0.64 0.64 0.00% 30 29 3.33% 10.8 10.68 1.11%
4 1.18 1.17 0.85% 148 147 0.68% 17.6 18.11 2.90%
5 0.95 0.93 2.11% 210 217 3.33% 9.68 9.51 1.76%
6 1.06 1.13 6.60% 58 56 3.45% 10.8 10.73 0.65%
7 0.83 0.83 0.00% 181 187 3.31% 11.44 11.45 0.09%
8 0.94 0.96 2.13% 215 218 1.40% 11.59 11.45 1.21%
9 1.05 1.06 0.95% 226 225 0.44% 12.11 11.51 4.95%

Table 3.23: Results of test data obtained by digital twin performance laboratory using
all features and models of CPI and DPI.

No CPI_e CPI_p Err % CPI DPI_e DPI_p Err % DPI
1 3.27 3.34 2.14% 83.23 83.1 0.16%
2 3.27 3.33 1.83% 65 68.54 5.45%
3 2.32 2.32 0.00% 15 15.43 2.87%
4 3.53 3.45 2.27% 84 83.08 1.10%
5 3.33 3.33 0.00% 91.67 87.22 4.85%
6 3.27 3.33 1.83% 65 68.54 5.45%
7 3.34 3.31 0.90% 85.39 83.96 1.67%
8 3.29 3.32 0.91% 85.67 87.8 2.49%
9 3.3 3.34 1.21% 84.11 88.18 4.84%

Table 3.24: Results of test data obtained by digital twin performance laboratory using
all features and models of EC, WC, and TD.

No EC_e EC_p Err% EC TD_e TD_p Err% TD WC_e WC_p Err% WC
1 0.88 0.9 2.27% 240 241 0.42% 8.75 9.72 11.09%
2 1.06 1.13 6.60% 58 55 5.17% 10.6 10.77 1.60%
3 0.64 0.64 0.00% 30 31 3.33% 10.8 10.67 1.20%
4 1.18 1.17 0.85% 148 143 3.38% 17.6 17.21 2.22%
5 0.95 0.94 1.05% 210 217 3.33% 9.68 9.64 0.41%
6 1.06 1.13 6.60% 58 55 5.17% 10.8 10.77 0.28%
7 0.83 0.83 0.00% 181 187 3.31% 11.44 11.55 0.96%
8 0.94 0.96 2.13% 215 218 1.40% 11.59 11.53 0.52%
9 1.05 1.06 0.95% 226 220 2.65% 12.11 10.97 9.41%

64



• A prediction model is run by using these independent variables.

• If the model can be accepted according to the values MAE and R2, the designer

creates the artificial program cycles by manipulating the independent variables

in a significant derivation.

• Prediction model predicts the desired output values for all cycles.

• The designer selects the new cleaning cycle according to the targeted outputs

from the predicted output values.

In our case study, we are looking for the CPI value in an intensive program. The

designer’s choice for the independent variables is: "1PWWaterInlet, 2MWWaterIn-

let, 2MWTemperature, 4CRWaterInlet, 7RSWaterInlet, 7RSTemperature, 1PWRPM,

2MWRPM, 4CRRPM, 7RSRPM". The XGBoost regression model prediction perfor-

mance for these variables is MAE 0.078 and R2 50. The model is not best however

can be used. Then the designer creates 1048575 new programs by incrementally

changing the independent variables within limits. The critical point of the predic-

tion model is that we can not perform classical experiments to 1 million programs.

However by using the digital twin laboratory discussed in Section 3.5 we can make

predictions.

Table 3.25: CPI and DPI predictions of the 1 million cleaning cycles.
(a) CPI prediction

Item Value
count 1048575
mean 3.51
std 0.0705
min 3.32
25% 3.46
50% 3.51
75% 3.56
max 3.69

(b) DPI prediction

Item Value
count 1048575
mean 85
std 1.73
min 81
25% 84
50% 85
75% 87
max 90

From the results in Table 3.25, we can decide that it is impossible to get a CPI value

of 3.80 by these manipulations. However, the 3.65 CPI value is still ok, and after

filtering the related cycles that can be accepted as CPI value 3.65, we can now pre-
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dict other output values. The XGBoost regression model prediction performance for

DPI is MAE 4.34 and R2 60; see Table 3.25b. Results of other outputs are given in

Table 3.26.

Table 3.26: WC, EC, and TD predictions of the 1 million cleaning cycles.

Item WC Value EC Value TD Value
count 1048575 1048575 1048575
mean 16.2 1.11 111
std 0.5 0.05 9.5
min 15.1 1.01 96
25% 15.8 1.07 105
50% 16.2 1.11 108
75% 16.5 1.15 120
max 17.5 1.24 133

The designer can choose the cleaning cycles from the predicted values of CPI, DPI,

EC, TD, and WC according to preferences and use the independent variables as a

new cleaning cycle. In Table 3.27, three cleaning cycles producing CPI > 3.6 and

DPI > 86 are given.

Table 3.27: Selected features for program with CPI > 3.6 and DPI > 86.

Number of Cycles 1PWWaterInlet 2MWWaterInlet 2MWTemperature 4CRWaterInlet 7RSWaterInlet 7RSTemperature 1PWRPM 2MWRPM 4CRRPM 7RSRPM
743144 4.6 5 68 4.2 4.2 60 3000 2800 2800 3400
558834 4.6 4.6 68 4.2 4.6 60 3000 2800 2800 3400
927474 4.6 5.4 68 4.2 4.6 60 3000 2800 2800 3400

The disadvantage of the methodology is the number of possible cleaning cycles can

be huge. In the digital twin case study, if there are 162 independent variables, and if

we have only 3 alternative values for all independent variables, we need 3162 cleaning

cycles means impossible to create and predict. This methodology can be applicable

only with a limited number of independent variables, like in our case. To solve this

issue, we will construct a multi-objective optimization problem in the next chapter.
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CHAPTER 4

MULTI-OBJECTIVE OPTIMIZATION OF A DISHWASHER

CLEANING CYCLE

In this chapter, we design a dishwasher cleaning cycle by solving a multi-objective

optimization problem. First, we define a multi-objective optimization problem using

the regression models discussed in Chapter 3 as objective functions and the corre-

sponding features as decision variables. After, we use evolutionary algorithms such

as non-dominated sorting genetic algorithm III (NSGA-III), constrained two-archive

evolutionary algorithm (C-TAEA), and reference vector guided evolutionary algo-

rithm (RVEA) to solve the underlying optimization problem. Lastly, to decide opti-

mal solution, the user preference is in charge by weighting the objective functions.

4.1 Multi-Objective Optimization Problem (MOOP)

The dishwasher cleaning cycle design problem is:

min
x

f(x) = [−CPI(x),−DPI(x), EC(x), TD(x),WC(x)]T ,

s.t. xℓ
i ≤ xi ≤ xu

i , i = 1, 2, ..., n,

in where x ∈ Rn is formed by n decision (independent) variables. The constraint set

is called variable bounds, restricting each decision variable xi to take a value within a

lower xℓ
i and an upper xu

i bound. These bounds constitute a decision variable space.

CPI(x), DPI(x), EC(x), WC(x), and TD(x) are objective functions obtained

from the statistical learning problem that has been discussed in Chapter 3. The

CPI(x) and DPI(x) are maximized, whereas the EC(x),WC(x), and TD(x) are
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minimized due to the nature of the problem. The objective functions correspond to

the regression models that are selected according to the best prediction performance

obtained in Chapter 3; see Table 4.1. Since the total number of features is 30, the

solution vector x belongs to R30. In addition, Table 4.2 shows the list of independent

variables.

Table 4.1: Selected regression models and number of features for each objective func-
tion.

Dependent Variable # of Features Model R2 MAE
CPI 10 GBR w GA 0.85 0.05
DPI 7 GBR w GA 0.81 2.18
EC 10 3-NN w GA 0.90 0.04
WC 17 LR w GA 0.89 0.41
TD 9 LR w GA 1.00 2.90
U 30

Table 4.2: Decision variables of objective functions.
Variable No Union of Features CPI with GBR DPI with GBR EC with 3-NN WC with LR TD with LR
x0 1PWRPM 1PWRPM 1PWRPM
x1 1PWTemperature 1PWTemperature 1PWTemperature 1PWTemperature
x3 1PWWaiting 1PWWaiting 1PWWaiting
x5 1PWClosed_Cycle_Period 1PWClosed_Cycle_Period
x6 1PWPeriod 1PWPeriod 1PWPeriod
x8 1PWWaterInlet 1PWWaterInlet
x9 2MWRPM 2MWRPM 2MWRPM
x11 2MWLower_Spray_Circulation_Period 2MWLower_Spray_Circulation_Period
x12 2MWClosed_Cycle_Period 2MWClosed_Cycle_Period 2MWClosed_Cycle_Period
x13 2MWPeriod 2MWPeriod 2MWPeriod 2MWPeriod 2MWPeriod
x14 2MWTop_Spray_Circulation_Period 2MWTop_Spray_Circulation_Period 2MWTop_Spray_Circulation_Period
x15 2MWWaterInlet 2MWWaterInlet
x16 3MFPeriod 3MFPeriod
x17 4CRRPM 4CRRPM
x19 4CRPeriod 4CRPeriod 4CRPeriod
x20 4CRTop_Spray_Circulation_Period 4CRTop_Spray_Circulation_Period 4CRTop_Spray_Circulation_Period
x22 4CRWaterInlet 4CRWaterInlet 4CRWaterInlet
x23 7RSRPM 7RSRPM 7RSRPM 7RSRPM
x24 7RSTemperature 7RSTemperature
x25 7RSLower_Spray_Circulation_Period 7RSLower_Spray_Circulation_Period
x26 7RSClosed_Cycle_Period 7RSClosed_Cycle_Period
x27 7RSPeriod 7RSPeriod 7RSPeriod
x28 7RSUpper_Spray_Circulation_Period 7RSUpper_Spray_Circulation_Period
x29 8DSRPM 8DSRPM
x30 8DSClosed_Cycle_Period 8DSClosed_Cycle_Period 8DSClosed_Cycle_Period 8DSClosed_Cycle_Period 8DSClosed_Cycle_Period
x31 10DYWaiting 10DYWaiting
x32 10DYFan 10DYFan
x33 10DYFan_Flap 10DYFan_Flap
x34 10DYExtra_Heater_Offset 10DYExtra_Heater_Offset 10DYExtra_Heater_Offset 10DYExtra_Heater_Offset
x36 10DYPeriod 10DYPeriod 10DYPeriod

Next, we continue with solving the MOOP of best regression performances objective

functions.

4.2 Designing Dishwasher Cleaning Cycles by Solving MOOP

In this case study, we try to solve the MOOP to obtain the independent variables that

compose the dishwasher cleaning cycle by using the evolutionary algorithms outlined
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in Section 2.3.2.

Dishwasher’s R&D experts traditionally design dishwasher cleaning cycles through

trial and error experiments based on only their knowledge. In this case study, we will

design a more energy-efficient ECO program by solving a MOOP. The problem can

be defined as designing a new eco program with a lower EC value. Improving the EC

value by just 5% leads us to save 0.25 billion kWh of electricity annually worldwide.

Here we use the most used eco program, which is a 16-place setting, built-in, 60cm

dishwasher eco program with code DWECO051. The program EC value is 0.75 and

aims to be between 0.6 and 0.7 kWh per cycle, while CPI and DPI should be a mini-

mum of 3.2 and 80, respectively; see Table 4.3. There are no strict limitations on TD

and WC in the ECO program; however, not to go extreme points, the targets of the

new cleaning cycle TD and WC will be the same as the base cleaning cycle. In addi-

tion, the decision variable set, which is displayed in Table 4.4, has been determined

by gathering the objective functions’ independent variables.

Table 4.3: Target values of new design program with respect to original outputs of
base program DWECO051.

Objective Experimental Value Target Value
CPI 3.28 minimum 3.2
DPI 86 minimum 80
EC 0.75 between 0.6 & 0.7
WC 9.40 maximum 10
TD 229 maximum 300

Initially, the decision variables have typical values from the previously designed

DWECO051 base program. To determine the feasible set, we set the lower limits

of the decision variables xℓ
i at 0.9 of the base program standard values and the upper

limits xu
i at 1.1; see at Table 4.4.

In general, to find the values of the decision variables to achieve EC between 0.6-0.7,

CPI as 3.2, and DPI as 80, we first use evolutionary algorithms, which are producing

multiple non-dominated points close to the Pareto-optimal front as possible, with a

wide trade-off among objectives. Then, the algorithm choosing one of the obtained

points using higher-level information, that is, the weights of the importance of the
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objective functions, is applied.

To solve the underlying MOOP, we apply different algorithms: NSGA-III, which is an

improvement of NSGA-II developed for multi-objective optimization problems with

more than two objectives, C-TAEA that is an algorithm with a more sophisticated

constraint-handling for many (more than two) objective optimization algorithm, and

RVEA that is a reference direction based algorithm used an angle-penalized metric.

Table 4.4: List of decision variables.
Variable Name Variable No Union xi xℓ

i xu
i

1PWRPM x0 1 2800 2520 3080
1PWTemperature x1 2 54 48.6 59.4
1PWWaiting x3 3 0 0 0
1PWClosed_Cycle_Period x5 4 6 5.4 6.6
1PWPeriod x6 5 43 38.7 47.3
1PWWaterInlet x8 6 4 3.6 4.4
2MWRPM x9 7 3000 2700 3300
2MWLower_Spray_Circulation_Period x11 8 22.79 20.511 25.069
2MWClosed_Cycle_Period x12 9 0 0 0
2MWPeriod x13 10 68 61.2 74.8
2MWTop_Spray_Circulation_Period x14 11 20.29 18.261 22.319
2MWWaterInlet x15 12 0 0 0
3MFPeriod x16 13 0 0 0
4CRRPM x17 14 2400 2160 2640
4CRPeriod x19 15 14 12.6 15.4
4CRTop_Spray_Circulation_Period x20 16 4 3.6 4.4
4CRWaterInlet x22 17 2.6 2.34 2.86
7RSRPM x23 18 2600 2340 2860
7RSTemperature x24 19 54 48.6 59.4
7RSLower_Spray_Circulation_Period x25 20 6 5.4 6.6
7RSClosed_Cycle_Period x26 21 4 3.6 4.4
7RSPeriod x27 22 28 25.2 30.8
7RSUpper_Spray_Circulation_Period x28 23 12 10.8 13.2
8DSRPM x29 24 2400 2160 2640
8DSClosed_Cycle_Period x30 25 0 0 0
10DYWaiting x31 26 80 72 88
10DYFan x32 27 0 0 0
10DYFan_Flap x33 28 0 0 0
10DYExtra_Heater_Offset x34 29 0 0 0
10DYPeriod x36 30 82 73.8 90.2
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4.2.1 Solution by NSGA-III

Computed solutions by NSGA-III, a well-known multi-objective optimization algo-

rithm based on non-dominated sorting and crowding, are displayed in Figure 4.1.

Here, f1, f2, f3, f4, and f5 represent Pareto optimal points (or solutions) of CPI, DPI,

EC, TD, and WC, respectively.

Figure 4.1: Computed solutions obtained by NSGA-III.

We have 2000 points in the solution since the population size is taken as 2000, and

the result is achieved at the 50th generation. The total run time of NSGA-III is 539

seconds, an acceptable value. Corresponding Pareto front limit values are provided

in Table 4.5.

Table 4.5: Range of Pareto optimal solutions obtained by NSGA-III algorithm and
selected point values for minimum energy case.

Objective Function Minimum Value Maximum Value Selected Point
CPI 3.22 3.42 3.35
DPI 78 87 83
EC 0.65 0.77 0.65
WC 7.95 8.73 8.21
TD 212 246 218

As we aim to design a lower EC cleaning cycle, we select the solution point by giving

a weight value of 0.96 to EC and 0.01 to each CPI, DPI, WC, and TD, with a total

value of 1. The selected design point’s CPI is 3.35, DPI is 83, EC is 0.65, TD is
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218, and WC is 8.21. The design point is acceptable with the user preferences, and

the improvement in EC is 0.75 to 0.65, which is 13.3%. The position of the selected

point on the Pareto front is shown by "×" in Figure 4.2.

(a) Position of selected point on CPI, DPI, EC
axes.

(b) Position of selected point on TD, DPI, EC
axes.

Figure 4.2: Position of selected point on Pareto front in NSGA-III.

The solution with EMO enables a selection of any point in Figure 4.2 concerning

DM’s preferences by changing the weights of the importance of objective functions.

Since the value of EC is crucial in this study, we assign the highest weight value

among other objective functions. The design of the cycles ends up with the new

values of the decision variables.

4.2.2 Solution by RVEA

As a second approach, we use reference vector guided evolutionary algorithm (RVEA);

see Figure 4.3 for the computed Pareto optimal points.

The population size is 2000 like in the NSGA-III, and the algorithm is terminated

at the 50th generation. The total run time for the RVEA run is 562 seconds, an

acceptable period. Range of Pareto front points and selected values are provided at

Table 4.6. By using the same weight distributions as done in NSGA-III, the selected

design point’s CPI is 3.34, DPI is 87, EC is 0.65, WC is 8.86, and TD is 220. The

design point is acceptable with the user preferences, and the improvement in EC is

0.75 to 0.65, which is 13.3%. The position of the selected point on the Pareto front
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Figure 4.3: Computed solutions obtained by RVEA.

can be seen in Figure 4.4.

Table 4.6: Range of Pareto optimal solutions obtained by RVEA and selected point
values for minimum energy case.

Objective Function Minimum Value Maximum Value Selected Point
CPI 3.26 3.37 3.34
DPI 78 87 87
EC 0.65 0.75 0.65
WC 8.18 10.42 8.86
TD 212 241 220e

(a) Position of selected point on CPI, DPI,
EC axes.

(b) Position of selected point on TD, DPI,
EC axes.

Figure 4.4: Position of selected point on Pareto front in RVEA.
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4.2.3 Solution by C-TAEA

C-TAEA, a more sophisticated constraint-handling for many-objective optimization

algorithms, is an another approach to solve the optimization problem. Computed

solutions obtained by C-TAEA are exhibited in Figure 4.5.

Figure 4.5: Computed solutions obtained by C-TAEA.

We have 1820 points in the solution since the population size is 1820, and the result is

achieved at the 50th generation. The population size is determined by the combination

C(n+p−1, p), in where n = 5 is the number of objectives and p = 12 is the number

of points on the unit simplex that is number of partitions. The total run time for the

RVEA run is 785 seconds. The Pareto front limit values are also given in Table 4.7.

Table 4.7: Range of Pareto optimal solutions obtained by C-TAEA and selected point
values for minimum energy case.

Objective Function Minimum Value Maximum Value Selected Point
CPI 3.20 3.42 3.35
DPI 78 87 83
EC 0.65 0.75 0.65
WC 7.95 10.05 8.56
TD 212 253 213

The selected design point’s CPI is 3.35, DPI is 83, EC is 0.65, WC is 8.56, and TD is

213 according to the weight distribution discussed in the previous cases. The design

point is acceptable with the user preferences, and the improvement in EC is 0.75 to
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0.65, which is 13.3%. The position of the selected point on the Pareto front can be

seen in Figure 4.6.

(a) Position of selected point on CPI, DPI, EC
axes.

(b) Position of selected point on TD, DPI, EC
axes.

Figure 4.6: Position of selected point on Pareto front in C-TAEA.

4.2.4 Discussion

By using three different algorithms of evolutionary methods, we design three different

cleaning cycles with the aim of improvement in the EC value. The outputs of the

new design cleaning cycles achieved by all methods are very close to each other and

we have improved EC by 0.10 kWh per cycle that is fascinating improvement by

only optimizing the cleaning cycle independent variables. The comparison of the

algorithms can be done by using hypervolume metric (HV) and the operating time.

Since in our case study we do not know the real Pareto front, we need to choose a

reference point, taken as (−3.0,−80, 1.0, 300, 12) that should be dominated by all

Pareto optimal solutions. Comparison of the evolutionary algorithms is provided in

Table 4.8 in terms of operating time and hypervolume metric.

Table 4.8: Comparison of the evolutionary algorithms.

Criteria NSGA-III RVEA C-TAEA
Operating Time 539 562 785

HV 823 712 805

From the results in Table 4.8, we observe that NSGA-III can be considered as the
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most suitable evolutionary algorithm to our case study. The values of the decision

variables at the selected point are given in Table 4.9 for all evolutionary algorithms.

The difference between the new design values and the original domain expert design

creates the improvement in EC value of the cleaning cycle. Using our novel method,

we can also design infinitely many new cycles with improvements in CPI, DPI, WC,

and TD. Additionally, we have ability to design MOOP with different datasets and

different regression models.

Table 4.9: Values of the decision variables concerning evolutionary algorithms.
Variable Name Variable No Standard Value NSGA-III RVEA C-TAEA
1PWRPM x0 2800 2531 2534 2525
1PWTemperature x1 54 49.5 49.5 48.6
1PWWaiting x3 0 0 0 0
1PWClosed_Cycle_Period x5 6 5.4 5.4 5.7
1PWPeriod x6 43 38.7 38.7 38.7
1PWWaterInlet x8 4 3.6 3.6 3.6
2MWRPM x9 3000 3239 2703 2735
2MWLower_Spray_Circulation_Period x11 22.79 21.63 21.72 21.41
2MWClosed_Cycle_Period x12 0 0 0 0
2MWPeriod x13 68 67.6 62.7 61.5
2MWTop_Spray_Circulation_Period x14 20.29 18.46 18.94 18.32
2MWWaterInlet x15 0 0 0 0
3MFPeriod x16 0 0 0 0
4CRRPM x17 2400 2331 2634 2627
4CRPeriod x19 14 13.6 12.7 12.9
4CRTop_Spray_Circulation_Period x20 4 3.6 4.3 3.9
4CRWaterInlet x22 2.6 2.4 2.3 2.3
7RSRPM x23 2600 2859 2858 2846
7RSTemperature x24 54 48.6 48 47.7
7RSLower_Spray_Circulation_Period x25 6 5.5 5.4 5.4
7RSClosed_Cycle_Period x26 4 3.9 3.6 3.7
7RSPeriod x27 28 25.2 30.5 25.3
7RSUpper_Spray_Circulation_Period x28 12 11.5 11.6 12.9
8DSRPM x29 2400 2298 2193 2346
8DSClosed_Cycle_Period x30 0 0 0 0
10DYWaiting x31 80 72 72 72
10DYFan x32 0 0 0 0
10DYFan_Flap x33 0 0 0 0
10DYExtra_Heater_Offset x34 0 0 0 0
10DYPeriod x36 82 74 74 74
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CHAPTER 5

CONCLUSION AND FUTURE WORK

In this thesis, we have developed a novel framework based on statistical learning and

multi-objective optimization to design a dishwasher cleaning cycle that achieves the

target outputs. In developing the framework, we have first studied statistical models

that predict the results of a dishwasher cleaning cycle program. A supervised learning

model with the current cleaning cycle steps and their experimental results is used as

the training data. Our prediction problem is high-dimensional, and we solve the high-

dimensional problem by using feature engineering. Numerical simulations show that

the genetic algorithm feature selection method gives the best prediction performance

in terms of MAE and R-squared with the minimum number of features for both pre-

dictions of linear and nonlinear functions. Additionally, we see that regression models

with gradient boosting algorithms provide accurate and efficient results for nonlinear

functions in our setting. Then, obtained prediction models are used to develop a dig-

ital twin performance laboratory to forecast the outputs of the dishwasher’s unseen,

new cleaning cycles. The digital twin performance laboratory provides time and cost

advantages in the new designs.

After setting the obtained predictive models as objective functions for each outputs

(or dependent variable), we have defined a multi-objective optimization problem as

a new approach to designing a new dishwasher cleaning cycle. To solve the un-

derlying MOOP, we have used evolutionary algorithms such as non-dominated sort-

ing genetic algorithm III (NSGA-III), constrained two-archive evolutionary algorithm

(C-TAEA), and reference vector guided evolutionary algorithm (RVEA). Numerical

results shows that all methodologies provide promoting results. But, in our setting
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(which is to obtain minimum energy), NSGA-III have yielded the best performance

in terms of operating time and hypervolume metric. It has improved the energy con-

sumption of a cleaning cycle by 13.3%.

As a future work, expanding the dataset used to train and test the framework will

help improve the generalization capabilities of the framework, making it applicable

to a broader range of dishwashers and user contexts; it will also enhance the accu-

racy and robustness of the predictions. Additionally, as a further step the regression

performance in a high dimensional problem can be studied to improve by robust lin-

ear regression for high dimensional data methods [30] since the new design cleaning

cycle performances are highly correlated with the regression performances of the sta-

tistical models.

Constrained multi-objective optimization is important in the design of cleaning cycles

to obtain effective cleaning cycles, and as a future study the MOOP can be solved with

constraints [48]. In terms of practice, since especially energy and water consumption

optimization will be a standard approach due to its environmental impact in the future,

integrating the framework with smart dishwasher appliances or home automation sys-

tems will allow for dynamic adjustments and personalized recommendations based on

current conditions, such as water hardness, load size, or dirtiness level.
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