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Kastor and Traschen constructed totally anti-symmetric conserved currents that
are linear in the Riemann curvature in spacetimes admitting Killing-Yano tensors.
The construction does not refer to any field equations and is built on the algebraic
and differential symmetries of the Riemann tensor as well as on the Killing-Yano
equation. Here we give a systematic generalization of their work and find divergence-
free currents that are built from the powers of the curvature tensor. A rank-4
divergence-free tensor that is constructed from the powers of the curvature tensor
plays a major role here and it comes from the Lanczos-Lovelock theory.

I. INTRODUCTION

In [1] Kastor and Traschen (KT) introduced the following anti-symmetric tensor

J µν
KT := −1

4

(

fσρ Rµνσρ − 2fµ
σ Rσν + 2f ν

σ Rσµ + fµν R

)

, (1)

where Rµνσρ, Rµν , and R are the Riemann, Ricci tensors, and the scalar curvature, re-
spectively. Here fµν is a Killing-Yano tensor; i.e. an anti-symmetric tensor satisfying the
Killing-Yano equation

∇µ fνσ + ∇ν fµσ = 0 . (2)

The interesting fact about J µν is that it is a theory-independent conserved “current”; i.e.

∇µJ µν
KT = 0 (3)

for all smooth metrics satisfying the Bianchi Identity for the Riemann tensor and its con-
tractions. So Einstein equations or any other field equations have not been used to show the
covariant conservation of the current, hence (1) is a geometric object on a generic manifold
of dimension D larger than 3. In lower dimensions, for D = 2 and D = 3, J µν

KT vanishes
identically. Note that one can add a term to this current without destroying its properties,
that term would be of the form αfµν , since ∇µfµν = 0 with α an arbitrary constant or it
can be chosen to be the cosmological constant Λ to comply with the linearity of the KT
current in the curvature. We shall comment on this below.

Any conserved current on a manifold is both a curiosity and a valuable asset in construct-
ing conserved quantities. In fact, in [1], generalizing the Arnowitt-Deser-Missner [2] and the
Abbott-Deser [3] (Killing) charge constructions, (1) was used to define conserved mass den-

sity for asymptotically flat spacetimes only in certain spatial directions which is the case,
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for example for D or p branes. The total mass of these infinitely extended objects would
be infinite, but their mass density is preserved and positive under certain conditions as was
shown in [4]. The Kastor-Traschen construction was extended to asymptotically transverse
anti-de-Sitter spacetimes in [5] following the formalism of [6, 7] and the first order formula-
tion of [8]. [Note that one could naively worry that a conserved mass density would not allow
any type of motion, that is not the case here. The mass density is calculated at infinity in
certain transverse directions to the extended object; it does allow the motion of the object.
For an explicit example, see the long Weyl rod computation in [5].]

The usefulness of a KT-type conserved current, J µν
KT,1 is clear, but its construction and

generalizations to higher powers in the curvature are not clear, because the way (1) appeared
in the original paper seems more like serendipity, and to be able to go beyond the linearity
in the curvature and include more powers of curvature would be rather difficult without
a systematic approach. Here we shall remedy this and first show how (1) appears rather
naturally and how it can be extended to generic powers of curvature. So our goal here is the
following: without referring to any field equations of a particular gravity theory, construct
conserved anti-symmetric currents that are linear in the Killing-Yano tensor, but non-linear
in the Riemann tensor and its contractions for smooth manifolds of dimensions D ≥ 4. For
a recent nice summary of the uses of Killing-Yano tensors see [9].

In section II, we give a concise form of the KT current that is amenable to generalization;
in section III we use the Lanczos-Lovelock theory to build a conserved rank-4 tensor that
has the same algebraic properties of the Riemann tensor but does not obey the differential
Bianchi Identity, yet it is divergence-free. In the Appendix, we give a differential form
equivalent version of the discussion.

II. THE P-TENSOR AND THE KASTOR-TRASCHEN CURRENTS

In [10, 11], for the intent of writing the conserved charges in asymptotically AdS space-
times in terms of the Riemann tensor, the authors introduced a (1, 3) rank tensor, the
P-tensor which reads in generic D ≥ 4 dimensions as follows:

Pν
µβσ := Rν

µβσ + δν
σGβµ − δν

βGσµ + Gν
σgβµ − Gν

βgσµ +
R

2

(

δν
σgβµ − δν

βgσµ

)

, (4)

where the (cosmological) Einstein tensor is defined as Gµν := Rµν − 1
2
gµνR + Λgµν . In what

follows we will set Λ = 0, but keeping it would not drastically alter the picture. The P-
tensor has the following properties each of which can be easily checked from its definition
and the symmetries of the Riemann tensor and the Bianchi identities:

1. It vanishes identically in two and three dimensions.

2. It has the algebraic symmetries of the Riemann tensor, and satisfies the algebraic
Bianchi Identity Pµ[νβσ] = 0.

3. Its trace yields, not the Ricci tensor, but the Einstein tensor

Pν
µνσ = (3 − D)Gµσ. (5)

1 One should be happy any time one sees a covariantly conserved anti-symmetric object as they lead to

conserved quantities; somebody said it before us: “God loves anti-symmetry more than symmetry”.
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4. It does not obey the differential Bianchi Identity, namely ∇[µPρν]βσ 6= 0, but it obeys
the following covariant divergence-free property (for all of its indices)

∇νPν
µβσ = 0. (6)

Needless to say, the Riemann tensor does not have this property for generic spacetimes.

5. In four dimensions, it is equal to the double dual of the Riemann tensor:

Pµναβ = ⋆R⋆µναβ :=
1

4
ǫµνσρǫαβδλRσρδλ, D = 4. (7)

6. Its contraction with the Riemann tensor yields the Gauss-Bonnet scalar

PµναβRµναβ = RµναβRµναβ − 4RµνRµν + R2. (8)

In (4), one can add the constant term − (D+1)Λ
D−1

(

δν
σgβµ − δν

βgσµ

)

without destroying any of

the above properties and use the cosmological Einstein tensor. That would make Pν
µβσ

vanish for maximally symmetric spacetimes, and make it reduce to the Weyl tensor for all
Einstein spacetimes. Here, we have not added that term.

Let us note that, in a rather surprising way, this tensor also appeared in a new definition
of the surface gravity and the associated Hawking temperature of black holes [12].

Let us now introduce another property of this tensor, which will help us prove the claims
of this paper: the KT current (1) is given as

J µν
KT = −1

4
Pµν

σρfσρ. (9)

This equation is easy to prove as one just uses the definition of the P-tensor (4) and the anti-
symmetry of the Killing-Yano tensor. Moreover, the covariant divergence property follows
immediately, since

∇µJ µν
KT = −1

4
∇µ (Pµν

σρ) fσρ − 1

4
Pµν

σρ∇µfσρ. (10)

The first term on the right-hand side vanishes due to (6), and the second term on the right-
hand side vanishes since it can be written as Pν

[µσρ]∇µfσρ, due to the total anti-symmetry
of the Killing-Yano tensor. This term is identically zero as the first one since Pν

[µσρ] = 0.

Note that by adding a term proportional to Λ
(

δν
σgβµ − δν

βgσµ

)

in the P-tensor, one can

also generate the linear term αfµν in the KT current that we discussed at the end of the
paragraph that includes (3).

Once we have an anti-symmetric conserved current, it is easy to build total conserved
charges on a manifold M with a boundary as follows: one defines a two-form in local
coordinates

JKT :=
1

2
J KT

µν dxµ ∧ dxν . (11)

This 2-form is not closed, but it yields a natural closed D − 2 form, ⋆JKT, i.e. d ⋆ JKT = 0.
Then the existence of a closed D − 2 form yields the number Q :=

´

Σ
⋆JKT where Σ is a
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co-dimension 2 submanifold of the spacetime, and the number corresponds to the de Rham
period or the homology class of the submanifold [1, 13].

One generalization of the rank-2 KT current was already done in the original work [1] to
rank-n currents using a rank n ≤ D Yano tensor fµ1...µn

= f[µ1...µn] that satisfies

∇α fβµ2...µn
+ ∇β fαµ2...µn

= 0, (12)

and yields the covariantly conserved n-current

J µ1...µn = (n − 1) R[µ1µ2
ρσ fµ3...µn]ρσ + 4(−1)n Rσ

[µ1 fµ2...µn]σ +
2

n
R fµ1...µn , (13)

which can be written as [1]

J µ1...µn = −Nnδµ1...µnαβ
ν1...νnσρ f ν1...νnR

σρ
αβ , (14)

with R
σρ
αβ ≡ Rσρ

αβ , Nn is a normalization constant, and the generalized Kronecker delta
reads as

δµ1...µm

ν1...νm
= det

∣

∣

∣

∣

∣

∣

∣

∣

δµ1

ν1
. . . δµm

ν1

...
. . .

...
δµ1

νm
. . . δµm

νm

∣

∣

∣

∣

∣

∣

∣

∣

. (15)

For the case of rank-2 Yano tensor (13), one has

J µ1µ2 = − 1

16
δµ1µ2αβ

ν1ν2σρ f ν1ν2R
σρ
αβ , (16)

which is consistent with (9) since one can also write the P tensor as

Pαβ
ρσ =

1

4
δαβλγ

ρσµν R
µν
λγ , (17)

as one can check by expanding the generalized Kronecker delta in terms of the determinant
of Kronecker deltas. The above form of the current gave us a hint for generalizations that
are non-linear in the curvature tensor which we perform in the next section.

III. GENERALIZED KASTOR-TRASCHEN CURRENTS FROM

LANCZOS-LOVELOCK THEORY

A. Construction of the generalized current

In D spacetime dimensions, the Lovelock gravity, or perhaps more properly Lanczos-
Lovelock, gravity, [14–16] is defined by the Lagrangian 2

LLL

(

Rkl
mn

)

:=

[ D
2 ]

∑

n=0

anLn, (18)

2 We follow the notation of [17] but multiply the Lagrangian by 1

2n
.
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where an’s are dimensionful constants, and
[

D
2

]

corresponds to the integer part of its argu-

ment. Each part is given as

Ln :=
1

2n
δµ1...µ2n

ν1...ν2n

n
∏

p=1

Rν2p−1ν2p

µ2p−1µ2p
, (19)

where the generalized Kronecker delta is defined as (15). By definition, the lowest order
term is defined as the cosmological constant: L0 := −2Λ. One can compute the next few
terms: n = 1 gives the Einstein-Hilbert, and n = 2 gives the Gauss-Bonnet Lagrangians. If
the spacetime dimension D is even, then the highest order term LD/2 is a pure divergence
and does not contribute to the field equations; i.e. it is a topological invariant for compact
manifolds. [See [18, 19] for a somewhat detailed discussion of the non-existence of the
Einstein-Gauss-Bonnet theory in D = 4 dimensions that gathered so much recent attention.]
The virtues of the Lanczos-Lovelock theory are well-known, and we shall not repeat them
here, they are summarized in [17, 20]. Our main intention here is to use this theory to first
define a proper generalization of the P-tensor of the previous section that has the same
divergence-free property and the algebraic symmetries, but it is non-linear in the curvature
tensor and its traces. If we can do that, it should be clear to the astute reader by now, we
can generalize the KT currents.

Therefore, from (19), let us define the generalized, still rank-4, P-tensor as3

Pµναβ
(n) Rµναβ :=

1

2n
δµ1...µ2n

ν1...ν2n

n
∏

p=1

Rν2p−1ν2p

µ2p−1µ2p
, (20)

or more explicitly,

Pµν
(n)αβ =

1

2n
δ

µνµ3...µ2n

αβν3...ν2n

n
∏

p=2

Rν2p−1ν2p

µ2p−1µ2p
. (21)

Observe that with the above normalization Pµν
(2)αβ corresponds to our earlier definition

(4) or (17); and Pµν
(0)αβ = 1

2
δ

µν
αβ. It is clear from the definition (21) that Pµν

(n)αβ satisfies the
algebraic symmetries of the Riemann tensor and the first Bianchi Identity P(n)α[βµν] = 0.
But we need to show that it is divergence-free. Let us work this out by direct computation:

∇νPµν
(n)αβ =

n − 1

2n
δ

µνµ3...µ2n

αβν1...ν2n
∇ν

(

Rν3ν4

µ3µ4

) n
∏

p=3

Rν2p−1ν2p

µ2p−1µ2p

=
1

3

n − 1

2n
δ

µνµ3µ4...µ2n

αβν1...ν2n
∇[νRν3ν4

µ3µ4]

n
∏

p=3

Rν2p−1ν2p

µ2p−1µ2p
= 0, (22)

where in the last line we used the differential Bianchi Identity on the Riemann tensor. So
this construction generalizes all the features of Pµν

(2)αβ to Pµν
(n)αβ . Therefore, we can now

define, conserved generalized KT rank-2 current as

J µν
(n) := −1

4
Pµν

(n)σρfσρ = −1

4

1

2n
δµνµ3...µ2n

σρν3...ν2n
fσρ

n
∏

p=2

Rν2p−1ν2p

µ2p−1µ2p
, (23)

3 An equivalent tensor was constructed in [21] where it was called the Riemann-Lovelock curvature tensor.
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which is anti-symmetric and conserved ∇µJ µν
(n) = 0. Note that any linear combination of

these currents in the form

J µν
(Total) :=

[ D
2 ]

∑

n=0

cnJ µν
(n), (24)

where cn are dimensionful constants.

B. Wald’s rank-4 tensor versus the P tensor

Let us comment on the connection between the P tensor discussed above and a rank-4
tensor that appears in the Wald entropy computations in higher derivative gravity models
[22, 23]. 4 Given a diffeomorphism invariant action built on the metric tensor and the Rie-
mann tensor and its derivatives and contractions, I =

´

dDx
√−gL(gµν , Rµναβ , ∇σRµναβ , ...),

the field equations suggest that one defines the following tensor that has the same algebraic

symmetries as the Riemann tensor

P W
µναβ :=

∂L
∂Rµναβ

, (25)

where we put a W subscript that refers to Wald. Generically this tensor is not covariant
divergence-free (i.e. ∇µP W

µναβ 6= 0), nor does it obey the differential symmetries of the Rie-
mann tensor. Recall that the covariant divergence-free property (6) of our P was a necessary
ingredient in the construction of the above currents. So generically P W 6= P and one cannot
use Wald’s tensor to extend the KT currents straightforwardly. To demonstrate what we
have just stated, let us consider a particular form of the action for which the Lagrangian
is a polynomial in the Riemann tensor only, but does not depend on its derivatives. So we
have I =

´

dDx
√−gL(gµν , Rµναβ), of which the field equations are [24] (here we use a more

compact notation)

Eµν = ∇λ∇σP W
µσνλ + ∇λ∇σP W

νσµλ +
1

2

(

P W
ρσλνRρσλ

µ + P W
ρσλµRρσλ

ν

)

− 1

2
gµνL, (26)

which is generically a fourth-order theory in terms of the dynamical field (the metric tensor).
At this stage, one could try to restrict the set of theories by demanding that one should
have a second-order theory just like Einstein’s gravity, then this can be achieved by setting

∇σP W
µσνλ = 0, we demand this, (27)

which reduces (26) to a second order theory. Say we have no matter fields, then from the
reduced form of (26), one obtains

L =
2

D
P W

ρσλµRρσλµ. (28)

Finally, comparing with (20), only in this case (which is the case of Lanczos-Lovelock theo-
ries), the Wald tensor and the P of this work are proportional to each other as

Pµναβ =
2

D
P W

µναβ . (29)

4 We thank a conscientious referee for reminding us of this tensor.
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Let us remark that for this case, the Wald entropy of a black hole as a conserved charge of
diffeomorphisms (computed in the spatial cross-section of a null horizon ) reads [25]

SW = 2π

ˆ

S

P W
µναβǫµνǫαβdD−2S, (30)

where ǫαβ are the binormal vectors to S that involve the time-like Killing vector (see [26] for
further details). For a physical interpretation of the conserved charges built in this work,
this connection between the Wald entropy would be very valuable: but one has to be careful,
in the former we use Killing-Yano tensors, while in the latter the Killing vectors.

C. Linearized KT currents

As a separate note, to further gain insight into the physical meaning of the currents
constructed here, we can consider asymptotically flat spacetimes that only have asymptotic
(not exact) Killing-Yano tensors as was done in [1]. This vantage point as advocated in [27]
in the case of Killing vectors leads to conserved charges (with respect to the background
of which the charges are assumed to be zero), and it proceeds by the linearization of all
relevant tensors about the background spacetime (with the metric ḡµν). The details of this

construction can be found in the recent review [28]. Let f̄µν be the background Killing-Yano
tensor, then linearization of (24) around the background flat spacetime (with R̄µναβ = 0); and
each term in (24) is given as in (23). Then one realizes that the only contribution comes from
the original Kastor-Traschen current that is linear in the curvature tensor, all other terms are
built with at least two powers of the Riemann tensor and hence vanish for asymptotically flat
backgrounds. So the current construction here reduces to that of KT for all asymptotically
flat spacetimes. As an antisymmetric rank two current, the linearized version of the KT

current in asymptotically flat spacetimes can be written in terms of potential as
(

J µν
(2)

)

L
=

∇̄σℓσµν , where the potential was given in [1], and ∇̄σ denotes the covariant derivative with
respect to the flat background. On the other hand, if the background spacetime is not
asymptotically flat, but say, asymptotically anti-de-Sitter, the terms in (24) contribute to
the total current depending on the number of dimensions D, since now R̄µναβ 6= 0. Let us
show this with an example in AdS spacetime. Linearizing (23) about an AdS background
yields

(

J µν
(n)

)

L
= −1

4

(

Pµν
(n)σρ

)

L
f̄σρ, (31)

where, from (21), we have

(

Pµν
(n)αβ

)

L
=

(n − 1)

2n
δ

µνµ3...µ2n

αβν3...ν2n

(

Rν2n−1ν2n

µ2n−1µ2n

)

L

n−1
∏

p=2

R̄ν2p−1ν2p

µ2p−1µ2p
. (32)

For the background we have

R̄
µν
αβ =

2Λ

(D − 1) (D − 2)

(

δµ
αδν

β − δ
µ
βδν

α

)

. (33)

For the sake of simplicity, let us consider the n = 3 case (corresponding to the cubic Lanczos-
Lovelock theory) for which we have to compute

(

Pµν
(3)αβ

)

L
=

1

22
δ

µνµ3...µ6

αβν3...ν6

(

Rν5ν6

µ5µ6

)

L
R̄ν3ν4

µ3µ4
, (34)
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which reduces to
(

Pµν
(3)αβ

)

L
=

Λ

(D − 1)(D − 2)
δ

µνµ3µ4µ5µ6

αβµ3µ4ν5ν6

(

Rν5ν6

µ5µ6

)

L
. (35)

We can reduce the contracted generalized Kronecker delta with six up and six down indices
as follows (see [17])

δ
µνµ3µ4µ5µ6

αβµ3µ4ν5ν6
=

(D − 4)!

(D − 6)!
δ

µ,νµ5µ6

αβν5ν6
, D ≥ 6 (36)

which then yields

(

Pµν
(3)αβ

)

L
=

Λ

(D − 1)(D − 2)

(D − 4)!

(D − 6)!
δ

µνµ5µ6

αβν5ν6

(

Rν5ν6

µ5µ6

)

L
. (37)

The resulting computation is still a little bit tedious, one can show that

(

J µν
(3)

)

L
=

4Λ

(D − 1)(D − 2)

(D − 4)!

(D − 6)!

(

J µν
(2)

)

L
, (38)

where
(

J µν
(2)

)

L
was shown in [5] to be written in terms of a rank-3 potential as follows

(

J µν
(2)

)

L
= 3! ∇̄σ

(

f̄ ρ[µ ∇̄ν hσ]
ρ+

1

2
f̄ [νµ ∇̄σ] h+

1

2
hρ

[ν ∇̄σ f̄ |ρ|µ]−1

2
f̄ [νµ ∇̄|ρ| hσ]ρ+

1

6
h ∇̄[ν f̄σµ]

)

,

(39)
where the brackets denote antisymmetrization; and hµν := gµν − ḡµν is the deviation from
AdS which is assumed to be small asymptotically at spatial infinity. This form can easily be
integrated to give conserved charges which we shall study more explicitly in a separate work.
So the upshot is that each term in (24) contributes to the KT current for asymptotically
non-flat geometries, while only the original KT current contributes for asymptotically flat
geometries akin to the case for the Killing charges which is just the Arnowitt-Deser-Misner
[2] energy for asymptotically flat geometries even in higher curvature theories, but higher
curvature terms contribute for asymptotically non-flat ones [6, 7].

IV. CONCLUSIONS

In this work, our goal was to generalize the Kastor-Traschen current [1]) that is linear
in the Riemann curvature and the Killing Yano-Tensor to currents non-linear in the cur-
vature. For this purpose, we reformulated the original KT current in terms of a rank-4
divergence-free tensor; and used that expression and the Lanczos-Lovelock theory to build
the generalized current. In the construction of these currents, the only ingredients are the
Bianchi Identities of the Riemann tensor as well as the Killing-Yano tensor. The currents are
valid for all spacetimes that admit Killing-Yano tensors. There are various possible exten-
sions of our work: we used Killing-Yano tensors here, but one can extend the construction
to the spacetimes admitting Conformal Killing-Yano tensors [29].

Appendix A: The P tensor in the differential forms

Here we briefly give the discussion of the P tensor in terms of differential forms. For this
purpose, we need to recast the Lanczos-Lovelock Lagrangians as D-forms first.
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The Cartan Structure equations for the curvature 2-form and the torsion 1-form read,
respectively, as

Ra
b := dωa

b + ωa
c ∧ ωc

b, (A1)

T a := dea
b + ωa

b ∧ eb = Dea. (A2)

The Bianchi identities are

D ∧ Ra
b = 0, D ∧ T a − Ra

b ∧ eb = 0, (A3)

while the Lanczos-Lovelock Lagrangian as a function of the vierbein and the spin connection
reads

LLL[ea, ωab] =

[ D
2

]
∑

n=0

anL(n), (A4)

where the D-form Lagrangian for each n is given as

L(n) := ǫa1...aD
Ra1a2 ∧ ... ∧ Ra2n−1a2n ∧ ea2n+1 ∧ .. ∧ eaD . (A5)

Then we can define the tensor-valued P (D − 2) form

Pa1a2
:= ǫa1...aD

Ra3a4 ∧ ... ∧ Ra2n−1a2n ∧ ea2n+1 ∧ .. ∧ eaD . (A6)

We did not need them, but for completeness, let us give the field equations for the full

theory: The field equation coming from δILL[ea,ωab]
δeb reads

Eb =

[D−1

2 ]
∑

n=0

(D − 2n)anE (n)
b = 0 (A7)

where
E (n)

b := ǫba2..aD−1
Ra1a2 ∧ ... ∧ Ra2n−1a2n ∧ ea2n+1 ∧ .. ∧ eaD−1. (A8)

The field equation coming from δILL[ea,ωab]
δωbc reads

Hbc =

[ D−1

2
]

∑

n=1

n(D − 2n)anH(n)
bc (A9)

where

H(n)
bc := ǫbca3..aD

Ra3a4 ∧ ... ∧ Ra2n−1a2n ∧ T a2n+1 ∧ .. ∧ eaD−1 (A10)

and we observe that the torsion entered into the last equation which can be set to zero. See
[30] for further details.
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