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ABSTRACT 

 

DEVELOPMENT OF A DECISION-SUPPORT TOOL FOR MANAGING DRINKING 

WATER RESERVOIR BY USING MACHINE LEARNING AND DEEP LEARNING 

METHODS 

 

Özdemir, Serkan 

Ph.D, Department of Information Systems 

Supervisor: Prof. Dr. Sevgi Özkan Yıldırım 

Co-Supervisor: Dr. Muhammad Yaqub 

 

 

December 2023, 136 pages 

 

Global climate change has led to large fluctuations in lake levels in recent years, due to 

both changing meteorological parameters and intensive water use. A shift in input or 

output variables can easily alter the water balance equation and move water levels in the 

opposite direction. To understand the continuing trend and to create an action plan for 

dramatic water balance and water quality management, scientists use a variety of models 

to analyze several variables recorded. In this thesis, the predictive models used for the 

climatic and hydrologic variables are discussed and their relationships to Lake Water 

Level (LWL) and water quality are presented. Based on the technological progress, three 

different types of algorithms a) Naive Method, b) Artificial Neural Networks (ANN) and 

finally c) Recurrent Neural Network (RNN) models are used to predict water level in 

lakes. The prediction results from the thesis show that Long Short Term Memory (LSTM) 

has the highest accuracy with respect to the Root Mean Squared Error (RMSE) evaluation 

metric. The models were also compared with the performance of the Naïve Method, and 

the results show that ANN and RNN algorithms are superior in prediction accuracy as the 

prediction horizon increases. The prediction performances were assessed with Diebold 

Mariano Test to decide significant differences. It also reveals the water quality of the lake 

is highly correlated with temperature and evaporation. The models and evaluation metrics 

are constructed to build a prototype of decision support tool in order water managers to 

use in operational transactions. 

Keywords: lake water level, deep learning, time series, water quality, decision support 

tool 
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ÖZ 

 

MAKİNE ÖĞRENMESİ VE DERİN ÖĞRENME YÖNTEMLERİNİ 

KULLANARAK İÇME SUYU REZERVUARININ YÖNETİMİ İÇİN BİR 

KARAR DESTEK ARACININ GELİŞTİRİLMESİ 

 

Özdemir, Serkan 

Doktora, Bilişim Sistemleri Bölümü 

Tez Yöneticisi: Prof. Dr. Sevgi Özkan Yıldırım 

Ortak Tez Yöneticisi: Dr. Muhammad Yaqub 

 

Aralık 2023, 136 sayfa 

 

Küresel iklim değişikliği, hem değişen meteorolojik parametreler hem de yoğun su 

kullanımı nedeniyle son yıllarda göl seviyelerinde büyük dalgalanmalara yol açmıştır. 

Girdi veya çıktı değişkenlerindeki bir değişim, su dengesi denklemini kolayca 

değiştirebilir ve su seviyelerini ters yönde hareket ettirebilir. Devam eden eğilimi anlamak 

ve dramatik su dengesi ve su kalitesi yönetimi için bir eylem planı oluşturmak amacıyla, 

bilim insanları kaydedilen çeşitli değişkenleri analiz etmek için çeşitli modeller 

kullanmaktadır. Bu tezde, iklimsel ve hidrolojik değişkenler için kullanılan tahmin 

modelleri tartışılmakta ve bunların Göl Su Seviyesi (LWL) ve su kalitesi ile ilişkileri 

sunulmaktadır. Teknolojik gelişmelere bağlı olarak, göllerdeki su seviyesini tahmin etmek 

için üç farklı algoritma türü a) Naïve Yöntem, b) Yapay Sinir Ağları (YSA) ve son olarak 

c) Tekrarlayan Sinir Ağı (RNN) modelleri kullanılmıştır. Tezden elde edilen tahmin 

sonuçları, Kök Ortalama Karesel Hata (RMSE) değerlendirme metriğine göre Uzun Kısa 

Süreli Belleğin (LSTM) en yüksek doğruluğa sahip olduğunu göstermektedir. Modeller 

ayrıca Naïve Yönteminin performansı ile karşılaştırılmış ve sonuçlar, tahmin periyodu 

arttıkça YSA ve RNN algoritmalarının tahmin doğruluğunda üstün olduğunu göstermiştir. 

Tahmin performansları, anlamlı farklılıklara karar vermek için Diebold Mariano Testi ile 

değerlendirilmiştir. Ayrıca bu tez, gölün su kalitesinin sıcaklık ve buharlaşma ile yüksek 

oranda ilişkili olduğunu ortaya koymaktadır. Modeller ve değerlendirme ölçütleri, su 

yöneticilerinin operasyonel işlemlerde kullanmaları için bir karar destek aracı prototipi 

oluşturmak üzere geliştirilmiştir. 

Anahtar Sözcükler: göl su seviyesi, derin öğrenme, zaman serisi, su kalitesi, karar destek 

aracı   
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CHAPTER 1 

CHAPTER 

1. INTRODUCTION 

 

Water quality and quantity difficulties vary from place to place and are influenced by a 

variety of elements, including climatic, geographic, geological, social, and economic. In 

addition, ongoing global warming and meteorological patterns are likely to disrupt the 

temporal and spatial balance of water, leading to freshwater scarcity and impeding the 

achievement of the United Nations Sustainable Development Goals around the world. 

Modeling studies suggest that by 2050 there will be a paradigm shift in the distribution of 

freshwater on the planet (Paul and Elango, 2018; Castillo-Botón et al., 2020). Therefore, 

a sound water management plan, developed using reliable forecasting models, is essential 

for implementing sustainable water use and conserving water resources in a given basin 

or region. 

 

Turkey experiences frequent droughts that significantly reduce surface and groundwater 

resources, including wetlands and lakes. (Soylu Pekpostalci et al., 2023; Yeşilköy and 

Şaylan, 2022). Drought conditions affect standing water bodies when there is a reduction 

in surface runoff and in stream inputs. Droughts typically coincide with hot weather which 

causes evaporation to increase significantly during dry periods. The effects of drought 

include a decrease in water levels in what is usually a very fertile littoral zone. This can 

leave aquatic fauna (e.g. mussels, snails, and flora) stranded in the area. The increased 

water temperature associated with drought can lead to stratification, increased salinity, 

and reduced oxygen levels. In some cases, the combination of high temperatures with low 

oxygen may lead to the extinction of fish species (Bond et al., 2008). 

 

Uncontrolled drinking water supplies and inadequately managed reservoirs pose a 

significant threat to developing and densely populated cities. Lake Sapanca, for example, 

is an important source of fresh water supply for the cities of Sakarya and Kocaeli and is 

also used by several bottled water companies for commercial purposes. The prospects of 

the reservoir appear to be affected by climate change and recent droughts, which could 

negatively impact several parts of the region and its ecosystems (Duru, 2017). Because of 

the multitude of factors that affect the surface of a lake, one of the most critical hydrologic 

problems is to estimate the water level of a lake before it reaches its threshold. Hydrologic 

models have certain limitations on accurate predictions due to the complex nature of 
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hydrologic and meteorological variables, as well as the temporal and spatial characteristics 

of each watershed (Zounemat-Kermani, 2021; Chang and Chang, 2006). Therefore, it is 

essential to develop more reliable predictive models that can accurately and reliably 

estimate the water level of a lake. 

 

There are two different approaches for Lake Water Level (LWL) prediction in the 

literature. The most prominent approach follows the physical process, and the emerging 

approach is called a data-driven methodology that focuses on historical data sets to predict 

future values. The physical process, often achieved by solving hydrodynamic equations, 

forms the basis for the analysis of the LWL in physics-based methods. Lai et al. (2011) 

used a combined hydrodynamic analysis model on the middle Yangtze River to calculate 

changes in the water balance caused by water storage. Wu et al. (2014) investigated the 

effects of TGD on the water level of Lake Poyang, located in the lower reaches of the 

Yangtze River, using physical model experiments. Data-driven methods simulate the 

LWL in addition to the factors affecting it using scientific computer models. Different 

types of models have been developed to promote specific cases. For instance, Liu et al. 

(2015) evaluated the model with Support Vector Regression (SVR) and Adaptive Neuro-

Fuzzy Inference System (ANFIS). They presented a multivariate conditional model based 

on copulas to predict water level and improve spatial precipitation estimation. Wang et al. 

(2017) applied SVR to simulate causality between LWL and the quantity of water 

discharged from the reservoir. Statistical methods and Artificial Intelligence (AI) 

techniques are two common data-driven approaches to solve LWL prediction problems 

(Zhang et al., 2018). These methods include multiple regression, pattern recognition, 

Neural Network (NN) techniques, time series methods, and probability features (Bourdeau 

et al., 2019). 

 

In the last decade, a variety of contemporaneous techniques have been applied to compare 

the predictive power of algorithms. For example, Ghorbani et al. (2010) studied the ability 

of the Genetic Programming and Artificial Neural Network (ANN) to predict LWL in 

Australia and reported accurate predictions with good agreement. Talebizadeh and 

Moridnejad (2011) used ANN and ANFIS to predict the LWL at Lake Urmia in Iran. In 

another study, NN, neural fuzzy, and GP models were applied to estimate the LWL on a 

daily basis (Kisi et al., 2012). The results showed that each of the three models accurately 

predicted the LWL. Buyukyildiz et al. (2014) developed a series of AI models, Multilayer 

Perceptron (MLP), hybridized SVR with Particle Swarm Optimization (PSO), Radial 

Basis Neural Network (RBNN), and ANFIS to predict LWL. Their results show that the 

hybrid SVR-PSO model is a reliable prediction model. Similarly, for three upstream rivers 

on the east coast of Malaysia, water levels for the next five hours were successfully 

estimated using ANN (Lukman et al., 2017). To predict the LWL, Yadav and Eliza (2017) 

used a Support Vector Machine (SVM) and Wavelet. The results of the study showed that 

the model implemented to predict future values of the reservoir was more accurate 

compared to regression models. Despite the successful attempts to use Machine Learning 

(ML) methods in these studies, there are certain inherent limitations in the algorithms used 

in the literature (Ozdemir et al., 2023). For instance, in ANNs, the rules that could explain 

underlying methods are not given. In terms of fuzzy logic, setting precise, fuzzy 
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enrollment limitations and parameters can be difficult and the fuzzy justification isn't 

always correct. Regression models show that as the number of variables increases, their 

accuracy decreases. The regression models work better when there are fewer variables. 

Lastly, training a Deep Learning (DL) model requires a lot of computing power, which 

leading to the need for powerful Graphics Processing Unit (GPU)s and a large amount of 

Random Access Memory (RAM). Another potential drawback is an overfitting issue that 

arises when a model performs poorly on newly untrained data after being overtrained on 

training data. 

 

The most common time series prediction model with statistical analysis used by scientists 

to predict lake level is the Autoregressive Integrated Moving Average (ARIMA) model 

(Yu et al., 2017; Viccione et al., 2020). It can be expressed in several ways, including 

Moving Average (MA), Autoregressive Average (AR), hybrid AR or MA, known as 

Autoregressive Moving Average (ARMA) or Seasonal Autoregressive Integrated Moving 

Average (SARIMA) (Azad et al., 2022). The SARIMA model, on the other hand, has the 

advantage of requiring fewer model features to explain the structure of time series that 

exhibit non-stationarity in seasons and between seasons (Fang and Lahdelma, 2016). 

Unlike MLs, which often require multiple features as input, this is an important 

simplification (Viccione et al., 2020). The ANN algorithm is a widely used ML method 

for water flow modeling, water quality assessment, and water level prediction in 

hydrology and water resources (Lukman et al., 2016; Altunkaynak et al., 2007; Nouri et 

al., 2019; Adhikary et al., 2018;). In addition, some research has presented a hybrid ANN-

ARIMA model (Khandelwal et al., 2015; Phan and Nguyen, 2020). 

 

A review of the above research papers shows that various approaches to predicting LWL 

produce distinct outcomes and estimation uncertainties. Recently, some scholars have 

used time series techniques to predict various areas such as energy prices, stock prices, 

and corporate sales forecasts that are critical to the global economy (Sethia and Raut, 

2019; Anupa et al., 2021), including weather, environment, hydrology, and geological 

phenomena (Ebtehaj et al., 2019, Xiang and Demir, 2020). Almost all of them concluded 

that the time series forecasting methods provide more accurate results compared to the 

benchmark models. 

 

The Recurrent Neural Network (RNN)-based DL approach is proposed in this thesis as a 

state-of-the-art technique to solve the above problems in the study of LWL, which would 

improve the prediction performance. DL networks, which differ from conventional 

approaches in that they allow computer models consisting of numerous layers to learn 

representations of data consisting of multiple levels of abstraction, replicate the 

functioning of the human brain (Chen et al., 2018). The DL approach has been used for 

object recognition, speech recognition, visual object recognition, genomics, and drug 

discovery (LeCun et al., 2015). The extraordinary success of supervised RNN-based DL 

algorithms for conducting recognition studies directed to use the RNN-based algorithms 

in multivariate time series studies. The LWL studies also have time series data due to its 

nature and attracts hydrologists to exploit the power of these DL algorithms in their future 

time series prediction studies. However, the application of DL models for LWL is limited 
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and is the focus of this thesis to overcome several drawbacks of available approaches for 

LWL prediction, such as the large number of input variables and their uncertainty. The 

work motivation in this thesis is to provide effective prediction technique for water 

managers to handle drinking water supply availability in lakes before reaching an alarming 

level. The limited water supply in lakes not only cause frequent drought experiences and 

water shortage, but also cause a decrease in water quality.   

 

In this thesis, novel gated RNN-based algorithms are used to build a model that can predict 

future LWL to support drought mitigation and reservoir management. In addition, this 

study aims to help fill the gap in the literature regarding the selection of DL models and 

the evaluation of the performance of LWL prediction algorithms by using the Naïve 

Method Benchmark and the Diebold-Mariano test. There is no study in the literature that 

focuses on the comparison between algorithms for multivariate prediction studies with 

different future time periods. 
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CHAPTER 2 

 

2. LITERATURE REVIEW 

 

This chapter consists of six sections. The first section focuses on background information 

on LWL with a Systematic Literature Review (SLR) conducted in October 2021. The 

second section gives information for comparison of studies in literature in terms of 

similarities and differences. The third section focuses on effect of climate change on lakes 

and the studies in literature that investigates this area. The fourth section gives literature 

information for the factors that affect lake water quality by considering microcystin an 

algal toxins produced by Plankthotrix Rubescens. The fifth section introduces the 

Decision Support Tool studies for LWL that are investigated by previous scholars. The 

last section summarizes the studies in literature and remarks the knowledge gaps. 

 

2.1. Lake Water Level 

 

A comprehensive review of the literature was conducted to assess the current state of 

knowledge regarding LWL prediction and forecasting methods. By carefully formulating 

search queries and inclusion/exclusion specifications, the SLR accurately evaluates the 

breadth of the current literature. It is also reproducible and transparent. Identification of 

data sources and formulation of search parameters are the starting point of SLR. Next, 

publications that meet the objectives of the study are either included in the final sample or 

excluded. Finally, relevant data are extracted from the entire text of the sample, and the 

results are analyzed and reported. Despite the fact that a large sample was extracted from 

the SLR, not all important references may have been included. In some cases, certain 

references were used for discussion but did not appear in the SLR results. 

 

After defining the scope of the research, the research questions are developed and the 

keywords of the systematic search are retrieved. These keywords, which are: (lake AND 

water AND level AND predict*), (reservoir AND water AND level AND predict*), (lake 

AND water AND level AND forecast*), and (reservoir AND water AND level AND 

forecast*), were extracted at least once from the title, abstract, or keywords. To narrow 

the search, they were first refined using specific inclusion and exclusion criteria. In the 

first phase of the study, only published research from open access book chapters, journals, 
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and conference proceedings were considered. However, studies written entirely in a 

language other than English were not included in this analysis. 

 

A Quality Assessment Checklist (QAC) has been established to assess the eligibility of 

each study for second and third stages. The checklist includes items such as: a) Does the 

study focus on predicting water levels? b) Does the study relate to a reservoir where water 

levels were predicted? (c) Does the publication of the study disclose the methodology? 

    

Once the review methodology has been determined, there are other criteria for selecting 

studies that are relevant to the objective of the study. The following three criteria are 

applied in the study: 

I. The research must focus on a natural or artificial freshwater lake (i.e., excluding 

groundwater, rivers, oceans, or similar environments); 

II. Research models must focus on LWLs, dynamics, or fluctuations (e.g., research 

that predicts flood hazards, drought-related conditions, economic impacts, human 

populations, or other animal populations are excluded from consideration); and 

III. Models must be able to anticipate LWLs, validate observed data, and/or 

provide qualitative justification for them. 

 

A thorough search of ScienceDirect, Web of Science, and Scopus databases was 

conducted on October 3, 2021. There were 1470 articles in phase 1 (Figure 1). 

 

 
Figure 1: Applied SLR methodology in the study. Adapted from A systematic literature 

review on Lake water level prediction models, by Ozdemir et al., 2023, Environmental 

Modelling & Software, 105684 
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269 and 72 articles were still available after QAC was applied to the second and third 

stage data, respectively (Figure 1). 

 

The literature background shows an increasing interest in the research of LWL and 

Reservoir Water Level (RWL) prediction, especially in light of the recent impacts of 

climate change. The number of publications over the past 15 years also shows an increase 

(Figure 2). 

 

  
Figure 2: Number of publications on LWL and RWL prediction. Adapted from A 

systematic literature review on Lake water level prediction models, by Ozdemir et al., 

2023, Environmental Modelling & Software, 105684. 

 

The number of publications in Figure 2 shows a large increase in research on LWL and 

RWL forecasting, especially for 2020 and 2021. The impacts of climate change and recent 

water shortages may be one reason for research on LWL and RWL forecasting. Figure 3 

below shows how the research region differs in terms of the geographic areas where 

climate change impacts have the greatest impact on demographics. 
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Figure 3: LWL and RWL study areas. Adapted from A systematic literature review on 

Lake water level prediction models, by Ozdemir et al., 2023, Environmental Modelling & 

Software, 105684. 

 

Most studies have focused on lakes on the United States (U.S.)-Canada border and in 

China or the United States. The literature also examined lakes from various parts of the 

world. The 17 other studies examined reservoirs in Europe, while 13 dealt with them in 

Asia. Nine study regions in Africa, three in Australia, and two lake levels in South 

America were modeled. Because a study may examine more than one lake or reservoir to 

compare, Figure 3 shows a higher number of study regions than studies. In addition, 

although the studies in the literature cover a 15-year period (2006-2021), the length of the 

datasets used in the studies varies depending on the methods used to collect the data and 

is generally longer than 15 years. 

 
Figure 4: LWL and RWL articles’ journal names. Adapted from A systematic literature 

review on Lake water level prediction models, by Ozdemir et al., 2023, Environmental 

Modelling & Software, 105684. 
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Scientists publish their articles and proceedings in prestigious journals and conferences. 

The Figure 4 show the proportion of publications in this SLR that compare entire studies. 

"Water" is the journal with the most publications for this type of research. In addition, 

"Plos One" and "Journal of Hydrology: Regional Studies" publish a large number of 

studies. In the field of water research, the other studies are almost equally represented in 

the different journals. The results of the figure show that the listed journals have a strong 

emphasis on studies related to LWL and RWL forecasting and are most likely to include 

related topics in their publications. 

 

 
Figure 5: LWL and RWL prediction models. Adapted from A systematic literature review 

on Lake water level prediction models, by Ozdemir et al., 2023, Environmental Modelling 

& Software, 105684. 

 

Most scientists have chosen ANNs to predict future LWL. SVR, Random Forest (RF) and 

Artificial Neuro-Fuzzy Inference System (ANFIS) are some of the other most commonly 

used techniques. Figure 5 shows that the algorithm used in the literature is not dominant 

or widely accepted. Moreover, the positive results of NN-based prediction models 

encourage researchers to develop prediction models utilizing these algorithms and DL 

techniques (Yuan et al., 2022). 
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Figure 6: LWL and RWL evaluation metrics. Adapted from A systematic literature review 

on Lake water level prediction models, by Ozdemir et al., 2023, Environmental Modelling 

& Software, 105684. 

 

As shown in Figure 6, almost in every three research, researchers used Root Mean Squared 

Error (RMSE) as the evaluation metric. Coefficient of Determination (R2) and Mean 

Absolute Error (MAE) are the second and third most common evaluation metrics in the 

literature, respectively. Despite the fact that these algorithms are most commonly used by 

researchers, most of them analyze results using multiple evaluation metrics rather than 

just one. Increasing the credibility of the results of evaluation measures could be one of 

the reasons for not limiting oneself to one evaluation metric. 

 

 
Figure 7: Evaluation metrics in terms of algorithms. Adapted from A systematic literature 

review on Lake water level prediction models, by Ozdemir et al., 2023, Environmental 

Modelling & Software, 105684. 
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Most of the evaluation metrics for mathematical and equation-based models, ANN and 

fuzzy logic, and in published results for AI models are RMSE and Mean Squared Error 

(MSE) (Figure 7). R2 is almost never used in fuzzy logic models and is almost exclusively 

chosen in regression and DL models. Another problem is that less than 10% of studies use 

the Mean Absolute Percentage Error (MAPE)-MAE to assess the effectiveness of 

equation-based and mathematics-based models. 

 

2.1.1. Regression Based Models 

 

Zhu et al. (2017) developed Linear Regression (LR) model to predict the water level of 

Lake Chad, which is located in Nigeria, Cameroon, Nijer, and the border with Chad. The 

area of the lake is estimated to be 15000 km2. The dataset contains 288 data lines estimated 

from 24 years of monthly data. The model forecasts Lake Water Balance (LWB) using 

direct precipitation, evaporation, lake inflow from the Chari/Logone River system, and 

lake outflow, which includes both surface water runoff to the northern basin and lake 

seepage in the form of groundwater discharge, as input variables. The evaluation metric 

used to test the model, on the other hand, is Correlation Analysis (R). The results of the 

study reveals that the water level of the lake is increasing steadily for 0.5 cm per year. 

Furthermore, there is a variation of water levels throughout the year which is 1.38 m in 

terms of seasons. 

 

Lin et al. (2015) studied a combination of the Routing Application for Parallel 

Computation of Discharge (RAPID) model, the Noah- Multiparameterization Land 

Surface Model (NOAH-MP LSM), and Multiple Linear Regression (MLR) for lake level 

prediction. The study area is Lake Buchanan, which is located in Texas, USA. The area 

of Lake Buchanan is 90 km2. The authors used a data set with 108 data rows estimated 

from 9 years of monthly accumulated data. The model predicts Lake Level Change (LLC) 

with input variables such as inflow rate from the main stream and tributaries as simulated 

by RAPID, the outflow rate (in m3/s); P(t), precipitation, and evaporation. The model is 

tested using R2, RMSE, and NRMSE as performance measures. According to the results, 

runoff can be simulated at any scale required for lake level modeling. 

 

García Molinos et al. (2015) investigated Bayesian Harmonic Regression Models 

(BHRM) to predict LWL in natural Irish lakes located in Ireland. The dataset used in this 

study includes an estimated 456 rows of data accumulated from 38 years of monthly data. 

The model predicts LWL by again using water level. The performance of the model was 

tested using the Deviance Information Criterion (DIC). From the results, it can be 

concluded that it is possible to group lakes in terms of their annual seasonality and their 

inter-annual and inter-decadal cycles. 

 

Castillo-Botón et al. (2020) proposed SVR and Gaussian Processes (GPs) for predicting 

the RWL of the Belesar reservoir. The reservoir has an area of 19.1 km2 and is located in 

Spain. In the study, the Dam Water Level (DWL) in hm3 was set as the initial parameter 

and an attempt was made to predict this water level by using flow (m3/s) and elevation 
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(m) upstream and on tributaries, and precipitation (mm) as input features. The total size 

of the dataset is 2704 for all parameters. RMSE and MAE were chosen as the evaluation 

metrics for this study. The results show that the model allows short- and long-term 

prediction and analysis of reservoir levels, which contributes to hydropower management. 

 

Kenda et al. (2020) analyzed LWLs in their study using different techniques such as LR, 

Decision Tree Regression (DTR), Random Forest Regression (RFR), Gradient Boosting 

Regression (GBR), Partial Least Squares Regression (PLSR), Extra Tree Regression 

(ETR), SVR, Multilayer Perceptron Regression (MLP-R), K-Neighbors Regression 

(KNR), Hoeffding Tree Regression (HTR), HAT Regression (HAT-R), Logistic 

Regression (LoR), Decision Tree Classifier (DTC), Extra Tree Classifier (ETC), Random 

Forest Classifier (RFC), SVC, K-Neighbors Classifier (KNC), Perceptron, Gaussian 

Naïve Bayes (GNB), Hoeffding Tree Classifier (HTC), and HAT Classifier (HAT-C). The 

study is conducted in Slovenia. The dataset was generated from government sources and 

has a size of 2555 data rows estimated from 7 years of daily data. The study predicts LWL 

using humidity, precipitation intensity, temperature, dew point, precipitation type, 

pressure, raw hourly weather forecast data, cloud cover and daytime as input variables. 

The performance of the model is tested using R2, RMSE, and MAPE. In their results, the 

authors claim that the proposed models outperform streaming methods such as standard 

batch and incremental ML techniques. 

 

M Dawam and Ku-Mahamud (2019) used a normalization and multiple regression model 

for their LWL prediction study. The study area is Timah Tasoh Reservoir, which is located 

in Malaysia. The authors developed the model using a dataset consisting of 501 line data 

with a daily accumulated dataset. The model predicts RWL based on the amount of 

precipitation and changes in RWL using the sliding window technique. R and R2 are the 

performance evaluation methods used in this study. According to the results extracted 

from the evaluation metrics, the combination of the RF and WC data gives the best input 

simulation for the multiple regression model. 

 

To predict the water levels of Hongjiadu Reservoir in China, Liu et al. (2017) employed 

a Multi-Objective Decision Model (MODM) using a Statistical Regression Predictive 

Function (SRPF). The dataset, which includes a total of 63 entries, was constructed 

annually. The model uses inflow, water level at the beginning of the year, power 

generation and power yield as inputs, and outputs the water level of the reservoir. This 

study uses a number of evaluation metrics, including Mean Relative Errors (MRE), 

Multiple Correlation Coefficient (MCC), Amount of Forecast Factor (AOFF), Sum of 

Squares (SS), Residual Standard Deviation (RSD), Residual Sum of Squares (RSOS), 

Regression Square Sum (RSS), and Degrees of Confidence (DOC). The findings suggest 

two strategies for managing water resources in the face of their erratic changes. Statistical 

regression is an approach that can be used in situations where there is a consistent influx. 

MODM is another technique that can be used in cases of significant contention. 

 

To predict LWLs in Malaysia, Sapitang et al. (2020) used Boosted Decision Tree 

Regression (BDTR), Decision Forest Regression (DFR), Bayesian Linear Regression 
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(BLR), and Neural Network Regression (NNR). The 12531 data rows in the dataset were 

gathered each day. In addition to rainfall and water level, the models can anticipate lake 

level based on inputs such as water level and rainfall. The performance of the models was 

evaluated using the metrics MAE, RMSE, R2, Residual Absolute Error (RAE), and 

Residual Standard Error (RSE). The results show that the LWLs can be predicted using 

any model. However, the evaluation metrics showed that the BLR model performed better 

than the other models. 

 

Hu et al. (2018)(a) studied the prediction of LWL with the SVR model. The study location 

is selected in China, where the lake surface area is 2600 km2. The estimated size of the 

data set is 1095, which was accumulated from 3 years of daily data. In order to predict 

LWL, the study utilizes precipitation data. The evaluation metrics in this study are RMSE 

and MAE. According to the results, the model is preferable in forecasting without 

including rainfall data. 

 

Hu et al. (2018)(b) analyzed LWL prediction using the SVR model. The surface area of 

the lake in this study is 2623 km2 and the location is based in China. The dataset consists 

of 1095 data rows which was estimated from daily data series of 3 years. The study 

develops a model to predict LWL using flow rate and outflow discharge as input variables. 

The performance of the model is evaluated using RMSE and R2. The results of the study 

highlights that the historical water levels of the lake are an important variable for 

predicting the current water level. 

 

Mohammadi et al. (2020) proposed SVR and Support Vector Regression -Grey Wolf 

Optimization (SVR-GWO) models in order to forecast LWLs. The study area is located 

between the Peru-Bolivia border and has a surface area of 58 km2. The dataset contains 

522 data series accumulated monthly. The study forecasts LWL by using the historical 

LWL values. The performance of the model is tested using RMSE, MAE and R2. The 

results show that there are six scenarios to develop the combination of models. Compared 

with other methods, the RF preprocessing method provides the best performance in 

finding the best input combination. In addition, all the models are well-suited forecasting 

tools that provide 1-month water level forecasts. 

 

Bonakdari et al. (2019) offered the Minimax Probability Machine Regression (MPMR), 

Relevance Vector Machine (RVM), Gaussian Process Regression (GPR), and Extreme 

Learning Machine (ELM) models for their LWL prediction study. The case study is 

applied to a 2402 km2 lake on the U. S.-Canada border. The dataset contains 1152 rows 

of data estimated from 96 years of monthly data collected. Using the LWL with lags as an 

input variable, the models predict the lake levels. Metrics such as R2, MAE, RMSE, 

Legates and McCabes Index (LMI), Refined Willmott’s Index (RWI), and Nash-Sutcliffe 

Coefficient (NSC) are used to assess the performance of the models. The results show that 

all models are very good at estimating LWL. The models in the study show that MPMR 

has the best predictive performance. 
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The study focuses on a mechanistic model for LLC and combines it with a land surface 

model to increase the accuracy of the results in the first regression model for 2015 LWL 

prediction (Lin et al., 2015). However, García Molinos et al. (2015) underline the 

significance of the seasonality effect in predictions of water level dynamics. A change in 

water volume in Chad Lake was predicted by Zhu et al. (2017) utilizing a series of remote 

sensing observations. The study's astounding conclusion suggests that most of the water 

losses in the entire lake are related to evaporation, while the losses in the southern pool 

are related to the outflow. 

 

Regression models from the past never made an effort to compare their model to other 

prediction models. For LWL prediction, Liu et al. (2017) employed the statistical 

regression function and MODM models. They discovered that the MODM could be most 

useful in situations where there is a significant discrepancy in reservoir function, but the 

statistical regression function model is beneficial when the dataset size is large and the 

lake's inflow is consistent. 

 

Hu et al. (2018)(a) were the first to predict LWL with only one external parameter- 

precipitation. They discovered that the only information needed to predict water levels is 

precipitation data, which also helps to avoid both over- and underestimation of 

precipitation amount and magnitude. The same authors conducted a second experiment 

with different input settings for the same lake in the same year. They found that historical 

LWL data is the most important input parameter for LWL prediction. As in the case of Hu 

et al. (2018)(a), M Dawam and Ku-Mahamud (2019) chose precipitation as the only 

external input variable; however, the combination of precipitation and historical LWL data 

provided the best results. They also discovered that normalization of the dataset had a 

significant impact on MLR results. In addition to these studies, Sapitang et al. (2020) 

presented two scenario-based forecasting models, one of which included discharge, LWL, 

and precipitation as inputs. The models were also tested over a range of time horizons, 

from one day to seven days. The authors discovered that the sole external input that is a 

reliable predictor of LWL is precipitation, in agreement with the findings of earlier 

researchers. 

 

Both short- and long-term prediction models were put forth by Castillo-Botón et al. 

(2020). They discovered that precipitation and dam outputs are less important for 

prediction in the short term, while upstream and tributary flow are very effective 

characteristics. Therefore, the results of this study contradict those of Hu et al. (2018) (a) 

and M Dawam and Ku-Mahamud (2019), who found that using only precipitation data 

and precipitation &LWL produced the best forecast results. The most thorough regression 

analysis, conducted by Kenda et al. (2020), used 21 models to forecast the water level and 

surface area of a single lake. Consequently, the conclusion that batch regression 

algorithms outperform incremental regression algorithms could only come from this 

study. Similar to the study by García Molinos et al. (2015), Mohammadi et al. (2020) 

conducted experiments in which they simply used the LWL as an input parameter. 

However, they focused on the effect of temporal lag on LWL prediction rather than the 
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effect of seasonality. They discovered that utilizing 1, 2, 3, or 4 time lags is the only way 

to get the best results. Regression-based models are summarized in Table 1. 

 

 

 

 

Table 1: List of regression-based models and their input-output variables, evaluation 

metrics, and size of data. Adapted from A systematic literature review on Lake water level 

prediction models, by Ozdemir et al., 2023, Environmental Modelling & Software, 

105684. 

AI Model Input Output Scale 

Evaluatio

n Metrics 

No. of 

Observ

ation Ref 

LR 

Direct Precipitation, 

Evaporation, Inflow, 

Outflow  LWB Monthly R 288 (Zhu et al., 2017) 

Combination of 

RAPID, NOAH- 

MP LSM and MLR 

Inflow Rate, Outflow 

Rate, Precipitation, and 

Evaporation LLC Monthly 

R2, 

RMSE, 

NRMSE 108 (Lin et al., 2015) 

BHRM LWL LWL Monthly DIC 456 

(García Molinos et 

al., 2015) 

SVR and GPs 

Height, Flow, and 

Precipitation  DWL Weekly 

RMSE, 

MAE 2704 

(Castillo-Botón et 

al., 2020) 

LR, DTR, RFR, 

GBR, PLSR, ETR, 

SVR, MLP-R, 

KNR, HTR, HAT-

R, LoR, DTC, ETC, 

RFC, SVC, KNC, 

Perceptron, GNB, 

HTC, HAT-C 

Precipitation Probability, 

Precipitation Intensity, 

Precipitation Type, 

Temperature, Cloud 

Cover, Dew Point, 

Humidity, Pressure, and 

Daytime LWL Daily 

R2, 

RMSE, 

MAPE 2555 (Kenda et al., 2020) 

MLR 

Rainfall and Changes in 

RWL RWL Daily R, R2 501 

(M Dawam and 

Ku-Mahamud, 

2019) 

MODM and SRPF 

Year-Start Water Level, 

Inflow, Power Output 

and Power Generation RWL Annual 

DOC, 

AOFF, 

SS, 

RSOS, 

RSS, 

MCC, 

RSD, 

MRE 63 (Liu et al., 2017) 

BDTR, DFR, BLR 

and NNR 

Rainfall, Water level, and 

Sent Out LWL Daily 

MAE, 

RMSE, 

R2, RAE 

and RSE 12531 

(Sapitang et al., 

2020) 

SVR Precipitation LWL Daily 

RMSE, 

MAE 1095 (Hu et al., 2018)(a) 

SVR 

Flow rate, Outflow 

Discharge, LWL LWL Daily RMSE, R2 1095 (Hu et al., 2018)(b) 
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Table 1 (cont.)       

SVR and SVR-

GWO LWL LWL Monthly 

RMSE, 

MAE, R2 522 

(Mohammadi et al., 

2020) 

MPMR, RVM, 

GPR, ELM LWL LWL Monthly 

R2, MAE, 

RMSE, 

LMI, RWI 

and NSC 1152 

(Bonakdari et al., 

2019) 

 

2.1.2. Mathematical Models 

 

Dinka (2020) used the lake capacity curve equation to predict the water level of Lake 

Basaka in Ethiopia. The lake has a surface area of 500 km2. The size of the dataset is 264, 

accumulated from 22 years of monthly data rows. The study predicts LWL by using lake 

stage, area and volume as input parameters. The performance of the model was evaluated 

by several metrics, namely RMSE, MAE, R2, and Nash–Sutcliffe Efficiency (NSE). The 

results of the study indicate that the observed and simulated lake levels are compatible 

with an NSE value of 0.98 for the monthly basis. 

 

Paul et al. (2019) developed a two-dimensional, depth-averaged model for Lake Victoria 

water level prediction study. The lake is located between the border of Tanzania, Uganda 

and Kenya and has a total surface area of 68800 km2. The dataset consists of 612 data 

rows estimated from 51 years of monthly data. The output variable of the dataset is mean 

water level, while the input variables are determined as evaporation, precipitation, river 

inflow and outflow. Accuracy was chosen as the metric to evaluate the performance of the 

model. From the results, it can be inferred that the measurements generated by the 

numerical model in CM agree well with the calculated water levels. 

 

Li et al. (2013) investigated the prediction of the LWL using mathematical models for the 

reflection of sunlight and thermal radiation from the lake. Hulun Lake, located in China, 

was selected as the study area. The lake has a surface area of 2054 km2. The authors used 

a dataset with 41 data rows randomly arranged in time. The model predicts the adjusted 

water depth by considering the water depth with bands. The evaluation metrics for the 

performance of the model are R and RMSE. It is concluded from the results that observed 

water levels are compatible with the predicted values. In addition, the model can be used 

reliably in cold and arid areas. 

 

In their study, Abbaspour et al. (2012) investigated an unstructured grid Finite-Volume 

3D Ocean Model (FVCOM) for the prediction of LWLs. The study is based on Lake 

Urmia, which is located in Iran. The dataset contains 10950 data rows estimated from 30 

years of daily data collection. In this study, the proposed model predicts the LWL using 

precipitation, evaporation, river flow and discharge as input variables. The performance 

of the model was tested using RMSE as the evaluation metric. The results reveal that the 

water level conditions in the area are diminishing. Furthermore, Lake Urmia is 

increasingly expected to dry up in about 10 years if the dry period in the area continues 

like this. 
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In their study, Talsma et al. (2016) proposed a nonlinear predictive control model to 

predict the water level of Lake IJssel. The lake is located in the Netherlands. The surface 

areas of the region in Lake Ijssel is 1193, 737, and 62 km2 for the three lakes used in this 

study. The number of observations and assessment metrics are not reported in this study. 

On the other hand, the dataset contains daily LWL data as output and the inflow of the 

IJssel River, the inflow of the Vecht River, the exchange with the regional water systems, 

rainfall and evaporation forecasts as input variables. The results indicate that the 

implementation of predictive models has not only a technical aspect, but also 

implementation and communication aspects that require additional attention. 

 

In their study, Lofgren and Rouhana (2016) used the Large Basin Runoff Model (LBRM) 

to forecast the water levels in the Laurentian Great Lakes, which are situated between the 

US and Canada borders. 684 data rows, which make up the dataset for this study, have 

been estimated from 57 years' worth of monthly data. With temperature, energy, Priestley-

Taylor, and Clausius-Clapeyron adjustments as input variables, the model predicts the 

level of water in lakes. The model's performance was assessed using statistical 

significance. Based on evaluation measures, the results show that a 99.98% significance 

level for the water level prediction may be achieved. The exceptionally high significance 

value increases ET's sensitivity to air temperature. 

 

Gillies et al. (2015) analyzed Great Salt Lake LWL prediction by developing Observed 

Model, Tree Ring Model and Tree-ring model 2. The region of lakes resides in the United 

States. The authors used a dataset that consists of 17 years of data. However, the size of 

the data is not given. The output variable of the model is change in lake level, while the 

input variables are change in lake level and tree ring reconstructed change in lake level. 

The performance evaluation metric of the model is RMSE. The results reveal that using 

tree-ring reconstructed data in addition to observed data helps reduce the RMSE score and 

improves predicted results. 

 

Hirsch et al. (2014) explored RWL dynamics by developing a model as a depth-volume 

relationship. The study area is located in Switzerland. The dataset size is 365, which was 

estimated from 1 year of daily data. The authors predict water level fluctuation with depth, 

volume, and the slope of the reservoir basin as input variables. They evaluated the 

performance of the model using NSC. The results show that the hydro-economic model 

that the authors developed helps to understand the requirements of environmental water 

levels and their predicted values. 

 

In their study, Li et al. (2014) used a spatiotemporal pattern model to estimate the water 

level in lakes. The investigation is conducted in China's Tibetan Lakes. 14600 data rows, 

estimated using 40 years of daily cumulative data, make up the dataset. With average 

temperature, solar radiation, precipitation, wind speed, and vapor pressure as input 

variables, the analysis predicts changes in LWLs. R served as the performance metric for 

assessing the model. According to the findings, glacier melt has very little impact on the 

region's predicted water availability; however, permafrost degradation significantly does. 
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Paynter and Nachabe (2011) investigated the Generalized Extreme Value (GEV) model 

to predict LWLs. The study covers various lakes, all of which are based in the USA. The 

dataset size is not given. However, there are four different lakes used in the study. The 

average data size is 60 out of the annual data accumulation. The model forecasts LWL 

with maximum and minimum lake levels, as well as flood and drought stages. The 

performance of the model is evaluated by drawing a quantile-quantile plot. It can be 

determined from the results that the lakes in the research don’t have a significant 

prediction trend for future flood or drought return levels unless a starting lake stage is 

obtained. 

 

Bertone et al. (2017) studied the Monte Carlo approach combined with nonlinear threshold 

autoregressive models built on Matlab software. The study was applied in Australia to a 

lake that has a surface area of 35.2 km2. The authors used a dataset with a size of 624 data 

rows, estimated from 12 years of weekly accumulated data. The model predicts the storage 

volume of the reservoir using rainfall, main river inflow, and gross volume variation as 

input variables. The evaluation metric used in this study is accuracy. The authors claim 

from the results that the model is beneficial in order to quantify depletion rates, and 

treatment operators can take different actions based on climate conditions. 

 

Hussain et al. (2021) developed a prediction model of Gravity Recovery and Climate 

Experiment (GRACE) which is applied in the Indus Basin located in Pakistan. The dataset 

used in this study has 78 data rows accumulated from 13 years of bimonthly data. The 

model sets terrestrial water storage as the output variable while evapotranspiration and 

precipitation as the input variables. The performance of the developed model was tested 

using Spearman’s Rank Correlation (SRC) as an evaluation metric. It is concluded from 

the results that terrestrial water storage has a decreasing trend, but it is not statistically 

significant. In addition, the water storage was best predicted by using soil moisture and 

snow water equivalents as input parameters. 

 

Guinaldo et al. (2021) used Mass-Lake model in order to contribute to the literature in the 

LWL prediction area. The researchers’ study area is located between the Tanzania, 

Uganda, and Kenya borders. The dataset in this study contains 360 data rows estimated 

from 30 years of monthly data. The study forecasts prognostic net water storage by using 

over-lake precipitation, over-lake evaporation, runoff, drainage over the runoff mask, 

inflow entering the lake from the tributaries, lake outflow, and the contribution of the lake-

groundwater fluxes as an input. The performance evaluation metrics to test the model were 

selected as Kling-Gupta efficiency (KGE), Normalized Information Contribution (NIC), 

and R. In the results, the model simulated the LWL variations with discharge values, and 

there is an improvement comparing with the baseline model. 

 

Magyar et al. (2021) proposed Dynamic Factor Analysis (DFA) in order to predict 

Neusiedlersee LWLs. The lake is located on the Austria-Hungary border. The dataset 

consists of 180 data rows estimated from 15 years of monthly data. In the model, 

fluctuation in LWL was determined as an output variable, while evapotranspiration and 
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precipitation were determined as input variables. The model was tested by using p and 

MSE as evaluation metrics. According to the results extracted from evaluation metrics, 

the data analysis tool set used in this study can predict water table variations significantly, 

which helps to determine the big picture in the case of climate change effects. 

 

Fry et al. (2020) investigated the Net Basin Supply (NBS) model for the Laurentian Great 

Lakes, which are situated between the USA and Canada border, in order to research the 

LWL forecast. For the dataset used in this investigation, the size of the data is not 

provided. In addition, the input is not stated clearly, and the output is chosen as the 

seasonal water budget. The dataset's temporal span covers three periods, each lasting one, 

three, and six months. The Heidke Skill Score (HSS) was used to assess the model's 

performance. The results, according to the authors, indicate that it is possible to anticipate 

monthly average water levels using a six-month time lag. To improve the model forecast 

output, however, some expertise and relevant operator selection are needed for the model 

interpretation. 

 

Jahani et al. (2016) analyzed Chance Constrained (CC) optimization model for the LWL 

prediction study. The number of observations is not explicitly given for this study, but 

there are different time horizons. The study predicts reservoir capacity by using the index 

of season, random inflow to the reservoir, release from the reservoir, and reservoir storage 

at the beginning of the season as input variables. The model was tested using reliability as 

an evaluation metric. The results reveal that in the event of inflow limitations on reservoirs 

in the future, the reservoir water budget will be negatively affected. Furthermore, above a 

certain threshold level, the inflow information is not helpful to forecast future water levels. 

 

Myakisheva et al. (2021) applied the ARIMA model in order to forecast Lake Ladoga 

water level, which is located in Russia. The dataset contains 1476 data rows, estimated 

from 123 years of monthly data. It forecasts LWL by taking historical LWLs into account. 

The performance of the model was tested using RMSE. Results indicate that the ARIMA 

model can be applied to large lakes. 

 

Jiang et al. (2021) employed the Discrete Wavelet Transformation-Improved Nonlinear 

Autoregressive with Exogenous Inputs Network (DWT-INARX) in order to conduct their 

study. The study area is Taihu Basin, which is located in China. The reservoir has a surface 

area of 2336.8 km2. The dataset in this study consists of 9855 data rows, estimated from 

27 years of daily data. The authors used LWL as output while discharge and precipitation 

were input variables. The performance evaluation metrics in this study are NSE, RMSE, 

and MRE. The results show that the simulation models produce better accuracy results 

over a shorter time horizon comparing with longer periods, such as more than 3 days. 

Among the three models used in this study, DWT-iNARX gives the best performance, 

while the BP model’s performance is not that satisfactory. 

 

Haque et al. (2021) used a 2D hydrodynamic model to predict the LWL in the Inner Niger 

Delta, Mali. In the model, an estimated 13140 data rows were used, accumulated from 36 

years of occurrence in a daily manner. The model also used discharge as an input in order 
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to predict LWL. The evaluation metrics consist of Relative Rrror (RE), the NSC, and the 

RMSE. According to the results extracted from evaluation metrics, hysteresis inclusion 

improved the simulation results. 

 

Li et al. (2016) (b) developed a reservoir hydrological model for the Miyun Reservoir 

based in Beijing, China. The reservoir has a surface area of 188 km2. The model is 

developed using a dataset that has an estimated 4745 data rows from 13 years of daily 

data. It predicts reservoir volume by using gauged surface inflow, ungauged surface 

inflow, total outflow, surface area, direct precipitation, evaporation, net groundwater 

source, and unit conversion factor as input. The authors of this study selected RMSE as 

an evaluation metric. The results reveal that the water level of the reservoir can be 

predicted as high as 0.93 NSE. 

 

Montroull et al. (2013) studied the Variable Infiltration Capacity (VIC) hydrology model 

in order to forecast Iberá wetlands’ water levels in Argentina. The basin has a total of 

12000 km2 surface area. The authors developed the model with a dataset that consists of 

3650 rows of data with 10 years of daily accumulated data. The only variable in the dataset 

is LWL. The evaluation metric in this study is Normalized Root Mean Square Error 

(NRMSE). Results indicate that water levels in Ibera wetlands have a potential to increase 

in the 21st century. In addition, the increase could be higher during the summer season 

compared to the winter season. 

 

Croley (2006) investigated forecasting LWL with several models, which are Deterministic 

Hydrology Forecasts, Probabilistic Hydrology Forecasts, Probabilistic Meteorology 

Outlooks. The study focused on the Great Lakes Basin area between the U.S. and Canada 

borders. The dataset was generated from the Great Lakes Environmental Research 

Laboratory, which includes 444 rows of data among 37 years of monthly dataset. The 

model predicts LWL by using precipitation, runoff, and evaporation as input. The author 

tested the model using bias (m), skill, correlation, and RMSE evaluation metrics. It is 

concluded from the results that the model enables a daily probabilistic outlook that takes 

advantage of real-time available data. 

 

The Delft3D-Flow model was proposed by Ouni et al. (2020) to forecast and model the 

water levels of Ichkeul Lake in Tunisia. Data on LWLs and bed roughness make up the 

model's dataset. Nevertheless, the dataset's size is not specified. By accounting for the 

roughness of the lake bed, it forecasts the water level in lakes. RMSE is the assessment 

metric used to assess the Delft3D-Flow model's performance. Based on the RMSE value 

of 0.027 m, the Delft3D-Flow model exhibits good predictive power for water level. 

 

Haddout et al. (2018) applied the FVCOM model for water level prediction in Aguelmam 

Sidi Ali Lake, which is located in the Middle Atlas, Morocco. The dataset has a total of 

35 years of annual data. The model forecasts LWL by using precipitation, evaporation, 

and runoff discharges as input variables. The model is tested by using RMSE, MAE, NSE, 

goodness-of-fit (R2), and Percent Bias (PBIAS) as evaluation metrics. The results reveal 

that the model results are compatible with the observed data. In addition, it can be 
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predicted from the simulation that there is a high probability that the lake will dry in 20 

years if the conditions in the region stay the same. 

 

Taminskas et al. (2013) analyzed the lake level prediction topic by developing the Finite 

Element Subsurface FLOW (FeFLOW) 5.0 model. The study area focuses on Lake 

Cedasas, based in northeast Lithuania. The authors work on a dataset that tries to predict 

LWL with changes in water balance due to climate change variable. The dataset size and 

evaluation metrics are not given for this study. The dataset temporal is determined at 

random. The results show that a mathematical model can be used to extract a simulation 

of surface water resources. 

 

Rodríguez-Rodríguez et al. (2012) explored the prediction model of the Water Budget 

Conceptual Model (WBCM), which is applied in Medina Playa Lake located in Southwest 

Spain. The surface area of the lake is 14.78 km2. The dataset contains 72 data rows out of 

6 years of monthly data collection. In the model, LWL is predicted by direct precipitation 

onto the lake’s surface, groundwater flow, base flow in streams, and subsurface runoff as 

input variables. The evaluation metric for the model is R2. It can be inferred from the 

results that the water level can be predicted with the proposed model with some 

discrepancies. 

 

Zappa et al. (2014) employed the Precipitation-Runoff-Evapotranspiration Hydrotope 

(PREVAH) model in order to assess the surface water level in Switzerland. The number 

of observation and evaluation metrics is not given in this study. The model took 

precipitation, evaporation, soil moisture, litter moisture, water temperature, ground water 

level, runoff, and snow water equivalent into account in order to predict surface water 

level. The results reveal that prototyping and experience on tests give extra benefit for 

early drought recognition in Switzerland. 

 

Person et al. (2007) applied the three-dimensional Surface-Water-Groundwater Model 

(SWGM) for Crow Wing Watershed located in Minnesota, USA. The total surface area of 

the basin is 14,000 km2. The dataset consists of 600 data rows accumulated from 50 years 

of monthly data. The authors predict LWL fluctuations by using input variables such as 

runoff, evapotranspiration, infiltration, streamflow, and groundwater hydrodynamics. The 

evaluation metric is determined as the accuracy between simulation and observed data. It 

is concluded from the results that in the short-term climate timeframe, upland parts of the 

watershed fluctuate higher compared with the lowest parts. 

 

Voulanas et al. (2021) used the FeFLOW model in order to forecast the water level for the 

Kastoria basin located in Western Macedonia, Greece. The basin has a total surface area 

of 33 km2. The dataset has a total of 216 data rows, estimated from monthly 18-year data. 

The input variables of the dataset include rainfall, surface runoff, evaporation, discharge, 

or the flow volume at the basin’s outlet, while the output variable is LWL. The 

performance of the model is tested by using evaluation metrics such as RMSE, R, and 

Standard Deviation (SD). The authors claim from the results that the diminishing effect 
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of sub-surface flow and direct precipitation recharge and rise in evaporation is going to 

affect the total outflow of the basin in a negative way in future projections for all models. 

 

Chen et al. (2020) investigated the Water Balance Model (WBM), based on GR4J, in order 

to forecast water levels in Thirlmere Lakes National Park, located in New South Wales, 

Australia. The surface areas of lakes are 11.5, 4.7, 10.2, 12.8, and 10.1 for the five lakes 

in the region. The size of the dataset is not given for this study. However, the variables in 

the dataset include precipitation, runoff, and evapotranspiration as inputs and change in 

lake storage as output. The authors used R2 as an evaluation metric to test the model. The 

model is developed using a MATLAB software program. The results in this study 

highlight that the ground-filtering approach improves the performance of lake level 

prediction by as much as 70% thanks to its ability to reduce the vertical error in the model. 

 

Mtilatila et al. (2020) studied water balance for water level prediction in Lake Malawi and 

the Shire River, which are located in Tanzania. The water surface of the area is 29,600 

km2. The dataset size is 516, which is estimated from 43 years of monthly accumulated 

data. The model estimates LWL change by using precipitation and evaporation variables. 

The evaluation metric to test the model's performance is R. The results indicate that 

increases in temperature and decreases in precipitation significantly increase drought 

conditions in the region. 

 

Cai et al. (2016) developed WBM in order to use it on Hulun Lake, located in China. The 

surface area of the lake is around 2000 km2. The dataset contains 372 data rows 

accumulated out of 31 years of monthly data. In the model, LWL is forecasted by taking 

precipitation, mean temperature, wind speed, relative humidity, sunshine duration from 

1960 to 2014, river discharge, and evaporation into account. The performance of the 

model is tested by calibration. In the results, it can be inferred that the model is capable of 

forecasting fluctuations in LWL. 

 

Ricko et al. (2011) analyzed WBM in various tropical lakes located in Nigeria. The model 

predicts LWL by only using the rainfall variable as an input. The dataset consists of 5840 

data rows with an accumulated 16 years of daily data. The evaluation metrics for the model 

are selected as R and RMSE. According to the results, the output of this research can help 

predict weather in the medium term. 

 

Ahn et al. (2016) proposed the Water Balance Network Model (MODSIM) and a 

Watershed-Scale Hydrologic Model (WSHM)-based Soil and Water Assessment Tool 

(SWAT) for LWL prediction. The study is done in the Geum River Basin, located in South 

Korea. The basin has a surface area of 9645.5 km2. The dataset size is 2190, which is 

estimated from 6 years of daily data. In the model, DWL is predicted by taking air 

temperature, precipitation, relative humidity, wind speed, and sunshine hours as input 

variables. The study used R2, the NSE, and the RMSE as evaluation metrics. The results 

show that water shortage is expected to be 38.2% in the 2040s, 38.2% in the 2080s for the 

Representative Concentration Pathway (RCP) 4.5 scenario, 21.3% in the 2040s, and 

22.1% in the 2080s for the RCP 8.5 scenario. 
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 Morgan et al. (2019) investigated WBM in order to predict LWLs in Australia. The 

dataset size and evaluation metrics are not given in this study. However, the temporal of 

the data is “daily”. In addition, the WBM predicts LWL by using annual average runoff 

volume, equilibrium pit lake surface area, predicted equilibrium water level, and WBM 

equilibrium water level as input variables. The results of the study indicate that the water 

level of lakes is highly sensitive in terms of evaporation and runoff. 

 

Some academics preferred the WBM model over all other mathematical models, which 

improves the model's accuracy performance. Ricko et al. (2011) made the first attempt at 

WBM by using various rainfall data to modify input parameters while keeping other 

model input parameters constant. On the other hand, Rodríguez-Rodríguez et al. (2012) 

ran the model by including groundwater flow, baseflow in streams, and subsurface runoff 

as input factors in addition to rainfall data. Ahn et al. (2016) built their model using a daily 

dataset that included inputs for air temperature, precipitation, relative humidity, wind 

speed, and daylight hours. With only 372 data rows in their dataset, Cai et al. (2016) were 

still able to forecast LWL using the input parameters of precipitation, mean temperature, 

wind speed, relative humidity, sunshine duration, river discharge, and evaporation. The 

only study that never used rainfall as an input parameter was Morgan et al.'s (2019). Other 

researchers (Chen et al., 2020; Mtilatila et al., 2020) predicted LLC using precipitation, 

runoff, and evapotranspiration as input factors. 

 

As specific equational models, researchers created various models. Despite the fact that 

various models share input parameters, some generate unique parameters solely for their 

models. Li et al. (2014) employed vapor pressure as an input variable, while Gillies et al. 

(2015) used tree ring reconstructed change in lake level. On the other hand, Ouni et al. 

(2020) choose to include lake bed roughness as one of their input variables. Mathematical 

and Equation-based models are presented in Table 2. 

 

 

Table 2: List of mathematical models and their input-output variables, evaluation metrics, 

and size of data. Adapted from A systematic literature review on Lake water level 

prediction models, by Ozdemir et al., 2023, Environmental Modelling & Software, 

105684. 

AI Model Input Output Scale Evaluation 

Metrics 

No. of 

Observ

ation 

Ref 

Lake 

Capacity 

Curve 

Equation Lake Stage, Area, Volume LWL Monthly 

RMSE, 

MAE, R2, 

NSE 264 

(Dinka, 

2020) 

Two-

Dimensional 

Depth-

Averaged 

Model 

Evaporation, Precipitation, 

River Inflow and Outflow 

Mean Water 

Level Monthly Accuracy 612 

(Paul et al., 

2019) 
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Table 2  (cont.)      

Sunlight 

Reflection 

and Lake 

Thermal 

Radiation  Water Depth with Bands 

Adjusted 

Water 

Depth Random R, RMSE 41 

(Li et 

al.,2013) 

FVCOM 

Precipitation, Evaporation, 

River and Runoff Discharge LWL Daily RMSE 10950 

(Abbaspour 

et al., 2012) 

Non-Linear 

Model 

Predictive 

Control 

Inflow, Exchange with 

Water Systems, Rainfall and 

Evaporation LWL Daily Not Given 

Not 

Given 

(Talsma et 

al., 2016) 

LBRM 

Temperature Adjustment, 

Energy Adjustment, 

Priestley–Taylor, Clausius–

Clapeyron LWL Monthly 

Statistical 

Significance 684 

(Lofgren 

and 

Rouhana, 

2016) 

Observed 

Model, Tree 

Ring Model, 

Tree-Ring 

Model 2 

LLC, Tree Ring 

Reconstructed LLC LLC Annual RMSE 17 

(Gillies et 

al., 2015) 

Depth-

Volume 

Relationship 

Depth, the Volume and the 

Slope of the Reservoir Basin 

Water Level 

Fluctuation Monthly NSC 365 

(Hirsch et 

al., 2014) 

Spatio-

Temporal 

Pattern 

Mean Temperature, 

Precipitation, Solar 

Radiation, Wind Speed, and 

Vapor Pressure 

LWL 

change Daily R 14600 

(Li et al., 

2014) 

GEV 

Maximum and Minimum 

LWL, the Flood and Drought 

Stages. LWL Annual 

Quantile-

Quantile Plot 60 

(Paynter 

and 

Nachabe, 

2011) 

Monte Carlo 

Rainfall, Main River Inflow, 

and Gross Volume Variation 

Storage 

Volume Weekly Accuracy 624 

(Bertone et 

al., 2017) 

GRACE 

Precipitation, Soil Moisture 

and Snow Water Equivalent 

Terrestrial 

Water 

Storage 

Two 

monthly SRC 78 

(Hussain et 

al., 2021) 

Mass-Lake 

Model 

Precipitation , Evaporation, 

Runoff, Drainage, Inflow, 

Outflow, and the 

Contribution of the Lake–

Groundwater Fluxes 

Prognostic 

Net Water 

Storage Monthly KGE, NIC, R 360 

(Guinaldo et 

al., 2021) 

DFA 

Evapotranspiration and 

Precipitation 

Fluctuation 

in LWL Monthly p, MSE 180 

(Magyar et 

al., 2021) 

NBS Not Explicit 

Seasonal 

Water 

Budget 

1,3 and 6 

Months HSS 

Not 

Given 

(Fry et al., 

2020) 

CC 

Optimization 

Model 

Index of season, Inflow, 

Release from Reservoir, and 

Reservoir Storage 

Reservoir 

Capacity Monthly Reliability 

Not 

Given 

(Jahani et 

al., 2016) 

ARIMA LWL LWL Monthly RMSE 1476 

(Myakishev

a et al., 

2021) 
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Table 2  (cont.)      

DWT-

iNARX Discharge and Precipitation LWL Daily 

NSE, RMSE, 

and MRE 9855 

(Jiang et al., 

2021) 

2D 

Hydrodynam

ic Model Discharge LWL Daily 

 RE, NS and 

RMSE  13140 

(Haque et 

al., 2021) 

Reservoir 

Hydrological 

Model 

Gauged Surface Inflow, 

Ungauged Surface Inflow, 

Total Outflow, Surface Area, 

Precipitation, Evaporation, 

Net Groundwater 

Source, Unit Conversion 

Factor 

Reservoir 

Volume Daily NSE 4745 

(Li et al., 

2016)(b) 

VIC LWL LWL Daily NRMSE 3650 

(Montroull 

et al., 2013) 

Deterministic 

and 

Probabilistic 

Hydrology 

Forecasts 

Precipitation, Runoff, 

Evaporation LWL Monthly 

Bias, Skill, 

Correlation, 

RMSE 444 

(Croley, 

2006) 

Delft3D-

Flow Lake Bed Roughness LWL Not Given RMSE 

Not 

Given 

(Ouni et al., 

2020) 

FVCOM 

Precipitation, Evaporation, 

Runoff Discharges LWL Annual 

RMSE, 

MAE, NSE, 

R2 and 

PBIAS 35 

(Haddout et 

al., 2018) 

FeFLOW 

Change in Water Balance 

due to climate change LWL  Random Not Given 

Not 

Given 

(Taminskas 

et al., 2013) 

WBCM 

Precipitation, Groundwater 

Flow, Baseflow in Streams 

and Subsurface Runoff LWL Monthly R2 72 

(Rodríguez-

Rodríguez 

et al., 2012) 

PREVAH 

Precipitation, Evaporation, 

Soil Moisture, Litter 

Moisture, Water 

temperature, Ground Water 

Level, Runoff, Snow Water 

Equivalent 

Water Level 

Surface 

Water 

Changes 

according 

to 

Variable Not Given 

Not 

Given 

(Zappa et 

al., 2014) 

SWGM 

Runoff, Evapotranspiration, 

Infiltration, Streamflow and 

Groundwater 

Hydrodynamics 

Lake-Level 

Fluctuations Monthly Accuracy  600 

(Person et 

al., 2007) 

FeFLOW 

Rainfall, the Surface Runoff, 

Evaporation and Discharge 

or the Flow Volume at the 

Basin’s Outlet LWL Monthly RMSE, R, SD 216 

(Voulanas 

et al., 2021) 

Water 

Balance 

GR4J Model 

Precipitation, Runoff, and 

Evapotranspiration 

Change in 

Lake 

Storage Monthly R2 

Not 

Given  

(Chen et al., 

2020) 

WBM 

Precipitation and 

Evaporation LLC Monthly R 516 

(Mtilatila et 

al., 2020) 
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Table 2 (Cont.)      

 

 

WBM 

Precipitation, Mean 

Temperature, Wind Speed, 

Relative Humidity and 

Sunshine Duration, River 

Discharge, Evaporation LWL Monthly Calibration 372 

(Cai et al., 

2016) 

WBM 

Precipitation, Evaporation, 

Effective Catchment Area, 

Lake area, and time lag LWL Daily R, RMSE 5840 

(Ricko et 

al., 2011) 

MODSIM, 

WSHM 

Air Temperature, 

Precipitation, Relative 

Humidity, Wind Speed and 

Sunshine Hours DWL Daily 

R2, NSE, 

RMSE 2190 

(Ahn et al., 

2016) 

WBM 

Runoff Volume, Equilibrium 

Surface Area, Equilibrium 

Water Level, WBM 

Equilibrium Water Level LWL Daily 

Not 

Applicable 

Not 

Given 

(Morgan et 

al., 2019) 

 

2.1.3. ANN Models 

 

Mislan et al. (2018) developed Adaptive Neural Network Backpropagation (ANNBP) in 

their study. The study area is Lake Cascade Mahakam, which is located in Indonesia. The 

dataset consists of 1008 data rows. It forecasts max LWL, min LWL, and average LWL 

by using historical max LWL, min LWL, and average LWL as input variables. The 

evaluation metrics for the performance of the model are MSE and MAPE. According to 

the results extracted from evaluation metrics, the 240-5-1 NNBP architecture reached a 

9.7% MSE score, which indicates the model can be used as a prediction method for future 

LWLs. 

 

Wang et al. (2018) studied the combination of Copula Entropy (CE) with Wavelet Neural 

Network (WNN) in order to work on the LWL study. The study area was determined to 

be the Taihu Lake Basin, which is located in China. The dataset contains 3650 data rows, 

which are estimated from 10 years of daily data. In this study, the output is determined as 

LWL, while the inputs are rainfall and LWL. The authors used RMSE as an evaluation 

metric to test the model. The results reveal that the hybrid model consisting of WNN and 

CC surpassed CE ANN, Linear Correlation (LCC) WNN and LCC ANN models, which 

contribute to future decision-making during water level fluctuations. 

 

For a study on LWL prediction, Young et al. (2015) looked into three-dimensional 

hydrodynamic models, ANN, Auto Regressive Moving Average with Exogenous Input 

(ARMAX), and combined hydrodynamic and ANN. The study is conducted in a 

Taiwanese Alpine Lake. There are 7296 observations in the dataset, with hourly temporal 

resolution. Using precipitation, outflow discharge, and input discharge, the model 

forecasts the level of water in lakes. The R, RMSE, and MAE are used to assess the 

model's performance. The hydrodynamic model can forecast water levels during the 

calibration step but not during the validation stage, according to the results. When 
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compared to the hydrodynamic model, the ANN and ARMAX models performed better 

than the others. 

 

Mpallas et al. (2011) used ANFIS and ANN in their study on the prediction of water levels 

in Kerkini Lake. The territory is limited to the Greek portion of the lake, which has a 

surface area of 6472 km2. The 252 data rows in the study's dataset were estimated using 

monthly data collected over a 12-year period. The models are created with Visual Basic 

computer tools and use rainfall, lake evaporation, evapotranspiration in the Strymonas 

basin, water flow from Bulgaria, and water consumption from human activity as input 

variables to predict the level of water in lakes and runoff. Reduced-MSE and R were used 

to test the model's performance. The study's models are deemed to be adequate predictive 

instruments for predicting lake levels based on the findings. The models' performance 

outcomes are fairly comparable to one another. 

 

Jaafar et al. (2010) analyzed nonlinear ANN in order to study LWL prediction. The study 

area was determined to be Sungai Gumum, Tasik Chini Pahang, which is located in 

Malaysia. The lake has a surface area of 49.8 km2. The size of the dataset is not given, but 

the data was collected monthly. The model forecasts LWL by using LWL with lags as an 

input variable. The evaluation metric to test the model's performance is R2. According to 

the results that are extracted from evaluation metrics, 89% of water fluctuation can be 

predicted by using an ANN model with streamflow as an independent variable. 

 

NN and ANFIS were investigated by Páliz Larrea et al. (2021) in their study on LWL 

prediction. The study is conducted in the northern Ecuadorian reservoir of Salve Faccha. 

2920 data rows, calculated from 8 years of daily data, make up the dataset used in this 

study. In this study, rainfall is the input and LWL is the output, which is determined 1-6 

days in advance. R, the Nash Index, and the RMSE were used to assess the model's 

performance. The findings demonstrate that rainfall is not a reliable indicator of RWL. 

Evaluation metric results indicated that the highest performing models were the NN with 

t+4 and the ANFIS with t+6. 

 

In order to apply algorithms using the Radial Basis Function (RBF) in LWL prediction 

studies, Latif et al. (2021) proposed ANN. The research area used by the authors was the 

Malaysian Klang Gate Reservoir. The estimated 132 data rows in the dataset come from 

11 years of monthly data accumulation. Using inflow, dam release, and reservoir 

beginning and end storage, the model forecasts water losses from the reservoir. As a 

performance statistic, RMSE was used to assess the model's performance. The findings 

show that the ANN model has an RMSE score of 20.07%, which is sufficient to estimate 

water levels. The model offers additional information on water losses, final storage, and 

variations in water level, which is beneficial for reservoir operations. 

 

Üneş et al. (2015) used ANN for the LWL prediction study. The study uses a lake with a 

surface area of 53.45 km2, which is located in the U.S. The size of the dataset is 2272, 

accumulated from daily data. The model determines LWL by using LWL with different 

time lags as an input variable. The performance of the model is evaluated using MSE, 
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Mean Absolute Relative Error (MARE), and R. It can be inferred from the results that 

ANN models predict water levels better than conventional prediction models. 

 

Piasecki et al. (2018) also studied ANN in order to effectively forecast LWLs. The study 

uses a small glacial lake in Poland with a surface area of 1.16 km2. The dataset consists of 

monthly accumulated data; however, the dataset size is not given. The model forecasts 

LWL by using water level, binary variables, evaporation, and precipitation as input 

variables. The model's performance was evaluated using MAE, RMSE, MSE, R2, and 

MAPE. The authors claim from the results that the ANN prediction of the LWL prediction 

is satisfactory. The model's performance can be increased even more using the WT 

preprocessing method. However, meteorological variables couldn’t forecast water 

fluctuations according to insignificant results. 

 

Piasecki et al. (2017) employed ANN, MLP, and MLR to predict LWLs in their study. 

The authors use Lake Serwy in northeastern Poland with a surface area of less than 100 

km2 in this study. The dataset contains 11680 data rows, which are estimated from 32 

years of daily accumulated data. The model uses LWL as an output variable, while 

maximal and minimal temperature (Tmax, Tmin), wind speed, vertical circulation, and 

water level from previous periods as input variables. The performance evaluation metrics 

of the model are MAPE, RMSE, R2, and Mean Biased Error (MBE). In the results, the 

model performed well in small lakes based in temperate climate locations. The model 

outperformed MLR models according to evaluation metrics. 

 

Ashaary et al. (2015) investigated NN in their LWL prediction study. The size of the 

dataset is 5779, accumulated from daily data. The model predicts RWL by using historical 

RWL as an input variable. The model’s performance was evaluated using MSE. It can be 

determined from the results that the best performance of prediction was achieved when 2 

days of delay were used and the architecture of the model was set as 4-17-1. 

 

Ishak et al. (2011) created a NN-based decision support model to facilitate the 

investigation of LWLs. 3041 data rows total, gathered from daily data, make up the 

dataset. The model uses rainfall as an input variable to anticipate RWL. This study used 

training, testing, and validation errors as evaluation metrics. The findings show that the 

NN model in this study did well in decision models as well as predicting. 

 

Most of the time (Mislan et al., 2018; Wang et al., 2018; Jaafar et al., 2010; Üneş et al., 

2015; Piasecki et al., 2018; Ashaary et al., 2015), the authors that predicted LWL with 

ANN models chose LWL as their input variable. Other metrics used in the studies by 

Wang et al. (2018), Young et al. (2015), Mpallas et al. (2011), Páliz Larrea et al. 2021, 

Latif et al. 2021, Piasecki et al. (2018), and Piasecki et al. (2017) included rainfall, 

discharge, evaporation, temperature, and wind speed alone or in combination with other 

parameters. 
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Table 3: List of ANN models and their input-output variables, evaluation metrics, and 

data size. Adapted from A systematic literature review on Lake water level prediction 

models, by Ozdemir et al., 2023, Environmental Modelling & Software, 105684. 

AI Model Input Output 

Temporal 

Scale 

Evaluation 

Metrics 

No. of 

Observ

ation Ref 

ANNBP 

Max LWL, Min LWL, 

Average LWL 

Max LWL, 

Min LWL, 

Average 

LWL Monthly 

MSE, 

MAPE 1008 

(Mislan et 

al.,  2018) 

CE, WNN Rainfall and LWL LWL Daily RMSE 3650 

(Wang et 

al., 2018) 

Hydrodynamic 

Model, ANN, 

ARMAX and 

Combined 

Hydrodynamic and 

ANN 

Inflow Discharge, 

Outflow Discharge, 

Precipitation LWL Hourly 

MAE, 

RMSE and 

R 7296 

(Young et 

al., 2015) 

ANN, ANFIS 

Rainfall, Lake 

Evaporation, Strymonas 

Basin 

Evapotranspiration, 

Water Flow and Water 

Consumption 

LWL and 

Runoff Monthly MSE and R 252 

(Mpallas 

et al., 

2011) 

Nonlinear ANN LWL with Lags LWL Monthly R2 

Not 

Given 

(Jaafar et 

al. , 2010) 

NN and ANFIS Rainfall LWL Daily 

R, Nash 

Index and 

RMSE 2920 

(Páliz 

Larrea et 

al., 2021) 

ANN 

Inflow, the Release of 

Dam, Initial and Final 

Storage of the Reservoir 

Water 

Losses from 

the 

Reservoir Monthly RMSE 132 

(Latif et 

al., 2021) 

ANN 

LWL with Different Time 

Lags LWL Daily 

MSE, 

MARE and 

R 2272 

(Üneş et 

al., 2015) 

ANN 

LWL, Binary Variables, 

Evaporation, 

Precipitation LWL Monthly 

MAE, 

RMSE, 

MSE, R2, 

MAPE 

Not 

Given 

(Piasecki 

et al., 

2018) 

ANN, MLP and 

MLR 

Maximal and Minimal 

Temperature, Wind 

Speed, Vertical 

Circulation and LWL LWL Daily 

MAPE, 

RMSE, R2, 

MBE 11680 

(Piasecki 

et al., 

2017) 

NN RWL RWL Daily MSE 5779 

(Ashaary 

et al., 

2015) 

NN Rainfall RWL Daily 

Testing and 

Validation 

Error 3041 

(Ishak et 

al., 2011) 
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Although NN or ANN was the only model used in the majority of studies to predict the 

outcome, some researchers added additional models to compare it to the ANN model, such 

as CE, ARMAX, ANFIS, MLP, MLR, and the hydrodynamic model (Wang et al., 2018; 

Young et al., 2015; Mpallas et al., 2011; Páliz Larrea et al., 2021; Ashaary et al., 2015). 

Young et al. (2015) discovered that, when compared to the hydrodynamic model, the 

MAE and RMSE results from the ANN and ARMAX models were lower. However, 

Mpallas et al. (2011) and Páliz Larrea et al. (2021) showed that when they compared the 

ANN and ANFIS models, the results were remarkably similar, indicating that the models 

may be utilized interchangeably. ANN models are presented in Table 3. 

 

2.1.4. Decision Tree Models 

 

An RF model was suggested by Guyennon et al. (2021) for their study on LWL prediction. 

In central Italy, near Lake Bracciano, the study is conducted. The dataset consists of 812 

rows of monthly data accumulation. Precipitation, temperature, surface evaporation, wind 

speed, relative humidity, atmospheric pressure, sun radiation, and abstraction are used as 

input variables in the model to estimate LWL. RMSE and MAE are the performance 

assessment methods employed in this study. The assessment measures' results show that 

the RF model can accurately predict LWL despite the incompleteness of the data under 

study. The study's air temperature and short-term precipitation are yet unfinished. On the 

other side, the water level varied the most during prolonged rains. 

 

In order to estimate future LWLs, Wang and Wang (2020) investigated the GP, MLR, 

MLP, M5 Pruned (M5P) model tree, RF, and K-Nearest Neighbor (KNN). They 

conducted their experiment at the U.S.-Canada border using the Lake Erie dataset. 4380 

data rows are expected to be included in the dataset based on 12 years of daily data. 

Precipitation, air temperature, shortwave and longwave radiation, wind speed, and relative 

humidity are used as input variables in the study to forecast LWL. RMSE and MAE were 

the evaluation metrics employed in this investigation. According to the findings, MLR 

and M5P have the best performance ratings when compared to evaluation criteria for 

process-based models. 

 

In order to test several models on the LWL prediction area, Nhu et al. (2020) evaluated 

the M5P, RF, Random Tree (RT), and Reduced Error Pruning Tree (REPT) models. The 

study is taking place in Iran's 8.9 km2 Zrebar Lake, which is where the study is taking 

place. Using daily data over six years, the dataset size was calculated to be 2190. Previous-

day water level (t-1), (t-1)+(t-2), (t-1)+(t-2)+(t-3), (t-1)+(t-2)+(t-3)+(t-4), and (t-1)+(t-

2)+(t-3)+(t-4)+(t-5) are used as input variables in the study to forecast LWL. RMSE, 

MAE, R2, PBIAS, the ratio of the RMSE to the SD of measured data (RSR), and visual 

frameworks (Taylor diagram and box plot) were used to assess how well the study 

performed. Results show that the one-day lag input produced the best performance. 

Additionally, as the lag time increased, the performance of the outcome declined. The 

M5P model performed the best among the models, while the REPT model performed the 

poorest. 
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Obringer et al. (2018) examined a variety of models to predict urban RWL in the USA, 

including the Generalized Linear Model (GLM), Generalized Additive Model (GAM), 

Multivariate Adaptive Regression Spline (MARS), Classification and Regression Trees 

(CART), Bagged CART, RF, SVM, Bayesian Additive Regression Trees (BART), and 

Null (Mean-Only) model. A 51-year period of daily data was used to estimate the dataset's 

18615 data rows. In this study, streamflow, dew point, population, soil moisture, ENSO, 

discharge, humidity, water use, and precipitation are used as the inputs, and RWL is 

determined as the output. R2 was used as an evaluation statistic to test the model. The 

findings indicate that RF is the most accurate predictive model for predicting LWL. The 

main factors influencing the outcome are streamflow, city population, and the El 

Nio/Southern Oscillation (ENSO) index. 

 

Table 4: List of decision tree models and their input-output variables, evaluation metrics, 

and data size. Adapted from A systematic literature review on Lake water level prediction 

models, by Ozdemir et al., 2023, Environmental Modelling & Software, 105684. 

AI Model Input Output 

Temporal 

Scale 

Evaluation 

Metrics 

No. of 

Observ

ation Ref 

RF 

Precipitation, Temperature, 

Surface Evaporation, Wind 

Speed, Relative Humidity, 

Atmospheric Pressure, Solar 

Radiation, Abstraction LWL Monthly RMSE, MAE 812 

(Guyennon 

et al., 2021) 

GP, MLR, 

MLP, M5P, RF, 

KNN 

Precipitation, Air Temperature, 

Shortwave Radiation, 

Longwave Radiation, Wind 

Speed, and Relative Humidity LWL Daily RMSE, MAE 4380 

(Wang and 

Wang, 

2020) 

M5P, RF, RT, 

REPT LWL LWL Daily 

RMSE, MAE, 

R2, PBIAS, 

RSR, Taylor 

Diagram and 

Box Plot 2190 

(Nhu et al., 

2020) 

GLM, GAM, 

MARS, CART, 

Bagged CART, 

RF, SVM, 

BART 

Streamflow, Dew Point, 

Population, Soil Moisture, 

ENSO, Discharge, Humidity, 

Water Use, Precipitation RWL Daily R2 18615 

(Obringer et 

al.,2018) 

RF, ANN, 

SVR, LR LWL, Discharge and Time Lags LWL Daily R2, RMSE 20805 

(Li et 

al.,2016)(a) 

CatBoost 

Soil Texture, Geology, 

Topography Based 

Characteristics, Water Body 

Proximity, Land Cover, and 

Outputs from a Hydrological 

Simulation with the DK-Model 

Depth 

of the 

Upper

most 

Water 

Table Daily MAE 10950 

(Koch et al., 

2021) 

 

In their study, Li et al. (2016) (a) used RF, ANN, SVR, and LR to apply LWL prediction. 

In China's Poyang Lake, where the study is conducted. In the dry season, the lake's surface 

area is 1000 km2, whereas during the rainy season, it is 4000 km2. Based on 57 years' 
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worth of daily data, the dataset has an estimated 20805 data rows. Using water level, 

outflow, and time lags as input variables, the study forecasts LWL. The R2 and RMSE 

measures were used to assess the model's performance. The findings of the evaluation 

measures showed that RF performed the best for LWL prediction. The Yangtze River's 

discharge and the prior water level were found to be the most useful variables for the 

model when the variable's importance was also examined. 

 

In their LWL prediction investigation, Koch et al. (2021) examined CatBoost (Gradient 

Boosting Decision Tree). The case study is utilized in a lake with a 43000 km2 surface 

area in Denmark. Using daily data acquired over 30 years, the dataset size of 10950 is 

approximated. In this study, the inputs are soil texture, geology, topography-based 

characteristics, proximity to water bodies, land cover, and results from a hydrological 

simulation using the DK model, with the output being the depth of the topmost water table. 

MAE is the model's performance evaluation statistic. The findings demonstrate the 

proposed model's high accuracy in predicting water table variability. Decision tree based 

models are presented in Table 4. 

 
2.1.5. Fuzzy Logic Models 
 

ANFIS-SO, ANFIS-FA, ANFIS-PSO, MLP-SO, MLP-FA, and MLP-PSO models were 

created by Ehteram et al. (2021) to examine the LWL prediction area. An Iranian lake was 

chosen as the study region. 168 rows of data are calculated in the dataset for this study 

using 14 years of monthly data. Temperature and precipitation, which are lagged Seven 

input combinations, according to PCa, are used as input variables in the study to predict 

LWL. RMSE is the performance assessment metric used in this investigation. The results 

indicate that the ANFIS-SO model, when combined with rainfall and temperature inputs, 

produced the best results. On the other hand, the input variable representing the rainfall 

lag periods across six months had poor model performance. 

 

In their investigation on LWL prediction, Üneş et al. (2019) employed ANFIS, SVM, 

RBNN, and Generalized Regression Neural Networks (GRNN). The investigation is 

conducted in a 70-km2 lake in the United States of America. 2272 data rows total, gathered 

from daily data, make up the dataset. The study uses RWL with lag durations as an input 

variable to estimate future RWL. The MSE, MAE, and R metrics were used to assess the 

model's performance. The results suggest that when it comes to forecasting RWL, ANFIS 

models outperform auto-regressive models (AR), auto-regressive moving averages 

(ARMA), MLR models, and AI models. 

 

In order to investigate upcoming LWLs, Tsao et al. (2021) used Fuzzy Neural Networks 

(FNN) with a multi-stage architecture. The investigation is being conducted at Taiwan's 

Techi hydropower plant, which has a surface area of 1235.73 km2. The estimated data size 

from two years of hourly cumulative data is 17520. The study's input comprises 

meteorological rainfall data, rainfall observation data, water level, and power generation, 

while the output is decided by reservoir inflow and water level. The model's performance 

is evaluated using the following metrics: MAE, RMSE, and MSE. Based on the study's 
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findings, the authors assert that the model might efficiently use water resources. Given 

that the model performs well in heavy rains, it may also have a good effect on the 

management of water plants. 

 

Valizadeh et al. (2014) studied the LWL prediction area using ANFIS with membership 

functions. A lake in Malaysia with a surface area of 1290 km2 is the subject of the case 

study. Estimated from 11 years of daily data, the dataset has 4015 data rows. Using rainfall 

and LWL as input variables (with varying time delays for each), the study forecasts LWL. 

The MAPE, RMSE, and MAE were used to assess the model's performance. The results 

show high model performance because there is a strong fit between the actual and 

predicted data. Fuzzy logic based models are presented in Table 5. 

 

Table 5: List of fuzzy logic models and their input-output variables, evaluation metrics, 

and data size. Adapted from A systematic literature review on Lake water level prediction 

models, by Ozdemir et al., 2023, Environmental Modelling & Software, 105684. 

AI Model Input Output 

Temporal 

Scale 

Evaluation 

Metrics 

No. of 

Observ

ation Ref 

ANFIS, 

MLP Temperature and Rainfall  LWL Monthly RMSE 168 

(Ehteram et al., 

2021) 

ANFIS, 

SVM, 

RBNN, 

GRNN RWL RWL Daily 

MSE, MAE 

and R 2272 

(Üneş et al., 

2019) 

FNN 

Meteorological Rainfall Data, 

Rainfall Observation Data, 

Water Level and Power 

Generation 

Reservoir 

Inflow 

and RWL Hourly 

MAE, 

RMSE, 

MSE 17520 

(Tsao et al., 

2021) 

ANFIS Rainfall and LWL LWL Daily 

RMSE, 

MAPE, 

MAE 4015 

(Valizadeh et al., 

2014) 

 

2.1.6. Deep Learning Models 

 

In order to carry out their experiment on the LWL prediction study, Liang et al. (2018) 

examined Long Short Term Memory (LSTM). The Three Gorges Dam in China was 

chosen as the study area. 4015 data rows, calculated from ten years of daily data, make up 

the dataset. The daily average precipitation, daily average discharge at Xiangtan Station, 

daily average discharge at Taojiang Station, daily average discharge at Taoyuan Station, 

daily average discharge at Jinshi Station, and daily average TGD discharge are used as 

input variables in the study to forecast LWL. R2 and RMSE were the evaluation measures 

used to assess the performance of this investigation. The findings indicate that the LSTM 

DL model performs better than the SVM model. 

 

The Convolutional Neural Network (CNN) was studied by Damova et al. (2020) to 

estimate future LWLs. Three lakes in Bulgaria were the subject of the study: Kyrdjali, 

Studen Kladenec, and Ivaylovgrad. The dataset's estimated 3650 rows were gathered over 
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a ten-year period from daily data accumulation. The study uses soil moisture, air 

temperature, skin temperature, vegetation index, precipitation (liquid and solid), and in-

situ measurements of water balance parameters as input variables to forecast RWL. Using 

MinMAE, the study's performance was assessed. The suggested model works better than 

independent GIS models and non-semantic solutions, according to the results. 

 

In order to predict LWLs located in the USA, Costa Nogueira Jr. et al. (2021) employed 

LSTM and Fully Connected Neural Networks (FCNN). The temporal extent of the 

accumulated data is daily; however, the magnitude of the data is unknown. In this study, 

temperature, density, and the eastward and northward water velocity are the inputs, and 

the output is calculated as LWL. An average error was employed as the evaluation metric 

in this research. The results show that both models produce good enough results to allow 

for accurate LWL prediction. The performance of the LSTM and FCNN models was 

comparable to one another. LSTM requires additional learning parameters in order to 

achieve comparable outcomes. DL based models are presented in Table 6. 

 

Table 6: List of deep learning models and their input-output variables, evaluation metrics, 

and data size. Adapted from A systematic literature review on Lake water level prediction 

models, by Ozdemir et al., 2023, Environmental Modelling & Software, 105684. 
AI 

Model Input Output 

Temporal 

Scale 

Evaluation 

Metrics 

No. of 

Observation Ref 

LSTM 

TGD Discharge, Daily Average 

Precipitation LWL Daily R2, RMSE 4015  

(Liang et al., 

2018) 

CNN 

Precipitation, Soil Moisture, Air 

Temperature, Skin 

Temperature, Vegetation Index, 

and In-situ Measurements of 

Water Balance Characteristics RWL Daily MinMAE 3650 

(Damova et 

al., 2020) 

FCNN

LSTM 

Temperature, Density, and 

Northward and Eastward Water 

Velocity LWL Daily 

Average 

Error Not Given  

(Costa 

Nogueira Jr 

et al., 2021) 

 

2.2. Overview of LWL Data-Driven Modeling 

 

All of the reviewed research made use of mathematical models. In order to predict lakes 

or RWLs, the researchers either developed their own formula or produced a combination 

of other mathematical models. Generally speaking, historical LWLs are used in feature 

selection. Multivariate features were employed in several studies to forecast future water 

levels. Furthermore, RMSE, R2, and MAE are often used as evaluation metrics and 

account for roughly 46% of all SLR research. 

 

Studies provide useful data for measuring the water supplies in drinking water reservoirs, 

but they do not integrate the procedures used to make decisions about the water 

management system with the prediction of water supplies. Most of the study's attention is 

on making predictions about floods or droughts. 
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Depending on when they were published, the modeling methodologies change. While 

earlier studies used mathematical (Person et al., 2007; Paynter and Nachabe, 2011) and 

regression-based models (Lin et al., 2015; García Molinos et al., 2015), more recent 

studies typically concentrate on ML (Guyennon et al., 2021; Koch et al., 2021) and DL 

techniques (Damova et al., 2020; Costa Nogueira Jr. et al., 2021). The significant 

improvement is the result of recent advances in DL and ML approaches. In order to predict 

LWL and RWL for future periods, research on ML and DL techniques is still open. 

 

Though some researchers select particular algorithms for their research, these algorithms 

are chosen based on a variety of requirements, taking into account both their benefits and 

drawbacks. 

 

2.3. Effects of Climate Change on Lakes 

 

Singh et al. (2019) investigated urban lakes in India because urban lakes are rapidly 

becoming vulnerable to water budget and quality due to urbanization, climate change, and 

anthropogenic pollutant inputs. To safeguard lakes in the long run, it is important to 

accurately identify and treat the impact of these driving variables on their hydrology. They 

looked at Sukhna Lake, a northern Indian urban lake that has recently seen recurrent 

drying up. Many theories, including those involving anthropogenic activities, climate 

change, changes in land use, and other natural processes, were put forth in an attempt to 

identify the variables influencing the lake's condition and its drinking water budget. A 

hydrologic model, lake-catchment data, and meteorological data were used to thoroughly 

investigate these theories. For the experimental analysis, historical data on temperature, 

groundwater, wind, lake inflows, rainfall, lake physical features, catchment land uses, and 

soil texture were examined. A temporal trend analysis of pertinent elements was 

conducted to identify significant drivers of hydrological changes and test the hypotheses. 

Prioritizing the main variables influencing the yearly lake water budget between 1971 and 

2013 involved a sensitivity analysis that focused on the inflows and outflows from the 

lake. The SCS-curve number was used to calculate the lake's annual inflow, or catchment 

run-off, using a rainfall-run-off model. The evaporation loss was estimated in order to 

quantify the outflow. The findings of their investigation suggest that, in contrast to 

urbanization and climate change, the construction of check dams and the siltation process 

in the catchment were the primary factors influencing the hydrology of the lake and its 

recent alterations. 

 

Su et al. (2019) reported lakes that are sensitive indicators of climate change on the 

Tibetan Plateau that respond quickly to climate change. The performance of the lake 

model, extended by straightforward parameterizations about the salinity impact, for 

brackish lakes was evaluated in that study using the surface meteorological parameter 

dataset, lake temperature at the surface data, and directly collected data. It also revealed 

the reaction of thermal circumstances, radiation, and heat balance. The findings showed 

how well the FLake captures seasonal fluctuations in both the inner thermal structure of 

the lake and the lake surface temperature. Over the past few decades, the simulated lake 

temperature at the surface has increased. It has a negative correlation with the speed of the 
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wind and downward shortwave radiation and a positive correlation with air temperature 

and downward longwave radiation. The dimictic lake with two overturn episodes in late 

spring and fall was revealed by the simulated inner thermodynamic structure. Although 

the bottom temperatures exhibited no discernible trend, even slightly declining from 1989 

to 2012, the surface and average water temperatures of the lake increased dramatically 

between 1979 and 2012. Wintertime saw the biggest warming of the air and lake surface 

temperatures. The later ice-on and earlier ice-off trends that were reproduced in the lake 

due to climate change had a major impact on the inter annual and seasonal fluctuations in 

radiation and heat flow. While overall longwave radiation and sensible heat flux 

somewhat decline, the annual average of net shortwave rays and latent heat transfer clearly 

increases. As a result of the ice's decreasing duration, the temperature differential between 

the lake and the air rose during both times. 

 

Odongo et al. (2019) reported the effect of land use cover changes on the hydrological 

regime in Lake Naivasha Basin in Kenya, which has experienced significant water level 

changes in recent decades. They studied the land use conversions of grassland and 

croplands that have influenced evaporation and crop transpiration within the Lake 

Naivasha Basin from 2003 to 2012. They have used the evapotranspiration data sets for 

modeling using the Surface Energy Balance System. According to their findings, 

evapotranspiration increased by up to 12% when grasslands were converted to crops, but 

it decreased by about 4% when crops were converted back to grasslands. They came to 

the conclusion that while recently farmed agricultural land can raise local water demands, 

farm abandonment could reduce water loss and ultimately raise water availability. 

 

The effects of climate change on plains' water resources and the interplay between surface 

water (SW) and groundwater (GW) components were examined by Guevara-Ochoa et al. 

(2020). In order to quantify the spatiotemporal dynamics of the water equilibrium and 

GW-SW relationships for the upper creek basin of Del Azul, which resides in the province 

of Buenos Aires, this study aims to apply a paired hydrological-hydrogeological model 

according to changing climate scenarios. Two scenarios using the local climate model that 

were simulated for 2020–2050 were compared with the baseline scenario that was run in 

the simulation and calibrated and verified for the years 2003–2015. Study topics include 

temperature anomalies, groundwater discharge, precipitation, recharge, soil moisture, 

flow, evapotranspiration, head level, and reserves, both annually and monthly. The GW-

SW interaction's spatiotemporal abnormalities were examined. Wet and dry periods were 

examined using the yearly water balance and the standardized precipitation index. The 

spatiotemporal structure of the GW-SW relationship and the balance of water will be 

considerably altered by climate change, according to simulation studies. These displayed 

annual, seasonal, and monthly fluctuations. With the exception of soil moisture, they 

indicate an increase in the majority of the water balance elements by the middle of the 

twenty-first century. In relation to GW-SW interactions, it is anticipated that the aquifer's 

average annual flow to the stream will rise nearly 24% alongside RCP 8.5 and by 5% with 

RCP 4.5. It is anticipated that at RCP 4.5, the recharge through the river into the aquifer 

will rise by 12%, whereas at RCP 8.5, it will fall by 5%. Regarding the SPI associated 

with the water level balance over the period 2020–2050, variations are anticipated in the 
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duration and frequency of wet and dry periods for the two scenarios. RCP 4.5 exhibits a 

small number of wet seasons, but they are more severe and persistent over time, while 

RCP 8.5 displays a low frequency of dry periods but a high degree of permanence and 

severity. Groundwater levels could be altered by climate change primarily through 

changes in recharge, which would reverse the GW-SW flow in some areas within the 

stream by increasing or lowering the release of groundwater to the stream. 

 

Woolway et al. (2021) used satellite observations and a computational model that utilizes 

long-term in situ temperature measurements of the surface to investigate variations in 

water heatwaves for numerous lakes globally between 1901 and 2099. They demonstrate 

that toward the end of the 21st century, heatwaves in lakes will get hotter and last longer. 

Under the scenario of high greenhouse gas emissions, the average heat wave intensity in 

lakes is predicted to rise from 3.7 ± 0.1 to 5.4 ± 0.8 degrees Celsius, and their average 

duration will witness a significant increase from 7.7 ± 0.4 to 95.5 ± 35.3 days, in 

comparison to the historical period spanning from 1970 to 1999. The heatwave intensity 

and length will rise to 4.0±0.2 °C and 27.0±7.6 days, respectively, under the low-

greenhouse gas emission scenario. At both historical and future timelines, surface heat 

waves were less powerful but more persistent in deep lakes (as much as 60 meters deep) 

compared to shallow lakes. In the 21st century, heat waves from lakes will last for multiple 

seasons as they warm, with some lakes experiencing year-round heat waves. Lakes that 

experience heat waves are likely to experience severe physical and chemical changes that 

will compound the harmful impacts of long-term lake warming. They came to the 

conclusion that heatwaves could change the species composition of lakes by straining the 

resilience of aquatic ecosystems and species. The biodiversity of lakes as well as the 

significant environmental and economic advantages that lakes offer to humanity may be 

in danger as a result. 

 

Schulz et al. (2020) looked at how Lake Urmia, one of the world's largest hypersaline 

lakes with distinctive biodiversity, might be affected by climate change. The lake's water 

level has dropped significantly over the past few decades, endangering the ecosystem's 

ability to function. There is a contentious discussion on the causes of this decline, with the 

two most likely theories being mishandling of the water supplies or changes in the climate. 

In one particular study, they measured the components of Lake Urmia's water budget and 

examined their temporal history and interactions over the previous 50 years. Through this 

thorough analysis, it has been demonstrated that changes in Lake Urmia's water level over 

the studied period were mostly caused by changes in the climate. In contrast to the 

remainder of the water from the surface input quantities, agricultural extraction of water 

volumes was noteworthy given the prevailing meteorological circumstances. The lake 

volume would be significantly affected by shifts in water from agriculture withdrawal, 

and these changes might either balance the lake or force it to completely collapse. 

 

Mengistu et al. (2021) used the SWAT, which was calibrated and verified using observed 

flow of streams data collected at four gauging stations in the basin, to analyze the effects 

of changing climates regarding the hydrological regime within the Upper Blue Nile 

(Abay) River Basin. Climate change projections showed mean annual temperature 
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increases and precipitation decreases in most parts of the basin. The hydrological regime 

of the basin is anticipated to be impacted by these changes, which were evaluated by 

executing the SWAT model under previous (1981–2010) and future (2040–2069, 2070–

2099) climate scenarios. According to the findings, potential evapotranspiration could rise 

from the baseline era by as much as 27% by the end of the twenty-first century. There 

could be a 14% rise in surface runoff. Nevertheless, the basin's overall water supply could 

not rise due to the rise in surface runoff. Rather, the basin's overall water production is 

projected to drop by −1.7 through −6.5%, as well as −10.7 through −22.7% for models. It 

is also anticipated that base flow's share of the basin's overall water supply will decrease 

to 11.4% towards the last decade of the twenty-first century from 41.3% throughout the 

period of the baseline. The loss in the basin's overall water production is partially 

explained by the reduction in baseflow. The management of water in the basin will be 

greatly impacted by such modifications to the hydrologic equilibrium. 

 

In their study, Ashagre et al. (2023) assessed and quantified the consequences of climate 

change as well as future intended abstraction of water for irrigation scenarios in Lake 

Ziway, Ethiopia, since the lake's water balance has been threatened by both climate change 

and ongoing human activity. They did this by using a large number of Global and Regional 

Climate Models for input in the Hydrologiska Byråns Vattenbalansavdelning hydrological 

model. They evaluated the effects of climate factors for the years 2021–2050 and 2051–

2080. Power transform and variation scaling techniques were used to adjust for biases in 

the temperature and rainfall data. The irrigation water requirements of the main crops 

produced in the research region were calculated using the FAO CROPWAT model. The 

findings suggest that rising temperatures and rainy-season runoff levels are anticipated in 

the future. In the worst-case scenario for climate change, the lake's level might decrease 

by 25 cm per year due to changes in the climate and the withdrawal of water for 

agriculture, leaving behind a surface area of 10 km2 and a volume reduction of 101 mm3. 

In order to ensure long-term lake water consumption and level preservation, they 

recommended stringent monitoring procedures for water withdrawal as well as 

appropriate planning and lake ecology management approaches. 

 

The ecosystems of freshwater lakes are essential to aquatic life and human requirements, 

and any change in the rates of water renewal in these lakes has profound ecological and 

social effects. Changes in the ratio of intake (precipitation) to outflow (evaporation, 

withdrawal) affect lakes' depth, area, and hydraulic residence time, as well as their water 

budget. Lakes all throughout the world are seeing a range of effects from climate change. 

Temperature variations, especially warming, are frequently the first things that spring to 

mind when discussing climate change. Variations in the volume and timing of 

precipitation are a significant aspect of a changing climate. The ecosystems of lakes can 

be dramatically impacted by changes in precipitation. According to the aforementioned 

publication, two significant and connected markers of weather and climate change in 

freshwater lakes are rising lake temperatures and water levels. Numerous factors affect 

water level, including precipitation amount, precipitation intensity, surface runoff, water-

bearing rivers, drought, evaporation rates, and withdrawal of water from the lake and lake 

watershed for various purposes. Warmer surface water temperature is increasing rates of 



39 

 

evaporation, influencing the production of lake surface ice, and lengthening the 

evaporation season. Although human activities like water consumption from the lake and 

its catchment also affect the lake's water budget, climate change has an impact on lake 

levels. Those studies indicate the urgent need for a successful management plan prepared 

based on computer prediction models. Precipitation changes are far more difficult to 

model or predict in hydrologic or computer modeling than temperature variations. On any 

given day, the temperature fluctuations are often relatively small, only fluctuating by a 

few degrees. On the other hand, not only the total amount of precipitation but also the 

intensity is important for building models. 

 

2.4. Factors that Affect Lake Water Quality 

 

Blue-green algae/cyanoprokaryote blooms have become more prevalent worldwide in 

recent decades (Harke et al., 2016; Paerl and Otten, 2013). High cyanotoxin 

concentrations have been related to animal fatalities and a health risk to humans from 

recreational and drinking waters. (Carmichael et al., 2001; Azevedo et al., 2002; Backer 

et al., 2015). This is because some species have the potential to produce toxins that impact 

live-stocks. Hepatotoxins, neurotoxins, cytotoxins, dermatotoxins, and irritating toxins are 

only a few of the hazardous compounds that cyanobacteria are capable of producing 

(Westrick et al., 2010; Bláha et al., 2009). Several cyanobacterial species, including 

Microcystis, Nodularia, An-abaena, Planktothrix, Aphanizomenon, and 

Cylindrospermopsis, have been found to produce cyanotoxins (Bernard et al., 2017; Merel 

et al., 2013). 

 

The limnological properties and lake contamination level were discussed in earlier works, 

but nothing was known about phytoplankton. Aykulu et al. (2006) looked at the 

compositions of phytoplankton and zooplankton and how they related to the water quality 

of the lake. The study has primarily focused on the pelagic zone and the deepest parts of 

the lake. The first sampling locations were 100 meters apart and located at the point closest 

to the shore. 

 

A new and increasing hazard to water ecosystems is the regional effects of climate change 

(Liboriussen et al., 2005). Climate change has been considered a possible instrument for 

the future growth of dangerous cyanobacterial blooms because of factors such as higher 

temperatures, enhanced stratification, longer residence durations, and high nutrient 

loading, all of which favor cyanobacterial dominance in eutrophic environments. (Nõges 

et al., 2010; Paerl and Huisman, 2009; Joehnk et al., 2008). Studies (Teubner et al., 2006; 

Jacquet et al., 2005; Anneville et al., 2005) suggest that a combination of deeper P-

depleted zones, reduced phosphorus loads, and enhanced water column stability is most 

likely responsible for the increase in metalimnetic Planktothrix rubescens in several lakes. 

However, since P. rubescens is a metalimnetic species and can obtain nutrients from the 

hypolimnion during the stratified season, giving it an advantage over other phytoplankton 

species, there is always competition among organisms for resources. This allows the 

species to reach high densities in the summer. P. rubescens typically experiences poor 

conditions during the mixing phase, which causes its population to decline and gives room 
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for other phytoplankton species to expand. On the other hand, a surface bloom may happen 

in the winter if P. rubescens conditions improve (Walsby et al., 2006). 

 

Due to the lake's red tint, attributed to the surface scum of dead P. rubescens filaments, it 

had been believed to be polluted in 1997. Following this incident, P. rubescens 

populations that were metalimnetic were noted in the lake, and microcystin was found in 

the specimens (Albay et al., 2003). Since the lake is an important source of water for 

drinking, it is crucial to keep an eye on its cyanobacterial and cyanotoxin levels. 

 

Between 2000 and 2010, the temperature of the air in the vicinity of Lake Sapanca grew 

only marginally (0.06 °C), but the lake's surface temperatures exhibited a more substantial 

increase (0.68 °C) than air temperatures. Based on Livingstone (1998), the air temperature 

is a trustworthy indicator of biotic activities like cyanobacteria behavior in the epilimnion. 

Cyanobacteria are impacted by air temperature both directly and indirectly. An increase 

in growth rate and a stabilization of the water column favor buoyant cyanobacteria. 

 

Variations in temperature, glacier cover, winds, and precipitation are only a few of the 

ways that climate change affects these natural environments (Mooij et al., 2005). Lake 

Sapanca contains no ice because it is a lowland lake (31 m above sea level). P. rubescens 

was found at depths of 10 to 20 m, where the metalimnion temperature ranged from 9 to 

18 °C; however, in 2007, when the water temperature was 11 °C, it obtained its greatest 

biomass levels. In a Sicilian reservoir, a similar top bloom was discovered by Naselli-

Flores et al. (2007) in December at cooler temperatures of the water (9–10 °C). During 

November and December at Lake Zurich, apparent filaments above the surface were 

observed in conditions of mild weather and with temperatures of 6 to 8 °C (Walsby et al., 

2006). According to Davis & Walsby (2002), P. rubescens would outcompete P. agardhii 

in the temperature range between 10–21 °C since it favors a cooler environment to 

develop. 

 

Temperature, transmission of light, and nutrients had the biggest impacts on algal 

expansion among the influencing physical and chemical attributes (Özer et al., 2012). The 

prolonged retention period of the lake may be to blame for the spike in nutrient contents. 

This rise may be contributing to the P. rubescens surface bloom in Lake Sapanca. The 

presence of such cyanobacteria in Lake Mondsee's surface waters was also noted 

throughout the lake's eutrophication stage (Dokulil and Teubner, 2012). 

 

P. rubescens, on the contrary, predominates the phytoplankton biomass in layered 

reoligotrophic waters, usually at a total phosphorus level of about 10 g/L. (Dokulil and 

Teubner, 2000). Accordingly, P. rubescens mass occurrences emerged when phosphate 

levels were substantially reduced in Lake Bourget, according to Jacquet et al. (2005). The 

lack of SRP inside the epilimnion will result in a negative impact on phytoplankton 

biomass and improve the formation of metalimnetic blooms by P. rubescens in the 

summer. Especially in the previous two decades, this was the scenario in the lake 

(Akcaalan et al., 2006). But only in February throughout the experiment period in Lake 

Sapanca was SRP under detection boundaries, suggesting that P. rubescens bloom might 
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have consumed all SRP at the time it began to form a bloom. It's interesting to note that 

SRP concentrations rose as P. rubescens biomass decreased, indicating a negative 

correlation between the two variables. 

 

2.5. Decision Support Tool for Lake Water Level 

 

Multiple interrelated environmental, social, hydrological, and administrative components 

make up water resource systems. Making comprehensive and integrated decisions is 

necessary for their management. The examination of the requirements of various sectors 

as well as the competing benefits and costs in the area are both necessary for system wide 

management. The development of a DSS that reflects the many components of the 

multipurpose reservoir system can lead to improved comprehension and management of 

this complex and intricate system. 

 

DSSs are electronic tools that support rather than take over the process of deciding 

between options and putting those choices into action. Typically, they serve to make 

judgments better informed by offering information that might not otherwise be available. 

DSSs frequently use or include mathematical (computer) models of the system under 

study. 

 

DSSs frequently use mathematical systems models as a framework and as an integral part 

of their design. A complete and accurate documentation or representation of the actual 

system is provided by the system model. The systems model is incorporated into the DSS 

to make it possible to evaluate alternate operations and enhance operational processes. 

The DSS offers suggested long-term schedules, short-term operational actions, and 

assessments of their potential long-term effects on the integrated system. To account for 

the system's complexity, assumptions, simplifications, and parameterization are applied 

to various system components (Loucks 1995). These models also depict the relationships 

and interactions between the system's components in a systematic and in-depth manner. 

The mathematical model is utilized to research, discover, and assess potential operations 

and decision-making enhancements (Loucks 1992). 

 

There are numerous methods for creating a mathematical model that supports decision-

making. The difficulties in designing a mathematical operational system are frequently 

dealt with using dynamic programming. Numerous studies (Karamouz and Mousavi 2003; 

Tejada-Guilbert et al. 1995; Zambelli et al. 2006; Kim and Palmer 1997; Contesse et al. 

2003; Stedinger et al. 1984; Kim et al. 2007; Faber and Stedinger 2001) have demonstrated 

the versatility of stochastic dynamic programming (SDP) in order to deal with nonlinear, 

stochastic, and multireservoir systems. Using transition probabilities, which establish the 

predicted value of the goal function, SDP models can account for reservoir inflow-related 

uncertainty (Kim and Palmer 1997). 

 

Hydropower system optimization has also been developed using linear programming 

(LP). Some benefits of employing LPs were outlined by Rani and Moreira (2010), 

including their adaptability for use with large-scale issues, convergence towards 
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worldwide best practices, and the abundance of both for-profit and free software options. 

Furthermore, stakeholders may easily understand the mathematical concept behind LPs 

and their objective functions. The power manufacturing units may be approached linearly 

because they are located over 1,000 feet under the surface of the reservoir, and variations 

in preservation have no effect on the system head. Given that this DSS demands 40–50 

distinct solutions for each decision and that the linear program comprises 1,200 variables 

and 1,000 constraints in each iteration, it is crucial that large linear programs be solved 

efficiently. 

 

Since the mid-1980s, interactive computer technologies and decision support systems 

(DSSs) have become widely used for researching complex water resource issues (Ahmad 

and Simonovic, 2006; Metcalfe et al., 2005; Turon et al., 2007; Watkins and McKinney, 

1995). In a user-machine interface, a decision support system enables decision-makers to 

mix personal decisions with computerized output to provide useful information to aid in 

a decision-making process, according to Ahmad and Simonovic (2006). Such systems are 

capable of utilizing any information that is made available upon request to assist in the 

solution of all problems, whether they are structured, semi-structured, or unstructured. For 

problem-solving, they make use of quantitative models and database components. They 

play a crucial role in the approach taken by decision-makers to problem-solving and 

problem identification. 

 

The general structure of an environmental decision support system (EDSS) consists of the 

following elements: (1) a clear layout to address a range of problems, both structured and 

unstructured; (2) a robust and intuitive user interface; and (3) data-driven models and 

algorithms that can easily incorporate data that changes rapidly (Segrera et al. 2003). 

 

2.6. Literature Summary and Knowledge Gaps 

 

The literature presented in this section gives detailed information regarding LWL, the 

input, the temporal scale for the prediction, the relation between LWL and water quality 

indicators, and a decision support tool. The LWL is found to be related to some indicators 

of water quality, such as cyanobacteria, heavy metals, and pH level. Therefore, the 

imminent water decrease in lakes would not only cause a drinking water supply shortage 

but also affect water quality. Another point is that the developed algorithms are only 

effective if they can be used by water managers during their operations. By evaluating the 

literature, it was found that: 

 

 There is no study that compares the algorithm results with basic benchmark 

methods for LWL studies. 

 There is no study to compare different future time periods for LWL prediction. 

 There is no study to investigate the link between LWL, temperature, precipitation, 

light intensity, and evaporation with water quality, especially the cyanobactia 

species of Plankthotrix Rubescense that is highly populated in Lake Sapanca. 

 There is no study to reveal algorithmic performance in practical use for water 

managers. 
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CHAPTER 3 

 

3. RESEARCH METHODOLOGY 

3.1. Research Questions and Objectives 

 

Understanding the effects of climatic variables and water usage on patterns of LWL 

fluctuations is crucial to estimating the ecological and financial consequences of climate 

change since it has a substantial impact on the natural hydrological cycle and exacerbates 

water scarcity. 

 

There have been several initiatives to stop any potential drought or flood danger that could 

be harmful to society during a downturn in the economy. In general, the effects of human 

activities and variations in the climate on water supplies can be evaluated through the use 

of prior evaluations of historical data on watershed fluctuations across time. These kinds 

of hazards can be avoided in a number of ways, but implementing the proper strategies at 

the right moment is essential for their effectiveness. As a result, forecasting water levels 

is crucial to developing effective and efficient defenses against all forms of flood and 

drought danger. This thesis examines experimental DL-based LWL prediction models and 

suggests improvements to be made to them utilizing decision support tool algorithms in 

relation to particular hydrological and meteorological data. The research questions of this 

study can be listed as follows: 

 

 Could LWL estimation algorithms with NN be improved with an ANN-based 

times series algorithm? 

 Could LWL estimation algorithms with NN be improved with the LSTM-based 

times series RNN algorithm? 

 Could LWL estimation algorithms with NN be improved with the Gated Recurrent 

Unit (GRU)-based times series RNN algorithm? 

 Could LWL estimation algorithms with NN be improved with Stacked LSTM-

based times series RNN algorithm? 

 Could LWL estimation algorithms with NN be improved with Bidirectional 

LSTM-based times series RNN algorithm? 

 Which ANN- or RNN-based DL algorithm should be selected in terms of 

performance improvement? 
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 Which prediction period should be selected in order to optimize prediction 

performance? 

 Could ANN or RNN-based algorithms be used in order to create a warning and 

decision-support tool for water managers? 

 

3.2. Case Study Area 

 

The Lake Sapanca extends between latitudes of 40°41′–40°44′ E and longitudes of 

30°09′–30°20′ N in the northwestern part of Turkey (Figure 8). It is located between two 

cities; the western part of the lake is in Kocaeli, and the eastern end is within the provincial 

border of Sakarya. It is a 16 km (east-west) and 5 km (north-south) long tectonic fresh 

water source that provides the drinking water needs of both cities. It has a surface area of 

46 km2 and a reasonable depth of 30 m. There are about 1.3 billion m3 in the lake. The 

greatest depth of the lake basin is 54 m, and its catchment area is 250 km2 (Akkoyunlu 

and Akiner, 2012). The lake is surrounded by southern mountains and northern hills. 

 

The transitional climate found in the Sapanca Basin is influenced by the Black Sea and 

Mediterranean climates. While the basin exhibits characteristics of both the Black Sea and 

Mediterranean climates, it may also display elements of a continental climate due to its 

interaction with an intermediary air system. Despite the warm and rainy winters 

experienced in the basin, summers are comparatively less hot and dry than what is 

typically observed in the Mediterranean region. 

 

 
Figure 8: Lake Sapanca area and its catchment with river basins 

 

Figure 8 depicts the catchment area of Lake Sapanca and its sub-basins, which consist of 

12 streams that inflow Lake Sapanca. The lake has a controlled outflow with Cark Creek, 

which regulates the maximum lake level. The seasonal precipitation, water withdrawal, 
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and surface outflow result in inter-annual LWL variations of 2.28 m between 29.90 and 

32.18 m above sea level. The lake is noteworthy because it supplies drinking water to the 

provinces of Kocaeli and Sakarya. It is also believed that the lake basin will eventually 

meet the bottled water needs of Istanbul. Although the basin area doesn’t include any 

industrial regions, 23% of the basin area is used as cultivated land mainly covered by 

ornamentals and fruit orchard, and 9.5% is used as settlement land. Remaining basin area 

is covered by 65% forest land and 2.5% as natural land. However, the water quantity and 

quality of the Lake Sapanca basin have deteriorated because of the water demands of 

urban, agricultural, and industrial facilities. Turkey's average population growth rate is 

0.8%; however, over the past 20 years, the population growth rate in the basin has risen 

from 1.5% to 3.5% (World Bank, 2021). The rapid population growth of the basin is 

adversely affecting the quantity and quality of water. Although the lake is in a transitional 

stage from oligotrophic to mesotrophic, its ecological status is deteriorating as the water 

level drops below the lake's surface discharge during droughts and point and nonpoint 

runoff flows in from numerous sources (Akkoyunlu and Akiner, 2012). The lake's 

ecological state deteriorates primarily as a result of unchecked agricultural operations and 

household wastewater leakages in the vicinity. In addition, the droughts that periodically 

occurred caused the lake's water quality and quantity to deteriorate (Duru, 2017). 

 

3.3. Dataset Description 

 

The descriptive statistics of the features in the dataset are presented in Table 7. It reveals 

the SD, minimum value, average value, maximum value, and quarter values for each 

feature. It is important to notice that the LWL has a minimum value of 29.27 m, which is 

below the threshold for a lake to sustain itself in order to supply healthy drinking water. 

Water managers should target not to reduce water levels below the threshold level, which 

is 30 m in the short and medium term. 

 

Table 7: Descriptive Statistics for features in the dataset 

 
Mean 

Std. 

Dev. 

Min. 

Value 
25% 50% 75% 

Max. 

Value 

Maximum 

Temperature (°C) 
21.6 8.2 0.4 15.4 22.2 28.6 40.7 

Minimum 

Temperature (°C) 
11.7 6.6 -9.4 6.7 11.7 17.5 25.6 

Average 

Temperature 

(°C) 

16.0 7.1 -3.1 10.3 16.1 22.5 30.2 

Precipitation (mm) 2.5 6.9 0.0 0.0 0 1.4 93.5 

Withdrawal (m3) 183,914.2 23,165.5 125,998.0 165,219.5 188,420.5 203,795.5 222,869.0 

Water Level (m) 31.5 0.7 29.3 31.2 31.8 32.1 32.3 

 

Several characteristics are used in the literature to evaluate future LWLs. The most 

commonly used features in the literature are precipitation (17%), LWL, and evaporation 

(Ozdemir et al., 2023). Other major features used by researchers include discharge (Jiang 

et al., 2021), temperature (Nourani et al., 2021), inflow (Tsao et al., 2021), streamflow 
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and humidity (Obringer and Nateghi, 2018), wind speed and solar radiation (Guyennon et 

al., 2021), volume, and area (Dinka, 2020). 

 

The State Hydraulic Works and Turkish State Meteorological Service, through their river 

monitoring program for Lake Sapanca, provided the data examined for this study. LWL, 

maximum temperature, minimum temperature, average temperature, precipitation, and 

flow rates were the features that were supplied. Among those, withdrawal feature includes 

water withdrawal for industrial, agricultural and domestic use. Measurements were taken 

daily between 2012 and 2020, with occasional missing data. However, Figure 9 displays 

the data between 2020 and 2023 for LWL, although the data was not used for the 

experiments because of insufficient data from other features. The interpolation approach 

was used to fill in the missing data. 

 

A sequence of values measured over a time step in continuous or discrete units of time is 

called a time series. Numerous studies have demonstrated the usefulness of time series 

prediction as a tool for early warning and control. Predicting potential modifications at 

points of observation throughout time is the goal of time series analysis. The data set 

employed in this investigation is a standard multivariate time series, as shown in Figure 

9, which typically comprises water withdrawal from the reservoir along with real-valued 

LWL and climatic information. Looking more closely at the graph, one can see that there 

are irregularities in both the LWL and meteorological and hydrological data. However, 

the temperature data show only annual and seasonal patterns of variation. Distribution 

data from LWL are compatible to meteorological data, especially in annual precipitation. 

Additionally, water withdrawals show an increasing trend over time (Figure 9). 

 

As shown in Figure 9, during prolonged drought, the LWL drops below the discharge 

elevation at the surface, which is 29.90 m above sea level in Lake Sapanca. Data from 

LWL indicate that in years of low precipitation, LWL decreases. Higher precipitation in 

the last decade (2015–2018) coincides with LWL above the lake's discharge elevation. In 

addition, higher maximum temperatures and low precipitation in recent years have 

reduced LWL to the surface runoff elevation during dry periods (Figure 9). Low 

precipitation also increases water demand, while low temperatures decrease water use. In 

addition, increasing population and industrialization are related to water withdrawal from 

the lake. Therefore, multivariate time series data that include freshwater demand and 

meteorological characteristics are critical for predicting LWLs. 

 

 

-10

0

10

20

30

1 201 401 601 801 1001 1201 1401 1601 1801 2001 2201 2401 2601 2801 3001

M
in

 t
em

 (
°C

)



47 

 

 

 

 

 

 
Figure 9: Time series plots of daily meteorological data, water withdrawals and LWL for 

Lake Sapanca from 11 October 2012 through 31 December 2020. 

 

3.4. Stationary Data Test 

 

When the variance, mean, SD, and covariance of a series remain constant or unaffected 

by time, it is said to be stationary. Stated differently, time series that lack a pattern or 
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seasonality are referred to as stationary. It is additionally referred to as the unit root test 

and is used to determine how much a trend dominates a time series. Among the various 

unit root tests available, the Augmented Dickey-Fuller test could be the most widely used. 

An autoregressive model is used to improve the information criteria over a range of 

different lag values. 

 

The time series is not stationary (has significant temporal-dependent character) and could 

be expressed as a unit root, according to the null hypothesis of the test. The time series 

being steady is the alternate hypothesis (rejecting the null hypothesis). 

 

The results are interpreted based on the p-value of the test. A p-value under a certain level 

signifies that the null hypothesis is rejected (stationary), and a p-value above the threshold 

of significance suggests that the null hypothesis has failed to be rejected (non-stationary). 

 

 The data are non-stationary and have a unit root if the p-value is greater than 0.05, 

which means that the null hypothesis (H0) failed to be rejected. 

 The null hypothesis (H0) is rejected if the p-value is below 0.05 because the data 

are stationary and lack a unit root. 

 

Table 8: Augmented Dickey-Fuller test for the dataset 
Test Statistic: -22.776061 

p-value:  0.041776 

Critical Values: 1%: -3.423 

5%: -2.853 

10%: -2.467 

 

To ascertain whether the time series is stationary, the Augmented Dickey Fuller test was 

employed, and the test results are shown in Table 8. There is strong evidence for the 

alternate hypothesis in this situation because the test statistic was found to be highly 

negative (-22.78) and the p-value was found to be below threshold (0.04). As a result, the 

null hypothesis was rejected, indicating that the series is probably stationary. 

 

3.5. Data Preprocessing 

 

The dataset was created on a daily basis with monthly stacks and converted to a time series 

format to be used as a predictive model. The dataset contains several missing points that 

prevent the model from running. Although the dataset has small gaps, some columns 

contain large blanks. The large gaps are located either at the beginning or at the end of the 

dataset. Therefore, these parts were removed from the dataset. Other missing data was 

interpolated using the linear method. 

 

The easiest technique for estimating a function's value between any two known values is 

to utilize the linear interpolation method. Additionally, curve fitting with linear 

polynomials can be accomplished with the help of the linear interpolation formula 

(Equation 1). Essentially, utilizing the set of values, the interpolation method finds new 
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values for any function. To determine the unknown values in the table, this thesis applied 

the linear interpolation formula. There is frequently some association, and other values 

can be predicted with the aid of experiments conducted at a range of values. Interpolation 

is useful for determining the equation from the untabulated points. Interpolation can be 

used to estimate any desired value at a provided, existing coordinate position. It is very 

useful for numerous additional quantitative and scientific applications, such as data 

forecasting and market research. 

𝑦 = 𝑦1 + (𝑥 − 𝑥1)
(𝑦2−𝑦1)

(𝑥2−𝑥1)
     (1) 

Where x1 and y1 are the initial coordinates, x2 and y2 are the subsequence coordinates, x 

is the place where the interpolation is to be done, and y represents the interpolated value. 

 

An outlier is an observation on a sample dataset that deviates from the general pattern. 

The outliers could point to anomalies, measurement variability, or experimental errors. 

Outliers have a major effect on the mean and SD of the dataset. These can yield results 

that are statistically erroneous. When outliers are present, most ML algorithms perform 

poorly. Therefore, it is better to find and remove outliers. When detecting anomalies like 

impossible negative values, where the expected value should always be positive, outliers 

are quite helpful. 

 

This thesis used both the Interquartile Range (IQR) and expert opinion in order to detect 

erroneous data and outliers in the dataset. IQR divides a data set into quartiles in order to 

quantify variability. The information is divided into four equal sections and sorted in 

increasing order. The first, second, and third quartiles, or Q1, Q2, and Q3, are the values 

that divide the four equal sections. 

 

 Q1 stands for the data's 25th percentile. 

 Q2 stands for the data's 50th percentile. 

 Q3 stands for the data's 75th percentile. 

 

IQR stands for information quality ratio. It is calculated as in Equation 2. Outliers are the 

data points that are either above Q3 + 1.5 IQR or below Q1 - 1.5 IQR. 

 

𝐼𝑄𝑅 = 𝑄3 − 𝑄1       (2) 

 

Where IQR is the Interquantile Range, Q3 is the 3rd percentile, and Q1 is the 1st percentile. 

 

No outlier was detected using the IQR method except precipitation and LWL features. 

(Appendix A) The data points in the range of 3.5 mm to 93.5 mm for precipitation and 

between 29.27 m and 29.93 m for LWL are detected as outliers for the IQR method. The 

values in these features were discussed with experts in the field and later determined not 

to omit related parts in the dataset since these values are likely to happen in these features. 

The data were used after the necessary preprocessing steps had been performed. 
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Figure 10: Bar chart of features with missing values 

 

The bar chart reveals the number of missing parts of features. As it can be seen in Figure 

10, maximum temperature, minimum temperature, average temperature, and withdrawal 

do not have any missing values. Only missing values are included in the features of 

precipitation (0.7%) and water level (3.03%). 

 

Figure 11 demonstrates the Missingness Matrix of features in terms of their missingness 

pattern. As it can be seen from the figure, the missing parts for precipitation and water 

level don’t overlap with each other. Therefore, it can be said that the pattern’s missingness 

completely at random. The result in the figure justifies the interpolation method for the 

missing data does not cause any bias in the results. 

 

Since time series are made of sequential data, the data should be used to specify training 

and test sets. From October 11, 2012, to December 31, 2020, daily meteorological and 

hydrological data were collected at the lake basin and utilized to train and test the 

algorithms. The best subsets to use for training and testing might be a problem for data-

driven models. To discover the optimum pattern for the data and to increase the validity 

of the model outputs in unknown data, the dataset was separated into training, validation, 

and test sets with 60%, 20%, and 20% proportions, respectively. This allowed for the 

coverage of high and low values in the training and test subsets. To avoid overfitting and 

to include all seasons in the data set, dry and wet seasons were included in all sets created. 
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Figure 11: Missingness Matrix of Features 

 

3.6. Model Descriptions 

 

The RNN is the ancestor of gated recurrent-based networks. Due to time delays during the 

backpropagation error in the learning process of the RNN model network, it was 

established as a remedy for the gradient explosion problem. At each time step, gated RNN 

networks predict the label of an activity. To predict an activity label, any number of 

previous time steps can be merged. The gated RNN model networks have been shown to 

be significant models in the past and are capable of learning from sequential inputs. It can 

effectively learn from sequences of different lengths and capture long-term dependencies. 

There are ANN and four different gated RNN networks used in this thesis: LSTM, GRU, 

Stacked LSTM, and Bidirectional LSTM. 
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3.6.1. ANN 
 

A massively parallel-distributed information processing system called an ANN mimics 

the function of the neuron network in the human brain. Human learning is a result of 

neurons, and ANNs employ this important feature for ML. 

 

A NN is made up of several nodes, or basic processing units. Figure 12 depicts a basic 

and generic representation of a processing element. The mathematical functions and 

network architecture make up the ANNs. The architecture is made up of the arrangement 

of nodes in a specific way. Typically, the nodes are organized in layers that facilitate the 

flow of information from the input layer to the output layer. Between the input and output 

layers, there may be multiple hidden levels. The network's capacity to represent more 

complicated events is enhanced by the hidden layers. 

 

 
Figure 12: ANN Model 

 

Figure 13 displays a four-layer feed-forward ANN together with a typical processing 

element. Although they are not connected to one another, the nodes in one layer are 

connected to those in the next. Every node computes a function based on its input and 

transmits the output to other units in the network that are connected. As a result, a node's 

output is tied to its inputs and matching weights. The weight of the connection determines 

how strong the signal is as it travels from one neuron to the next. Trial and error is typically 

used to determine the number of hidden levels and the number of nodes in each hidden 

layer.  
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Figure 13: ANN Model with multiple layers 

 

When an ANN first starts off, it knows nothing. The process of learning begins with data 

entry into the network's input layer. The weights are frozen once the learning process is 

finished. It uses a data set from performance testing for validation. 

 
3.6.2. LSTM 
 

A sequence of feedback loops and gates that are self-trained using the input data is used 

by LSTM. According to Zhang et al. (2018), the LSTM network is a particular architecture 

that is intended to simulate complex temporal and spatial sequences. By adding a gate 

mechanism, it can more correctly handle dependencies that are long-range. A collection 

of recurrently connected memory cells constitutes each of the multiple memory blocks 

that make up the LSTM network, which are connected via layers (Figure 14). 

 

 
Figure 14: Basic structure of LSTM algorithm 

 

LSTM has three multiplicative units: input, output, and forget gates. The input gate 

changes the information using the sigmoid function, regulatory filter, and hyperbolic 
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tangent function. The forget gate changes information of smaller importance. The output 

gate selects the useful information from the current cell. The LSTM layer uses the 

following mathematical operation to determine the output variable (Ozdemir et al., 2023): 

 

𝜎(𝑡) =
1

1+𝑒−𝑡
tanh(𝑡) = (

𝑒𝑡−𝑒−𝑡

𝑒𝑡+𝑒−𝑡
)   (3) 

𝑓𝑡 = 𝜎(𝑊𝑓(ℎ𝑡−1, 𝑋𝑡) + 𝐵𝑓)    (4) 

𝑖𝑡 = 𝜎(𝑊𝑖(ℎ𝑡−1, 𝑋𝑡) + 𝐵𝑖)     (5) 

𝑜𝑡 = 𝜎(𝑊𝑜(ℎ𝑡−1, 𝑋𝑡) + 𝐵𝑜)     (6) 

 

Where ft forgotten variable, it input variable, ot output variable. Xt indicates the values 

that the feature receives at t time, and ht-1 is the output cell of the previous cell. Inside the 

LSTM cell, memory is indicated by ct−1. W is the weight matrix, and B is the term bias. 

The sigmoid function (σ), the hyperbolic tangent function (tanh), processes the Xt variable 

and the h variable from the previous learning. 

 
3.6.3. GRU 
 

While GRU has two gates, it runs faster and requires less memory than LSTM. GRU is 

computationally more efficient than LSTM because the structure is simpler and more 

straightforward. The input gate and the forgetting gate are combined into one update gate 

and simplified (Figure 15). 

 

 
Figure 15: Basic structure of GRU algorithm 

 

GRU contains one tanh function and two activation functions. As a result, GRU has the 

same capacity for long-term memory formation as LSTM, but it also benefits from 

containing fewer variables and a quicker training rate. The output variables of GRU are 

calculated using the following equations (Ozdemir et al., 2023): 

 

𝑟 =  𝜎(𝑊𝑟(ℎ𝑡−1, 𝑋𝑡) + 𝑈𝑟𝑋𝑡)    (7) 

𝑧 =  𝜎(𝑊𝑧(ℎ𝑡−1, 𝑋𝑡) + 𝑈𝑧𝑋𝑡)    (8) 

𝑐 = 𝑡𝑎𝑛ℎ(𝑊𝑐(ℎ𝑡−1 × 𝑟) + 𝑈𝑐𝑋𝑡 )   (9) 

ℎ𝑡 = (𝑧 ∗ 𝑐) + ((1 − 𝑧) × ℎ𝑡−1)   (10) 
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Where, tanh and σ are the hyperbolic tangent and logistic sigmoid functions, r and z are 

vectors for the activation values of the update and reset gates. Wr, Ur, Wz, Uz, Wc, Uc 

represent the weight matrix. 

 
3.6.4. Stacked LSTM 
 

Stacked LSTM is a variant of LSTM with multiple LSTM layers containing multiple 

memory cells that give the model the ability to capture the structure of time series and 

combine the learned representation of previous layers while providing a higher level of 

abstraction for the final results. This structure contributes to the model's ability to learn 

higher-level temporal representations but can lead to degradation problems due to the low 

convergence rate of the LSTM layers, although this error is different from the vanishing 

gradient problem. 

 

 
Figure 16: Stacked LSTM Model 
 
The model is deeper and more properly qualifies as a DL technique thanks to the stacked 

LSTM hidden layers. NNs' depth is credited with the method's success on a variety of 

difficult prediction issues. Thus, the stacked LSTM provides a dependable approach for 

challenging sequence prediction problems. An LSTM model with many LSTM layers is 

called a stacked LSTM structure (Figure 16). An output sequence, as opposed to a single 

value, is sent to the LSTM layer below from an LSTM layer above. To be more precise, 

one output for each input time step equals one output time step overall. 

 
3.6.5. Bidirectional LSTM 
 

Another variation of the LSTM is the Bidirectional LSTM, in which the input currents of 

the LSTM flow in both directions so that information from both the input and output sides 

can be used. This model's accuracy is increased by using both forward and reverse 

information, which also facilitates better learning over dependence on long-term data. 

ℎ𝑛 = LSTMforward (𝑖𝑛,
ℎ𝑛−1
→  )⊗ 𝐿STMbackward (𝑖𝑛,

ℎ𝑛+1
←   )                   (11) 

Where, hn=new state, in=input, hn−1=output of past state, hn+1=output of future 

state, ⊗ symbol represents the concatenation operation.  
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Figure 17: Bidirectional LSTM Model 

 

Typically, the LSTM layers constrain and process sequence input in a unidirectional 

manner in order to capture the periodicity or unpredictability of the system. On the other 

hand, adding a backward LSTM layer could solve the issue and make the network 

bidirectional. As a result, the construction of an unfolded Bidirectional LSTM layer that 

links two distinct hidden layers to a single output layer, processing sequence data with a 

forward LSTM layer and a backward LSTM layer (Figure 17). The inputs generate the 

forward layer output series sequentially through time period hn-1 to hn+1 in a positive 

direction. On the other hand, the backward layer sequence is calculated using the reverse 

data throughout the same period. The final output, hn, is obtained from the following 

equation after the layer outputs are calculated using the conventional LSTM Eqs. (3–6). 

 

3.7. Sequence Creation 

 

This work made use of supervised deep NN models that train the models using input data 

that is typically organized as a matrix. The time series comprises a collection of values 

arranged sequentially. DL models are unable to process values in their organic state. In 

order for the models to learn from past values of input and forecast potential outcome 

values, the data must be turned into input and output sequences. The following three tenets 

form the foundation of the sequence generation procedure: 

 

 Input Data Sequences Length: the number of time-varying cycles in the data being 

provided into the model to forecast the output based on the relevant sequence in 

the context of time series analysis. Depending on the model structure being utilized 

and the hardware capacities needed to analyze larger amounts of data, the sequence 

size may vary. 

 Slide Window: This method is often used to create sequences in a time series. 

Through sliding the sequence into x (sliding window size) steps, it enables the 

development of several sequences of identical length. For example, given that a 

time series consists of one thousand points of data and sequences of length ten are 

generated, slide a window (w = 1) with a step of 1 across the time series. As a 
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result, 991 sequences of length 10 would be produced, each with a unique time 

series beginning point. 

 Output Data Sequences Length: Also referred to as the forecasting horizon, this 

parameter establishes how many future outcomes the model will forecast from the 

given input sequence. When it comes to LWL forecasting, a forecasting horizon 

of one time step (days) indicates that, depending on the input sequence length, the 

model will forecast the LWL values for the upcoming day. 

 

Applying a window that slides in varying lengths, this thesis generates the sequences of 

inputs for each model design. The output duration of the sequence (forecast horizon), 

which is 1, indicates that the next day will be predicted using the previous time step values, 

and a forecast horizon of 30 means the next 30th day will be forecasted using the same 

input sequence. The sequence of input lengths is regarded as a training parameter that 

needs to be adjusted. The scope of this thesis adjusts the forecast horizon rather than the 

input sequence. Thus, the input sequence remains the same for all algorithms, and the 

forecast horizon is 5. 

 

3.8. Normalization 

 

In ML, data normalization is a technique that converts numerical data into scaled intervals 

of [0, 1], [-1, 1], or comparable values (Shanker et al., 1996). Equation 11 illustrates how 

this operates by taking the least value of a feature and dividing it by the feature's range. 

Normalization guarantees that each feature contributes equally to the model and keeps a 

small number of characteristics with big values from dominating it when the data contains 

many features of different scales (Atlas et al., 1989). 

 

𝑥𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =
𝑥−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
        (12) 

 

Time series prediction techniques require data normalization methods in order to function 

with consistent features. Data normalization is a crucial step in the data preprocessing 

procedure when dealing with LWL data because the ranges vary based on the units of 

measurement applied. 

 

The min-max data scaling technique from the Sklearn library's MinMaxScaler function is 

used in this thesis. All of the quantitative values that are continuous in this thesis are 

changed to the range [-1, 1]. As a result, equation 4 needs to be modified. Equation 12 is 

used to scale the values of the features across a range of values [a,b], where a = -1 and b 

= 1, resulting in equation 13. 

 

𝑥𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 = 𝑎 +
(𝑥−𝑥𝑚𝑖𝑛)(𝑏−𝑎)

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
      (13) 

 

𝑥𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 = 2
𝑥−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
− 1      (14) 
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3.9. Hyperparameters 

 

The thesis uses the Tensorflow Keras libraries to implement the proposed different ANN 

and RNN-based networks, with Tensorflow as the backend. The implementation of ANN, 

LSTM, GRU, Stacked LSTM, and Bidirectional LSTM layers in the algorithm uses the 

sequential approach. There are several hyperparameters in the algorithms that need to be 

optimized to get the best score out of experiments, which are neuron number, epoch, batch 

size, number of layers, prediction period, loss function, and optimizer. 

 

The neuron number is the total number of neurons the model will have. The output 

learning result may be impacted by the more hierarchical learning capacity achieved by 

adding more layers and various amounts of neurons in each layer. 

 

An epoch, which is the entire number of training data iterations in a single cycle for the 

purpose of training the ML model, is when every piece of training data is used 

simultaneously. The performance of the model may be impacted by different iteration 

sizes. 

 

The number of sequences needed to calculate the gradient during every update stage 

throughout training depends on the batch size. A larger batch size may result in poorer 

generalization but faster convergence. This entails striking a balance between utilizing the 

appropriate quantity of computational resources and producing quality outcomes. More 

GPU RAM is required for bigger batch sizes, as smaller ones could cause overfitting and 

slow down training. 

 

The number of layers is generally referred to as the number of hidden layers. Model 

performance may be impacted by adding more layers and different numbers of neurons 

within each layer to increase hierarchical learning capacity. 

 

The prediction period is the number of future periods that the time series prediction model 

will perform. The model performance would typically change drastically in terms of 

prediction period. 

 

In a DL model, the difference between expected and actual values is quantified by a 

mathematical function called a loss function. It evaluates the model's effectiveness and 

directs the process of optimization by giving comments on how well the model fits the 

data. 

 

Optimizers have an impact on the model's rate of convergence and are essential in 

assessing a DL model's training efficacy. Every optimizer has its own set of advantages 

and disadvantages, and no optimizer is ideal in every situation. The optimization setup 

trials are listed in Table 9. 
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Table 9: Hyperparameter optimization setup 

Hyperparameters Trials 

Neuron Number 32, 64, 128 

Epoch 50, 100, 250, 1000 

Batch Size 32, 64, 128 

Number of Layers 1, 2, 3 

Prediction Period 1, 5, 10, 20, 30, 45, 60, 90, 120 

 

The loss function is set as "MAE" and the optimizer as "Adam", since these 

hyperparameters do not have a significant impact on the performance of the algorithm. 

However, the hyperparameters such as neuron number, epoch, batch size, number of 

previous time steps, and number of layers are optimized. The hyperparameters in the 

algorithms that have the best performance are briefly listed in Table 10. 

 

Table 10: Optimized hyperparameter values of algorithms 

 ANN LSTM GRU S. LSTM B. LSTM 

Neuron number 128 128 64 128 32 

Epoch 250 100 100 100 50 

Batch size 64 128 128 128 128 

Number of layers 1 2 2 2 2 

Prediction period 45 60 60 60 60 
*S. LSTM: Stacked LSTM, B. LSTM: Bidirectional LSTM 

 

The optimized hyperparameter values in Table 10 are different for the different 

algorithms. However, all RNN-based algorithms performed the best when the number of 

layers was 2 and the prediction period was 60 days. The loss functions of the model results 

can be seen in Appendix B. 

 

3.10. Evaluation Metrics 

 

A significant number of researchers in the literature prefer RMSE, MSE, MAPE, MAE, 

R2, or R as evaluation metrics to compare their algorithms with the base model or with 

other algorithms (Ozdemir et al., 2023). These metrics account for more than 50% of the 

evaluation metrics in the literature. On the other hand, there are less favorable evaluation 

metrics used by some researchers, including NSE (Dinka, 2020), accuracy (Paul et al., 

2019), MRE (Jiang et al., 2021), and PBIAS (Nhu et al., 2020). 

 

The goal of model performance evaluation is to verify the accuracy of the proposed model 

and determine the difference rate so that it can be used with confidence (Zheng, 2018). 

The evaluation metric chosen for this thesis is RMSE. The RMSE value shows the root of 

the squares of the average differences between predicted and observed values. Lower 

RMSE values indicate higher model performance and a better correlation between 

observed and predicted values. Equation (10), discussed in more detail below, was used 

as a performance measure in the evaluation of the model. 
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𝑅𝑀𝑆𝐸 = √
∑ (𝑃𝑖−𝑄𝑖)
𝑛
𝑖−1

𝑛
  (15) 

 

Where “Σ” stands for sum, Pi is the expected value for the dataset’s ith observation, Oi is 

the actual value for that observation, and “n” denotes sample size. 

 

Although the performance of the model is evaluated using the RMSE value, the 

comparison of forecast accuracy is made using the Naïve Method. The Naïve Benchmark 

is one of the most commonly used method for comparing time series forecasting models 

because it is easy to compute and understand (Van der Heijden et al., 2021). In this 

approach, each forecast is equated to the last observed value for the intended time step. 

The performance of the algorithm was considered successful if the RMSE value was lower 

than the RMSE results of the Naïve Method. The reason for such a comparison is that the 

RMSE values for earlier time steps are always lower than for further time steps due to 

their proximity to the actual values. For this reason, the performance of further time 

periods (i.e., 60 days and 120 days) cannot be compared using only the RMSE value itself. 

To compare all time values, performance is evaluated using the percentage increase in 

RMSE compared to the RMSE score of the Naïve Method. 

 

𝑌𝑡 = 𝑌𝑡−𝑛        (16) 

 

Where Yt is forecast value at time t and Yt-n is the value at the previous nth day 

 

To determine whether the proposed algorithms are successful enough to be used as a 

prediction method, the prediction results of the algorithms are also compared. Diebold-

Mariano significance test was used to control the algorithm differences and their 

significance at p-value <0.05, as described by Van der Heijden et al. (2021). If the p-value 

of the test is less than 0.05, the prediction accuracies are significantly different from each 

other. This method suggests that a complex operation should only be suggested if it 

outperforms the benchmark by a substantial margin, rather than just having superior 

accuracy rates. This also implies that there is a significant difference between the 

prediction results and that the proposed algorithms cannot be used interchangeably. 

 

A graphical representation of the entire modeling process with the flowchart applied to 

predict LWL in this thesis is shown in Figure 18. 
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Figure 18: Flowchart of LWL Modelling 

 

3.11. Water Quality Indicator 

 

In freshwater habitats, temperature and light intensity are the most important 

meteorological factors determining algal photosynthesis and algal blooms. The toxin 

production behavior of freshwater algal species is strongly influenced by environmental 

conditions. As an indicator of biological water quality, monthly microcystin measurement 

data at various depths from the surface to 20 m during the period from March 2019 to 

April 2023 were subjected to statistical analysis. 

 

Computer-based models require long-term data to make more reliable and accurate 

predictions for the future. Therefore, the Mann-Kendall trend analysis test has been used 

with environmental time series. The degree of disparity between data measured later and 

data measured earlier is examined by the Mann-Kendall test. After comparing every value 

measured later with every value measured earlier, n (n-1)/2 potential pairings of data are 

obtained, where n is the entire number of occurrences. In this test, the null hypothesis 

assumes that there is no trend, and the alternative hypothesis assumes that there is a trend. 
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Furthermore, SRC analysis was applied to determine the relationship between key 

meteorological parameters and the concentration of the cyanobacterial growth byproduct, 

microcystin, since microcystin concentrations did not follow a normal distribution. SRC 

measures the strength and direction of the association between the two variables that are 

ranked. In essence, it indicates how well a monotonic function could capture the 

association of two variables, or the level of monotonicity of that relationship. The range 

of the Spearman correlation coefficient is +1 to -1. A rank correlation of +1 denotes a 

perfect positive link; a rank correlation of zero denotes no association between ranks; and 

a rank correlation of -1 denotes a strong negative relationship between ranks. 

 

3.12. Decision Support Tool 

 

The eventual decision support tool that is built upon LWL prediction results for this thesis 

used the Streamlit development platform. Streamlit is an open-source application for 

developers that is fully integrated with the Python language and its libraries. The platform 

is highly embraced by data scientists because of its integration with the most popular data 

science platform, Python, and its easy use and free access. Another appealing side of the 

platform is that it provides free access to the cloud for deployment after initializing a local 

computer. The libraries that are used for the decision support tool are Pandas, Numpy, 

Scikit-Learn, Keras, TensorFlow, Matplotlib, Streamlit, Seaborn, Plotly, and OpenPyXL. 
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CHAPTER 4 

 

4. LAKE WATER LEVEL PREDICTION 

The thesis uses ANN and four different RNN-based DL algorithms to compare their 

forecasting accuracy from day 1 to day 120 ahead, based on RMSE values, Naïve Method 

and Diebold Mariano test results. The ANN, LSTM, GRU, Stacked LSTM, and 

Bidirectional LSTM algorithms were successfully trained and validated, and compared 

with test data consisting of 3004 lines to evaluate the reliability of the model for the 

unknown data set. Table 11 presents the performance of LWL prediction of investigated 

ANN and RNN algorithms from day 1 to day 120 ahead forecasting. These results show 

that all the investigated ANN and RNN algorithms have excellent prediction accuracy in 

the 1-day to 10-day-ahead prediction scenario with a RMSE values of < 0.1 m. On the 

other hand, the LSTM algorithm had the best value for training and testing in the 60-day 

scenarios with an RMSE value of 0.1762 m, while GRU showed the best performance in 

the 120-day scenarios with an RMSE value of 0.3838 m (Table 11). In contrast, the 

Stacked LSTM and Bidirectional LSTM models showed no additional performance in 

terms of prediction accuracy compared to LSTM. Since there are seasonal cycles of water 

levels, especially in summer and winter, this thesis did not investigate further than 120 

days of prediction. After a certain time, the cycle would repeat itself and the Naive Method 

would perform unjustifiably well. Therefore, the investigation to compare 365 days could 

not be an appropriate comparison with other algorithms. 

 

Table 11: The performance of Naïve Method, ANN, and RNN based algorithms for 

predicting LWL with increasing time intervals, RMSE results. (Metric is based on m) 

Algorithm/Prediction 

Period 

Naïve 

Method 

ANN LSTM GRU Stacked 

LSTM 

Bidirectional 

LSTM 

1 day 0.0134 0.0131 0.0162 0.0134 0.0171 0.0156 

5 days 0.0484 0.0445 0.0514 0.0429 0.0494 0.0563 

10 days 0.0875 0.0815 0.0799 0.0732 0.0890 0.0875 

20 days 0.1551 0.1271 0.1227 0.1070 0.1289 0.1257 

30 days 0.2168 0.1540 0.1356 0.1316 0.1221 0.1226 

45 days 0.3139 0.1918 0.1775 0.1728 0.1769 0.1947 

60 days 0.4041 0.2627 0.1762 0.2203 0.1976 0.1985 

90 days 0.5652 0.3796 0.2879 0.3126 0.3003 0.3228 

120 days 0.6973 0.4810 0.4586 0.3838 0.4275 0.3873 

 

To summarize, considering its high accuracy compared to other advanced models, the 

LSTM is very efficient, especially for long-term predictions such as the 60-day forecast, 

due to the architectural advantages resulting from the process of parameter tuning and 

transfer to other tasks. GRUs are easier to train and faster to execute than LSTMs, but they 

may not be as effective at storing and accessing long-term dependencies. A Bidirectional 
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LSTM is better suited for applications that work offline, as it requires the subsequent 

timestamp in advance. On the other hand, the performance difference between stacked 

LSTMs and LSTMs comes from the additional dimensions for predicting the next value 

besides the time dimension. 

 

Additionally, the RMSE, which describes the prediction error rate of time series 

algorithms, was compared with the Naïve Method and the algorithms that performed 

better than the Naïve Method were identified as successful algorithms for predicting future 

LWL values. The results of the Naïve Benchmark comparison of the algorithms are 

presented in Table 12 from day-1 to day-120 forecasting. The higher value for each 

analyzed algorithm for each prediction period indicates higher performance and good 

predictive power.  

 

Based on the Naïve Benchmark, the performance of the algorithms increased up to the 60-

days ahead predictions and then decreased at the 90- and 120-days ahead predictions. On 

average, the performance of GRU was higher for all time periods studied, whereas Stacked 

LSTM had a lower average performance value, followed by the Bidirectional LSTM 

algorithms. 

 

Table 12: Benchmark performance comparison of algorithms, figures indicates 

improvement over Naïve Method 

Algorithm/Prediction 

Period 

ANN LSTM GRU Stacked 

LSTM 

Bidirectional 

LSTM 

1 day 2.26% -18.92% 0.00% -24.26% -15.17% 

5 days 8.40% -6.01% 12.05% -2.04% -15.09% 

10 days 7.10% 9.08% 17.80% -1.70% 0.00% 

20 days 19.84% 23.33% 36.70% 18.45% 20.94% 

30 days 33.87% 46.08% 48.91% 55.89% 55.51% 

45 days 48.29% 55.51% 57.98% 55.83% 46.87% 

60 days 42.41% 78.55% 58.87% 68.64% 68.24% 

90 days 39.29% 65.01% 57.55% 61.21% 54.59% 

120 days 36.71% 41.30% 58.00% 47.97% 57.16% 

 

The variability between the Naïve Benchmark comparison values is much more 

pronounced than the RMSE values (Table 12). The decreasing performance goes down to 

-24.26%, suggesting that it would be disadvantageous to use the RNN-based algorithm 

for predicting the specific time period. The results also show that the RMSE results of 

some algorithms are close to those of the Naïve Method, especially for the prediction of 5 

and 10 days. Therefore, the algorithms will be tested even more if it is necessary to use 

these algorithms for future LWL values. The results show an increase in performance of 

at least 18.45% (Stacked LSTM) when the prediction horizon is set to 20 days or more. 

When compared to the Naive Method, LSTM showed the highest performance with an 

improvement of 78.55% over the Naive method when forecasting for 60 days. It is also 
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worth to note that ANN is the only algorithm that performed better than Naïve Method in 

1-day prediction period. 

 
The performance of ANN, LSTM, GRU, Stacked LSTM and Bidirectional LSTM for 

LWL, observed and estimated values compared to the Naïve Method for scenarios from 

day 1 to day 120 in advance are shown in Figures 19-27. It can be seen from Figure 19 

that the observed and simulated lines are generally distributed closely for each 

investigated model, which shows that all RNN algorithms and ANN have high simulation 

performance on day 1. However, as forecasting time extend from day 1 to day 120, the 

observed, estimated and Naïve Method lines differ between the algorithms. 
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Figure 19: 1 day ahead prediction results 

 

Figures 19 and 20 show the 1-day and 5-day prediction results of the gated RNN 

algorithms and ANN in comparison to the observed and Naïve Method values. The 

prediction results of all the studied algorithms are quite similar to each other and to the 

Naïve Method for 1-day and 5-day prediction (Figures 19–20), indicating good training, 

validation, and prediction. 
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Figure 20: 5 days ahead prediction results 

 

Figures 21 and 22 show the prediction results of the gated RNN algorithms for 10 and 20 

days ahead and the comparison with the observed values and the Naïve Method. 

Compared to the Naïve method, all tested algorithms had a similar prediction trend for 10 

days ahead, but all algorithms outperformed the Naïve method in prediction for 20 days 

ahead. 
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Figure 21: 10 days ahead prediction results 

 

When forecasting 10 and 20 days ahead, the GRU achieved the best results (Figures 21–

22), showing a lower RMSE (Table 11) and a higher performance improvement of the 

Naïve Method (Table 12). 
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Figure 22: 20 days ahead prediction results 

 

When comparing the performance results of the algorithms for day 30, Stacked LSTM 

and Bidirectional LSTM produced similar prediction performance to LSTM and GRU, 

whereas for day 45 prediction, GRU, Stacked LSTM, and LSTM algorithms produced 

similar performance to Bidirectional LSTM (Figures 23–24, Table 11). 
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Figure 23: 30 days ahead prediction results 
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The 45-day prediction results in Figure 24 indicate the ANN algorithm starts to perform 

less than RNN-based algorithms and deviate from observed values visibly. The RNN-

based algorithms don’t have this many drastic changes in 45 days of prediction. 
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Figure 24: 45 days ahead prediction results 

 

Figures 25 and 26 show the 60- and 90-day forecast results of the gated RNN algorithms 

and the comparison with the observed values and the Naive Method. The 60th day was 

the culminating point for the prediction performance of the tested algorithms, and LSTM 

performed better than LWL at the 60-day prediction based on the RMSE and Naïve 

Method values. 
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Figure 25: 60 days ahead prediction results 

 

Although all tested algorithms performed well in 60-day prediction (Table 11), LSTM 

provided the closest prediction values to the observed values of LWL 60 days in advance 

than the other methods, as shown in Figure 25. The algorithms started to deviate more for 

90-day prediction from observed values, as presented in Figure 26. The deviation is drastic 

for the ANN algorithm, which proves the algorithm performs not as well as RNN-based 

algorithms. 
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Figure 26: 90 days ahead prediction results 

 

For the 120-day-ahead predictions, there was a significant decrease in values for the 

studied algorithms compared to the Naïve method, with the exception of GRU. Although 

the prediction performance was low, the GRU algorithm provided statistically similar 

prediction performance for days 60, 90, and 120. These results show that the GRU 

algorithm may still be superior to the other algorithms in terms of prediction accuracy 

with higher Naïve Benchmark values. The level of concordance between the actual value 

and the predicted value, however, is greater than the actual value and is not exceptionally 

high. 
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Figure 27: 120 days ahead prediction results 
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As a summary of Figures 19-27, the LSTM algorithm was the best-performing model 

because it had higher prediction accuracy and a smoother fitting curve than other models. 

Although there were some discrepancies due to significant discrepancies in the data set, 

the predicted results almost matched the actual results when predicting 60 days ahead. 

Among the proposed algorithms, the LSTM algorithm was clearly superior in tracking the 

nonlinear behavior of Lake Sapanca over a 60-day period, with the smallest RMSE 

(0.1762 m) and a higher performance ratio compared to the Naïve Method score (78.55%). 

Thus, when a model is needed for long-term forecasting LWL, the LSTM-based DL 

algorithm can help automate and manage LWL to implement more effective water 

management strategies for 60-day forecasting. 

 

Table 13: 1 Day Diebold Mariano Test results (Numbers represent p-values) 

Naïve Method-ANN 0.578 ANN-B. LSTM 0.523 

Naïve Method-LSTM 0.122 LSTM-GRU 0.099 

Naïve Method-GRU 0.005 LSTM- Stacked LSTM 0.326 

Naïve Method-Stacked LSTM 0.485 LSTM- B. LSTM 0.608 

Naïve Method-B. LSTM 0.261 GRU- Stacked LSTM 0.014 

ANN-LSTM 0.264 GRU- B. LSTM 0.037 

ANN-GRU 0.011 Stacked LSTM- B. LSTM 0.623 

ANN-Stacked LSTM 0.878   
*B. LSTM: Bidirectional LSTM 

 

As it can be seen in Table 13, Naïve Method-ANN, Naïve Method-LSTM, Naïve Method 

- Stacked LSTM, Naïve Method - Bidirectional LSTM, ANN-LSTM, ANN-Stacked 

LSTM, ANN-Bidirectional LSTM, LSTM-GRU, LSTM- Stacked LSTM, LSTM- 

Bidirectional LSTM and Stacked LSTM- Bidirectional LSTM forecasting comparisons 

are not significant in terms of Diebold Mariano test (p-value>0.05). Therefore, these 

algorithms can be used interchangeably. On the other hand, Naïve Method-GRU, ANN-

GRU, GRU-Stacked LSTM, and GRU-Bidirectional LSTM algorithms have significantly 

(p-value<0.05) different forecasting capabilities, which indicates these algorithms 

shouldn’t be used interchangeably. In this case, it is better to use the algorithm that has a 

lower RMSE score in Table 11. 

 

Table 14 presents Diebold Mariano Test results for a 5-day prediction period. As it can be 

seen in the table, the forecasting capabilities are not significantly different for Naïve 

Method-ANN, Naïve Method-LSTM, Naïve Method-Stacked LSTM, ANN-LSTM, 

ANN-GRU, ANN-Stacked LSTM, ANN-Bidirectional LSTM, LSTM-GRU, LSTM-

Stacked LSTM, LSTM-Bidirectional LSTM, GRU-Stacked LSTM, GRU-Bidirectional 

LSTM, Stacked LSTM-Bidirectional LSTM algorithm comparisons. However, Naïve 

Method-GRU and Naïve Method-Bidirectional LSTM are significantly different with a p-

value<0.05. Therefore, since the Naïve Method and the GRU algorithm for 5 days 

produced a p-value of 0.031, the GRU algorithm should be preferred instead of the Naïve 

Method to predict the next 5 days. 
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Table 14: 5 Days Diebold Mariano Test results (Numbers represent p-values) 

Naïve Method-ANN 0.094 ANN-B. LSTM 0.233 

Naïve Method-LSTM 0.310 LSTM-GRU 0.210 

Naïve Method-GRU 0.031 LSTM-Stacked LSTM 0.728 

Naïve Method-Stacked LSTM 0.181 LSTM-B. LSTM 0.062 

Naïve Method-B. LSTM 0.007 GRU-Stacked LSTM 0.358 

ANN-LSTM 0.474 GRU-B. LSTM 0.516 

ANN-GRU 0.581 Stacked LSTM-B. LSTM 0.122 

ANN-Stacked LSTM 0.710   
*B. LSTM: Bidirectional LSTM 

 

Diebold Mariano Test results for the 10-day prediction are shown in Table 15. The table 

indicates the forecasting capabilities are not significant for the algorithm pairs of Naïve 

Method-ANN, LSTM-Stacked LSTM, LSTM-Bidirectional LSTM, GRU-Stacked 

LSTM, and Stacked LSTM-Bidirectional LSTM. On the contrary, Naïve Method-LSTM, 

Naïve Method-GRU, Naïve Method-Stacked LSTM, Naïve Method-Bidirectional LSTM, 

ANN-LSTM, ANN-GRU, ANN-Stacked LSTM, ANN-Bidirectional LSTM, LSTM-

GRU, and GRU-Bidirectional LSTM have significantly different forecasting capabilities. 

 

Table 15: 10 Days Diebold Mariano Test results (Numbers represent p-values) 

Naïve Method-ANN 0.984 ANN-B. LSTM 0.012 

Naïve Method-LSTM 0.007 LSTM-GRU 0.032 

Naïve Method-GRU 0.000 LSTM-Stacked LSTM 0.244 

Naïve Method-Stacked LSTM 0.000 LSTM-B. LSTM 0.878 

Naïve Method-B. LSTM 0.011 GRU-Stacked LSTM 0.319 

ANN-LSTM 0.008 GRU-B. LSTM 0.022 

ANN-GRU 0.000 Stacked LSTM-B. LSTM 0.188 

ANN-Stacked LSTM 0.000   
*B. LSTM: Bidirectional LSTM 

 

Diebold Mariano Test results for the 10-day prediction are shown in Table 15. The table 

indicates the forecasting capabilities are not significant for the algorithm pairs of Naïve 

Method-ANN, LSTM-Stacked LSTM, LSTM-Bidirectional LSTM, GRU-Stacked 

LSTM, and Stacked LSTM-Bidirectional LSTM. On the contrary, Naïve Method-LSTM, 

Naïve Method-GRU, Naïve Method-Stacked LSTM, Naïve Method-Bidirectional LSTM, 

ANN-LSTM, ANN-GRU, ANN-Stacked LSTM, ANN-Bidirectional LSTM, LSTM-

GRU, and GRU-Bidirectional LSTM have significantly different forecasting capabilities. 

 

The best-performing algorithm, GRU (Table 11), is significantly different from other 

algorithms except Stacked LSTM. Thus, the GRU algorithm should be preferred to predict 

the next 10 days, and the Stacked LSTM algorithm could be used interchangeably. 
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Table 16: 20 Days Diebold Mariano Test results (Numbers represent p-values) 

Naïve Method-ANN 0.055 ANN-B. LSTM 0.593 

Naïve Method-LSTM 0.612 LSTM-GRU 0.000 

Naïve Method-GRU 0.000 LSTM-Stacked LSTM 0.874 

Naïve Method-Stacked LSTM 0.506 LSTM-B. LSTM 0.364 

Naïve Method-B. LSTM 0.686 GRU-Stacked LSTM 0.001 

ANN-LSTM 0.000 GRU-B. LSTM 0.000 

ANN-GRU 0.000 Stacked LSTM-B. LSTM 0.287 

ANN-Stacked LSTM 0.072   
*B. LSTM: Bidirectional LSTM 

 

It is presented in Table 16 that Naïve Method-ANN, Naïve Method-LSTM, Naïve 

Method-Stacked LSTM, Naïve Method-Bidirectional LSTM, ANN-Stacked LSTM, 

ANN-Bidirectional LSTM, LSTM-Stacked LSTM, LSTM-Bidirectional LSTM, and 

Stacked LSTM-Bidirectional LSTM don’t have significantly different forecasting 

capabilities. Therefore, these pairs can be used interchangeably in order to forecast the 

next 20 days. However, Naïve Method-GRU, ANN-LSTM, ANN-GRU, LSTM-GRU, 

GRU-Stacked LSTM, and GRU-Bidirectional LSTM are significantly different in terms 

of forecasting the next 20 days. 

 

From Table 11, it can be seen that, on day-20 predictions, the best performance 

improvement comes from the GRU algorithm. Accordingly, the p-values are significant 

(p < 0.05) based on the Diebold-Mariano test, which confirms the superiority of GRU. 

Regarding the Naïve Method comparison (Table 12) and Diebold Mariano (Table 16) test 

results, only the GRU algorithm should be preferred to predict the LWL for the next 20 

days. 

 

Table 17: 30 Days Diebold Mariano Test results (Numbers represent p-values) 

Naïve Method-ANN 0.055 ANN-B. LSTM 0.593 

Naïve Method-LSTM 0.009 LSTM-GRU 0.004 

Naïve Method-GRU 0.000 LSTM-Stacked LSTM 0.006 

Naïve Method-Stacked LSTM 0.009 LSTM-B. LSTM 0.000 

Naïve Method-B. LSTM 0.161 GRU-Stacked LSTM 0.000 

ANN-LSTM 0.000 GRU-B. LSTM 0.000 

ANN-GRU 0.000 Stacked LSTM-B. LSTM 0.202 

ANN-Stacked LSTM 0.072   
*B. LSTM: Bidirectional LSTM 

 

The results for Diebold Mariano tests indicate the Naïve Method-ANN, Naïve Method-

Bidirectional LSTM, ANN-Stacked LSTM, ANN-Bidirectional LSTM, and Stacked 

LSTM-Bidirectional LSTM are not significantly different in terms of forecasting 

capability. It is significantly different for Naïve Method-GRU, Naïve Method-Stacked 

LSTM, ANN-LSTM, ANN-GRU, LSTM-GRU, LSTM-Stacked LSTM, LSTM-

Bidirectional LSTM, GRU-Stacked LSTM, and GRU-Bidirectional LSTM. 
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When evaluating the Diebold-Mariano tests, the predictions of the best-performing 

Stacked LSTM (Table 11) algorithm compared to the Naïve Method, LSTM, and GRU 

have a p-value of less than 0.05, indicating that the Stacked LSTM algorithm should be 

chosen for predicting the next 30 days. However, since the p-value is greater than 0.05 

compared to the Bidirectional LSTM, the Stacked LSTM algorithm can be used 

interchangeably with the Bidirectional LSTM algorithm. 

 

Table 18: 45 Days Diebold Mariano Test results (Numbers represent p-values) 

Naïve Method-ANN 0.815 ANN-B. LSTM 0.741 

Naïve Method-LSTM 0.014 LSTM-GRU 0.003 

Naïve Method-GRU 0.006 LSTM-Stacked LSTM 0.000 

Naïve Method-Stacked LSTM 0.253 LSTM-B. LSTM 0.011 

Naïve Method-B. LSTM 0.923 GRU-Stacked LSTM 0.541 

ANN-LSTM 0.025 GRU-Bidirectional LSTM 0.662 

ANN-GRU 0.443 Stacked LSTM-B. LSTM 0.295 

ANN-Stacked LSTM 0.169   
*B. LSTM: Bidirectional LSTM 

 

The Table 18 shows that Naïve Method-ANN, Naïve Method-Stacked LSTM, Naïve 

Method-Bidirectional LSTM, ANN-GRU, ANN-Stacked LSTM, ANN-Bidirectional 

LSTM, GRU-Stacked LSTM, GRU-Bidirectional LSTM and Stacked LSTM-

Bidirectional LSTM pairs do not have significant difference when it comes to forecasting 

capability according to Diebold Mariano test. It differs for Naïve Method-LSTM, Naïve 

Method-GRU, ANN-LSTM, LSTM-GRU, LSTM-Stacked LSTM, and LSTM-

Bidirectional LSTM because these pairs are significantly different in terms of forecasting 

ability. 

 

Table 11 demonstrates that GRU performs better than the other algorithms in the 45-day 

forecast based on RMSE scores. Table 17 confirms once again that the prediction 

capabilities of the GRU algorithm have p-values less than 0.05 for the Naïve Method and 

LSTM. Furthermore, the p-values are more remarkable than 0.05 compared to ANN, 

stacked LSTM, and bidirectional LSTM. Therefore, the GRU algorithm can be used 

interchangeably with the ANN, Stacked LSTM, and Bidirectional LSTM algorithms in 

order to predict the next 45 days. 

 

As Table 19 indicates, Naïve Method-Bidirectional LSTM, ANN-Stacked LSTM, GRU-

Stacked LSTM, GRU-Bidirectional LSTM, and Stacked LSTM-Bidirectional LSTM pairs 

do not have statistical significance in order to forecast the next 60 days. It is the opposite 

for Naïve Method-ANN, Naïve Method-LSTM, Naïve Method-GRU, Naïve Method-

Stacked LSTM, ANN-LSTM, ANN-GRU, ANN-Bidirectional LSTM, LSTM-GRU, 

LSTM-Stacked LSTM, and LSTM-Bidirectional LSTM pairs. 
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Table 19: 60 Days Diebold Mariano Test results (Numbers represent p-values) 

Naïve Method-ANN 0.000 ANN-B. LSTM 0.002 

Naïve Method-LSTM 0.003 LSTM-GRU 0.000 

Naïve Method-GRU 0.012 LSTM-Stacked LSTM 0.000 

Naïve Method-Stacked LSTM 0.009 LSTM-B.LSTM 0.017 

Naïve Method-B. LSTM 0.187 GRU-Stacked LSTM 0.917 

ANN-LSTM 0.000 GRU-B. LSTM 0.229 

ANN-GRU 0.046 Stacked LSTM-B. LSTM 0.192 

ANN-Stacked LSTM 0.058   
*B. LSTM: Bidirectional LSTM 

 

According to the Naïve Benchmark performance comparison score, the LSTM algorithm 

gave the highest performance with 78.55% for the 60-day ahead predictions (Table 12). 

As a result, with a p-value of less than 0.05, the Diebold-Mariano test results likewise 

demonstrate that the LSTM algorithm performs significantly better in terms of both 

prediction accuracy and stability (Table 19). Considering the results of RMSE, the Naïve 

Benchmark, and the Diebold-Mariano test with a p-value of less than 0.05 for day-60 

ahead prediction, it suggests that only the LSTM algorithm should be preferred to predict 

the next 60 days for more accuracy. 

 

Table 20: 90 Days Diebold Mariano Test results (Numbers represent p-values) 

Naïve Method-ANN 0.023 ANN-B. LSTM 0.000 

Naïve Method-LSTM 0.000 LSTM-GRU 0.119 

Naïve Method-GRU 0.000 LSTM- Stacked LSTM 0.437 

Naïve Method- Stacked LSTM 0.000 LSTM-B. LSTM 0.940 

Naïve Method-B. LSTM 0.000 GRU-Stacked LSTM 0.434 

ANN-LSTM 0.000 GRU-B. LSTM 0.138 

ANN-GRU 0.000 Stacked LSTM-B. LSTM 0.482 

ANN-Stacked LSTM 0.000   
*B. LSTM: Bidirectional LSTM 

 

It is revealed in Table 20 that LSTM-GRU, LSTM-Stacked LSTM, LSTM-Bidirectional 

LSTM, GRU-Stacked LSTM, GRU-Bidirectional LSTM, and Stacked LSTM-

Bidirectional LSTM are not statistically different when it comes to forecasting the next 90 

days. On the other hand, Naïve Method-ANN, Naïve Method-LSTM, Naïve Method-

GRU, Naïve Method-Stacked LSTM, Naïve Method-Bidirectional LSTM, ANN-LSTM, 

ANN-GRU, ANN-Stacked LSTM, and ANN-Bidirectional LSTM are significantly 

different from each other. 

 

In Table 11, the best-performing algorithm is LSTM, according to RMSE results. The 

Diebold Mariano test results suggest that the algorithm's forecasting capability is 

significantly different from the Naïve Method, ANN, and GRU. Therefore, the LSTM 

algorithm should be preferred to predict the next 90 days over these algorithms. However, 

since the results for LSTM- Stacked LSTM and LSTM-Bidirectional LSTM are not 
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significantly different (p > 0.05), the LSTM algorithm can be used interchangeably with 

Stacked LSTM and Bidirectional LSTM. 

 

Table 21: 120 Days Diebold Mariano Test results (Numbers represent p-values) 

Naïve Method-ANN 0.222 ANN-B. LSTM 0.000 

Naïve Method-LSTM 0.000 LSTM-GRU 0.015 

Naïve Method-GRU 0.000 LSTM-Stacked LSTM 0.995 

Naïve Method-Stacked LSTM 0.000 LSTM-B. LSTM 0.752 

Naïve Method-B. LSTM 0.000 GRU-Stacked LSTM 0.014 

ANN-LSTM 0.000 GRU-B. LSTM 0.033 

ANN-GRU 0.000 Stacked LSTM-B. LSTM 0.747 

ANN-Stacked LSTM 0.000   
*B. LSTM: Bidirectional LSTM 

 

Diebold Mariano Test results for 120 days of prediction are shown in Table 21. 

Accordingly, the pairs of Naïve Method-ANN, LSTM-Stacked LSTM, LSTM-

Bidirectional LSTM, and Stacked LSTM-Bidirectional LSTM are not statistically 

different from each other to forecast the next 120 days. The statistically different pairs are 

Naïve Method-LSTM, Naïve Method-GRU, Naïve Method-Stacked LSTM, Naïve 

Method-Bidirectional LSTM, ANN-LSTM, ANN-GRU, ANN-Stacked LSTM, ANN-

Bidirectional LSTM, LSTM-GRU, GRU-Stacked LSTM, and GRU-Bidirectional LSTM. 

 

According to Table 21, it is clear that the implemented RNN algorithms provide a 

relatively accurate prediction pattern when the forecasting values are compared with the 

observed data for 120 days ahead prediction, even though the magnitude of the Naïve 

Benchmark scores is reduced compared to the 60 days ahead prediction. In Table 11, it 

can be seen that the GRU algorithm has the best performance against the Naïve Method 

for day-120 ahead prediction. Additionally, the algorithm has Diebold-Mariano test 

results with a p-value of less than 0.05 against other algorithms (Table 21), which suggests 

that the GRU algorithm should be preferred to predict the next 120 days of LWL. 

 

The summary of all Diebold Mariano test results is presented in Table 22. From the 

obtained results for LWL prediction from day 1 to day 120, we can see that: (1) day-60 

predictions is the most optimized LWL detection based on high Naïve Benchmark 

performance comparison values. (2) The best performance of the investigated algorithms 

can change in terms of selected prediction periods. (3) The LSTM algorithm can better 

predict LWL for a 60-day advance with higher accuracy, which allows water managers to 

take action. In addition, it is worth noting that Bidirectional LSTM and Stacked LSTM 

algorithms contribute little or no performance increase for short prediction periods of less 

than 20 days. (4) Lastly, FFNN-based algorithms perform better on short time periods and 

even surpass RNN-based methods and the Naïve Method, but the forecasting capability is 

not statistically significant, which suggests using the most primitive method that consumes 

less computing power in shorter time periods. 
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Table 22: Forecast difference results of Naïve Method, ANN and RNN algorithms based 

on Diebold Mariano test for increasing day intervals from day-1 to day-120 (p value 

≤0.05 indicates the significance of the test results, green boxes indicate significantly 

different prediction results with distinct tones, red boxes indicate insignificant results). 

 

Day-

1 

Day-

5 

Day-

10 

Day-

20 

Day-

30 

Day-

45 

Day-

60 

Day-

90 

Day-

120 

Naïve Method- ANN 0.578 0.094 0.984 0.055 0.055 0.815 0.000 0.023 0.222 

Naïve Method- LSTM 0.122 0.310 0.007 0.612 0.009 0.014 0.003 0.000 0.000 

Naïve Method- GRU 0.005 0.031 0.000 0.000 0.000 0.006 0.012 0.000 0.000 

Naïve Method- Stacked LSTM 0.485 0.181 0.000 0.506 0.009 0.253 0.009 0.000 0.000 

Naïve Method- B. LSTM 0.261 0.007 0.011 0.686 0.161 0.923 0.187 0.000 0.000 

ANN-LSTM 0.264 0.474 0.008 0.000 0.000 0.025 0.000 0.000 0.000 

ANN-GRU 0.011 0.581 0.000 0.000 0.000 0.443 0.046 0.000 0.000 

ANN-Stacked LSTM 0.878 0.710 0.000 0.072 0.072 0.169 0.058 0.000 0.000 

ANN-B. LSTM 0.523 0.233 0.012 0.593 0.593 0.741 0.002 0.000 0.000 

LSTM-GRU 0.099 0.210 0.032 0.000 0.004 0.003 0.000 0.119 0.015 

LSTM- Stacked LSTM 0.326 0.728 0.244 0.874 0.006 0.000 0.000 0.437 0.995 

LSTM- B. LSTM 0.608 0.062 0.878 0.364 0.000 0.011 0.017 0.940 0.752 

GRU- Stacked LSTM 0.014 0.358 0.319 0.001 0.000 0.541 0.917 0.434 0.014 

GRU- Bidirectional LSTM 0.037 0.516 0.022 0.000 0.000 0.662 0.229 0.138 0.033 

Stacked LSTM- B. LSTM 0.623 0.122 0.188 0.287 0.202 0.295 0.192 0.482 0.747 
*B. LSTM: Bidirectional LSTM 

 

Among the features, the most important one that affects the output was determined as 

withdrawal by the Mutual Information technique conducted (Lv et al., 2020). The 

importance levels can be ordered as withdrawal, average temperature, minimum 

temperature, maximum temperature, and precipitation respectively (Figure 28). 

 

 
Figure 28: Variable Importance 
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CHAPTER 5 

 

5. EVALUATION  OF CLIMATIC CONDITIONS ON MICROCYSTIN 

VARIATIONS IN WATER COLUMN 

Accurate LWL prediction is a necessity not only to prevent possible drought conditions 

but also possible water quality effect. Therefore, this thesis conducted extra work to 

observe the relationship between microcystin that previously observed during low LWL 

periods. In addition to LWL effect, this study experimented the relationship for maximum 

temperature, mean temperature, minimum temperature, precipitation, light intensity and 

evaporation. This experiment was conducted in order to reveal the importance to predict 

LWL in advance to take measurable actions in advance. 

 

In recent years, cyanobacterial blooms in water reservoirs, including freshwater lakes, 

have become a serious problem worldwide. In natural freshwater, temperature and light 

intensity are meteorological parameters directly related to photosynthesis that promote 

algal growth. In addition to climatic conditions, various nutritional parameters such as 

phosphorus, nitrogen forms, and carbon sources favor the growth of various 

cyanobacterial species that are precursors for algal toxin mycrocystin production. 

Microcystin is an algal toxin produced by many genera of cyanobacteria. Planktothrix is 

a common producer in Lake Sapanca. Microcystin has been shown to have harmful effects 

on humans, animals, and even plants. Because of its relatively low volatility and short 

half-life (a few days to weeks), microcystin can linger in water bodies, with serious 

consequences for the environment, society, and economy. The presence of toxic 

microcystin is becoming one of the most important problems for water quality and health. 

Therefore, the World Health Organization has recommended a provisional guideline level 

of 1 μg L−1 for drinking water. Microcystin is routinely monitored in freshwater systems 

where cyanobacterial blooms occur. For instance, microcystin is monitored for Lake 

Sapanca monthly during the last decade during the summer months at five different depths 

because microcystin production is highly influenced by environmental conditions. 

 

Various meteorological, nutritional, and anthropogenic factors such as storms, surface 

runoff, and point and diffuse pollution accelerate the increase of nutrients in aquatic 

ecosystems. The increase in phosphorus and nitrogen in water, as well as the increase in 

turbidity with full water turnover in the water column, leads to frequent cyanobacterial 

blooms, which in turn produce toxins. Although conventional drinking water treatment 

methods (e.g., coagulation, flocculation, and filtration) remove both cyanobacterial cells 

and intracellular microcystin, additional treatment is needed for algal byproducts that 
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increase treatment costs and are a public nuisance. Therefore, to understand and evaluate 

algal blooms and microcystin in water, it is critical to evaluate both meteorological 

parameters, nutrient enrichment, and aquatic ecosystem parameters that affect the 

phytoplanktonic biomass. 

 

A lot of research has been done to predict the concentration of this cyanobacterial toxin 

in freshwater using statistical models, Bayesian methods, ML, and DL techniques. This is 

because microcystin is a crucial indicator of phytoplankton blooms and is resistant to 

decomposition and long-term persistence in aquatic environments. These studies highlight 

the importance of different environmental parameters, including particle organic matter, 

water temperature, total phosphorus, and dissolved oxygen. However, predicting the 

occurrence and elucidating the causes of microcystin using statistical or computer models 

does not always provide reliable results. Because of slow water exchange, ongoing global 

warming, and frequent anthropogenic interventions, the range of variation in water quality 

in a lake is extremely high, making it impractical to specify a general threshold for each 

environmental factor. In addition, microcystin levels measured over long periods of time 

in the past are not always sufficient to build computer models that use advanced estimation 

algorithms. To avoid such problems, many water researchers study water reservoirs by 

using an unsupervised classification algorithm. Estimating microcystin occurrence 

patterns from limited data as climate change progresses makes computerized prediction 

and analysis difficult. Therefore, to evaluate meteorological data on mycrocystin 

concentrations at five different depths in Lake Sapanca, we used regression models based 

on monthly monitoring data for the past five years to identify risk. Because there are few 

guidelines for total microcystins, we chose the safe concentration of microcystin 

suggested by the World Health Organization as the evaluation criterion (1.0 μg/L). 

 

Empirical models' predictions are complex and possibly site-specific due to variability in 

regional environmental conditions, making them challenging to generalize across wide 

areas. Consequently, statistical methods that can effectively manage vast and diverse 

meteorological and biological data sets, establish causal links, and capture both linear and 

nonlinear correlations between variables are required. 

 

Cyanobacterial blooms and their toxin product, microcystin, occur mainly in the 

metalimnion region. As a result, microcystin is abundant in the surface water layer, which 

is typically 0–10 m. However, upon cell lysis, it may mix with the water column. 

Particularly prior to and following bloom, abundance on the bottom of the water column 

occasionally exceeded what was present in the surface water. Due to this fact, microcystin 

was observed in the water column at various depths. Studies conducted on Lake Sapanca 

revealed that while microcystin was not detectable in the water column on top of 10 m, 

many variations were found as low as 20 m. However, the region between 15 and 25 m 

has the highest amount (Albay et al., 2003). Taking account of those findings, the 

microcyctin concentrations at the surface (1 m, 5 m, 10 m, 15 m, and 20 m) are measured 

over the period of 2019–2023 to understand the changing meteorological situation on 

water quality affected by algal growth (Figure 29). 
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Figure 29: Vertical distribution of microcystin concentrations measured monthly 

intervals between 21 March 2019 to 12 April 2023 in Lake Sapanca. 
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Concentrations of microcystin ranged from 0.0 to 2.15 µg/L on the surface; 0.0 to 1.71 

µg/L in 1m; 0.0 to 1.95 µg/L in 5m; 0.0 to 1.66 µg/L in 10m; 0.0 to 7.66 µg/L in 15m; and 

0.0 to 7.30 µg/L in 20m during the monitoring period. The highest concentrations and 

extreme values were obtained from depths of 15 and 20 m (Figure 30). The highest 

concentrations were observed during the summer months (May–August) for depths of 15 

and 20, respectively, but interestingly, the higher concentrations for surface water above 

5 m were observed during the spring turnover (March–April) period. These results 

indicate the obvious effects of meteorological factors on cyanobacterial bloom formation 

and, consequently, microcystin production. However, seasonal effects, stratification, and 

lake turnover also have a significant impact on microcystin variation in the water column 

at different depths. 

 

 
Figure 30: Box and whisker plot of microcystin concentrations at different water depths 

of Lake Sapanca during 21 March 2019 to 12 April 2023. 
 

The microcystin concentration in all sampled depths showed approximately the same 

increase pattern over time, except for the samples collected from a depth of 15m (Figure 

31). The variations in Figure 31 indicate there is an increasing trend of microcystin for 

surface water, 1m, 5m, 10m and 20 m depths. However, the trend is decreasing for 15 m 

depth. The microcystin level was almost similar at each depth of the first 10 m; however, 

significant differences were recorded in spring and autumn, specifically in vertical mixing 

periods. During the summer, the microcystin concentration stayed relatively low 

(<0.5 µg/L) or undetectable from May to October. The highest concentrations were 

observed during the winter period from November to April, with a significant fluctuation 

that coincided with the mixing period. By contrast, the microcystin concentrations were 

higher at sampling depths of 15 and 20 m. The microcystin is recorded at all sampling 

times during the experimental period. In general, the concentrations were below 2 µg/L 

for both sampling depths; however, the highest concentrations of around 8 µg/L were 

recorded during the summer stratification phase (June to August). For the two years 2020 

and 2021, the microcystin concentration was the lowest (with <3.31 µg/L), especially for 

2021 (<1.61 µg/L). 
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Figure 31: Linear trend of microcystin concentration in the water column at different 

depths from surface to 20 m during 21 March 2019 to 12 April 2023. (x-axis: Data rows 

in sequence, y-axis: Microcystin concentration). 

 
The nonparametric Mann-Kendall test shows that the microcystin concentration decreases 
monotonically at a depth of 15 m and increases at other depths. However, only the 
microcystin trend at 20 m depth was significant at the 95% confidence limit with a z-value 
of 2.08 (Figure 31), indicating an increasing positive trend in the microcystin data time 
series that dominates at this depth. 
 

Due to temporal and spatial variability, it is difficult to obtain sufficient input data needed 

for data-driven predictive models to analyze and learn the relationships between 

microcytin and meteorological parameters, i.e., temperature, precipitation associated with 

algal proliferation, and microcytin concentration. To better understand the changing 

meteorological parameters affecting microcystin concentration, Spearman correlations 

were evaluated using monthly microcystin data collected from raw water before water 

treatment. From Figure 32, the significant positive contribution of temperature to 

microcystin concentration is evident. Light intensity also has a positive effect on 

microcystin concentration. On the other hand, the water level of the lake had no significant 

effect on the microcystin concentration. 
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Figure 32: SRC between microcystin and meteorological parameters (**p < 0.01, 

*p < 0.05). 

 

The degree of association differs in terms of features in Figure 32. The minimum 

temperature, maximum temperature, mean temperature, and evaporation have a moderate 

correlation with microcystin (Fowler et al., 2013). In addition, light intensity corresponds 

to a weak correlation. On the other hand, the LWL and precipitation have a very weak 

correlation with microcystin. From the results, it is better understood that the quality of 

water is rarely affected by the level of water. However, temperature, which is one of the 

indicators for predicting LWL, affects the water quality. Thus, it can be concluded that 

microcystin does not directly affect the water quality, but the effect is indirect when 

considering temperature values. 
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CHAPTER 6 

 

6. DECISION SUPPORT TOOL 

6.1. General Structure of the Tool 

 

The decision support tool for LWL management using DL techniques is built using the 

Streamlit web-based prototype tool with the MVC (Model-View-Controller) software 

design pattern. Streamlit is an open-source and free web application platform to share data 

scripts created with the Python language on a decent application platform. It is the most 

popular web application for data scientists because of its well-suited integration with 

Python libraries and Plotly charts. It also allows for the deployment of the application on 

the community cloud platform. On the other hand, MVC (Model-View-Controller) is one 

of the most commonly used software development architecture that separates the 

application into three parts that are interconnected with each other. By doing this, it is 

possible to distinguish between internal representations of information and the methods 

by which information is offered to and received by users. The Model serves as the 

framework for the system design. It oversees the application's rules, logic, and data. The 

final output that the data is presented as is known as the View, which is represented by 

graphs, charts, and diagrams. The element that receives input and transforms it into 

commands for the ‘Model’ of ‘View’ is the Controller. The MVC pattern for the decision 

support tool is presented in Figure 33. 
 

 
Figure 33: LWL Management Decision Support Tool MVC Design Pattern 

 

The libraries and their versions are represented in Table 23 that is used for generating the 

LWL management decision support tool by using the Python programming methodology. 
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Table 23: Library Versions in Web Application 

Libraries Versions 

Streamlit 1.21.0 

Pandas 1.5.2 

Numpy 1.24.1 

Scikit-Learn 1.2.0 

Keras 2.11.0 

TensorFlow 2.11.0 

Matplotlib 3.6.2 

Seaborn 0.12.2 

Plotly 5.16.1 

OpenPyXL 3.1.2 

 

The LWL management decision support tool is built using the Python programming 

language, with several libraries involved. The libraries used in the tool are Streamlit, 

Pandas, Numpy, Scikit-Learn, Keras, TensorFlow, Matplotlib, Seaborn, Plotly, and 

OpenPyXL. 

 

The LWL management decision support tool aims to: 

 

 To give a general snapshot of the lake with its hydrological and meteorological 

aspects. 

 To assist water managers with their decisions regarding lake water use. 

 To prevent the possible aftermath of climate change effects on drinking water 

supply 

 To present late changes and possible actions in the future. 

 To prevent excessive water use that might cause water shortages during drought 

seasons in the future. 

 

The LWL management decision support tool has four main characteristics: 

 

 Based on a web application 

 Available to related units 

 Availability of CRUD (Create, Read, Update, and Delete) 

 Prediction for a 1, 2, and 4-month period 

 

The LWL management decision support tool has three components: 

 

 Dashboard 

 Manual Data Entry 

 Prediction 
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6.2. Components and Abilities 

 

There are three components in the LWL management decision support tool: dashboard, 

manual entry, and prediction. The dashboard serves as a display of past and current trends 

in LWL and other determinative features. Furthermore, manual entry has the ability to 

enable user interaction with the application to feed input for the tool. Lastly, the predict 

component provides the anticipated future values in terms of 1, 2, and 4 months ahead. 

The component also functions as a warning to the water managers in case there is a water 

alert in the lake. 

 

 
Figure 34: Navigation of Application 

 

The navigation of the LWL management decision support tool is shown in Figure 34. It is 

designed as a sliding window, and when the user clicks one of the options, it immediately 

opens the selected page. In addition, when the user clicks one of the ‘Predict’ pages, the 

application automatically starts to predict the intended future period. 

 
6.2.1. Dashboard 
 

The dashboard component of the tool provides general structure, historical data analysis, 

and the latest view of the situation in the lake. The abilities in this component include the 

latest average values and their comparison to total averages, a radar chart, a line chart, the 

distribution of features, and the current dataset view. 

 

a) Latest Average Values 

 

The managers in water management for the lake require to see the latest changes before 

taking any action to modify the water level. In the dashboard, the first ability is to show 

the latest average values for the last week for LWL, precipitation, maximum temperature, 

average temperature, minimum temperature, and withdrawal. In addition, under the 

average values, it reveals the difference between the average value of last week and the 

total average value for each feature. 
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Figure 35: Latest average values in dashboard 

 

The latest mean values and the difference between total means are shown in Figure 35. 

 

b) Radar Chart 

 

Another important point to consider for water managers is to compare the values between 

each variable. In order to compare the features that have similar mean values, a radar chart 

was created. Multivariate data are piled at the same central point on an axis in a radar 

chart. The chart has three or more radii, which are quantitative variables for comparison. 

 

 
Figure 36: Radar chart in dashboard 

 

As it can be seen in Figure 36, there are two radar charts demonstrated for water managers. 

The first radar chart compares average values for LWL, precipitation, maximum 

temperature, average temperature, and minimum temperature. On the other hand, the 

second chart compares only temperature features that have three sections: maximum, 

average, and minimum. The reason to create such two charts is because some features’ 

average values are too low or too high, which prevents seeing the whole picture. This is 

also the reason not to add withdrawal to the radar chart since it has way too high values 

compared to other features. 
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c) Line Chart 

 

It is important to see the trends of other features that affect LWL to see if the patterns 

overlap with each other. The potential benefits of trend comparison could be to see 

seasonal changes and to get detailed information in terms of feature importance for the 

output feature. In order to see the pattern between the output feature, LWL, and other 

features, a line chart was created. However, precipitation and withdrawal have such high 

values comparing with LWL, so the comparison between them becomes impossible with 

a line chart. Therefore, maximum temperature, average temperature, and minimum 

temperature were added to the line chart along with LWL. 

 

 
Figure 37: Line chart in dashboard 

 

Figure 37 reveals the line chart that compares LWL with maximum temperature, average 

temperature, and minimum temperature. As it can be seen in the figure, the pattern 

between LWL and other features is visible. When all types of temperatures rise, the LWL 

decreases, and vice versa. The pattern becomes more drastic when the user zooms in on 

the graph in the application. 

 

d) Distribution of Features 

 

The line chart doesn’t reveal all the distributions for the features in the dataset. Thus, the 

application has another ability to show feature distributions. The distribution graphs are 

all interactive, so the users can modify the parts to see from buttons such as ‘1m’ for 1 

month, ‘6m’ for 6 months, ‘YTD’ for year-to-date, ‘1y’ for 1 year, and ‘all’ to see the 

whole distribution. The application also allows users to select the intended part manually. 
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Figure 38: Feature Distributions in Dashboard 

 

Figure 38 shows the distribution graph in the dashboard. All the features are displayed in 

a sequence, and the distributions can be compared in the same sequence. 

 

e) Current Dataset View 

 

Although the distributions and averages can be seen in the dashboard component, specific 

values for selected dates cannot be seen from the graphs. Consequently, the ‘Current 

Dataset View’ ability provides all the actual values in the dataset, considering related date 

value. 

 

 
Figure 39: Detailed Data View in Dashboard 
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The Detailed Dataset View ability can be seen in Figure 39. The graph is shown in table 

format, considering all the features and their index numbers. 

 
6.2.2. Manual Data Entry 
 

The second component in the web application is ‘Manual Data Entry’. The component 

provides user interaction as the users can add, modify, or delete the values in the dataset. 

The abilities in this component include current data display, adding input values, 

modifying values in features, and deleting from the dataset. The main screen of the manual 

data entry component can be seen in Figure 40. 

 

 
Figure 40: Manual data entry 

 

a) Show Current Data 

 

Although this component is designed for user interaction, there is one ability that doesn’t 

allow user interaction, which is ‘Show Current Data’. This ability allows users to see the 

results of their actions, whether they add, edit, or delete anything from the dataset. The 

users can add specific values to the dataset without using this ability, but they must check 

the index number for the dates they want to edit or delete from the dataset. 
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Figure 41: Show Current Data in Manual Data Entry 

 

The Show Current Data ability can be seen in Figure 41. The users have the option to see 

the dataset by clicking the checkbox button. 

 

b) Add Input Values for Features 

 

The ‘numberbox’ in the application allows to take input values from the user. All the 

features are set to take only float-type numbers. However, input for date takes the input in 

date format. The features are determined as zero for the default value and today’s date for 

the date input. The input value called ‘Enter the index of the row you want to edit (leave 

empty to add new data)’ doesn’t have any effect on the add input ability in the application. 

The users either enter the values using the keyboard or using the increase or decrease 

buttons next to the ‘numberbox’. 
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Figure 42: Add Input Values in Manual Data Entry 

 

The ability to add input values can be seen in Figure 42. As it can be seen, there is an 

‘ADD’ button that allows users to add values to the dataset. The user can add today’s 

values, or he or she can add the previous day’s value that was deleted beforehand. 

 

 
Figure 43: After Add button effects 
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As soon as the user types all the necessary values for the input features, the input values 

are transferred to an Excel sheet that collects raw data on a cloud-based platform. The user 

gets a message as ‘Data added successfully!’ in order to be notified about the successful 

transaction (Figure 43). 

 

c) Edit Values in Features 

 

In any case, if a user types a mistaken value for the input, forgets to write the input value, 

or modifies the erroneous data in the Excel sheet that is stored on a cloud-based platform, 

the user can edit the values in a specific feature or the whole row altogether. The modified 

values are changed in the Excel sheet and saved immediately after the user clicks the ‘Edit 

button’. However, in order to prevent misclicks for the edit values, the user must check 

‘Edit Mode', and then the ‘EDIT’ button appears through the screen. 

 

 
Figure 44: Edit Values in Manual Data Entry 

 

Edit values in the Manual Data Entry screen can be seen in Figure 44. As it can be seen in 

the figure, the user must type the index number for the intended row. The index numbers 

can always be seen by checking the ‘Show Current Data’ box. 
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Figure 45: After Edit Button Effects 

 

The decision support tool application always edits the whole row for the intended feature. 

Therefore, the features that don’t require any modification must be written again with their 

actual values. After the necessary modifications have been done, the user gets a ‘Data 

edited successfully message!’ to make sure the transaction performed successfully (Figure 

45). 

 

d) Delete a Row from Dataset 

 

There is deletion ability for the ‘Manual Data Entry’ component. The data in a row that 

needs to be deleted permanently must be done with careful consideration, so there is 

another checkbox button after the ‘Edit Mode’ checkbox. The user doesn’t need to type 

anything into the features textbox; he or she only needs to type the index number that 

needs to be deleted. 
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Figure 46: Delete a row in Manual Data Entry 

 

The delete row in the Manual Data Entry screen can be seen in Figure 46. The application 

displays the ‘Data deleted successfully!’ message after the transaction is completed. 

 
6.2.3. Prediction 
 

The last component, which predicts the next period, is based on three parts: a 1-month 

prediction, a 2-month prediction, and a 4-month prediction. 

 

a) LWL Prediction with LSTM Algorithm 

 

The first ability in the ‘Prediction’ component is to use the LSTM algorithm to predict the 

next 1, 2, or 4 months. The LSTM algorithm is built on selected hyperparameters from 

Chapter 4 LWL that performed best on trials and experiments. Therefore, there is no 

additional hyperparameter tuning in the application since it increases the transaction 

duration. The user needs to wait for a substantial amount of time in order for the modeling 

to complete. The duration differs for the intended prediction period. It usually takes longer 

to predict further time periods. In order to activate the ability, the user only needs to select 

the predict page from the sliding windows in ‘Navigation’. 
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Figure 47: LWL Prediction with LSTM Algorithm in Prediction Component 

 

The screen in Figure 47 reveals the results of ‘Predict’ ability. As it can be seen in the 

figure, the water level for today and the intended period of time are highlighted at the top. 

 

b) Graph of Actual versus Prediction Results 

 

The second ability that the ‘Prediction’ component provides is to give actual versus 

predicted values in terms of a test set that consists of the last 20% of the dataset. It is 

provided in order to help water managers comprehend the error rate that could divert water 

levels from the predicted value. The ability also provides an accuracy rate, which is 

calculated by reducing MAPE from 100%. The graph of the comparison between actual 

and predicted values is given in Figure 48. 
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Figure 48: Actual versus predicted values graph 

 

c) Warning Mechanism 

 

The warning mechanism that is intended to be incorporated within the decision support 

tool is among the most crucial aspects to be established during the conceptual design 

phase. But when the system is consistently fed online (real-time) data, the warning system 

will be able to function effectively. This warning mechanism can only regulate data that 

is manually entered into the system because there isn't an online monitoring station in the 

Sapanca Lake area at this time. 

 

Since there is no online data entry into the system, this control is carried out when the 

analysis data is manually entered. Control can, however, become continuous with the 

installation of online stations in the lake and the system's integration of online data-

producing stations. 

 

After the algorithm is incorporated and the results are presented, the water level for the 

future period is stated in the interface, comparing against today’s LWL value. If the water 

level drops below the threshold of 30 m, which affects water quality, the application warns 

water managers to take action for the lake; otherwise, the tool prints, ‘The water level is 

going to be above the threshold’. 
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CHAPTER 7 

 

7. DISCUSSION 

Based on the experimental result of this case study that applies an ANN and RNN-based 

DL algorithm for LWL prediction, it is possible to forecast the next 120 days with a 

smaller RMSE (0.3838 m), a reasonable Naïve Benchmark comparison value (58.00%), 

and significant Diebold Mariano test results (p<0.05). However, compared with other 

models, the prediction result based on the LSTM proposed in this thesis is optimal for the 

next 60 days of LWL forecasting, with a smaller RMSE (0.1762 m), the highest Naïve 

Benchmark comparison value (78.55%), and a significant Diebold Mariano test p-value 

(<0.003). The prediction performance of the investigated ANN and RNN algorithms 

aligns with previous research based on the RMSE and the Naïve Benchmark. In Donghae 

City, Korea, Yoon et al. (2011) used ANN and SVM to forecast the level of groundwater 

in the nearshore aquifer for a pair of wells having RMSE levels of 0.13 m and 0.136 m, 

respectively. In addition, Piasecki et al. (2018) found several RMSE results for four 

different samples of dataset which are BIOR2.4, DB2, COIF2 and BIOR2.2. The authors 

found RMSE results as 1.872 m, 1.968 m, 2.132 m, and 2.154 m, respectively. However, 

these studies lack a comparison of the proposed algorithms with the baseline models and 

other algorithms from DL. Therefore, the performance of the models cannot be evaluated 

for predicting water levels. The algorithms are also not evaluated against basic benchmark 

methods such as Naïve Benchmark, which raises the question of whether it is necessary 

to create fancy DL algorithms for LWL prediction. Thus, this thesis could be a milestone 

for further water level studies that attempt to develop every single DL algorithm available 

in the field of data science. 

 

Hrnjica and Bonacci (2019) discovered that on datasets with a specific number of 

attributes and a one-month time span, the LSTM and RNN algorithms outperformed the 

conventional ANN algorithms. Additionally, they discovered that the LSTM and feed-

forward neural network models outperformed conventional time series predictions using 

ARIMA and other related methods. Lee et al. (2020) demonstrated that the model 

developed by LSTM outperforms standard models in reproducing the critical metrics of 

the initial temporal domain along with the variation and association structure of the larger 

time scale. The improved representation of long-term variability is critical for water 

managers, as they rely on this data to plan and manage future water resources. In the 

future, the performance improvement over the Naïve Benchmark can be tested with other 

novel models, such as attention-based algorithms or other derivatives. However, the recent 

attempt to use an attention-based algorithm did not perform better than a recurrent network 

(Zhu et al., 2023). 

 

The main hypothesis of the present thesis is confirmed by the fact that RNN-based 

algorithms achieve better predictive performance than LWL when using long-term daily 
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data from a decade and improve predictive accuracy for 60-day forecasts. The trends of 

observations and model predictions in Figures 19 through 27 suggest that the potential 

performance of RNN algorithms can also be extended beyond 120-day forecasts by 

incorporating more data into the models. Because gradient explosion caused by intervals 

of time during backpropagation in the process of learning for model networks, RNN-based 

DL methods are used. The LSTM algorithm has demonstrated its ability to learn from 

sequential data and has been a successful model in the past. According to LeCun et al. 

(2015), it can effectively learn from sequences of different durations and grasp 

dependence over time. The GRU algorithm is computationally more efficient than LSTM 

because the structure is simpler and more straightforward. Although the structure of 

Stacked LSTM and Bidirectional LSTM contributes to the model's ability to learn higher-

level temporal representations, it can lead to degradation problems due to the low 

convergence rate of the LSTM layers. Another important point to consider is that the ANN 

algorithm performs better among all algorithms in short time periods thanks to its ability 

not to take long sequence periods into account with its lack of gated structure. To confirm 

our results, Zhu et al. (2023) studied 69 lakes in Poland for 30-day water level prediction 

and concluded that the DL models performed similarly to conventional ML models in 

terms of predictive performance. The results of the LSTM algorithm between its variants, 

namely the Stacked LSTM and the Bidirectional LSTM, in the present study show that 

there is no significant difference in predicting less than 30 days ahead. The LSTM 

algorithm requires long observation datasets and the selection and optimization of 

hyperparameters, learning rate, and number of epochs to achieve correct prediction results 

(Ozdemir et al., 2023). For example, Morovati et al. (2021) reported better prediction 

performance of LSTM when using daily recorded data over 20 years. The results obtained 

for LSTM in this thesis are consistent with these findings. The findings also show that the 

LSTM algorithm well reflects the fluctuation trend of the real LWL value. This is due to 

the use of gated structure in the LSTM model, so the LSTM algorithm is good at extracting 

short-term temporal correlations. However, due to the cyclic periods of water level 

variations, the performance increase drops when it reaches the next LWL cycle after 60 

days. The best performance of the LSTM compared to the other models is also due to the 

successful optimization of hyperparameters in the LSTM network. 

 

Another important aspect is that although the prevailing opinion suggests using all 

available DL algorithms to find the algorithm that performs best according to the RMSE 

or MAPE results, the results of the algorithms do not seem to differ significantly with 

respect to the Diebold-Mariano test. Therefore, in order to suggest a better-performing 

algorithm, the statistical difference must be shown in addition to the RMSE or MAPE 

results (Van der Heijden et al., 2021), and in some cases, the ANN and gated RNN 

derivatives, as indicated in the Results section, do not appear to have statistical 

significance and can be used interchangeably. 

 

The fluctuations of LWL are associated with meteorological processes and anthropogenic 

activities, which lead to a nonlinear and complex system. In this context, the thesis has 

several limitations due to its nature. One of the limitations is that the results depend on the 

geographical location. The experiment is to be conducted at Lake Sapanca in the 
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northeastern Marmara region of Turkey. This location has characteristics of both the Black 

Sea and Mediterranean climates. Therefore, the results may change in regions with 

different climate characteristics. Another limitation of the thesis is that the dataset 

produced by the Turkish Meteorological Service contains several missing data points for 

selected parameters. Although it is possible to interpolate missing data, the results with 

interpolated data rows are limited. The results could change with a dataset containing all 

records for a longer period without missing data. Therefore, it is further suggested to apply 

other appropriate preprocessing methods to improve the predictive performance of the 

RNN DL models with different time horizons. Another limitation is the univariate 

analysis. The thesis focused only on multivariate analysis since future water level values 

have more than one dimension and other features need to be included. (Young et al., 2015; 

Mpallas et al., 2011). In the future, the LWL results can be combined with climate 

scenarios to see the far-future effects of current events. The research can be used in the 

future to optimize the economic worth of the electrical energy generated by dams by 

determining the frequency and amount of reservoir releases. Moreover, the LWL 

prediction could be practiced by using GIS methods with satellite dataset. The 

performance difference between time series prediction and prediction with image data 

could be compared with Naïve Method Benchmark. Lastly, in the availability of more 

features, the researchers can conduct sensitivity analysis and uncertainty analysis to 

eliminate some of the features to prevent possible overfitting issues. 

 

Several well-known nutrient inputs and relatively less known meteorological parameters, 

together with hydrological disturbances, cause excessive growth of cyanobacteria in 

freshwater ecosystems, which degrade water quality with their toxins. Extreme heat waves 

are becoming more common as global and regional warming continues and are expected 

to become the norm in future scenarios. Microcystin concentration correlated positively 

with temperature variables (max, min, and mean, p < 0.01), including evaporation and 

light intensity (p < 0.05), and not significantly with precipitation (negative correlation), 

which is directly related to LWL (Figure 32). Significant correlations between 

meteorological parameters and microcystin concentrations in freshwater bodies have been 

reported previously (Novais et al., 2023). Light intensity in the Metalimnion zone leads to 

greater development of cyanobacteria and the presence of large amounts of microcystins, 

posing potential problems for the use of water resources (Boscaini et al., 2017). Since 

freshwater lakes are used as drinking water sources, proper water and algae management 

is necessary to ensure a clean and safe water supply. The use of tap water is restricted 

when large amounts of algae are found in water reservoirs because various water treatment 

problems can occur, such as clogged treatment systems, bad odor and color in the water, 

and regulated toxic substances such as microcyctin. Predicting the correlation of algal 

blooms with easily measured meteorological or hydrological parameters in advance and 

taking rapid response actions to algal growth can minimize damage and ensure 

uninterrupted production of purified water. 
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CHAPTER 8 

 

8. CONCLUSION 

Compared to the traditional approaches, the gated RNN-based algorithms provide more 

accurate estimates of reservoir level changes. The gated RNN algorithms correctly adapt 

to changing input conditions, such as adjustments in water demand policy during reservoir 

operation. The fact that the gated RNN structure accounts for the nonlinear dynamics of 

the problem throughout the data set can be used to explain why gated RNNs perform better 

than conventional approaches in predicting reservoir levels. With respect to the RMSE, 

the results demonstrated here show the ability of the models used to understand the 

nonlinear behavior of LWLs. 

 

Water resource management can greatly benefit from the development of a gated RNN 

algorithm for a given area. Estimates of periodic water reservoir levels are important for 

water supply planning, hydropower calculations, and flood management studies, among 

others. In addition, global climate change is leading to an increase in microcystin levels 

in freshwater lakes. To prevent this effect, this thesis proposes a DL-based prediction of 

future LWLs. The results show that RNN algorithms are a valuable alternative technique 

for predicting RWLs in different prediction periods. 

 

The modeling results support the following findings: 

1- The results of the algorithms can be compared, and although there could be different 

but similar results, the algorithms can be used interchangeably. 

2- Overall, the GRU algorithm performs better than other gated RNN algorithms 

because it has a lower RMSE. However, it does not perform better in all time periods, so 

the algorithm needs to be replaced by another one to achieve better results for more future 

LWL prediction cases. 

3- Gated RNN-based algorithms appear to have higher RMSE results as the prediction 

horizon increases, indicating poorer performance in lower prediction time periods. A more 

accurate comparison is possible using the Naïve Benchmark, and the percentage increase 

could provide a healthier result for comparing algorithm results with different prediction 

time periods. Although the prediction may differ from the actual values as the time period 

increases, the performance increase is much higher compared to the Naïve Method 

benchmark, making it more attractive for use in LWL prediction cases. 

 

In addition, this thesis also examined the relationship between global warming and 

microcystin levels in freshwater lakes and demonstrated a clear relationship with 

meteorological data. However, more research is needed in this area to close the gap 

between LWL predictions with different geographical locations using same available 

features, algal growth, and microcystin levels. 

 



108 

 

Overall, the prediction results suggest that the proposed RNN algorithms can be 

successfully used to predict the future state of LWL for drinking water resource 

management leading to the achievement of sustainability under changing climatic 

conditions. The prediction result comparison between different time horizons and climate 

characteristics could be handled with additional benchmark methods such as Naïve 

Method and Diebold Mariano test.  
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