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CODES ON SUBGROUPS OF WEIGHTED PROJECTIVE TORI

MESUT ŞAHİN AND OĞUZ YAYLA

Abstract. We obtain certain algebraic invariants relevant in studying codes
on subgroups of weighted projective tori inside an n-dimensional weighted pro-
jective space. As application, we compute all the main parameters of general-
ized toric codes on these subgroups of tori lying inside a weighted projective
plane of the form P(1, 1, a).

1. Introduction

Let P(w0, . . . , wn) be the weighted projective space over an algebraic closure Fq

of a finite field Fq, defined by some positive integers w0, . . . , wn. Without loosing
generality, we assume that n of these numbers have no common divisor. It is well
known that the Fq-rational points of the weighted projective space P(w0, . . . , wn)

can be represented by the Geometric Invariant Theory quotient (F
n+1

q \ {0})/G,

where the group G = {(λw0 , . . . , λwn) : λ ∈ F
∗

q}. Therefore, a point is an orbit of

the form [p0 : . . . : pn] = {(λw0p0, . . . , λ
wnpn) : λ ∈ F

∗

q} known as its homoge-
neous coordinates as in the classical projective case. Every Fq-rational point has a
representative from the set Fn+1

q in this correspondence.
For a thorough introduction to and a fairly good account on general properties

of these spaces, see [1, 3, 8, 18]. It is known that X = P(w0, . . . , wn) is smooth if
and only if it is the usual projective space P

n, i.e., w0 = · · · = wn = 1.
The coordinate ring S = Fq[x0, . . . , xn] over the field Fq of a weighted projective

space P(w0, . . . , wn) is graded naturally by the numerical semigroup Nβ generated
by deg(xi) = wi, for i = 0, . . . , n, where N denotes the set of natural numbers with
0. Thus, we have the following decomposition:

S =
⊕

α∈Nβ

Sα,where Sα is the vector space spanned by the monomials of degree α.

For any α ∈ Nβ and any subset Y = {P1, . . . , PN} of Fq-rational points of
P(w0, . . . , wn), we have the following evaluation map:

(1.1) evY : Sα → F
N
q , F 7→ (F (P1), . . . , F (PN )) .

The image Cα,Y = evY (Sα) is a linear code. The three basic parameters of Cα,Y
are block-length which is N , the dimension which is K = dimFq

(Cα,Y ), and the
minimum distance δ = δ(Cα,Y ) which is the minimum of the number of nonzero
components of vectors in Cα,Y \ {0}. When Y is the full set of Fq-rational points
of P(w0, . . . , wn), the code is known as the weighted Reed-Muller code. These codes
are special cases of what is called generalized toric codes, see Section 2 for details.
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Toric codes are introduced by Hansen in [10] for the set Y = TX(Fq) of Fq-
rational points of the dense torus TX of a toric variety X = XΣ and examined
further in e.g. [11, 19, 2, 22, 12, 4] producing some codes having the best known
parameters. The vanishing ideal I(Y ) of Y which is generated by homogeneous
polynomials vanishing on Y is a key in studying the parameters of Cα,Y . This is
because, the kernel of evY is nothing but the subspace Iα(Y ) := I(Y ) ∩ Sα, and
hence the code Cα,Y is isomorphic to the vector space Sα/Iα(Y ). Therefore, the
dimension K = dimFq

(Cα,Y ) is the value HY (α) = dimFq
Sα − dimFq

Iα(Y ) of the
multigraded Hilbert function HY of Y , see [26]. Most recently, Nardi developed
combinatorial methods for studying codes on the full set Y = X(Fq) of Fq-rational
points of a toric variety, see [16, 17].

In literature, there are a few papers computing the main parameters of codes on
weighted projective spaces. The main parameters of some weighted Reed-Muller
codes are given explicitly for the set Y = X(Fq) of Fq-rational points of the weighted
projective planes X = P(1, w1, w2) when α is a multiple of the lcm(w1, w2). The
main parameters have the most beautiful formulas in the special case of the plane
X = P(1, 1, a), see [1].

If Y = TX(Fq) = {[1 : t1 : . . . : tn] | ti ∈ F
∗
q , for all i ∈ [n] := {1, . . . , n}} is

the set of Fq-rational points of the torus TX in X = P
n and α ≥ 1, then the main

parameters are given in [21]. On the other hand, [20] studied the degenerate tori

YQ = {[1 : ta1

1 : . . . : tan
n ] | ti ∈ F

∗
q , for all i ∈ [n] := {1, . . . , n}}

lying in the classical projective space X = P
n, generalizing [21]. This is because,

YQ becomes the set of Fq-rational points of the projective torus in P
n, once ai = 1,

for all i ∈ [n]. The results in [20] show that I(YQ) is a complete intersection of
the binomials xsi

i − xsi
0 , for i ∈ [n], its degree is |YQ| = s1 · · · sn and a-invariant is

aY = s1 + · · ·+ sn − n− 1, where si = (q − 1)/ gcd(q − 1, ai) for all i ∈ [n]. Some
nice formulas are given for the other parameters as well.

The present paper considers the analogue of the same parametrization YQ but
in the weighted projective space X = P(1, w1, . . . , wn) with ai = wi for all i. When
wi = 1, for all i, our YQ becomes the Fq-rational points of the projective torus
studied in [21], as well. In the next section, we review basic terminology and
theory needed in the sequel. We prove that I(YQ) is a complete intersection ideal
in Proposition 3.3. We give a formula for the Hilbert function HYQ

and compute
the a-invariant of YQ in Proposition 3.4. Theorem 4.1 gives formulas for the length
and dimension of the code Cα,YQ

. The final section displays more explicit formulas
for the dimension and minimum distance of the codes coming from the weighted
projective plane P(1, 1, a), see Theorem 5.1.

2. Preliminaries

Let Σ ⊆ R
n be a complete simplicial fan with rays generated by the lattice

vectors v1, . . . ,vr. Each cone σ ∈ Σ, defines an affine toric variety Uσ = Spec(K[σ̌∩
Z
n]) over an algebraically closed field K. Gluing these affine pieces, we obtain the

toric variety XΣ as an abstract variety over K. There is a nice correspondence
between polytopes in real n-space and projective toric varieties. Namely, every
lattice polytope P gives rise to a so called normal fan ΣP whose rays are spanned
by the inner normal vectors of P . Assuming XΣ has a free class group, the ray
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generator yields the following short exact sequence:

P : 0 // Z
n φ

// Z
r β

// Z
d // 0 ,

where φ is the matrix [v1 · · ·vr]
T and d = r − n is the rank of the class group

ClXΣ
∼= Z

d. There is an important lattice Lβ in Z
r that is isomorphic to Z

n via
φ, and is spanned by the columns u1, . . . ,un of φ.

Applying Hom(−,K∗) functor to P gives the following dual short exact sequence:

P∗ : 1 // G
i
// (K∗)r

π
// (K∗)n // 1 ,

where π(P ) = (xu1(P ), . . . ,xun(P )) and xa(P ) = pa1

1 · · · par
r for P = (p1, . . . , pr) ∈

(K∗)r and a = (a1, . . . , ar) ∈ Z
r.

As proved by Cox in [6], the set X(K) of K-rational points of the toric variety
X := XΣ is identified with the geometric quotient [Kr \ V (B)]/G, where B is

the monomial ideal in K[x1, . . . , xr] generated by the monomials xσ̂ = Πρi /∈σ xi

corresponding to cones σ ∈ Σ. Hence, points of X(K) are orbits [P ] := G · P ,
for P ∈ K

r \ V (B). When K = Fq is an algebraic closure of a finite field Fq, the
Fq-rational points [P ] are represented by points P from the set Fr

q \ V (B).
The coordinate ring S = Fq[x1, . . . , xr] of X is graded via the columns of the

matrix β, i.e. degβ(xj) = βj , for j = 1, . . . , r. There is a nice correspondence
between subgroups of the torus TX(Fq) ∼= (F∗

q)
r/G and β-graded lattice ideals in

S, defined by:

IL = 〈xm
+

− xm
−

|m = m+ −m− ∈ L〉,

where L is a sublattice of Lβ, see [25]. In the case of the weighted projective space
P(w0, . . . , wn), we have the row matrix β = [w0 · · ·wn].

(0, 2)

(0, 0) (3, 0)

Figure 1. The polygon P

(0, 1)

(0, 0) (1, 0)

(−2,−3)

Figure 2. The fan ΣP

Example 2.1. Let X = P(1, 2, 3) be the weighted projective space over F3, which
corresponds to the normal fan ΣP depicted in Figure 2 of the polygon P depicted
in Figure 1. Then, the first sequence above becomes:

P : 0 // Z
2 φ

// Z
3 β

// Z // 0 ,
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where

φ =

[

−2 1 0
−3 0 1

]T

and β =
[

1 2 3
]

.

The coordinate ring S = F3[x, y, z] is multigraded via

degβ(x) = 1, degβ(y) = 2 and degβ(z) = 3.

Since B = 〈x, y, z〉, we remove the set V (B) = V (x, y, z) = {0} and therefore obtain
the quotient representation X(F3) = (F3

3 \ 0)/G, where

G = {(x, y, z) ∈ (F
∗

3)
3 | x−2y = x−3z = 1} = {(λ, λ2, λ3) | λ ∈ F

∗

3}

is the zero locus in (F
∗

3)
3 of the toric ideal:

ILβ
:= 〈xu − xv : u,v ∈ N

r and βu = βv〉 = 〈x2 − y, x3 − z〉.

One needs to be careful about the field over which the group G is considered. Even
though we use representative from the affine space F

3
3 recall that the equivalence

of points in an orbit is determined via the subgroup G of (F
∗

3)
3. For instance, the

points [0 : 0 : 1] and [0 : 0 : 2] are the same as F3-rational points, since there is

λ ∈ F
∗

3 such that λ2 = 2 and thus we have (0, 0, 2) = (λ, λ, λ2) · (0, 0, 1). But,
these two points would be different if we considered equivalence with respect to the
existence of λ ∈ F

∗
3 such that λ2 = 2, since λ2 = 1 for all λ ∈ F

∗
3 = {1, 2}.

Let us recall basics of linear codes. Our alphabet is the finite field Fq with q
elements. A linear code is a subspace C ⊂ F

N
q whose elements are referred to as the

codewords.

Definition 2.2. The parameters of a linear code C ⊂ F
N
q are as follows:

• N is the length of C,

• K = dimFq
C is the dimension of C as a subspace (a measure of efficiency),

• δ is the minimum distance of C (a measure of reliability), which is the
minimum of all Hamming distances between different codewords in C, where
the Hamming distance between two codewords c1 and c2 is

dist(c1, c2) := #of non-zero entries in c1 − c2.

So,
δ(C) = min

c∈C\{0}
(#of non-zero entries in c).

As in Equation (1.1), we get the so called generalized toric codes by evaluating
homogeneous polynomials F ∈ Sα of degree α at some subset Y of Fq-rational
points in a toric variety X .

Definition 2.3. Let Y ⊆ X be a subset of a toric variety X. Its vanishing ideal
I(Y ) is the (homogeneous) ideal in S generated by homogeneous polynomials van-
ishing on Y . The multigraded Hilbert function of Y is

HY (α) := dimK Sα − dimK Iα(Y ).

Since, the kernel of the evaluation map in Equation (1.1) consists of the homoge-
neous polynomials of degree α whose image is the point (0, . . . , 0) ∈ F

N
q , it follows

that the dimension of the code Cα,Y equals the value HY (α) of the Hilbert function
of Y . When Y lies in the torus TX , the variables xi are all non zero-divisors in
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the quotient ring S/I(Y ), and thus the Hilbert function does not decrease as we
state in the following result. Below we use the partial ordering �, where α � α′ if
α′ − α ∈ Nβ. Notice that this is the usual ordering in N for X := P(1, w1 . . . , wn)
as Nβ = N in this case.

Proposition 2.4. [26, Corollary 3.18] Let Y ⊂ TX . The dimension HY (α) of Cα,Y
is non-decreasing in the sense that HY (α) ≤ HY (α

′) for all α � α′.

On the other hand, the minimum distance behaves the opposite way as the
following points out:

Proposition 2.5. [24, Proposition 2.22] Let Y ⊂ TX . The minimum distance of
Cα,Y is non-increasing in the sense that δ(Cα,Y ) ≥ δ(Cα′,Y ) for all α � α′.

These two results are not that surprising as we have the following well known
relation between these two parameters given by the Singleton’s bound:

δ(Cα,Y ) +K(Cα,Y ) ≤ N(Cα,Y ) + 1.

There is an algebro-geometric invariant of the zero-dimensional subvariety Y ⊂
X(Fq) used to eliminate trivial codes which we introduce now.

Definition 2.6. The multigraded regularity of Y , denoted reg(Y ), is the set of
α ∈ Nβ for which HY (α) = |Y |, the length of Cα,Y .

Proposition 2.7. If α ∈ reg(Y ) then δ(Cα,Y ) = 1.

Proof. Let α ∈ reg(Y ). Then, the dimension of the code is nothing but the length.
So, the claim follows from the Singleton bound, as we always have δ(Cα,Y ) ≥ 1. �

The multigraded regularity set is determined by a number also known as the
a-invariant in the case of a weighted projective space. In order to state the precise
result, we first recall some relevant concepts.

When I is a weighted graded ideal, the quotient ring S/I inherits this grading

as well and has a decomposition S/I =
⊕

α∈A

(S/I)α, where (S/I)α = Sα/Iα is a

finite dimensional vector space spanned by monomials of degree α in the numerical
semigroup Nβ = N{w0, . . . , wn}, which do not belong to I. This gives rise to the
weighted Hilbert function and series defined respectively by

HS/I(α) := dimK(S/I)α = dimK Sα − dimK Iα

and HSS/I(t) :=
∑

α∈Nβ

HS/I(α)t
α.

Furthermore, the weighted Hilbert series has a rational function representation,
that is, we have

(2.1) HSS/I(t) =
pS/I(t)

(1− tw0) · · · (1− twn)
,

for a unique polynomial pS/I(t) with integer coefficients, see [14, Chapter 8].

Proposition 2.8. [26, Proposition 3.12] Let Y ⊂ TX for X = P(w0, . . . , wn)
with w0 = 1. Then, the integer aY = deg(pS/I(Y )(t)) − w0 − · · · − wn satisfies
reg(Y ) = 1 + aY + N.
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A nice formula for the a-invariant is given for the Fq-rational points of the torus
TX when X is a weighted projective space.

Proposition 2.9. [7, Corollary 3.9] If Y = TX(Fq) for X = P(w0, . . . , wn) and
g(Nβ) is the Frobenius number of the numerical semigroup Nβ = N{w0, . . . , wn},
then

aY = (q − 2)[w0 + · · ·+ wn + g(Nβ)] + g(Nβ).

There are subgroups of the torus TX referred to as degenerate tori which we
briefly discuss now.

Definition 2.10. The following subgroup YA = {[ta1

1 : . . . : tar
r ] : ti ∈ F

∗
q} of

the torus TX is called a degenerate torus, lying inside a toric variety XΣ, for any
positive integers a1, . . . , ar, where r is the number of rays in the fan Σ.

If F∗
q = 〈η〉, every ti ∈ F

∗
q is of the form ti = ηki , for some 0 ≤ ki ≤ q − 2. Let

di = |ηai | and D = diag(d1, . . . , dr).

Proposition 2.11. [13, Corollary 3.13 (ii)] If Y = YA is a complete intersection
in X = P

r−1 and g := gcd(d1, . . . , dr) so that d′1 = d1/g, . . . , d
′
r = dr/g generate a

numerical semigroup ND′ with the Frobenius number g(ND′), then

1 + aY = g · g(ND′) + d1 + · · ·+ dr − (r − 1).

Notice that when ai = 1 and wj = 1, for all i and j, we have di = q − 1,
and so d′i = 1. The greatest integer not belonging to the numerical semigroup
Nβ = ND′ = N is g(Nβ) = g(ND′) = −1 so both formulas in Proposition 2.9 and
Proposition 2.11 yield aY = n(q−2)−1, for the torus Y = TX(Fq) in the projective
space X = P

n.

Definition 2.12. A binomial is a polynomial of the form xa − xb, and J is called
a binomial ideal if it is generated by binomials. J is called a complete intersection
if it is generated by height(J) many binomials.

Definition 2.13. For a lattice L ⊂ Z
r, the lattice ideal IL is the binomial ideal

generated by binomials xa − xb for all a− b ∈ L. That is,

IL = 〈xa − xb | a− b ∈ L〉 ⊂ S.

Theorem 2.14. [23, Theorem 4.5] If Y = YA then I(Y ) = IL for L = D(LβD).

If ai = 1, for all i, then YA = TX(Fq) and di = q− 1, for all i, so that the matrix
D is just q − 1 times the identity matrix yielding the following:

Corollary 2.15. [23, Corollary 4.14 (ii)] If Y = TX(Fq) then I(Y ) = IL for
L = (q − 1)Lβ.

Proposition 2.16. [23, Proposition 4.12] A generating system of binomials for

I(YA) is obtained from that of ILβD
by replacing xi with xdi

i . I(YA) is a com-
plete intersection if and only if so is the toric ideal ILβD

. In this case, a minimal
generating system is obtained from a minimal generating system of ILβD

this way.

3. Degenerate Tori on Weighted Projective Spaces

In this section, we explore properties of some degenerate tori on a weighted
projective space. To start with, we prove that they are complete intersections of
special type of binomial hypersurfaces.
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We focus on a weighted projective spaceX = P(w0, . . . , wn) and use the notation
S = Fq[x0, . . . , xn] for the Cox ring of X . Set

w̃i :=
wi

gcd(q − 1, wi)
and di :=

q − 1

gcd(q − 1, wi)
for i = 0, 1, . . . , n.

The following concept is very helpful in determining when a lattice ideal is a
complete intersection.

Definition 3.1. If each column of a matrix has both a positive and a negative entry
we say that the matrix is mixed. Moreover, if the matrix does not have a square
mixed submatrix, then it is called dominating.

Theorem 3.2. [15, Theorem 3.9] Let L ⊆ Z
r be a lattice with the property that

L ∩ N
r = 0. Then, IL is a complete intersection if and only if L has a basis

m1, . . . ,mk such that the matrix [m1 · · ·mk] is mixed dominating. If IL is a com-
plete intersection, then we have

IL = 〈xm
+

1 − x
m

−

1 , . . . , xm
+

k − x
m

−

k 〉.

Proposition 3.3. Let Q = diag(w0, . . . , wn) and YQ = {[t0
w0 : . . . : tn

wn ]|ti ∈ F
∗
q}

be the corresponding subgroup of TX for X = P(w0, . . . , wn). If w0 | q − 1 and

Fi = xdi

i − xd0w̃i

0 , i = 1, 2, . . . , n, then, the vanishing ideal of YQ is the following
complete intersection lattice ideal:

I(YQ) = 〈F1, F2, . . . , Fn〉.

Proof. Since D = diag(d0, . . . , dn) and β = [w0 · · ·wn], it follows that their product
is βD = [w0d0 · · ·wndn]. It is clear that w̃i(q − 1) = widi, and so

gcd(w0d0, . . . , wndn) = (q − 1) gcd(w̃0, . . . , w̃n).

Therefore, we have the equality of the lattices LβD = LW̃ , where W̃ is the matrix
with columns w̃i, for i = 0, . . . , n.

When w0 | q−1, we have w̃0 = 1 and thus the lattice LW̃ has the following basis

{(−w̃1, e1), . . . , (−w̃n, en)},

where ei form the standard basis for Z
n. Consider the matrix M whose columns

are the basis vectors of LW̃ given above. Since the matrix M is mixed-dominating,
it follows from Theorem 3.2 that the lattice ideal of LW̃ is a complete intersection

generated by the binomials xi − xw̃i

0 , i = 1, 2, . . . , n.
By Theorem 2.14, the vanishing ideal I(YQ) is the binomial ideal IL for the

lattice L = D(LβD), whose generators are obtained substituting xdi

i for xi in the
binomials above generating the lattice ideal of LW̃ , by Proposition 2.16. Therefore,
the vanishing ideal I(YQ) is a complete intersection generated by the binomials
F1, F2, . . . , Fn. �

Proposition 3.4. Let Q = diag(w0, . . . , wn) and YQ = {[t0
w0 : . . . : tn

wn ]|ti ∈ F
∗
q}

be the corresponding subgroup of TX for X = P(w0, . . . , wn). If w0 | q− 1 then, for
any α ∈ Nβ we have

HYQ
(α) =

n
∑

s=0

(−1)s
∑

I⊆[n],|I|=s

dimK Sα−αI
,

where αI =
∑

i∈I αi. Moreover, the a-invariant of YQ is given by the formula
aYQ

= (d1 − 1)w1 + · · ·+ (dn − 1)wn − w0.
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Proof. Notice that I(YQ) is a complete intersection by Proposition 3.3 generated by
binomials of degrees α1 = d1w1, . . . , αn = dnwn. Thus, its minimal free resolution
is given by the Koszul complex. As in the proof of [26, Proposition 3.13] we have
the following exact sequence

0 → Wn → · · · → Ws → · · · → W1 → Sα → (S/I(YQ))α → 0,

where, for every s = 1, . . . , n, the vector space Ws is given by

Ws =
⊕

I⊆[n],|I|=s

S(−αI)α =
⊕

I⊆[n],|I|=s

Sα−αI
.

Therefore, we obtain:

HYQ
(α) = dimK Sα +

n
∑

s=1

(−1)s dimK Ws

=
n
∑

s=0

(−1)s
∑

I⊆[n],|I|=s

dimK Sα−αI
,(3.1)

where αI =
∑

i∈I αi. By Proposition 8.23 in [14], the numerator of the Hilbert
series in Equation 2.1 is as follows:

pS/I(YQ) =

n
∑

s=0

(−1)s
∑

I⊆[n],|I|=s

tαI .

Hence, pS/I(YQ) has degree α1 + · · ·+ αn = d1w1 + · · ·+ dnwn, and thus

aYQ
= (d1 − 1)w1 + · · ·+ (dn − 1)wn − w0

by Proposition 2.8. �

Example 3.5. Let X = P(1, 1, 2). Consider the matrix Q = diag(1, 1, 2) and
YQ = {[t0 : t1 : t22] | t0, t1, t2 ∈ F

∗
q}. Assume that q is odd. So, we have

(d0, d1, d2) = (q − 1, q − 1, (q − 1)/2) and (w̃0, w̃1, w̃2) = (1, 1, 1).

Thus, I(YQ) = 〈F1, F2〉 = 〈xq−1
1 − xq−1

0 , x
(q−1)/2
2 − xq−1

0 〉. As the degrees of the
generators are α1 = q−1 and α2 = q−1, a graded minimal free resolution of I(YQ)
is given by:

0 → Sα−α1−α2

[−F2 F1]
T

−→ Sα−α1
⊕ Sα−α2

[F1 F2]
−→ Sα → (S/I(YQ))α → 0.

Therefore, the Hilbert function is computed to be

HYQ
(α) = dimK Sα − dimK Sα−α1

− dimK Sα−α2
+ dimK Sα−α1−α2

= dimK Sα − 2 dimK Sα−(q−1) + dimK Sα−2(q−1).

We first notice the following

dimK Sα =

{

(α0 + 1)2 if α = 2α0

(α0 + 1)(α0 + 2) if α = 2α0 + 1.

Thus, if 0 ≤ α ≤ q − 2, then dimK Sα−(q−1) = dimK Sα−2(q−1) = 0. Hence,

HYQ
(α) =

{

(α0 + 1)2 if α = 2α0

(α0 + 1)(α0 + 2) if α = 2α0 + 1.
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When, q − 1 ≤ α < 2(q − 1), we have dimK Sα−2(q−1) = 0. It is easy to see that

dimK Sα−(q−1) =

{

(α0 + 1− (q − 1)/2)2 if α = 2α0

(α0 + 1− (q − 1)/2)(α0 + 2− (q − 1)/2) if α = 2α0 + 1.

Hence, we have the following formula for HYQ
(α) :

{

(α0 + 1)2 − 2(α0 + 1− (q − 1)/2)2 if α = 2α0

(α0 + 1)(α0 + 2)− 2(α0 + 1− (q − 1)/2)(α0 + 2− (q − 1)/2) if α = 2α0 + 1.

Finally, when α ≥ 2(q − 1), we get

dimK Sα−2(q−1) =

{

(α0 + 1− (q − 1))2 if α = 2α0

(α0 + 1− (q − 1))(α0 + 2− (q − 1)) if α = 2α0 + 1.

Therefore, we have HYQ
(α) = (q− 1)2/2 = |YQ| which is not surprising as we have

α > aYQ
in this case.

4. Length and Dimension when X = P(1, w1, . . . , wn)

Let F∗
q = 〈η〉, then the order of ηi := ηwi is

di =
q − 1

gcd(q − 1, wi)
i = 1, . . . , n.

By using I(YQ), the length and the dimension of Cα,YQ
are computed as follows.

Theorem 4.1. Let X = P(1, w1, . . . , wn) be a weighted projective space over the
field Fq. Consider Q = diag(1, w1, . . . , wn) and the subgroup it defines in TX(Fq):

YQ = {[t0 : tw1

1 : . . . : twn
n ] | ti ∈ F

∗
q , for all i = 0, . . . , n}.

Then, the length of Cα,YQ
is |YQ| = d1 · · · dn and the dimension is

dim(Cα,YQ
) =

min{⌊ α
wn

⌋,dn−1}
∑

mn=0

min{⌊α−mnwn
wn−1

⌋,dn−1−1}
∑

mn−1=0

· · ·

min{⌊
α−mnwn−···−m2w2

w1
⌋,d1−1}

∑

m1=0

1.

Moreover, the a-invariant is given by

aYQ
= (d1 − 1)w1 + · · ·+ (dn − 1)wn − 1.

Proof. We first prove that

(4.1) YQ = 〈[1 : η1 : 1 : . . . : 1]〉 × · · · × 〈[1 : . . . : 1 : ηn]〉.

Multiplying by [λ : λw1 : . . . : λwn ] does not change an equivalence class for every
λ ∈ F

∗
q. So, we have the equality of the following points:

[t0 : tw1

1 : . . . : twn
n ] = [1 : (t1/t0)

w1 : . . . : (tn/t0)
wn ].

Hence, we have

YQ = {[1 : sw1

1 : . . . : swn
n ] | si ∈ F

∗
q , for all i = 1, . . . , n}.

Since si = ηki , for some ki ∈ N, it is clear that swi

i = ηki

i and thus

YQ = {[1 : ηi11 : . . . : ηinn ] | 0 ≤ i1 ≤ d1, . . . , 0 ≤ in ≤ dn},

from which the claim in (4.1) is deduced, and thus |YQ| = d1 · · · dn.
If w0 = 1, then d0 = q − 1 and so the vanishing ideal of YQ is generated by the

binomials Fi = xdi

i − xdiwi

0 , for i = 1, 2, . . . , n. With respect to any term order for

which x0 is the smallest variable, the leading monomial of Fi is clearly x
di

i . Since the
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monomials xdi

i and x
dj

j are relatively prime for different i and j, it readily follows

that the binomials F1, . . . , Fn form a Groebner basis for the vanishing ideal I(YQ).
It is well-known ( [5, p.232]) then that a basis for the vector space Sα/Iα(YQ) is
given by the monomials xm = xm0

0 xm1

1 · · ·xmn
n of degree α that can not be divided

by the leading monomials xdi

i of Fi, for all i = 1, 2, . . . , n and for

α = m0 +m1w1 + · · ·+mnwn ∈ N = 〈1, w1, . . . , wn〉.

Therefore, a basis for Sα/Iα(YQ) corresponds to the set of tuples (m0,m1, . . . ,mn)
satisfying α = m0 + m1w1 + · · · + mnwn and mi ≤ di − 1, for all i = 1, 2, . . . , n.
The elements of this set can be identified step by step as we explain now. We start
first by choosing an integer mn between 0 and min{⌊ α

wn
⌋, dn − 1} and observe that

the elements of the set in question can be partitioned into subsets for every choice
of mn in the aforementioned range. More precisely, for each fixed mn, we have a
subset consisting of tuples (m0,m1, . . . ,mn) satisfying

m0+m1w1+· · ·+mn−1wn−1 = α−mnwn and mi ≤ di−1, for all i = 1, 2, . . . , n−1.

As a second step, we fix mn−1 between 0 and min{⌊α−mnwn

wn−1
⌋, dn−1 − 1}, and look

for the solutions (m0,m1, . . . ,mn−2) satisfying

m0 +m1w1 + · · ·+mn−2wn−2 = α−mnwn −mn−1wn−1 and mi ≤ di − 1,

for all i = 1, 2, . . . , n − 2. Continuing inductively, we end up with a unique m0

satisfying

m0 = α−mnwn −mn−1wn−1 − · · · −m1w1.

Hence, the dimension of the code, which is nothing but the dimension of the vector
space Sα/Iα(YQ), is exactly the sum given by the formula

dim(Cα,YQ
) =

min{⌊ α
wn

⌋,dn−1}
∑

mn=0

min{⌊α−mnwn
wn−1

⌋,dn−1−1}
∑

mn−1=0

· · ·

min{⌊
α−mnwn−···−m2w2

w1
⌋,d1−1}

∑

m1=0

1.

The a−invariant can be obtained from Proposition 3.4, by substiting w0 = 1. �

5. Codes on YQ ⊂ P(1, 1, a)

For any positive integer a, we compute the basic parameters of the code Cα,YQ
,

for the subgroup YQ = {[t0 : t1 : ta2 ] | t0, t1, t2 ∈ F
∗
q} of TX(Fq) for the weighted

projective space X = P(1, 1, a).

Theorem 5.1. Let d2 = q−1
gcd(a,q−1) , k = ⌊α−(q−2)

a ⌋ and µ2 = min{⌊α
a ⌋, d2 − 1}.

Then, the length of Cα,YQ
is N = |YQ| = (q − 1)d2. Its dimension K(Cα,YQ

) is

(µ2 + 1)(α+ 1− µ2a/2), if 0 ≤ α ≤ q − 2
(q − 1)(k + 1) + (µ2 − k)[α+ 1− (µ2 + k + 1)a/2], if 0 < α− (q − 2) < (d2 − 1)a
N otherwise.

and the minimum distance of Cα,YQ
is:

δ(Cα,YQ
) =







d2(q − 1− α) if 0 ≤ α ≤ q − 2
d2 − k if q − 2 ≤ α < (q − 2) + (d2 − 1)a
1 otherwise.



CODES ON SUBGROUPS OF WEIGHTED PROJECTIVE TORI 11

Proof. Since w1 = 1, we have d1 = q − 1. It follows from Equation 4.1 that

YQ = {[1 : ηi11 : ηi22 ] | 0 ≤ i1 ≤ d1 and 0 ≤ i2 ≤ d2},

so the length of the code is d1d2 = (q − 1)d2.
When 0 ≤ α ≤ q − 2, the dimension formula in Theorem 4.1 specializes to

dim(Cα,YQ
) =

µ2
∑

m2=0

min{α−m2a,q−2}
∑

m1=0

1 =

µ2
∑

m2=0

α−m2a
∑

m1=0

1

=

µ2
∑

m2=0

(α−m2a+ 1) = (µ2 + 1)(α+ 1)− a

µ2
∑

m2=0

m2

= (µ2 + 1)(α+ 1)− a
µ2(µ2 + 1)

2
.

If q− 2 < α < (q− 2)+ (d2 − 1)a, then using the formula in Theorem 4.1 again,
we get

dim(Cα,YQ
) =

µ2
∑

m2=0

min{α−m2a,q−2}
∑

m1=0

1

=

k
∑

m2=0

q−2
∑

m1=0

1 +

µ2
∑

m2=k+1

α−m2a
∑

m1=0

1

= (q − 1)(k + 1) +

µ2
∑

m2=k+1

(α−m2a+ 1)

= (q − 1)(k + 1) + (µ2 − k)(α+ 1)− a

µ2
∑

m2=k+1

m2

= (q − 1)(k + 1) + (µ2 − k)(α+ 1)− a
µ2(µ2 + 1)− k(k + 1)

2
.

Notice that these dimensions are the number of lattice points of the polygons de-
picted below.

q-2

m1 +m2a = αα/a
µ2

α0 α- µ2a

Figure 3. α ≤ q − 2

q-2

m1 +m2a = α

α/a

µ2

k + 1

k

α0

Figure 4. α > q − 2

As for the minimum distance, we first give an upper bound on the number
|VYQ

(F )| of zeroes on YQ of a homogeneous polynomial F of degree α and then
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demonstrate a specific polynomial attaining that bound. Let [d2] denote the set of
non-negative integers smaller than d2, and set

JF := {j ∈ [d2] | x2 − ηj2x
w2

0 divides F}.

We claim that

(5.1) |VYQ
(F )| ≤ d1|JF |+ (d2 − |JF |) degx1

(F ),

where degx1
(F ) is the usual degree of F in the variable x1. The polynomial

fj(x1) := F (1, x1, η
j
2) ∈ Fq[x1] vanishes at the points [1 : ηi1 : ηj2], for every i ∈ [d1],

when j ∈ JF . Thus, there are d1|JF | such roots of F . On the other hand, fj is
not a zero polynomial when j /∈ JF , and in this case it can have at most its degree
many zeroes, giving rise to (d2 − |JF |) degx1

(F ) many roots of F , completing the
proof of the claim.

Since we always have

F =

|JF |
∏

j=1

(x2 − ηj2x
w2

0 )F ′

it follows that degx1
(F ) = degx1

(F ′) ≤ α− |JF |w2. Thus, we have

|VYQ
(F )| ≤ d1|JF |+ (d2 − |JF |)(α − |JF |w2)

≤ d2α+ |JF |(d1 − α− w2(d2 − |JF |)).(5.2)

Notice that the number in the parenthesis above is

d1 − α− w2(d2 − |JF |) = d1 − α− w2d2 + w2|JF | = d1 − (q − 1)w̃2 − α+ w2|JF |

which is non-positive since d1 ≤ q − 1 ≤ (q − 1)w̃2 and |JF |w2 ≤ deg(F ) = α.
Hence, altogether, we have the upper bound

|VYQ
(F )| ≤ d2α.(5.3)

Consider now the following polynomial:

F0 =

α
∏

i=1

(x1 − ηi1x0)

which vanishes at the points [1 : ηi1 : ηj2], for every i ∈ [α] and j ∈ [d2], implying
that |VYQ

(F0)| = d2α. As the weight of the codeword evYQ
(F0) is clearly

|YQ| − |VYQ
(F0)| = d2(q − 1)− d2α

and that of a general codeword evYQ
(F ) is

|YQ| − |VYQ
(F )| ≥ d2(q − 1)− d2α,

it follows that the minimum distance of the code is d2(q − 1− α), when α < q − 1.
When α ≥ aY + 1 = (q − 2) + (d2 − 1)a, the code is trivial, so δ(Cα,YQ

) = 1.
From now on, assume that q − 2 ≤ α < aY + 1 = (q − 2) + (d2 − 1)a. Let k be

the quotient and r0 be the remainder of the division of α− (q − 2) by w2 = a, i.e.

α− (q − 2) = ka+ r0 where 0 ≤ k :=

⌊

α− (q − 2)

a

⌋

≤ d2 − 2 and 0 ≤ r0 ≤ a− 1.

When |JF | = d2, F vanishes on YQ, so F gives a codeword with zero weight. Thus,
we suppose |JF | ≤ d2 − 1.
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If |JF | ≤ k also, then by degx1
(F ) ≤ d1 − 1 = q − 2 and (5.1) we have

|VYQ
(F )| ≤ (q − 1)|JF |+ (d2 − |JF |)(q − 2) = (q − 2)d2 + |JF |

≤ (q − 2)d2 + k.

If |JF | > k, we let |JF | = k+j0 with j0 ≥ 1. As α = q−2+ka+r with r ≤ a−1,
we have α − |JF |a = α − (k + 1)a − a(|JF | − k − 1) ≤ q − 2 − 1 − a(j0 − 1). As
degx1

(F ) ≤ α− |JF |a, it follows from (5.1) that we have,

|VYQ
(F )| ≤ (q − 1)|JF |+ (d2 − |JF |)(α− |JF |a)

≤ (q − 1)|JF |+ (d2 − |JF |)(q − 2− 1− a(j0 − 1))

≤ (q − 2)d2 + |JF |+ (d2 − |JF |)(−1− a(j0 − 1))

Since d2 − |JF | ≥ 1 and a ≥ 1, we have

|VYQ
(F )| ≤ (q − 2)d2 + |JF |+ (d2 − |JF |)(−1− a(j0 − 1))

≤ (q − 2)d2 + |JF | − 1− (j0 − 1) = (q − 2)d2 + k.

We consider the following homogeneous polynomial of degree α now:

G0 = xr0
0

q−2
∏

i=1

(x1 − ηi1x0)
k
∏

j=1

(x2 − ηj2x
a
0)

which vanish at the points [1 : ηi1 : ηj2], for every i ∈ [q − 2] and j ∈ [d2], together

with the points [1 : ηi1 : ηj2], for i = q − 1 and j ∈ [k]. Therefore, the number of
roots is |VYQ

(G0)| = (q − 2)d2 + k. It readily follows that the minimum distance
δ(Cα,YQ

) of the code is the weight (q−1)d2− (q−2)d2−k = d2−k of the codeword
corresponding to G0. �

Remark 5.2. It is very difficult to give a closed formula for some parameters of
the code Cα,YQ

, for the subgroup YQ = {[t0 : tw1

1 : tw2

2 ] | t0, t1, t2 ∈ F
∗
q} of TX(Fq)

in the more general case of the weighted projective plane X = P(1, w1, w2). This is
mainly because of the formulas involving a division by the integer w1. In this case
one has to use the floor function when the ratio is not integer, which we explain in
more details below. There are 4 cases to consider:

Case 1 :

⌊

α

w1

⌋

≤ d1 − 1 and

⌊

α

w2

⌋

≤ d2 − 1

Case 2 :

⌊

α

w1

⌋

> d1 − 1 and

⌊

α

w2

⌋

≤ d2 − 1

Case 3 :

⌊

α

w1

⌋

≤ d1 − 1 and

⌊

α

w2

⌋

> d2 − 1

Case 4 :

⌊

α

w1

⌋

> d1 − 1 and

⌊

α

w2

⌋

> d2 − 1.

For instance, the dimension formula in Theorem 4.1 specializes to

dim(Cα,YQ
) =

µ2
∑

m2=0

min
{⌊

α−m2w2
w1

⌋

,d1−1
}

∑

m1=0

1,

where µ2 = min
{⌊

α
w2

⌋

, d2 − 1
}

.
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We first consider Cases 2 and 4. In these cases, as we have α ≥ w1(d1 − 1), we
choose

µ′
2 :=

⌊

α− w1(d1 − 1)

w2

⌋

so that min
{⌊

α−m2w2

w1

⌋

, d1 − 1
}

= d1 − 1 for all m2 ≤ µ′
2. Hence, we have

dim(Cα,YQ
) =

µ′

2
∑

m2=0

d1−1
∑

m1=0

1 +

µ2
∑

m2=µ′

2
+1

⌊

α−m2w2
w1

⌋

∑

m1=0

1

= (µ′
2 + 1)d1 +

µ2
∑

m2=µ′

2
+1

(⌊

α−m2w2

w1

⌋

+ 1

)

= µ′
2(d1 − 1) + µ2 + d1 +

⌊

α− (µ′
2 + 1)w2

w1

⌋

+ · · ·+

⌊

α− µ2w2

w1

⌋

.

A similar formula for dim(Cα,YQ
) can be obtained in Cases 1 and 3. In any case,

we conclude that a closed formula for the dimension is difficult to get.
As for the minimum distance, one can generalize Theorem 5.1 as follows. Let

U(x, y) be a polynomial defined as

U(x, y) := d1y + (d2 − y)x for 0 ≤ x ≤ min

{⌊

α− yw2

w1

⌋

, d1 − 1

}

, 0 ≤ y ≤ µ2.

Then, the upper bound in (5.1) becomes

|VYQ
(F )| ≤ U(degx1

(F ), |JF |).

Since we have

x ≤ min

{⌊

α− yw2

w1

⌋

, d1 − 1

}

=

{

d1 − 1 if 0 ≤ y ≤ µ′
2

⌊

α−yw2

w1

⌋

if µ′
2 < y ≤ µ2,

it follows that

U(x, y) ≤ u(y) := d1y + (d2 − y)min

{⌊

α− yw2

w1

⌋

, d1 − 1

}

.

Therefore, we get

U(x, y) ≤ d1y + (d2 − y)(d1 − 1) = d2(d1 − 1) + y for all y ∈ [0, µ′
2]

and U(x, y) < d1y + (d2 − y)(d1 − 1) for all y ∈ [µ′
2 + 1, µ2].

Clearly, the polynomial U(x, y) attains the maximum value at (d1 − 1, µ′
2), which is

u(µ′
2) = d2(d1 − 1) + µ′

2 = d1d2 − (d2 − µ′
2).

Thus, the minimum distance of the code Cα,YQ
will be d2 − µ′

2. This means that
the proof of the second part of the Theorem 5.1 can be generalized very easily via
replacing q − 1 (resp. q − 2) by d1 (resp. d1 − 1) to the Cases 2 and 4, namely for
the values of α satisfying w1(d1 − 1) ≤ α < w1(d1 − 1) + w2(d2 − 1).

When w1 = 1, as in the proof of the first part of the Theorem 5.1, the ratio
α−yw2

w1
was an integer yielding x =

⌊

α−yw2

w1

⌋

= α − yw2, and so the upper bound
was

u(y) = d1y + (d2 − y)(α− yw2) = w2y
2 + (d1 − α− d2w2)y + d2α.



CODES ON SUBGROUPS OF WEIGHTED PROJECTIVE TORI 15

As the quadratic polynomial u(y) is concave up, it was clear that the absolute max-
imum is attained at the boundary points of the interval [0, ⌊α/a⌋] and we were able
to prove that u(0) was the maximum value of U . However, the proof of the first
case does not generalize to the Cases 1 and 3 as the maximum values are sometimes
attained at interior points.

For instance, consider the case q = 31, w1 = 8, w2 = 9 and α = 34. Then, we

have d1 = 15, d2 = 10,
⌊

α
w1

⌋

= 4 and
⌊

α
w2

⌋

= 3. The function

U(x, y) := 15y + (10− y)x for 0 ≤ x ≤

⌊

34− 9y

8

⌋

, 0 ≤ y ≤ 3

has the upper bound given by

u(y) = 15y + (10− y)

⌊

34− 9y

8

⌋

, 0 ≤ y ≤ 3.

Notice that [u(0), u(1), u(2), u(3)] = [40, 42, 46, 45]. Therefore, the maximum value
46 is attained at the interior point y = 2.

As the value u(0) =
⌊

α
w1

⌋

gives rise to an upper bound on the minimum distance

in Cases 1 and 3, we have the following:

Theorem 5.3. Let d1 = q−1
gcd(w1,q−1) , d2 = q−1

gcd(w2,q−1) and k =
⌊

α−w1(d1−1)
w2

⌋

.

Then, the length of Cα,YQ
is N = |YQ| = d1d2. The minimum distance of Cα,YQ

satisfies

δ(Cα,YQ
) ≤ d2(d1 −

⌊

α
w1

⌋

) if 0 ≤ α ≤ w1(d1 − 1)

δ(Cα,YQ
) = d2 − k if w1(d1 − 1) ≤ α < w1(d1 − 1) + w2(d2 − 1)

δ(Cα,YQ
) = 1 otherwise.

We conclude the paper by showcasing an example with codes having good pa-
rameters obtained by our construction.

Example 5.4. Take a = 2, q = 5. So, d2 = 2 and length is d2(q − 1) = 8. Table 1
exhibits the main parameters of the code Cα,YQ

for α in the first column. According
to Markus Grassl’s Code Tables [9] a best-possible code with N = 8 has K + δ = 8
or K + δ = 9 (MDS codes). This example provides us with 3 best possible codes
whose parameters satisfy K + δ = 8 together with an MDS code [8, 7, 2].

Table 1. a=2 and q=5

α [N,K, δ]
0 [8, 1, 8]
1 [8, 2, 6]
2 [8, 4, 4]
3 [8, 6, 2]
4 [8, 7, 2]
5 [8, 1, 8]

Example 5.5. Similarly, we take a = 3 and q = 5 so that d2 = 4 and length is
d2(q − 1) = 4 · 4 = 16. Table 2 gives the main parameters of the corresponding
codes.
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Table 2. a=3 and q=5

α [N,K, δ]
0 [16, 1, 16]
1 [16, 2, 12]
2 [16, 3, 8]
3 [16, 5, 4]
4 [16, 6, 4]
5 [16, 7, 4]
6 [16, 9, 3]
7 [16, 10, 3]
8 [16, 11, 3]
9 [16, 13, 2]
10 [16, 14, 2]
11 [16, 15, 2]
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