
MINIMIZATION OF THE NOISE IN THE CALCULATED PRESSURE 

DERIVATIVE DATA FOR THE INTERPRETATION OF TRANSIENT TESTS 

ABSTRACT 

 

Well tests are conducted to estimate essential reservoir parameters like permeability and skin 

factor. Pressure data is recorded at regular intervals during these tests, which are crucial for 

predicting the production potential of oil or gas. Analyzing pressure changes provides insights into 

the reservoir's characteristics and its ability to produce hydrocarbons over time. 

Three different cases of drawdown tests are examined, and derivative curves are plotted using data 

points separated by specific intervals, ranging from 0.10 to 0.50 of a log cycle. This interval 

selection is vital to avoid excessively noisy derivative values during differentiation. A novel 

method is developed to determine the log cycle interval that minimizes noise while maintaining 

the integrity of the derivative curve. Additionally, second and third derivatives are calculated for 

each log cycle interval to identify the most suitable one. 

The log cycle interval helps identify early, middle, and late-time regions, representing different 

flow regimes in both cases. The data from the middle time region is selected for the estimation 

process, as it offers the best estimates of permeability. These results are then compared with those 

obtained from KAPPA's Saphir Module, an industry-standard PTA (pressure transient analysis) 

module. The Python code used for estimation is found to provide more accurate estimations of 

permeability and skin factor and can handle noises up to ±2.5%. 
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STATEMENT OF THE PROBLEM 

 

In petroleum engineering, determining reservoir parameters such as permeability, porosity, and 

skin factor is of utmost importance. Accurate determination of these parameters is essential for 

conducting feasibility analyses because significant amounts of money are invested in the discovery 

and development of reservoirs. Well testing provides valuable data for evaluating and optimizing 

production, making the accuracy of this data critical for decision-making and feasibility 

assessments. To make informed decisions, it is crucial to have a clear understanding of reservoir 

parameters, especially permeability and skin factor. 

Despite efforts to ensure the reliability of well test data, uncertainties persist due to factors like 

multiphase flow measurement and complex fluid flow dynamics. These uncertainties introduce 

noise in the data, necessitating their elimination to make the most informed decisions. 

Derivative plots offer valuable insights into reservoirs, but calculating pressure derivatives is a 

delicate process as it can easily amplify the existing noise in the data. Various new methods are 

employed to estimate these parameters, incorporating recent technological advancements to 

enhance accuracy and minimize predictive errors. 

 

 

 

 

 

 

 

 

 



METHODOLOGY 

i) Noise Elimination of Derivative Plots 

 

In 1983, Bourdet et al. introduced derivative plots, which were regarded as the most valuable 

diagnosis tool at that time, as mentioned by Horne (1995). 

Calculating pressure derivatives is a delicate procedure due to the risk of amplifying noise in the 

data. Several differentiation methods can be employed, and one such method involves numerically 

differentiating adjacent points using Eq 1. However, this approach is rarely used in well test 

analysis because it leads to very noisy derivative values. 

 

     Eq 1 

 

 

It is suggested in the literature that numerical differentiation with respect to natural logarithm of 

time by using Eq 2 would reduce the noise in the derivative calculation compared to the previous 

method. 
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Using data points that are at least 0.2 of a log cycle apart instead of adjacent points while 

differentiating with respect to the natural logarithm of time can result in further noise reduction. 

However, this method has a limitation: it may lead to a lack of data during the first and last 

differentiation intervals. So the third differentiation method is 

 

 

                                             Eq 3 
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Horne (1995) mentioned that the differentiation interval could be substituted with values ranging 

from 0.1 to 0.5, depending on the specific case. 

During the differentiation of late-time data, the distance between data points becomes larger than 

the last data point and the previous differentiation point. This phenomenon, known as the end 

effect, prevents smoothing on the right side and may distort the shape of the derivative curve. 

Bourdet et al. (1989) proposed a solution to this issue by introducing a pseudo point to the right 

and fixing it. The difference (∆X) between the pseudo point and the point before it should be 

greater than or at least equal to this length. 

A Python code was developed to process pressure and time data. It calculates derivative values 

using data points separated by a proportion of a log cycle, ranging from 0.10 to 0.50, with 

increments of 0.01. As a result, 41 different derivative values with various separation intervals are 

computed. 
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ii) Selecting the Smoothest Derivative Plot 

 

The aim is to find the best log cycle interval among the 41 different intervals(between 0.10-0.50), 

the one that eliminates the most amount of noise without overly smoothing the derivative plot. In 

order to be able to do that Python is used. 

Second and third derivative values are calculated for every one of the 41 different derivative 

values. Number of sign changes in the second and third derivatives are calculated separately and 

divided to the total number of data points.  

For example when using 0.26 log cycle intervals, 

Number of sign changes is 2 for the second derivative values and 8 for the third derivative values, 

meaning that there are 8 different inflection points. There are 53 data points in total and the ratio 

for the second derivative is: 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑖𝑔𝑛 𝑐ℎ𝑎𝑛𝑔𝑒𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡𝑠
=

2

53
= 0.03774 

 

And the ratio for the third derivative is: 

8

53
= 0.15094 

0.31 interval has the lowest sum of ratios among the all 41 second derivative values and all 41 

third derivative values meaning that it is the smoothest of them. For all three of the cases, it is 

proven that the best intervals are the ones that have the smallest sum of sign change ratios of second 

and third derivatives.  

 

 

 

 



iii) Determination of the Middle Time Region 

 

In the early time region, the flow behavior in and around the wellbore, including effects like 

wellbore storage and formation damage/stimulation, plays a dominant role in the fluid flow. As 

time progresses, the flow is expected to transition to infinite-acting behavior in the middle time 

region, assuming a homogeneous reservoir. In this region, the pressure derivatives are expected 

to be horizontal. 

Having identified the optimal log cycle interval that provides a derivative plot with minimal 

noise and appropriate smoothing, our focus is now on determining the middle time regions. 

These regions are crucial for obtaining the most accurate estimates of permeability (k) and skin 

factor (S). 

For all drawdown cases, infinite acting radial flow is observed during the middle time regions, 

resulting in horizontal derivative curves. Specifically, the first derivative values remain relatively 

constant, and the second derivative values approach zero. 

To identify the middle time regions, Python is employed once again, and all three derivatives 

(first, second, and third) are analyzed. We locate the region that follows a specific inflection 

point, where the first derivative values are relatively constant and the second derivative values 

fall within the range of -100 to +100. This constraint is incorporated into the Python code to 

facilitate the selection of points that come after the inflection point. 

  



 

 

Figure 1 Middle Time Region Estimation for Drawdown Case I.              Cosar(2022) 

 

Up to this point, we have identified the flow regions of early time, middle time, and late time, as 

depicted in the figure above. The semi-log plot provides a clear indication that the time region 

estimations are precise for Drawdown Case I.  



iv) Permeability and Skin Factor Estimation 

 

Once more, Python is employed to estimate the permeability and skin factor using the graphical 

analysis method, utilizing the data points obtained from the middle time region estimation. 

A semilog plot of pressure (P) versus time (t) is generated using Python. A best-fitting line is drawn 

through the points corresponding to the middle time region. By calculating the slope of this line, 

referred to as "m," the permeability can be estimated using the following equation 

Eq 4 

 

 

In order to estimate the skin factor, S, following equation is used. 

Eq 5 

 

It should be noted that for the P1hr value, the point on the semi-log straight line should be used 

rather than the measured P value at 1 hour. 
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RESULTS 

 

The study demonstrates that the noise in derivative plots can be eliminated by identifying the 

optimal log cycle interval and using it during pressure derivative calculations. Pressure derivatives 

are considered highly valuable for diagnosing well test analysis. By improving the accuracy of 

time region identifications, the estimations of permeability and skin factor are enhanced. These 

stand correct for three different drawdown tests. 

The estimation process utilizes a graphical analysis method, which results in minimal error and 

performs calculations rapidly, completing them within seconds. 

It is shown that the Python code written can estimate permeability and skin factor in three different 

drawdown cases more accurately than KAPPA’s Saphir Module, an industry standard Pressure 

Transient Analysis tool, as can be seen from Table 1. 

Table 1 Absolute Error Percentages of Different Methods 

Case Graphical Analysis 

Method 

KAPPA’s 

Saphir Module 

Drawdown I 0.915% 1.243% 

Drawdown II 1.946% 3.900% 

  

Another drawdown test data with known parameters(k=40 md, S=+2.90) had been generated and 

to test the methods tolerance to noise, random artificial Gaussian noise of  ±0.5%, ±1%, ±1.5%, 

±2%, ±2.5%, ±3% is added to the Drawdown Case III pressure data. The Python code had been 

run 20 times for each case. Confidence interval of 95% is used for the calculations. It is seen that 

the Python code can handle noises up to ±2.5%.  

Table 2 Permeability and Skin Factor Estimations with Randomly Added Noises 

Parameter ±0.5% ±1% ±1.5% ±2% ±2.5% ±3% 

k(md) 39.365 39.893 39.825 41.424 40.746 37.050 

S 2.758 2.973 2.833 3.133 3.086 2.170 



CONCLUSION 

 

Well testing provides valuable data for evaluating and optimizing production, making it a crucial 

aspect of reservoir management. The accuracy of this data is essential for understanding the 

reservoir's characteristics and making informed decisions accordingly. 

Flow period identification is the initial and arguably the most critical step in well test analysis. 

Derivative plots, which are diagnostic plots, play a vital role in this identification process, and their 

reliability directly impacts the accuracy of permeability and skin factor estimates. 

Although pressure and flow rate measurement technology has improved, some level of noise 

persists in most well test data and must be addressed before performing reservoir characterization 

and parameter estimation processes. 

The Python code developed in this context has demonstrated the ability to handle noise up to 

±2.5%. It also provides more accurate estimations of permeability and skin factor compared to an 

industry standard PTA software tool, KAPPA’s Saphir Module. 

 

 

 

 

 

 

 


