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submitted by CEYDA ÖZÇİL in partial fulfillment of the requirements for the de-
gree of Master of Science in Mechanical Engineering Department, Middle East
Technical University by,

Prof. Dr. Halil Kalıpçılar
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Mehmet Ali Sahir Arıkan
Head of Department, Mechanical Engineering

Prof. Dr. Yiğit Yazıcıoğlu
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ABSTRACT

INTEGRATING DEEP LEARNING FOR HEART AND VASCULAR
ACOUSTIC ANALYSIS IN CARDIOVASCULAR HEALTH ASSESSMENT

Özçil, Ceyda

M.S., Department of Mechanical Engineering

Supervisor: Prof. Dr. Yiğit Yazıcıoğlu

December 2023, 90 pages

Atherosclerosis, a cardiovascular disease, disrupts blood flow due to occlusions. The

transformation from laminar into turbulent flow produces an acoustic phenomena

known as bruits. In this study, heart sounds recorded by phonocardiography were

classified as normal and abnormal using different combinations of feature extraction

and classification techniques. An experiment-based model was employed to generate

pulsating flow sound at different stenosis levels. Deep learning and feature compari-

son methodologies were applied to explore the correlation between phonocardiogra-

phy and vascular sounds. Beyond promising results in heart sound classification, the

study demonstrated an apparent relationship between phonocardiography recordings

and 50-90% stenosed vascular sounds. This outcome highlights that coronary artery

disease could be detected by utilizing the phonocardiography.

Keywords: Heart Sound Classification, Phonocardiography, Stenosis Detection
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ÖZ

KARDİYOVASKÜLER SAĞLIĞIN KALP VE VASKÜLER AKUSTİK
ANALİZİNE DERİN ÖĞRENME ENTEGRE EDİLEREK

DEĞERLENDİRİLMESİ

Özçil, Ceyda

Yüksek Lisans, Makina Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Yiğit Yazıcıoğlu

Aralık 2023 , 90 sayfa

Kardiyovasküler bir hastalık olan ateroskleroz, tıkanıklıklar nedeniyle kan akışını bo-

zar. Laminerden türbülanslı akışa dönüşüm, uğultu olarak bilinen bir akustik feno-

mene neden olur. Bu çalışmada fonokardiyografi ile kaydedilen kalp sesleri, özellik

çıkarma ve sınıflandırma tekniklerinin farklı kombinasyonları kullanılarak normal ve

anormal olarak sınıflandırıldı. Farklı darlık seviyelerinde pulsatil akış sesi üretmek

için deney bazlı bir model kullanıldı. Fonokardiyografi ile vasküler sesler arasındaki

korelasyonu araştırmak için derin öğrenme ve özellik karşılaştırma yöntemleri uygu-

landı. Kalp sesi sınıflandırmasında umut verici sonuçların ötesinde, fonokardiyografi

kayıtları ile %50-90 darlıklı vasküler sesler arasında açık bir ilişki olduğunu ortaya

koydu. Bu sonuç, koroner arter hastalığının fonokardiyografi kullanılarak tespit edi-

lebileceğini vurgulamaktadır.

Anahtar Kelimeler: Kalp Sesi Sınıflandırılması, Fonokardiografi, Stenoz Tespiti
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CHAPTER 1

INTRODUCTION

Non-communicable diseases (NCDs) are commonly called chronic diseases, includ-

ing cancers, diabetes, respiratory and cardiovascular diseases which have long-term

consequences. They arise from lifestyle, genetic factors, and environmental condi-

tions. Excessive alcohol intake, tobacco consumption, physical inactivity, and bad

eating habits increase the probability of developing diseases. According to World

Health Organization (WHO), the prominent mortality rate percentage belongs to car-

diovascular diseases, and they mention that the number of deaths is approximately

17.9 million annually [1].

Atherosclerosis, a type of cardiovascular disease, is a significant contributor to these

deaths. It is a condition that progressively causes the buildup of substances in artery

walls resulting in plaque formation. These plaques can eventually limit blood flow to

essential organs such as the heart, brain, and kidneys. It leads to vital health issues

like heart attacks and strokes. Contrary to what was known before, the prevalence of

atherosclerotic cardiovascular diseases is no longer confined to industrialized nations

but it has escalated into a worldwide concern [2].

The following section will provide a detailed description, blockage mechanism, and

diagnosis methods of atherosclerosis. It is essential to clearly understand these as-

pects to develop effective approaches to detect and treat this common and potentially

lethal disease. After clarifying the disease, there will be a literature survey section to

gain insight from the latest studies.

1



1.1 Problem Definition

1.1.1 Atherosclerosis

Atherosclerosis has a Greek-based etymology, which means hardening of the vessels.

Although cholesterol is the leading cause of atherosclerosis, there is a more compli-

cated mechanism than commonly known.

The initial growth of atherosclerotic lesions are referred to as atherogenesis or patho-

genesis. Figure1.1 shows the evolution of pathogenesis progress in years. It was

considered a lipid storage-based disease in the beginning. Through further research

and investigation, it is realized that immune response, endothelial dysfunction, and

inflammation could be the reason for the plaque accumulation [3].

Figure 1.1: Evolution of Atherosclerotic Pathogenesis adopted from [3]

Figure 1.2 is an illustration of the stages in the development of atherosclerotic lesions.

The disease starts with damage to the inner layer of an artery called the endothelium.

Normally, this layer prevents molecules to pass through to the inner layers in healthy

conditions. However, high blood pressure, high cholesterol levels, or inflammation

can weaken the integrity of the endothelium layer. This makes it more permeable,
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allowing lipids and immune system molecules to enter the artery wall.

Low-density lipoprotein (LDL), known as bad cholesterol, penetrates through the

damaged surface and accumulates in the artery wall’s intima layer. Also, the mono-

cytes in the blood attach to the endothelium, pass through the intima layer and turn

into macrophages. The new form of monocytes swallows the LDL molecules. They

evolve to foam cells and create fatty streaks after accumulation.

Figure 1.2: Stages in the Development of Atherosclerotic Lesions adopted from [4]

The long-term development of the streaks results in atheromatous plaques with a

lipid-rich core and a fibrous cap. Depending on unstable fibrous surfaces, vascular

plaques are more prone to rupture. When a plaque bursts, a lipid-rich content mixes

into the bloodstream, which triggers thrombosis(blood clots) formation.

Inflammation plays a critical part in the entire process. Plaques cause an immunolog-

ical reaction, which attracts inflammatory cells, such as T cells, to the artery wall and

aids in the growth and instability of plaques.

As a result, the blood flow regime is altered by expanding plaques and narrowing

the artery lumen. Accordingly, the vital organs cannot receive enough oxygen from

the blood. If vessels feed the heart, these conditions lead to angina or myocardial

infarctions. In carotid arteries, it can increase the probability of strokes.
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This disease progresses gradually at a slow pace. Typically, atherosclerosis does not

produce symptoms until an artery is either completely blocked or significantly nar-

rowed [5]. There can be irreversible effects on the vital functions of humans, or it

may result in death. Therefore, diagnosing and treating atherosclerosis immediately

will have remarkable results.

1.1.2 Diagnosis Methods

The early diagnosis of atherosclerosis has the utmost importance in preventing irre-

versible and permanent consequences. The methods focus on assessing narrowing or

occlusion in the artery lumen. There are standard methods to diagnose the disease,

such as invasive and noninvasive techniques. The decision depends on where the

blockage is suspected, the patient’s health status, and the severity of the conditions.

The most reliable and suitable method for high-risk patients is coronary angiography

which is in vivo [6]. The procedure employs a special dye and X-rays. The dye,

visible by X-ray, is injected into the blood from the groin or arm of the patient with

a catheter, so it is an invasive method. The image retrieved from the X-ray shows the

details about narrowing, occlusion, or abnormalities of arteries. The technique has

excellent spatial and temporal resolution but could not contribute information about

small lesions [7].

The next gold standard techniques seem like Intravascular Ultrasound (IVUS) and

Optical Coherence Tomography (OCT). They both have better performance to qualify

the artery dimensions [8]. IVUS employs sound waves to evaluate soft vascular tissue.

A tiny piece of equipment captures real-time images piece by piece from veins and

is mainly used for coronary arteries. Similarly, OCT is a tool to visualize lesions of

veins with microscopic precision by the light beams to evaluate the tissue rather than

sound [9]. If there is a lipid accumulation with high cholesterol, IVUS, and OCT are

not good at imaging plaques.

Near Infrared Spectroscopy (NIS) is an alternative intravascular imaging method in

this case. Since cholesterol molecules absorb infrared light, occlusion appears from

the yellow to red spectrum. The practitioners can combine these intravascular meth-
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ods to utilize superior properties for accurate and precise results [10].

Intravascular methods are not only helpful in imaging the artery and discretization of

different lesions, but also it is useful for applications like stent implantation. Although

these methods are quite reliable, they have limitations and risks to be considered [11].

Firstly, Atherosclerotic diseases should be diagnosed to treat as soon as possible, but

intravascular techniques have cumbersome procedures that take a long time. The

next disadvantage is that qualified professionals must handle the operations. It is

also necessary to consider the initial costs of imaging devices that affect patients

and medical staff by emitting radiation. In addition to them, there can occur clinical

complications. Inserting a catheter into the blood vessel damages the vessel wall.

According to coronary health, the effect of damage can be either minor or significant.

Paradoxically, these techniques could cause the disease trying to detect by triggering

the formation of blood clots or leading to the spread of plaques through the body

and leading to another occlusion. Further, blood pressure drops could change normal

heart functioning. Also, bruises on the skin surface have always been a risk source

of infections. Therefore, taking preventive cautions to avoid risks and evaluating

conditions thoroughly before application is essential.

The risks of invasive methods and the silent progression of the disease call for new

noninvasive instruments. Magnetic Resonance Imaging (MRI) Angiography has a

different procedure than conventional invasive angiography. Although a contrast dye

is injected into the vessel, there is no catheterization. It employs powerful magnets

and radio waves to create high-resolution blood vessel images.

Computed Tomography Angiography (CTA) can also image the cross-sectional ar-

eas of blood vessels with various images collected from distinct body angles. This

technique is more applicable in detecting calcium accumulation and provides more

information than direct X-ray images due to computer support [12].

Conventional ultrasound applications are very rapid and cost-efficient solutions. Doppler

ultrasound is a type that uses sound waves to distinguish the speed and direction

of blood flow, which identifies areas of narrowing, blockages, and the presence of

atherosclerotic plaques. Bright mode ultrasound can visualize the thickness and shape
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of the artery as well as the presence of abnormalities. Combining these two methods

results in a comprehensive image of the vascular system [13].

Non-invasive methods also carry risks and potential dangers, just like invasive ones.

Although they are relatively safer, being aware of any potential risks is crucial. The

most prominent consideration is the radiation exposure from X-ray-based tool be-

cause it has an ionizing nature that can disrupt normal chemical reactions and dam-

age the cellular structure. Prolonged or frequent exposure leads to cell mutations,

tissue deterioration, and, eventually, cancers. The other aspect is the contrast agents.

Despite the image-enhancing effect of dyes, they can harm kidneys and exacerbate

preexisting conditions. Also, an allergic reaction can occur, even if it is rare. In ad-

dition to the high initial cost and the necessity for skilled professionals, non-invasive

methods result in a false-negative or false-positive case.

The last but not the least non-invasive diagnosis method is phonocardiography. The

technique involves recording and analyzing heart sounds. It is able to identify ab-

normalities that may indicate underlying cardiovascular issues. Phonocardiography

offers a non-invasive, clear, and cost-effective means to evaluate cardiac functions by

catching distinct sound patterns. Since the process is very proper for data collection,

machine learning algorithms can utilize them to detect abnormalities without well-

skilled professionals. This approach complements other diagnostic tools and helps

clinicians in early detection, accurate assessment, and punctual intervention for coro-

nary artery disease. In this way, this method reduces potential complications and

enhances the healthcare management.

1.1.3 Acoustic Phenomena in Atherosclerosis

Under normal conditions, blood flow is laminar. It moves smoothly and steadily.

However, when blood encounters a narrowing in a blood vessel, this laminar flow is

disrupted, which causes a significant pressure drop within the artery. This pressure

drop is particularly critical in the coronary artery system, where there is a direct pro-

portional relationship between the drop in pressure and the heart’s energy demands.

A higher pressure drop means the heart’s muscle must work harder to maintain a

consistent blood flow to the organs. The pressure decrease through a simplified rep-
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resentation of the occluded coronary artery model can be expressed with following

expression:

∆Pblockage = f

(
Re,

L

D
,
A1

A0

,
l

D
, e,

dV

dt

)
(1.1)

In the equation labeled (1.1), ∆P stands for the pressure drop in an artery with a spe-

cific length L and internal diameter D. The term Re refers to the Reynolds number,

expressed by equation 1.2, is a measure of the flow type of the blood. The areas A0

and A1 are the cross-sectional areas of the artery where there is no blockage and the

narrowest part of the blockage, respectively. The length of the blockage is given by l,

and e is its eccentricity, which describes how off-center the blockage is. Lastly, V is

the speed of the blood flow in the artery without blockage.

Re =
ρVavgD

µ
(1.2)

Reynolds number(Re) involves the density of the blood (ρ), the average velocity (Vavg)

in the part of the artery without any blockage, and the blood’s viscosity (µ).

The blood flow Re range in the body varies from 1 in small arterioles to approxi-

mately 4000 in the largest artery. At a Reynolds number of 2000, steady laminar flow

in a circular pipe becomes unsteady. Transition into fully turbulent flow occurs at

approximately 4000. [14] Nevertheless, Yongchareon and Young [15] proposed that

turbulence could emerge at even a lower Reynolds number due to flow disruptions.

Fredberg [16] proposed that, right after the occlusion site, the blood flow separates

from the walls since it can not overcome the adverse pressure gradient. The conse-

quence of this detachment is the creation of a high-velocity jet stream. A shear layer

is created when this jet stream interacts with the slower recirculating fluid in the recir-

culating separation zone. This particular layer is highly susceptible to fluid-dynamic

instabilities, which are commonly referred to as shear instabilities. Within this shear

layer, turbulence occurs as the instabilities grow and extract energy from the mean

flow. The visual representation of the blood flow through the obstructed region is

given in Figure 1.3.
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Figure 1.3: Stenosis Flow Diagram retrieved from [17]

The resulting pressure fluctuations cause tissue vibrations and generate vascular sounds.

Figure 1.4 shows how turbulence after a stenosis generates sound and how this sound

is transmitted to the skin surface. These sounds were first attributed as bruits by René

Laennec, who invented the stethoscope. Lees and Dewey [18] introduced a new di-

agnostic approach depending on these acoustic vibrations, Phonoangiography. They

suggested that these waves on the body’s surface can be detected using tools such as a

stethoscope or a device that measures skin movement. By doing this, we can measure

and record these sounds’ strength and range of frequencies. The use of quantitative

analysis can help investigate fluid movement in atherosclerotic arteries.

Figure 1.4: Acoustic Vibration Generation of Atherosclerotic Artery retrieved from

[18]
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1.2 Literature Survey

The practice of listening to the heart, known as auscultation, dates back to the ancient

civilizations of Greece and Egypt. Laennec invented the stethoscope in 1816, and

it was the initialization of dedicated research into understanding heart sounds. [19]

There have been many fundamental studies that explain the theoretical background of

our research, as well as the technological advancements that have encouraged further

study in this field. The valuable studies can be categorized as analytical, experimental,

and numerical studies, technological advancements, and the contributions of artificial

intelligence.

1.2.1 Analytical, Experimental and Numerical Studies

The multifaceted approach to understanding the dynamics of coronary artery diseases

contains analytical, experimental, and numerical studies. Each of them gives unique

insights into the complexities of blood flow and associated pathologies.

Yazıcıoğlu et al. [20] analyze vibrations in a thin-walled, viscoelastic tube experi-

encing turbulent flow caused by an axisymmetric constriction. They aim to provide

insights into the dynamics of vascular systems and enhance noninvasive diagnostic

techniques through acoustic measurements. The experiment setup mimics the condi-

tions of a vascular system with internal fluid dynamics influenced by a constriction. It

resembles an occlusion in a blood vessel. In addition to the experiment, an analytical

and theoretical model was studied to analyze how turbulence in the tube causes vi-

brations in the surrounding materials. These results were verified against experiments

using Laser Doppler Vibrometry (LDV), which measures how much the tube and the

surrounding materials vibrate. Moreover, the pressure of the fluid inside the tube is

also measured. Although the experimental results generally aligned with the theoret-

ical model, some discrepancies originated from the linear structural models and the

nonlinear characteristics of tissues and turbulence.

Tobin and Chang [21] have an experimental study that measures the pressure on the

walls of a tube at different points after placing cylindrical blocks inside it, which

mimics the blood flow in stenosed vessels. Their goal was to identify the severity of
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blockages in blood vessels by analyzing the sounds these blockages make, so they

utilized different sizes of blockages with a constant flow of water. Particularly at high

flow rates, they noticed a jet of water shooting from the narrowest part of the blockage

and merging back to the tube wall within a short distance. They discovered consistent

patterns between the frequency and intensity of the pressure changes and the blockage

size. By introducing new variables, they standardized the pressure fluctuation data at

the point of highest difference. They also compared this standardized data with the

root mean square (RMS) pressure values and noticed that they were similar but not

exactly the same.

Plaque morphology could be described by the artery shape and degree of blockage.

Freidoonimehr et al. [22] suggested that the morphology considerably influence flow

behavior and pressure drop. The stenosis degree is defined as the percentage of the

arterial cross-section blocked due to plaque formation. The plaque can occupy either

the entire artery cross section in a severe case or just a tiny part. Stenosis can be

characterized by its geometrical shape, eccentricity, and edge sharpness. Figure 1.5

shows circular stenosis from a to e, elliptic stenosis from f to j and sharp-edge stenosis

from k to o.

Figure 1.5: Cross-sections of Occluded Coronary Arteries in Different Morphology

retrieved from [22]
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Salman [23] conducted computational analyses and experimental studies to find the

relationship between stenosis level, vessel parameters and corresponding vibration

responses. Arteries, blood, muscles, fat, and bones have been modeled in computa-

tional study. The study investigates the effects of turbulence-induced dynamic pres-

sure fluctuations on the arterial wall by means of the radial displacement, velocity,

and acceleration responses on the skin surface. To perform this task, different flow

rates, stenosis severities, and structural material properties are considered. The results

obtained from the computational analysis align well with the experimental observa-

tions.

Vibrations on phantom tissue were measured using a microphone, electronic stetho-

scope, and laser Doppler vibrometer. As a result, a 70% blockage level is a significant

threshold, as levels above 70% have shown a marked increase in vibration amplitudes.

Moreover, if the blockage level increases from 70% to 90%, then the vibration ampli-

tudes on the outer surface of the artery increase by more than tenfold.

In their numerical analysis, Ozden et al. [24] explored how the shape of a stenosis

affects pressure oscillations and sound emissions in stenosed blood vessels. Open-

FOAM is used to perform Large Eddy Simulations (LES) under pulsatile flow con-

ditions with a non-Newtonian fluid blood model. The results show that a sharp rise

at the start of the blockage and overlapping blockages can make the blood flow more

chaotic right after the blockage, creating more swirls and energy in the flow and mak-

ing the pressure change more dramatically. These blockage characteristics also make

the sound louder, especially during the heart’s systolic phase. However, if the block-

age is uneven, it has the opposite effect. The pressure on the blood vessel walls also

shows that the blockage’s shape changes how loud and what pattern the heart mur-

murs have. This study demonstrates that the shape of the blockage is a crucial detail

in generated sound.

1.2.2 Technological Advancements

There has been a significant evolution in technological capabilities in the pursuit

of non-invasive methodologies for monitoring heart health. Traditional auscultation

methods provided the foundation for understanding cardiac acoustics. Building upon
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this, advancements in acoustic technology and analyzing methods have led to the

development of sophisticated devices capable of capturing cardiac sounds with pre-

cision beyond the human ear. These devices leverage digital signal processing to

analyze heart sounds. Also, recent innovations have led to the miniaturization and

optimization of acoustic sensors, allowing their integration into wearable devices.

These wearables offer continuous monitoring of heart sounds in real-world settings.

The evolution of this technology reflects a collaborative effort across decades, with

incremental improvements contributing to the current state of the art.

Heart sounds originate from specific thorax locations and travel at a unique speed

through different body tissues. Cardiac acoustic mapping leverages the spatial de-

tails captured on the chest surface to understand heart sound origins and pathways.

Stethovest, designed by Sapsanis et al. [25], is a wearable device tailored for the up-

per body. The vest is equipped with 12 PCG sensors (microphone array), enabling it

to capture heart sounds from multiple locations simultaneously and map the heart’s

acoustic activity. It is especially useful for doctors to detect abnormalities or issues

with the heart by comparing sounds from different parts of the thorax all at once.

Klum et al. [26] presented a pioneering device for auscultation. It is a wearable patch

that uses Bluetooth 5.0 LE to combine five different functions: a micro electrome-

chanical system (MEMS) stethoscope, noise detection, ECG, impedance pneumog-

raphy (IP), and 9-axial actigraphy. Its key benefit is its ability to replace multiple

separate sensors, making long-term health monitoring more accessible and comfort-

able. This patch is especially useful in monitoring patients after surgery and during

sleep studies. It helps identify important health events, enhances patient comfort,

and reduces costs. Typically, monitoring requires several sensors placed all over the

body, and the procedure can be inconvenient and uncomfortable. This compact patch

(70 mm by 60 mm) integrates all these functions into one small, easy-to-wear de-

vice. Figure 1.6 demonstrates the prototype of the device. The patch has proven to be

highly effective in monitoring heart and lung sounds and recording ECG and IP sig-

nals. It accurately measures breathing patterns and correlates closely with standard

references. This indicates its precision and suitability for situations where discreet

yet high-quality monitoring is needed. Its ability to process data at high speeds and

synchronize it online further improves its function and reliability.
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Figure 1.6: The Prototype of Multimodal Patch retrieved from [26]

Sensor technologies have become increasingly significant for accurate and precise

measurements. Illustrating this, Jiangong et al. [27] introduced a unique MEMS

auscultation sensor inspired by the human ear’s auditory system. This sensor mim-

ics how sound waves travel to the basement membrane through the eardrum and are

transformed into nerve impulses by hair cells with cilia bundles. It features a can-

tilever beam with an embedded piezoresistor, simulating the cilia’s role. When heart

sound vibrations are detected, the beam deforms, and the piezoresistors convert this

deformation into a differential voltage signal, mirroring the auditory system’s func-

tion auditory system.

1.2.3 Contribution of Artificial Intelligence

Artificial intelligence (AI) is a powerful catalyst. It significantly accelerates the pro-

cessing and interpretation of complex data across various fields. In cardiology, non-

invasive acoustic measurement techniques integrated with AI transform CAD detec-

tion and monitoring. AI can uncover subtle patterns in heart sounds that may indicate

underlying conditions, enhancing diagnostic accuracy and leading to more timely

and effective treatments by harnessing sophisticated algorithms. AI and acoustic di-

agnostics stand on the verge of a new era in cardiology. It will complement clinical

expertise and increase the successful results.

Machine learning is an assertive branch of artificial intelligence. Promising stud-

ies have been conducted using machine learning-based techniques in recent years.

Samanta et al. proposed a multi-channel PCG-based system that simultaneously ac-
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quires four different auscultation areas on the thorax [28]. ANN is utilized to clas-

sify signals based on five features extracted from time and frequency domains. The

process could be divided into four subsequent parts. It starts with data acquisition

from 66 male subjects. These subjects were separated into two groups: healthy and

CAD-positive, confirmed by angiogram. A low-pass filter and heart rate computa-

tion are applied for pre-processing the dataset. After examining the dataset in both

time and frequency domains, classification is performed using selected features. The

overview of the procedures is given in Figure 1.7. The proposed method achieved

an accuracy of 82.57%, compared to 68.93% for the baseline CAD detection system

using single-channel data. The performance enhanced considerably with the use of

the multi-channel framework. The importance of this work is an affordable and safe

diagnostic method that provides an augmented screening of patients with high-risk

conditions.

Figure 1.7: Overview of the Proposed System retrieved from [28]

The evolution of machine learning algorithms in the diagnosis of CAD has been ex-

tensively reviewed for the period spanning from 1992 to 2019 by Alizadehsani et al.

[29] This review elucidates that machine learning integrated CAD diagnosis varies

regarding the data types, sampling, feature selection, data collection location, per-

formance measurement technique, and algorithm. Moreover, it emphasizes that deep

learning algorithms will have a revolutionary effect on CAD detection. As deep learn-

ing models require massive datasets, there was not worthwhile research until 2016

because there is insufficient heart-sound data for deep learning.

2016 is the year that PhysioNet arranged a computing cardiology challenge [30].

This challenge is the milestone of deep learning applications in heart sound classifi-
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cation. PhysioNet provided 90,000 samples for training and validation. In addition to

the massive dataset, they contribute a pre-processing algorithm for filtering and seg-

menting heart sound signals. Forty-eight teams brought unique methodologies and

enriched the literature with distinct perspectives and approaches. Figure 1.8 contains

8 top entrants, scoring and their methods.

Figure 1.8: Final Scores of the Best 8 Entrants retrieved from [30]

Rubin et al.[31] utilized a simple yet effective approach to the challenge. They com-

bine the mel-frequency cepstral coefficients(MFCC) method for feature extraction

and the convolutional network for classification. This approach inspired the thesis

course and helped to gain insight into applying deep learning algorithms. After the

competition, the number of studies increased based on the provided datasets.

Earlier strategies to detect abnormalities depend on support vector machines(SVM),

ANN, and signal processing in various ways. These techniques have low perfor-

mance, around the 80s. Gupta et al. introduced The HeartFit, a novel algorithmic

approach and an innovative platform [32]. The network architecture,shown in Figure

1.9, is built with seven convolutional and five recurrent layers to classify heart sounds.

It has better performance and more balanced results than the PhysioNet challengers.

This success is because RNN improves performance because the sound is a sequential

data type. The platform has three components: a mobile application, a database, and a

deep learning server. The process involves capturing audio through a stethoscope in-

terfaced with a mobile application. Then, it synchronizes with a deep learning server

to process and exchange audio data and diagnostic results. HeartFit aims to deliver

murmur monitoring available for people without access to medical devices and suffi-

cient professional care. Moreover, it can be the option of a home murmur-monitoring

system. It allows people to identify a murmur with no experience.
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Figure 1.9: The Network Architecture of the HeartFit retrieved from [32]

Sharma et al. [33] illustrated the basic steps of sound classification with ML with Fig-

ure 1.10. The features determine the model performance of a ML algorithm. Hence,

extracting features is an important component of the workflow.

Figure 1.10: The Workflow of ML Audio Classification retrieved from [33]

Lately, there have been many studies that train audio classification models on big

datasets [34, 35]. This training helps them develop complex features known as em-

beddings. They are useful for classification without additional domain knowledge,

even for smaller datasets.

Despotovic et al. [36] utilized different feature extraction methods and compared

them in their COVID-19 study. They also introduce a dataset including cough and

breathing recordings from patients and healthy people. This disease can cause unique

vocal patterns due to changes in breathing and voice. They employed standard audio

features, VGGish, and OpenL3 to extract features and get the patterns. Although the

combination of MLP and Wavelet reached 88.52% accuracy, the OpenL3 and VGGish

also had promising results, approximately 76%.

The other aspect of this study is the comparison of the different supervised classi-

fication methods of the extracted features. By these methods, the algorithms allow

us to learn the relationships between the features of labeled inputs and the outputs.
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The primary goal is to predict the unseen instances with the model learned from the

training data.

Shetha et al. [37] noted that several studies have been conducted to evaluate dif-

ferent algorithms for finding the best approach. These have revealed that no single

solution is effective in every case. They also performed a comparative study us-

ing different datasets and focused on the four well-known classifiers: decision trees,

KNNs, SVMs, and Naive Bayes. Each model achieved distinct results according to

the dataset characteristics. Therefore, applying different methods to achieve the best

results in specific topics is beneficial.

In conclusion, these studies demonstrate the evolution of cardiac auscultation from

basic stethoscopes to AI-integrated diagnostic tools. Research ranging from ana-

lytical, experimental, and numerical studies to technological advancements and AI

contributions has collectively enhanced our ability to detect and analyze cardiovas-

cular diseases more accurately and non-invasively. The diversity of methodologies

and technologies underscores the complexity of cardiac diagnostics and highlights

the potential for further innovations.

1.3 The Purpose and the Scope of the Study

Atherosclerosis presents significant diagnostic challenges due to the cumbersome,

costly, and invasive nature of conventional methods. This study aims to pioneer a

non-invasive approach for detecting coronary artery diseases using phonocardiogra-

phy recordings and artificial intelligence, utilizing open-source datasets. A primary

focus is exploring the potential relationship between phonocardiography heart sounds

and stenosed vascular sounds employing advanced classification techniques. Our ap-

proach denotes a novel contribution to the field, aiming to revolutionize the early

detection and management of atherosclerosis.
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1.4 The Outline of the Thesis

There are five chapters in the study. Chapter 1 presents the problem definition, cover-

ing atherosclerosis, diagnostic methods, and the study’s acoustic principles. In addi-

tion, a literature survey and our approach will be presented. Chapter 2 introduces and

elaborates on feature extraction and classification methods employed in this study.

Chapter 3 focuses on heart sound classification, including the heart sound dataset, our

implementation of feature extraction and classification techniques, and their different

combinations. Chapter 4 explores the connection between heart and vascular sounds,

covering information on vascular sound datasets. Chapter 5 offers conclusions and

suggestions for future research.
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CHAPTER 2

FEATURE EXTRACTION AND CLASSIFICATION METHODS

2.1 Feature Extraction Methods

2.1.1 MFCC Heat Maps

Mel-Frequency Cepstral Coefficients (MFCC) heat map is a type of representation

used in audio and speech processing. It defines the spectral characteristics of sound

and they are computed using the Mel Frequency Scale. It is a well-known and valu-

able method to extract features from an audio signal useful for various applications,

such as speech recognition and sound classification.

Figure 2.1: Visualization of MFCC Calculation Process

Calculating MFCCs requires following a series of steps. The first step is dividing the

audio signals into smaller frames. The amplitude spectrum of each frame is obtained

by utilizing Fast Fourier Transform (FFT) to translate the signal into the frequency
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domain. Subsequently, the logarithm operation of the spectrum follows the process

and the spectrum is transformed into a Mel-scale representation. Finally, The discrete

cosine transform is implemented to extract distinctive frequency features [38]. Figure

2.1 is the visual representation of MFCC calculation process.

2.1.2 OpenL3

OpenL3 algorithm was originated from the L3-Net. Arandjelovic and Zisserman [34]

developed the L3-Net (Look, Listen, and Learn Net), which integrates audio-visual

correspondence. Three key goals drove their research. The first motivation behind the

research is learning from generous and free resources; using widely available videos

provides both visual and audio data. The next one is mimicking infant learning pat-

terns, similar to how infants develop their visual and auditory skills by observing and

listening to the world around them. The third objective is to evaluate the performance

of the networks for different tasks.

The core objective was to create a system that independently learns visual and audi-

tory semantic information by watching and listening to numerous unlabeled videos.

This was accomplished through a novel learning task named Audio-Visual Corre-

spondence (AVC), which trains both visual and audio networks from the beginning.

An illustration in Figure 2.2 shows this audio-visual correspondence method.

Figure 2.2: Illustration of Audio-Visual Correspondence Method retrieved from [34]
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In the network architecture,shown in Figure 2.3, it is divided into audio and vision

networks. While the image input size is 224 × 224 × 3, the audio signal is utilized

as a 257 × 199 × 1 sized log-spectrogram, which belongs to 1-second and 48 kHz

audio. There are four convolutional and max-poling layers, one after another, in both

subnetworks. Also, each convolution has batch normalization and ReLU activation

functions. After the outputs of visual and audio subnetworks are concatenated, it

follows the fully connected layer, ReLU activation function, fully connected layer,

and finally, softmax activation function. They utilize a max-pooling technique that

results in a final embedding dimensionality of 6144.

Figure 2.3: L3-Net Arhitecture retrieved from [34]
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Although the embedding shows potential for future applications, certain design deci-

sions that could affect its effectiveness and computational efficiency remain unclear.

To gain a deeper insight into how the embedding functions, Cramer et al. [39] ex-

plored three different design approaches.

The first one is the input representation of audio. They explain the first approach as

the original L3-Net utilizes a spectrogram based on the linear frequency and logarith-

mic magnitude for its audio subnetwork input. However, Mel-frequency logarithmic

magnitude spectrograms are more commonly used in machine learning applications.

These Mel spectrograms capture perceptually significant and require fewer frequency

bands than linear spectrograms. Notably, the Mel scale’s quasi-logarithmic frequency

allows for better pattern consistency in pitch-shifted sounds and makes it more effec-

tive for convolutional filters.

Figure 2.4 illustrates the study’s findings. It shows that Mel spectrograms consis-

tently outperform linear spectrograms across all datasets. The 256-bin Mel spectro-

gram yields the best results, significantly outperforming others in UrbanSound8K and

ESC-50 datasets. This suggests that Mel spectrograms are more efficient at capturing

crucial audio information. However, in the small DCASE 2013 SCD dataset, all types

of embeddings show similar high accuracy.

Figure 2.4: Classification Accuracy Against Input Representation retrieved from [39]
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The second one is training domain and downstream tasks. The L3-Net creators

trained their model using videos rich in Audio-Visual Correspondence (AVC). The

initial attempt was to use the Yahoo Flickr Creative Commons 100 Million Dataset

(YFCC100M), provided by [40]. It is the most extensive public multimedia collection

ever made available.

This dataset comprises 100 million media items, including around 99.2 million pho-

tographs and 0.8 million videos, all under a Creative Commons license. Each item

is accompanied by various metadata details, such as the Flickr ID, owner’s name,

camera used, title, tags, location, and source of the media. This dataset offers an ex-

haustive overview of the evolution of photo and video capture, tagging, and sharing,

covering the period from Flickr’s start in 2004 to early 2014.

Then, the AudioSet [41] was initialized. It consists of 2,084,320 YouTube videos

and 527 labels accordingly. There is a vast array of 10-second audio clips and hand-

labeled videos. The compilation of this dataset involved human annotators confirming

the sounds in these YouTube segments. These segments were selected for annotation

based on YouTube’s metadata and content-driven search methods.

AudioSet’s labels shed light on the video content and its influence on the model. They

focused on videos featuring musical instrument performances, while their intended

applications dealt with environmental sounds.

Figure 2.5: Classification Accuracy Against Different Training Datasets retrieved

from [39]
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This study explores whether aligning the training audio with the task-specific audio

improves results, expecting such matching to enhance performance. Cramer et al.

[39] investigated the impact of this domain alignment on the performance of the pri-

mary classification task, illustrated in Figure 2.5.

Contrary to expectations, aligning the audio domains did not yield a positive effect

on performance. Specifically, in the context of the ESC-50 task, a slight decline

in performance was observed. This outcome suggests the potential superiority of

selecting audio content based on its capacity to enhance the discriminative ability

of the embedding, irrespective of the audio domain of the subsequent task. In this

regard, videos featuring musical instrument performance are presumed to exhibit a

higher degree of AVC than environmental videos, which may be a more critical factor

in evaluating the efficacy of the resultant embedding.

The third design concern is the quantity of training data. Arandjelovic and Zisserman

[34] trained their models using 60 million samples. They did not address how the

data volume impacts the embeddings’ effectiveness. Given the considerable time

and computational resources required for training, assessing the balance between the

quantity of training data and the performance in subsequent classification tasks is

valuable.

Figure 2.6 presents the results for UrbanSound8K and ESC-50 in the top and bottom

plots, respectively. In UrbanSound8K, accuracy improvements start to plateau after

training with 13 million samples, achieving roughly 77% accuracy. For ESC-50, a

similar trend is observed, with diminishing returns after using 40 million samples,

reaching around 79% accuracy. These findings imply that for training under limited

resources, using at least 40 million samples is advisable for optimal training of the

L3-Net embedding [39].
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Figure 2.6: Comparison of Classification Accuracy Relative to the Number of Train-

ing Samples in Embedding Model Training retrieved from [39]

2.1.3 VGGish

The origin of the VGGish model is the VGG architecture for image recognition. The

Visual Geometry Group created the VGG network. Simonyan and Zisserman [42]

introduced a deep CNN for large-scale image recognition. The VGG architecture

became famous for its depth and performance in the ImageNet competition. The

adaptation of VGG for audio was developed by Hersley et al. [35], researchers at

Google, and VGGish is part of their AudioSet project.

Image classification has seen considerable progress due to the introduction of ex-

tensive datasets like ImageNet and the application of CNN architectures, including

AlexNet, VGG, Inception, and ResNet. The researchers mentioned that they had

been encouraged by these developments and then investigated whether large datasets

and CNNs could also improve performance in audio classification tasks.

Gemmeke et al. [43] created AudioSet, sourced from YouTube videos, to narrow the
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gap in data availability between image and audio research domains. This initiative

marked a significant development in the audio domain, with the dataset undergoing

continuous improvements and expansions. VGGish, leveraging this initiative, used

a massive YouTube dataset comprising 100 million YouTube videos, including 70

million training videos, 10 million evaluation videos, and 20 million videos that we

used for validation. Each video in the training program has an average duration of

4.6 minutes. In total, there are 5.4 million hours of training available. Each video is

labeled automatically from approximately 30,000 labels based on a combination of

metadata.

The audio from the dataset is segmented into 960 ms frames, which inherit the la-

bels of their respective videos. It results in around 20 billion samples. They process

each frame using Fourier transform with 25 ms windows every 10 ms. The spec-

trograms are produced and then converted into 64 mel-frequency bins. This process

generates log-mel spectrograms that serve as inputs for all classifiers. They created

mini-batches of 128 examples by randomly selecting from these patches for training.

The experiments are conducted with TensorFlow utilization with multiple GPUs asyn-

chronously and the Adam optimizer. The VGGish Network architecture is depicted

in Figure 2.7. After each convolutional layer, batch normalization was applied. For

the final layer, sigmoid was chosen rather than softmax in case of multiple labels.

The loss function used was cross-entropy. Since there is no overfitting, there is no

regularization technique.
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Figure 2.7: VGGish Network Architecture retrieved from [44]

The team established a fully connected deep neural network (DNN) as the base-

line, using approximately 30,000 labels for training and evaluation. They optimized

GPUs and learning rates to maximize frame-level classification accuracy. The best-

performing baseline model has 3 layers with 1000 units each, a learning rate 3×10−5

by means of 10 GPUs and 5 parameter servers, and about 11.2 million weights.

For AlexNet, modifications included adjusting the stride in the initial convolutional

layer and replacing local response normalization (LRN) with batch normalization

due to different input sizes. The final layer was also altered, which led to a total of

37.3 million weights. Unlike the original AlexNet was trained with 20 GPUs and 10

parameter servers, without distributing filters across devices.

In adapting VGG, the changes were limited to the final layer and batch normalization

instead of LRN. The audio version of VGG had 62 million weights. Adjusting initial

strides was tested, but maintaining the original stride proved more effective. Training

used 10 GPUs and 5 parameter servers.

For InceptionV3, the team modified the initial layers to the MaxPool and removed the

auxiliary network, leading to an audio variant with 28 million weights. Adjustments

in the Average Pool size were made to suit audio activations better. This model was
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trained with 40 GPUs and 20 parameter servers.

Lastly, ResNet-50 was modified by removing the stride from the initial convolution

and adjusting the Average Pool size. This resulted in an audio-specific version with

30 million weights. It was trained using 20 GPUs and 10 parameter servers.

Each of these models represents a tailored adaptation of a successful image clas-

sification architecture, reconfigured to address audio data’s specific challenges and

characteristics.

2.2 Classification Methods

2.2.1 Convolutional Neural Network

Artificial Neural Networks (ANNs) are computational models directly based on the

functioning of the human brain’s nervous systems. These networks are composed

of numerous interconnected processing units, also called neurons. The neurons work

together in a coordinated and distributed manner to process input data effectively. The

illustration of the analogy between the real and artificial neuron is given in Figure 2.8.

Figure 2.8: Analogy between the Human and Artificial Neuron Retrieved from [45]

Figure 2.9 shows the fundamental structure of an ANN. The process begins by feeding

a multidimensional vector into the input layer and then forwarding it to the hidden

layers. The hidden layers of the ANN are responsible for evaluating and processing

the information received from the previous layer. Therefore, they assess how random

variations within themselves negatively or positively impact the final output. This
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phase is known as the learning process. This structure is typically called deep learning

if several hidden layers layered on top of each other.

Figure 2.9: Simple Neural Network Representation retrieved from [46]

Although the mathematics dates back earlier, the convolutional neural networks intro-

duced by LeCunn et al. [47] in 1989. They used the backpropagation algorithm for a

neural network (NN) architecture for recognizing handwritten digits in images. This

network, named LeNet, is widely regarded as the first successful implementation of

a convolutional neural network. It established the foundation for contemporary CNN

architectures.

CNNs resemble ANNs because they consist of neurons that have self-improvement

ability through learning. The neurons process inputs by executing mathematical op-

erations, like ANNs. The network conveys the weights from the initial raw vectors

to the output. This structure enables CNNs to handle tasks such as image and video

recognition efficiently by reducing parameters and computations compared to tradi-

tional ANNs.

The architecture of CNNs could be described as a series of distinct layers. These lay-

ers have specific roles in the pipeline. Convolutional layers extract spatial hierarchies

of features from the input by empowering the hyperparameters. Activation layers

introduce non-linearities and allow the network to learn complex patterns. Pooling

layers reduce the data’s dimensionality and enhance the computational efficiency and

feature robustness. Fully connected layers then interpret these features to make fi-
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nal predictions or classifications. Dropout layers prevent overfitting and ensure the

model’s evaluation performance for unseen data.

Key hyper-parameters such as kernel size, number of filters, stride, and padding shape

the convolutional layers structure. These parameters determine how the network fil-

ters and processes input data while capturing essential features. Similarly, learning

rate, epochs, and batch size control the overall learning process and ensure the effi-

ciency of the network.

In this context, a significant application of CNNs in the field of medical diagnostics

can be seen in the work of Rubin and his teammates [31]. They proposed an algorithm

that integrates CNN and MFCC heat maps. After the signals’ arrangement, ninety

thousand MFCC heat maps were used as training and validation sets as input.

Figure 2.10 shows the architecture of the convolutional neural network to predict

normal versus abnormal sounds. The audio files undergo pre-processing using MAT-

LAB, facilitated by pre-processing codes offered by PhysioNet at the challenge. For

network implementation, TensorFlow is employed as the framework of choice. While

the source code for the inference model is accessible, it is noteworthy that the source

code for the training model is not provided.

Figure 2.10: Convolutional Neural Network retrieved from [31]
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The hyper-parameters and network parameters are detailed in Table 2.1 and Table 2.2.

Table 2.1: Hyperparameter Values

Hyperparameter Value

Learning Rate 0.00015822

Beta 0.000076253698849

Dropout 0.85565561

Table 2.2: Network Parameter Values

Network Parameter Value

Regularization Type L2

Batch Size 256

Optimization Adam

The final test scoring of the network, conducted after the completion of training, are

76.5% sensitivity, 93.1% specificity and 84.8% overall in the challenge.

2.2.2 Support Vector Machine

Support vector machines, abbreviated as SVMs, is a supervised learning method. It

was initially created by Vapnik et al. in the 1960s to recognize patterns and clas-

sify data, which was part of their more comprehensive research on machine learning

and decision-making theory. Later, in 1995, Vapnik and Cortes [48] published an

important paper that detailed SVM more thoroughly.

They first mentioned the SVMs as Support-Vector Network and introduced them as a

new learning method for two-class classification. The algorithm is not only reason-

able for classifying data but also applicable for regression tasks.
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There are three concepts to understand the algorithm background. The primary con-

cept of SVMs is identifying the optimal decision boundary, called a hyperplane, sepa-

rating different data classes. This boundary is selected to maximize the margin, which

is defined as the space between the hyperplane and the closest points from each class.

Support vectors are the essential data points that lie nearest to the decision boundary

in an SVM model, critically influencing the model’s classification decision. Figure

2.11 presents visual representations of the concepts.

Figure 2.11: Visual Representation of SVM Basic Concepts retrieved from [49]

SVMs rely on a set of mathematical functions called kernels. The kernel function

transforms input data into the desired form. There are three common kernels.

The linear kernel is a straightforward function that calculates the value through the

inner product of two vectors. The dot product shows the similarity between these

vectors. This simplicity is a significant advantage, particularly in cases where the data

points exhibit a linear relationship and large-scale applications. The mathematical

representation of the linear kernel is given by:

K(x, y) = x · y (2.1)

where x and y stand for the feature vector of the data points.
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The polynomial kernel is a more complex mathematical function than the linear ker-

nel. It plays a critical role when coping with nonlinear data by mapping the original

input features into a specified dimensional space. This transformation is achieved

through the use of polynomials of the original variables. Doing so facilitates the

SVM’s ability to learn nonlinear models that would be challenging or impossible to

fit using a linear kernel. The mathematical representation is expressed as follows:

K(x, y) = (γ · x · y + c)d (2.2)

where γ stands for a scale factor, c is a constant, and d term shows a polynomial

degree.

The Radial Basis Function (RBF) kernel is a common choice for nonlinear data. This

function transforms samples into a higher dimensional space using the Gaussian func-

tion. It is a robust and effective function when the data distribution is unknown or

exhibits variability. This versatility makes it appropriate for a wide range of applica-

tions. The mathematical expression is as follows:

K(x, y) = e(−γ∥x−y∥2) (2.3)

where γ is the Gaussian distribution parameter.

2.2.3 K-Nearest Neighbor

K-Nearest Neighbors, abbreviated as KNN, is a versatile distance-based supervised

learning method. The conceptual foundations of KNN can be traced back to the work

of Fix and Hodges [50] in 1951. Later, Cover [51] further developed these ideas into

today’s KNN for classification.

Today, KNN is recognized as an essential tool in machine learning. Unlike many con-

temporary machine learning methods, KNN stands out for its simplicity and intuitive

approach to classification and regression tasks.

The core idea of KNN depends on the concept that similar samples tend to be found
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close to each other. A distance metric defines this proximity, which computes the

similarity between instances. There are commonly used distance metrics. Euclidean

distance is a very well-known measure. It measures the distance between two vectors

and is restricted to samples with real values. The Euclidean distance formula is given

by:

D(x, y) =

√√√√ n∑
i=1

(xi − yi)
2 (2.4)

where x and y represent the first and second data points with n dimensions.

Another widely used metric is the Manhattan distance, commonly known as taxicab

or city block distance. It calculates the sum of the absolute differences of their coor-

dinates and is more suitable than the Euclidean distance for grid-like data structures.

The formula of Manhattan distance is given by:

D(x, y) =
n∑

i=1

|xi − yi| (2.5)

where x and y represent the first and second data points with n dimensions.

The Minkowski is the generalization of Euclidean and Manhattan distances. It in-

volves a parameter p, which leads to different distance measures. Specifically, setting

p to two yields the Euclidean distance, while a p-value of one corresponds to the Man-

hattan distance. The mathematical representation of Minkowski distance is given by:

D(x, y) =

(
n∑

i=1

|xi − yi|p
)1/p

(2.6)

where x and y represent the first and second data points, p is a parameter that deter-

mines the type of distance.

The algorithm involves identifying the ’k’ nearest neighbors of a given data point

and making predictions based on these neighbors. The most common class among

the neighbors is assigned to the data point for classification, while the average of the
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neighbors’ values is used for regression. The idea behind the KNN could be illustrated

as in Figure 2.12.

Figure 2.12: Illustration of KNN Classification Approach retrieved from [52]

This chapter presents key findings from relevant studies and experiments, providing

a comprehensive understanding of the methodologies employed in extracting fea-

tures and classifying audio signals. In the subsequent chapters, these methods will

be further utilized and evaluated in the context of specific heart and vascular acoustic

analysis.
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CHAPTER 3

CLASSIFICATION OF HEART SOUNDS

3.1 Dataset (PhysioNet Heart Sound Database)

The foundation of our exploration lies in the rich and diverse dataset known as the

PhysioNet Heart Sound Database, a publicly accessible repository curated through

electronic stethoscope recordings for the Computing in Cardiology Challenge [53].

The collection comprises nine distinct databases of heart sounds. They were assem-

bled by different research groups from seven nations across three continents over ten

years. The details about the databases are described as following:

MIT heart sound database ,created by Professor John Guttag, Dr. Zeeshan Syed,

and their team, contains 409 heart sound recordings from 121 people. These were

recorded using a sophisticated electronic stethoscope and an ECG, with a high-quality

sampling rate of 44.1 kHz and 16-bit clarity.

The database groups the subjects into two categories: healthy individuals and patients

those with mitral valve prolapse murmurs, with harmless murmurs, with aortic dis-

ease, and with other heart conditions. These diagnoses were all double-checked with

echocardiograms at the Massachusetts General Hospital.

Recordings are between 9 to 37 seconds. They were captured in various places, like

homes and hospitals, and included background noises like talking. Despite this, the

recordings are still very useful for studying heart sounds.

AAD heart sounds database was created with contributions from Schmidt and his

team from Aalborg University. It includes heart sound recordings taken from 151 pa-

tients at the Cardiology Department in Aalborg Hospital, Denmark, using a Littmann
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E4000 electronic stethoscope with 4 kHz sampling rate and 16 bit quantization. These

patients were being evaluated for (CAD) via coronary angiography.

For this database, ’normal’ and ’abnormal’ classifications were based on the presence

of heart valve defects, either noted in medical records or detected through clear heart

murmurs. Each patient provided one to six PCG recordings, accumulating to 695.

Most of these recordings were standardized to 8 seconds in length.

AUTH heart sounds database was created with contributions from Papadaniil and

Hadjileontiadis from The Aristotle University of Thessaloniki in 2014. It consists of

45 individuals’ heart sounds captured at the Papanikolaou General Hospital in Thes-

saloniki, Greece. The age range is from 18 to 90 years. The recordings used a custom

electronic stethoscope named AUDIOSCOPE which has 4 kHz sampling rate and

16-bit depth. Subjects were divided into three groups: 11 with normal heart sounds,

17 with aortic stenosis, and 17 with mitral regurgitation, all diagnosed by echocar-

diogram. Heart murmurs were recorded at the chest location where they sounded

clearest, while normal heart sounds were recorded at the apex of the heart. Durations

range from 10 to 122 seconds.

TUT heart sounds database,provided by Naseri and Homaeinezhad from Toosi Uni-

versity of Technology in 2013, contains heart sound data from 28 individuals without

heart conditions and 16 patients with diagnosed valve diseases, confirmed through

echocardiographic evaluation. Recordings were captured utilizing a high-tech 3M

Littmann 3200 electronic stethoscope at four distinct heart areas: the pulmonic, aor-

tic, tricuspid regions, and the apex. These sounds were digitally captured with a 4

kHz sampling rate and a precision of 16 bits for 15 seconds per recording. In to-

tal, the database holds 174 PCG recordings, with two participants providing three

recordings each.

UHA heart sounds database, provided by Moukadem et al. from The University of

Haute Alsace’s , includes 79 recordings featuring both normal and abnormal heart

sounds captured with high-quality stethoscopes at an 8 kHz sampling rate. The col-

lection is split into two groups for the normal sounds: one from 19 healthy individuals

and another from six astronauts involved in a space simulation project. The recordings

vary in length but average around 14 seconds for the healthy group and 10 seconds
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for the astronauts.

The database also contains recordings from 30 hospital patients, ranging from 44 to

90 years old, some of whom were recorded pre- and post-heart valve surgery. A car-

diologist diagnosed their conditions using ECG and echocardiography. Some patients

had artificial valves, while others had rhythm problems associated with heart disease.

These recordings last between 6 and 49 seconds.

DLUT heart sounds database was provided the courtesy of Tang and Li’s research

at The Dalian University of Technology, featuring 174 healthy individuals and 335

coronary artery disease (CAD) patients. Healthy subjects were predominantly male,

young adults, while CAD patients spanned a broader age range, averaging 60 years

old. Heart sounds from patients was collected from the chest’s mitral area using a

standard electronic stethoscope with 8 kHz sampling rate and 16-bit resolution at

a medical facility. Healthy participants were recorded at the university’s lab using

various sensors. Expert cardiologists confirmed CAD diagnosis. Recordings vary

from 3 to 98 seconds.

SUA heart sounds database,assembled by Samieinasab and Sameni at The Shiraz

University, consists of audio recordings from 112 individuals, 79 healthy subjects,

and 33 patients with heart conditions. The age band ranges from 16 to 88 years. For

capturing the heart sounds, the JABES electronic stethoscope was utilized, mainly

positioned above the heart’s apex region, while recordings were managed using Au-

dacity software. Subjects were recorded once, save for one healthy individual who

contributed three recordings, yielding 81 normal and 33 abnormal heart sound files.

Recordings lasted between 30 to 60 seconds, with a standard sampling rate of 8 kHz

and 16-bit depth; however, a few recordings were captured at much higher rates.

SSH heart sounds database contains 35 heart sound recordings, which were collected

from patients at the Skejby Sygehus Hospital in Denmark. This collection includes

contributions from 12 individuals with no heart issues and 23 patients diagnosed with

heart valve defects. Each heart sound was recorded at the second intercostal space

near the right side of the sternum. The duration of the recordings ranges from about

15 seconds to 69 seconds and all sounds were recorded with 8 kHz sampling rate.
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This diverse assembly process has led to significant variations in the recording equip-

ment, the anatomical sites of recording, the quality of the data captured, and the types

of patients. It includes a total of 2435 recordings of heart sounds. They were ob-

tained from 1297 individuals, containing both healthy subjects and those with various

cardiac conditions but typically they suffer from heart valve defects and CAD. These

recordings were acquired from multiple settings, ranging from clinical to nonclinical

scenarios like home visits, utilizing different types of equipment.

The heart sound recordings were captured from various points on the body but the

focus was on the 4 conventional sites. Optimal heart sound recordings are obtained

from these designated areas on the thorax, namely the aortic, pulmonic, tricuspid, and

mitral areas. Figure 3.1 illustrates these specified regions, along with the anatomical

landmarks of the right ventricle (RV) and left ventricle (LV), which are crucial for

understanding the orientation of the recordings. The aortic region (AO) is centered

in the second intercostal space to the right (1), where the aortic valve sounds are best

heard. The pulmonic area (PA) is situated in the second intercostal space along the left

border of the sternum (2), a prime location for capturing the sounds of the pulmonic

valve. The tricuspid region (3), found in the fourth intercostal space adjacent to the

left side of the sternum, allows for the auscultation of the tricuspid valve sounds.

Finally, the mitral region (4) is placed at the heart’s apex, specifically in the fifth

intercostal space that aligns with the midclavicular line, which is ideal for listening to

the mitral valve sounds [54].

Figure 3.1: Optimal Auscultation Points retrieved from [54]
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The duration of recordings ranges from a few seconds to several minutes. Each

recording file starts with an identical letter followed by a sequentially assigned yet

random numerical value in every dataset. Files from a single patient are unlikely to

be in consecutive numerical order. The training and test datasets are established as

two distinct groups that do not overlap and they have unbalanced distribution. The du-

ration of the recordings ranges from a few seconds to several minutes. All recordings

have been converted to .wav format at a sampling rate of 2,000 Hz.

Since the combination of all the datasets shows poor performance, four specific heart

sound databases, the MIT, the AAD, the AUTH, and the TUT Heart Sound Databases,

are employed for these experiments. These databases were selected for their robust-

ness and diversity regarding heart sound recordings.

The distribution of normal and abnormal heart sounds within these databases is crit-

ical to this research. This distribution is detailed in Table 3.1, which illustrates the

balance or imbalance between normal and abnormal heart sounds in both datasets.

Table 3.1: Distribution of Normal and Abnormal Sizes Across Different Categories

Category Total Size Abnormal Size Normal Size

A-Dataset 409 292 117

B-Dataset 490 104 386

C-Dataset 31 24 7

D-Dataset 55 28 27

E-Dataset 2141 183 1958

F-Dataset 114 34 80

Total 3240 665 2575

3.2 Environment

The implementation of the entire study was conducted within the Google Colab en-

vironment using Python. The dataset, initially uploaded to Google Drive, was sub-

sequently mounted onto Colab, and the dataset’s path was established. This step

facilitated the data handling process.
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Additionally, PyTorch was employed to design and train the neural networks. Its

user-friendly interface and powerful tools for neural network construction and train-

ing greatly simplified the process. This streamlined approach of managing data in

Colab and leveraging PyTorch’s capabilities supported a smooth and effective imple-

mentation of the study.

3.3 Prediction and Performance Metrics Definition

In this part, the definitions of sensitivity, specificity, and overall accuracy is given by

Equations 3.1, 3.2, 3.3.

Sensitivity, as represented in Equation 3.1, is a measure of the actual positives, which

shows the correctly identified disease by the model in this context.

Sensitivity =
TruePositives

TruePositives+ FalseNegatives
(3.1)

Specificity, as shown in Equation 3.2, is an evaluation metric of the actual negatives

that are correctly identified in healthy instances.

Specificity =
TrueNegatives

TrueNegatives+ FalsePositives
(3.2)

Accuracy, as expressed in Equation 3.3, is defined as the average of specificity and

sensitivity values in this particular application.

Accuracy =
Sensitivity + Specificity

2
(3.3)

3.4 Algorithm Implementations

3.4.1 MFCC Heat Maps

The challenge organizer [53] provides the pre-processing part. The software provides

unique audio filtering, normalization, and segmentation functions. Therefore, the
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audio files were pre-processed in MATLAB with provided codes. MATLAB gets

.wav files as 2 kHz and decreases it to 1 kHz. The illustration is given in Figure 3.2.

As a result, the set of functions created 2575 normal and 665 abnormal .wav files.

Figure 3.2: Illustration of Sample Rate Decrease by Segmentation Algorithm

Obtaining Mel-Frequency Cepstral Coefficients (MFCCs) begins with acquiring .wav

audio files. Segmentation is performed to facilitate the sampling issues after creating

paths for both normal and abnormal records. The MFCC extraction operates on .wav

files with a MATLAB output with a sampling rate of 2 kHz downsampled to 1 kHz

[55]. Also, the window step is set to 0.01 seconds to get 10 ms intervals. The duration

of signals is determined as 3 seconds. The summary of the process is illustrated in

Figure 3.3. As a result, 90. samples created from 3340 records.

Figure 3.3: Illustration of MFCC Heat Map Process Summary

MFCC coefficients provide essential frequency information enabling the identifica-

tion of patterns in audio signals. The coefficients are then transformed into infor-

mative heat maps, which display the distribution of frequency features across audio

frames. The illustration MFCC heat map Process summary is given in Figure 3.3.

The waveform representation of the initial normal sample is depicted in Figure 3.4,

while the corresponding MFCC heat map for the same sample is presented in Figure

3.5.
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Figure 3.4: Normal(Healthy) Audio Sample Waveform

Figure 3.5: Normal Sample MFCC Heat Map

The waveform representation of the initial abnormal sample is displayed in Figure

3.6, along with the corresponding MFCC heat map, which is presented in Figure 3.7.

Figure 3.6: Abnormal Audio Sample Waveform

Figure 3.7: Abnormal Sample MFCC Heat Map

3.4.2 OpenL3

The usage of the OpenL3 algorithm is explained detailed in [56]. Figure 3.8 il-

lustrates the implementation steps. In the development of the feature extraction

process, the code initiates by importing essential libraries: ’openl3’ for sophisti-

cated audio feature extraction, ’soundfile,’ and ’scipy.io.wavfile’ for efficient audio

file manipulation. This sets the foundation for subsequent operations. Three piv-

otal lists—’trainingLabels,’ ’trainingFeatures,’ and ’trainingRecords’—are then es-

tablished to systematically store the labels, extracted features, and audio records.
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This organization facilitates streamlined processing and analysis. The procedure’s

core involves iterating over each audio record in ’recordsList.’

Figure 3.8: Illustration of OpenL3 Algorithm Implementation

Label assignment is a critical step where each record is categorized, with the label

’1’ assigned if it exists in a temporary normal list ’recordsListTmp’; otherwise, it is

labeled ’0’. This binary classification is essential in the subsequent analysis.The so-

phistication of the process is further evidenced in the audio reading and preprocessing

phase.

Each audio signal is read from a .wav file and transformed into a floating-point for-

mat to ensure uniformity and compatibility with the feature extraction tools. A key

aspect here is the standardization of the sampling rate to 48 kHz, a prerequisite for the

’openl3’ library, achieved through resampling if the original rate deviates from this

standard. Following this, the ’openl3’ library is employed to extract audio features,

known as embeddings, from the processed audio signal. These embeddings, encap-

sulated in the variable ’emb’ are of a fixed size of 512, aligning with the parameters

of the feature extraction algorithm.

The extracted features and corresponding labels are then meticulously appended to

the ’trainingFeatures’ and ’trainingLabels’ lists. This systematic collection of data is

essential for the forthcoming analytical stages. Each step of the process is marked by

an output message, indicating the successful processing of each record.

Conclusively, the procedure ensures that the ’trainingFeatures’ list comprehensively

contains the features for each audio file, while the ’trainingLabels’ list accurately
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represents their respective labels. This structured approach demonstrates a methodical

and efficient audio feature extraction and labeling process, forming a crucial part of

the data preparation phase in audio analysis research.

3.4.3 VGGish

The overarching steps in the implementation of the VGGish algorithm are summa-

rized in Figure 3.9. The first section of the code involves installing necessary depen-

dencies and setting up VGGish, a deep-learning model developed for audio analy-

sis. This is achieved by installing ’TensorFlow’, a comprehensive machine-learning

framework, and ’SoundFile’, a library dedicated to reading and writing sound files.

Following this, the TensorFlow models repository is cloned from GitHub. Additional

specific requirements for VGGish are then installed.

Figure 3.9: Illustration of VGGish Algorithm Implementation

Subsequently, essential modules for operating with the VGGish model are imported:

’vggish-slim’, ’vggish-params’, and ’vggish-input’. TensorFlow version 1 is also im-

ported.

The VGGish model checkpoint is downloaded. It contains pre-trained weights vital

for audio data processing. This step is crucial for enabling the VGGish model to

process audio inputs effectively.

The main segment of the code is dedicated to processing audio data in batches. A

batch size is defined, which can be adjusted based on memory limitations, and the
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number of batches is calculated by dividing the total number of audio records by the

batch size. Two lists, ’trainingFeatures’, and ’trainingLabels’, are initialized to store

the extracted features and their corresponding labels.

Using TensorFlow’s computational graph and session, the VGGish model is defined

and loaded with ’vggish-slim’. The input and output tensors are retrieved to facilitate

feeding audio data into the model and extracting embeddings.

In each batch of audio records, file paths are determined based on their identifiers (a,

b, c, d), and labels are set for each record. The audio files are then processed to extract

features using the VGGish model. This involves converting ’.wav’ files into a format

compatible with the model using ’vggish-input.wavfile-to-examples’. It is pursued

by running the TensorFlow session to obtain the embeddings. These embeddings and

their labels are appended to the ’trainingFeatures’ and ’trainingLabels’ lists.

In conclusion, ’trainingFeatures’ contains the VGGish embeddings for each audio

file, and ’trainingLabels’ holds the corresponding labels. This represents the comple-

tion of the process, yielding processed audio data ready for subsequent analytical or

machine-learning applications.

3.4.4 Convolutional Neural Network

Figure 3.10 depicts the steps involved in implementing the CNN algorithm. To start,

the script imports the required libraries for both data processing and neural network

construction. Libraries like ’PyTorch’, ’TensorFlow’, ’NumPy’, and ’Pandas’ are

used for various computational tasks. If it is available, GPU availability is checked to

determine whether GPU acceleration can be utilized.

Data for the neural network is taken from audio recordings stored on a Google Drive

mount. The script processes these recordings to create the dataset. The recordings

are read and segmented using Mel-Frequency Cepstral Coefficients (MFCC). These

MFCC features form the basis of the training data. Each audio segment is labeled as

normal or abnormal and creates a dataset for supervised learning.
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Figure 3.10: Illustration of CNN Algorithm Implementation

The neural network, a CNN, is defined with multiple layers, including convolutional

layers, max-pooling layers, batch normalization, and fully connected layers. These

layers are designed to process the input MFCC features effectively and capture rele-

vant classification patterns.

Training the network involves feeding the data through the network, calculating loss

using Cross-Entropy Loss, and adjusting the network’s weights using Stochastic Gra-

dient Descent (SGD) as the optimization algorithm. The network is trained over mul-

tiple epochs. Both training and validation datasets are calculated after each epoch.

This process helps understand the model’s performance and ensures it learns to clas-

sify the heart accurately sounds.

Additionally, functions are defined for visualizing data, resetting model weights, and

checking the model’s accuracy. These functions aid in model evaluation and under-

standing the network’s learning process.

The script concludes with a training loop where the network undergoes training for a

specified number of epochs, and its performance is evaluated in terms of accuracy on

both training and validation datasets. The accuracy results are tracked to monitor the

model’s progress over time.
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3.4.5 Support Vector Machine

The implementation steps of the SVMs algorithm is illustrated in Figure 3.11. The

process begins with setting up the necessary environment for machine learning by

installing ’scikit-learn’. It is a powerful library in Python known for its versatility in

machine learning. This step is crucial as it provides the essential tools required for

the task ahead. Following the installation, various modules are imported for different

purposes: model selection, preprocessing, metric evaluation, and the SVM classifier.

Figure 3.11: Illustration of SVM Implementation

In data preprocessing, the code first examines the length of the training features to

ensure uniformity across the dataset. If the lengths vary, the sequences are padded

to a uniform length using ’padsequences’ from ’keras.preprocessing.sequence’. This

standardization is crucial in preparing the data for effective feature extraction and

subsequent processing.

The data then undergoes a transformation and scaling process. It is reshaped to match

the input requirements of the SVM classifier, and scaling is performed using ’Stan-

dardScaler’.

Once the data is preprocessed, the focus shifts to training the SVM classifier. An SVM

with a linear kernel is chosen and trained on the processed training data. The choice

of the linear kernel is significant as it influences the classifier’s decision boundary.

After training, the model’s performance is evaluated on the test set using various met-

rics like accuracy, precision, recall, and F1-score. These metrics were obtained from

functions like ’accuracyscore’ and ’classificationreport’. They provide a comprehen-

sive view of the model’s effectiveness in making predictions.

In SVM, the regularization term C balances maximizing the margin and minimizing

classification error. A smaller value of C results in a broader margin but allows more
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misclassifications, emphasizing the simplicity of the decision boundary. Conversely, a

larger C value aims to minimize misclassifications, and it can lead to a more complex

model with a narrower margin.

Therefore, while a larger C value in SVM can yield a model with fewer training

errors, balancing this against the risk of overfitting is essential. This balance is crucial

to ensure the model remains robust and performs well on the training and new data.

The choice of C thus becomes a critical decision in SVM training, requiring careful

tuning to hit the right balance between complexity and generalization.

The gamma parameter holds a significant influence on the RBF kernel. It determines

the decision boundary’s complexity. A high gamma value leads to more complex

decision boundaries by paying closer attention to the training data. This increased

sensitivity to individual data points allows the model to detect subtle and complex

patterns within the training data. Nevertheless, this increased complexity comes with

the risk of overfitting, especially in scenarios where the training data includes outliers.

On the other hand, a lower gamma value spreads the influence of each training ex-

ample over a broader area and results in a more generalized decision boundary. This

broader influence typically leads to more robust models that generalize better on un-

seen data. Yet, setting the gamma too low can lead to underfitting because the model

becomes too simplistic and fails to capture critical patterns for accurate predictions.

Therefore, finding the optimal gamma value is necessary in SVM model tuning.

Further refinement is achieved through hyperparameter tuning using ’GridSearchCV’.

This process involves experimenting with different values of ’C’, ’gamma’, and kernel

function to find the best combination. This step enhances the model’s accuracy.

Finally, the best model from the grid search is used to make predictions on the test

data. The evaluation of this model includes generating a confusion matrix and calcu-

lating sensitivity & specificity. These metrics offer deeper insights into the model’s

prediction.
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3.4.6 K-Nearest Neighbor

Figure 3.12 provides a overhead illustration of the implementation steps for the K-

Nearest Neighbors (KNN) method using the scikit-learn library. It begins with the im-

portation of necessary modules: ’KNeighborsClassifier’ for the KNN model, ’train-

testsplit’ for data segmentation, various metrics for performance evaluation, and ’Stan-

dardScaler’ for feature normalization.

Figure 3.12: Illustration of KNN Implementation

The 3D input feature arrays (’trainingFeatures’) are initially processed. This involves

flattening or aggregating these features into a 2D format, executed by computing

the mean along one axis and subsequently flattening the array. The corresponding

labels (’trainingLabels’) are already formatted appropriately. After that, the dataset is

divided into training and test sets using ’traintestsplit’, assigning 20% of the data for

testing purposes. The ’randomstate’ parameter ensures reproducibility of results.

It is recommended to perform feature scaling for machine learning algorithms such as

KNN that are affected by the magnitude of the data. This is achieved by standardizing

the features using ’StandardScaler’, which is fitted on the training and test sets.

The KNN model is initialized and trained using KNeighborsClassifier, with ’n-neighbors’

set to 5. Training is conducted on the scaled training set. Post-training, the model is

employed to predict outcomes on the test set. Model performance is evaluated using

accuracy metrics, and a detailed classification report is generated.

Enhancement of the model is pursued through hyperparameter tuning using ’Grid-

SearchCV’. A parameter grid is defined, comprising various configurations for ’n-

neighbors’, ’weights’, and the distance metric. ’GridSearchCV’ executes a cross-

validated grid search across this parameter grid, identifying the optimal parameters.

Upon determination of the best parameters, the optimal model is trained. This model

is identified as the most accurate during the grid search, and then it is used for predic-
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tions on the test set, and a classification report is produced.

Finally, the confusion matrix is calculated, and TP, TN, FP, and FN are extracted.

These values compute sensitivity and specificity, offering insights into the model’s

efficacy in accurately identifying positive and negative classes.

This methodical approach ensures a thorough and effective implementation and as-

sessment of the KNN algorithm, suitable for diverse classification tasks.

3.5 Experiments

3.5.1 MFCC and CNN

The new network draws inspiration from Rubin et al. [31]. There are similar functions

with distinct properties in TensorFlow and PyTorch. For example, the padding proce-

dure is called the same padding is not available in Pytorch. Then, torch.nn.ConstantPad2d

is utilized before and after the convolutional layers to reach the same shape. In ad-

dition to this, the ReLU activation function is used after convolutional layers, and

there are dropouts after fully connected layers. The authors use their custom-made

loss function similar to Cross-Entropy Loss. Besides, they used L2-regularization.

Batch-normalization can be used instead of L2 regularization. The new network has

two batch normalization layers after the convolutional layers.

Inspired network failed in every attempt. Then the number of data is decreased to

800 samples. The network started to work, and %55-56 overall validation accuracy

was achieved. The number of features is decreased to 12 and the number of data to

1000, then get %63 overall validation accuracy. The number of features is changed

to 20 and the number of data to 1000; correspondingly, the network failed again. As

a result, there is no linear relation between the number of features and records. The

table 3.2 summarizes attempts. Then it is determined that the number of features is

12, and the number of data is 1000 samples.
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Table 3.2: The Number of Record and Feature Attempts Summary

Number of Record Number of Features Validation Accuracy

3240 6 %50

800 6 %55

1000 12 %63

1000 20 %50

After that point, efforts were made to improve the results. The dropout values were

initially set at 0.85565561, which had a negative impact on training performance by

causing inputs to be excessively dropped and resulting in underfitting. To address this,

the dropout values were reduced to 0.5 for both layers, and ReLU activation functions

were added after the fully-connected layers. Additionally, changes were made to the

optimizer; the SGD optimizer was used, and weight decay was initiated. With these

adjustments, the network’s training began, and the outcome was an overall validation

accuracy of around 70%.

Hyper-parameter tuning was performed to optimize the model. Despite limited effects

from modifying weight decay, the value was stabilized at 0.00008. Simultaneously,

the learning rate was adjusted while maintaining constancy in other parameters. Even-

tually, a learning rate of 0.0001 was determined. The trials’ outcomes are concisely

summarized in Table 3.3.

Table 3.3: Learning Rate vs. Validation Accuracy Comparison

Learning Rate Validation Accuracy

0.00015822 %72.33

0.0005 %67

0.001 %65

0.00005 %71

0.0001 %74
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The highest achieved result is an approximate overall validation accuracy of 74%.

The architecture of the optimal network during the forward pass is depicted in Figure

3.13.

Figure 3.13: The New Convolutional Network Architecture adopted from [31]

The new hyper-parameters and the network parameters are summarized in Table 3.4

and Table 3.5.

Table 3.4: New Hyperparameter Values

Hyperparameter Value

Learning Rate 0.0001

Weight Decay 0.00008

Dropout 0.5

Table 3.5: New Network Parameter Values

Network Parameter Value

Regularization Type Batch Normalization

Batch Size 256

Optimization SGD Optimizer
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The test dataset is not available then training and validation accuracy are used for

comparison. In the best case, validation results before training are summarized in

Table 3.6. After training, the results of the best case are represented in Table 3.7.

Table 3.6: Validation Results Before the Training

Normal Correct: 1 Normal Incorrect: 149

Normal Correct: 150 Abnormal Incorrect: 0

Sp = 1.0 Se = 0.00666666

Validation Accuracy Before Training: 50.33 %

Table 3.7: Validation Results After the Training

Epoch: 101

Normal Correct: 571 Normal Incorrect: 78

Normal Correct: 239 Abnormal Incorrect: 111

Sp = 0.6828571 Se = 0.8798151

Training Accuracy After Training: 78.13 %

Normal Correct: 120 Normal Incorrect: 30

Normal Correct: 102 Abnormal Incorrect: 48

Sp = 0.68 Se = 0.8

Validation Accuracy After Training: 74.00 %
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The graph displaying the training and validation accuracy across epochs is given in

Figure 3.14. In this Figure, the blue curve represents the training accuracy and the

other one stands for validation accuracy.

Figure 3.14: Epoch Number vs. Accuracy Graph

3.5.2 OpenL3 and SVM

In this part of the study, comprehensive experiments are conducted to examine the

impact of data volume and kernel functions in the context of heart sound analysis.

In the analysis, the dataset comprises 985 samples divided into abnormal and normal

categories. The abnormal category contains 448 samples, whereas the normal cate-

gory contains 537 instances. This distribution is critical in understanding the dataset’s

composition and the challenges in effectively classifying the data.

A linear kernel SVM is employed for the classification task. The choice of a lin-

ear kernel is based on its suitability for high-dimensional data spaces, as it tends to

perform well when there is a clear margin of separation between classes. Moreover,

linear kernels are often preferred for their lower computational cost than other ker-

nels.
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The results of the SVM classification, reflecting the model’s performance in distin-

guishing between normal and abnormal instances, are presented in Table 3.8. This

table includes metrics such as accuracy, sensitivity, specificity, and other relevant sta-

tistical measures that provide insights into the effectiveness of the SVM model with

a linear kernel in handling the given dataset.The best result of linear kernel SVM

parameters are found as C = 0.01 and gamma = scale.

Table 3.8: Test Results After the Linear Kernel SVM Classification

Normal Correct: 71 Normal Incorrect: 16

Abnormal Correct:89 Abnormal Incorrect: 21

Sp = 0.77 Se = 0.85

Accuracy: 81.00 %

Table 3.9 presents the experiments’ results using an SVM with a polynomial kernel.

The focus was the impact of varying the regularization parameter C ranging from 0.01

to 100 and different gamma values such as ’scale’, ’auto’, 1, and 10.

Table 3.9: Test Results After the Polynomial Kernel SVM Classification

Normal Correct: 54 Normal Incorrect: 35

Abnormal Correct:93 Abnormal Incorrect: 35

Sp = 0.60 Se = 0.86

Accuracy: 73.00 %

The experiments reveal a notable trend in the performance metrics as C, and the best

results are obtained when C = 100 and gamma = scale in SVM with a polynomial

kernel. Although C increases and gamma changes, the specificity value does not

increase enough through the experiments.
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Table 3.10 displays the outcomes of experiments conducted using an SVM with an

RBF kernel. These experiments These experiments desired to investigate the impacts

of altering the regularization parameter C with values ranging from 0.01 to 100. Ad-

ditionally, a variety of gamma settings were explored, including ’scale’, ’auto’, 1, and

10.

Table 3.10: Test Results After the RBF Kernel SVM Classification

Normal Correct: 64 Normal Incorrect: 15

Abnormal Correct:93 Abnormal Incorrect: 25

Sp = 0.72 Se = 0.86

Accuracy: 79.00 %

The optimal results were achieved with C=100 and gamma set to ’auto’. Comparing

the polynomial with an RBF kernel, the RBF kernel performs better. It shows a

more balanced classification capability with fewer misclassifications of healthy cases,

better identification of patients, and a higher overall accuracy.

3.5.3 OpenL3 and KNN

In this section of the research, the OpenL3 tool is employed for extracting features,

and the k-Nearest Neighbors (KNN) algorithm is applied for classification. The

dataset size remains consistent as 448 abnormal and 537 normal samples. Initially,

Euclidean distance is the chosen metric. Additionally, various parameters are ad-

justed: the ’k’ value is selected within a range of 3 to 15, and the weighting parame-

ters are set to either ’uniform’ or ’distance’. The primary focus during analysis is on

optimizing accuracy.

The table referenced as 3.11 summarizes the best results obtained. The optimal con-

figuration involved selecting three neighbors and setting the weighting parameter to

’uniform’ in the scenario where the best results were achieved using Euclidean dis-

tance.
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Table 3.11: Test Results After the Euclidian Distance KNN Classification

Normal Correct:79 Normal Incorrect:17

Abnormal Correct:89 Abnormal Incorrect:12

Sp = 0.87 Se = 0.84

Accuracy: 85.50 %

The second attempt involves exploring the effects of different configurations in a

method that uses the Manhattan distance approach. It systematically changes the

number of neighbors from 3 up to 15. Alongside this, it alternates the strategy for

weighing the influence of these neighbors between ’uniform’ and ’distance’.

The table referenced as 3.12 delivers the best results. In Manhattan distance, the

optimal configuration includes selecting three neighbors and setting the weighting

parameter to ’uniform’. Compared to Euclidean, specificity and sensitivity are en-

hanced.

Table 3.12: Test Results After the Manhattan Distance KNN Classification

Normal Correct:80 Normal Incorrect: 16

Abnormal Correct:90 Abnormal Incorrect: 11

Sp = 0.88 Se = 0.85

Accuracy: 86.50 %

The Minkowski distance metric is chosen in the third part. This metric is a more

generalized form of the Euclidean and Manhattan distances. Like in the first two

experiments, the "k" values range is considered, and the same approach to weighing

parameters is employed.
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The table referred to as 3.13 demonstrates the most effective outcomes. With the

Minkowski distance metric, the superior configuration entails choosing p = 3, three

neighbors and applying the ’uniform’ weighting strategy.

Table 3.13: Test Results After the Minkowski Distance KNN Classification

Normal Correct: 75 Normal Incorrect: 16

Abnormal Correct:93 Abnormal Incorrect: 13

Sp = 0.82 Se = 0.88

Accuracy: 85.30 %

3.5.4 VGGish and SVM

This experiment investigates the application of the VGGish model coupled with a

Support Vector Machine (SVM) for classifying heart sounds. This study is essential

for enhancing our comprehension of the dataset’s characteristics and its classification

challenges.

The dataset remains the same as in the previous study, consisting of 985 samples di-

vided into two categories: 448 abnormal and 537 normal heart sounds. This distribu-

tion is essential for understanding the challenges in achieving accurate classification.

VGGish model was initially used for processing audio signals. VGGish converts raw

audio data into high-dimensional feature representations, which could more effec-

tively capture complex patterns than traditional methods.

These extracted features are then used to train an SVM classifier. The SVM is con-

figured with various values for the regularization parameter ’C’ ranging from 0.001

to 100 and the kernel coefficient ’gamma’ including ’scale’, ’auto’, 1, and 10 while

maintaining a linear kernel. This approach allows for a broader investigation of the

model’s behavior under different parameter settings.

The performance of the SVM, using features extracted by VGGish, is documented in

Table 3.14. The most effective parameter combination was found at ’C’ = 0.01 and
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’gamma’ = scale. This finding highlights the effectiveness of combining advanced

audio feature extraction with the computational efficiency of a linear kernel SVM.

Table 3.14: Test Results After the Linear Kernel SVM Classification

Normal Correct: 60 Normal Incorrect: 27

Abnormal Correct:81 Abnormal Incorrect: 29

Sp = 0.67 Se = 0.75

Accuracy: 71.00 %

After that, the kernel type was changed into polynomial type. Initially, the regulariza-

tion parameter ’C’ was set across a range from 0.01 to 100, and the kernel coefficient

’gamma’ at ’scale’, ’auto’, 1, and 10. The best results were initially observed with

C = 0.01, gamma = 1. Consequently, it is decided to broaden the range of C values

beyond the initial lower limit of 0.001 to explore whether further improvements in

classification performance could be achieved.

The best result parameters did not change after the change. It is observed with C

= 0.01 and gamma = 1 with the polynomial kernel. The performance of the SVM,

utilizing the VGGish-extracted features and the polynomial kernel, is demonstrated

in Table 3.15.

Table 3.15: Test Results After the Polynomial Kernel SVM Classification

Normal Correct:60 Normal Incorrect: 14

Abnormal Correct:94 Abnormal Incorrect: 29

Sp = 0.67 Se = 0.87

Accuracy: 77.00 %

The last attempt is changing the kernel into the RBF type. Since the optimum results

were obtained in the C = 100 value, the C value range was updated to 1000. Gamma

parameters stay the same.
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Interestingly, it was observed that increasing the C value beyond 100 did not signif-

icantly impact the results. The optimal performance was achieved with C = 100 and

gamma = ’scale’, using the RBF kernel. The details of these results are presented in

Table 3.16.

Table 3.16: Test Results After the RBF Kernel SVM Classification

Normal Correct: 64 Normal Incorrect: 15

Abnormal Correct:93 Abnormal Incorrect: 25

Sp = 0.72 Se = 0.86

Accuracy: 79.00 %

3.5.5 VGGish and KNN

The VGGish model is utilized for feature extraction, and the k-Nearest Neighbors

(KNN) algorithm is applied for classification in this part of the study. The dataset

consists of 448 abnormal and 537 normal samples. The initial approach uses the

Euclidean distance metric, with the ’k’ value varying from 3 to 15 and the weighting

parameters set to either ’uniform’ or ’distance’. The primary objective is to optimize

accuracy based on these parameters.

The results in Table 3.17 indicate the optimal configuration for Euclidean distance

with ’n-neighbors’ set to 3 and the weighting parameter as ’uniform’.

Table 3.17: Test Results After the Euclidian Distance KNN Classification

Normal Correct:66 Normal Incorrect:17

Abnormal Correct:89 Abnormal Incorrect:25

Sp = 0.73 Se = 0.84

Accuracy: 78.50 %
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The Manhattan distance metric is examined further with the same range of ’k’ values

and weighting strategies. This approach investigates the impact of different distance

calculations on classification accuracy with VGGish audio features.

As demonstrated in Table 3.18, the best performance using Manhattan distance was

achieved with ’n-neighbors’ set to 10 and the weighting parameter as ’distance’.

Table 3.18: Test Results After the Manhattan Distance KNN Classification

Normal Correct:61 Normal Incorrect: 17

Abnormal Correct:89 Abnormal Incorrect: 30

Sp = 0.67 Se = 0.84

Accuracy: 75.50 %

Finally, the Minkowski distance metric, a generalized form of both Euclidean and

Manhattan distances, is evaluated. The same parameters for ’k’ values and weights

are considered to assess the effectiveness of this metric.

Table 3.19 shows the results for Minkowski distance, where the most effective con-

figuration was with ’n-neighbors’ set to 3, the weighting parameter as ’uniform’ and

p value is 6. This method achieved 79.18% accuracy.

Table 3.19: Test Results After the Minkowski Distance KNN Classification

Normal Correct: 69 Normal Incorrect: 19

Abnormal Correct:87 Abnormal Incorrect: 22

Sp = 0.76 Se = 0.82

Accuracy: 79.20 %
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3.6 Discussion of the Results for Chapter 3

The Linear Kernel SVM, when applied to OpenL3 features, exhibits the highest over-

all accuracy at 81.00% in OpenL3 features. Its sensitivity, the ability to correctly

identify true positives, is promising at 0.85. However, the specificity, which is the

indicator of correctly identifying true negatives, stands at 0.77.

In contrast, the Polynomial Kernel SVM exhibits a lower overall accuracy of 73.00%,

the least among the three kernels. Its specificity is notably lower at 0.60, suggesting

a higher rate of false positives. However, its sensitivity is slightly superior at 0.86,

implying a slightly better capability in identifying true positives.

Lastly, the RBF Kernel SVM strikes a balance with an accuracy of 79.00%, placing

it between the linear and polynomial kernels. It has a better specificity result than the

polynomial kernel.

Linear kernel’s performance indicates a strong ability to identify true positives and a

reasonably good rate at identifying true negatives, making it a solid choice for many

applications. This suggests a robust performance in general classification tasks. The

summary of the OpenL3 and SVM with different kernels is given in Table 3.20.

Table 3.20: Summary of OpenL3 and SVM Results with Different Kernels

Kernel Type Accuracy (%) Sp Se

Linear Kernel 81.00 0.77 0.85

Polynomial Kernel 73.00 0.60 0.86

RBF Kernel 79.00 0.72 0.86

In addition to the accuracy approach, Figure 3.15 presents a Receiver Operating Char-

acteristic(ROC) Curve. It compares the false positive and true positive rates.
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Figure 3.15: ROC Curve for OpenL3 and SVM with Different Kernels

The dashed line represents a random guess, where the true positive rate equals the

false positive rate. A good classifier should be positioned far from this decision

boundary, preferably towards the top-left corner. All three SVM models perform

significantly better than a random guess, as indicated by their respective curves being

closer to the top-left corner.

The area under the curve (AUC) is a measure of the classifier’s ability to distinguish

between the two classes. The AUC for each classifier is indicated in the legend.

The RBF SVM has the highest AUC (0.87), suggesting the best overall performance

among the three.

It is important to note that comparisons of accuracy values and ROC curve analy-

ses may yield different results due to their distinct approaches to evaluation. The

ROC curve evaluates the balance between the true positive and false positive rates,

considering the specific needs of the application and the costs associated with mis-

classification.

The Euclidean Distance metric, when applied to OpenL3 features, shows a commend-

able performance with an accuracy of 85.50%. It demonstrates a strong capability in

identifying true positives and true negatives, with values of 0.84 and 0.87. This indi-
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cates a reliable and balanced approach to classification tasks.

In comparison, the Manhattan Distance metric slightly outperforms the Euclidean

Distance with an accuracy of 86.50%. This increase in accuracy is accompanied

by improvements in both sensitivity and specificity, at 0.85 and 0.88. These results

suggest a slightly better overall performance.

The Minkowski Distance, while having a slightly lower accuracy of 85.30%, shows

an equivalent specificity to the Manhattan Distance at 0.88 but a slightly lower sen-

sitivity of 0.82. This indicates that while the Minkowski Distance is as good as the

Manhattan Distance in correctly identifying negative cases, it is slightly less effective

in identifying positive cases.

The Manhattan Distance metric is the most effective in this context. It offers the high-

est accuracy and the best balance between sensitivity and specificity. The summary

of the OpenL3 and KNN with different distance metrics is given in Table 3.21.

Table 3.21: Summary of OpenL3 and KNN Results with Different Distance Metrics

Distance Metric Accuracy (%) Sp Se

Euclidean Distance 85.50 0.87 0.84

Manhattan Distance 86.50 0.88 0.85

Minkowski Distance 85.30 0.88 0.82

Figure 3.16 shows the ROC curve analysis that illustrates a superior AUC for the

Euclidean KNN (0.93), indicating a robust ability to discriminate between classes.

Despite having a lower accuracy than Manhattan, the high AUC value suggests that

Euclidean KNN might outperform at certain threshold levels. The ROC results sup-

port the effectiveness of the Manhattan Distance metric but also highlight the potential

of the Euclidean KNN in specific operational contexts.
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Figure 3.16: ROC Curve for OpenL3 and KNN with Different Distance Metrics

The Linear Kernel SVM shows moderate effectiveness with an accuracy of 71.00%.

It has a specificity of 0.67 and a sensitivity of 0.75. This kernel type demonstrates

balanced yet modest performance in classifying audio features.

On the other hand, the Polynomial Kernel SVM marks a notable improvement in

accuracy, reaching 77.00%. Its specificity remains consistent with the Linear Kernel

at 0.67, but there is a significant rise in sensitivity, reaching 0.87. While its ability to

identify true negatives remains unchanged, the Polynomial Kernel performs better at

correctly identifying true positives.

The RBF Kernel SVM shows the highest accuracy at 79.00%. It improves speci-

ficity to 0.72 and maintains a high sensitivity of 0.86. This balance suggests that the

RBF Kernel is particularly effective in handling VGGish features and offers robust

performance in identifying true positives and minimizing false positives.

The RBF Kernel SVM is the most effective choice for the SVM classification of

VGGish features. The summary of the VGGish and SVM with different kernels is

given in Table 3.22.
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Table 3.22: Summary of VGGish and SVM Results with Different Kernels

Kernel Type Accuracy (%) Sp Se

Linear Kernel 71.00 0.67 0.75

Polynomial Kernel 77.00 0.67 0.87

RBF Kernel 79.00 0.72 0.86

In Figure 3.17, the AUC values range from 0.79 for the Linear SVM to 0.84 for the

RBF SVM, indicating that all models perform better than random chance. The RBF

SVM, with the highest AUC of 0.84, is suggested to have the most robust discrim-

ination ability among the three. The Polynomial SVM also shows a strong ability

to discriminate, with an AUC of 0.83, closely following the RBF SVM. The Lin-

ear SVM, with the lowest AUC, could be valuable in specific operational contexts,

especially considering factors like model complexity, computational efficiency, and

interpretability.

Figure 3.17: ROC Curve for VGGish and SVM with Different Kernels

While analyzing the VGGish and KNN results, the Minkowski Distance metric demon-

strates a strong performance with an accuracy of 79.20%. This metric shows a solid
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balance between specificity at 0.76 and sensitivity at 0.82.

The Euclidean Distance metric shows a slightly lower overall accuracy at 78.50%.

While maintaining the similar level of sensitivity as the Euclidean Distance at 0.84, it

exhibits a lower specificity of 0.73.

The Manhattan Distance metric shows the lowest accuracy among the three at 75.50%.

Despite this, it holds sensitivity the same with the Euclidean at 0.84 but falls behind

in specificity with a score of 0.67.

Overall, Minkowski is the more effective choice for the KNN classification of VG-

Gish features. The summary of the VGGish and KNN with different distance metrics

is given in Table 3.23.

Table 3.23: Summary of VGGish and KNN Results with Different Distance Metrics

Distance Metric Accuracy (%) Sp Se

Euclidean Distance 78.50 0.73 0.84

Manhattan Distance 75.50 0.67 0.84

Minkowski Distance 79.20 0.76 0.82

The ROC curve in Figure 3.18 illustrates the effectiveness of different KNN classi-

fiers using VGGish features. The Euclidean KNN classifier demonstrates a strong

discriminatory ability, with an AUC of 0.83. The Manhattan KNN performs slightly

better than others with an AUC of 0.85, indicating a fine balance between true and

false positive rates. The Minkowski KNN achieves the highest AUC of 0.86, sug-

gesting it has the most robust discrimination capability of the three classifiers. These

values, all above 0.8, demonstrate that each classifier performs significantly better

than random chance, with the Minkowski KNN classifier being the most effective in

this specific application for classifying VGGish features.
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Figure 3.18: ROC Curve for VGGish and KNN with Different Distance Metrics

Table 3.24 compares five feature extraction method combinations: MFCC, OpenL3,

VGGish, and classification algorithms, which are CNN, SVM, and KNN.

Table 3.24: Summary of the Best Results Across Different Methods

Method Accuracy (%) Sp Se

MFCC & CNN 74.00 0.68 0.80

OpenL3 & SVM 81.00 0.77 0.85

OpenL3 & KNN 86.50 0.88 0.85

VGGish & SVM 79.00 0.72 0.86

VGGish & KNN 79.20 0.76 0.82

In MFCC & CNN, an accuracy of 74.00%, specificity of 0.68, and sensitivity of 0.80.

While offering decent sensitivity, this combination shows lower overall accuracy and

specificity than other methods.

The OpenL3 & KNN method outperforms others in accuracy, reaching 86.50%. The

high specificity at 0.88 and sensitivity at 0.85 indicate that this combination is par-

ticularly effective at correctly classifying both negatives and positives. KNN with
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OpenL3 features could catch the patterns more effectively, leading to these superior

results.

In Figure 3.19, the ROC curves represent the performance of various classifiers using

different feature extraction methods, as referenced from the results in the correspond-

ing Table 3.24. The Manhattan KNN Classifer for the OpenL3 feature extraction

method is very close to the upper left side and its AUC value is the highest, 0.91. On

the other side, The MFCC and CNN has the closest line to the random guess curve

and its AUC value is the lowest, 0.78.

Figure 3.19: ROC Curve for the Best Results Across Different Methods

In conclusion, these findings underscore an important insight in audio classification:

there is no need to build complex neural network structures to achieve good results.

Instead, some fundamental and simple methods, as demonstrated by the OpenL3 and

KNN approach, can accomplish high levels of classification accuracy and balance in

performance metrics. It highlights the importance of method selection based on the

specificities of the task rather than more complex solutions that may not always offer

additional benefits.
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CHAPTER 4

EXPLORING THE RELATION BETWEEN PHONOCARDIOGRAPHY AND

VASCULAR SOUNDS

4.1 Vascular Sound Dataset

Tobin and Chang [21] showed a consistent relationship between the average pres-

sure fluctuations experienced by the inner wall of a vessel and normalized distance

independent of the Reynolds number.

Figure 4.1: RMS Wall Pressure Fluctuations wrt x/D retrieved from [21]

Figure 4.1 is the root mean square (RMS) wall pressure fluctuations with x/D curves

for different stenosis percentages. This figure demonstrates that there is a resem-

blance between the Reynolds number and stenosis level vs. the prms

ρ
· D

d
expression.

Here, x represents the length measured from the end of the narrowed area in the flow
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direction. D is the tube diameter, while d stands for the constricted diameter. uj is the

average velocity at the narrowed area, ρ is the fluid density and prms shows the RMS

pressure.

As Salman [57] mentioned, Yazıcıoğlu et al. [20] employed the equation 4.1 and To-

bin and Chang’s RMS pressure expression. They find the equation 4.2 by performing

curve fitting in Matlab with the curves in Figure 4.1.

p(x) = 1.82 · Fn1(x/D) · ρ · U3/2 · D
5/2

d2

(
1

1 + 20( fd
2

UD
)5.3

)1/2

(4.1)

Fn1

( x

D

)
=

0.07057x+ 0.3849

x2 − 23.22x+ 167.9
(4.2)

Salman [57] shared the source code that generates empirical results obtained from

Tobin and Chang [21] study. The curve fit values 4.1 and the overall equation 4.3 are

indicated as following:

Table 4.1: List of Pressure Distribution Equation’s Parameters

Parameter Label

p1 = 0.07057 (1)

p2 = 0.3849 (2)

q1 = −23.22 (3)

q2 = 167.9 (4)

p(x, f) = 1.82 ·
(

p1 · x+ p2
x2 + q1 · x+ q2

)
·0.001 ·U1.5 ·

(
D2

d2

)
·
(
1 +

(
20 · f · d2

U ·D

))−0.5

(4.3)

The equation referenced as 4.3 plays a crucial role in our analysis by providing an

instantaneous pressure distribution. This distribution is not constant but varies de-

pending on two key variables: the frequency of the measured signal and the ’x’ value,

which could represent the distance downstream from the exit of constriction.
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To effectively demonstrate the pressure distribution within a vessel that has undergone

90% and 70% stenosis, Figure 4.2a and 4.2b present a detailed visual representation.

These figures show that a high degree of narrowing impacts the vessel’s pressure

dynamics. The employed parameters are also outlined in Table 4.2.

Table 4.2: Summary of Pressure Distribution Generation Parameters

Parameter Description Value

x1 Range (mm) 1 to 100

f1 Frequency range (Hz) 1 to 600

D Vessel diameter (mm) 6.4

U Flow velocity (mm/s) 156

Figures 4.2a and 4.2b are contour plots that represent three dimensional data. The

x-axis represents a spatial measurement in millimeters. It indicates the distance mea-

sured from the exit of a constriction. The y-axis represents frequency in hertz (Hz).

The color gradient represents a pressure level in dB (ref 1 Pa) and the scale on the

right side correlates the colors to numerical values. The colors range from dark blue

to yellow, with blue representing lower values and yellow representing higher values.

(a) Instantaneous Pressure Distribution of % 70

Stenosis

(b) Instantaneous Pressure Distribution of % 90

Stenosis

Figure 4.2: Comparison between the Different Stenosis Severities

Figure 4.2b visualizes how a 70% vessel narrowing affects pressure. The pressure
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disturbances are more apparent closer to the constriction and tend to dissipate as the

distance from the constriction increases.

Similarly, Figure 4.2a displays the pressure distribution for a more severe constriction

of 90%. The color contours in this figure show more significant pressure variations

due to the increased severity of the stenosis.

Instantaneous pressure is the pressure at a specific moment within the cardiovascular

system. Each heartbeat generates a pulse and leads to a fluctuating pressure profile

that varies temporally with each cardiac cycle. Systolic and diastolic phases char-

acterize the pulsating flow. The ventricles contract, discharge blood into the arteries,

and create a peak in pressure during the systole. The ventricles relax, and the pressure

falls during diastole. The transition from instantaneous pressure to pulsating flow in-

volves understanding how pressure varies during these cycles. Since the sine wave

signal represents the cardiac cycle’s behavior, the blood flow velocity is turned into a

sine wave given in equation 4.4.

U = |Umax · sin (2 · π · fheartbeat · t) | (4.4)

In the equation 4.4, U defines the blood flow velocity as a function of time t, while

Umax is the maximum velocity that the blood flow achieves during the cardiac cycle.

The sine function is utilized to model the oscillatory nature of blood flow. fheartbeat is

the frequency of the heartbeat, usually measured in beats per minute (bpm). For this

equation, it is converted to Hz.

It is important to understand that sound is a mechanical wave resulting from particles’

vibrations in a medium. These vibrations can be represented as a combination of

different frequencies.

Fourier’s theory declares that any complex waveform, including the sound of pul-

sating blood flow, can be decomposed into a sum of simple sinusoids of different

frequencies, amplitudes, and phases. This is known as the Fourier transform. Con-

versely, the Inverse Fourier transform reconstructs the original signal from its sinu-

soidal components. The formulation of the inverse Fourier transforms is as follows:
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g(t) =

∫ ∞

−∞
G(f)ei2πftdf (4.5)

The model developed by Yazıcıoğlu et al. [20] and Salman [57], which is based on

the study by Tobin and Chang [21], provides a fundamental basis for generating the

sound associated with pulsating flow through a vessel.

The sound waves result from the summation of various frequency components de-

rived from pressure values. Since the model provides pressure values for a range of

frequency values, the inverse Fourier transform could help generate the complex pul-

sating flow signal from the instantaneous pressure distribution. The total sound signal

is generated by equation 4.6.

signal =
∫ 600

1

p(t, f) · e(i·2πf ·t+ϕ)df (4.6)

In equation 4.6, p(t,f) originates from equation 4.3. As the maximum vibration occurs

x = 1.5 ·D, the pressure expression’s dependency is reduced to time and frequency.

This equation resembles an inverse Fourier transform, which reconstructs a time-

domain signal from its frequency-domain representation. The term ϕ represents a

phase shift, crucial for accurately depicting oscillation.

In the figure 4.3a and 4.4a, the horizontal axis represents time that spans from 0 to 3

seconds. The vertical axis indicates frequency, which ranges from 0 to 600 Hz. The

color intensity at any given point on the plot corresponds to the pressure magnitude

and frequency at that time. Darker regions indicate lower pressure levels, whereas

brighter colors signify higher ones.

The pattern of concentric and arch-like contours shows up periodically, suggesting a

repetitive nature of the pressure variations over time. Red stands for higher intensity,

and blue indicates lower intensity in the color bar. When comparing 70 % and 90 %

stenosis levels, it is evident that 90% has higher pressure values.
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(a) Contour Plot of % 70 Stenosis Sound (b) Spectrogram of % 70 Stenosis Sound

Figure 4.3: Comparative Visualization of Acoustic Characteristics for a 70% Stenosis

Condition

The spectrograms 4.3b and 4.4b provide an understanding of a signal’s frequency

spectrum over time. They show the signal’s intensity at various frequencies with

bright colors. The scale on the right indicates the power of the signal in decibels. The

horizontal axis range is between 0 and 2.5 seconds, and the frequency on the vertical

axis extends up to 500 Hz.

(a) Contour Plot of % 90 Stenosis Sound (b) Spectrogram of % 90 Stenosis Sound

Figure 4.4: Comparative Visualization of Acoustic Characteristics for a 90% Stenosis

Condition
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The red and yellow indicate higher intensity, whereas blue indicates lower intensity.

The color intensity suggests the signal’s energy distribution difference comparing

4.3b and 4.4b. In the level of 90%, more intense colors dominate the spectrum, indi-

cating a signal with a consistently higher power across the measured frequencies and

time intervals.

4.2 Relating Heart and Vascular Sounds

4.2.1 Evaluating with Pre-trained MFCC and CNN

In this section of the research, a pre-trained Convolutional Neural Network (CNN)

is utilized. This CNN has been previously trained using the Physionet Heart Sound

Database, which contains a comprehensive collection of heart sound recordings. The

primary objective is to analyze the similarities between phonocardiography (heart

sounds) and vascular sounds. Schematic illustration of the evaluation of vascular

sounds using a pre-trained MFCC and CNN is given in Figure 4.5.

Figure 4.5: Schematic illustration of the evaluation of vascular sounds using a pre-

trained MFCC and CNN

To achieve this, the vascular sound data is fed into the pre-trained network. In the

process, just before the softmax layer of the network, probabilities indicating whether

the sounds are normal or abnormal are extracted. This method provides insights into
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the comparative analysis of heart and vascular sounds.

The parameters of the vascular sound generation are given in Table 4.3.

Table 4.3: Summary of Sound Generation Parameters

Parameter Description Value

x1 Range (mm) 1 to 100

f1 Frequency range (Hz) 1 to 600

S Stenosis Severity 30 to 95

D Vessel diameter (mm) 6.4

U Flow velocity (mm/s) 156

4.2.2 Evaluating with Feature Comparison

In this part of the study, the four databases of PhysioNet heart sounds and generated

vascular sound dataset, are processed using the OpenL3 algorithm separately, the im-

plementation of which was detailed in Chapter 2. This process extracts features, sub-

sequently transforming the resulting matrices from 3-dimensional to 2-dimensional

data.

The final phase involves normalizing the feature sets of both heart and vascular sounds.

This normalization is achieved using the normalize function from the scikit-learn li-

brary, ensuring that the data sets are aligned on a standard scale. The normalized fea-

ture sets are then subjected to matrix multiplication to compute the cross-correlation

matrix. This step is crucial for analyzing the relationships and similarities between

the heart and vascular sound features.

The dimensions of the resulting cross-correlation matrix are printed, providing in-

sight into the relational structure between the two datasets. Additionally, a count of

instances where the cross-correlation value falls below a threshold (0.001 in this case)

is computed and printed, offering a quantitative measure of similarity or dissimilar-

ity between the heart and vascular sound features. The schematic illustration of the

cross-correlation process using OpenL3 features of phonocardiography and Vascular
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sounds is given in Figure 4.6.

Figure 4.6: Schematic Illustration of the Cross-Correlation Process Using OpenL3

Features of Phonocardiography and Vascular Sounds

The same procedure was applied to the VGGish features, yielding results that were

consistent with those obtained from the OpenL3 analysis. This consistency further

verifies the findings derived from the OpenL3 approach.

4.3 Discussion of the Results for Chapter 4

The plot 4.7 presented is a scatter type overlaid with a fitted line. It is drawn to

visualize the relationship between stenosis level and the probability of abnormality

with the MFCC and pre-trained CNN combination.

The horizontal axis represents the stenosis level, quantified by a range from around

30 to 90. This range suggests a scaled measure of stenosis severity, with higher values

indicating more significant narrowing.

The vertical axis shows the probability of abnormality, with values ranging from 0.4

to above 0.8. The probability scale is from 0 to 1, where 0 indicates no chance, and 1

indicates absolute certainty.

The blue dots represent individual data points that correlate a stenosis level with a

probability of abnormality. These points are collected from the test of the pre-trained

network with vascular sounds.

The orange line represents the trend within the data. The line looks like linear and

there is an apparent relationship between the stenosis level and the probability of

abnormality across the full range of data shown. Between 50% and 90% stenosis
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level, there is an increasing trend in probability but it is not a solid linear relationship.

Figure 4.7: The Stenosis Level vs. Abnormal Probability Plot

The OpenL3 and VGGish analysis results that the computed cross-correlation ma-

trix predominantly consists of zeros. This outcome suggests a lack of direct, linear

relationship between the phonocardiography and vascular sound data set.

In conclusion, the analysis presented through the scatter plot with a fitted line offers

a subtle understanding of the relationship between stenosis level and the probabil-

ity of abnormality, as interpreted by the MFCC and a pre-trained CNN approach.

The data, spanning a significant range of stenosis levels, reveal a pattern that is not

strictly linear, indicating the complexity of vascular sound analysis. Furthermore,

the results from OpenL3 and VGGish analyses, showing a predominantly zero-filled

cross-correlation matrix, strengthen the absence of a direct, linear correlation between

phonocardiography and vascular sound datasets. This study therefore contributes to

a deeper understanding of vascular sound analysis, highlighting the need for sophis-

ticated analytical techniques in accurately diagnosing and understanding vascular ab-

normalities.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 Conclusion

This research has provided powerful insights into cardiovascular health diagnostics

using phonocardiography (heart) and vascular sounds. Through comprehensive anal-

yses employing different feature extraction methods (MFCC, OpenL3, VGGish) and

classification algorithms (CNN, SVM, KNN), this study has demonstrated these com-

binations’ varying levels of effectiveness in accurately classifying audio data.

The OpenL3 & KNN method emerged as the most effective, achieving the highest ac-

curacy at 86.50%. Its superior performance in both specificity and sensitivity under-

scores its potential as a reliable method for audio classification tasks. In contrast, the

MFCC & CNN combination showed lower overall accuracy and specificity, though it

still maintained decent sensitivity.

In understanding the relationship between stenosis level and the probability of abnor-

mality, the study revealed an apparent pattern between the 50-90% stenosis level. The

scatter plot with a fitted line, particularly with MFCC and a pre-trained CNN com-

bination, showed that the relationship is more complex than a straightforward linear

correlation. In addition to that, the feature comparison method supports the findings

with zero feature similarity. This finding is critical in advancing the understanding of

vascular sound analysis and developing more effective diagnostic tools.
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5.2 Future Work

In the pursuit of advancing the field of cardiovascular health diagnostics, various

issues emerge for future research. First and foremost, exploring enhanced feature ex-

traction techniques, including advanced deep learning approaches, holds the potential

for even more accurate classifications. Broadening the scope of data sets to include

diverse patient demographics and various stages of stenosis would also be invaluable

in validating these findings.

Further, combining other variables such as age, gender, and patient history provides

a more comprehensive understanding of phonocardiography recordings. The poten-

tial for implementing these classification methods in real-time diagnostic tools is an

ongoing and promising research area. This greatly enhances the efficiency and effec-

tiveness of medical diagnostics.

Comparative studies with existing diagnostic methods are crucial to strength classi-

fication techniques. The observed non-linear relationship between stenosis level and

abnormality probability necessitates further investigation. More sophisticated mathe-

matical modeling or machine learning techniques capable of capturing complex pat-

terns in data could provide deeper insights into this phenomenon.

Expanding the scope of research, different combinations of feature extraction and

classification methods would help evaluate the robustness. Combining the strengths

of different techniques could yield more powerful and accurate systems.

Finally, researching ways to detect anomalies automatically in heart sounds through

continuous monitoring could lead to early diagnosis and in-time intervention. This

holds the potential to improve patient outcomes significantly. In a broader context,

especially in regions with limited access to healthcare will be an important step con-

sidering the global health impact of these technologies.

In summary, phonocardiography in diagnostics has a bright future and opportuni-

ties. Integrating artificial intelligence, advanced data analysis techniques, and user-

centered design principles holds the promise of revolutionizing how heart and vascu-

lar diseases are diagnosed and managed.
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