
ANALYSIS OF TWO VERSATILE MPC FRAMEWORKS MP-SPDZ AND MPYC

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF APPLIED MATHEMATICS

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

FATİH AYKURT

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

CRYPTOGRAPHY

DECEMBER 2023

Approval of the thesis:

ANALYSIS OF TWO VERSATILE MPC FRAMEWORKS MP-SPDZ AND
MPYC

submitted by FATİH AYKURT in partial fulfillment of the requirements for the de-
gree of Master of Science in Cryptography Department, Middle East Technical
University by,

Prof. Dr. A. Sevtap Kestel
Dean, Graduate School of Applied Mathematics

Assoc. Prof. Dr. Oğuz Yayla
Head of Department, Cryptography

Assoc. Prof. Dr. Oğuz Yayla
Supervisor, Cryptography, METU

Examining Committee Members:

Prof. Dr. Zülfükar Saygı
Mathematics, TOBB ETU

Assoc. Prof. Dr. Oğuz Yayla
Cryptography, METU

Prof. Dr. Sedat Akleylek
Computer Engineering, Ondokuz Mayıs University

Assoc. Prof. Dr. Adnan Özsoy
Computer Engineering, Hacettepe University

Assist. Prof. Dr. Buket Özkaya
Cryptography, METU

Date:

iv

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Last Name: FATİH AYKURT

Signature :

v

vi

ABSTRACT

ANALYSIS OF TWO VERSATILE MPC FRAMEWORKS MP-SPDZ AND MPYC

AYKURT, FATİH
M.S., Department of Cryptography

Supervisor : Assoc. Prof. Dr. Oğuz Yayla

December 2023, 44 pages

Using secure multi-party computing protocols (MPC), a group of participants who
distrust one another can securely compute any function of their shared secret inputs.
Participants exchange these inputs in a manner similar to secret sharing, where each
participant owns a portion of the input but is unable to independently reconstruct the
complete information without collaborating with the other participants. This kind of
computation is quite powerful and has many uses where data privacy is quite criti-
cal such as areas like government, business, and academia. MPC has grown from
a subject of theoretical study to a technology being employed in industry, becom-
ing effective enough to be deployed in practice with various algorithms implemented
with MPC frameworks. In this study, two versatile MPC frameworks, MP-SPDZ and
MPyC are analyzed. These frameworks’ performances are compared by using algo-
rithms execution times from basic operations to more complex structures like shuffle
sort algorithm. Profiling results are also analyzed to reveal the bottleneck points of
the algorithms where the time consumption increases drastically. To detect the criti-
cal parts easier, profiling results are visualized as dot graphs. Besides all these, in the
MPyC framework, Sattolo shuffle algorithm is implemented and compared with the
current modern version of Fisher-Yates algorithm.

Keywords: MPC, Profiling, Bottleneck, Benchmark

vii

viii

ÖZ

İKİ ÇOK YÖNLÜ MPC ÇERÇEVESİ MP-SPDZ VE MPYC’NİN ANALİZİ

AYKURT, FATİH
Yüksek Lisans, Kriptografi Bölümü

Tez Yöneticisi : Doç. Dr. Oğuz Yayla

Aralık 2023, 44 sayfa

Çok partili hesaplama(ÇPH), kişisel verilerini paylaşmak istemeyen partilerin, birbir-
leri arasında güvenli veri paylaşımı yapmasını sağlar. Katılımcılar verilerinin sadece
belirli bir kısmını birbirleriyle paylaşır. Paylaşım sonucu her katılımcı verilerin sa-
dece bir kısmına sahip olur ve diğer katılımcıların verilerini de kullanmadan tüm
bilgiyi kendi başına elde edemez. Bu sayede katılımcıların kendi veri bütünlüğünü
açığa çıkarmasına gerek kalmadan toplu veri paylaşımı yapılabilir. Bu tarz hesapla-
malar oldukça verimlidir ve veri güvenliğinin ön planda olduğu devlet işleri, iş dün-
yası, akademi gibi birçok alanda kullanılabilir. ÇPH artık teorik bir çalışma olmaktan
çıkmış, endüstride kullanılabilecek verimli bir teknoloji aracına dönüşmüştür. Bu ça-
lışmada 2 tane etkili ÇPH algoritma çerçevesi, MP-SPDZ ve MPyC analiz edildi. Bu
algoritma çerçevelerinin performansları basit operasyonlardan karıştır-sırala gibi kar-
maşık yapılara kadar farklı algoritmalar kullanılarak karşılaştırıldı. Algoritmalardaki
zaman tüketiminin şiddetli bir şekilde arttığı boğum yerlerini ortaya çıkarmak için
profil analizi yapıldı. Algoritmalardaki kritik kısımları daha kolay analiz edebilmek
için profil analizi sonuçları nokta grafiği formatında görselleştirildi. Tüm bunların
yanında MPyC çerçevesinde Sattolo karıştır algoritması implemente edildi ve güncel
olarak kullanılan Fisher-Yates algoritmasının modern haliyle karşılaştırıldı.

Anahtar Kelimeler: MPC, Profil Çıkarma, Boğum Yeri, Performans Analizi

ix

x

ACKNOWLEDGMENTS

I would like to express my very great appreciation to my thesis supervisor Assoc.
Prof. Dr. Oguz Yayla for his patient guidance, enthusiastic encouragement and valu-
able advices during the development and preparation of this thesis. His willingness
to give his time and to share his experiences has brightened my path.

Furthermore, I would like to thank my family and my friends for listening to my
concerns, believing in me and their supports.

xi

xii

TABLE OF CONTENTS

ABSTRACT . vii

ÖZ . ix

ACKNOWLEDGMENTS . xi

TABLE OF CONTENTS . xiii

LIST OF TABLES . xv

LIST OF FIGURES . xvii

CHAPTERS

1 INTRODUCTION . 1

1.1 Historical Process and Literature Review 2

1.2 Contribution of thesis . 4

1.3 Outline . 4

2 MULTI PARTY COMPUTATION 5

2.1 Real-World Applications of MPC 5

2.2 Shamir’s Secret Sharing . 6

2.3 MP-SPDZ . 6

2.3.1 Features and Architecture of MP-SPDZ 7

xiii

2.3.2 Architecture . 7

2.3.3 Use Cases of MP-SPDZ 8

2.4 MPyC . 8

2.4.1 Features and Architecture of MPyC 9

2.4.2 Use Cases of MPyC 9

3 BENCHMARKS . 11

3.1 Basic Operations . 12

3.2 Inner Product . 14

3.3 Shuffle-Sort . 15

3.3.1 MP-SPDZ . 16

3.3.2 MPyC . 18

4 PROFILING . 21

4.1 Inner Product . 22

4.2 Shuffle-Sort . 24

5 CONCLUSION . 39

REFERENCES . 41

xiv

LIST OF TABLES

Table 3.1 Basic Operations Execution Times 12

xv

xvi

LIST OF FIGURES

Figure 3.1 Inner Product Algorithm Execution Times in MPyC and MP-SPDZ 15

Figure 3.2 Shuffle-Sort Algorithm Execution Time In MP-SPDZ 16

Figure 3.3 Shuffle-Sort Algorithm Execution Time In MP-SPDZ and Radix Sort 17

Figure 3.4 Shuffle-Sort Algorithm Execution Time In MP-SPDZ and MPyC . 19

Figure 4.1 Profiling Results of Inner Product 23

Figure 4.2 Profiling Results of Shuffle-Sort are sorted according to cumulative
time . 25

Figure 4.3 Profiling Results of Shuffle-Sort are sorted according to tottime . . 26

Figure 4.4 Original and Sattolo Shuffle-Sort Algorithm Execution Time in
MPyC . 28

Figure 4.5 Profiling Results of Original Shuffle-Sort are sorted according to
cumtime . 29

Figure 4.6 Profiling Results of Sattolo Shuffle-Sort are sorted according to
cumtime . 29

Figure 4.7 Dot Graph of Shuffle-Sort in MPyC 30

Figure 4.8 Dot Graph of Inner Product in MPyC 31

Figure 4.9 Dot Graph of Reduce Multiplication in MPyC 32

Figure 4.10 Dot Graph of Reduce Addition in MPyC 33

Figure 4.11 Dot Graph of Vector Addition in MPyC 34

Figure 4.12 Dot Graph of Schur_Prod() in MPyC 35

Figure 4.13 Dot Graph of mpc.Prod() in MPyC 36

Figure 4.14 Dot Graph of mpc.Sum() in MPyC 37

xvii

xviii

CHAPTER 1

INTRODUCTION

A group of participants that distrust each other can safely compute any function of

their shared secret inputs using secure multi-party computation protocols (MPC).

These inputs are shared among participants as a manner of secret sharing, where

each person owns a portion of the input but cannot reconstruct the entire informa-

tion independently without working with the other participants. MPC has a broad

range of applications from secure financial transactions to healthcare. It allows par-

ticipants to share their private data and compute jointly without learning nothing but

just computation result. To adapt these functionalities to the real world, many MPC

frameworks are developed. The utility and implementation of these frameworks were

significantly improved by ground-breaking publications. Modern MPC frameworks

like MP-SPDZ and MPyC, which provide versatile, high-performance options for se-

cure multi-party computation, were made possible by these developments however

the performances still need improvements.

There are various studies focus on performance comparison about MPC frameworks

[22], [18], [26]. In these studies, execution times of basic functions and simple al-

gorithms like inner product are used for benchmark. A bunch of ciphers are imple-

mented and their execution time results are detailed for comparison of MPC frame-

works. Reasons of the poor performances are explained without diving into sub func-

tions just by analyzing execution times of algorithms.

Performance comparison and enhancement are always hot topic for all areas. One of

the ways of the enhancement is revealing the bottleneck points of the algorithms and

resolving the over time consumption. With using profiling tools, bottleneck points

1

are detected of the algorithms by measuring the execution time of each call. Using

profiling tools to enhance the algorithms by resolving the bottlenecks is a common

method in recent studies [20], [8].

When performances of the frameworks are considered, MP-SPDZ is one of the best

frameworks however it is not on the top if the usability has more priority. MPyC

is better than MP-SPDZ for accessibility and usability so combining these features

with improved performance on MPyC framework may increase the usage of it in

real world applications. For the improvement, we try to find out the reasons behind

poor performance with profiling analysis. In the literature, we didn’t encounter any

profiling analysis about these two MPC frameworks.

By combining execution times and profiling results, we aimed to show the perfor-

mance difference of these two frameworks and reveal bottleneck points of the imple-

mented algorithms if exists. Showing the statistics of all the function calls and their

effects on the overall execution times is the motivation of this study.

1.1 Historical Process and Literature Review

Multi-Party Computation originated at the intersection of computer science, cryptog-

raphy and concerns about privacy. The principle of secure multiparty computation

was originally formalized in the early 1980s, which is when MPC frameworks began

to evolve historically. This concept was first proposed in Andrew Yao’s 1982 article

"Protocols for Secure Computations," [45] which is where it all began. It has intro-

duced as "Yao’s Millionaires’ Problem". The protocol allowes two millionaires to

compare their wealth without revealing related data.

Following years, researchers developed effective algorithms for secure two-party com-

putation, which were essential to secure e-commerce transactions and computations

that preserved privacy. The research of Oded Goldreich and Charles Rackoff on "Se-

cure Multi-Party Computation" [16] and the creation of cryptographic primitives like

Oblivious Transfer and Zero-Knowledge Proofs are two examples. More practical

and versatile MPC frameworks developments are inevitable. The evolution of MPC

frameworks over time shows a progression from theoretical ideas to the useful, effec-

2

tive and adaptable frameworks present today.

There are several studies on MPC frameworks about their performance or usability

comparison. These works are the basis our experiment. The study "General pur-

pose compilers for secure multi-party computation"[18] compares eleven systems:

EMP-toolkitç[41], Obliv-C[46], ObliVM[25], TinyGarble[37], SCALE-MAMBA[1],

Wysteria[30], Sharemind[6], PICCO[47], ABY[12], Frigate[29] and CBMC-GC[14].

It focuses on usability by evaluating language expressibility, capabilities of the cryp-

tographic back-end and accessibility to developers. Implementation of inner prod-

uct is one of their test algorithms. The study "Performance Comparison of Two

Generic MPC-frameworks with Symmetric Ciphers"[26] compares two frameworks

MP-SPDZ and MPyC by implementing a bunch of Symmetric Ciphers like AES,

ChaCha20, Trivium etc. It presents the benchmark results of basic operations. Then it

shares the performance analysis of the ciphers by evaluating execution times without

any profiling so any bottlenecks can’t be revealed. The study "MP-SPDZ: A Versa-

tile Framework for Multi-Party Computation"[22] focuses the comparison MP-SPDZ

with other frameworks like ABY[12], Fresco[19], OblivC[46] etc. They calculated

execution times of inner product implementations. They apply many protocols like

Shamir[35], Malicious Shamir[7], Yao’s Garbled Circuits[4] etc. Most of the cases,

MP-SPDZ presents better performance. This research also focuses on only execution

times without any further study like profiling.

While evaluating the performance of the frameworks, execution time analysis is very

usefully however it is not enough to find out the reason of the performance difference

and improve the poor performances. Profiling is the common method for this purpose.

Code profiling enables us to analyze the algorithms and reveals whether there is a bot-

tleneck that spends too much time or not. There are many studies that use profiling

method to improve specific tasks in different fields. The study "Optimizing a medical

image registration algorithm based on profiling data for real-time performance"[20]

suggests improvements based on the dot graph visualization and detects performance

bottlenecks on a complex algorithm with gprof profiling. The study "Parallel Col-

lision Detection with OpenMP"[8] tries to improve the performance of a collision

detection algorithm by analyzing its profiling data. They reduce the number of in-

structions with the help of gprof2dot and speed up the process.

3

1.2 Contribution of thesis

As mentioned above sections, there various studies about MPC frameworks. Bench-

marks provide only execution time analysis. Their results don’t present the behaviour

inside the functions. Bottlenecks of the algorithms stay unknown. Our aim is taking

these studies a step further. We present a new perspective for comparison of MPC

frameworks. We used profiling tools to reveal the reasons of MPC frameworks poor

performance in specific algorithms. We presented the statistics of every function call

with cProfile tool. To analyze these data, we visualized them with gprof and gprof2dot

tools. After the profiling results are obtained, a well known shuffle algorithm, Sattolo

Shuffle is implemented in the MPyC to add a new usability feature to the framework.

1.3 Outline

In this thesis, two Multi Party Computation[24] frameworks, MP-SPDZ[22] and MPyC

[34] are studied. Their performance and profiling characteristics are analyzed, bot-

tleneck of the algorithms are focused. Sattolo shuffle algorithm implementation is

presented.

Chapter 2 presents an introduction to MPC. Uses cases of MPC and one of the main

protocols, Shamir Secret Sharing [35] are mentioned. Features and current studies

about MPyC and MP-SPDZ are briefly described.

Chapter 3, we compute and compare the executions times of algorithms in both frame-

works. Analysis of inner product, shuffle-sort algorithms and basic operations like

addition and multiplication are our objective.

Chapter 4 demonstrates the profiling results of the frameworks. Using cProfiling

tool, we focused algorithms bottlenecks to find whether there is a part that needs

optimization or not. Using gProf and gProf2dot tools, execution paths are visualized.

Sattolo shuffle implementation in MPyC is presented

4

CHAPTER 2

MULTI PARTY COMPUTATION

MPC can be thought of as a cryptographic technique that offers trusted-party func-

tionality without the need for reciprocal trust—a trusted party that would accept secret

inputs, perform a function, and deliver the output to the stakeholders. As a result, it

is guaranteed that no participant learns anything through using the protocol that they

couldn’t have known from the output alone. For example, a computation will be

applied to two secret values like comparison, addition etc. Firstly, these two secret

values are divided into n piece where n is the party number. All pieces shared among

parties and each party have n secret pieces. Shamir secret sharing [35] is a common

method used for this secret sharing. None of the parties can’t evaluate the main secret

value without enough pieces. Desired computation is applied to all pieces without

revealing the secret values.Finally secret values are reconstructed with computation

results and MPC is completed. Lagrange interpolation[11] is one the common recon-

struction method.

2.1 Real-World Applications of MPC

MPC has a broad range of applications. In secure financial transactions, it enables par-

ties to jointly perform financial operations without revealing sensitive details, ensur-

ing the privacy of transactions. In healthcare, it facilitates privacy-preserving analytic

on patient data, allowing medical researchers to gain insights without compromising

patient confidentiality [36]. Secure voting systems use MPC to ensure the integrity

of the voting process while preserving anonymity. One of the real world example

5

is Boston wage gap [23]. MPC is used in 2017 to calculate the salaries of 166,705

workers from 114 companies. Since companies weren’t going to share their raw data

because of privacy concerns, the usage of MPC was essential. The research results

revealed that the gender wage gap in the Boston area is significantly greater than pre-

dicted. This is an impressive example of how MPC can be applied for the benefit of

society.

2.2 Shamir’s Secret Sharing

Shamir’s Secret Sharing [35] is a fundamental cryptographic method that is essential

to secure sharing of information and multi-party computation. The fundamental ideas

and importance of Shamir’s Secret Sharing system are explained in this subsection.

Shamir’s Secret Sharing is a method for sharing a secret into a number of pieces

that can only be merged when an agreed-upon amount of shares are combined. It

was developed by Adi Shamir in 1979. Polynomial interpolation is the main idea.

Consider a scenario in which shares are generated using the coordinates of a secret,

which is represented as a point on a polynomial curve. On this curve, there is a

point for each share. Polynomial interpolation is utilized to find the curve’s equation,

which reveals the secret, and a minimum number of shares equal to or exceeding a

predefined threshold must be acquired in order to reconstruct the secret.

An adversary cannot discover the secret as long as they hold fewer shares than the

required amount. Due to this, it is a useful technique in MPC where parties seek to

execute computations simultaneously without revealing their private inputs. Shamir’s

technique also offers resilience against share defects or losses; even if some shares

are corrupted or lost, the secret can still be rebuilt as long as the required number of

valid shares is present.

2.3 MP-SPDZ

Multi-Party Secure Protocol for Data-Zero-Knowledge (MP-SPDZ) is a cutting-edge

framework designed for secure multi-party computation. It emerges from the inter-

6

section of cryptography, computer science and distributed systems to address the crit-

ical issue of computing functions while preserving privacy among multiple parties.

MP-SPDZ stands out due to its strong focus on efficiency and usability. This frame-

work enables multiple parties to jointly compute a function over their private inputs

without revealing any sensitive information to one another. MP-SPDZ’s underlying

principle is to break down computations into smaller operations then securely com-

bine the results using cryptographic techniques.

2.3.1 Features and Architecture of MP-SPDZ

MP-SPDZ boasts several remarkable features that make it a robust choice for secure

multi-party computation. It provides support for arithmetic operations over various

data types including integers and floating-point numbers. Moreover, it excels in scal-

able protocols, which means it can handle computations involving numerous parties

efficiently. Additionally, MP-SPDZ offers flexibility by accommodating different se-

curity models and threat scenarios. This adaptability makes it versatile for use in both

research and practical implementations.

2.3.2 Architecture

The architecture of MP-SPDZ is structured around a client-server model. The clients

represent the parties involved in the computation, while servers handle the heavy

cryptographic computations. This separation of roles ensures a practical division of

labor, with clients responsible for input and output handling and servers managing

the secure computation. MP-SPDZ employs advanced cryptographic primitives like

homomorphic encryption and secret sharing schemes to ensure data privacy. The

system is designed to be modular, allowing for easy integration of new protocols and

improvements, which is crucial for keeping pace with evolving security requirements.

Overall, MP-SPDZ’s architecture is a well-thought-out balance of efficiency, security

and adaptability making it a prominent choice in the MPC landscape.

7

2.3.3 Use Cases of MP-SPDZ

MP-SPDZ finds practical application in various domains where secure computations

are essential. One of its prominent use cases is in privacy-preserving data analysis,

especially in situations where multiple parties need to collaborate without disclos-

ing sensitive information. For example, healthcare institutions can use MP-SPDZ

to jointly analyze patient data from different hospitals while ensuring that individual

patient records remain confidential. Similarly, financial institutions can utilize MP-

SPDZ to detect fraudulent activities across multiple banks without sharing customer

transaction details.

Another significant application is in secure voting systems. MP-SPDZ can be em-

ployed to create a trustful and tamper-proof voting process where voters can cast

their ballots privately and the final election results can be computed securely with-

out revealing individual votes. This ensures the integrity of the voting process and

protects against coercion or bribery.

Due to its high performance, MP-SPDZ is preferred in many different fields for se-

cure computation. The study "Secure integer division with a private divisor"[38]

offers a solution to secure integer division within a secret-sharing based MP-SPDZ

framework. The study "SAFEFL: MPC-friendly Framework for Private and Robust

Federated Learning"[15] aims to develop more efficient Federated learning (FL)[28]

systems. They also used MP-SPDZ framework, which implements various MPC pro-

tocols. The study "RPM: Robust Anonymity at Scale" [27] presents a scalable anony-

mous communication protocol suite using MPC with the offline-online model. They

have implemented their protocols using the MP-SPDZ.

2.4 MPyC

The MPyC Python package provides a user-friendly environment for building MPC

protocols and is designed for secure computing tasks. Researchers and practitioners

have both taken notice of MPyC, which was developed with a focus on simplicity and

usability. By allowing many parties to work together on data analysis and processing

8

while maintaining the privacy of their inputs, MPyC supports secure computations.

To maintain privacy and security during computation, it makes use of modern cryp-

tographic techniques including secret sharing and homomorphic encryption.

2.4.1 Features and Architecture of MPyC

The strength of MPyC depends in its extensive feature set and clear architectural

design. The framework’s high degree of adaptability makes it possible for users to

quickly and efficiently perform a variety of secure compute tasks. Support of mul-

tiple cryptographic primitives, a high-level Python interface and compatibility with

numerous secure computation protocols are a few of the important characteristics. Its

architecture takes advantage of Python’s power and simplicity, making it usable by

both security professionals and beginners.

A trusted provider is in charge of starting the safe computation in MPyC’s network

of parties, each of which has its own secret data inputs. The framework ensures the

privacy of these parties’ inputs while allowing safe communication and computation

between them. MPyC is a useful tool for researchers, developers and organizations

looking to take advantage of secure multi-party computation since it offers a simple

and expressive programming model that makes the construction of secure protocols

easier.

2.4.2 Use Cases of MPyC

A variety of use cases in many different sectors are possible by MPyC’s versatil-

ity. For instance, MPyC can be used in the healthcare industry for secure medical

data analysis, enabling hospitals and academics to collaborate on patient data studies

without revealing private data. In the field of finance, MPyC provides secure financial

computations involving numerous stakeholders without revealing sensitive financial

data, such as portfolio optimization or risk evaluation.Additionally, MPyC is utilized

in secure machine learning, where parties can collaborate to train models on their

individual private datasets.

9

Due to its usability and high compatibility, MPyC is preferable among different fields.

The study "Differentially-Private Multi-Party Sketching for Large-Scale Statistics"[9]

offers a solution to compute aggregate statistics on large amounts of sensitive data

while protecting the privacy of individual users by using MPyC framework. The study

"Privacy-Preserving Contrastive Explanations with Local Foil Trees"[39] provides a

secure algorithm for machine learning models with implementations in MPyC.

10

CHAPTER 3

BENCHMARKS

Benchmark serves as a fundamental component of this research, enabling a perfor-

mance analysis of MPC frameworks, MP-SPDZ and MPyC. The primary purposes of

benchmark within this study are as follows:

1. Performance Comparison: The main goal of benchmark is to compare MP-

SPDZ and MPyC performance across different relevant algorithms. We obtain

significant understanding into how these frameworks differ to one another by

giving both of them the same set of tasks and evaluating the time it takes for

each task to be completed. This is crucial for ones who are looking to choose

the best framework for particular MPC applications.

2. Identifying Strengths and Weaknesses: Benchmark enables us to identify

the execution speed and resource efficiency of MP-SPDZ and MPyC. We can

identify which framework performs best in specific tasks or scenarios through

analyzing benchmark data and we can also identify potential spots may require

optimization. Developers can efficiently focus their optimization efforts by an-

alyzing what sections of the frameworks are the most significant contributions

to total execution time.

From basic operations to complex algorithms, execution times are measured. Inner

product algorithm, shuffle-sort algorithm and basic operations like multiplication, ad-

dition etc. are implemented and analyzed. Shamir secret sharing protocol is applied

for all algorithms with 64-bit integers and MacBook Pro with M2 chip, 8-core CPU,

8GB of RAM is the hardware configuration.

11

3.1 Basic Operations

Basic operations form the basis of all algorithms. Their combinations provide com-

plex functionalities. Following chapters introduce inner product and shuffle sort al-

gorithms which consist of many basic functions. Analyzing the behaviour of basics

helps to understand the complex structures. In our work, we calculated total execution

times of 100 times of each basic operations, addition, multiplication, reduce addition

and reduce multiplication for both MPyC and MP-SPDZ frameworks. Besides we

added vector operations for MPyC. Table 3.1 shows how many seconds it takes to

compute 100 basic operations of input length from 1 to 100.

Table 3.1: Basic Operations Execution Times
n MP-SPDZ MPyC MPyC Vec

map(operator.add, a, b) vector_add(a, b)
1 <1 7 11

10 <1 14 24
100 <1 72 59

map(operator. mul, a, b) schur_prod(a, b)
1 7 32 34

10 7 86 54
100 9 455 119

reduce(operator.add, a) mpc.sum(a)
1 <1 <1 16

10 <1 68 23
100 <1 507 35

reduce (operator mul, a) mpc.prod(a)
1 <1 <1 22

10 38 180 106
100 366 1671 178

Functionality of the basic operations are:

• Schur_prod: The secure entry-wise multiplication of two vectors

• Reduce operation: Applies a function of two arguments cumulatively to the

items of a sequence or iterable, from left to right, so as to reduce the iterable to

a single value. For example:

12

reduce(lambda x, y : x+ y, [1, 2, 3, 4, 5]) calculates

r(((1 + 2) + 3) + 4) + 5)

In MP-SPDZ, addition time is very small, less than 1 millisecond. It increases with

a rising n size for multiplication. The unvectorized computations grow linearly with

vector size in MPyC. The vectorized operations scale more quickly, although only the

sum scales sublinearly. The other operations observe a slowdown as the size of their

input vectors increase.

Algorithm 1 shows a secure multiplication operation in MP-SPDZ. Firstly, the vari-

ables x and y values are assigned from an external file called "Input_0" and "Input_1".

While receiving inputs, they are converted to secure types by "sint" operation. x and

y variables become secure integers. Their values can’t be read by an external user.

Only the owners of input files know the values. Then secure multiplication is done

with overloaded "*" operation and final result is obtained. Final result is also secure

since it is the result of a secure process. To reveal the final result, it has to be con-

verted from secure type to insecure one. By "reveal()" operation, result is converted

from secure to insecure one and its readable by anyone. This process shows only se-

cure operation steps. Secret sharing mechanism isn’t included here. For that purpose,

many protocols like Shamir Secret Sharing are used.

Algorithm 1 Secure Multiplication Algorithm in MP-SPDZ

x← sint.get_raw_input_from(Input_0)

y ← sint.get_raw_input_from(Input_1)

result← x ∗ y
print_ln(′%s′, result.reveal())

Algorithm 2 shows a secure multiplication operation in MPyC. Firstly, insecure in-

tegers 5 and 7 are converted to secure integers by "SecInt()" operation. Then secure

multiplication is done by overloaded "*" operation. To convert the secure result to

insecure integer, mpc.run() operation is called and the result is readable by all users.

13

Algorithm 2 Secure Multiplication Algorithm in MPyC

x← mpc.SecInt(5)

y ← mpc.SecInt(7)

result← x ∗ y
final_result← mpc.run(result)

print(final_result)

Evaluating basic operations execution times and using them for comparison approach

is also used in the study "Performance Comparison of Two Generic MPC-frameworks

with Symmetric Ciphers"[26] to compare MPyC and MP-SPDZ performance. Same

basic operations execution times are compared. We want to ensure from our imple-

mentations by comparing our results with this study. The relation between size and

execution time is similar. MPyC simple operations are worse than both MP-SPDZ and

MPyC vectored operations however there is an improvement in the execution times.

Compared to mentioned study, our calculated execution times almost 4 times less in

the size of 100 in the addition and multiplication operations. In the mpc.sum opera-

tion, the results are opposite. Our execution time is 2 times greater. Other operations

have similar times.

3.2 Inner Product

Compare to basic operations, more complex algorithms provide better understanding

for the performance analysis. Inner product is the second analyzed algorithm. It takes

2 insecure inputs, converts them to secure ones. Then inner product of the inputs

is calculated. It is converted back to insecure type and outputted. Figure 3.1 shows

how many seconds it takes to compute an inner product of length from 10,000 to

1,000,000.

14

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

·106

1.65
3.1
4.5
6

7.3
9

10.55
12

13.55
14.8

Number of Items

E
xe

cu
tio

n
Ti

m
e

(m
s)

MP-SPDZ
MPyC

Figure 3.1: Inner Product Algorithm Execution Times in MPyC and MP-SPDZ

There is a linear relationship between time and length for both frameworks. In the

basic operations, performance difference is obvious however when more complex

structures are compared, the difference becomes more striking. MP-SPDZ is about

20 times faster than MPyC with a 1000000 input size and the difference increases

with increasing size.

Inner product algorithm execution time analysis is used also in the study "MP-SPDZ:

A Versatile Framework for Multi-Party Computation"[22]. This study compares MP-

SPDZ with other MPC frameworks. They implemented the same algorithm and used

its execution time for performance comparison however they focused only the results

of the execution. Improvement of the poor performances isn’t their field of study

contrary to us. One of our motivation is to take this study a step further by profiling

the algorithm and find out any possible bottleneck.

3.3 Shuffle-Sort

Shuffle and sort algorithms are key components of many larger secure computation

protocols. Analysis of the shuffle-sort algorithm has a huge importance in our work.

By evaluating this algorithms execution times in both framework, performance com-

parison becomes more meaningful and precise. Secure sorting protocols allow two

(or more) participants to privately sort a list of n secret-shared[35] values without

revealing any data about the underlying values to any of the participants. The algo-

15

rithm inputs a set of insecure values and converts them to secure ones. To ensure the

randomness, firstly shuffles the input set randomly. Then the secure set is sorted and

outputted.

3.3.1 MP-SPDZ

We aimed to have an idea on the overall performance with benchmark results before

applying the profiling tools. Firstly we analyzed the MP-SPDZ framework. Shuffle

algorithm uses Waksman permutation network[40], [3]. Waksman permutation net-

works are built using “controlled-swap-gates” which take two inputs and a “control

bit” that determines whether to swap the two inputs. In the second part, MP-SPDZ

sort algorithm bases from radix sort. Its implementation and performance are detailed

in the study "Oblivious Radix Sort: An Efficient Sorting Algorithm for Practical Se-

cure Multi-party Computation[5]". The overall algorithm is implemented and execu-

tion time is evaluated. Figure 3.2 which shows how many seconds it takes to compute

a shuffle-sort algorithm of length from 100 to 2100 in the MP-SPDZ framework.

128 256 512 800 1,024 1,400 1,600 1,800 2,048

0.6
1.33

2.44

4.6

9.66

Number of Items

E
xe

cu
tio

n
Ti

m
e

(m
s)

MP-SPDZ

Figure 3.2: Shuffle-Sort Algorithm Execution Time In MP-SPDZ

16

According to the originated study[5], the proposed algorithm time complexity is

O(nlogn). Time vs size of input graph should has a smooth increasing line how-

ever in our work, we obtained a non-smooth, stair like line. Figure 3.3 shows both

expected and our results. Expected result data are taken from the originated study[5].

The reason of this behaviour is the shuffle implementation. Sort algorithm also uses

shuffle and Waksman networks are the base of shuffle. Waksman network is a per-

mutation network capable of n! permutation of its n input terminals to its n output

terminals. The building blocks for this network are binary cells capable of permuting

their two input terminals to their two output terminals. The complexity of shuffle

increases by powers of two so with every power of 2 of input length, execution time

almost doubles and until the next power, it almost stays the same. Without doubling,

the results are almost matched with the expected ones.

Figure 3.3: Shuffle-Sort Algorithm Execution Time In MP-SPDZ and Radix Sort

In the multi party computations, nonlinear behaviours may cause weaknesses. MP-

SPDZ framework uses a nonlinear shuffle algorithm and this nonlinear behaviour

creates a weakness. If the execution time result of different input lengths are known,

17

the relation between input lengths may be estimated. For example, if the traitor gets

two different execution time results, according to the ratio between them, the power

difference of input lengths can be estimated. There are linear solutions for shuf-

fle however their execution time performance is worse. The study "Efficient Secure

Three-Party Sorting with Applications to Data Analysis and Heavy Hitters"[2] offers

a perfectly linear approach however it is only described for honest majority and only

for three parties. This nonlinear behaviour is an issue to be resolved for MP-SPDZ.

A linear and higher performance shuffle algorithm is essential.

3.3.2 MPyC

Besides the MP-SPDZ analysis, for the performance comparison, we analyzed the

same algorithm in the MPyC framework. Algorithm3 shows an example of shuffle-

sort with input size 10. # parts are comment lines to show the output of variables.

Algorithm 3 Shuffle-Sort Algorithm in MPyC
n← 10

s← [(−1) ∗ ∗i ∗ (i+ n//2) ∗ ∗2 for i in range(n)]

#s [25, -36, 49, -64, 81, -100, 121, -144, 169, -196]

secnum← mpc.SecInt()

x← list(map(secnum, s))

async with mpc :

mpc.random.shuffle(secnum, x)

await mpc.output(x)

#output [81, 49, -144, 169, -64, -100, 25, -36, -196, 121]

x← mpc.sorted(x)

await mpc.output(x)

#output [-196, -144, -100, -64, -36, 25, 49, 81, 121, 169]

Before shuffle sort calls, input list has to be converted to secure integers for MPC.

Secure conversion means that the values are distributed among parties with secret

sharing protocols. Default party number is 3 and MPyC uses Shamir[35] secret shar-

ing. "async" "await" structure is used since if the sort operation starts before the

18

first output() operation finished, list x already started to be sorted before shufle re-

sult is outputted and output doesn’t give true result. Figure 3.4 shows how many

seconds it takes to compute a shuffle-sort algorithm of length from 100 to 6000 in

the both frameworks. MPyC execution times have a linear relationship with n size

since MPyC uses Batcher’s odd-even mergesort[21]. This approach has a linear cost

however its complexity is O(nlog2n) and its clearly seen from the Figure3.4.

1,024 2,048 4,096 6,000

28.7

82

156

250

364

500

Number of Items

E
xe

cu
tio

n
Ti

m
e

(m
s)

MP-SPDZ
MPyC

Figure 3.4: Shuffle-Sort Algorithm Execution Time In MP-SPDZ and MPyC

19

20

CHAPTER 4

PROFILING

Code profiling is a software analysis technique used to measure and analyze the per-

formance characteristics of an algorithm during its execution. The aim is identifying

bottlenecks for optimization. It involves set of statistics that describes how often and

for how long various parts of the program are executed. This data helps developers

and analysts identify areas in the code that may require optimization. There are sev-

eral ways of profiling. In this work, cProfiling, gprof[17] and gprof2dot[13] tools

are used. “cProfile” is a built-in profiler for Python. It allows you to measure the

execution time of different parts of your Python code. Advantages of cProfiling as

follows:

• It provides the overall execution time of the whole code

• It gives the time spent of each individual call. You may compare and determine

which components require optimization using this.

• The number of times each function call is also presented

• Using pstats module, the useful data can be extracted. Then this data can be

visualised for better analysis.

“gprof” is a profiling tool provided by the GNU Compiler Collection (GCC) for an-

alyzing the performance programs. gprof2dot” is a Python script that converts the

output of gprof into a graphical representation, typically in the form of a call graph or

dot graph. In our study, using cProfile and pstats modules, profiling data of the code

is extracted and saved as pstats file. This file holds all execution time statistics of the

21

functions.Then pstats file is converted to a dot file with gprof module. For visualiza-

tion of the data, gprof2dot module converts the dot file into a call graph to a png file.

Call graph represents the code execution path from main function to basic operations

like addition, multiplication. It also provides percentage of the execution times of all

functions by comparing them.

In the Chapter 3, executions times of the algorithms and basic operations are shared

separately. In this chapter, we will provide the profiling statistics of the algorithms by

showing how often the basic operations are called and how much their percentages

are in the execution time. This progress reveals the bottlenecks of the algorithms if

exist. Applying the profiling methods to MPyC framework is more meaningful since

it has worse performance than MP-SDPZ in all benchmark results. Following sections

present our analysis about inner product and shuffle sort on MPyC. Basic operations

profiling is nonsense since they are on the bottom of the algorithm. They forms the

basis. There is not any further call after them. Nevertheless, we share the call graphs

of the basic functions to support this claim. In the Figures 4.9, 4.10, 4.11, 4.12, 4.13

and 4.14 shows the graphs of basic calls. They don’t have a significant call block.

Most of the execution times are belong to input and output phases.

4.1 Inner Product

We analyzed Inner Product algorithm with profiling tools to get a deeper insight. In

the beginning, to get the execution times of each function call, line profiling is used

however only the functions which are located on the main page times are obtained.

We are not able to see whether there are any bottleneck points in any of the functions.

Then the method is switched to cProfiling. It allows us to see all function calls and

their execution times.

cProfile tool outputs are the followings:

• ncalls: The number of times a specific code block was called during the profil-

ing

• tottime: Total time spent executing the specific code block, excluding the time

22

spent in its sub-functions.

• percall: Average time spent per call to the specific function. It’s calculated by

dividing the tottime by the ncalls.

• cumtime: Cumulative time spent in the specific function and all its sub-functions.

It includes the time spent in the sub-functions.

• percall: Average cumulative time spent per call to the specific function. It’s

calculated by dividing the cumtime by the ncalls.

• filename: This indicates the name of the file where the function or code block

is defined.

Figure 4.1 shows cProfiling results of the Inner Product algorithm in MPyC frame-

work. The results are sorted according the tottime of the calls.

Figure 4.1: Profiling Results of Inner Product

Functionality of the calls are:

• __init__(): Convert the insecure inputs to secure ones

• input(): Input x to the computation

• in_prod(): Securely calculate the inner product of the inputs

The algorithm doesn’t have any basic function call. Initialization calls have a domi-

nance on the execution time. Almost %33 of the total time belongs to init functions.

Init functions are mainly responsible for initialization of secure integers and initial-

ization of shares. The functions assign secret values to integers to use them in the

secret sharing phase. Secret values of shares for each party are also assigned for

23

the computation part. The key call is "in_prod()" however it has just 8 milliseconds

call time. Even with its subfuntions, its cumulative time is %7 of the total execution

time. Figure4.8 supports these analysis. It tells us the call path of the algorithm from

main function to basic operations. Blue painted blocks have feasible execution times.

Other colors represent the increasing usage of time. Clearly seen that "in_prod()" call

is on the side of blue blocks. In the bottom, init functions are colored green and light

blue which represents the most effective parts in the whole calls. We didn’t face with

any bottlenecks in the analysis however optimization on the init functions may have

an impressive effect on the total execution time.

4.2 Shuffle-Sort

The profiling analysis of shuffle sort algorithm is one of our main contributions. In

the benchmark chapter, we showed the performance difference between frameworks

for the shuffle sort algorithm. In addition to that analysis, with profiling results, we

aimed to find out at least one of the reasons of MPyC poor performance. Compared to

inner product, shuffle-sort has more complex inner structure. With this algorithm, we

created a use case which consists of many basic operations. Too much function calls

increase the probability of a bottleneck where the execution is stuck and spends redun-

dant time. By analyzing the statistics of the calls, we aimed to reveal the bottlenecks

if they exist. In the Figure 4.2 shows cProfiling results of a shuffle-sort algorithm of

length 100,000 in MPyC. The results are sorted according to the cumulative time of

the calls.

Sort() and shuffle() functions are the key calls. Their total execution time equals the

overall execution time. Init functions don’t have an important effect in contrast to

inner product.

24

Figure 4.2: Profiling Results of Shuffle-Sort are sorted according to cumulative time

Functionality of the other calls are:

• lt(): Convert the insecure inputs to secure ones

• sgn(): returns the sign of the input.

return of sgn() =

−1, if x ≤ 0

0, if x = 0

1, if x ≥ 0

Besides the above functions, basic operations have an impressive role. Their cumu-

lative time seems like they are the least important ones however Figure 4.3 shows

that without adding sub functions, __mul__() function have the most execution time.

Figure4.3 shows cProfiling results sorted according to the tottime of the calls.

Gray painted rows have the most cumulative time however their own execution times

are less than basic operations. They don’t have an impressive effect on the total time

with own execution times. On the other hand, they have an impressive effect with their

subfunctions. Figure 4.7 shows gprof2dot output of a shuffle-sort algorithm of length

100,000 in MPyC. When we follow the green and red blocks, in the bottom of the

25

colored blocks, sgn() function call has the most weight compared with the same level

calls. There is not any impressive call below sgn function in the call path. Most of

the basic functions are the sub function of sgn(). It may not effect the total time by its

own execution however with many basic calls, it have a huge effect. In the Figure4.2,

almost %90 of the cumulative time belongs to sgn() and its subfunctions. Effort on

the decreasing its execution time is meaningless however if the sub function call times

is decreased, their total effect may be decreased and sgn() weight is reduced.

Figure 4.3: Profiling Results of Shuffle-Sort are sorted according to tottime

Profiling results show that shuffle call has a critical effect on the performance and we

focused that part. Optimization in the shuffle call may decrease the execution time

drastically. MPyC framework uses the modern version of Fisher–Yates[10] shuffle

algorithm.The original version of the Fisher-Yates is an algorithm for generating a

random permutation of a finite set. Each element is swapped with a random one from

the same list so this process ensures a uniformly random arrangement of elements.

The modern version swaps the elements with unswapped ones and this increases effi-

ciency. In the result of these shuffles, the elements may stay in their original positions

and also the sequence may not be shuffled with a 1 ÷ n! probability. In the Sattolo

shuffle[42], elements are shuffled in a way that guarantees no element remains in its

original position by creating a cycle of permutations.

Algorithm4 shows the Sattolo shuffle implementation in Python. Firstly, a random

integer is obtained to get the value of a random index. In each iteration, this random

value and the next value in the iteration are swapped.

26

Algorithm 4 Sattolo Shuffle in Python
def sattolo(x):

n← len(x)

for i in range(n-1 , 0 , -1):

r ← random.randrange(0, i)

x[i], x[r]← x[r], x[i]

return

For the insecure operations, swapping the elements in a list is straight forward since

the values and indexes are known however for secure operations, the indexes are

secret so swapping is a bit challenging. All elements in the list must be swapped

randomly one by one from last element to first one. While swapping, none of the

elements can stay in its original position since swap operation is done between the

target element and rest of the list which are not swapped yet. Algorithm5 shows the

Sattolo shuffle implementation in MPyC framework.

Algorithm 5 Sattolo Shuffle Implementation in MPyC
def shuffle(sectype, x):

n← len(x)

for i in range(n-1 , 0 , -1):

u← random_unit_vector(sectype , i)

x_u← runtime.in_prod(x[: i] , u)

d← runtime.scalar_mul(x[i]− x_u , u)

x[i]← x_u

x[: i]← runtime.vector_add(x[: i] , d)

return

1. Firstly a random element has to be selected. To select an element randomly and

securely, random_unit_vector() call is used. A unit vector is created with one

of the cells is filled with 1 and rest of the elements are 0. The index which is

determined randomly is secure so the position of the 1 is secret.

2. With the inner product operation between the actual list x and unit vector u, a

random element is chosen from the list and assigned to x_u. This value will be

27

switched with x[i] in the following lines.

3. With scalar multiplication operation between (x[i]-x_u) and unit vector, a vec-

tor, d, is obtained that holds x[i] − x_u in its secret index. Then x_u value is

assigned to i index of x vector. First swap is done.

4. After the vector addition with x and d vector, result of x_u + x[i]−x_u = x[i]

assigned to the secret index of x vector.

We have implemented Sattolo shuffle for both performance and usability since Sattolo

shuffle is one the preferred algorithms in many studies[43]’ [32],[31],[44],[33]. For

the performance, the execution time is the same as modern version of Fisher-Yates

shuffle. The figure 4.4 shows the execution times of original and Sattolo shuffle in

MPyC.

Figure 4.4: Original and Sattolo Shuffle-Sort Algorithm Execution Time in MPyC

Besides execution times, we obtained profiling results for deeper analysis. Main func-

tions and their sub calls execution times and number of calls are presented in the

Figure 4.5 for original Shuffle and in the Figure 4.6 for the Sattolo Shuffle. The call

times and overall execution time are almost same. Performance enhancement isn’t

28

obtained however our implementation shows that without any performance concern,

Sattolo Shuffle can be implemented easily and used for further studies.

Figure 4.5: Profiling Results of Original Shuffle-Sort are sorted according to cumtime

Figure 4.6: Profiling Results of Sattolo Shuffle-Sort are sorted according to cumtime

29

Figure 4.7: Dot Graph of Shuffle-Sort in MPyC

30

Figure 4.8: Dot Graph of Inner Product in MPyC

31

Figure 4.9: Dot Graph of Reduce Multiplication in MPyC

32

Figure 4.10: Dot Graph of Reduce Addition in MPyC

33

Figure 4.11: Dot Graph of Vector Addition in MPyC

34

Figure 4.12: Dot Graph of Schur_Prod() in MPyC

35

Figure 4.13: Dot Graph of mpc.Prod() in MPyC

36

Figure 4.14: Dot Graph of mpc.Sum() in MPyC

37

38

CHAPTER 5

CONCLUSION

Thanks to advances in technology, algorithms are now more reliable and efficient.

Nowadays people have the chance to use these algorithms to store and process their

private information. Key objectives of the research is to analyze these algorithms

especially the frameworks, and reveal the bottlenecks for optimization.

In this thesis, we focus on two Multi Party Computation frameworks MP-SPDZ and

MPyC. Firstly, we give the background information about MPC. Its development

process and features are presented. Then, detailed descriptions of the frameworks are

given. Their features and related studies are introduced for better understanding of our

goal. Later, we present our work. Performance comparison results of the frameworks

are given. Benchmarks results are shown and the outstanding performance of MP-

SPDZ is clearly seen in all implemented algorithms. A nonlinear pattern is obtained

in the MP-SPDZ framework analysis because of its shuffle algorithm. In the shuffle-

sort algorithm, in every power of 2, execution time is doubled and remained almost

same until the next power of 2. This nonlinear behaviour is described as a weakness

and defined as an open problem for future work.

Besides benchmarks, profiling analysis are done for a deeper insight. Bottlenecks of

the algorithms are searched. We presented the profiling results and for better under-

standing, we visualised the execution paths by using gproof and gproof2dot tools. In

the inner product algorithm analysis, we didn’t face any bottlenecks in the key func-

tions. Improvement of the init functions may have major effect on the optimization.

In the shuffle-sort algorithm analysis in MPyC, shuffle part has the same importance

with the sort part and we focused on shuffle. Sattolo shuffle is implemented instead

39

of modern version of Fisher-Yates shuffle. Performance enhancement isn’t achieved

however its showed that Sattolo shuffle functionality can be used easily if needed with

our implementation.

40

REFERENCES

[1] A. Aly, K. Cong, D. Cozzo, M. Keller, E. Orsini, D. Rotaru, O. Scherer,
P. Scholl, N. P. Smart, T. Tanguy, et al., Scale–mamba v1. 14: Documentation,
Documentation. pdf, 2021.

[2] G. Asharov, K. Hamada, D. Ikarashi, R. Kikuchi, A. Nof, B. Pinkas, K. Taka-
hashi, and J. Tomida, Efficient secure three-party sorting with applications to
data analysis and heavy hitters, Cryptology ePrint Archive, Paper 2022/1595,
2022.

[3] B. Beauquier and E. Darrot, On Arbitrary Waksman Networks and their Vulner-
ability, Technical Report RR-3788, INRIA, October 1999.

[4] M. Bellare, V. T. Hoang, S. Keelveedhi, and P. Rogaway, Efficient garbling from
a fixed-key blockcipher, Cryptology ePrint Archive, Paper 2013/426, 2013.

[5] D. Bogdanov, S. Laur, and R. Talviste, A practical analysis of oblivious sorting
algorithms for secure multi-party computation, in K. Bernsmed and S. Fischer-
Hübner, editors, Secure IT Systems, pp. 59–74, Springer International Publish-
ing, Cham, 2014.

[6] D. Bogdanov, S. Laur, and J. Willemson, Sharemind: A framework for fast
privacy-preserving computations, in Computer Security-ESORICS 2008: 13th
European Symposium on Research in Computer Security, Málaga, Spain, Octo-
ber 6-8, 2008. Proceedings 13, pp. 192–206, Springer, 2008.

[7] K. Chida, D. Genkin, K. Hamada, D. Ikarashi, R. Kikuchi, Y. Lindell, and
A. Nof, Fast large-scale honest-majority mpc for malicious adversaries, Cryp-
tology ePrint Archive, Paper 2018/570, 2018.

[8] T.-H. Chien, J.-W. Lin, and R.-G. Chang, Parallel collision detection with
openmp, Journal of Physics: Conference Series, 1069(1), p. 012180, aug 2018.

[9] S. G. Choi, D. Dachman-Soled, M. Kulkarni, and A. Yerukhimovich,
Differentially-private multi-party sketching for large-scale statistics, Cryptology
ePrint Archive, Paper 2020/029, 2020.

[10] W. contributors, Fisher–Yates shuffle, https://en.wikipedia.org/
wiki/Fisher%E2%80%93Yates_shuffle, 2023, [Online; accessed 2-
January-2024].

41

https://en.wikipedia.org/wiki/Fisher%E2%80%93Yates_shuffle
https://en.wikipedia.org/wiki/Fisher%E2%80%93Yates_shuffle

[11] R. Cramer, I. B. Damgård, and J. B. Nielsen, Secure Multiparty Computation
and Secret Sharing, Cambridge University Press, 2015.

[12] D. Demmler, T. Schneider, and M. Zohner, Aby - a framework for efficient
mixed-protocol secure two-party computation, 01 2015.

[13] D. Flater, Configuration of profiling tools for c/c++ applications under 64-bit
linux, https://doi.org/10.6028/NIST.TN.1790, 03 2013, [Online;
accessed 2-January-2024].

[14] M. Franz, A. Holzer, S. Katzenbeisser, C. Schallhart, and H. Veith, Cbmc-gc: an
ansi c compiler for secure two-party computations, in International Conference
on Compiler Construction, pp. 244–249, Springer, 2014.

[15] T. Gehlhar, F. Marx, T. Schneider, A. Suresh, T. Wehrle, and H. Yalame, Safefl:
Mpc-friendly framework for private and robust federated learning, Cryptology
ePrint Archive, Paper 2023/555, 2023.

[16] O. Goldreich, Secure multi-party computation, Manuscript. Preliminary Ver-
sion, 03 1999.

[17] S. Graham and P. Kessler, Gprof: A call graph execution profiler, ACM SIG-
PLAN Notices, 17, 06 1982.

[18] M. Hastings, B. Hemenway, D. Noble, and S. Zdancewic, Sok: General pur-
pose compilers for secure multi-party computation, in 2019 IEEE Symposium
on Security and Privacy (SP), pp. 1220–1237, 2019.

[19] A. Institute, FRESCO - A FRamework for Efficient Secure Computation,
https://github.com/aicis/fresco, 2023, [Online; accessed 2-
January-2024].

[20] C. J. Gulo, A. Sementille, and J. Tavares, Optimizing a medical image regis-
tration algorithm based on profiling data for real-time performance, Multimedia
Tools and Applications, 01 2022.

[21] K. V. Jönsson, G. Kreitz, and M. Uddin, Secure multi-party sorting and applica-
tions, Cryptology ePrint Archive, Paper 2011/122, 2011.

[22] M. Keller, Mp-spdz: A versatile framework for multi-party computation, Cryp-
tology ePrint Archive, Paper 2020/521, 2020.

[23] A. Lapets, F. Jansen, K. D. Albab, R. Issa, L. Qin, M. Varia, and A. Bestavros,
Accessible privacy-preserving web-based data analysis for assessing and ad-
dressing economic inequalities, in Proceedings of the 1st ACM SIGCAS Confer-
ence on Computing and Sustainable Societies, COMPASS ’18, Association for
Computing Machinery, New York, NY, USA, 2018.

42

https://doi.org/10.6028/NIST.TN.1790
https://github.com/aicis/fresco

[24] Y. Lindell, Secure multiparty computation (mpc), Cryptology ePrint Archive,
Paper 2020/300, 2020.

[25] C. Liu, X. S. Wang, K. Nayak, Y. Huang, and E. Shi, Oblivm: A programming
framework for secure computation, in 2015 IEEE Symposium on Security and
Privacy, pp. 359–376, 2015.

[26] T. Lorünser and F. Wohner, Performance comparison of two generic mpc-
frameworks with symmetric ciphers, pp. 587–594, 07 2020.

[27] D. Lu and A. Kate, Rpm: Robust anonymity at scale, Cryptology ePrint Archive,
Paper 2022/1037, 2022.

[28] P. M. Mammen, Federated learning: Opportunities and challenges, 2021.

[29] B. Mood, D. Gupta, H. Carter, K. Butler, and P. Traynor, Frigate: A validated,
extensible, and efficient compiler and interpreter for secure computation, in
2016 IEEE European Symposium on Security and Privacy (EuroS&P), pp. 112–
127, IEEE, 2016.

[30] A. Rastogi, M. A. Hammer, and M. Hicks, Wysteria: A programming language
for generic, mixed-mode multiparty computations, in 2014 IEEE Symposium on
Security and Privacy, pp. 655–670, 2014.

[31] S. Q. Ren, B. H. M. Tan, S. Sundaram, T. Wang, Y. Ng, V. Chang, and K. M. M.
Aung, Secure searching on cloud storage enhanced by homomorphic indexing,
Future Generation Computer Systems, 65, pp. 102–110, 2016.

[32] S. Santo and N. M. S. Iswari, Design and development of animal recognition ap-
plication using gamification and sattolo shuffle algorithm on android platform,
International Journal of New Media Technology, 4, pp. 46–53, 06 2017.

[33] A. Sarad and S. Srikanth, Improved interference diversity in multicellular ofdma
systems, pp. 1 – 8, 02 2009.

[34] B. Schoenmakers, Mpyc—python package for secure multiparty compu-
tation, in Workshop on the Theory and Practice of MPC. https://github.
com/lschoe/mpyc, 2018.

[35] A. Shamir, How to share a secret, Commun. ACM, 22(11), p. 612–613, nov
1979.

[36] H. Smajlović, A. Shajii, B. Berger, H. Cho, and I. Numanagić, Sequre: a
high-performance framework for rapid development of secure bioinformatics
pipelines, 2022, pp. 164–165, 05 2022.

[37] E. M. Songhori, S. U. Hussain, A.-R. Sadeghi, T. Schneider, and F. Koushanfar,
Tinygarble: Highly compressed and scalable sequential garbled circuits, in 2015
IEEE Symposium on Security and Privacy, pp. 411–428, 2015.

43

[38] T. Veugen and M. Abspoel, Secure integer division with a private divisor., Proc.
Priv. Enhancing Technol., 2021(4), pp. 339–349, 2021.

[39] T. Veugen, B. Kamphorst, and M. Marcus, Privacy-preserving contrastive ex-
planations with local foil trees, Cryptography, 6(4), 2022.

[40] A. Waksman, A permutation network, J. ACM, 15(1), p. 159–163, jan 1968.

[41] X. Wang, A. J. Malozemoff, and J. Katz, EMP-toolkit: Efficient MultiParty
computation toolkit, https://github.com/emp-toolkit, 2016, [On-
line; accessed 2-January-2024].

[42] M. C. Wilson and É. Fusy, Overview of sattolo’s algorithm, 2005.

[43] L. Windheuser, C. Anneser, H. Zhang, T. Neumann, and A. Kemper, Adaptive
compression for databases, 2024.

[44] M. Wongso and W. Istiono, Learn muay thai basic movement in virtual reality
and sattolo shuffle algorithm, International Journal of Science, Technology amp;
Management, 4(2), pp. 341–349, Mar. 2023.

[45] A. C. Yao, Protocols for secure computations, in 23rd Annual Symposium on
Foundations of Computer Science (sfcs 1982), pp. 160–164, 1982.

[46] S. Zahur and D. Evans, Obliv-c: A language for extensible data-oblivious com-
putation, Cryptology ePrint Archive, Paper 2015/1153, 2015.

[47] Y. Zhang, A. Steele, and M. Blanton, Picco: A general-purpose compiler for
private distributed computation, in Proceedings of the 2013 ACM SIGSAC Con-
ference on Computer & Communications Security, CCS ’13, p. 813–826, Asso-
ciation for Computing Machinery, New York, NY, USA, 2013.

44

https://github.com/emp-toolkit

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	Introduction
	Historical Process and Literature Review
	Contribution of thesis
	Outline

	MULTI PARTY COMPUTATION
	Real-World Applications of MPC
	Shamir's Secret Sharing
	MP-SPDZ
	Features and Architecture of MP-SPDZ
	Architecture
	Use Cases of MP-SPDZ

	MPyC
	Features and Architecture of MPyC
	Use Cases of MPyC

	Benchmarks
	Basic Operations
	Inner Product
	Shuffle-Sort
	MP-SPDZ
	MPyC

	Profiling
	Inner Product
	Shuffle-Sort

	Conclusion
	REFERENCES

