
MULTIPLE CONNECTIVITY APPROACH TO NETWORK FORMATION
GAMES

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF APPLIED MATHEMATICS

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

CAN DENİZ ÇAM

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

SCIENTIFIC COMPUTING

DECEMBER 2023

Approval of the thesis:

MULTIPLE CONNECTIVITY APPROACH TO NETWORK FORMATION
GAMES

submitted by CAN DENİZ ÇAM in partial fulfillment of the requirements for the
degree of Master of Science in Scientific Computing Department, Middle East
Technical University by,

Prof. Dr. A. Sevtap Kestel
Dean, Graduate School of Applied Mathematics

Assoc. Prof. Dr. Önder Türk
Head of Department, Scientific Computing

Assoc. Prof. Dr. Esma Gaygısız
Supervisor, Department Of Economics, METU

Assoc. Prof. Dr. Hamdullah Yücel
Co-supervisor, Scientific Computing, METU

Examining Committee Members:

Prof. Dr. Ömür Uğur
Scientific Computing, METU

Assoc. Prof. Dr. Esma Gaygısız
Department Of Economics, METU

Assoc. Prof. Dr. Hamdullah Yücel
Scientific Computing, METU

Assist. Prof. Dr. Ayşe Özgür Pehlivan
Department of Economics, TOBB ETU

Assist. Prof. Dr. Mehmet Fatih Öztek
Department of Economics, AYBU

Date:

iv

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Last Name: CAN DENİZ ÇAM

Signature :

v

vi

ABSTRACT

MULTIPLE CONNECTIVITY APPROACH TO NETWORK FORMATION
GAMES

Çam, Can Deniz

M.S., Department of Scientific Computing

Supervisor : Assoc. Prof. Dr. Esma Gaygısız

Co-Supervisor : Assoc. Prof. Dr. Hamdullah Yücel

December 2023, 116 pages

The analyses of network structures, formations and stability characteristics are gain-
ing importance and attracting increasing attention. This thesis establishes a specific
network formation game and suggests a network stability concept. The game is
among firms forming networks to reduce their costs and, hence, increase their payoffs.
The multiple connectivity approach computes how individuals may alter the combi-
nations of their connections to reach optimal payoff levels by solving a mixed integer
optimization problem. Finding the optimal combinations of multiple discrete connec-
tion choices creates a complex problem. This problem is solved by implementing an
interpolation method that is particular to the problem and modifying the branch and
bound algorithm. The ability of the proposed model to describe network formation is
investigated by simulating different network structures emanating from the different
model parameters. These simulations hint at the existence of multiple connectivity
stability for networks, even in the cases where pairwise stability can not be provided
within the context of the established model of the thesis. We take this as the indication
of a new stability concept: multiple connectivity stability for networks.

Keywords: Network Formation, Network Stability, Mixed Integer Nonlinear Opti-
mization

vii

viii

ÖZ

AĞ OLUŞUMU OYUNLARINA ÇOKLU BAĞLANTI YAKLAŞIMI

Çam, Can Deniz

Yüksek Lisans, Bilimsel Hesaplama Bölümü

Tez Yöneticisi : Doç. Dr. Esma Gaygısız

Ortak Tez Yöneticisi : Doç. Dr. Hamdullah Yücel

Aralık 2023, 116 sayfa

Günümüzde ağların yapıları, oluşumları ve kararlılıklarının analizi, önem kazanmakta
ve ilgi çekmektedir. Bu tezde, özel bir ağ oluşum oyunu ortaya konmakta ve yeni
bir kararlılık konsepti önerilmektedir. Önerilen oyun, ağ bağlantılarıyla giderlerini
azaltarak getirilerini arttıran firmalar arasında oynanmaktadır. Çoklu bağlantı yakla-
şımında, bireylerin bağlantılarını değiştirerek en yüksek getiriye ulaşması bir karı-
şık tamsayılı optimizasyon problemi çözülerek bulunur. Çok sayıda bağlantının opti-
mal kombinasyonunu bulmak karmaşık bir problem yaratır. Bu problemi çözmek için
probleme özel bir interpolasyon yöntemi ile dallandırma ve sınırlandırma yönteminin
bir modifikasyonu sunulmaktadır. Önerilen modelin ağ oluşumunu tasvir etmekteki
yeterliliği, farklı parametreler kullanılarak yapılan simülasyonlarla araştırılmaktadır.
Bu simülasyonlar tezde önerilen modelde çoklu bağlantı kararlılığının, ikili kararlılık
olmadığında bile bulunabileceğine işaret etmektedir. Bu sonuca dayanarak, yeni bir
kararlılık konsepti olan ağlar için çoklu bağlantı kararlılığını öne sürüyoruz.

Anahtar Kelimeler: Ağ Oluşumu, Ağ Dengesi, Karışık Tamsayılı Doğrusal Olmayan
Optimizasyon

ix

This thesis is dedicated to a happier tomorrow.

x

ACKNOWLEDGMENTS

I would like to express my gratitude to my supervisor Assoc. Prof. Dr. Esma GAY-
GISIZ, who materialized my enthusiasm and interest into this thesis, and my co-
supervisor Assoc. Prof. Dr. Hamdullah YÜCEL, whose patience and understanding
helped me a lot while putting this thesis together. I would also like to thank members
of my thesis defence committee for their insightful comments and discussions.

Moreover, I would like to thank my friends. After studying networks for about two
years, I can confidently say that their support made this process easier. In particular, I
want to thank my girlfriend İzel ÇELİK, to whom the burden of supporting me mostly
fell over the past two years.

Finally, I would like to acknowledge my family. I appreciate all of their support.
However, I feel especially appreciative of the support of my parents, who made my
graduate studies possible, and my grandparents, whose ceaseless prayers enabled me
to finish this thesis.

xi

xii

TABLE OF CONTENTS

ABSTRACT . vii

ÖZ . ix

ACKNOWLEDGMENTS . xi

TABLE OF CONTENTS . xiii

LIST OF TABLES . xix

LIST OF FIGURES . xxi

LIST OF ABBREVIATIONS . xxv

CHAPTERS

1 INTRODUCTION . 1

2 NETWORK FORMATION WITH MULTIPLE CONNECTIVITY . 5

2.1 Introduction . 5

2.2 Basics of the Graph Theory 6

2.2.1 Network Properties 6

2.2.2 Connection Numbers 9

2.2.3 Miscellaneous Network Definitions 11

2.3 Multiple Connectivity Approach 13

xiii

2.3.1 Pairwise Approach 14

2.3.2 Consent and Pairwise Stability 14

2.3.3 Problems with Pairwise Stability 16

2.3.4 Multiple Connectivity 17

2.3.5 Consent for Multiple Connectivity 17

2.3.6 Comparing PW and MC Stability 18

2.4 Component Profit Model 20

2.4.1 Production Decisions of the Firms 21

2.4.2 The Cost from Forming and Maintaining Connec-
tions . 23

2.5 Stability with Component Profit Model 24

2.5.1 MC Stability for a Firm 24

2.5.2 MC Stability for a Network 25

2.5.3 Forest Condition 29

2.5.4 The Optimal Component Size 30

2.5.5 Ceiling Condition 32

2.5.6 Firms with Equal Parameters 33

2.6 Example of a Stable Network 34

2.6.1 The Unconnected Network 34

2.6.2 A Network with a Single Connection 36

2.6.3 A Stable Configuration 37

2.7 Summary of the Model . 40

xiv

3 A NUMERICAL APPROACH FOR THE MULTIPLE CONNEC-
TIVITY MODEL . 43

3.1 Introduction . 43

3.2 Continuous Interpolations of the Network Properties 44

3.2.1 Motivation for the Interpolation 44

3.2.2 Continuous Component Size Interpolation 45

3.2.3 Direct Connection Approximation 46

3.2.4 Demonstration of the Continuous Approximations 47

3.2.5 Multiple Connections to the Same Component . . . 49

3.2.6 Interpolated Objective Function 50

3.3 Analysis of the Continuous Objective Function 52

3.3.1 Second Order Analysis 52

3.3.2 First Order Analysis 54

3.4 Modifications to the Branch and Bound Algorithm 54

3.4.1 Simple Branch and Bound Algorithm 55

3.4.2 Branch and Bound with Active and Inactive Lists . 56

3.4.3 Pruning . 58

3.4.4 Consent and Component Conditions 58

3.4.5 Modified Algorithm 60

3.5 Procedure to Find Stable Systems in MCG 61

4 SIMULATIONS OF THE MULTIPLE CONNECTIVITY MODEL . 63

4.1 Introduction . 63

xv

4.2 Effectiveness of the Computation Methods 63

4.2.1 Parameters for the Non-linear Solver 64

4.2.2 Modified and Pure Branch and Bound 65

4.3 Comparison of MC to PW Stability 66

4.3.1 Large Stable Components 66

4.3.2 Small Stable Components 69

4.4 Tests with Nine Firms . 73

4.4.1 Equal Parameters 73

4.4.1.1 Shuffled Turn Order 74

4.4.1.2 Alternate Linear Cost 75

4.4.1.3 Alternate Quadratic Cost 77

4.4.1.4 Alternate Direct Connection Cost . . . 79

4.4.1.5 Alternate Component Cost 81

4.4.2 Varied Cost . 84

4.4.2.1 Firms of Increasing Linear Cost 84

4.4.2.2 Firms of Linear Cost Groups 86

4.5 Sixteen Firms . 89

4.5.1 Equal Parameters 89

4.5.2 Firms of Connection Cost Groups 91

5 CONCLUSION . 95

REFERENCES . 97

xvi

APPENDICES

A MATLAB CODES . 101

xvii

xviii

LIST OF TABLES

Table 2.1 Payoffs of two players with networks G and G′. 15

Table 2.2 Alternative payoffs of two players with networks G and G′. 15

Table 2.3 Payoffs of three players. 16

Table 2.4 Payoffs of three players based on δ1. 19

Table 2.5 Payoffs of three players based on δ2. 20

Table 2.6 Payoffs of three players based on δ3. 20

Table 2.7 Example firm coefficients. 34

Table 2.8 Firm profits with respect to choices of firm 1. 35

Table 2.9 Firm profits with respect to choices of firm 2. 37

Table 2.10 Firm profits with respect to choices of firm 3. 38

Table 2.11 Firm profits with respect to choices of firm 1. 39

Table 4.1 Example firm coefficients. 91

xix

xx

LIST OF FIGURES

Figure 2.1 A system with five nodes and two edges. 7

Figure 2.2 A system with five nodes, with the new connection shown 8

Figure 2.3 A system with five nodes, with the new connection shown with
dashed lines. 8

Figure 2.4 A system with five nodes, with the new connection shown with
dashed lines. 9

Figure 2.5 A network with a single chain component. 12

Figure 2.6 A network with a single star component where ν1 is the central node. 12

Figure 2.7 A network with a single mixed component. 13

Figure 2.8 Example system with five firms and two components. 24

Figure 2.9 Possible connection choices for firm 1. 25

Figure 2.10 Possible connection choices for firm 2. 28

Figure 2.11 Best connection choice for firm 1. 36

Figure 2.12 Best connection for firm 2. 37

Figure 2.13 Stable network for this example. 39

Figure 4.1 Calculation times of various algorithms for fmincon. 64

Figure 4.2 Calculation times of different solvers for MINLP. 65

Figure 4.3 Unique isomorph forests with 5 nodes. 66

Figure 4.4 MC stable unique isomorph networks with 5 firms and equal pa-
rameters. 67

Figure 4.5 MC unstable unique isomorph networks with 5 firms and equal
parameters. 68

xxi

Figure 4.6 PW unstable unique isomorph networks with 5 firms and equal
parameters. 68

Figure 4.7 MC stable unique isomorph networks with 5 firms and d = 1. . . . 69

Figure 4.8 PW stable unique isomorph networks with 5 firms and d = 1. . . . 70

Figure 4.9 MC unstable unique isomorph networks with 5 firms and d = 1. . . 70

Figure 4.10 PW unstable unique isomorph networks with 5 firms and d = 1. . . 71

Figure 4.11 MC stable unique isomorph networks with 5 firms and γ = 20. . . 72

Figure 4.12 PW stable unique isomorph networks with 5 firms and γ = 20. . . . 72

Figure 4.13 Profits with 9 firms and equal parameters. 74

Figure 4.14 Network progression with 9 firms and equal parameters. 74

Figure 4.15 Stable networks with 9 firms, equal parameters, and shuffled turn
order with seeds 1, 2, 3 from left to right. 75

Figure 4.16 Profits with 9 firms, equal parameters, and β = 6.66. 76

Figure 4.17 Network formation with 9 firms, equal parameters, and β = 6.66. . 76

Figure 4.18 Profits with 9 firms equal parameters, and β = 3. 77

Figure 4.19 Network formation with 9 firms, equal parameters, and β = 3. . . . 77

Figure 4.20 Profits with 9 firms, equal parameters, and γ = 4. 77

Figure 4.21 Network formation with 9 firms, equal parameters, and γ = 4. . . . 78

Figure 4.22 Profits with 9 firms, equal parameters, and γ = 1. 78

Figure 4.23 Network formation with 9 firms, equal parameters, and γ = 1. . . . 78

Figure 4.24 Profits with 9 firms, equal parameters, and c = 3. 79

Figure 4.25 Network formation with 9 firms, equal parameters, and c = 3. . . . 79

Figure 4.26 Profits with 9 firms, equal parameters, and c = 0. 80

Figure 4.27 Network formation with 9 firms, equal parameters, and c = 0. . . . 80

Figure 4.28 Profits with 9 firms equal parameters, c = 0, and d = 0.5. 80

Figure 4.29 Network formation with 9 firms, equal parameters, and d = 0.5. . . 81

Figure 4.30 Profits with 9 firms, equal parameters, and d = 1. 81

xxii

Figure 4.31 Network formation with 9 firms, equal parameters, and d = 1. . . . 81

Figure 4.32 Profits with 9 firms, equal parameters, and d = 0. 82

Figure 4.33 Network formation with 9 firms, equal parameters, and d = 0. . . . 82

Figure 4.34 Profits with 9 firms, equal parameters, d = 0, and c = 3. 83

Figure 4.35 Network formation with 9 firms, equal parameters, d = 0, and c = 3. 83

Figure 4.36 Profits with 9 firms of varied β. 84

Figure 4.37 Network formation with 9 firms of varied β. 85

Figure 4.38 Profits with 9 firms of varied β and shuffled turn order with seed 1. 85

Figure 4.39 Profits with 9 firms of varied β and shuffled turn order with seed 2. 86

Figure 4.40 Profits with 9 firms of varied β and shuffled turn order with seed 3. 86

Figure 4.41 Stable networks with 9 firms of varied β and shuffled turn order
with seeds 1, 2, 3 from left to right. 86

Figure 4.42 Profits with 9 firms of β groups without turn randomisation. 87

Figure 4.43 Profits with 9 firms of β groups and random turn order with seed 1. 87

Figure 4.44 Profits with 9 firms of β groups and random turn order with seed 2. 88

Figure 4.45 Profits with 9 firms of β groups and random turn order with seed 3. 88

Figure 4.46 Network formation with 9 firms of three β groups, from left to
right: non-random, seed 1, seed 2, and seed 3. 88

Figure 4.47 Profits with 16 firms and equal parameters. 89

Figure 4.48 Network formation with 16 firms and equal parameters. 90

Figure 4.49 Profits with 16 firms, equal parameters, and shuffled turn order. . . 90

Figure 4.50 Network formation with 16 firms, equal parameters, and shuffled
turn order. 91

Figure 4.51 Network formation with 16 firms and 4 player groups by seed 1, 2,
and 3 from left to right. 92

Figure 4.52 Profits with 16 firms and 4 player groups by seed 1. 92

Figure 4.53 Profits with 16 firms and 4 player groups by seed 2. 93

Figure 4.54 Profits with 16 firms and 4 player groups by seed 3. 93

xxiii

xxiv

LIST OF ABBREVIATIONS

R+ Positive real Numbers.

J The number of nodes or firms in a system.

I Identity matrix.

Ni The number of firms that are directly or indirectly connected
to firm i.

Di The number of direct connections to firm i.

q Quantity of produced goods.

P Price for a unit of good.

βi Linear cost coefficient of production for the good for firm i.

γi Quadratic cost coefficient of production for the good for firm
i.

ci,j The cost coefficient of sustaining a connection from firm i to
firm j.

di The cost coefficient for the number of firms directly or indi-
rectly connected to firm i.

πi() Profit function for firm i.

G The adjacency matrix of the network of firm interactions.

sgn() The sign function.

δi,k The choice variable for firm i to connect with k.

Gi(δi, G) The function that alters G based on choices given in δi vector.

Ri() The function that yields the difference in profit of firm i due to
choices.

Bk(δi, G) The function used for checking the component condition.

n The continuous equivalent of Ni.

m The continuous equivalent of Di.

PW Pairwise.

MC Multiple connectivity.

MINLP Mixed integer non-linear programming.

MBB Modified branch and bound.

xxv

xxvi

CHAPTER 1

INTRODUCTION

This thesis is a study on network formation games. We focus on short-term decision-

makers whose profits depend on their network structure and propose a new approach

to modelling their choices. This new approach allows us to compare how players’

profit varies when they can selectively alter all their direct connections. As a result,

we are able to capture network formation choices to maximise profit more accurately.

While this thesis focuses on a static game with short-term thinking players, we con-

sider our approach to be applicable to the more general study of network formation

games.

The observation that individuals with similar interests interact with others is ubiq-

uitous. From children in the playground to the multi-national alliances, we can see

that when left to their own devices, individuals tend to form groups by selectively

including and excluding others. As such, the attempt to observe, quantify, and model

such interactions has a rich history. One of the earlier notable attempts was made by

L. Katz, where the popularity of high school students was examined not just by the

sheer quantity of votes but by who picks who individually [34]. Another earlier work

was carried out by J. A. Barnes, who studied social organisation in the small Norwe-

gian Island Parish of Bremnes [5]. In later years, we see that the study of interactions

of individuals expands to many other fields [4, 8, 15, 40].

The nature of relationships between individuals is often captured using graph theory

when studying networks. One of the earliest examples of this methodology can be

seen in the work of Harary and Norman [25]. Using the graph theory, various net-

work properties, such as centrality [21] and power [10], can be measured. Moreover,

1

using the graph theory and network measures, whether an individual is better off by

participating in or abstaining from a particular network structure can be quantified.

This approach leads to the studies on endogenous network formation, that is, individ-

uals forming a network with their own choice [1, 42].

In this study, the formation of networks is considered from a game theoretical angle,

where each player’s payoffs depend on other players in their network and how they

are connected. Broadly, payoffs may increase or decrease based on the choices of

others in a player’s network, which are called games of strategic complements and

substitutes, respectively. Then, depending on the nature of the game, the player may

adjust the network structure to increase their payoff, and if no higher payoff is pos-

sible for any moves for any players, the network is said to be stable [33]. The profit

for players may be the result of the intrinsic value of their connections [9, 12, 26, 31],

through choices and payoffs of others in their network [3, 11, 32], or through their

ability to collectively respond to external events such as risk management [2]. Our

model uses direct and indirect connections while calculating the payoff. In particular,

we relate these network properties to the production costs. Studies relating network

effects to production cost reduction via technology transfer and know-how can be

found in [17, 23, 35, 36]. Moreover, we consider an additional cost induced by being

connected to a network in terms of direct connection and the size of total connections

similar to the study [24].

In the literature, there are different approaches to how a network formation game

may play out and how players may increase their profit. One approach is presented

by Myerson [37], where each player gives a list of alterations they wish, and if both

parties wish to connect, a connection is made. This approach treats network for-

mation similar to a matchmaking problem where a particular network may only be

stable if no pair of players prefers altering their connections. A study that considers

college admissions in a similar light is [22]. More recently, Jackson and Wolinsky

present pairwise approach to network formation, where each connection is consid-

ered as separate moves by its parties [28]. Later studies developed this notion to

include long-term thinking players that make multiple moves or those that anticipate

responses from other players to increase their profit, such as [19, 29, 30]. These

studies consider network formation not as a process that starts from one network and

2

reaches another but as an analysis of whether an existing structure is stable or not.

And we see that stability is understood as players’ unwillingness to deviate from the

structure they are in. Studies exist that do consider formation as a dynamic game,

such as [43, 44]. However, in this thesis, we consider a static network formation

game and focus on conditions required for the stability.

As discussed in [27], pairwise formation may yield network structures where players

are stuck in a network that does not yield the greatest possible profit for some players

but is still stable, as no player can improve their profit by a single pairwise move. In

such systems, it may be possible for a player to reach a more profitable configuration

over multiple alterations to its connections. We consider this to reflect network for-

mation insufficiently, and therefore, in this study, we consider a new kind of network

formation game where individuals have the choice of altering all their connections as

a single move in order to maximise their profits.

In order to find the optimal moves for players where every possible connection is

evaluated at once, we propose a method to express individual connections in terms

of binary (yes or no) choice variables and write the profit maximisation problem as a

mixed integer optimisation problem. Incorporating mixed-integer optimisation with

the game theory in order to find the best choices is not a new concept. Studies exist

that suggest such methodology for smart power grid [47], waste management [13],

or supply chain management [46]. Moreover, studies such as [38, 41] use mixed

integer programming to find more efficient networks. However, using mixed integer

programming to find optimal choices in a network formation game is a new concept

that we aim to contribute to the game theory literature with this study.

Including introduction and conclusion, this thesis is organised into five chapters. In

Chapter 2, we compare pairwise and multiple connectivity approaches to network

formation games. Then, we propose the Component Profit Model to relate being a part

of a network to profit and set up a game that describes how players may make choices

that alter the network to maximise their profit. Then, in Chapter 3, we discuss how

our model can be solved numerically, along with our method of interpolating discrete

choice variables and our modifications to existing methods to solve mixed integer

optimisation problems. This discussion is followed by Chapter 4 where we present

3

an example to further illustrate the merits of using multiple connectivity approach to

pairwise approach and simulate our model with different parameters to observe how

the networks are formed by playing the game we set up. Finally, in Chapter 5, we

present our conclusions for this study and remark on how future work in this field

may be pursued.

4

CHAPTER 2

NETWORK FORMATION WITH MULTIPLE

CONNECTIVITY

2.1 Introduction

This thesis establishes a specific network formation game and suggests a network

stability concept with the multiple connectivity approach. The game is among firms

forming networks to reduce their costs. The firms’ discrete connection choices in the

formation of stable networks are explored in this chapter.

In Section 2.2, we explain some basic network concepts that we use. Then, in Sec-

tion 2.3 we discuss pairwise stability as introduced by Jackson and Wolinsky [31]

and present our alternative, the multiple connectivity approach. Next, in Section 2.4,

we introduce firms with their incentives to connect to a network or to disconnect

from a network: the Component Profit Model. Later in Section 2.5, we unite the

Component Profit Model and multiple connectivity approach to discuss the stability

characteristics of networks. This is followed by Section 2.6, where we consider a

benchmark example consisting of three firms that operate with the Component Profit

Model and examine various network configurations for stability. Finally, we sum-

marise our model in Section 2.7.

5

2.2 Basics of the Graph Theory

Graph theory is commonly used to study networks, and it provides methods to anal-

yse how different individuals are related to each other. The individual is a general

term that may describe anything from parts of a city to atoms in a molecule, and

the relations may mean any interaction individuals have with each other. We take

each profit-maximising firm as a decision-making individual in this study. We use the

concepts from graph theory to describe an individual’s direct connections in a net-

work and the total number of individuals in that network influencing the individual’s

payoff.

2.2.1 Network Properties

The building blocks of the network formation with a graph theoretical approach are

discussed in this section by using the books Introduction to Graph Theory [45] and

Social and Economic Networks [27]. The former is for the graph theoretical concepts,

and the latter is for their applications in network games. We begin with the definitions

for node and edge:

• Node: A single point in a network that connects to others (vertex).

• Edge: Connections between nodes (line).

How the nodes are connected, in particular, can be described using a set of edges or

an adjacency matrix. We opt for the latter as it makes computation more straightfor-

ward. From here on, we define the adjacency matrices of networks with J nodes as

G ∈ {0, 1}J×J . G is comprised of individual connections between firms, which are

denoted as Gi,j = 1 if a connection exists between i and j and 0 if it does not.

Connections in a network can be one-sided or two-sided (unidirectional or bidirectional).

If it is the latter, the matrix G is symmetric. For this study, we focus on the two-sided

connections, and we assume Gi,i = 0, thus implicitly assuming there is no such thing

as a node as being connected to itself. Going further, we borrow more concepts from

the graph theory:

6

• Walk: A sequence of edges where each edge is connected to the next by one of

its nodes and the previous one with the other.

• Path: A walk where an edge is not repeated.

• Cycle: A walk that starts and ends on the same node.

Moreover, we can say that a graph is connected if a path exists between every node

in a graph and disconnected otherwise. Disconnected graphs are obtained by joining

smaller connected graphs. These connected graphs are called components. A com-

ponent may be a single isolated node or the entire graph (if all nodes are connected).

If a component contains no cyclic paths, it is called a tree, and if all components of a

graph are trees, it is called a forest.

Additionally, we use the following definitions:

• System: The collection of all nodes and edges that we are considering.

• Component Size: The number of nodes in a component.

• Direct Connections: All the nodes a firm can reach by a single edge walk (de-

gree of a node).

Next, we can define two vectors, D ∈ {0, 1, . . . J − 1}J that denotes the number of

direct connections, and N ∈ {1, 2, . . . J}J which is the component size. If a node is

not connected to any other, its number of direct connections is zero, and we take its

component size as one.

To better explain these concepts, we can look at an example with five nodes denoted

as νi, where i ∈ 1 . . . 5 refers to node i in Figure 2.1.

ν1

ν2ν3

ν4

ν5

≡ G =


0 1 0 0 0

1 0 0 0 0

0 0 0 0 0

0 0 0 0 1

0 0 0 1 0

 , D =


1

1

0

1

1

 , N =


2

2

1

2

2


Figure 2.1: A system with five nodes and two edges.

7

In the system given in Figure 2.1, there are three components. Nodes 1 and 2 are the
first component, node 3 is a component of one node, and the rest are the elements of
the third component.

ν1

ν2ν3

ν4

ν5

≡ G =


0 1 0 0 0

1 0 1 0 0

0 1 0 0 0

0 0 0 0 1

0 0 0 1 0

 , D =


1

2
1
1

1

 , N =


3
3
3
2

2


Figure 2.2: A system with five nodes, with the new connection shown .

Now, let us assume node 3 is connected to node 2. As seen from Figure 2.2, this

connection alters the direct connections of involved parties (2,3) but also increases

total connections for node 1. This connection also merges two of the components,

thus reducing the number of distinct components from three to two.

Now, we convert this system into a single component by connecting 1 to 4 and 2 to
5.

ν1

ν2ν3

ν4

ν5

≡ G =


0 1 0 1 0

1 0 1 0 1
0 1 0 0 0

1 0 0 0 1

0 1 0 1 0

 , D =


2
3
1

2
2

 , N =


5
5
5
5
5


Figure 2.3: A system with five nodes, with the new connection shown with dashed
lines.

In Figure 2.3, we see that N is equal to 5 for all nodes, but the number of direct

connections varies between nodes.

While G defines a system uniquely on its own, N or D are not unique for G. To

demonstrate this, we can shuffle connections without adding and removing any.

8

ν1

ν2ν3

ν4

ν5

≡ G =


0 0 0 1 1
0 0 1 1 1

0 1 0 0 0

1 1 0 0 0
1 1 0 0 0

 , D =


2

3

1

2

2

 , N =


5

5

5

5

5


Figure 2.4: A system with five nodes, with the new connection shown with dashed
lines.

We see in Figure 2.4 that even though the connection matrix, G, has changed, vectors

D and N have not.

2.2.2 Connection Numbers

In the previous section we show how G affects vectors D and N . In this section, we

aim to quantify this effect. For D, we can simply write:

Di =
∑
j

Gi,j. (2.1)

This expression is consistent with the fact that a row of an adjacency matrix contains

all the direct connections of a corresponding node.

When expressing Ni, however, we need to devise a more elaborate scheme. To start

with, we note that G, as an adjacency matrix, contains all the first-degree (direct)

connections of a node. Another way of interpreting it is if Gi,j = 1, node i can reach

node j with a single step. Furthermore, (Gn)i,j = k means node i can reach node j

by n steps by k different walks.

With this in mind, let us define H = G+ I, where I is the identity matrix. Unlike the

adjacency matrix, where no node is connected to itself, this structure defines a system

where all the nodes are self-connected. From this notion, we state the following

theorem.

Theorem 1. If G ∈ {0, 1}J×J is an adjacency matrix of a bidirectional graph and

H = G+ I, where I is the identity matrix of relevant size and if HJ−1
i,j > 0, two nodes

9

are in the same component.

Proof. We know that nth degree of an adjacency matrix Hn
i,j counts possible walks

from i to j. However, as all nodes are self-connected, Hn also includes all walks

from Hn−1 and one step to the node itself. By induction, this means for Hn, there is

at least one walk from every earlier power. Thus, if Hn
i,j > 1, we can say that there is

at least one walk that starts with i to i and then contains the shortest walk from i to j.

Then, in a system with J nodes, two nodes cannot be further than J − 1 steps apart.

It follows that HJ−1 = 0 only if two nodes are not connected by any walk, as such

path would be included in the sum of paths for HJ−1
i,j . Thus it is sufficient to look for

(J−1)th power of H to infer a connection and check if the relevant element is greater

than zero.

We can then claim that if we count HJ−1
i,j > 0 for the values of i, we find total nodes

in a component. It follows that we can compute Ni by:

Ni =
∑
j

sgn((G+ I)J−1)i,j, (2.2)

where G is the adjacency matrix of the system, I is the identity matrix, sgn() is the

sign function applied element-wise to its input matrix, and J is the number of nodes.

As an example, we reconsider the network in Figure 2.2, where the network is given

by:

G =



0 1 0 0 0

1 0 1 0 0

0 1 0 0 0

0 0 0 0 1

0 0 0 1 0


. (2.3)

We can rearrange the formula we derived in (2.2) to find the component size vector:

N = sgn((G+ I)J−1)1, (2.4)

where 1 is a vector of ones. When we apply the formula we derived to G + I , we

10

find:

N =sgn





1 1 0 0 0

1 1 1 0 0

0 1 1 0 0

0 0 0 1 1

0 0 0 1 1



4




1

1

1

1

1


= sgn





9 12 8 0 0

12 17 12 0 0

8 12 9 0 0

0 0 0 8 8

0 0 0 8 8







1

1

1

1

1



=



1 1 1 0 0

1 1 1 0 0

1 1 1 0 0

0 0 0 1 1

0 0 0 1 1





1

1

1

1

1


=



3

3

3

2

2


. (2.5)

This result is equal to the component size vector we found in Figure 2.2 by inspecting

the network.

2.2.3 Miscellaneous Network Definitions

Before ending this section, we provide some miscellaneous definitions we use while

talking about networks in this study. First, while talking about nodes, we use the

definitions:

• Isolated Node: A node that has no connections.

• Leaf Node: A node that has only one connection to its component.

• Inner Node: A node in a component that is not a leaf.

In this section, we mainly encounter forest graphs. A forest may include components

that are pure chains, pure stars, or a mix, which can be defined as:

• Chain Component: A component that is a tree where no node has more than

two connections (as given in Figure 2.5).

• Star Component: A component with a single central node and other nodes con-

nected to it (as given in Figure 2.6).

11

• Mixed Component: A component that is a tree but is not a pure star or a pure

chain (as given in Figure 2.7).

While these definitions can be applied to components of all sizes, they are more mean-

ingful for components with more than three nodes. For the networks of smaller com-

ponents, we also use the following expressions:

• Unconnected Network: A network where all of the nodes are isolated.

• Network of Pairs: A network where no node has more than one connection.

Finally, the node labelling of a graph is how each node is labelled, and two graphs are

isomorphic if a one-to-one mapping of node labels can be defined between the two

while maintaining the number of connections to each corresponding node. We note

that while the values of N and D depend on the network structure, the exact index of

those values depend on the labelling, and therefore isomorphs of a network has the

same N and D values in different order.

ν1

ν2ν3

ν4

ν5

Figure 2.5: A network with a single chain component.

ν1

ν2ν3

ν4

ν5

Figure 2.6: A network with a single star component where ν1 is the central node.

12

ν1

ν2ν3

ν4

ν5

Figure 2.7: A network with a single mixed component.

2.3 Multiple Connectivity Approach

In this section, we introduce the multiple connectivity approach, which is our primary

contribution to the literature on network formation. The principle novelty of this

approach is offering firms a choice to connect with all the other firms available and

asses profit over all the possible connections the firm can make. We first show the

effects of altering the network for players and the concept of stability with regard to

network formation games. Then, we present our approach and how it differs from the

literature.

We discuss a situation with J payoff-maximising players whose payoff depends on

the network G that they are in. The model we use to find this payoff is discussed in

Section 2.4. For this section, however, we consider an arbitrary payoff function of

ui(G) for firm i. We can say that firm i prefers G to G′ if:

ui(G) > ui(G
′). (2.6)

This preference implies that if firm i finds itself in G′ and may alter the network

to reach G, it would. We can expand this simple notion to the concept of stability.

Dutta and Mutuswami [19] define weakly and strongly stable networks as networks

in which players cannot increase their payoff by altering as individuals or through co-

ordination, respectively. For this study, we focus on network structures where firms’

choices only extend to their direct connections. Therefore, we focus on the weak

stability.

13

2.3.1 Pairwise Approach

The notion of weak stability in network formation studies is often associated with

pairwise stability based on the work of Jackson and Wolinsky [31]. The approach

followed in that study is to consider each player pair separately and assess whether

its parties increase their payoffs or not via altering their direct connection. We refer

to this approach as a pairwise (PW) approach.

We can show a pairwise alteration to the connection between i and k for G as G(i,k) ≡
G(k,i). If no pairwise alteration to G is preferable to i, it will not choose to deviate

from it. This can be shown as:

ui(G
(i,k)) ≤ ui(G) ∀i ∈ 1, . . . , J, k1, . . . , J − 1, (2.7)

no player prefers to pairwise deviate from G.

2.3.2 Consent and Pairwise Stability

The discussions on the pairwise approach are complemented with a discussion on

consent as exemplified by [31]. While weak stability, by definition, means players do

not coordinate, it is assumed that network connections are two-sided, and both sides

must at least not disagree in order for a connection to be possible. To better illustrate

this, we can consider a network between only two players. There are two possible

networks with two players, connected and not connected. We can call these cases G

and G′ respectively, and represent them as:

G =

0 1

1 0

 , G′ =

0 0

0 0

 . (2.8)

We can further say that G(1,2) = G′, and G′(1,2) = G, that is to say, G and G′ are

pairwise deviations of each other. Let us consider payoffs for two players as u1 and

u2 given in Table 2.1. It is clear that both players obtain higher payoffs when their

connections are G, hence they prefer G to G′. Then, for these payoffs, we can say

that no player prefers to deviate pairwise from G.

For an alternate result, however, we can consider the payoffs u′
1 and u′

2 given in Table

14

2.2. Here, player 1 prefers G′, and player 2 prefers G. When players start from either

of the cases, at least one would prefer making a pairwise alteration.

Table 2.1: Payoffs of two players with networks G and G′.
u1 u2

G 1 1
G′ 0 0

Table 2.2: Alternative payoffs of two players with networks G and G′.
u′
1 u′

2

G 0 1
G′ 1 0

For payoff-maximising players, it can be further asserted that they would only consent

to form a connection if their payoff does not decrease due to it. We call this the con-

sent condition. We can further assert that players can break connections unilaterally,

and therefore, no consent condition is required for them to do so.

With the consent condition imposed, we can reconsider the case given in Table 2.2.

Clearly, player 1 would still deviate unilaterally from G. However, player 2 needs the

consent of player 1 to deviate from G′. Since player 1 would not consent to make a

connection that leaves it worse off, we can say that no player would pairwise deviate

from G′ when the consent condition is enforced.

The preference of not pairwise deviating from a network G with the consent condition

can be generalised as:

(
ui(G) > ui(G

(i,k))
)
∨
(
uk(G) > uk(G

(i,k))
)

∨
((

ui(G) = ui(G
(i,k))

)
∧
(
uk(G) = uk(G

(i,k))
))

∀ Gi,k = 0. (2.9a)(
ui(G) ≥ ui(G

(i,k))
)
∧
(
uk(G) ≥ uk(G

(i,k))
)

∀ Gi,k = 1. (2.9b)

A system G that meets these conditions can also be referred to as pairwise stable [31].

15

2.3.3 Problems with Pairwise Stability

Pairwise stability is a useful tool in analysing networks. However, considering con-

nections one at a time creates some problems. We can illustrate one such problem by

considering systems:

G =


0 1 0

1 0 0

0 0 0

 , G′ =


0 0 1

0 0 0

1 0 0

 , (2.10)

and G′′ is any bidirectional adjacency matrix in {0, 1}3×3 where G′′ ̸= G and G′′ ̸=
G′ and their respective payoffs are given in Table 2.3. It requires three pairwise

alterations for G to reach G′, one to break the 1,2 connection and the other to make

1,3 connection, which is G(1,2) and G(1,3) respectively. Similarly, reaching G from

G′ requires two alterations. Either of the alterations, on its own, cannot increase any

player’s payoff. Therefore, both G and G′ are pairwise stable. However, realistically,

we expect player 1 to make a long-term calculation and make two pairwise alterations

to the system G. This preference cannot be captured with the notion of pairwise

stability.

Table 2.3: Payoffs of three players.
u1 u2 u3

G 1 1 0
G′ 2 0 1
G′′ 0 0 0

Another problem with this configuration can be found when we consider a fully con-

nected system. Altering a single connection can only create chains, which are also

not beneficial for any player with the given payoff values. This means (2.9) holds

for the fully connected system, and it is pairwise stable. In such a situation, player 1

may sever the connection with player 2 and hope player 3 will do the same. However,

this requires players to coordinate and make long-term thinking decisions. A stability

notion that encompasses such decisions is presented by Jackson and Nouweland [28].

In our study, we posit that it is also possible to tackle these problems within the scope

of non-coordinating decision-makers. To that end, we introduce a way for players to

16

consider adding or deleting connections simultaneously.

2.3.4 Multiple Connectivity

First, we need to express all the networks player i may generate by altering their

direct connections from a prior network G. To do this, we define the choice variable

δi,k ∈ {0, 1} to describe the connection from i to k (we assume k ̸= i since i cannot

connect to itself). Using this variable and the prior system G, we can define the

function:

Gi(δi, G)a,b =

δi,k, if (a = i ∧ b = k) ∨ (b = i ∧ a = k),

Ga,b, otherwise.
(2.11)

Then, all possible alteration i can make to its direct connections is expressed by differ-

ent values δi vector takes. With this, we can write the best possible network obtainable

by i by altering G as:

ui(Gi(δ̂i, G)) ≥ ui(Gi(δi, G)) ∀ δi, (2.12)

where δ̂i is the best alteration of direct connections player i can make. To find such a

δi, we solve a mixed integer optimisation problem as follows:

max
δi

ui(Gi(δi, G)),

s.t. δi,k ∈ {0, 1} ∀ k.

(2.13)

The possible values δi can take is a finite set. Therefore, this problem is guaranteed

to have a solution. However, this solution does not have to be unique. Nevertheless,

similar to the pairwise deviation, we can say that a player would attempt to alter its

connections only if the new network they propose (with δ̂i) improves its payoff. This

means that either player is already in an optimal state of connections and would not

benefit from altering its network to reach the same payoff or is not in an optimal state

and has at least one alternative it would prefer.

2.3.5 Consent for Multiple Connectivity

We must also address the issue of consent. With pairwise connections, we say that if

a connection is added, one side must benefit, and the other must at least not be worse

17

off with the new connection as given in (2.9a). And when breaking connections, at

least one side must benefit, as given in (2.9b). Similarly, when a player proposes an

alteration, it needs to ensure the players they are proposing to connect do not lose

payoff from the new network. We do this by comparing the payoffs of the newly

proposed network to the prior network for every directly connected player. This idea

can be written as:

Rk(δi, G) = uk

(
Gi(δi, G)

)
− uk

(
G
)
, (2.14)

and the multiple connectivity consent condition for player i to connect with k as:

Rk(δi, G)δi,k ≥ 0. (2.15)

The difference in the payoffs for players is multiplied by the choice of direct connec-

tion to make sure every directly connected player consents, while the payoff differ-

ence for the other players is ignored. Having established the role of consent in the

multiple connectivity, we can rewrite the optimisation problem as follows:

max
δi

ui(Gi(δi, G)),

s.t.Rk(δi, G)δi,k ≥ 0 ∀ k,

δi,k ∈ {0, 1} ∀ k.

(2.16)

Finally, when the solution to this problem fails to produce a greater payoff for a player,

we can say that the player would not propose any alterations. And when no player

can propose a better system, we can call that system multiple connectivity stable (MC

stable).

2.3.6 Comparing PW and MC Stability

Our aim in developing a multiple connectivity approach is to address problems in

a pairwise approach while retaining the short-sightedness and non-coordination of

players. Multiple Connectivity Stability is still a form of weak stability based on

the definitions given by Dutta and Mutaswani [19]. However, within the constraints

of non-coordination and short-sightedness, it gives players much greater freedom to

increase their payoff. Indeed, for J players, a player has J − 1 PW alterations and

2J−1 MC alterations. The additional options make it less likely for a player to get

18

stuck in less beneficial situations that are still PW stable. To demonstrate this, let

us reconsider the case given in Table 2.3. We start with G and write the networks

attainable by player 1 as:

G1(δ1, G) =


0 δ1,2 δ1,3

δ1,2 0 0

δ1,3 0 0

 . (2.17)

The payoffs associated with the connection values are given in Table 2.4. It is clear

that the highest payoff attainable by player 1 is 2, and player 3 would consent to this

connection as they stand to increase their payoff by 1 from this alteration. Thus, we

can say that G is not MC stable.

Table 2.4: Payoffs of three players based on δ1.
δ1,2 δ1,3 u1 u2 u3

0 0 0 0 0
1 0 1 1 0
0 1 2 0 1
1 1 0 0 0

Next, we consider G′ and start with the payoffs attainable by player 1. Once again,

we start by writing possible networks Player 1 can generate.

G1(δ1, G
′) =


0 δ1,2 δ1,3

δ1,2 0 0

δ1,3 0 0

 . (2.18)

This expression is identical to (2.17). It follows that 2.4 also shows the payoffs for

this situation. However, we already know that player 1 benefits most when they make

a single connection to player 3, which is the network G′. It follows that player 1 does

not benefit by altering the network. We proceed by writing the case for player 2:

G2(δ2, G) =


0 δ2,1 1

δ2,1 0 δ2,3

1 δ2,3 0

 . (2.19)

Table 2.5 shows the payoffs corresponding to these decisions. These values show that

Player 2 cannot propose any network to improve its payoff.

19

Table 2.5: Payoffs of three players based on δ2.
δ2,1 δ2,3 u1 u2 u3

0 0 2 0 1
1 0 0 0 0
0 1 0 0 0
1 1 0 0 0

Finally, we can look at player 3, whose decisions can be represented as:

G2(δ2, G) =


0 0 δ3,1

0 0 δ3,2

δ3,1 δ3,2 0

 . (2.20)

The corresponding payoffs are given in Table 2.6, where it is also evident that player

3 cannot propose any alterations to improve their payoff. It follows that G′ is MC

stable.

Table 2.6: Payoffs of three players based on δ3.
δ3,1 δ3,2 u1 u2 u3

0 0 0 0 0
1 0 2 0 1
0 1 0 0 0
1 1 0 0 0

2.4 Component Profit Model

In our study of network formation, we take profit-maximising firms as the decision-

makers that form the network. In this section, we consider an individual firm and

discuss how it alters its interactions with other firms to form a profitable network.

Firms produce goods at certain costs and sell them to earn the difference as profit

[39]. In this study, firms make their production decisions in order to maximise profits

and interact with other firms in a certain market in terms of the quantities they supply

and the network they form.

In the proceeding analysis, we first discuss the production decisions of the firms.

20

2.4.1 Production Decisions of the Firms

We assume all the firms in our study produce a single good and compete in a market

where they cannot affect the price by changing the amount they produce. The price

may be controlled by an external force such as a government, or the firms in ques-

tion may represent a negligible quantity of total production in their market so that

each firm takes its effect on the market price as negligible. This means their revenue

linearly depends on the market price P ∈ R+.

Such firms may still compete by lowering their unit production costs to maximise their

profit. We can attribute the total costs and revenues firms face to two sources: internal

operations and external operations. Internal operations are related to producing and

selling the good, while external costs are related to being connected to other firms.

We posit that by forming connections with other firms that produce the same good,

a firm can decrease the cost it faces per production. This may happen by sharing

resources or know-how. In order to capture this benefit, we divide the cost parameter

βi > 0 by the number of firms in the firm i′s component (which we denoted by Ni in

Section 2.2) to find βi

Ni
qi. This represents the advantage of being connected to other

firms. Additionally, we formulate γiq
2
i as a cost that only depends on the quantity

produced by the firm. We define Ci(qi, Ni) as the cost of producing qi and write as:

Ci(qi, Ni) =
βi

Ni

qi + γiq
2
i . (2.21)

With this expression, we aim to capture how being connected reduces the production

cost so that an unconnected firm’s profit changes more dramatically by forming a

connection. In contrast, a firm in a component of 100 firms is barely affected by the

101st connection. When the firm is not connected to others, i.e., Ni = 1, and the

expression becomes the standard production cost function:

Ci(qi, Ni) = βiqi + γiq
2
i . (2.22)

Moreover, as the production amount increases to high levels, the quadratic cost en-

sures that firms with similar properties in different components face similar costs,

therefore keeping the optimal production and profit values comparable.

21

We can merge Pqi and (2.21) and find the total profit from the internal operations:

Pqi − Ci(qi, Ni) = Pqi −
βi

Ni

qi − γiq
2
i . (2.23)

Firm i’s profit maximisation problem is solved in two steps. First, as step 1 given that

Firm i is functioning in a market with Ni firms, Firm i’s profit maximising quantity

of production is found. Then, as step 2, Firm i’s network connections are analysed

based on the found quantity.

In the first step, we find the profit-maximising quantity of production. We define

the profit generated by qi for a given N i as Pi(qi) and write the first and second

derivatives:

dPi(qi)

dqi
= P − βi

N i

− 2γiqi, (2.24a)

d2Pi(qi)

dq2i
= −2γi. (2.24b)

Since γi > 0 we can say that:

d2Pi(qi)

dq2i
= −2γi < 0 (2.25)

Hence, the production function is strictly concave in qi ∈ R+. Hence, the first-order

condition for profit maximisation yields:

0 = P − βi

N i

− 2γiq̂i, (2.26)

q̂i =
N iP − βi

2N iγi
. (2.27)

While mathematically, this expression may yield negative results, which do not make

sense as an amount of production, we implicitly assume firms can profit while not

connected (Ni = 1) by assuming P > βi. With this, Ni ≥ 1, q̂i is always positive.

Using (2.27) we find the optimal profit level as:

Pi(Ni) =
N iP − βi

2N iγi
. (2.28)

By maximising this expression, we can find the optimal component size for internal

profit. However, a firm in a network may also face some costs associated with its

network properties. Thus, to find the total profit function, we also need to discuss the

cost of external operations.

22

2.4.2 The Cost from Forming and Maintaining Connections

The external operations of a firm are related to establishing and sustaining connec-

tions with other firms. Now, we consider how the costs associated with being con-

nected to a network are described.

We assume that Firm i experiences a connection cost with each Firm j ̸= i that it is

directly connected with as ci,j > 0. We can multiply these values with the adjacency

matrix and write the total cost of direct connections as:∑
j

ci,jGi,j. (2.29)

Furthermore, being in a larger component should incur an extra cost even with the

same number of connections for a firm. To capture this, we define another coefficient

di to describe the cost firm i faces with Ni − 1 connections, which is the number of

firms in a component minus one, as Ni = 1 means a firm is not connected to others.

From these notions, we can derive the following expression:

Ni(Ni, G) = di(Ni − 1) +
∑
j

Gi,jci,j. (2.30)

Here, the coefficients di and ci,j can be modified to match the exact conditions in the

modelled system.

Assuming the connection costs only vary for firms individually and are the same

regardless of the other party, that is, ci,j = ci, we can further simplify this expression

by:

Ni(Ni, G) = di(Ni − 1) + ci
∑
j

Gi,j. (2.31)

We can further denote the direct connections of a firm as Di =
∑

j Gi,j (as given in

Section 2.2) and substitute that to find the expression for the cost of external opera-

tions of a firm in our model:

Ni(Ni, Di) = di(Ni − 1) + ciDi. (2.32)

By merging the profits from (2.28) and (2.32), we can find the total profit as:

πi(Ni, Di) = Pi(Ni)−Ni(Ni, Di) =
(NiP − βi)

2

4N2
i γi

− di(Ni − 1)− ciDi. (2.33)

23

We call this expression the Component Profit Model. In this expression, the parame-

ters P , βi, γi, di, and ci are fixed values that come with the model and do not change.

There are, however, two variables: Ni and Di. Di is the number of direct connections

a firm makes, and Ni is the total number of firms in the component. In essence, both

Ni and Di are derived from the network structure. We can either write the profit in

terms of network properties as πi(Ni, Di) or in terms of the network directly as πi(G).

These two expressions are used interchangeably in this thesis and:

πi(G) ≡ πi(Ni, Di). (2.34)

Another implication of this these equivalent expressions is that a firm that tries to

increase its profit at step 2 may only do so by altering its network structure.

2.5 Stability with Component Profit Model

In Section 2.3, we discuss the multiple connectivity approach and stability by consid-

ering a general profit function. In this section, we consider the stability for networks

when the component profit we describe in Section 2.4 model is applied.

2.5.1 MC Stability for a Firm

In this section, we consider the connection choices of a firm in an example system

given in Figure 2.8 with J = 5 firms.

ν1

ν2ν3

ν4

ν5

≡ G =


0 1 0 0 0

1 0 1 0 0

0 1 0 0 0

0 0 0 0 1

0 0 0 1 0

 , D =


1

2

1

1

1

 , N =


3

3

3

2

2


Figure 2.8: Example system with five firms and two components.

In order to assess stability, we need to examine whether firms are able to propose a

network that increases their profit that the other relevant firms would agree on form-

ing. For this system, we need to look at five moves, one for each player.

24

Let us consider the move for firm 1. With four other firms, firm 1 may propose

24 = 16 different networks, one of which is identical to G while others are different in

ith row and column. To capture this, we can define four choice variables δi,k ∈ {0, 1},

which represents the choice of firm i ∈ 1 . . . J to connect with firm k ∈ 1 . . . J and

k ̸= i. Let us further define the function that alters G as Gi(δi, G). This allows us to

write the resultant network as a product of choice given in Figure 2.9.

ν1

ν2ν3

ν4

ν5

δ1,2δ1,3

δ1,4

δ1,5 ≡ G1(δ1, G) :=


0 δ1,2 δ1,3 δ1,4 δ1,5
δ1,2 0 1 0 0

δ1,3 1 0 0 0

δ1,4 0 0 0 1

δ1,5 0 0 1 0


Figure 2.9: Possible connection choices for firm 1.

It can be seen that G1(1, 0, 0, 0, G) = G. Player 1 makes its choice as δ1 so that its

profit, which depends on N1, and D1, which in turn depends on G, is maximised. The

optimisation problem for firm i connecting with firms k ∈ 1 . . . J and k ̸= i can be

written as:
max
δi

πi(Gi(δi, G)),

s.t. Rk(δi, G)δi,k ≥ 0 ∀k,

δi,k ∈ {0, 1} ∀k.

(2.35)

Let us assume δ̂i is the optimal solution for player i to the mixed integer optimisation

problem defined in (2.35). If πi(Gi(δ̂i, G)) ≤ πi(G), the player has no incentive to

alter the network when the network is already G.

2.5.2 MC Stability for a Network

In our system with five firms, finding the stability conditions requires us to solve

five individual mixed integer problems and compare the results with the firms’ profits

emanating from the network G. After solving the optimisation problems, we can

write five conditions to fulfil in order to demonstrate the stability of the system. First,

each firm i’s profits corresponding to player i’s network choices in terms of Di and

25

Ni are represented.

For each firm, i ∈ {1, . . . , J} the network choice vector is δi ∈ {0, 1}J−1. First,

we convert the connection matrix as a result of choice (Gi(δi,k, G)) to the vectors of

component size and direct connection number (N , D), which are the inputs of the

profit function. Ideally, we’d like to represent N (i)(δi) and D(i)(δi) as parametric

vectors. Doing this with a generalised method is discussed in detail later, but for now,

we can simply inspect the system.

First, we see that the number of direct connections is the sum of δ1,k and changing a

single connection alters the number of direct connections by 1.

In terms of the component size, however, we need to consider that whether the firm

is connected only to 2, only to 3 or both, its component size will only increase by 2.

The same is also true for 4 and 5. To capture this, we use the sign function:

sgn(x) =

1, if x > 0,

0, otherwise.
(2.36)

Then, when we write sgn(δ1,2+ δ1,3), which yields 1 if at least one of the connections

is one, and 0 if neither is.

Finally, we need to consider that some firms would be connected indirectly due to

connection choices. For the particular case of firm 2, its indirect connection to 4 and

5 can be represented as:

N2 = 2 + sgn(δ1,2 + δ1,3)(1 + 2sgn(δ1,4 + δ1,5)). (2.37)

Here, firm 2 has the component size of 2 as given since its connection to 3 is already

included in the prior network. Then, if there is no connection between 1-2 and 1-

3, whether one is connected to others is irrelevant. But if it is, the component size

includes the secondary connections.

26

With all these considerations, we can write:

D(1)(δ1) = D(δ1,2, δ1,3, δ1,4, δ1,5) =



δ1,2 + δ1,3 + δ1,4 + δ1,5

δ1,2 + 1

δ1,3 + 1

δ1,4 + 1

δ1,5 + 1


, (2.38)

N (1)(δ1) = N(δ1,2, δ1,3, δ1,4, δ1,5) =



1 + 2sgn(δ1,2 + δ1,3) + 2sgn(δ1,4 + δ1,5)

2 + sgn(δ1,2 + δ1,3)(1 + 2sgn(δ1,4 + δ1,5))

2 + sgn(δ1,2 + δ1,3)(1 + 2sgn(δ1,4 + δ1,5))

2 + sgn(δ1,4 + δ1,5)(1 + 2sgn(δ1,2 + δ1,3))

2 + sgn(δ1,4 + δ1,5)(1 + 2sgn(δ1,2 + δ1,3))


.

(2.39)

The sign function captures the notion that when either 2, 3, or both are connected

(similarly for 4 and 5), the resultant component size does not change. In practice,

when D′ < D, π(N,D) > π(N,D′) so, we expect a player to never propose both

connections and opt for the single connection to a component that offers larger profit

while is agreeable to the other party. Then, we can restate the profit difference for

firm k as:

R(1)
k (δ1) = πk

(
N

(1)
k (δ1), D

(1)
k (δ1)

)
− πk

(
N

(1)
k (0), D

(1)
k (0)

)
, (2.40)

where N
(1)
k (0) and D

(1)
k (0) are the component size and the number of direct connec-

tions when δ1,k = 0 for all k ∈ 2 . . . 5, and our optimisation problem as:

max
δ1

π1(N
(1)
1 (δ1), D

(1)
1 (δ1)),

s.t. R(1)
k (δ1)δ1,k ≥ 0 ∀k,

δ1,k ∈ {0, 1} ∀k.

(2.41)

The solutions to such a problem can be found numerically using an optimisation

technique such as exhaustive searching, branch and bound, or cutting plane methods

[16]. Even with a strictly concave profit function, the solution to a mixed integer

problem may not be unique. However, for the purposes of stability, we can define δ̂i

as a maximiser to this problem and only need to check if:

π1(N(δ̂i), D(δ̂i)) ≤ π1(G). (2.42)

27

If δ̂i cannot increase profit compared to the prior matrix G, firm i would not alter any

connections.

ν1

ν2ν3

ν4

ν5

δ2,1

δ2,3

δ2,4

δ2,5

≡ G2(δ2) :=


0 δ2,1 0 0 0

δ2,1 0 δ2,3 δ2,4 δ2,5
0 δ2,3 0 0 0

0 δ2,4 0 0 1

0 δ2,5 0 1 0


Figure 2.10: Possible connection choices for firm 2.

Next, we consider how firm 2 may alter the network, which is given in Figure 2.10

and the parameters can be found as:

D(2)(δ2) =



δ2,1

δ2,1 + δ2,3 + δ2,4 + δ2,5

δ2,3

δ2,4 + 1

δ2,5 + 1


, (2.43a)

N (2)(δ2) =



1 + δ2,1(1 + δ2,3 + 2sgn(δ2,4 + δ2,5))

1 + δ2,1 + δ2,3 + 2sgn(δ2,4 + δ2,5)

1 + δ2,3(1 + δ2,1 + 2sgn(δ2,4 + δ2,5))

2 + sgn(δ2,4 + δ2,5)(1 + δ2,3 + δ2,1)

2 + sgn(δ2,4 + δ2,5)(1 + δ2,3 + δ2,1)


. (2.43b)

These values can be used to write:

R(2)
k (δ2) = πk

(
N

(2)
k (δ2), D

(2)
k (δ2)

)
− πk

(
N

(2)
k (0), D

(2)
k (0)

)
, (2.44)

and
max
δ2

π2(N
(2)
2 (δ2), D

(2)
2 (δ2)),

s.t.R(2)
k (δ2)δ2,k ≥ 0 ∀k,

δ2,k ∈ {0, 1} ∀k.

(2.45)

The solution to the underlying optimization problem, δ̂2, generates the condition,

π2(N(δ̂2), D(δ̂2)) < π2(N,D). For the other three, the conditions are obtained simi-

28

larly to the first two firms, so we can directly skip to the conclusion and write:

πi(N
(i)
i (δ̂i), D

(i)
i (δ̂i)) < πi(Ni, Di) ∀i = 1, 2, . . . 5. (2.46)

If this condition does not hold, one of the firms has an acceptable alternative to the

system G and would attempt to alter it as their move. If not, this system remains

unchanged after playing the game. Thus, such a system would be stable.

2.5.3 Forest Condition

After making a stability inquiry for a particular system, we can now start making more

general claims. Our first claim is regarding the shapes of possible stable networks.

We recall that the component profit model described in Section ?? is:

πi(G) ≡ πi(Ni, Di) =
(PNi − βi)

2

4γiN2
i

− ciDi − di(Ni − 1). (2.47)

Theorem 2. A network with the component profit model is not MC or PW-stable if a

connection can be removed while not reducing the component size of any firms.

Proof. We assume one party of the connection in question is firm i. If we denote the

network parameters for firm i with and without this connection as Ni, Di and N ′
i , D

′
i,

we can also write the relation:

Ni = N ′
i , D′

i = Di − 1. (2.48)

A difference in Di without changing Ni creates a simple difference in the profit, which

we can show as:

πi(Ni, Di − 1)− πi(Ni, Di) = ci. (2.49)

Since ci is positive, so is the difference in profit for severing this connection.

Then, for the PW approach, the connection would be severed without further consid-

eration. For the MC approach, the network firm i proposes only alters parameters for

the party it is breaking from, which firm i is not obliged to consider. Therefore, if

such a connection exists in a network, one of the parties would sever it, and such a

system would not be stable.

29

When the networks with multiple paths between two firms (also called cycles) are

eliminated, the only remaining networks are forests as described in Section 2.2. This

means with the component profit model, if there exists any stable network, it must be

a forest (because non-forest networks cannot be stable).

Corollary 2.1 (Forest Condition). Forests are the only possible MC or PW stable

networks with the component profit model.

Neither Theorem 2 nor its corollary tells us that a stable network exists nor the exact

topology it would take. It only tells us that a non-forest network cannot be stable.

2.5.4 The Optimal Component Size

The next thing we want to know is if there exists a size of component where firms

would generate optimal profit. However, there are two problems we face.

• Component size may only take integer values.

• Reachable component sizes for firms depend on the prior network.

Former means that even if we find an optimal value for Ni, that value may not cor-

respond to a possible component size, and there may be several Ni that provide the

largest possible profit. Latter means that a firm may not be incentivised to alter the

network even when they can improve their profit with a different Ni because there are

no moves for them to reach it. Regardless, we can substitute discrete N and D with

their continuous equivalents n ∈ R and m ∈ R as:

πi(n,m) =
(Pn− βi)

2

4γin2
− cim− di(n− 1), (2.50)

and try to find expressions for the optimal continuous component size using the partial

30

derivatives:

∂πi(n,m)

∂n
=

Pβi

2γi

1

n2
+

−β2
i

2γi

1

n3
− di, (2.51a)

∂πi(n,m)

∂m
= −ci, (2.51b)

∂2πi(n,m)

∂n2
=

−Pβi

γi

1

n3
+

3β2
i

2γi

1

n4
, (2.51c)

∂2πi(n,m)

∂m2
=

∂2πi(n,m)

∂n∂m
=

∂2πi(n,m)

∂m∂n
= 0. (2.51d)

Then we can write the hessian matrix as:

H =

−Pβi

γi

1
n3 +

3β2
i

2γi

1
n4 0

0 0

 . (2.52)

One of the eigenvalues of the Hessian Matrix is zero. Therefore there exists no n, m

pair that yields optimal profit. This is consistent with our prior finding that showed

any profit can be increased by reducing m (or Di) while keeping n (or Ni) constant.

However, it may be possible for us to find optimal n for every constant m by showing:

0 >
∂2πi(n,m)

∂n2
=

−Pβi

γi

1

n3
+

3β2
i

2γi

1

n4
=

βi

2γin4
(3βi − 2Pn). (2.53)

Clearly, n4, βi, and γi are always positive. This means we only need to check:

0 > 1.5βi − Pn. (2.54)

It is previously established that P > βi. Hence, for any n > 1.5, the profit is concave

for a constant number of direct connections. For n < 1.5, however, it is convex.

Moreover, it is not possible to keep the direct number of connections constant when

n = 1, since Ni = 1 if and only if Di = 0 for firm i. Thus, we can say that there

exists an optimal component size for every firm that has at least one connection. We

can find the optimal size of n by solving:

Pβi

2γi

1

n2
+

−β2
i

2γi

1

n3
− di = 0. (2.55)

This expression does not depend on m. Therefore, we can further claim that the

optimal component size is independent of the number of direct connections if those

two values are independent. This expression is a cubic function, and finding an exact

31

solution is difficult. Since we know there is a single solution within the boundary

n > 1.5, we can find it with numeric techniques, such as picking a sufficiently high n

and using bisection between it and n = 1.5.

2.5.5 Ceiling Condition

We know from Section 2.5.3 that forests are the only stable networks with our profit.

Section 2.5.4 also tells us that there exists an optimal size of network for every firm.

We can combine these two notions to write the ceiling condition.

Theorem 3. Let K̂i be the optimal integer component size for firm i. A component of

N firms cannot be MC stable if K̂i < K for all i.

Proof. Assume that the component size is indeed larger than K̂i for all i. When

K > K̂i, the profit of firms can be improved by decreasing their component size by

one for all firms. If the component is a tree, there must be at least one firm which is

only connected to the rest of the component with a single connection (a leaf node).

The firm connected to the leaf firm can propose an alteration by severing the leaf to

decrease the component size by one, and all its other connections would consent as

their profits also increase by this new network. Thus, it would not be stable. If the

component is not a tree, then it is not stable. Hence, a stable network must not be

larger than all the optimal component sizes of its member firms.

We might then be inclined to assume K̂i < K only for the non-leaf nodes would be

equivalent to the theorem. However, one of the other connections that must consent

to the new network may also be a leaf, and severing two leaves may be less profitable

for firms. Thus, such a claim cannot be made.

However, when we consider pairwise stability, we can indeed make a stronger claim:

Theorem 4. A component of K firms cannot be PW stable if K̂i < K for any firm

connected to a firm with a single connection.

Proof. The proof is similar to the proof of the previous theorem, but this time, since

the relevant firm does not require the consent of its direct connections, it can simply

32

sever a leaf to increase its own profit.

The ceiling condition implies that even when J is very large, we expect a limit to

the component size, and stable networks may only include multiple components no

larger than K̂.

2.5.6 Firms with Equal Parameters

Our final assertion in this section is about the particular case where all firms have the

same profit function parameters (β, γ, c, d), which can be shown as:

πi(Ni, Di) = π(Ni, Di) =
(PNi − β)2

4γN2
i

− cDi − d(Ni − 1) ∀ i. (2.56)

Theorem 5. If network G is MC or PW stable with firms with the same profit function

parameters, isomorphic systems to G are also MC or PW stable, respectively.

Proof. Isomorphism is introduced in Section 2.2.3 as one network being obtainable

from the other by only changing the labelling. We can call two firm networks isomor-

phic if we can obtain one system from the other by changing which node represents

which firm.

In Section 2.2.3, we further state that N and D vectors between two isomorph graphs

only differ by their index. Then, if two networks are isomorphs and the profit func-

tions are the same for all firms, the profits that firms generate would also only differ

by index.

For an MC stable network, we know that all firms solve the optimisation problems

that arise from their networks and cannot find an alteration that improves their profit.

For a PW stable network, no firm can propose improving the existing network by

severing or making a connection. In a system with equal parameters, either of these

situations is independent of the firm that makes them and only depends on N and D

vectors. Therefore, in every isomorph of G, there exist the same choices for firms

which are numbered differently. By the stability results from all the firms’ choices,

we can say that if a system of equal parameters and network G is stable, isomorphic

systems are also stable.

33

Theorem 5 further means that when we consider firms with equal parameters, it is not

necessary to check every single forest for stability. Instead, checking unique isomorph

forests is enough.

2.6 Example of a Stable Network

While we are able to make some assertions regarding how a stable network may be,

without further information on the profit functions of firms and the relevant network,

it is still difficult to finalise the discussion on stability. Therefore, in this section, we

consider an example system with three firms with P = 10 and firm parameters given

in Table 2.7.

Table 2.7: Example firm coefficients.
firm βi γi ci di

1 5 2 2 0.1
2 4 2 1 0.1
3 6 2 1 0.1

2.6.1 The Unconnected Network

We start by considering a network without connections, which can be represented by

a matrix of zeros G0. This leads to the function of possible connections for firm i:

G1(δ1, G0) =


0 δ1,2 δ1,3

δ1,2 0 0

δ1,3 0 0

 . (2.57)

This allows us to write:

N (1)(δ1) =


1 + δ1,2 + δ1,3

1 + δ1,2(1 + δ1,3)

1 + δ1,3(1 + δ1,2)

 , D(1)(δ1) =


δ1,2 + δ1,3

δ1,2

δ1,3

 . (2.58)

34

We can substitute (2.58) into (2.33), and find the profit functions that depend on δ1

as:

π1(δ1) =
(5 + 10δ1,2 + 10δ1,3)

2

8(1 + δ1,2 + δ1,3)2
− 0.1(δ1,2 + δ1,3)− 2(δ1,2 + δ1,3), (2.59a)

π2(δ1) =
(6 + 10δ1,2(1 + δ1,3))

2

8(1 + δ1,2(1 + δ1,3))2
− 0.1(δ1,2(1 + δ1,3))− δ1,2, (2.59b)

π3(δ1) =
(4 + 10δ1,3(1 + δ1,2))

2

8(1 + δ1,3(1 + δ1,2))2
− 0.1(δ1,3(1 + δ1,2))− δ1,3. (2.59c)

Hence, we can write the problem directly in terms of δ1 ∈ {0, 1}2 and k ∈ {2, 3} as:

max
δ1

π1(δ1),

s.t. δ1,k(πk(δ1)− πk(0)) ≥ 0,

δ1,k ∈ {0, 1}.

(2.60)

The vector δ1 has two elements, leading to four possible combinations. On such

a small scale, we can simply consider all possible connections to find the one that

yields the highest profit. This is presented in Table 2.8.

Table 2.8: Firm profits with respect to choices of firm 1.
δ1,2 δ1,3 π1 π2 π3

0 0 3.125 4.5 2.0
1 0 4.931 6.9 2.0
0 1 4.931 4.5 5.025
1 1 4.481 8.19 6.8

The values show us that the matrix of zeros is not stable under MCG. In fact, any

connection a firm can offer will increase its profit. We further see that making both

connections is not as profitable as making a single connection, but the firm’s profit is

the same between the two options. Moreover, we see that both firms 2 and 3 consent

to making that single connection as 5.025 > 2 and 6.9 > 4.5. For this example, let

us say that firm 1 is able to alter the network by connecting with firm 3. Thus we

continue with G1 as given in Figure 2.11:

35

ν1

ν2ν3

≡ G1 :=

0 0 1
0 0 0

1 0 0



Figure 2.11: Best connection choice for firm 1.

2.6.2 A Network with a Single Connection

The given firms have different parameters. Therefore, it is possible to analyse the

stability of all three different pairs. But since we know G1 would be the best choice

for firm 1, let us continue examining it with another player, firm 2. We start by

writing:

G2(δ2, G1) =


0 δ2,1 1

δ2,1 0 δ2,3

1 δ2,3 0

 , (2.61)

which allows us to write:

N (2)(δ2) =


2 + sgn(δ2,1 + δ2,3)

1 + 2sgn(δ2,1 + δ2,3)

2 + sgn(δ2,1 + δ2,3)

 , D(2)(δ2) =


1 + δ2,1

δ2,1 + δ2,3

1 + δ2,3

 , (2.62)

and:

π1(δ2) =
(15 + 10sgn(δ2,1 + δ2,3))

2

8(2 + sgn(δ2,1 + δ2,3))2
− 0.1(1 + sgn(δ2,1 + δ2,3))− 2(1 + δ2,1),

(2.63a)

π2(δ2) =
(6 + 20sgn(δ2,1 + δ2,3))

2

8(1 + 2sgn(δ2,1 + δ2,3))2
− 0.2sgn(δ2,1 + δ2,3)− (δ2,1 + δ2,3), (2.63b)

π3(δ2) =
(14 + 10sgn(δ2,1 + δ2,3))

2

8(2 + sgn(δ2,1 + δ2,3))2
− 0.1(1 + sgn(δ2,1 + δ2,3))− (1 + δ2,3).

(2.63c)

As done before, we use the sign function to express whether a connection from 2 to 3

or 1 is established. The profits from these choices can be seen in Table 2.9.

We see that while it is not profitable for firm 1 to alter G1, firm 2 would benefit from

it. Furthermore, firm 2 would prefer to make a single connection instead of both.

36

Table 2.9: Firm profits with respect to choices of firm 2.
δ2,1 δ2,3 π1 π2 π3

0 0 4.931 4.5 5.025
1 0 4.481 8.19 6.8
0 1 6.481 8.19 5.8
1 1 4.481 7.19 5.8

Moreover, the profit of firm 1 reduces with any possible connection. Hence, it would

not consent to any connection. However, for firm 3, we have 5.8 > 5.025, so in order

to maximise its profit, firm 2 would propose forming a network with a connection

to firm 3 while ignoring the preference of firm 1 as it is not to be connected. The

resultant network is shown in Figure 2.12.

ν1

ν2ν3

≡ G2 :=

0 0 1

0 0 1
1 1 0



Figure 2.12: Best connection for firm 2.

2.6.3 A Stable Configuration

We know that G0 and G1 are not stable. So now we consider G2. The choice firm

3 appears somewhat different from those before, as it is already connected to both

firms. If any possible alternative is less profitable than its current profit of 5.8, it may

choose not to alter the network. The network affected by the choice variables can be

given as:

G3(δ3, G2) =


0 0 δ3,1

0 0 δ3,2

δ3,1 δ3,2 0

 , (2.64)

and parameters as:

N (3)(δ3) =


1 + δ3,1(1 + δ3,2)

1 + δ3,2(1 + δ3,1)

1 + δ3,1 + δ3,2

 , D(3)(δ3) =


δ3,1

δ3,2

δ3,1 + δ3,2

 . (2.65)

37

We can substitute the relevant values to the general profit expression (2.33) and find

the profit functions:

π1(δ3) =
(5 + 10δ3,1(δ3,2 + 1))2

8(1 + δ3,1(δ3,2 + 1))2
− 0.1(δ3,1(δ3,2 + 1))− 2δ3,1, (2.66a)

π2(δ3) =
(6 + 10δ3,2(δ3,1 + 1))2

8(1 + δ3,2(δ3,1 + 1))2
− 0.1(δ3,2(δ3,1 + 1))− δ3,2, (2.66b)

π3(δ3) =
(4 + 10δ3,1 + 10δ3,2)

2

8(1 + δ3,1 + δ3,2)2
− 0.1(δ3,1 + δ3,2)− δ3,1 − δ3,2. (2.66c)

Table 2.10: Firm profits with respect to choices of firm 3.
δ3,1 δ3,2 π1 π2 π3

0 0 3.125 4.5 2.0
1 0 4.931 4.5 5.025
0 1 3.125 6.9 5.025
1 1 6.481 8.189 5.8

The profits from choices are found in Table 2.10, and we can observe that the most

profitable choice for the firm is to preserve the existing network structure. We more-

over know that firm 2 already considers this to be a network to not deviate from. So,

in order to assess stability, we only need to make sure firm 1, too, is not incentivised

to deviate from this system.

We start by noting that firms 2 and 3 are in a component. Hence, we write:

G1(δ1, G3) =


0 δ1,2 δ1,3

δ1,2 0 1

δ1,3 1 0

 , (2.67)

and

N (4)(δ1) =


1 + 2sgn(δ1,2 + δ1,3)

2 + sgn(δ1,2 + δ1,3)

2 + sgn(δ1,3 + δ1,2)

 , D(4)(δ1) =


δ1,2 + δ1,3

1 + δ1,2

1 + δ1,3

 . (2.68)

38

The profit functions from these values can be written as:

π1(δ1) =
(5 + 20sgn(δ1,2 + δ1,3))

2

8(1 + 2sgn(δ1,2 + δ1,3))2
− 0.2sgn(δ1,2 + δ1,3)− 2(δ1,2 + δ1,3), (2.69a)

π2(δ1) =
(16 + 10sgn(δ1,2 + δ1,3))

2

8(2 + sgn(δ1,2 + δ1,3))2
− 0.1(1 + sgn(δ1,2 + δ1,3))− (1 + δ1,2),

(2.69b)

π3(δ1) =
(14 + 10sgn(δ1,3 + δ1,2))

2

8(2 + sgn(δ1,3 + δ1,2))2
− 0.1(1 + sgn(δ1,3 + δ1,2))− (1 + δ1,3),

(2.69c)

and from these, we can compute the profits as given in Table 2.11.

Table 2.11: Firm profits with respect to choices of firm 1.
δ1,2 δ1,3 π1 π2 π3

0 0 3.125 6.9 5.025
1 0 6.481 7.189 6.8
0 1 6.481 8.189 5.8
1 1 4.481 7.189 5.8

Firm 1 starts playing with a profit of 6.481, which it is not able to improve. Hence,

it is clear that firm 1 would also choose to preserve the existing network. Thus, we

can say that no firm would prefer to alter the network structure. Thus, for conditions

described at the beginning of this example, firms that maximise their profit would be

stable if the network described in Figure 2.13 is formed.

ν1

ν2ν3

≡ Ĝ :=

0 0 1

0 0 1

1 1 0



Figure 2.13: Stable network for this example.

We thus conclude our examples regarding how the stability of networks would be

examined with the MC approach. In the next section, we present a summary of this

chapter.

39

2.7 Summary of the Model

We start this chapter with firms that compete in the same market over the cost of

a single good they produce. Profit-maximising firms naturally produce the optimal

amount of goods with regard to their cost function. Hence, by relating the cost terms

to network properties and assuming optimal production, we can express the firms’

profit entirely on the properties obtained from their locations in a network. We use

two network properties, component size and direct connections, which we express by

vectors Ni ∈ {1, 2, . . . J}J , and Di ∈ {0, 1, . . . J − 1}J , respectively, for J firms.

And we find the profit function:

πi(Ni, Di) =
(NiP − βi)

2

4N2
i γi

− di(Ni − 1)− ciDi. (2.70)

In this expression, βi and γi correspond to linear and quadratic production costs,

respectively, and ci and di are connection and component costs, respectively.

While we make the discussion of stability without referencing a particular game struc-

ture, it is possible to state the choice firms make to alter or preserve the network they

are in as the Multiple Connectivity Game for J firms:

• Game is played with J number of firms connected by a symmetric adjacency

matrix G.

• Each firm can choose to preserve the network or propose an alternative network

by altering its direct connections.

• The firms that would be directly connected to the proposing firm must also

consent to the new network, which requires them to be not worse off than the

previous network.

• If no firm can profit by proposing an alternative to G, the system is stable.

Then, we can define the choice of forming a connection from i to k as δi,k and δi ∈
{0, 1}J−1 as the vector of all the choices of firm i at their turn. This allows us to write

the difference in profit for firm k as:

Rk(δi, G) = πk

(
Gi(δi, G)

)
− πk

(
G
)
, (2.71)

40

and the optimisation problem to find the best move for a player i ∈ {1, . . . , J} con-

necting to players k ∈ {1, . . . , J} and k ̸= i as:

max
δi

πi

(
Gi(δi, G)

)
,

s.t. Rk(δi, G)δi,k ≥ 0 ∀k,

δi,k ∈ {0, 1} ∀k.

(2.72)

Our discussion in this chapter is mostly limited to how our problem is modelled and

how we can assess stability for firms that are connected in a network. This is done

by relying on simple examples that require simple computations. However, in order

to solve more complex cases, it is clear that more advanced techniques need to be

employed. In the next chapter, a general method to solve problems of this sort is

described, and an algorithm to solve systems with more complex conditions is pre-

sented.

41

42

CHAPTER 3

A NUMERICAL APPROACH FOR THE MULTIPLE

CONNECTIVITY MODEL

3.1 Introduction

Within this thesis we present a game that can be used to expand the understand-

ing of network formation. To that end, Chapter 2 explains how our model of firms

came to be. This explanation includes a way to tie the profit of firms to the network

interactions and our novel game in which firms can alter all their connections as a

single move to form a network structure in order to increase their profit. However, in

Chapter 2, the discussion on how firms can find the optimal moves while playing this

game remains on the surface level. How to solve the resultant optimization problem

is not necessarily integral to our proposed model. Nevertheless, due to the novelty

of the multi-choice approach, we consider it appropriate to discuss solvability of the

problem. Therefore this chapter studies the question of finding the optimal move for

players of a Multiple Connectivity Game in greater detail.

In order to solve our non-linear mixed integer problem (MINLP), we first need a way

to relax integer constraints [20]. In Section 3.2, we propose an approximation method

that we can use for these relaxations and our reasoning for following this approach.

We follow this with a discussion on the concavity of the maximization problem in

Section 3.3. Having found an equivalent problem for relaxed variables that also has a

concave profit function, we are able to solve this problem with a tree-based algorithm

[7]. In particular, we choose to modify branch and bound algorithm for its relative

simplicity while solving our problem. A broader discussion on the algorithm and

43

our modifications can be found in Section 3.4. Finally, we provide a procedure that

finds MC stable systems in Section 3.5 to conclude our discussion on the numerical

solution for the Multiple Connectivity Game.

3.2 Continuous Interpolations of the Network Properties

3.2.1 Motivation for the Interpolation

Within this thesis, we consider the effects of being in a network for J firms based

on two variables. These are N ∈ {1, . . . , J}J and D ∈ {0, . . . , J − 1}J , which are

component size and direct connection number vectors, respectively. We obtain these

values by operating on the adjacency matrix and then use them to find the profits for

firms. As discussed in Section 2.7, the best connections a firm can make with a prior

network G ∈ {0, 1}J×J can be found by solving the following optimization problem:

max
δi

πi

(
Gi(δi, G)

)
,

s.t. Rk(δi, G)δi,k ≥ 0 ∀k,

δi,k ∈ {0, 1} ∀k.

(3.1)

This problem is a non-linear mixed integer problem (sometimes called mixed integer

non-linear programming problem or MINLP). The solution methods that yield deter-

ministic solutions to such problems often require relaxing the integer parameters [20].

Relaxing an integer variable in this context refers to substituting it with a continuous

variable and using continuous values between integers to approach the solution of

the main problem. For our case the condition δi,k ∈ {0, 1} would be relaxed to the

condition 0 ≤ δi,k ≤ 1. However, due to the method we compute N , relaxing choice

variables does not correspond to a smooth change in the profit. In Section 2.2.2, we

show that the component size for firm a1 is:

Na =
∑
b

sgn((G+ I)J−1)a,b. (3.2)

1 We substitute Ni with Na to avoid clashing with δi.

44

We can use (3.2) to find the function for N in terms of the decision variables δi by

substituting G with Gi as:

Na(δi, G) =
∑
b

sgn
(
(Gi(δi, G) + I)J−1

)
a,b
. (3.3)

Due to the sign function, while δi,k = 0 and δi,k = 1 yield different N , the intermedi-

ate values for δi,k would be equal to N obtained from δi,k = 1. This makes relaxation

meaningless for δi. To address problems around relaxing integer variables that arise

from non-linearities in the objective function, the Outer Approximation Method is

proposed in the literature. The method converts the feasible space into a polyhedral

representation [18]. For this study, we follow a similar approach and convert the

component size function in (3.3) to a polyhedral representation to enable variable

relaxation while solving the optimization problem.

3.2.2 Continuous Component Size Interpolation

While approximating intermediate values for component size N , our priority would

be making sure that N(δi) (for simplicity, we write N(δi) instead of N(δi, G) in this

Section) yields the correct results for the integer values of δi. Since we plan to use

intermediate values as mere guides, we are content with using a linear approximation.

To that end, our first step is writing linear change in N when just one δi,k changes and

others are zero.

First, we write N0 = N(0) and define a matrix Mi,k ∈ {0, 1, 2, . . . , J − 1}J×J−1,

where rows represent the relevant firm and columns represent the difference in N

values when a single connection is made to k by i. This matrix can be written in the

form:

M = [N(1, 0, . . .)−N0, N(0, 1, 0 . . .)−N0, . . . , N(0, . . . , 0, 1)−N0]. (3.4)

Then, we can interpolate the intermediate values for the single connection to k (δi,l ̸=
0 only when l = k) case as:

N(δi) = N0 +Mδk. (3.5)

For firm i, this expression is sufficient as its component size is directly influenced by

every choice. Thus for firm i in particular, we can further note that N0
i = 1 since

45

without any connections component size of the connecting firm is 1, and write:

Ni(δi) = 1 +
∑
k

Mi,kδi,k. (3.6)

With this expression, if some firms are in a component, their effect is captured mul-

tiple times, but for now, let us assume only a single connection is made to each com-

ponent. We discuss making multiple connections to a component in Section 3.2.4.

For firms other than i, however, we must also note that the effect of other connections

must first go through their connection to i. We can capture this phenomenon by

writing:

Na(δi) = N0
a +

(∑
k

Ma,kδi,k

)(∑
k

Mi,kδi,k −N0
a

(∑
k

Ma,kδi,k

)
+ 1

)
. (3.7)

The first part of the multiplication is the effect of choice to get connected to firm i,

which is then multiplied by the effect of every connection to firm i. Next, the effect

connected to the component of k is subtracted, and finally, 1 represents the single

increase in N due to being connected to firm i. We note that when we replace a with

i in (3.7), we find (3.6).

3.2.3 Direct Connection Approximation

Our expression for direct connections of firm a from Section 2.2.2 is:

Da(G) =
∑
b

Ga,b. (3.8)

The equivalent function that depends on choice variables can be written as:

Da(δi,k, G) =
∑
b

Gi(δi, G)a,b. (3.9)

While the underlying variable is discrete by nature, similar to N , substituting it with

a continuous variable directly leaves us with the linear approximated values for inter-

mediate D. Thus we can use (3.9) in our relaxations.

46

3.2.4 Demonstration of the Continuous Approximations

For the demonstration of the proposed approach, we reconsider the example with

three firms discussed in Section 2.6, where the decision matrix is given by:

G1(δ1,2, δ1,3, G0) =


0 δ1,2 δ1,3

δ1,2 0 0

δ1,3 0 0

 , (3.10)

and N is inspected to be:

N(δ1) =


1 + δ1,2 + δ1,3

1 + δ1,2(1 + δ1,3)

1 + δ1,3(1 + δ1,2)

 . (3.11)

We follow the steps of interpolation method discussed in Section 3.2.2, and first find

N0 and N for two connections individually:

N0 =


1

1

1

 , N(1, 0) =


2

2

1

 , N(0, 1) =


2

1

2

 , (3.12)

which gives us the matrix M :

M =


1 1

1 0

0 1

 . (3.13)

Using M from (3.13), we can write:

N(δ1)1 = 1 + (δ1,2 + δ1,3), (3.14a)

N(δ1)2 = 1 + (δ1,2)(δ1,2 + δ1,3 − δ1,2 + 1) = 1 + δ1,2(δ1,3 + 1), (3.14b)

N(δ1)3 = 1 + (δ1,3)(δ1,2 + δ1,3 − δ1,3 + 1) = 1 + δ1,3(δ1,2 + 1), (3.14c)

and as a vector:

N(δ1) =


1 + (δ1,2 + δ1,3)

1 + δ1,2(δ1,3 + 1)

1 + δ1,3(δ1,2 + 1)

 , (3.15)

which is identical to the N obtained in Section 2.6.1.

47

Next, we consider the second part of the example:

G2(δ2,1, δ2,3, G1) =


0 δ2,1 1

δ2,1 0 δ2,3

1 δ2,3 0

 , N(δ2) =


2 + sgn(δ2,1 + δ2,3)

1 + 2sgn(δ2,1 + δ2,3)

2 + sgn(δ2,1 + δ2,3)

 . (3.16)

Before applying the method we derived, we need to remove the sign function. First,

we recall the theorem from Section 2.5.3 which asserts that a firm is not incentivised

to make multiple connections to the same component. We can further argue that when

a firm has multiple choices to connect to the same component, it would always prefer

making a single connection. Establishing this further means that we can add the

condition of a single connection to a component to the general optimization problem

and thus make sure that within the sgn(), it is always either 1 or 0, which allows us to

neglect it safely. This finding alters the inspected expression (3.16) for N to:

N(δ2) =


2 + (δ2,1 + δ2,3)

1 + 2(δ2,1 + δ2,3)

2 + (δ2,1 + δ2,3)

 , (3.17)

Next we apply our method. We first look at N0 and individual connections and as-

semble M :

N0 =


2

1

2

 , N(1, 0) =


3

3

3

 , N(0, 1) =


3

3

3

 , M =


1 1

2 2

1 1

 . (3.18)

We use these to write:

N(δ2)1 = 2 + (δ2,1 + δ2,3)(2δ2,1 + 2δ2,3 − 2(δ2,1 + δ2,3) + 1) = 2 + (δ2,1 + δ2,3),

(3.19a)

N(δ2)2 = 1 + 2(δ2,1 + δ2,3), (3.19b)

N(δ2)3 = 2 + (δ2,1 + δ2,3)(2δ2,1 + 2δ2,3 − 2(δ2,1 + δ2,3) + 1) = 2 + (δ2,1 + δ2,3),

(3.19c)

and as a vector:

N(δ2) =


2 + (δ2,1 + δ2,3)

1 + 2(δ2,1 + δ2,3)

2 + (δ2,1 + δ2,3)

 . (3.20)

48

These expressions are identical to our derived expression (3.20). With our method,

we can start from any network G and write an adequate approximation that can be

used for solving optimization problems regarding firms’ choices.

3.2.5 Multiple Connections to the Same Component

In the previous section, in order to remove the sign function, we assert that multiple

connections to the same component would be prohibited by including a condition

to the optimization problem. In order to do this, it is necessary to formulate these

conditions in terms of δi and G.

We begin with the matrix used to compute N , which is G+I as given in Section 2.2.2.

Since we are searching for components without firm i, we can assume it is not con-

nected and write G = Gi(0, G). Then,

sgn(Gi(0, G)J−1 + I), (3.21)

gives us a matrix where components excluding i are completely connected. We can

multiply that matrix with the choice vector δi to find the expression:

B(δi, G)j =
∑
k

sgn
(
(Gi(0, G) + I)J−1

)
j,k
δi,k. (3.22)

If there are multiple connections to the same component, (3.22) is larger than 1. This

can be illustrated when we look at the five firm examples from a single connection

case:

G =



0 1 0 0 0

1 0 1 0 0

0 1 0 0 0

0 0 0 0 1

0 0 0 1 0


. (3.23)

If we assume firm 4 is making the connection choice, then we can write it as:

G4(δ4) =



0 1 0 δ4,1 0

1 0 1 δ4,2 0

0 1 0 δ4,3 0

δ4,1 δ4,2 δ4,3 0 δ4,5

0 0 0 δ4,5 0


. (3.24)

49

Here, there is a component of three firms and one unconnected firm. We can use the

method described in Section 3.2.2 to write:

N(δ4) =



3 + (δ4,1 + δ4,2 + δ4,3)(1 + δ4,5)

3 + (δ4,1 + δ4,2 + δ4,3)(1 + δ4,5)

3 + (δ4,1 + δ4,2 + δ4,3)(1 + δ4,5)

1 + 3(δ4,1 + δ4,2 + δ4,3) + δ4,5

1 + δ4,5(1 + (δ4,1 + δ4,2 + δ4,3))


. (3.25)

It is clear that without the restriction of δ4,1 + δ4,2 + δ4,3 ≤ 1, N(δ4) would reach

values much higher than J = 5. Hence we need to apply the component condition.

We start by substituting relevant values to (3.21):

sgn(G4(0, G)J−1 + I) =



1 1 0 0 0

1 1 1 0 0

0 1 1 0 0

0 0 0 1 0

0 0 0 0 1



J−1

=



1 1 1 0 0

1 1 1 0 0

1 1 1 0 0

0 0 0 1 0

0 0 0 0 1


. (3.26)

When we multiply this expression with δ4, we obtain:

B(δ4)1 = B(δ4)2 = B(δ4)3 = δ4,1 + δ4,2 + δ4,3, (3.27a)

B(δ4)5 = δ4,5. (3.27b)

If these expressions are both ≤ 1, we can make sure that multiple connections are not

made to the same component.

To summarise, we can write the general component condition as:

B(δi, G)j =
∑
k

sgn
(
(Gi(0, G) + I)J−1

)
j,k
δi,k ≤ 1 ∀j. (3.28)

3.2.6 Interpolated Objective Function

Having handled the difficulties in expressing the problem in terms of choice in a

meaningful way, we can finally write the interpolated problem. First, we recall the

50

problem we start with from Section 2.7:

max
δi

πi(Gi(δi,k, G)),

s.t. Rk(δi, G)δi,k ≥ 0 ∀k,

δi,k ∈ {0, 1} ∀k.

(3.29)

In this chapter, we show that every term of the optimization problem (3.29) can be

expressed as smooth functions that depend on δi values. Hence, we can write the

more comprehensive problem as:

max
δi

πi

(
Ni

(
Gi(δi, G)

)
, Di

(
Gi(δi, G)

))
,

s.t.

(
πk

(
Nk

(
Gi(δi, G)

)
, Dk

(
Gi(δi, G)

))
− πk

(
Nk

(
Gi(0, G)

)
, Dk

(
Gi(0, G)

)))
δi,k ≥ 0 ∀k,∑

k

sgn
(
(Gi(0, G) + I)J−1

)
j,k
δi,k ≤ 1 ∀j,

δi,k ∈ {0, 1} ∀k,

(3.30)

or simply:

max
δi

πi(δi, G),

s.t.Rk(δi, G)δi,k ≥ 0 ∀k,

B(δi, G)j ≤ 1 ∀j,

δi,k ∈ {0, 1} ∀k.

(3.31)

By using our interpolation method, we are able to obtain an optimization problem

based on the problem given in Section 2.7 that yields meaningful intermediate values

for relaxed δi. This allows us to use deterministic non-linear mixed integer optimiza-

tion techniques to solve this problem. During these computations, the functions for

this parameter are assembled using the Matlab code in Appendix A.2. We note that

for a constant G, the value of B(δi, G)j depends linearly on δi, which is the case when

we are solving (3.31).

51

3.3 Analysis of the Continuous Objective Function

In Section 3.2, we state that in order to solve our mixed integer problem with a non-

linear objective function, we need to relax the integer constraints. Another important

thing we need to consider is whether the objective function is concave when max-

imising the relaxed variables. In this section, we will analyse the profit function’s

second-order properties that depend on δi ∈ [0, 1]J−1 by finding its Hessian matrix.

Throughout this section, x ∈ RJ−1 is substituted for the continuous δi for simplicity.

We use n(x) ∈ R and m(x) ∈ R respectively for the continuous equivalents of Ni

and Di that depend on the continuous decision variable 2.

3.3.1 Second Order Analysis

First we can write the continuous profit function by substituting n(x) and m(x) to

(2.70):

πi(n(x),m(x)) =
(n(x)P − βi)

2

4n(x)2γi
− di(n(x)− 1)− cim(x). (3.32)

Along with our expression for n(x) (given in (3.6)), finding the second derivatives of

this expression may get complex. To avoid this, we can use the chain rule:

∂2πi

∂xa∂xb

=
∑
k

(
∂πi

∂ug

∂2ug

∂xa∂xb

)
+
∑
g,h

(
∂2πi

∂ug∂uh

∂ug

∂xa

∂uh

∂xb

)
. (3.33)

Here we define three new indices, ug and uh are used to represent u1 = n and u2 =

m. While xa and xb are two indices that represent k in δi,k. Having established the

notation, we can move on to finding the appropriate values.

First, we take n and m as independent variables and find the corresponding gradient

and the Hessian:

∇πi(n,m) =

∂πi

∂n

∂πi

∂m

 =

−βi
2−Pβin+2diγin

3

2γin3

−ci

 , (3.34)

H =

 ∂2πi

∂n2
∂2πi

∂n∂m

∂2πi

∂m∂n
∂2πi

∂m2

 =

βi(3βi−2Pn)
2γin4 0

0 0

 . (3.35)

2 We use the component size and direct connection values for the firm that is making the connection.

52

Next, we find the expression for ∂n
∂xa

. To do this, we can write the expression for n(x)

as:

n(x)i = N0
i +

∑
a

Mi,axa. (3.36)

The Jacobian of n can be found as the rows of M . For simplicity, let us define v as

the transpose of the ith row of M . That is to say: va = Mi,a.

Therefore we can write the first derivative of n as ∂n
∂xa

= va. Moreover, for m, the

continuous equivalent of direct connections, we have ∂m
∂xa

= 1.

We see that the second derivatives of n and m are zeros as both the values of va and

1 are constant. It follows that:
∂2ug

∂xa∂xb

= 0, (3.37)

and we know that only ∂2πi

∂n2 ̸= 0. So we work with a simpler version of the chain rule:

∂2πi

∂xa∂xb

=
∂2πi

∂n2

∂n

∂xa

∂n

∂xb

. (3.38)

Hence we can write the Hessian of continuous variables (H) as follows:

Ha,b =
βi (3βi − 2Pn(x))

2γin(x)4
vavb. (3.39)

The first thing to note is that va and vb are always non-negative as the values in M are

all differences in making a single connection. Which by definition cannot decrease

the size of a component. Moreover, for the case of i in particular, since it starts with

no connections, making any single connection increases its component size. This

shows that all values of v are positive. In the closed matrix form, we can write (3.39)

as:

H =
βi (3βi − 2Pn(x))

2γin(x)4
vvT . (3.40)

The expression:
βi (3βi − 2Pn(x))

2γin(x)4
, (3.41)

is a coefficient of the matrix and since n(x) ≥ 1 and P > 1.5βi it is always negative.

Therefore, if we can show that −vvT is negative semi-definite, we can say that the

profit function that depends on x is concave. To show this, we can consider the defini-

tion of negative semi-definiteness. A matrix A is negative semi-definite if xTAx ≤ 0

for all x. So let us substitute A with −vvT :

xT (−vvT)x = −xTvvTx = −(vTx)T (vTx). (3.42)

53

We see that (vTx)T (vTx) is always no less than zero for any vTx with real values.

Hence xT (vvT)x is always non-negative, and −xT (vvT)x is therefore always non-

positive.

We have thus shown that πi(x) is a concave function for the interval x ∈ [0, 1]J−1.

This solution, of course, needs not be unique. Integer constraints severely reduce the

number of solutions, but even then, multiple integer value sets of x may produce the

maximum value.

3.3.2 First Order Analysis

Next, we apply the first-order condition to understand the solution’s nature better. We

recall the chain rule:

∂πi

∂xa

=
∑
k

∂πi

∂uk

∂uk

∂xa

. (3.43)

We know that ∂n
∂xa

= va and that ∂m
∂x

= 1. Then we have:

∂πi

∂xa

= −va
βi

2 − Pβin(x)

2γin(x)3
− vadi − ci. (3.44)

For a continuous x, if x̂ that equates (3.44) exists in the interval x ∈ [0, 1]J−1 that x̂ is

a maximiser. And if not, the solution would lie on the borders of the feasible region.

In this section, we have shown the concavity of the objective function. In the next

section, we discuss how we make use of the relaxed variables to find the solution to

our problem.

3.4 Modifications to the Branch and Bound Algorithm

In Sections 3.2 and 3.3, we discuss how we can interpolate the intermediate values of

the objective function for the relaxed decision variables and show that this function

is concave within the relaxation interval [0, 1]. In this section, we use the findings of

previous sections to solve our optimization problem.

54

3.4.1 Simple Branch and Bound Algorithm

The problems that can be classified as mixed integer non-linear programming may

arise from different fields with properties unique to the situation they model. Our

problem given in (3.31) is concave for relaxed variables and has a non-linear con-

straint that we call the consent condition. In order to find deterministic solutions

for concave maximization problems (or convex minimization problems) with non-

linear objective functions, tree-based methods are considered appropriate [7]. There

are commercially available solvers for MINLP’s, and approximating our profit to a

smooth function, we can employ one to solve our problem. However, often for the

mixed integer problems, building a solver that fits the exact problem yields solutions

more efficiently. A general solver may still be preferable when the model is solved

for specific values, but for general testing we consider the ability to tweak the solver

an integral requirement for efficient computation.

Matlab offers a deterministic solver for linear mixed integer problems. However, for

non-linear cases, Matlab only offers stochastic methods. Unlike Matlab however,

python does offer solvers for MINLP problems, such as the library Gekko [6]. How-

ever, due to the matrix heavy calculations involved in our solution, and the importance

of solver speed since it to be used for a large number of times during a multiple con-

nectivity game, we consider it simpler to write the a branch and bound solver for the

optimization problems in this thesis.

The branch and bound algorithm is a fairly robust method for solving mixed integer

problems. Its principle idea is solving the equivalent problem obtained by converting

integer variables to continuous variables that are constrained to the interval bound by

integers (such as x ∈ {0, 1} to x ∈ [0, 1]). This process is called variable relaxation,

and the problem obtained this way is called the relaxed problem. Relaxed problem is

solved using a method suitable to the problem. If the solution happens to also meet

the integer criterion, the search is terminated. If not, one of the integer variables is

taken, and sub-problems where each possible integer value of that variable is taken as

constant, and the process is repeated for sub-problems [16]. This idea is also given in

Algorithm 1 for a problem to find maximizer for πi(x) where x ∈ {1, 0}J−1.

55

This particular implementation of the branch and bound algorithm is recursive and

depth-first. This results in the algorithm checking every possible x unless an integer

solution is reached earlier. Our sub-problems are non-linear, hence finding a solu-

tion to our sub-problems is a non trivial-task. Therefore, we are motivated to reduce

the number of times we need to solve a sub-problem. This is achievable by using a

slightly more complex version of the algorithm. This algorithm involves implement-

ing active and inactive lists along with pruning. We explain these concepts in Sections

3.4.2 and 3.4.3.

Algorithm 1 Simple branch and bound algorithm for maximizing πi(x) for x ∈
{0, 1}J−1 [16].

Find x̂ ∈ [0, 1]J−1 that maximizes πi(x) with a suitable method.

if x̂ ∈ {0, 1}J−1 then

return x̂ .

else

Create the sub-problem with π
(0)
i (x2,...) = πi(0, x2,...).

Solve the sub-problem with the Simple B&B Algorithm to find x̂(0).

Create the sub-problem with π
(1)
i (x2,...) = πi(1, x2,...).

Solve the sub-problem with the Simple B&B Algorithm to find x̂(1).

if π(0)
i (x̂(0)) > π

(1)
i (x̂(1)) then

return x̂(0).

else

return x̂(1).

end if

end if

3.4.2 Branch and Bound with Active and Inactive Lists

The idea for active and inactive list implementation is that there are two lists, one

for active and one for inactive solutions. If a solution meets the integer criteria, it is

recorded in the inactive list. If not, it is added to the active list. At every iteration, one

item from the active list is split into two sub-problems. Finally, the sub-problems are

added to the relevant list depending on whether they meet the integer criteria or not.

56

Sub-problem generation is handled via static and dynamic parts of the solution. The

static part is implemented from the first index, and only the dynamic part of x is

maximized. A sub-problem is generated by taking the static part and adding 0 and 1

to its ends. When the active list is exhausted after no more than 2J−1 iterations (the

maximum possible number of sub-problems), the x, which yields the highest value

from the objective function, is the solution to the mixed integer problem. This is

given in Algorithm 2. In order to start the inactive list, we need a candidate solution

that meets the integer criterion and is feasible. In Section 2.6 we state that a vector of

zeros is such a candidate, hence we use it for the algorithm.

This algorithm is less elegant compared to Algorithm 1, but with the introduction of

pruning, it allows us to compute the result more efficiently.

Algorithm 2 Branch and bound algorithm with active and inactive lists [14].
Define active list la and start it with the fully relaxed solution.

Define inactive list ld and start with x = 0.

for 2K turns do

Take xe from the end of la.

Split xe to its static and dynamic part se, sa.

Define vectors: s0 =

se
0

, s1 =

se
1

.

for s = s0, s1 do:

Solve πi(s, sa) where sa is the remaining dynamic part.

if x̂ = [s, sa] meets the integer criteria then

Add x̂ to inactive list.

else

Add x̂ to active list.

end if

end for

if Active list is empty then

Break.

end if

end for

The solution is x̂ with the largest πi(x̂) value from the inactive list.

57

3.4.3 Pruning

While we are solving for an integer x using a branch and bound algorithm with the

approach given in Algorithm 2, we would end up with a large number of items in the

active and inactive lists. As the values in the active list are maximisers for the entire

boundary [0,1], then their πi(x) must be no less than the maximum of the objective

function πi for x ∈ {0, 1}. Then for xa as an item from the active list and xd as

an item from the inactive list, if πi(xa) < πi(xd), so must every other result from

sub-problems derived from that xa. It follows that we can prematurely terminate the

branch of xa by removing it from the active list. This process allows us to reduce the

computation time, and it is called pruning [16].

Since we already know that the profit from x̂ calculated here is later compared with

the profit from the original adjacency matrix Gn−1 before firm i proposing the alter-

ation, we can calculate that value early on and use it for additional pruning of active

branches.

3.4.4 Consent and Component Conditions

Up to this section, we have acted like the integer constraint is the only constraint in

our problem (3.31). However, we have the consent and component conditions:

Rk(δi, G)δi,k ≥ 0 ∀k, (3.45a)

B(δi, G)k ≤ 1 ∀k. (3.45b)

There are two possible approaches we can take for these conditions. First, we can

add them as constraints to the relaxed sub-problem obtained in every iteration of the

branch and bound algorithm. Alternatively, we can solve sub-problems without these

constraints and check the solutions in a different step within our algorithm. In this

section, we discuss how we can apply the latter approach. In Section 4.2.2, we discuss

the advantages of the latter approach over the former with computation times.

Our first inclination is using consent and component conditions for filtering the so-

lutions in the inactive list. However, when we do not include these conditions in the

relaxed problem, it may be possible for a solution to not meet them, while some other

58

solution at one of the sub-problems that would be generated from that solution does

meet them and yield a lower profit. Hence we cannot simply filter the inactive list for

these conditions.

Instead, we consider the constraints at the step of the sub-problem evaluation, where

we decide if integer criteria are met. If the condition is met and constraints are ful-

filled, we may add x̂ to the inactive list. However, if it is not, and if the active part is

not empty (static part does not include all the δi values), we add x̂ back to the active

list, while if it is empty, x̂ is removed.

However, there is a second thing we can do for the component condition in particular.

In a sub-problem, we only evaluate the active part, but the static part may not fulfil

the component condition even when all the active part is zero. In such a case, what

we did above keeps sending that x̂ to the active list while it can never be feasible. So,

before solving the sub-problem, we can check whether πi(s, 0) (s is the static part for

that sub-problem) is feasible according to the component condition. If not, we can

simply skip that sub-problem.

Before finalizing the algorithm, we need to consider a few more points. First is how

we will implement the integer condition. Since we are using computers, the results

we obtain may not be exactly 1 or 0, but very close. We use an integer tolerance of

ϵ = 10−8 for the computations in this thesis to ensure such values are still considered

integers. Hence, we take δi,k ≤ ϵ, as 0; δi,k ≥ 1 − ϵ as 1, and any values in-between

do not meet the integer constraint.

In the numerical simulations, we need to consider how to pick an item from the active

list. One approach could be always picking the item that yields the highest πi(x),

thereby making the search more breadth oriented. Nevertheless, during testing, we

find that this implementation finds useful values for pruning in a much later stage of

the computation, and hence we find the depth-first approach preferable when looking

for pruning values.

Additionally, we need to consider how to break the tie if multiple solutions have the

same profit. In real life, such choices may be made with external considerations, but

in this study, we simply pick the last item in the sorted list.

59

3.4.5 Modified Algorithm

Algorithm 3 Modified branch and bound.
Start with pb as the baseline profit.

Define active list la and start it with the fully relaxed solution.

Define inactive list ld and start with x = 0.

for 2K iterations do

Find the largest πi(xd) from ld.

Remove xa from la if πi(xa) < max(πi(xd), pb).

Take xe from the end of la and split xe to its static and active part se, sa.

Define vectors: s0 =

se
0

, s1 =

se
1

.

for s = s0, s1 do

z = [s, 0, 0, . . .].

if
∑

j ̸=k zksgn
(
(G(z,Gn) + I)J−1

)
k,j

> 1 for any k then

Continue.

end if

Solve π(s, sa) where sa is the remaining active part.

if x̂ = [s, sa] meets the integer criteria then

Rk(δi, G)δi,k = δi,k

(
πk(x̂)− πk(0)

)
.

B(δi, G)j =
∑

k sgn
(
(G(0, Gn) + I)J−1

)
j,k
δi,k.

if Rk(δi, G)δi,k ≥ 0 for all k and B(δi, G)j ≤ 1 for all j then

Add x̂ to inactive list.

else if sa is not empty then

Add to the active list.

end if

else

Add x̂ to active list.

end if

end for

If the active list is empty, break.

end for

The solution is the largest πi(x) from the inactive list.

60

With all the discussed considerations, we are left with our Modified Branch and

Bound scheme given in Algorithm 3, which we’ve purpose-built to solve our problem.

Our application of this algorithm in Matlab can be found in Appendix A.5.

The final remaining question regarding our branch and bound scheme is how we solve

the relaxed sub-problems created by the algorithm. Since we have a non-linear ob-

jective function, we can use Matlab’s fmincon function. How to pick the parameters

for fmincon is discussed in detail in Section 4.2.1.

3.5 Procedure to Find Stable Systems in MCG

In the final section of this chapter, we present a procedure that finds systems that are

stable when MCG is played. This procedure is partly inspired by the work of Watts

[44] where a dynamic game of network formation is discussed. In that game, possible

connections are evaluated in turns, and if a connection is profitable to both parties,

the network is updated to include it. Finally, when no possible pairwise alteration is

found, the game is terminated. Similarly, in our procedure, we start from an uncon-

nected system (Gi,j = 0 for all i, j) and assess if any firm profits from altering the

network with an MC move. If a profit-increasing alteration is found, this process is

repeated for the altered network. We represent this progression with the matrix series

Gn. The series start with an unconnected adjacency matrix G0, the network after the

first alteration is G1, the second alteration is G2 and so on. This iterative process

continues until a system is reached that no player can profit by altering according to

the rules of MCG given in Section 2.7. The algorithm that performs this procedure is

given in Algorithm 4, and it is applied with Matlab in Appendix A.8.

This procedure can terminate in three ways. The first way is it may not converge in a

given number of cycles (C). Or indeed, at any number of cycles. Alternatively, it may

reach MCG stability where no firm benefits from altering Gn. Thus, no firm alters the

network structure for an entire cycle. Another possibility is the algorithm reaching

cyclic progression, where firms do alter the network, but their choices cancel each

other out, and the resultant system is the same at the end of the cycle.

61

Algorithm 4 Procedure to find Stable Systems in MCG.
Start with an empty matrix G0 of J rows and columns.

Define the number of cycles as C.

Given P , β, γ, d, c.

for c = 1, 2 . . . C do

for i = 1, 2, . . . J do

Find N(G(x,Gn)) and D(G(x,Gn)).

Calculate baseline pb as π(Gn)i.

Assemble π(x), R(x,Gn), and B(x,Gn).

Find the best x̂ using MBB.

if πb < π(x̂) then

Gn+1 = G(x̂, Gn).

else

Gn+1 = Gn.

end if

n = n+ 1.

end for

if Gn = Gn−1 = · · · = Gn−J then

Return MCG stability.

end if

if Gn = Gn−J then

Return cyclic progression.

end if

end for

We note that with this procedure, depending on the turn order we consider firms,

different stable systems may emerge. This ordering can be fully random, with a

permanent order, or with respect to a firm property such as considering the highest or

lowest earning firm for a particular network. Moreover we cannot guarantee that with

different turn orders all stable systems are reachable with this procedure. Therefore

our claim is simply that with this procedure, we can find a network that is stable for a

given set of firm parameters.

62

CHAPTER 4

SIMULATIONS OF THE MULTIPLE CONNECTIVITY

MODEL

4.1 Introduction

In Chapter 3, we discuss how we can build the relaxable objective function πi(δi)

and how we can solve it. In this chapter, we run computer simulations to find stable

systems for the Multiple Connectivity Game and discuss the various results we obtain.

In Section 4.2 we check the effectiveness of our computational method and algorithm

choices. After this, we continue our discussion of stable systems with MC and PW

approaches in Section 4.3. Later, we do simulations in order to demonstrate how

altering various firm parameters alters the model and the resultant stable networks.

The simulations are done using the code given in Appendix A.17, and are sorted

based on the number of firms involved as Sections 4.4 and 4.5.

4.2 Effectiveness of the Computation Methods

In this section, we solve the problem of finding optimal moves for a player using

variations of our implementation to demonstrate its effectiveness. Appendix A.17

shows the codes used for this part.

63

4.2.1 Parameters for the Non-linear Solver

In order to solve the sub-problems we obtain via relaxing integer parameters, we use

fmincon which uses an interior-point method as the default algorithm, but it is also

possible to use sequential quadratic programming (SQP), and active set methods. In

this section, we compare the computation time of these approaches with the modified

branch and bound algorithm.

As a benchmark problem, we pick P = 10, β = 5, γ = 2, d = 0.2, c = 1 for

all firms and look at the computation times of running the procedure to find stable

systems for different values of J . The results obtained from the Matlab profiler are

given in Figure 4.1. We see that the sequential quadratic programming algorithm

solves subproblems faster than the alternatives in every given firm count. We run each

simulation once, so the exact data points may vary. However, since algorithms are run

many times during a single play, we can say that a wider trend is still applicable when

considering which algorithm to use. For the rest of the simulations, we use "sqp" as

the algorithm option for fmincon.

2 4 6 8 10 12 14 16 18

firm count

10-1

100

101

102

103

s
e
c
o
n
d
s

Fmincon algorithm computation times

interior-point

sqp

active-set

Figure 4.1: Calculation times of various algorithms for fmincon.

64

4.2.2 Modified and Pure Branch and Bound

The computation that takes the longest time in a B&B scheme is solving the sub-

problems. However, in addition to picking the algorithm that solves the sub-problem

fastest, the code performance can be improved by reducing the number of times a sub-

problem needs to be solved. This can be done via means like pruning or premature

termination by component condition, as discussed in Section 3.4.4. We achieve this

by modifying the B&B scheme into the MBB. While both algorithms produce the

same result, MBB aims to yield the result faster. Moreover, since we are solving a

mixed integer problem where all variables are integer (pure integer problem), it is

also possible for us to solve this problem by looking at each possible answer and

comparing the obtained profit. This approach is called exhaustive searching, and we

use it to solve the problem in Section 2.6. In this section, we compare these three

approaches in terms of computation time with the benchmark parameters P = 10,

β = 5, γ = 2, d = 0.2, and c = 1.

2 4 6 8 10 12 14 16 18 20

firm count

10-2

10-1

100

101

102

103

104

s
e
c
o
n
d
s

MINLP solver computation times

modified branch & bound

pure branch & bound

exhaustive searcher

Figure 4.2: Calculation times of different solvers for MINLP.

In Figure 4.2, we can see that while exhaustive searcher works faster for a low number

of firms, with higher firm numbers, it becomes prohibitively slow, reaching up to

almost an hour for 19 firms. Meanwhile, our MBB algorithm works much faster

for all firm counts compared to an implementation of the pure branch and bound

65

algorithm. In all firm counts, three methods are called for the same number of times.

Despite this, the pure branch and bound algorithm runs up to ten times slower for

higher firm counts, further emphasising the necessity of modifying the algorithm for

our problem.

4.3 Comparison of MC to PW Stability

In this section, we compare how MC and PW approaches lead to stable systems with

component profit functions using simulations. We focus on systems where firm pa-

rameters are the same for all firms. In Section 2.5.6, we state that for firms with equal

parameters, it is sufficient to check stability by only considering unique isomorphs.

In Figure 4.3, unique isomorph forests with 5 nodes are given. To illustrate the dif-

ference between using the MC and PW approach for network formation, we apply

various profit functions to these networks for the remainder of this section. The code

used for this section is given in Appendix A.13.

Figure 4.3: Unique isomorph forests with 5 nodes.

4.3.1 Large Stable Components

We start with P = 10, β = 5, γ = 2, c = 1, d = 0.1, the parameters used in the

benchmark from the previous section problem. In Section 2.5, it is shown that trees

larger than the optimal component size cannot be stable. The optimal component size

for these parameters is 8, which suggests that stable networks will have components

with no more nodes than 8. With 5 firms, this suggests that we can find stable single-

66

component networks.

We compute stability for all unique isomorphs and display the stable networks in

Figure 4.4 and unstable networks in Figure 4.5. In the figures, a node that can improve

its profit is shown with triangle markers, and the profits firms make due to the network

are given in parentheses. We see that all the networks with component counts of 4

and 5 are stable, while networks with smaller components are not. This shows us that

it is beneficial for firms to merge into larger components with these parameters.

We can compare the MC results with PW results given in Figure 4.6. In the figure,

we can see three types of connections. Black dashed lines are connections that do not

exist in the network, but firms benefit by forming them. Thick red lines show existing

connections that firms benefit by breaking. Finally, thin blue lines are connections

that firms prefer maintaining. By looking at the results, it is clear that there are no

pairwise stable systems with the given profit function. The MC stable networks are

PW unstable because one party of each connection benefits from breaking it. The

unilateral benefit also exists for the case with MC stability. However, the firms are

not able to get the consent of their other connections when they alter a network by

breaking a connection.

Figure 4.4: MC stable unique isomorph networks with 5 firms and equal parameters.

67

Figure 4.5: MC unstable unique isomorph networks with 5 firms and equal parame-
ters.

Figure 4.6: PW unstable unique isomorph networks with 5 firms and equal parame-
ters.

68

4.3.2 Small Stable Components

In this section, we consider a smaller optimal component size of N̂ = 3, which can

be done by altering firm parameters.

First, we can set d = 1 to set the optimal component size to N̂ = 3 while keeping

others the same as done in Section 4.3.1. For these parameters, we have two MC

stable networks, given in Figure 4.7 and one PW stable network, given in Figure 4.8.

In addition, MC unstable networks are given in Figure 4.9 and PW unstable networks

are given in Figure 4.10. Here, we see that having a lower optimal component size

indeed results in larger networks being unstable. However, we can also observe that

while a network of a three-firm chain and a pair is MC stable, it is PW unstable. This

can be explained by considering the central node of the three-firm chain. In the centre,

the firm’s profit is 4.68, while a firm in a pair makes 5.03 profit. Clearly, 5.03 > 4.68,

so the centre firm benefits by severing a connection. However, the leaf node that stays

connected to the centre suffers from this by losing 0.65 profit. Therefore, the leaf

does not consent to the MC alteration, and the chain is also stable.

Figure 4.7: MC stable unique isomorph networks with 5 firms and d = 1.

69

Figure 4.8: PW stable unique isomorph networks with 5 firms and d = 1.

Figure 4.9: MC unstable unique isomorph networks with 5 firms and d = 1.

70

Figure 4.10: PW unstable unique isomorph networks with 5 firms and d = 1.

Another way to reach an optimal component size of N̂ = 3 is setting γ = 20. The

MC stable system with these parameters is given in Figure 4.11, and the PW stable

system is given in Figure 4.12. For these parameters, we see that PW and MC stable

systems are identical, and they are unconnected systems. This result shows us that op-

timal component size is insufficient to predict stable systems, and the firm parameters

should be investigated separately.

71

Figure 4.11: MC stable unique isomorph networks with 5 firms and γ = 20.

Figure 4.12: PW stable unique isomorph networks with 5 firms and γ = 20.

The examples in this section illustrate how MC and PW approaches result in different

stable systems. Our first intuition may be that since MC allows for a larger set of

moves, fewer systems would be MC stable. However, by constraining firms to only

make alterations that require the consent of their direct connections, we are able to

find a larger number of stable networks with the same profit. There are two ways to

interpret this finding. First, firms that consider each connection separately may make

choices that are ultimately against their best interest. The second is that considering

each connection separately is unrealistic. We favour the latter interpretation since it

is both possible and profitable for firms to consider multiple connections while decid-

ing their interests. Therefore, we consider the multiple connectivity approach to be

a more realistic prediction of short-term choice-makers in network formation. More-

72

over, we see that when stable systems are only the unconnected systems or systems

of pairs, MC and PW approaches reach the same results.

4.4 Tests with Nine Firms

An analysis based on a small number of firms may not allow us to observe all the

nuances of the MC approach for network formation. However, as the firm number

increases, the number of unique isomorphic forests also increases. Therefore, instead

of checking every unique isomorphic forest, we can use the algorithm we introduce

at Section 3.5 and find an MC stable system for a given set of parameters. In this

section, we do so for systems with 9 firms.

4.4.1 Equal Parameters

We start by considering J = 9 firms with the same parameters: P = 10, β = 5, γ = 2,

d = 0.2, c = 1. The Matlab script for the 9 firm simulations with equal parameters

is in Appendix A.18. The progression of the network can be traced in Figure 4.13

where the x-axis shows turns, the y-axis shows the firm number and darker squares

indicate a higher profit for the firm. Moreover, in Figure 4.14, the unstable networks

after each MC alteration can be observed. The resultant stable network has two stable

components: a long chain and an unconnected node. The firms in the long chain,

especially those on the edges, earn the largest profit from this configuration, while the

unconnected generate less profit.

The moves that destabilise a 6 firm chain are not made by leaves attaching to new

firms but by a centre firm replacing its shorter tail with a longer one outside. This

phenomenon occurs at n = 9 when firm 9 breaks off 2 and 7 in favour of a 3-firm

chain and again at n = 11 with firm 2. This is an interesting example of collective

action generating higher payoff for individuals.

73

firm profits over n

0 5
1
0

1
5

2
0

n

1

2

3

4

5

6

7

8

9

fi
rm

s

4

6

8

Figure 4.13: Profits with 9 firms and equal parameters.

Figure 4.14: Network progression with 9 firms and equal parameters.

4.4.1.1 Shuffled Turn Order

Looking at the progression from Section 4.4, we can ask how significant turn order is

on the resultant systems. To observe this, we can consider three other scenarios with

the same parameters, except turn order is randomised at each cycle using different

seeds. The stable networks obtained in this way are given in Figure 4.15. Inter-

estingly, the stable networks contain a component of 8 firms, but unlike the stable

network given in Figure 4.14 that component is not a chain.

74

Moreover, these networks all have a tree with 8 firms and a single unconnected firm.

Since the optimal component size for these parameters is 8, this observation fits the

ceiling condition we discuss in Section 2.5.5. However, the fact that outcomes are

isomorphic is a mere coincidence.

Figure 4.15: Stable networks with 9 firms, equal parameters, and shuffled turn order
with seeds 1, 2, 3 from left to right.

4.4.1.2 Alternate Linear Cost

Next, we consider the effect of altering model parameters, starting with the linear

cost, as it is the term directly related to the network parameters. We first consider the

effects of a larger β = 6.66 for all players, which is just below our concavity limit at

β < 1.5P . The results of the simulations are shown in Figures 4.16 and 4.17. This

set of parameters yields the optimal component size of 9. However, again, the players

converge into a chain of 8 firms, and one firm is completely left out. With a higher

β, we expect the cost difference of a larger component size to be more substantial;

thus, it would be profitable to form a longer chain. However, even with this additional

incentive, we see that no firm on the chain consents to connect with an unconnected

node outside the chain.

75

firm profits over n

0 5
1
0

1
5

2
0

n

1

2

3

4

5

6

7

8

9

fi
rm

s

2

4

6

8

Figure 4.16: Profits with 9 firms, equal parameters, and β = 6.66.

Figure 4.17: Network formation with 9 firms, equal parameters, and β = 6.66.

Conversely, when we look at the effects of a smaller β = 3 (and optimal component

size of 6) for all players given in Figures 4.18 and 4.19, we see that the benefit from

a cheaper production is surpassed by the cost from being in a larger component with

less number of firms. Thus, we end up with two smaller chains and one unconnected

firm.

76

firm profits over n

0 5 10

n

1

2

3

4

5

6

7

8

9

fi
rm

s

6

7

8

9

10

Figure 4.18: Profits with 9 firms equal parameters, and β = 3.

Figure 4.19: Network formation with 9 firms, equal parameters, and β = 3.

4.4.1.3 Alternate Quadratic Cost

We can also check how the quadratic cost influences network formation instead of

the linear cost by setting β = 5 and altering γ. We start with γ = 4 for all firms

given in Figures 4.20 and 4.21. Here, the higher quadratic cost, while not directly

multiplied by component size, has a significant effect on the resultant components

and no component larger than 2 firms can be formed under this condition.

firm profits over n

0 5 10

n

1

2

3

4

5

6

7

8

9

fi
rm

s

1

1.5

2

2.5

3

Figure 4.20: Profits with 9 firms, equal parameters, and γ = 4.

77

Figure 4.21: Network formation with 9 firms, equal parameters, and γ = 4.

firm profits over n

0 5

1
0

1
5

2
0

2
5

n

1

2

3

4

5

6

7

8

9

fi
rm

s

10

15

20

Figure 4.22: Profits with 9 firms, equal parameters, and γ = 1.

Figure 4.23: Network formation with 9 firms, equal parameters, and γ = 1.

A smaller γ also results in a different network structure by setting all γ = 1. We

show the resultant network formation in Figures 4.22 and 4.23. Observing both cases

shows that both linear and quadratic costs change the network formation, and stable

networks are obtained without altering the turn order. Therefore, we demonstrate how

our model relates the firms’ production cost and profit to the network it is in.

78

4.4.1.4 Alternate Direct Connection Cost

Next, we start considering the network costs. These costs are the connection cost c

and component cost d. The first parameter we consider is c = 3. The profits and the

network formation can be observed in Figures 4.24 and 4.25. We can see that in this

scenario, no firm can ever make two connections. Thus, no system of more than 2

firms can be created.

firm profits over n

0 5 10

n

1

2

3

4

5

6

7

8

9

fi
rm

s

2.5

3

3.5

4

4.5

Figure 4.24: Profits with 9 firms, equal parameters, and c = 3.

Figure 4.25: Network formation with 9 firms, equal parameters, and c = 3.

We follow with another simulation with c = 0 to further emphasise its significance

to the model. The resultant network progressions with this parameter are given in

Figures 4.26 and 4.27. With no cost for direct connections, the first decision-maker

connects to 7 other firms. This decision can be attributed to the component cost and

diminishing reduction in the production cost. We further see that the left-out firm

cannot join the network at the later turns.

79

firm profits over n

0 5 10

n

1

2

3

4

5

6

7

8

9

fi
rm

s

4

6

8

10

Figure 4.26: Profits with 9 firms, equal parameters, and c = 0.

Figure 4.27: Network formation with 9 firms, equal parameters, and c = 0.

Further, let us consider a case with c = 0 and d = 0.5. We see in Figures 4.28 and

4.29 that such a configuration results in smaller components, all formed in a single

turn as star networks. We can further see that the star network with firm 1 in its centre

is larger. In the first turn, firm 1 is able to connect to four leaves, which creates the

best profit for it. Firm 2 is only able to find three leaves to connect, thus creating the

second component of the network.

firm profits over n

0 5 10

n

1

2

3

4

5

6

7

8

9

fi
rm

s

4

6

8

Figure 4.28: Profits with 9 firms equal parameters, c = 0, and d = 0.5.

80

Figure 4.29: Network formation with 9 firms, equal parameters, and d = 0.5.

4.4.1.5 Alternate Component Cost

Finally, we examine the component cost. First, we set d = 1. Figures 4.30 and 4.31

show that firms cannot afford to make larger connections. Curiously, in the cases of

both high c and high d, we end up with firm pairs, but this is the result of different

dynamics related to network formation.

firm profits over n

0 5 10

n

1

2

3

4

5

6

7

8

9

fi
rm

s

3

4

5

6

Figure 4.30: Profits with 9 firms, equal parameters, and d = 1.

Figure 4.31: Network formation with 9 firms, equal parameters, and d = 1.

Next, we can observe the case when d = 0. The results of this simulation are given in

81

Figures 4.32 and 4.33. Without a cost for the component size, we see that firms form

a single large component. In this case, stability is reached with firm 3 making four

connections.

firm profits over n

0 5 10

n

1

2

3

4

5

6

7

8

9

fi
rm

s

4

6

8

10

Figure 4.32: Profits with 9 firms, equal parameters, and d = 0.

Figure 4.33: Network formation with 9 firms, equal parameters, and d = 0.

We finally look at the case with d = 0 and c = 3 in Figures 4.34 and 4.35. The

firms with the largest profit in this configuration are located at the edges of the larger

chain. This configuration is only possible because firm 3 connects with both firm

pairs, reaching a component size of 5. Since a component of 4 is not large enough to

profit from two connections, we see that the two remaining pairs do not connect.

82

firm profits over n

0 5
1
0

1
5

2
0

2
5

n

1

2

3

4

5

6

7

8

9

fi
rm

s

3

4

5

6

7

8

Figure 4.34: Profits with 9 firms, equal parameters, d = 0, and c = 3.

Figure 4.35: Network formation with 9 firms, equal parameters, d = 0, and c = 3.

83

4.4.2 Varied Cost

In this section, instead of modelling equal firms, we look at what happens when firms

have different characteristics. Matlab script for the 9 firm simulations with equal

parameters is in Appendix A.19.

4.4.2.1 Firms of Increasing Linear Cost

We start by setting γ = 2, c = 1, and d = 0.2, however for β we have βi =

2, 2.5, 3 . . . 6. This setup offers different incentives for each firm to connect. We

expect firms with higher production costs to connect more eagerly, while firms that

already produce cheaper would be more subject to network costs while considering

connections. Indeed, when we look at Figures 4.36 and 4.37, we see that the two

cheapest producers, firms 1 and 2, are located in the shorter chain. And the firms that

have higher production costs can all be found in the longer chain.

firm profits over n

0 5
1
0

1
5

2
0

n

1

2

3

4

5

6

7

8

9

fi
rm

s

2

4

6

8

10

Figure 4.36: Profits with 9 firms of varied β.

84

Figure 4.37: Network formation with 9 firms of varied β.

Going further, we shuffle the turn orders with three different seeds. At the varied cost

cases, it can be expected that turn order is even less significant for the stable network

as firms are already differentiated amongst each other via their production costs. The

results are provided in Figures 4.38, 4.39, 4.40, and 4.41. Here, there is a notable

difference from the non-shuffled stable network as firm 1 stays alone, thus leading to

a stable system of three components. Nevertheless, even that is hardly surprising as

the firm already 1 produces as cheaply as firm 9 when it is in a network of 3 firms.

Indeed, we can see in all cases that firm 1 profits more than firm 9, the firm in the

largest component. Furthermore, once again, firms with higher production costs form

larger components, while firms that produce for cheaper are in the smaller component.

This result further shows us that the stable networks are the outcomes of the incentive

structures introduced in the model.

firm profits over n

0 5 10 15

n

1

2

3

4

5

6

7

8

9

fi
rm

s

2

4

6

8

10

Figure 4.38: Profits with 9 firms of varied β and shuffled turn order with seed 1.

85

firm profits over n

0 5 10 15

n

1

2

3

4

5

6

7

8

9

fi
rm

s

2

4

6

8

10

Figure 4.39: Profits with 9 firms of varied β and shuffled turn order with seed 2.

firm profits over n

0 5 10 15

n

1

2

3

4

5

6

7

8

9

fi
rm

s

2

4

6

8

10

Figure 4.40: Profits with 9 firms of varied β and shuffled turn order with seed 3.

Figure 4.41: Stable networks with 9 firms of varied β and shuffled turn order with
seeds 1, 2, 3 from left to right.

4.4.2.2 Firms of Linear Cost Groups

Our findings in the previous section can be further enhanced when we consider a

case with four cheap producers at β = 2, four expensive producers at β = 6, and

86

one middle firm with β = 4. This case is simulated once with ordered turns and

three shuffled cases, which can be found in Figures 4.42, 4.43, 4.44, 4.45, and 4.46.

Here, the incentive to form a network is best observed when we look at the difference

between cheap and expensive producers, as the cheap producers form two distinct

pairs. In contrast, expensive producers form a single chain at every simulation. We

can also see that, while the component sizes in the stable networks are often not

dependent on the turn order, firm profits are usually determined by which firms end

up at the tips of a chain, which depends on the turn order.

firm profits over n

0 5
1
0

1
5

2
0

n

1

2

3

4

5

6

7

8

9

fi
rm

s

2

4

6

8

10

Figure 4.42: Profits with 9 firms of β groups without turn randomisation.

firm profits over n

0 5 10 15

n

1

2

3

4

5

6

7

8

9

fi
rm

s

2

4

6

8

Figure 4.43: Profits with 9 firms of β groups and random turn order with seed 1.

87

firm profits over n

0 5

1
0

1
5

2
0

2
5

3
0

3
5

n

1

2

3

4

5

6

7

8

9

fi
rm

s

2

4

6

8

10

Figure 4.44: Profits with 9 firms of β groups and random turn order with seed 2.

firm profits over n

0 5 10 15

n

1

2

3

4

5

6

7

8

9

fi
rm

s

2

4

6

8

10

Figure 4.45: Profits with 9 firms of β groups and random turn order with seed 3.

Figure 4.46: Network formation with 9 firms of three β groups, from left to right:
non-random, seed 1, seed 2, and seed 3.

We see that a higher linear cost incentivises firms to form larger components, and a

higher quadratic cost incentivises firms to form smaller components. We, therefore,

can predict that in areas where the cost per production is high, other limitations (that

may be expressed by the quadratic cost) are less relevant, and firms cooperate heavily

to overcome these costs. In contrast, we predict an already low cost per production to

create a lesser incentive for firms to cooperate.

88

4.5 Sixteen Firms

In this section, in order to better observe upper limits to component sizes imposed by

connection parameters, we take J = 16. The Matlab script can be found in Appendix

A.20.

4.5.1 Equal Parameters

Again we will start with P = 10, β = 5, γ = 2, d = 0.2, c = 1. In Figures 4.47 and

4.48, we see that there are four distinct components: three chains of five firms and one

unconnected firm. This may lead us to think that in spite of an optimal component

size of 8, components with 5 firms are natural to firms of given parameters as none

of the three chains can be incentivised to form a chain with 6 members, but when we

reconsider the same configuration with a randomised turn order, given in Figures 4.49

and 4.50, we see that three chains can indeed be reached with 16 firms, however, such

progression may only happen if the chain to be connected has less than 5 firms in it.

The variation in the resultant stable networks can be attributed to a large number of

equal firms, as the decision comes down to arbitrarily selecting between choices that

offer equal profit.

firm profits over n

0 5 1
0

1
5

2
0

n

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

fi
rm

s

3

4

5

6

7

8

9

Figure 4.47: Profits with 16 firms and equal parameters.

89

Figure 4.48: Network formation with 16 firms and equal parameters.

firm profits over n

0 5

1
0

1
5

2
0

2
5

n

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

fi
rm

s

3

4

5

6

7

8

9

Figure 4.49: Profits with 16 firms, equal parameters, and shuffled turn order.

90

Figure 4.50: Network formation with 16 firms, equal parameters, and shuffled turn
order.

4.5.2 Firms of Connection Cost Groups

In this section, we consider the case where we have four different types of firms that

vary by connection costs. The exact configuration is given in Table 4.1, and the script

for the simulations is provided in Appendix A.20.

Table 4.1: Example firm coefficients.
group firms ci di

A 1,2,3,4 0.5 0.1
B 5,6,7,8 2 0.1
C 9,10,11,12 0.5 0.5
D 13,14,15,16 2 0.5

We make three random order tests with these four groups of players to obtain Figures

4.51, 4.52, 4.53, and 4.54. While the exact formation may take different routes, the

resultant systems are fairly similar. However, one notable difference is that we can see

a stable system with a non-chain component for the first time. This observation can be

attributed to the cheaper connection costs the firm 4 faces. Indeed, in all three trials, a

plurality of group A ended up in the larger component. Interestingly, however, we see

that firms in group B that face the same cheaper component cost ended up in smaller

and larger components. Finally, it is more likely for us to find members of group D

in the smaller components due to the general highness of the network costs they face.

91

Another interesting thing we can observe is that while a firm from group A ends up

alone in two of our cases, on average, being in the group A is more profitable. In fact,

based on the obtained profits, we can say that A > C > B > D in terms of average

profit a firm can obtain. This result is inconclusive in determining the significance of

component or direct connection cost. However, we can still see that these values are

significant in determining a firm’s profit.

Figure 4.51: Network formation with 16 firms and 4 player groups by seed 1, 2, and
3 from left to right.

firm profits over n

0 5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

5
5

6
0

6
5

7
0

7
5

8
0

8
5

n

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

fi
rm

s

3

4

5

6

7

8

9

10

Figure 4.52: Profits with 16 firms and 4 player groups by seed 1.

92

firm profits over n

0 5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

n

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

fi
rm

s

3

4

5

6

7

8

9

10

Figure 4.53: Profits with 16 firms and 4 player groups by seed 2.

firm profits over n

0 5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

5
5

6
0

6
5

7
0

n

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

fi
rm

s

3

4

5

6

7

8

9

10

Figure 4.54: Profits with 16 firms and 4 player groups by seed 3.

93

94

CHAPTER 5

CONCLUSION

This thesis establishes a specific network formation game and suggests a network

stability concept with the multiple connectivity approach. The game is among firms

forming networks to reduce their costs and, hence, increase their payoffs. The stable

formation of the networks among the firms competing in a market is investigated

with the multiple connectivity stability proposed in this thesis as an alternative to the

pairwise stability concept developed by Jackson and Wolinsky [31]. The multiple

connectivity approach enables individual decision-makers to establish optimal direct

network connections by taking into account different network forms simultaneously

under certain constraints.

We consider price-taking firms in a market and propose the component profit model,

where the firms optimise their profit levels by establishing connections with other

firms to lower their production costs. We assume that the firms know all the network

forms that can be established, and they can make multiple connections at a time to

optimise their profits under certain constraints. When a firm alters its connections in

a network, its direct connections consent to the new connection if its profit levels

do not decrease. The optimal connection choices when a firm is configuring it’s

direct connections to other firms are obtained by solving a mixed integer optimisation

problem.

Multiple connectivity stability is provided if no firm has an incentive to alter their

direct connections in a way that improves their profit levels. That allows the profit-

maximising firm to reach an optimal component size based on the model parameters.

The problem of computing the optimal number of firms in a component for an arbi-

95

trary network is quite complex. We use a linear approximation scheme that allows us

to relax the discrete change in the component size due to altering direct connections.

Moreover, a well-known mixed integer optimisation technique called the Branch and

Bound method is modified to solve our approximated optimisation problem. Further-

more, we develop a procedure to find multiple connectivity stable systems for a larger

number of players by applying the multiple connectivity approach to a dynamic net-

work formation game based on pairwise network formation presented by Watts [44].

The simulations with various model parameters reveal the merits of using mixed in-

teger non-linear programming as an optimisation procedure. For a small number of

firms, we find that exhaustive searching is the faster option. However, as the number

of firms rises, the time consumed by that approach increases exponentially, and the

modified branch and bound method works faster.

The simulations give rise to network forms which are multiple connectivity stable but

not pairwise stable. Moreover, the multiple connectivity approach results in network

forms that can provide higher profits for firms than the pairwise approach. These

findings are due to evaluating multiple connections of network forms rather than in-

dividual connections. The simulation results reveal the sensitivity of the component

size of the networks to the cost parameters related to the production and the network

connection.

The multiple connectivity approach and the associated optimisation procedures can be

extended to different network formation settings. We aim to provide generalisations

and extensions of the multi-connectivity stability proposal in future studies.

96

REFERENCES

[1] R. J. Aumann and J. H. Dreze, Cooperative games with coalition structures,
International Journal of Game Theory, 3, pp. 217–237, 1974.

[2] A. Babus, The formation of financial networks, The RAND Journal of Eco-
nomics, 47(2), pp. 239–272, 2016.

[3] C. Ballester, A. Calvó-Armengol, and Y. Zenou, Who’s who in networks.
wanted: The key player, Econometrica, 74(5), pp. 1403–1417, 2006.

[4] P. Baran, On distributed communications networks, IEEE Transactions on Com-
munications Systems, 12(1), pp. 1–9, 1964.

[5] J. A. Barnes, Class and committees in a Norwegian island parish, Human Rela-
tions, 7(1), pp. 39–58, 1954.

[6] L. Beal, D. Hill, R. Martin, and J. Hedengren, Gekko optimization suite, Pro-
cesses, 6(8), p. 106, 2018.

[7] P. Belotti, C. Kirches, S. Leyffer, J. Linderoth, J. Luedtke, and A. Mahajan,
Mixed-integer nonlinear optimization, Acta Numerica, 22, p. 1–131, 2013.

[8] J. K. Benson, The interorganizational network as a political economy, Adminis-
trative Science Quarterly, 20(2), pp. 229–249, 1975.

[9] F. Bloch and M. O. Jackson, The formation of networks with transfers among
players, Journal of Economic Theory, 133(1), pp. 83–110, 2007.

[10] P. Bonacich, Power and centrality: A family of measures, American Journal of
Sociology, 92(5), pp. 1170–1182, 1987.

[11] Y. Bramoullé, Anti-coordination and social interactions, Games and Economic
Behavior, 58(1), pp. 30–49, 2007.

[12] A. Calvó-Armengol and R. Ilkılıç, Pairwise-stability and Nash equilibria in net-
work formation, International Journal of Game Theory, 38, pp. 51–79, 2009.

[13] S. Cheng, C. Chan, and G. Huang, An integrated multi-criteria decision analysis
and inexact mixed integer linear programming approach for solid waste manage-
ment, Engineering Applications of Artificial Intelligence, 16(5), pp. 543–554,
2003.

97

[14] J. Clausen, Branch and bound algorithms-principles and examples, Department
of Computer Science, University of Copenhagen, pp. 1–30, 1999.

[15] M. M. Cochran and J. A. Brassard, Child development and personal social net-
works, Child Development, 50(3), pp. 601–616, 1979.

[16] M. Conforti, G. Cornuéjols, and G. Zambelli, Integer Programming, pp. 1–44,
Springer International Publishing, Cham, 2014.

[17] H. Dawid and T. Hellmann, The evolution of R&D networks, Journal of Eco-
nomic Behavior & Organization, 105, pp. 158–172, 2014.

[18] M. A. Duran and I. E. Grossmann, An outer-approximation algorithm for a class
of mixed-integer nonlinear programs, Mathematical Programming, 36, pp. 307–
339, 1986.

[19] B. Dutta and S. Mutuswami, Stable networks, Journal of economic theory,
76(2), pp. 322–344, 1997.

[20] O. Exler, T. Lehmann, and K. Schittkowski, A comparative study of SQP-type
algorithms for nonlinear and nonconvex mixed-integer optimization, Mathemat-
ical Programming Computation, 4, pp. 383–412, 2012.

[21] L. C. Freeman, Centrality in social networks conceptual clarification, Social
Networks, 1(3), pp. 215–239, 1978.

[22] D. Gale and L. S. Shapley, College admissions and the stability of marriage, The
American Mathematical Monthly, 69(1), pp. 9–15, 1962.

[23] S. Goyal and S. Joshi, Networks of collaboration in oligopoly, Games and Eco-
nomic Behavior, 43(1), pp. 57–85, 2003.

[24] C. Gualdani, An econometric model of network formation with an application to
board interlocks between firms, Journal of Econometrics, 224(2), pp. 345–370,
2021.

[25] F. Harary and R. Z. Norman, Graph theory as a mathematical model in social
science, 2, University of Michigan, Institute for Social Research Ann Arbor,
1953.

[26] J. Hirshleifer, From weakest-link to best-shot: The voluntary provision of public
goods, Public Choice, 41(3), pp. 371–386, 1983.

[27] M. O. Jackson, Social and Economic Networks, Princeton University Press,
2008.

[28] M. O. Jackson and A. van den Nouweland, Strongly stable networks, Games
and Economic Behavior, 51(2), pp. 420–444, 2005.

98

[29] M. O. Jackson and A. Watts, The existence of pairwise stable networks, Seoul
Journal of Economics, 14(3), pp. 299–321, 2001.

[30] M. O. Jackson and A. Watts, On the formation of interaction networks in social
coordination games, Games and Economic Behavior, 41(2), pp. 265–291, 2002.

[31] M. O. Jackson and A. Wolinsky, A strategic model of social and economic net-
works, Journal of Economic Theory, 71(1), pp. 44–74, 1996.

[32] M. O. Jackson and L. Yariv, Diffusion of behavior and equilibrium properties in
network games, American Economic Review, 97(2), pp. 92–98, 2007.

[33] M. O. Jackson and Y. Zenou, Games on networks, Handbook of game theory
with economic applications, volume 4, pp. 95–163, Elsevier, 2015.

[34] L. Katz, A new status index derived from sociometric analysis, Psychometrika,
18(1), pp. 39–43, 1953.

[35] A. Mauleon, J. J. Sempere-Monerris, and V. Vannetelbosch, Networks of knowl-
edge among unionized firms, Canadian Journal of Economics/Revue Canadi-
enne D’économique, 41(3), pp. 971–997, 2008.

[36] A. Mauleon, J. J. Sempere-Monerris, and V. Vannetelbosch, R&D network for-
mation with myopic and farsighted firms, Journal of Economic Behavior & Or-
ganization, 208, pp. 203–229, 2023.

[37] R. B. Myerson, Graphs and cooperation in games, Mathematics of Operations
Research, 2(3), pp. 225–229, 1977.

[38] A. Najafi and E. W. Richards, Designing a forest road network using mixed in-
teger programming, Croatian Journal of Forest Engineering: Journal for Theory
and Application of Forestry Engineering, 34(1), pp. 17–30, 2013.

[39] R. S. Pindyck and D. L. Rubinfeld, Microeconomics, Pearson, 2018.

[40] F. R. Pitts, A graph theoretic approach to historical geography, The Professional
Geographer, 17(5), pp. 15–20, 1965.

[41] S. Sadic, J. P. de Sousa, and J. A. Crispim, A two-phase milp approach to inte-
grate order, customer and manufacturer characteristics into dynamic manufac-
turing network formation and operational planning, Expert Systems with Appli-
cations, 96, pp. 462–478, 2018.

[42] P. P. Shenoy, On coalition formation: A game-theoretical approach, Interna-
tional Journal of Game Theory, 8(3), pp. 133–164, 1979.

[43] B. Skyrms and R. Pemantle, A dynamic model of social network formation, in
Adaptive Networks: Theory, Models and Applications, pp. 231–251, Springer,
2009.

99

[44] A. Watts, A dynamic model of network formation, Games and Economic Be-
havior, 34(2), pp. 331–341, 2001.

[45] R. J. Wilson, Introduction to graph theory, Pearson Education India, 1979.

[46] D. Yue and F. You, Stackelberg-game-based modeling and optimization for sup-
ply chain design and operations: A mixed integer bilevel programming frame-
work, Computers & Chemical Engineering, 102, pp. 81–95, 2017.

[47] Z. Zhu, J. Tang, S. Lambotharan, W. H. Chin, and Z. Fan, An integer linear pro-
gramming and game theory based optimization for demand-side management in
smart grid, in 2011 IEEE GLOBECOM Workshops, pp. 1205–1210, 2011.

100

APPENDIX A

MATLAB CODES

In this appendix, Matlab codes used are given. Each function’s caption includes its

purpose and reference to the functions that it uses. Codes are written and run in

Matlab R2021a 64-bit in a machine that runs Windows 11.

1 function [new_g] = choice_G(x, G, i)

2 %CHOICE_G Alters ith row and column of G to convert it to vector x equivalent to \mathcal(G)_i(x,G)

3 % x: a vector of binary values

4 % G: prior adjacency matrix

5 % i: the row and column number

6 I = size(G,1);

7 new_g = G+0;

8 n = 1;

9 for k=1:I

10 if i==k

11 continue

12 end

13 new_g(i,k) = x(n);

14 new_g(k,i) = x(n);

15 n = n+1;

16 end

17 end

Code A.1: Matlab function equivalent of G(x,G).

101

1 function [raw_pi, cluster_matrix, consent_cond, old_profit] = objective_functions(G, i, sp)

2 %OBJECTIVE_FUNCTIONS Computes objective functions for the choice problem

3 % G: prior network matrix

4 % i: index of the choice maker

5 % sp: system properties struct

6
7 % finds continuous N values

8 I = size(G,1);

9 G0 = choice_G(zeros(I-1,1),G,i);

10 I = size(G0,2);

11 N0 =sum(((G0 + eye(I))^I)>0+0,2);

12 delta = [];

13 n = 1;

14 for j = 1:I

15 if i==j

16 delta = [delta,zeros(I,1)];

17 continue

18 end

19 x = zeros(I-1,1);

20 x(n,1) = 1;

21 Nx = sum(((choice_G(x,G,i) + eye(I))^I)>0+0,2);

22 delta = [delta,Nx-N0];

23 n = n + 1;

24 end

25
26 % N(x) just for choicemaker

27 N_just_i = @(x) 1 + delta(i,:)* (([x(1:i-1);0;x(i:end)]));

28
29 fun_vector = @(x) N0 + (delta*x).*((delta(i,:)*x)*ones(size(x)) - N0.* (delta*x) +

ones(size(x)));↪→
30 % N(x) for all firms

31 N_fun = @(x) fun_vector([x(1:i-1);0;x(i:end)]);

32
33 single_profit = @(N,D,i) - sp.d(i).*(N-1) - sp.c(i).*D +(N*sp.P -

sp.beta(i)).^2./(4*N.^2.*sp.gamma(i)) ;↪→
34
35 % no barrier profit

36 raw_pi = @(x)single_profit(N_just_i(x),sum(x,1),i);

37
38 % cluster condition

39 G0_M = (G0 + eye(I))^I>0 + 0;

40 cluster_matrix = G0_M + 0;

41 cluster_matrix(i,:) = [];

42 cluster_matrix(:,i) = [];

43
44 NG =sum(((G + eye(I))^I)>0+0,2);

45 % consent condition

46 profit = @(N,D,i) - sp.d(i).*(N(i)-1) - sp.c(i).*D(i) + (N(i)*sp.P -

sp.beta(i)).^2./(4*N(i).^2.*sp.gamma(i)) ;↪→
47 old_profit = profit(NG,sum(G,2),(1:I)');

48
49 all_profits = @(x) profit(N_fun(x),sum(choice_G(x,G,i),2),1:size(G,1));

50 consent_cond = @(x) consent(x,all_profits,i, old_profit);

51 end

52
53 function [sp] = consent(x, all_profits, i, current)

54 sp1 = all_profits(x)-current;

55 sp1(i) = [];

56 sp = sp1.*x;

57 end

Code A.2: Optimization problem assembler.

102

1 function best = exhaustive_searcher(profit, K, CM, consent_cond)

2 %EXHAUSTIVE_SEARCHER Uses exhaustive search to find the optimal x

3 % profit: profit function

4 % K: size of the solution vector

5 % CM: cluster matrix

6 % consent_cond: condition for consent

7 li = [];

8 for i = 1:2^K

9 v = zeros(K,1); n = i-1;

10 for k = 1:K

11 v(k) = rem(n,2);

12 n = fix(n/2);

13 end

14 n = {};

15 n.result = v; n.value = profit(n.result);

16 if ~(sum(CM * n.result > 1) || sum(consent_cond(n.result)<0))

17 li = [li,n];

18 end

19 end

20 [~, ind] = sort([li.value]);

21 li = li(ind);

22 best = li(end);

23 end

Code A.3: Uses exhaustive search method to validate branch and bound algorithm.

1 function [obj] = mbb_subproblem_solver(static_part, x0, pi_fun, gp)

2 %MATLAB_SUBPROBLEM_SOLVER Solves subproblem generated by modified branch

3 %and bound using fmincon, returns a solution struct

4 % static_part: the static part decided by earlier steps in B&B

5 % x0: initial point of iteration

6 % pi_fun: the profit function

7 % gp: game properties struct

8 obj.static_part = static_part; phi_x = @(x) -1*pi_fun([static_part;x]);

9 if size(x0,1)>0

10 A = [eye(size(x0,1));-eye(size(x0,1))]; b = [ones(size(x0));zeros(size(x0))];

11 obj.variable_part = fmincon(phi_x,x0,A,b,[],[],[],[],[],gp.fmincon_options);

12 else

13 obj.variable_part = [];

14 end

15 obj.value = -1 * phi_x(obj.variable_part);

16 if size(obj.variable_part,1)<1e-3 % checks if the solution is close enough to integer values

17 within_tolerance =true;

18 else

19 within_tolerance = sum((obj.variable_part>gp.int_tol)

.*((1-obj.variable_part)>gp.int_tol))<1e-3;↪→
20 end

21 obj.integer_var = obj.variable_part;

22 obj.integer_var(obj.integer_var<gp.int_tol) =0;

23 obj.integer_var((1-obj.integer_var)<gp.int_tol) =1;

24 if within_tolerance % values are readjusted to integer values

25 obj.done = true; obj.variable_part = obj.integer_var;

26 obj.value = -1* phi_x(obj.variable_part);

27 else

28 obj.done = false;

29 end

30 obj.result = [obj.static_part;obj.variable_part];

31 end

32

Code A.4: Solves the sub-problems generated by the modified branch and bound

algorithm. Uses fmincon.

103

1 function [largest] = modified_branch_and_bound(phi, pruner, x0, gp, cluster_matrix, consent_cond)

2 %MODIFIED_BRANCH_AND_BOUND Applies modified b&b algorithm to solve choice problem,

3 % returns one of the largest profitting solution

4 % phi: objective function

5 % pruner: profit from previous G for pruning

6 % x0: initial choice,

7 % gp: game properties struct

8 % cluster_matrix: an IxI matrix such that cm*x <= 1

9 % consent_cond: a function that returns a vector that takes negative

10 % values if a particualr firm does not consent to the connection

11 first_subsolution = mbb_subproblem_solver([],x0,phi,gp);

12 active_list = [first_subsolution];

13
14 all_zeros = mbb_subproblem_solver(x0,[],phi,gp);

15 inactive_list = [all_zeros];

16
17 max_v = max(all_zeros.value,pruner);

18 for i = 1:2^size(x0,1)

19 if size(inactive_list,1) > 0 %pruning

20 active_list = active_list(([active_list.value]+1e-3)>= max_v);

21 end

22
23 if size(active_list,1)==0 % evaluation_over

24 break

25 end

26 largest = active_list(end);

27
28 % split to subproblems

29 s1 = [largest.static_part;1];

30 s0 = [largest.static_part;0];

31 l1 = [];

32 l2 = [];

33 for this_s = [s0,s1]

34 this_x0 = x0((size(this_s,1)+1):end);

35 nn = [this_s;zeros(size(this_x0))];

36
37 if sum(cluster_matrix * nn > 1) % if cluster fails by only the static values

38 continue

39 end

40
41 bbs1 = mbb_subproblem_solver(this_s,this_x0,phi,gp);

42 if bbs1.done % if an integer solution is reached

43 res = bbs1.result;

44 if sum(cluster_matrix * res > 1) || sum(consent_cond(res)<0) % and if conditions not

are met↪→
45 if size(bbs1.variable_part,1)>0 % if variable part is not finished reconsider

46 bbs1.done = false;

47 l1 = [l1;bbs1];

48 end

49 else % if conditions are met

50 l2 = [l2;bbs1]; % add to the done list

51 if bbs1.value > max_v % and save the value for pruning

52 max_v = bbs1.value;

53 end

54
55 end

56 else

57 l1 = [l1;bbs1];

58 end

59 end

60 active_list = [active_list(1:(end-1));l1];

61 inactive_list = [inactive_list;l2];

62 end

63 [~, ind] = sort([inactive_list.value]);

64 inactive_list = inactive_list(ind);

65 largest = inactive_list(end);

66 end

67

Code A.5: Implementation of the Modified Branch and Bound algorithm as given in

Section 3. Uses A.4.

104

1 function [obj] = pure_subproblem_solver(static_part, x0, phi, gp, small_G0, consent_cond)

2 %PURE_SUBPROBLEM_SOLVER Solves subproblem generated by pure branch

3 %and bound using fmincon with non linear conditions,

4 %returns a solution struct

5 % static_part: the static part decided by earlier steps in B&B

6 % x0: initial point of iteration

7 % pi_fun: the profit function

8 % gp: game properties struct

9 % cluster_matrix: an IxI matrix such that cm*x <= 1

10 % consent_cond: a function that returns a vector that takes negative

11 % values if a particualr firm does not consent to the connection

12 obj.static_part = static_part;

13 phi_x = @(x) -1*phi([static_part;x]);

14 smaller_lb = size(static_part,1);

15 obj.invalid = false;

16 if size(x0,1)>0

17 smaller_G0 = small_G0(smaller_lb+1:end,smaller_lb+1:end);

18 A = [eye(size(x0,1));-eye(size(x0,1));smaller_G0];

19 b = [ones(size(x0));zeros(size(x0));ones(size(x0))];

20 c = @(x) c_wrap(consent_cond, static_part, x);

21 [obj.variable_part ,~,exitflag,~] = fmincon(phi_x,x0,A,b,[],[],[],[],c,gp.fmincon_options);

22 if exitflag~=1

23 obj.invalid=true;

24 end

25 else

26 obj.variable_part = [];

27 if sum(small_G0 * static_part > 1) || sum(consent_cond(static_part)<0)

28 obj.invalid = true;

29 end

30 end

31 obj.value = -1 * phi_x(obj.variable_part);

32
33 if size(obj.variable_part,1)<1e-3 % checks if the solution is close enough to integer values

34 within_tolerance =true;

35 else

36 within_tolerance = sum((obj.variable_part>gp.int_tol)

.*((1-obj.variable_part)>gp.int_tol))<1e-3;↪→
37 end

38
39 obj.integer_var = obj.variable_part;

40 obj.integer_var(obj.integer_var<gp.int_tol) =0;

41 obj.integer_var((1-obj.integer_var)<gp.int_tol) =1;

42
43 if within_tolerance % values are readjusted to integer values

44 obj.done = true;

45 obj.variable_part = obj.integer_var;

46 obj.value = -1* phi_x(obj.variable_part);

47 res = [obj.static_part;obj.variable_part];

48 if sum(consent_cond(res)<0) || sum(small_G0 * res > 1)

49 obj.invalid = true;

50 end

51
52 else

53 obj.done = false;

54 end

55
56 obj.result = [obj.static_part;obj.variable_part];

57
58 end

59
60 function [c,ceq] = c_wrap(consent_cond, static_part, x)

61 c = -1*consent_cond([static_part;x]);

62 ceq = [];

63 end

Code A.6: Solves the sub-problems generated by the pure branch and bound algo-

rithm. Uses fmincon.

105

1 function [largest] = pure_branch_and_bound(phi, pruner, x0, gp, cluster_matrix, consent_cond)

2 %MODIFIED_BRANCH_AND_BOUND Applies pure b&b algorithm to solve choice problem,

3 % returns one of the largest profitting solution

4 % phi: objective function

5 % pruner: profit from previous G for pruning

6 % x0: initial choice,

7 % gp: game properties struct

8 % cluster_matrix: an IxI matrix such that cm*x <= 1

9 % consent_cond: a function that returns a vector that takes negative

10 % values if a particualr firm does not consent to the connection

11 first_subsolution = pure_subproblem_solver([],x0,phi,gp, cluster_matrix, consent_cond);

12 active_list = [first_subsolution];

13
14 all_zeros = pure_subproblem_solver(zeros(size(x0)),[],phi,gp, cluster_matrix, consent_cond);

15 inactive_list = [all_zeros];

16
17 max_v = max(all_zeros.value,pruner);

18 for i = 1:2^size(x0,1)

19 if size(inactive_list,1) > 0 %pruning

20 active_list = active_list(([active_list.value]+1e-3)>= max_v);

21 end

22
23 if size(active_list,1)==0

24 % evaluation_over

25 break

26 end

27 largest = active_list(end);

28
29 % split to subproblems

30 s1 = [largest.static_part;1];

31 s0 = [largest.static_part;0];

32 l1 = [];

33 l2 = [];

34 for this_s = [s0,s1]

35 this_x0 = x0((size(this_s,1)+1):end);

36 bbs1 = pure_subproblem_solver(this_s,this_x0,phi,gp,cluster_matrix, consent_cond);

37 if bbs1.invalid

38 if size(bbs1.variable_part,1)>0

39 bbs1.done = false;

40 l1 = [l1;bbs1];

41 end

42 else

43 if bbs1.done % if an integer solution is reached

44 l2 = [l2;bbs1]; % add to the done list

45 if bbs1.value > max_v % and save the value for pruning

46 max_v = bbs1.value;

47 end

48 else

49 l1 = [l1;bbs1];

50 end

51 end

52 end

53 active_list = [active_list(1:(end-1));l1];

54 inactive_list = [inactive_list;l2];

55 end

56
57 [~, ind] = sort([inactive_list.value]);

58 inactive_list = inactive_list(ind);

59 largest = inactive_list(end);

60 end

61

Code A.7: Implementation of the Pure Branch and Bound algorithm. Uses A.6.

106

1 function [records] = gamer(sp,gp, random_order)

2 %GAMER The function that executes stable system finding procedure with given system properties

3 % sp: system properties struct with, P, beta, gamma, c, d

4 % gp: game properties struct

5 % random_order: if true, turn order is randomized between turns

6 G = zeros(size(sp.beta,1)); % empty matrix infered from sp

7 I = size(G,1); % I inferred from

8 profit = @(N,D,i) (N(i)*sp.P - sp.beta(i)).^2./(4*N(i).^2.*sp.gamma(i)) - sp.d(i).*(N(i)-1) -

sp.c(i).*D(i);↪→
9 C = 20;

10 n = 0;

11 records = recorder(true); % initialize the recording

12 N0 = ones(I,1);

13 D0 = zeros(I,1);

14 start_profit = profit(N0,D0,1:size(G,1));

15 tr = turn_record(G, N0, D0, start_profit,0);

16 records= records.add_turn_record(tr);

17 samer = 0; % number of turns that G is not changed

18 for cycle = 1:C

19 old_G = G;

20 order = (randperm(length(1:I)));

21 for i_1 = 1:I

22 if random_order

23 i = order(i_1);

24 else

25 i = i_1;

26 end

27 x0 = [G(i,1:(i-1)),G(i,(i+1):end)]';

28 [pi_fun, CM, consent, baseline] = objective_functions(G, i, sp); % calculate the move

↪→
29 largest_phi_m = modified_branch_and_bound(pi_fun, baseline(i), x0, gp, CM, consent);

30 xn_m = largest_phi_m.result;

31 val_m =largest_phi_m.value;

32 if gp.pure_bnb_check

33 largest_phi_p = pure_branch_and_bound(pi_fun, baseline(i), x0, gp, CM, consent);

34 if (norm(xn_m - largest_phi_p.result)>1e-3) &&

(norm(val_m-largest_phi_p.value)>1e-3)...↪→
35 && (baseline< max(val_m,largest_phi_p.value))

36 fprintf("discrepency with pure bnb \n");

37 end

38 end

39 if gp.exhaustive_check

40 largest_ind = exhaustive_searcher(pi_fun,I-1,CM, consent);

41 if norm(val_m - largest_ind.value)>1e-3 && (val_m> baseline(i)+1e-6)

42 fprintf("%d disc at x %s %s\n", n,mat2str(largest_ind.result),mat2str(xn_m))

43 end

44 end

45 if baseline(i)+1e-6<val_m % firm profits from altering the network

46 Gn = choice_G(xn_m,G,i); % network is altered

47 else

48 Gn = G; % it choses the old order

49 end

50 n = n+1;

51 Dn = sum(Gn,2);

52 Nn = sum(((Gn + eye(I))^I)>0+0,2);

53 tr = turn_record(Gn,Nn,Dn, profit(Nn,Dn,1:size(G,1)),i);

54 records= records.add_turn_record(tr);

55 if(norm(G-Gn)<1e-3)

56 samer = samer+1;

57 else

58 samer = 0;

59 end

60 G = Gn;

61 end

62 if samer>=I

63 records = records.truncate(samer-I);

64 disp(sprintf("true in %d",n-I))

65 break

66 end

67 if norm(G-old_G)<1e-3

68 disp("cyclic")

69 break

70 end

71 end

72 end

Code A.8: Finds stable systems for MCG as given in Section 4. Uses A.14, A.15,

A.2, A.5, A.7, A.3, A.1 107

1 function [real_vals, best_vals] = check_stability(G, sp, gp)

2 %CHECK_STABILITY Checks if G is MC stable returns best and real vals,

3 % if any best val is larger than corr. real val, system is not stable

4 % G: a network to be checked

5 % sp: firm parameters, gp: game parameters

6 J= size(G,1); best_vals = zeros(J,1); real_vals = zeros(J,1);

7 for i = 1:size(G,1)

8 [pi_fun, CM, consent,baseline] = objective_functions(G, i, sp); % calculate the move

↪→
9 result = exhaustive_searcher(pi_fun,size(G,1)-1,CM, consent);

10 val_m = result.value; best_vals(i) = result.value; real_vals(i) = baseline(i);

11 if gp.mod_bnb_check

12 x0 = [G(i,1:(i-1)),G(i,(i+1):end)]';

13 largest_phi_m = modified_branch_and_bound(pi_fun, baseline(i), x0, gp, CM, consent);

14 val_mm =largest_phi_m.value;

15 if val_m>val_mm

16 disp("problem 1")

17 elseif val_mm>val_m

18 disp("problem 2")

19 end

20 end

21 end

22 end

23

Code A.9: Checks if a system is MC stable.

108

1 function [adders,breakers, baseline] = pw_checker(G, sp)

2 %PW_CHECKER Checks if G is PW stable according to the parameters in sp

3 %returns best and real vals, if any best val is larger than corr. real val,

4 %system is not stable

5 % G: a network to be checked

6 % sp: firm parameters

7 profit = @(N,D,i) - sp.d(i).*(N-1) - sp.c(i).*D +(N*sp.P - sp.beta(i)).^2./(4*N.^2.*sp.gamma(i))

;↪→
8 J = size(G,1);

9 D = sum(G,2); N = sum(((G + eye(J))^J)>0+0,2);

10 baseline = profit(N,D,1:J); pairs = nchoosek(1:J,2);

11 change = 0; breakers = []; adders = [];

12 for pindex = 1:size(pairs,1)

13 i = pairs(pindex,1); j = pairs(pindex,2);

14 G_1 = set_connection(G,i,j,1); G_0 = set_connection(G,i,j,0);

15 D_1 = sum(G_1,2); N_1 = sum(((G_1 + eye(J))^J)>0+0,2);

16 D_0 = sum(G_0,2); N_0 = sum(((G_0 + eye(J))^J)>0+0,2);

17 consent_i = profit(N_1(i),D_1(i),i) - profit(N_0(i),D_0(i),i);

18 consent_j = profit(N_1(j),D_1(j),j) - profit(N_0(j),D_0(j),j);

19 if (consent_i<0)||(consent_j<0)

20 difference = G(i,j) == 1;

21 elseif (consent_i>0)||(consent_j>0)

22 difference = G(i,j) == 0;

23 else

24 difference = G(i,j) == 1;

25 end

26 if difference

27 if G(i,j)

28 breakers(end+1,1:2) = [i,j];

29 else

30 adders(end+1,1:2) = [i,j];

31 end

32 change = change+1;

33 end

34 end

35 end

36
37 function [new_G] = set_connection(G,i,j,val)

38 new_G = G+0;

39 new_G(i,j) = val;

40 new_G(j,i) = val;

41 end

Code A.10: Checks if a system is PW stable.

109

1 function [] = process_mc_stability(a1, sp, gp, J, path)

2 %PROCESS_MC_STABILITY, checks all given networks to find stable ones, and

3 %plots the results

4 % al: list of networks to be checked, must have JxJ graphs

5 % sp: system parameters, gp: game parameters (used if MBB is used)

6 % J: number of elements in

7 % path: path to be recorded

8 p1 = plot(graph(ones(J,J)-eye(J)));

9 xdat = p1.XData; ydat = p1.YData;

10 close();

11 stab_text = ["s","u"]; m= ["o","^","v"]; su = [1,1];

12 for i = 1:size(a1,2)

13 G = a1{i};

14 [real_vals, best_vals] = check_stability(G,sp,gp);

15 us = any(best_vals>real_vals);

16 f = figure;

17 p = plot(graph(G));

18 p.NodeLabel = compose("%d (%.2f)",(1:J)', real_vals);

19 p.Marker = m(((best_vals>real_vals)+2*(best_vals<real_vals))+1);

20 p.MarkerSize = 6; p.XData = xdat; p.YData = ydat;

21 hold on

22 f.Position = [100 100 300 300];

23 saveas(f,path + sprintf("%s_iso_%d.eps",stab_text(us+1),su(us+1)),'epsc');

24 close(); su(us+1) = su(us+1) + 1;

25 end

26 end

Code A.11: Processes MC stability of given graphs and plots results. Uses A.9.

1 function [] = process_pw_stability(a1,sp,J,path)

2 %PROCESS_PW_STABILITY, checks all given networks to find stable ones, and

3 %plots the results

4 % al: list of networks to be checked, must have JxJ graphs

5 % sp: system parameters

6 % J: number of elements in

7 % path: path to be recorded

8 p1 = plot(graph(ones(J,J)-eye(J)));

9 xdat = p1.XData; ydat = p1.YData;

10 close();

11 stab_text = ["s","u"]; su = [1,1];

12 for i = 1:size(a1,2)

13 G = a1{i};

14 [adders,breakers,real_vals] = pw_checker(G,sp); %checks stability, rest is visual

15 us = (size(adders,1) + size(breakers,1))>0;

16 f = figure;

17 p = plot(graph(G));

18 p.XData = xdat; p.YData = ydat; p.LineWidth = 3;

19 p.NodeLabel = compose("%d (%.2f)",(1:J)', real_vals);

20 G2 = zeros(size(G));

21 for j = 1:size(adders,1)

22 G2(adders(j,1),adders(j,2)) = 1; G2(adders(j,2),adders(j,1)) = 1;

23 end

24 hold on

25 p2 = plot(graph(G2)); p2.EdgeColor = "black"; p2.LineStyle = "--";

26 p2.XData = xdat; p2.YData = ydat; p2.NodeLabel = {}; p2.MarkerSize = 0.1;

27 G3 = zeros(size(G));

28 for j = 1:size(breakers,1)

29 G3(breakers(j,1),breakers(j,2)) = 1; G3(breakers(j,2),breakers(j,1)) = 1;

30 end

31 p3 = plot(graph(G3));

32 p3.EdgeColor = "red"; p3.LineWidth = 5; p3.XData = xdat;

33 p3.YData = ydat; p3.NodeLabel = {}; p3.MarkerSize = 0.1;

34 f.Position = [100 100 300 300];

35 saveas(f,path + sprintf("%s_pw_%d.eps",stab_text(us+1),su(us+1)),'epsc');

36 close(); su(us+1) = su(us+1) + 1;

37 end

38 end

Code A.12: Processes PW stability of given graphs and plots results. Uses A.10.

110

1 clear();

2 % script for the mc-pw comparison

3 J = 5;

4 sp.beta = 3*ones(J,1); sp.gamma = 2*ones(J,1);

5 sp.c = ones(J,1); sp.d = .2*ones(J,1); sp.P = 10;

6
7 gp.int_tol = 1e-8; gp.exhaustive_check = true;

8 gp.pure_bnb_check = false; gp.mod_bnb_check = false;

9 gp.fmincon_options = optimoptions(@fmincon,'Display', 'off','Algorithm','sqp');

10
11 a1 = load(sprintf("isomorphic_forest/J_%d.mat",J)).forest_list; % load forests

12 path = "stable_networks/n5_e1/";

13 process_mc_stability(a1, sp, gp, J, path); process_pw_stability(a1,sp,J,path);

14
15
16 path = "stable_networks/n5_e2/";

17 sp.d = 1*ones(J,1);

18 process_mc_stability(a1, sp, gp, J, path); process_pw_stability(a1,sp,J,path);

19 sp.d = .2*ones(J,1);

20
21
22 path = "stable_networks/n5_e3/";

23 sp.gamma = 10*ones(J,1);

24 process_mc_stability(a1, sp, gp, J, path); process_pw_stability(a1,sp,J,path);

25

Code A.13: Script to compare PW and MC stability for 5 firms in Section 4.3. Uses

A.11, A.12.

1 classdef recorder

2 %RECORDER Holds turn records and yields relevant outputs from the records

3 properties

4 turn_records

5 mcg_record

6 end

7
8 methods

9 function obj = recorder(mcg_record)

10 obj.turn_records = {};

11 obj.mcg_record = mcg_record;

12 end

13
14 function obj= add_turn_record(obj, record)

15 obj.turn_records =[obj.turn_records, {record}];

16 end

17
18 function obj = truncate(obj, I)

19 if I>0

20 obj.turn_records= obj.turn_records(1: end-I+1);

21 end

22 end

23
24 function profits = get_profits(obj)

25 profits = [];

26 for i = 1:size(obj.turn_records,2)

27 profits = [profits, obj.turn_records{i}.profits_n];

28 end

29 end

30
31 function plot_profits(obj)

32 profits = obj.get_profits();

33 plot(profits')

34 end

35 end

36 end

Code A.14: A class that holds record objects of A.15.

111

1 classdef turn_record

2 %TURN_RECORD Records information from a particular turn

3 properties

4 G_n; N_n; D_n; profits_n; i; pair_no;

5 end

6 methods

7 function obj = turn_record(G, N, D, profits,i)

8 obj.G_n = G; obj.N_n = N; obj.D_n = D;

9 obj.profits_n = profits; obj.i = i;

10 obj.pair_no = ""; % for pairwise recording

11 end

12 end

13 end

Code A.15: Data class that records what happens in a turn of the formation procedure.

1 function [] = record_graphs(records, path)

2 %RECORD_GRAPHS Draws the records of the graph

3 % turn_records: holds information from turns individually

4 % path: file to be recorded

5 profits = records.get_profits(); I = size(profits,1);

6 x_tick_text = {}; x_tick_text_5 = {}; old_g = zeros(I);

7 for i = 1:size(records.turn_records,2)

8 this_g = records.turn_records{i}.G_n;

9 if norm(this_g-old_g)>1e-3

10 old_g = this_g; disp(sprintf("n = %d, is a difference",i-1))

11 end

12 this_i = records.turn_records{i}.i; f = figure;

13 plot(graph(this_g),"EdgeColor","#101010","NodeColor","#101010")

14 if records.mcg_record

15 title(sprintf("n = %d, altered by firm %d",i-1,this_i))

16 else

17 title(sprintf("alteration %d by firms %s",i-1,records.turn_records{i}.pair_no))

18 end

19 f.Position = [100 100 200 200];

20 saveas(f,path + sprintf("/net_%d.eps",i-1),'epsc');

21 close(f);

22 x_tick_text = [x_tick_text, {sprintf("%d",i-1)}];

23 if mod(i,5)==1

24 x_tick_text_5 = [x_tick_text_5, {sprintf("%d",i-1)}];

25 else

26 x_tick_text_5 = [x_tick_text_5, {""}];

27 end

28 end

29 f = figure; imagesc(profits); colormap(1-[0:0.05:1;0:0.05:1;0:0.05:1]');

30 caxis([min(min(profits))-1,max(max(profits))+1])

31 if records.mcg_record

32 title("firm profits over n"); xlabel("n");

33 else

34 title("firm profits after pairwise alterations"); xlabel("alterations");

35 end

36 ylabel("firms"); xticks(1:size(profits,2)); yticks(1:size(profits,1));

37 colorbar; grid on;

38 if size(profits,2)>8

39 v = 600; xticklabels(x_tick_text_5);

40 else

41 v = 400; xticklabels(x_tick_text);

42 end

43 if I>10

44 v2 = 400;

45 else

46 v2 = 200;

47 end

48 f.Position = [100 100 v v2];

49 saveas(f,path + sprintf("/profits_visual.eps"),'epsc');

50 close(f);

51 end

Code A.16: Function that plots records held in A.15.

112

1 clear();

2 sp.P = 10;

3
4 gp.int_tol = 1e-8;

5 gp.exhaustive_check = true;

6 gp.pure_bnb_check = false;

7 %gp.fmincon_options = optimoptions(@fmincon,'Display', 'off','Algorithm','interior-point');

8 gp.fmincon_options = optimoptions(@fmincon,'Display', 'off','Algorithm','sqp');

9 %gp.fmincon_options = optimoptions(@fmincon,'Display', 'off','Algorithm','active-set');

10
11
12 % 9 firms

13 graph_inputs_9_firms_eq;

14 graph_inputs_9_firms_var;

15
16 %15

17 graph_inputs_many_firms;

18
19
20 %for timing fmincon

21 if false

22 I = 4;

23 sp.beta = ones(I,1)*5;

24 sp.gamma = ones(I,1)*2;

25 sp.d = ones(I,1)*.2;

26 sp.c = ones(I,1)*1;

27 gp.exhaustive_check = false;

28 records = gamer(sp, gp, false);

29 gp.exhaustive_check = true;

30 end

31
32 %for timing minlp solvers

33 if false

34 I = 19;

35 sp.beta = ones(I,1)*5;

36 sp.gamma = ones(I,1)*2;

37 sp.d = ones(I,1)*.2;

38 sp.c = ones(I,1)*1;

39 gp.pure_bnb_check = true;

40 records = gamer(sp, gp, false);

41 gp.pure_bnb_check = false;

42 end

Code A.17: Main script used in Chapter 4. Uses, A.18, A.19, A.20.

113

1 address = "images/9_firms/";

2 sp.d = ones(9,1)*.2; sp.c = ones(9,1)*1; sp.beta = ones(9,1)*5; sp.gamma = ones(9,1)*2;

3
4 if false

5 records = gamer(sp, gp, false); record_graphs(records, address+"equal_1");

6 end

7
8 if false

9 rng(230001); records = gamer(sp, gp, true); record_graphs(records, address+"equal_2");

10 end

11
12 if false

13 rng(230002); records = gamer(sp, gp, true); record_graphs(records, address+"equal_3");

14 end

15
16 if false

17 rng(230003); records = gamer(sp, gp, true); record_graphs(records, address+"equal_4");

18 end

19
20 if false

21 sp.beta = ones(9,1)*6.66; records = gamer(sp, gp, false);

22 record_graphs(records, address+"equal_b"); sp.beta = ones(9,1)*5;

23 end

24
25
26 if false

27 sp.beta = ones(9,1)*3; records = gamer(sp, gp, false);

28 record_graphs(records, address+"equal_s"); sp.beta = ones(9,1)*5;

29 end

30
31 if false

32 sp.gamma = ones(9,1)*4; records = gamer(sp, gp, false);

33 record_graphs(records, address+"equal_q_b"); sp.gamma = ones(9,1)*2;

34 end

35
36 if false

37 sp.gamma = ones(9,1)*1; records = gamer(sp, gp, false);

38 record_graphs(records, address+"equal_q_s"); sp.gamma = ones(9,1)*2;

39 end

40
41 if false

42 sp.c = ones(9,1)*3; records = gamer(sp, gp, false);

43 record_graphs(records, address+"equal_c"); sp.c = ones(9,1)*1;

44 end

45
46 if false

47 sp.d = ones(9,1)*1; records = gamer(sp, gp, false);

48 record_graphs(records, address+"equal_d"); sp.d = ones(9,1)*.2;

49 end

50
51 if false

52 sp.c = ones(9,1)*0; records = gamer(sp, gp, false);

53 record_graphs(records, address+"equal_c_z"); sp.c = ones(9,1)*1;

54 end

55
56 if false

57 sp.c = ones(9,1)*0; sp.d = ones(9,1)*.5; records = gamer(sp, gp, false);

58 record_graphs(records, address+"equal_c_z2"); sp.c = ones(9,1)*1; sp.d = ones(9,1)*.2;

59 end

60
61 if false

62 sp.d = ones(9,1)*0; records = gamer(sp, gp, false);

63 record_graphs(records, address+"equal_d_z"); sp.d = ones(9,1)*.2;

64 end

65
66 if false

67 sp.c = ones(9,1)*3; sp.d = ones(9,1)*0; records = gamer(sp, gp, false);

68 record_graphs(records, address+"equal_d_z2"); sp.c = ones(9,1)*1; sp.d = ones(9,1)*.2;

69 end

Code A.18: Script from A.17 for 9 firm simulations part 1.

114

1 address = "images/9_firms/";

2 sp.d = ones(9,1)*.2;

3 sp.c = ones(9,1)*1;

4 sp.gamma = ones(9,1)*2;

5
6 if false

7 sp.beta = linspace(2,6,9)';

8 records = gamer(sp, gp, false);

9 record_graphs(records, address+"var_b_1");

10 end

11
12 if false

13 rng(230011)

14 sp.beta = linspace(2,6,9)';

15 records = gamer(sp, gp, true);

16 record_graphs(records, address+"var_b_2");

17 end

18
19 if false

20 rng(230012)

21 sp.beta = linspace(2,6,9)';

22 records = gamer(sp, gp, true);

23 record_graphs(records, address+"var_b_3");

24 end

25
26 if false

27 rng(230013)

28 sp.beta = linspace(2,6,9)';

29 records = gamer(sp, gp, true);

30 record_graphs(records, address+"var_b_4");

31 end

32
33 if false

34 sp.beta = [2;2;2;2;4;6;6;6;6];

35 records = gamer(sp, gp, false);

36 record_graphs(records, address+"var_bd_1");

37 end

38
39 if false

40 rng(230021)

41 sp.beta = [2;2;2;2;4;6;6;6;6];

42 records = gamer(sp, gp, true);

43 record_graphs(records, address+"var_bd_2");

44 end

45
46 if false

47 rng(230022)

48 sp.beta = [2;2;2;2;4;6;6;6;6];

49 records = gamer(sp, gp, true);

50 record_graphs(records, address+"var_bd_3");

51 end

52
53 if false

54 rng(230023)

55 sp.beta = [2;2;2;2;4;6;6;6;6];

56 records = gamer(sp, gp, true);

57 record_graphs(records, address+"var_bd_4");

58 end

Code A.19: Script from A.17 for 9 firm simulations part 2.

115

1 address = "images/many_firms/";

2 sp.beta = ones(16,1)*5;

3 sp.gamma = ones(16,1)*2;

4
5 if false

6 sp.d = ones(16,1)*.2;

7 sp.c = ones(16,1)*1;

8 records = gamer(sp, gp, false);

9 record_graphs(records, address+"equal_1");

10 end

11
12 if false

13 rng(230101)

14 sp.d = ones(16,1)*.2;

15 sp.c = ones(16,1)*1;

16 records = gamer(sp, gp, true);

17 record_graphs(records, address+"equal_2");

18 end

19
20 if false

21 rng(230121)

22 sp.d = [ones(4,1)*.1;ones(4,1)*.1;ones(4,1)*.5;ones(4,1)*.5];

23 sp.c = [ones(4,1)*.5;ones(4,1)*2;ones(4,1)*.5;ones(4,1)*2];

24 records = gamer(sp, gp, true);

25 record_graphs(records, address+"var_1");

26 end

27
28 if false

29 rng(230122)

30 sp.d = [ones(4,1)*.1;ones(4,1)*.1;ones(4,1)*.5;ones(4,1)*.5];

31 sp.c = [ones(4,1)*.5;ones(4,1)*2;ones(4,1)*.5;ones(4,1)*2];

32 records = gamer(sp, gp, true);

33 record_graphs(records, address+"var_2");

34 end

35
36 if false

37 rng(230123)

38 sp.d = [ones(4,1)*.1;ones(4,1)*.1;ones(4,1)*.5;ones(4,1)*.5];

39 sp.c = [ones(4,1)*.5;ones(4,1)*2;ones(4,1)*.5;ones(4,1)*2];

40 records = gamer(sp, gp, true);

41 record_graphs(records, address+"var_3");

42 end

Code A.20: Script from A.17 for simulations with a larger number of firms.

116

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	Introduction
	 Network Formation with Multiple Connectivity
	Introduction
	Basics of the Graph Theory
	Network Properties
	Connection Numbers
	Miscellaneous Network Definitions

	Multiple Connectivity Approach
	Pairwise Approach
	Consent and Pairwise Stability
	Problems with Pairwise Stability
	Multiple Connectivity
	Consent for Multiple Connectivity
	Comparing PW and MC Stability

	Component Profit Model
	Production Decisions of the Firms
	The Cost from Forming and Maintaining Connections

	Stability with Component Profit Model
	MC Stability for a Firm
	MC Stability for a Network
	Forest Condition
	The Optimal Component Size
	Ceiling Condition
	Firms with Equal Parameters

	Example of a Stable Network
	The Unconnected Network
	A Network with a Single Connection
	A Stable Configuration

	Summary of the Model

	A Numerical Approach for the Multiple Connectivity Model
	Introduction
	Continuous Interpolations of the Network Properties
	Motivation for the Interpolation
	Continuous Component Size Interpolation
	Direct Connection Approximation
	Demonstration of the Continuous Approximations
	Multiple Connections to the Same Component
	Interpolated Objective Function

	Analysis of the Continuous Objective Function
	Second Order Analysis
	First Order Analysis

	Modifications to the Branch and Bound Algorithm
	Simple Branch and Bound Algorithm
	Branch and Bound with Active and Inactive Lists
	Pruning
	Consent and Component Conditions
	Modified Algorithm

	Procedure to Find Stable Systems in MCG

	Simulations of the Multiple Connectivity Model
	Introduction
	Effectiveness of the Computation Methods
	Parameters for the Non-linear Solver
	Modified and Pure Branch and Bound

	Comparison of MC to PW Stability
	Large Stable Components
	Small Stable Components

	Tests with Nine Firms
	Equal Parameters
	Shuffled Turn Order
	Alternate Linear Cost
	Alternate Quadratic Cost
	Alternate Direct Connection Cost
	Alternate Component Cost

	Varied Cost
	Firms of Increasing Linear Cost
	Firms of Linear Cost Groups

	Sixteen Firms
	Equal Parameters
	Firms of Connection Cost Groups

	Conclusion
	REFERENCES
	APPENDICES
	Matlab Codes

