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ABSTRACT 

 

USING ANOMALY DETECTION WITH MACHINE LEARNING BY 

ASSESSING THE BOTTOM HOLE PRESSURE CHANGES 

 

 

Khalil, Ahmed Magdy A. E. 

Master of Science, Petroleum and Natural Gas Engineering 

Supervisor: Assoc. Prof. Dr. Çağlar Sınayuç 

 

 

December 2023, 77 pages 

 

For achieving sustainability in producing from petroleum systems, it is vital to have 

a field model as close as possible to the real situation in order to monitor production 

and injection performance. In this study, it is aimed to develop a machine learning 

model that can be used as a representative performance indicator and coupled with 

an anomaly detection method. Machine learning consists of a supervised learning 

DNN model with four inputs and one output. Inputs are time, oil, water, and gas rates 

from well production. Output is the forecasted pressure performance of the well. 

Anomaly detection is developed by observing the predicted next day forecast and 

thirtieth day forecast given the previous data, after which it is compared with the 

actual pressures corresponding with the dates of prediction. Using this algorithm, it 

will help us forecast pressure or production, evaluate proposed scenarios, and 

identify anomaly pressures due to unaccounted reservoir characteristics between 

wells (like faults, permeability, or porosity changes). Additionally, the given model 

algorithm will be able to be tested on many different wells in a relatively short time, 

giving headroom to build an efficient development plan. Proposed scenarios can 

consist of new infill wells, changes in operational conditions, or changes in 

injection/production patterns. The thesis developed and tested an algorithm to 

forecast and find anomaly. It showed accurate and robust results that match with the 

results of a commercial simulator in spite of the complexity of the reservoir and the 

fitting procedure of the machine learning model. 
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ÖZ 

 

MAKİNE ÖĞRENME İLE ANOMALİ TESPİTİ UYGULAYARAK KUYU 

DİBİ BASINÇ DEĞİŞİKLİKLERİNİ DEĞERLENDIRMEK 

 

 

Khalil, Ahmed Magdy A. E. 

Yüksek Lisans, Petrol ve Doğal gaz Mühendisliği 

Tez Yöneticisi: Doç. Dr. Çağlar Sınayuç 

 

 

Aralık 2023, 77 sayfa 

 

Petrol sistemlerinden üretimde sürdürülebilirliğin sağlanması için üretim ve 

enjeksiyon performansının izlenebilmesi amacıyla gerçeğe mümkün olduğunca 

yakın bir saha modelinin olması hayati önem taşımaktadır. Bu çalışmada, temsili bir 

performans göstergesi olarak kullanılabilecek ve bir anormallik tespit yöntemini 

kullanan bir makine öğrenme modelinin geliştirilmesi amaçlanmaktadır. Makine 

öğrenimi, dört girdi parametresi ve bir çıktı parametresi olan denetimli öğrenme 

DNN (derin sinir ağı) modelinden oluşur. Kuyu üretiminden elde edilen girdiler 

zaman, petrol, su ve gaz oranlarıdır. Çıktı kuyunun tahmin edilen basınç 

performansıdır. Anormallik tespiti, eldeki verilere göre tahmin edilen ertesi gün ve 

otuzuncu gün tahmininin gözlemlenmesi ve ardından tahmin tarihlerine karşılık 

gelen gerçek basınç değerleri ile karşılaştırılmasıyla geliştirilir. Bu algoritmayı 

kullanarak, basınç veya üretimi tahmin etmemize, önerilen senaryoları 

değerlendirmemize ve kuyular arasındaki hesaba katılmayan rezervuar 

özelliklerinden (faylar, geçirgenlik veya gözeneklilik değişiklikleri gibi) 

kaynaklanan anormal basınç değerlerini belirlememize yardımcı olacaktır. Ek 

olarak, verilen model algoritması nispeten kısa bir sürede birçok farklı kuyuda test 

edilebilmekte ve verimli bir geliştirme planı oluşturmak için imkan tanımaktadır. 

Önerilen senaryolar yeni enjeksiyon kuyularından, işletme koşullarındaki 

değişikliklerden veya enjeksiyon/üretim modellerindeki değişikliklerden oluşabilir. 



   

 

viii 

 

Bu tezde, anormalliği tahmin etmek ve bulmak için bir algoritma geliştirilmiş ve test 

edilmiştir. Rezervuarın karmaşıklığına ve makine öğrenimi modelinin eşleşme 

prosedürüne bağlı olarak ticari simulator sonuçları ile karşılaştırıldığında doğru ve 

sağlam sonuçlar göstermiştir. 

 

Anahtar Kelimeler: Petrol sistemleri, Basınç Performansı, Makine Öğrenmesi, 

Anomali Tespiti, Proxy Modeli 
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CHAPTER 1  

1 INTRODUCTION  

Time is a valuable resource. As time moves in one direction, we are presented with 

many decisions to take. Some may be small and intuitive, others are life changing, 

but the only truth is that they cannot be taken back. That is why all resources are 

used to make the right decision. Engineering simulation programs are used for 

example, to simulate actual data where it gives us an opportunity to test decisions 

before applying it in real life. However, it comes at the cost of more time. Here a 

proxy model is presented where an algorithm is designed to reduce the time used on 

simulation and increase the decision window.  

 

AI and ML have recently been the focus to be integrated in every industry to 

cooperate with big data analytics as more data is available frequently thanks to 

technological advancements in equipment’s, apparatuses, and automation. Oil and 

gas industry is no different. As it has even more data, it is integrated into the oil and 

gas industry as well. From well placement (Akin et al., 2010) to economic decisions 

and reservoir management (Ertekin & Sun, 2019) as seen more and more lots of 

sectors are joining and adopting AI in their work. Learning and applying AI becomes 

a useful tool for engineers cooperating with conventional methods to assist them 

designing and developing more sophisticated solutions. 

 

Multiple proxy model studies have been presented in literature that predict future 

performance. Forecasting the Water-Cut in carbonate reservoir, oil recovery of a 

single cyclic nitrogen injection, or cumulative gas recovery from shale wells are all 

successfully implemented machine learning models (Artun, 2022). Additionally, a 

heat-map generated for optimizing well placement (Akin et al., 2010), and flow rates 

optimizations in a geothermal field (ARITURK, 2019). A second issue is identifying 
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anomalies early before it becomes a major problem. This is an issue of safety and 

economics that solving it means a safe and smooth non-interrupted operational 

environment that increases overall economical sustainability for longer. In petroleum 

engineering, anomaly detection has been used to identify irregularities in gas flow 

rate (Alharbi et al., 2022) and unplanned downtime (Feder, 2020). 

 

Presenting here a hypothetical model with data obtained from a numerical simulation 

model and given to an algorithm. The algorithm includes a machine learning proxy 

model trains and forecasts, and an Anomaly detection that works coherently with the 

proxy model and tries to alarm you as soon as an anomaly is risen to take the right 

decisions. It can also be scaled to any number of wells. With the detection method 

for sudden and slight changes in pressure data. 

 

Here a hypothetical model is introduced and tested within the bounded complexity 

of the geological model created for it. The introduced scenarios are meant to simulate 

different development plans that can be applied and extended in the field. The ML 

model is developed in a progressive way to show the stages of implementing a proxy 

model. Finally, anomaly detection scans through the forecasted and actual pressure 

data to find any potential anomalies not introduced during training. 
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CHAPTER 2  

2 LITERATURE REVIEW 

2.1 AI and ML 

Artificial intelligence (AI) is a field of computer science that focuses on creating 

intelligent machines that can mimic human behavior and thought processes such as 

learning, reasoning, adapting, and self-correction (Noble & Noble, 2023). It involves 

the development of algorithms and software that enable computers to process large 

amounts of data, learn from patterns or features in the data, and make decisions or 

predictions based on that information.  

AI encompasses a wide range of techniques and technologies, including machine 

learning, neural networks, expert systems, and natural language 

processing (Covarrubias-Moreno, 2022). The development of AI has had a 

significant impact on various sectors, including government, healthcare, 

transportation, and security (Ashri, 2020). In medicine, AI has been used to improve 

diagnosis, prognosis, and treatment, leading to greater accuracy and reliability in 

healthcare (Freitas, 2018). AI has also found applications in forensic science, aiding 

in crime scene investigation, DNA analysis, pattern recognition, and image 

processing (Ahmed Alaa El-Din, 2022). While AI has its limitations, it serves as a 

supplementary tool to human specialists and has the potential to contribute 

significantly to various fields. 

Machine learning is a branch of artificial intelligence that uses data and algorithms 

to enable machines to learn from experience and perform tasks that would normally 

require human intelligence. For example, machine learning can help machines 

recognize faces, translate languages, recommend products, and drive cars (Yadav et 

al., 2022).  
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There are different types of machine learning, depending on how the machines learn 

from the data (IBM, 2023). Some of the most common types are: 

• Supervised learning: The machine learns from labeled data, which means the 

data has predefined categories or outcomes. The machine uses the data to 

learn a function that maps the input to the output. The goal is to make accurate 

predictions or classifications for new data. For example, supervised learning 

can be used to classify spam emails, predict house prices, or recognize 

handwritten digits. 

• Unsupervised learning: The machine learns from unlabeled data, which 

means the data has no predefined categories or outcomes. The machine uses 

the data to discover patterns, structures, or features that are not obvious to 

humans. The goal is to find hidden insights or groupings in the data. For 

example, unsupervised learning can be used to cluster customers, detect 

anomalies, or compress images. 

• Reinforcement learning: The machine learns from its own actions and 

feedback from the environment, which means the data is generated by the 

machine’s interaction with the environment. The machine uses the data to 

learn a policy that maximizes a reward or minimizes a cost. The goal is to 

find the optimal behavior for a given situation. For example, reinforcement 

learning can be used to play games, control robots, or optimize traffic 

(Coursera, 2023). 

Machine learning has many applications in various domains, such as business, 

healthcare, education, and entertainment. Some of the benefits of machine learning 

are (Coursera, 2023): 

• It can automate tasks that are tedious or complex for humans. 

• It can improve the quality, efficiency, and accuracy of products and services. 

• It can enhance the creativity, innovation, and personalization of human 

endeavors. 
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• It can generate new knowledge and insights from large and diverse data 

sources. 

However, machine learning also poses some challenges and risks, such as (Coursera, 

2023): 

• It can be biased, unfair, or unethical if the data or algorithms are not properly 

designed, tested, or regulated. 

• It can be vulnerable, unreliable, or harmful if the data or algorithms are 

corrupted, manipulated, or hacked. 

• It can be complex, opaque, or unpredictable if the data or algorithms are not 

well understood, explained, or verified. 

• It can be disruptive, competitive, or threatening if the data or algorithms are 

not aligned with human values, goals, or interests. 

2.1.1 AI applications in petroleum engineering 

AI algorithms, including machine learning (ML), have been used to integrate data-

driven modeling and ML algorithms in different petroleum engineering challenges, 

such as exploration and development, reservoir engineering, and well logging. The 

use of AI in petroleum engineering aims to enhance efficiency, optimize production, 

and provide valuable insights for decision-making in the industry. Some examples 

where AI has been applied in petroleum engineering are,  

1- Gas injection techniques, CO2 injection enhanced oil recovery (EOR) 

procedures (Hadavimoghaddam et al., 2023). “Despite their black-box 

nature, ANN models can understand the non-linear patterns that underpin 

large datasets, making them suitable for a wide range of subsurface issues” 

Hadavimoghaddam explains showing proxy model prediction accuracy for 

oil production rate that stayed within 5% error (Figure 2.1). 
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2- Reservoir management (Lobut & Artun, 2023). In their paper titled 

“Machine-Learning Based Selection of Candidate Wells for Extended Shut-

In Due to Fluctuating Oil Prices” with the use of an unsupervised machine 

learning they categorized which well groups should shut-in given the 

information data from an old (50+ years) production and over 150 wells. 

3- Forecasting reservoir performance. Artun (2022) after testing through 

different hyperparameters such as number of layers and neurons, he landed 

on a neural network with 2 layers and neurons of 40-25. Mostly seen a higher 

𝑅2 accuracy with more layers and neurons (Table 2.1). The chosen neural 

network had the most accurate for both mainly focused variables (Net Present 

Value and Incremental Recovery) (Figure 2.2). 

 

 

Figure 2.1. Investigation of the proxy model and (CMG) results based (Ahmadi et 

al., 2018). 



 

 

 

7 

 

Figure 2.2. Real vs predicted cross-plots of (a) net present value (NPV) and (b) 

incremental oil recovery for the cyclic nitrogen injection problem (Artun, 2022). 

 

Table 2.1.Training and Testing Performances of Different Neural Network (Artun, 

2022). 
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2.1.1.1 Well placement. 

Akin et al. (2010), in their paper “Optimization of well placement geothermal 

reservoirs using artificial intelligence”, introduces a framework that employs 

artificial neural networks and an optimization algorithm to determine the optimal 

injection well location in complex carbonate geothermal reservoirs. The results 

indicate that this approach effectively narrows down potential regions for optimum 

well placement, offering a feasible alternative to exhaustive searches. Additionally, 

the study underscores the importance of considering design parameters and injection 

flow rates when optimizing well locations within such reservoirs.  

 

Figure 2.3. Evaluation surface for search-2. Optimum location is found to be (x-grid 

7) (y-grid 12) (Akin et al., 2010) 

2.1.1.2 Optimizing Flow Rates. 

Arıtürk (2019), in his thesis “Optimizing the Production and Injection Wells Flow 

Rates in Geothermal Field Using Artificial Intelligence”, demonstrates that 

employing Artificial Intelligence (AI) and machine learning (ML) techniques can 
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effectively predict future production and injection flow rates in geothermal fields. 

By utilizing reliable field data, AI-based models outperform conventional methods, 

addressing challenges such as gas presence, uncertain reservoir boundaries, and 

non-isothermal fluid flow (ARITURK, 2019). These findings offer a data-driven 

approach for optimizing power plant efficiency and continuous energy generation 

in geothermal systems. An example of flow rates prediction in KD-3 well and data 

set splitting for training and testing (Figure 2.4). 

 

Figure 2.4. KD-3 Well Future Flow Rates Prediction (Ariturk, 2019). 

2.2 Anomaly Detection 

Anomaly detection is the process of identifying unexpected patterns in data. It is a 

topic of growing interest due to its applicability in various fields such as intrusion 

detection, fraud detection, fault detection, and system health monitoring. These 

anomalies can be either positive or negative, but in all cases, their detection is crucial 

for decision-making processes. This is particularly true in the petroleum industry, 

where heavy extraction machinery like turbomachines is monitored by numerous 

sensors to prevent damage (Martí et al., 2015). The authors introduce a new approach 

for efficient anomaly detection in turbomachines, combining the Yet Another 

Segmentation Algorithm (YASA) with a one-class support vector machine. This 

method addresses the challenge of limited labeled training data. The effectiveness of 
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this approach is demonstrated through comparative studies with other methods on 

benchmark problems and a real-life application related to oil platform 

turbomachinery anomaly detection. 

 

2.2.1 Anomaly Detection in petroleum engineering 

Alharbi et al. (2022), in their paper “Explainable and Interpretable Anomaly 

Detection Models for Production Data” paper concludes that establishing trust in 

machine-learning models is essential for driving the fourth industrial revolution 

(Alharbi et al., 2022). While white-box models offer transparency and 

understandability (e.g., as if-then rules), explaining the decisions of black-box 

models remains challenging. Through a comprehensive analysis of various models 

on production data sets, the study emphasizes the significance of identifying 

anomalies to ensure operational safety and well performance. Metrics such as F1 

score, and complexity were used to compare model performance. The results reveal 

variations in performance across different models and data sets. The study also 

highlights the importance of local and global analysis for understanding model 

decisions. The findings underscore that model selection should consider both 

prediction performance and interpretability, aligning with the assertion that the 

highest holdout accuracy doesn't necessarily indicate trustworthiness.  

 

Figure 2.5. Visualization of normal and abnormal records in the gas data set (Alharbi 

et al., 2022). 
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In the paper it shows how white-box models sometimes outperform black-box 

models in anomaly detection tasks. Therefore, in this study, a white-box algorithm 

for anomaly detection is built from scratch to fit and work with the ML model. 

Anomaly detected regions colored is also inspired to be shown in the results plot. 

2.2.2 Deepwater Facility 

The deepwater facility has multiple sensor data for many aspects of their system, 

including equipment measurements and health, trip sittings (Feder, 2020). Often 

those sensors can falsely trigger the alarm system that causes unplanned shutdown. 

Unplanned downtime is contributed by automation hardware failure, equipment 

failure, process trips, and production ramp-up. According to the alarm database, 

there were several incidents of unexpected shutdowns around these critical 

components that caused negative consequences such as delayed production, total 

facility closure, reduced sales volume, and higher operational costs. The ML solution 

is then introduced to: 

• Ingest numerous sensor data. 

• Generate a single alarm indicating the health of a particular system or piece 

of equipment. 

• Predict abnormal events that could lead to a shutdown. 

• Potentially provide insight to prevent upcoming shutdown through root-

cause analysis. 

The anomaly detection based on autoencoder, and principal component analysis 

algorithms were found to outperform other algorithms given the type of data. Using 

statistical analysis on historical alarm data, several subsystems were identified for 

the purpose of achieving reliable and robust predictions. This process incorporated 

both process knowledge and critical equipment sensor data into machine learning 

models for anomaly detection. These models, trained on historical records, were 

designed to monitor patterns in sensor data in a multivariate setting and represent 
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system health through a single indicator known as an anomaly score. This real-time 

prediction of anomalous behavior is crucial. When the goal is to reduce operational 

and surveillance costs, it’s essential to proactively detect and diagnose unplanned 

shutdowns. In this context, optimizing the maintenance of critical equipment can 

significantly contribute to this effort.  

This ML framework (Figure 2.6) is somewhat like this study algorithm where after 

processing the real-time data the algorithm is then automatically choose whether to 

be trained or deployed for prediction. The choice is based on the amount of error 

found from the last observation. 

 

Figure 2.6. Model deployment solution using cloud computing platform (Feder, 

2020). 
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2.3 Conventional approaches 

Some conventional methods for predicting the production of hydrocarbon resources, 

such as decline-curve analysis and material balance, are not reliable in some 

situations because of the complex features of these systems. Researchers have tried 

to improve these methods, but there are still many challenges to overcome. Factors 

such as adsorption/desorption, turbulent flow in tiny pores, flow dynamics in 

fractures, and geomechanical effects due to fracturing make it difficult to build 

accurate numerical models of the reservoirs (Al-Alwani et al. 2019). However, recent 

advances in data collection, processing, and data-driven model building have 

encouraged new attempts to enhance the modeling of these problems. Therefore, 

there has been a growing number of publications that demonstrate the use of machine 

learning algorithms to develop forecasting models for hydrocarbon resources(Artun, 

2022). 

AI models demonstrate their benefits in terms of rapid computational efficiency and 

robust adaptability. Nonetheless, it's important to note that intelligent systems cannot 

entirely supplant traditional reservoir engineering approaches, including high-

fidelity numerical simulation models and analytical tools. 

While AI models significantly outpace high-fidelity numerical models in terms of 

computational speed, it's crucial to recognize that intelligent systems require pre-

training before they can be employed to address a reservoir engineering challenge. 

Even for well-established expert systems, there are always inherent error margins 

that must be considered (Ertekin & Sun, 2019). 
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Figure 2.7. Structures of forward and inverse-looking AI model (Ertekin & Sun, 

2019) 
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CHAPTER 3  

3 STATEMENT OF THE PROBLEM 

“Information is the oil of the 21st century, and analytics is the combustion engine.” 

A quote by Peter Sondergaard can describe the data-driven world we live in. As 

technology advances, we see more tools and equipment that facilitate data extraction. 

Still, they are imprecise noisy-data, due to human and machine errors, that can lead 

to ambiguous interpretation. The main objective is to develop a machine learning 

model that can assess reading the pressure data of a petroleum field. It can detect any 

anomaly introduced in pressure readings by forecasting the near future pressure data 

then comparing it with the corresponding actual pressure data that measured from 

wells. This model will help notify engineers about any sudden and, to a certain 

extent, the subtle change in pressure from any of the existing wells. 
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CHAPTER 4  

4 Hypothetical model 

The main idea here is to design a well-fit proxy model to predict the bottom hole 

pressure of a well and is sensitive enough to catch anomalies through pressure 

readings. The proxy model built is a Deep Neural Network (DNN) that takes input 

data from field production (time, oil rate, water rate, gas rate) and its output forecast 

the production pressure for the near future. Firstly, in order to fit and train the model, 

a simulation test environment that can be controlled is built to be the source of the 

actual data. For that a complex geophysical system was designed on CMG reservoir 

simulation that is capable to produce multiple scenarios that involve multiple wells 

and geophysical properties. Secondly, a general machine learning model is built 

using Tensorflow that will be trained on the data and will be the solution for a fast 

reservoir performance metric for daily use. The model is applied, monitoring the 

performance of each well individually. Thirdly, manually changing the hyper-

parameters of the model to fit the performance and match complexity of the well and 

reservoir. Finally, the ML output is compared to the actual data from the simulation 

and tweaked so that it matches perfectly and can show anomaly as early as possible. 

4.1 Reservoir model construction 

The geophysical reservoir model was imported from Middle East Technical 

University, Petroleum and Natural Gas Engineering department course 

(Optimization of petroleum recovery processes) and edited accordingly. The reason 

this model is used is because of its structural complexity to be as close as real field 

situation. 
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Figure 4.1. Simulated reservoir model 

4.1.1 Geological design 

4.1.1.1 Reservoir dimensions 

There are mainly 6 layers, each differing in its own thickness and reservoir 

properties. Grid type is Cartesian 13 x 14 x 6 that makes a cuboid shape of 1092 

blocks. However, some blocks were deactivated to give us the irregular shape in 

(Figure 4.1) with total 783 blocks active. The reservoir measures bulk area of 

770,000 𝑚2 (1040 𝑚 ∗  740 𝑚), with a gross thickness 460 𝑚. 
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Figure 4.2. Grid-top first layer 

 

Figure 4.3. Grid-top second layer 

 

Figure 4.4. Grid-top third layer 



 

 

 

20 

 

Figure 4.5. Grid-top fourth layer 

 

Figure 4.6. Grid-top fifth layer 

 

Figure 4.7. Grid-top sixth layer 
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4.1.1.2 Reservoir properties 

Permeability is isotropic in each layer by itself but there are isolated sections where 

permeability differs (Figure 4.8). The overall porosity, permeability, and thickness 

of each layer is different (Table 4.1).  The gas-oil contact and water-oil contact were 

defined at (3100 m) and (3385 m) respectively. The reservoir is initially saturated as 

pressure is less than bubble point pressure. There is Carter-Tracy (Infinite extent) 

aquifer support attached to the last layer of the reservoir. 

  

Figure 4.8. Permeability distribution 

Table 4.1. Grid Array properties 
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Figure 4.9. PVT table oil-gas 

Table 4.2 Reservoir fluid volume 

Item Unit Value 

Total oil in place 𝑚3 1.20E+07 

Total water in place 𝑚3 6.45E+06 

Total gas in place 𝑚3 2.11E+09 

HC. Pore Volume 𝑀𝑚3 17520 

Total Pore Volume. 𝑀𝑚3 23944 

4.1.2 Development plan 

Here, the idea is to have each well producing oil at a fixed rate different from other 

wells, while observing pressure change in BHP. Production rates were chosen to be 

the controllable variable, so well production and injection values are fixed and 

pressure performance during field life is observed. After that, 5 main parameters are 

exported to an Excel file to be used later by the ML model.  

Many scenarios were developed for testing to make the proxy model more complex 

and prove that it can handle multi-well design field. However, it summarizes the 

scenarios development into 3 main algorithm progression check points. 
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4.1.2.1 Simulated scenarios  

In order to advance in the proxy model to handle a verity of different fields with their 

different needs, multiple scenarios are made in ascending order of complexity on the 

commercial reservoir simulation. 

4.1.2.1.1 Scenario 1 

Starting with one well producing at a constant rate and observe the pressure 

performance at the well location. 

 

Figure 4.10. Scenario 1: complexity 
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4.1.2.1.2 Scenario 2 

We increased the number of wells into two but fixed their production rates and 

observed pressure performance from well-1. 

 

Figure 4.11. Scenario 2: complexity 

4.1.2.1.3 Scenario 3 

Increasing even further the number of wells, with different rates changes during the 

lifetime of the reservoir. Here, the problem will be: 

1- well-1 and well-3 continue the fixed rate production. 

2- Different rates and operational conditions for well-2. 

3- Injection from well-4. 

4- Well-5 is considered an anomaly with a small production rate that 

affects pressure on the long run. 
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Figure 4.12. Scenario 3: complexity 

4.1.2.2 Locations of the wells 

Well locations chosen were following the 5-spot pattern for optimum production and 

injection. Injection location was chosen for its relative higher depth and areal sweep 

efficiency. 

Table 4.3. Wells perforation and depth 

 Type Perforated layers Depth (m) 

Well-1 Producer 1-2 3337 

Well-2 Producer 1-2 3257 

Well-3 Producer 1 3364 

Well-4 Injector 1-2-3 3420 

Well-5 Anomaly 

Producer 

1-2 3327 
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4.2 Machine Learning Model 

The Machine learning proxy model is built using the latest version of Tensorflow on 

a python programming IDE (Spyder). But it can be imported and be used on any 

machine given the fact that it has the libraries required for the program to run 

(Appendix B). The model can be tweaked to fit and run on different wells on different 

fields. A supervised machine learning DNN model takes input data (i.e. time, oil, 

water, gas rate) and output data (i.e. pressure) and tried to fit its weights accordingly 

to mimic its forecast to the actual output with respect to the loss function. An input 

layer with a number of neurons presenting the number of input variables. A number 

of (hidden) layers, sandwiched between the input layer and the output layer, are 

presenting the term deep and complexity of our model. An output layer with a single 

neuron representing the given point of focus variable for performance (pressure). 

Additional layers can be added to the model to make it more robust and can be added 

in-between as well. In this case, a gaussian noise layer is added after the input layer 

to add a noise amount needed. 

4.2.1 Input data 

Importing the exported Excel data from the CMG simulated model output. Inputs for 

the model are time, oil production rate, gas production rate, and water production 

rate. After preprocessing the inputs, they are fed to the algorithm in order to train or 

predict the future pressure within a time window. 

4.2.1.1 Time window 

Future pressure is predicted within a specific time window. That time window is the 

resolution that the user can determine for the model to use. A longer time window 

will allow the model to predict for a further time in future but will be less accurate. 

A shorter time window will make the prediction more accurate within a small error 
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boundary but will debilitate the model of its capabilities. Time window can be set 

based on the frequency of data that comes, i.e., minutes, hours, days. In this case, the 

time window is set as 30 days to be predicted in future, and this main job is to catch 

slight changes presented in the system that can only be seen in the long term. The 

time window is also set for 1 day to catch any sudden changes and usually has a 

smaller error margin than the 30th day time window. 

4.2.1.2 Preprocessing 

Applying preprocessing is an essential part to make sure it is compatible with 

TensorFlow and for training to be efficient. Preprocessing is defined as: 

a. Applying data difference from initial state. 

b. Data splitting. 

c. Add noise that corresponds to human and pressure gauge error (Figure 4.13).  

d. Normalizing data. 

4.2.1.2.1 Noise 

Noise is manually added using a function to represent the equipment gauges and 

human error. Figure 4.13 shows noise data resulted. A gaussian noise layer added 

after the input layer gives the same results. 
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Figure 4.13. Added 1.0% gaussian noise to pressure output. 

4.2.1.2.2 Normalization 

Normalizing is applied using a Min-Max Scaler function, that records highest and 

lowest value then normalizes any values in-between 0 and 1.  

The scaler factors can be fitted based on expected maximum and minimum values of 

the parameter. This won’t affect the model as long as the scaler being applied 

consistently during fitting and forecasting of the model. The scaler has already been 

fitted and used across all wells. 

The initial state for the model is set at no production at the beginning. This state can 

be changed for matured fields where it has already production. 
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Table 4.4. Preprocessed data stages 

State 

Time 

(day) 

Oil rate 

(bbl/d) 

Gas rate 

(ft3/d) 

Water rate 

(bbl/d) 

Pressure 

(psi) 

Initial 0 0 0 0 4395.49 

New observed 30 1258 1.24 ∗ 106  6.69 ∗ 10−7 4383.65 

Added noise  

(3%) 
30 1267 1.23 ∗ 106 

6.68 ∗ 10−7 4458.28 

Difference 30 1267 1.23 ∗ 106 6.68 ∗ 10−7 62.79 

Normalized 0.0058 0.5636 0.8746 2.35 ∗ 10−10 0.9604 

4.2.2 Extrapolating new inputs 

As mentioned, in order for the model to forecast in the future, it requires the 4 inputs 

to be present and representative of that time. Assuming to have a control over what 

oil rate will be, that leaves us with 2 variables (gas and water rate) to be determined. 

For that it is observed within a short period of time the rate change versus time 

follows a linear pattern that can be easily extrapolated with suitable Numpy or Scikit 

library functions. 

4.2.3 ML Model construction 

The construction here refers to how the model is built and compiled for the optimum 

learning and testing results. Multiple models were tested including LSTM and 

autoencoder anomaly detection. 

4.2.3.1 Layers and nodes 

The number of layers and nodes adds to the complexity of the model. As you increase 

those numbers you are increasing the dimensionality and capacity. This adds more 



 

 

 

30 

weights that need fitting which prolongs training time. In this study, there are in total 

4 layers used to build the proxy model. The input layer has 4 nodes for each of the 

input parameters. The output layer has 1 node for the pressure forecast. Importantly, 

2 hidden layers in between representing the depth of the model, and they have 60 

each. Each node is connected to all other nodes in the adjacent layers (Figure 4.14). 

In addition to the noise added to the data, Tensorflow also offers a gausian noise 

layer that can be added to the model which builds tolerance for the model when noisy 

data introduced in inputs. 

 

Figure 4.14. Example of layers constructed shapes. 

4.2.3.2 Loss function 

The loss function job is to calculate the error difference in output from the model 

and actual data during training. The model goal is to minimize the loss function as 
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much as possible without overfitting data. It can be choosen which function to be 

used from the available supported list by Tensorflow. MAE and MSE were both 

tested and gave similar results. MSE were chosen as loss function. 

𝑀𝑆𝐸 =  
∑ (𝑦𝑖 − 𝑦𝑖̂)

2𝑛
0

𝑛
 

4.2.3.3 Optimization method 

The optimization method is the technique responsible for updating the gradient 

during fitting process of the model so it can reach the local minimum error, reported 

by the loss function. Multiple methods are supported by Tensorflow, only two 

methods were tested (SGD and Adam). Those are the most widely known methods 

used in the industry. Adam gave a better fitting overall (Figure 4.15), so went with 

it.  

 

Figure 4.15. SGD (left) versus Adam (right) 

4.2.3.4 Learning rate 

Learning rate is another hyperparameter that defines the amount of step or 

adjustment the gradient can take. A very high LR allows the model to learn faster 

but can result in making it miss the global minima of error. A very low LR will take 
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the model too long to reach the global minima. So here it is testing the suitable 

learning rate by increasing it periodically and testing it against loss. 

 

Figure 4.16. Loss vs Learning rate 

If needed to continue training the model when new fresh data becomes available, it 

is important to carefully choose the learning rate here as it could alter weights 

significantly those results in mismatching the earlier pressure performance.  

4.2.3.4.1 Dynamic LR 

Another idea introduced is adaptive or dynamic LR. Basically, a threshold is set for 

the model to compare new errors introduced. Each threshold has its own LR 

predefined. If it is higher than this threshold, it means that the model forecast is far 

away from actual and needs to adjust the LR for a higher value to learn faster. Thus, 

underfitting the model problem is reduced. 

4.2.3.5 Model optimization 

A couple of methods were used to optimize the model for its hyperparameters. 

Including number of epochs used, number of units in each layer, learning rate, and 
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more. By utilizing step wise change in LR and observing at which point the curve is 

at its lowest, that should give the sweet spot for the suitable LR that result into 

smallest error (Figure 4.18). Tensorboard utility is available for checking the model 

performance. By preparing the observation points of interest in the model, 

hyperparameters can be checked against the model performance (Figure 4.20). 

 

Figure 4.17. Loss vs learning rate 

 

Figure 4.18. Tensorboard utility for hyper-parameters observation
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4.2.4 Output data 

The raw output from the proxy model needs to go through post-process in order to 

be a representative pressure data that can be compared against actual data. Post-

process is composed of de-normalizing and adding back the difference in pressure. 

4.2.4.1 Training and Forecasting 

The first-time training process is crucial to have a representative model. The amount 

of data available for training can determine some hyperparameters, like LR and 

epochs.  As soon as having a trained model, it can be saved, exported, or used to 

forecast the inputs accordingly. Forecasting takes a fraction of a second.  

4.2.4.2 Anomaly detection 

This algorithm approach for detecting anomaly is by calculating the expected model 

error after forecasting and comparing it to true error after actual data is available at 

the time. In order to do that, three things were established: 

1- The model keeps updating and training when each new value is available 

given that the new forecast error is bigger than a threshold. 

2- Defining variables that memorize the model expected forecast at some 

specific times within the “time window”.  

3- Comparing and extrapolating errors from those variables against actual 

pressures 

Forecasting error performance is bound to increase with time. The frequency at 

which the model updates when new data is available keeps the model in check and 

the threshold error at its accepted rate. 

There are two variables defined. One variable collects the next day predicted 

forecast. Another variable collects the end of time window predicted forecast (i.e., 
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predicted forecast after 30 days passing). The reasoning behind this is when those 

variables are compared to actual data, they produce percentage errors. Those errors 

are then memorized and extrapolated to estimate how much error is to be expected 

in the future forecasts.  

Setting up the anomaly detection algorithm this way allows detection of sudden and 

smooth changes in pressure performance that is not a local change in well conditions 

that caused it. To name the possible range of pressure for day 1 prediction to be 

“Range 1”, and the possible range of pressure for day 30 prediction to be “Range 

30”. Consequently, three keys emerge where it can identify anomaly: 

1- Actual pressure ∉  “Range 1” & “Range 30”. That means sudden 

change in pressure not expected by both. (Condition A) 

2- Actual pressure ∉  “Range 30” but Actual pressure ∈  “Range 1”. 

That means it was a gradual pressure change that day 1 prediction 

adapted to the change but day 30 didn’t. (Condition B) 

3- “Range 1” ∉  “Range 30”. It means the day 1 forecast does not follow 

same pattern as day 30 forecast. (Condition C) 

4.2.4.3 Anomaly region 

As part of the algorithm, I wanted to show where was first the anomaly is detected 

by the model and the duration it took to adapt on the anomaly. Hence, a region was 

highlighted on the plot graphing interface representing where the model has 

detected any anomalies. 
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CHAPTER 5  

5 RESULTS AND DISCUSSIONS 

5.1 Reservoir simulation scenarios pressures 

Scenario 1 had a 1 well producing at a constant rate, it produced pretty much a linear 

decline. An abnormal pressure was introduced to see how the model will adapt to the 

sudden pressure change (Figure 5.1). 

 

Figure 5.1. Normal expected pressure (Blue) versus Abnormal pressure (Orange) 

As two wells, in scenario 2, are producing at a fixed rate within a finite reservoir 

area, BHP performance can be seen in (Figure 5.2).  
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Figure 5.2. Scenario 2: Fixed oil rate production of two wells. 

Scenario 3 increases the complexity of 5 wells operating at the same time with 

different rates (Figure 5.3). 

 

Figure 5.3. Scenario 3: pressure and production rate vs time. Well-1 pressure 

before (purple) and after (dashed red) anomaly introduced. Oil rate for Well-1 

(Orange), Well-2 (black), Well-3 (brown), Well-5(red), and water injection rate for 

Well-4 (Dark blue). Water cut in Well-1 (sky blue). 
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5.2 ML and Anomaly detection performance 

5.2.1 Algorithm stage 1 

Scenario 1 complexity is no match to the complexity of the model. Hence, the model 

had no issue training and forecasting (Figure 5.5), given the fact that initially the 

model is trained on 1600 data points (Figure 5.4). When anomaly was introduced, 

the model showed an anomaly region and quickly adjusted itself to represent actual 

performance (Figure 5.6). Although anomaly introduced on day 900, model took 

long time to find it, and the reason is that the error limit that determines an anomaly 

is high. So, to fix this problem a changing error and adapting error boundary based 

on new forecast is applied in the final scenario. A second problem can be seen in 

(Figure 5.7) is when not correctly having correctly fitted scaler and stop training the 

model regularly. In here input data are tested first with no noise (Figure 5.8) then 

with noise (Figure 5.9) added to see model performance. 

 

Figure 5.4. Loss decreases with time during model training. 
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Figure 5.5. ML model forecasting pressure performance between day 1600 to day 

2000. 

 

Figure 5.6. Scenario 1 identification of anomaly, and training for adjustment. 
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Figure 5.7. One-time trained model struggling to forecast abnormal pressures. 

 

Figure 5.8. No noise inputs and outputs data and the model performance. 

 

Figure 5.9. Noise (1%) applied in inputs and outputs data and the model 

performance. 
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5.2.2 Algorithm stage 2 

This scenario, although it introduces two well producers with fixed production, the 

model appears to be sharply declining which again imposes no problem from training 

(Figure 5.10) and forecasting. However, it is shown in (Figure 5.11) that high LR 

will allow the model to adjust faster but can’t find the local minima; hence, it 

oscillates back and forth between actual pressure. In contrast, (Figure 5.12) had low 

LR it adjusted slowly without oscillation. Consequently, applying a dynamic LR has 

been developed in the algorithm and result can be seen in (Figure 5.13) where the 

model learns faster with no oscillation applied. 

 

Figure 5.10. Scenario 2 initial model fitting. 
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Figure 5.11. High LR (1e-5) and the model adjustment to pressure change 

 

Figure 5.12. Low LR (1e-7) and the model adjustment to pressure change 
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Figure 5.13. Dynamic LR, a step wise change in LR to allow model to learn faster 

with high error, and slowdown in learning when error is relatively smaller. 

5.2.3 Algorithm stage 3 

Focusing on well-1 forecasting and detection. Here, initiated training the model on 

only a small portion of data. For example, well-1 (Figure 5.14) trained only on 50 

days initially. The standard was set for the acceptable model error, from initial 

model, to be less than 0.3%. Then the model is saved and used to continue the 

training and forecasting cycle.  

Looking at Scenario 3 (Figure 5.3), it is seen at least 5 major changes in pressure due 

to external influence of other wells on the observed well-1. The goal is to identify 

those changes from well-1 perspective; therefore, scenario 3 is divided into 5 cases 

(Figure 5.15). 
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Figure 5.14. Scenario3: model trained initially on 50 days and its forecast error is 

less than 0.3% (13 psi) for well-1. 

 

 

Figure 5.15. Well-1 algorithm detected error during the whole simulation run. Red 

arrows point towards error catched. 

 

Case 2 

Case 1 

Case 3 

Case 4 Case 5 
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5.2.3.1.1 Case 1 

Well-2 started production at 900 days. The algorithm predicted the there is an error 

at 921 days, 21 days after well-2 appeared (Figure 5.16). Error ranges are 

calculated by firstly fitting data to the last couple of errors it seen, then extrapolate 

(Figure 5.17). A linear regression is used here because after testing polynomial 

regression, it gives more noise to the error. Due to errors not fitting perfectly to the 

regression, an error range is added to the extrapolated error. 

 

Figure 5.16. Case 1, Well-1 algorithm detected error on day 921. 

 

Figure 5.17. Algorithm regression on well-1 errors and extrapolating to find 

anomalies. 
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5.2.3.1.2 Case 2 

Well-5, the anomaly, has started producing at a very low rate (315 bbl/d). This well 

is introduced as an anomaly that could belong to another company and out of this 

reservoir management plan. Unfortunately, it has not been detected by well-1 due 

to the change in pressure is very small as well as the model keeping adjusting to 

new pressure values as being the representative value of the current field.  

However, another well-2 in can be used to fit another model with the same 

algorithm and observe well-2 performance. It got detected by it (Figure 5.18). 

 

Figure 5.18. Case 2, Well-2 prediction found anomaly on day 2016. 

5.2.3.1.3 Case 3 

Here, Well-2 has stopped production, and Well-4 started injection as part of field 

development after 3300 days. A change in pressure was detected (Figure 5.19) on 

day 3326, 26 days after.  
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Figure 5.19. Case 3 and Case 4 anomaly detected by well-1 forecast performance 

graph on day 3326 and 3780 respectively. 

5.2.3.1.4 Case 4 

On day 3700, Well-2 return to production, and the pressure change was seen by 

well-1 on day 3780, 80 days later (Figure 5.19). 

5.2.3.1.5 Case 5 

Lastly, observing a sharp decline in pressure performance due to pressure support 

not being enough to hold pressure at the current development plan. It is also 

observed that a water flux increases in the well production (Figure 5.3). This 

change was also detected by the algorithm in well-1 on day 4501 (Figure 5.20). 
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Figure 5.20. Case 5 anomaly detected on day 4501. 

 

From (Table 5.1), it is seen that the model catches all sudden changes within a 

delayed time. Although, the model didn’t show graphically the gradual change 

caused by well-5 production, it was found by condition B in the table above. Because 

(Table 5.1) is also exported data from the model, it is known that the ML algorithm 

successfully caught the anomaly, yet some work on the detection algorithm needs to 

be re-adjusted to be graphically shown. This can be further improved with a usable 

interface for the ease of use of engineers. 
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Table 5.1. Model predictions, error calculated, and anomalies found and shown 

graphically. 

days 

Actual 

before 

anomaly Actual 

day1 

pred 

1st     

error 

% day 1 

day30 

pred 

30th 

error 

% day 30 

A
n
o
m

al
y

 

 

899 4181.1 4181.1 4177.0 0.1 4181.1 4175.5 0.1 4180.8 0 

C
o
n
d
it

io
n
 B

  
  
  
  
  
  
  
 

(1
.1

 p
si

) 

900 4180.9 4180.9 4176.5 0.1 4180.9 4175.6 0.1 4180.8 0 

919 4172.3 4172.3 4173.2 0.0 4172.3 4172.6 0.1 4177.7 0 

920 4171.8 4171.8 4173.0 0.0 4171.8 4172.5 0.1 4177.4 0 

921 4171.3 4171.3 4172.9 0.0 4171.3 4172.4 0.1 4177.8 1 

922 4170.7 4170.7 4172.9 -0.1 4170.7 4172.0 0.1 4177.1 1 

1999 3713.2 3713.2 3717.0 -0.1 3713.2 3719.7 -0.2 3712.6 0 

C
o
n
d
it

io
n
 B

  
  

  
  

(0
.7

 p
si

) 2000 3713.2 3712.9 3716.7 -0.1 3712.9 3719.7 -0.2 3712.6 0 

2025 3705.4 3704.7 3708.6 -0.1 3704.7 3713.4 -0.2 3706.8 0 

2026 3705.1 3704.4 3708.0 -0.1 3704.4 3713.1 -0.2 3706.5 0 

2027 3704.8 3704.0 3707.8 -0.1 3704.0 3712.8 -0.2 3706.3 0 

3299 3514.0 3467.5 3470.9 -0.1 3467.5 3471.9 -0.1 3467.5 0 

C
o
n
d
it

io
n
 B

  
  
  
  

  

(1
.7

 p
si

) 3300 3514.0 3467.4 3471.0 -0.1 3467.4 3471.9 -0.1 3467.5 0 

3324 3517.5 3470.6 3470.9 0.0 3470.6 3470.8 -0.1 3466.3 0 

3325 3517.8 3470.8 3470.9 0.0 3470.8 3470.8 -0.1 3466.3 0 

3326 3518.0 3471.0 3470.9 0.0 3471.0 3470.7 -0.1 3466.3 1 

3699 3656.4 3607.5 3575.3 0.9 3607.2 3565.8 1.2 3608.4 0 

C
o
n
d
it

io
n
 A

  
  
  
 

(3
.5

 p
si

) 

3700 3656.4 3607.8 3575.7 0.9 3607.5 3565.8 1.2 3608.4 0 

3701 3656.9 3608.0 3576.0 0.9 3607.7 3566.5 1.2 3609.1 0 

3780 3648.9 3595.47290 3594.7 0.0 3595.47274 3591.9 0.5 3611.3 1 

4485 3617.0 3524.7 3546.8 -0.6 3524.6 3551.2 -0.4 3538.1 0 

C
o
n
d
ti

o
n
 B

  
  
  
  
 

(4
7
.7

 p
si

) 

4490 3616.4 3517.6 3548.0 -0.9 3517.4 3550.6 -0.4 3537.2 0 

4495 3615.8 3510.3 3549.7 -1.1 3509.8 3550.3 -0.4 3536.2 0 

4500 3615.2 3503.4 3551.2 -1.4 3502.8 3549.8 -0.4 3535.2 0 

4501 3615.0 3502.1 3551.6 -1.4 3501.4 3549.8 -0.4 3535.2 1 
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5.3 Other ML models performance 

5.3.1 LSTM 

LSTM is a type of RNN but performs better on long forecasting. For training and 

forecasting it only depends on one parameter changing per time. Hence, compared 

to the DNN model, LSTM would recognize any changes in production rates or 

operational conditions to be an anomaly. Although trained on the same data, it 

requires different preprocessing, and can only old pressure as input and it forecasts 

the new pressure. Unfortunately, it was not successful in predicting (Figure 5.16) 

shows a constant pressure all the time. 

 

Figure 5.21. LSTM predicts pressure as constant and place it where it minimizes the 

error as much as possible during training. 

5.3.2 Autoencoders – Unsupervised anomaly detection. 

Unsupervised anomaly detection is a type of ML that can detect errors in abnormal 

changes in data giving the fact that it needs training on normal data patterns for as 

much as it needs. When this ML applied in this study however, it presented error 

only if it is outside the range of “normal” data. (Figure 5.17) shows both anomaly 

situations, however it recognized only parts that fall outside the range of (4400 to 
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3550 psi) as anomaly. The reason for that is normal data that the model trained on 

was also within the same range.  

 

Figure 5.22. Autoencoder recognizes no anomaly on the left example and some 

parts of anomaly on the right example. 
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CHAPTER 6  

6 CONCLUSION  

In this study, a numerical simulation model has been developed using a commercial 

reservoir simulator to produce multiple problems that can be studied, and developed 

on the algorithm based on it. The aim was to develop and test the algorithm for 

forecasting reservoir pressure performance and anomaly detection under different 

scenarios. The model was trained on historical data before any anomalies and 

validated on new data with anomalies and noise.  

The main findings of the thesis are: 

1. The machine learning model was able to accurately forecast the pressure 

performance in scenario 1, where the complexity of the reservoir was low, 

and the pressure decline was linear. The model was able to detect and adjust 

to the anomaly introduced in the data, as well as to handle the noise added to 

the inputs and outputs. Performance was improved by using a fitted scaler. 

2. The machine learning model was also able to forecast the pressure 

performance in scenario 2, where the complexity of the reservoir was slightly 

higher, and the pressure decline was sharper. The model was able to adapt to 

the changes in the production rates of the two wells, but the learning rate was 

a critical factor for the model adjustment. A high learning rate caused the 

model to oscillate around the actual pressure, while a low learning rate 

allowed the model to converge to the local minima, so a dynamic learning 

rate was introduced to the algorithm. 

3. The machine learning model showed promising results for forecasting 

reservoir pressure performance and detecting anomalies in scenario 3, where 

the complexity of the reservoir was the highest and the pressure decline was 

the most irregular. The model was trained on a small portion of data initially 
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and then updated and validated on new daily incoming data. The model was 

able to catch all sudden in the pressure performance of well-1, with some 

delay and error. Although well-1 failed to find the gradual change given in 

case 2, when the algorithm was applied to well-2, it detected the anomaly 

from Well-2 forecasting performance. 

4. The algorithm demonstrated its robustness and flexibility to learn beyond its 

original knowledge when it is applied in a single well or as a group. 

The thesis contributes to the field of reservoir engineering by providing a novel and 

effective method for forecasting reservoir pressure performance and detecting 

anomalies using machine learning. It also demonstrates the potential of machine 

learning for solving complex and nonlinear problems in the oil and gas industry.  
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CHAPTER 7  

7 RECOMMENDATIONS FOR FUTURE WORK 

This study can be further improved with the following items: 

1. Applying the machine learning model to other reservoirs and scenarios and 

comparing its performance with conventional methods. 

2. Further improving dynamic learning rate for a faster and more accurate 

detection of anomalies. 

3. Developing a user-friendly interface for the machine learning model that can 

facilitate ease of use for engineers. 

4. Creating a method to analyze all anomalies found from other model-well 

output and generate a heatmap for the possible source location of the 

problem. 
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APPENDICES 

A. Code Algorithm 

# Importing libraries 

import tensorflow as tf 

from tensorflow.keras.models import Sequential 

from tensorflow.keras.layers import Dense, Dropout, GaussianNoise 

from tensorboard.plugins.hparams import api as hp 

import warnings 

import matplotlib.pyplot as plt 

import matplotlib 

from matplotlib.animation import FuncAnimation, FFMpegWriter 

import pandas as pd 

import numpy as np 

from statistics import mean 

from sklearn.model_selection import train_test_split 

from sklearn.metrics import accuracy_score, precision_score, recall_score, 

r2_score, mean_absolute_error, max_error 

from sklearn import preprocessing 

import joblib 

from time import sleep 

from itertools import zip_longest 

import multiprocessing as mp 

import time as systime 

import datetime 

import gc 

gc.enable() 

warnings.simplefilter('ignore', np.RankWarning) 

 

# Confirm hardware integration 

print("Num GPUs Available: ", len(tf.config.list_physical_devices('GPU'))) 

print("Num CPUs Available: ", len(tf.config.list_physical_devices('CPU'))) 

 

# Importing data 

data = pd.read_excel("test_7_withanomaly.xlsx", sheet_name=0, skiprows=4) 

time = pd.DataFrame(data.iloc[:,0]) 

pressure = pd.DataFrame(data.iloc[:,5]) 

water = pd.DataFrame(data.iloc[:,4]) 

gas = pd.DataFrame(data.iloc[:,2]) 

oil = pd.DataFrame(data.iloc[:,3])  
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# A function to calculate the difference/change in data 

def delta_fun(data, initial): 

    datay = data.copy().reset_index(drop=True)       

    datay.loc[:] = datay.loc[:] - initial.values 

    return datay 

 

# A function for plotting 

def plot_series(time, series, format="-", start=0, 

                label=None):  # needs editing so i can add other graphs within same 

function 

    plt.plot(time, series, format, label=label) 

    plt.xlabel("Time") 

    plt.legend(fontsize=14) 

    plt.grid(True) 

    plt.show() 

         

def pressure_plot(time, series, label): 

    forecast = series[0].values[:,0] 

    fig, ax = plt.subplots() 

    for i in reversed(range(len(series))): 

        ax.plot(time, series[i].values, label=label[i]) 

    error = 0.003 

    P_err = forecast*error 

    ax.fill_between(time[:,0], forecast+P_err, forecast-P_err, alpha=0.2, 

color='green', label="Model error {}%".format(error*100)) 

    ax.set_xlabel("Time") 

    ax.set_ylabel("Pressure") 

    ax.legend(fontsize=10,loc='lower left') 

    ax.grid(True) 

    plt.show() 

        

# A function to reverse the difference in pressure 

def full_fun(data, initial): 

    datax = data.copy().reset_index(drop=True) 

    datax.loc[:] = datax.loc[:] + initial.values 

    return datax 

 

# Add Noise to data 

def noisy(data,time,error): 

    datax = data.copy() 

    noise = np.random.normal(datax, (datax*error/3), datax.shape) 
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    noise = pd.DataFrame(noise, columns=datax.columns) 

    for i in range(datax.shape[1]): 

        y=datax.iloc[:, i] 

        plt.scatter(time, noise.iloc[:, i], label= 'Data with Noise') 

        plt.plot(time, y, label= 'True Data', color='r') 

        P_err = y*error 

        plt.fill_between(time.iloc[:,0], y+P_err, y-P_err, alpha=0.2, color='green', 

label="Error range {}%".format(error*100)) 

        plt.xlabel("Time") 

        plt.ylabel(datax.columns[i]) 

        plt.legend(fontsize=12) 

        plt.grid(True) 

        plt.show() 

    return noise 

  

# Preprocessing and Splitting data into train, validation, and test  

X = data.drop(data.columns[[1, 5]], axis=1) 

X = noisy(data= X.iloc[:, 1:], time=time, error=0.0003) 

X.insert(0, time.columns[0], time.values) 

Y = pressure 

Y = noisy(Y, time=time, error=0.0003) 

Yi = Y.take([0]) 

Xi = pd.DataFrame([[0,0,0,0]],columns=X.columns) 

 

x_train0, X_test1, y_train0, Y_test1 = train_test_split(X, Y, test_size=0.99, 

shuffle=False) 

X_test0 , Y_test0 = X_test1 , Y_test1 

X_test1, X_test5, Y_test1, Y_test5 = train_test_split(X_test1, Y_test1, 

test_size=500, shuffle=False) 

X_test1, X_test4, Y_test1, Y_test4 = train_test_split(X_test1, Y_test1, 

test_size=500, shuffle=False) 

X_test1, X_test3, Y_test1, Y_test3 = train_test_split(X_test1, Y_test1, 

test_size=500, shuffle=False) 

X_test1, X_test2, Y_test1, Y_test2 = train_test_split(X_test1, Y_test1, 

test_size=500, shuffle=False) 

x_train, x_val, y_train, y_val = train_test_split(x_train0, y_train0, test_size=0.2, 

shuffle=True) 

xlastinput = ylastinput = xlastinput_ab = ylastinput_ab = pd.DataFrame() #reset 

last inputs 

 

x_train = delta_fun(x_train, Xi) 

y_train = delta_fun(y_train, Yi) 

x_test1  = delta_fun(X_test1, Xi) 

y_test1  = delta_fun(Y_test1, Yi) 
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x_test2  = delta_fun(X_test2, Xi) 

y_test2  = delta_fun(Y_test2, Yi) 

x_test3  = delta_fun(X_test3, Xi) 

y_test3  = delta_fun(Y_test3, Yi) 

x_test4  = delta_fun(X_test4, Xi) 

y_test4  = delta_fun(Y_test4, Yi) 

x_test5  = delta_fun(X_test5, Xi) 

y_test5  = delta_fun(Y_test5, Yi) 

x_test0  = delta_fun(X_test0, Xi) 

y_test0  = delta_fun(Y_test0, Yi) 

x_diff = delta_fun(X, Xi) 

y_diff = delta_fun(Y, Yi) 

 

# testing short  

x_t = delta_fun(X.head(1400), Xi) 

y_t = Y.head(1400) 

x_t , x_tt , y_t, Y_tt = train_test_split(x_t, y_t, test_size=0.5, shuffle=False) 

y_t = delta_fun(y_t, Yi) 

 

#%% ----------------------3-------------------------------- 

#This step done only once, Scaler fitted for preprocessing 

XScaler = preprocessing.MinMaxScaler().fit(x_diff) # (X-X.min())/(X.min()-

X.max()) 

YScaler = preprocessing.MinMaxScaler().fit(y_diff) 

joblib.dump(XScaler, 'xtest6_multiwell.gz') 

joblib.dump(YScaler, 'ytest6_multiwell.gz') 

 

# Normalizing data 

XScaler = joblib.load('xtest6_multiwell.gz') 

YScaler = joblib.load('ytest6_multiwell.gz') 

x_train0 = XScaler.transform(x_train0) 

y_train0 = YScaler.transform(y_train0) 

x_train = XScaler.transform(x_train) 

y_train = YScaler.transform(y_train) 

x_val = XScaler.transform(x_val) 

y_val = YScaler.transform(y_val) 

x_test1 = XScaler.transform(x_test1) 

y_test1 = YScaler.transform(y_test1) 

x_test2 = XScaler.transform(x_test2) 

y_test2 = YScaler.transform(y_test2) 

x_test3 = XScaler.transform(x_test3) 

y_test3 = YScaler.transform(y_test3) 

x_test4 = XScaler.transform(x_test4) 
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y_test4 = YScaler.transform(y_test4) 

x_test5 = XScaler.transform(x_test5) 

y_test5 = YScaler.transform(y_test5) 

x_test0 = XScaler.transform(x_test0) 

y_test0 = YScaler.transform(y_test0) 

x_normalized = XScaler.transform(x_diff) 

y_normalized = YScaler.transform(y_diff) 

 

# Model structure build 

tf.keras.backend.clear_session() 

tf.random.set_seed(42) # Ensuring we get the same output with multiple runs 

np.random.seed(42)  

 

model = Sequential() 

model.add(Dense(units=60, activation='relu', input_shape=(4,))) 

model.add(GaussianNoise(0.01)) 

# model.add(Dropout(0.1)) 

model.add(Dense(units=60, activation='relu', kernel_regularizer='l2'))#, 

kernel_regularizer='l2' 

model.add(Dense(units=1)) 

model.summary() 

 

#%% Model Compile with increasing Learning rate to test suitable lr to use 

optimizer = tf.keras.optimizers.Adam(learning_rate=1e-7) 

lr_schedule = tf.keras.callbacks.LearningRateScheduler( 

    lambda epoch: 1e-7 * 10 ** (epoch / 100)) 

model.compile(optimizer=optimizer,  # default='rmsprop', an algorithm to be used 

in backpropagation 

              loss='mse', 

              # Loss function to be optimized. A string (name of loss function), or a 

tf.keras.losses.Loss instance. 

              metrics=['mse'], 

              # List of metrics to be evaluated by the model during training and testing. 

Each of this can be a 

              # string (name of a built-in function), function or a tf.keras.metrics.Metric 

instance. 

              ) 

# History fit 
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history = model.fit(x_train, y_train, batch_size=10, epochs=500, 

validation_data=(x_val,y_val),callbacks=[lr_schedule]) 

 

# Plot loss vs learning rate 

plt.semilogx(history.history["lr"], history.history["loss"]) 

plt.semilogx(history.history["lr"], history.history['val_loss'], label='validation loss') 

plt.xlabel('Learning rate') 

plt.ylabel('loss') 

plt.show() 

 

# Fitting model with adam optimizer 

batch_size = 5 

epochs=50 

validation_split=0.2 

initial_learning_rate=1e-3 

decay_steps=10000 

decay_rate=0.96 

decayed_lr = tf.keras.optimizers.schedules.ExponentialDecay(initial_learning_rate, 

                                                            decay_steps, 

                                                            decay_rate, 

                                                            staircase=True)  

 

optimizer = tf.keras.optimizers.Adam(decayed_lr) 

model.compile(optimizer, 

              loss='mse' 

              ) 

#es = tf.keras.callbacks.EarlyStopping(monitor='val_loss', mode='min', 

min_delta=1e-4, verbose=1, patience=30) 

#tqdm_callback = tfa.callbacks.TQDMProgressBar()  
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# log_dir = "logs/fit/" + datetime.datetime.now().strftime("%Y%m%d-

%H%M%S") 

# tensorboard_callback = tf.keras.callbacks.TensorBoard(log_dir=log_dir, 

histogram_freq=1) 

 

# hparams_dir = os.path.join(log_dir, 'validation') 

# with tf.summary.create_file_writer(hparams_dir).as_default(): 

#     hp.hparams_config( 

#         hparams=HPARAMS, 

#         metrics=[hp.Metric('epoch_accuracy')]  # metric saved by tensorboard_cb 

#     ) 

 

# hparams_cb = hp.KerasCallback( 

#     writer=hparams_dir, 

#     hparams=HPARAMS 

# ) 

xx1=tf.convert_to_tensor(x_train) 

yy1=tf.convert_to_tensor(y_train) 

history = model.fit(xx1, yy1, 

                    batch_size, 

                    epochs, 

                    verbose=1, 

                    # callbacks= [tensorboard_callback], # ,hp.KerasCallback(log_dir, 

hparams) 

                    validation_data=(x_val,y_val) 

                    ) 

 

plt.plot(history.history['loss'], label='training loss') 

plt.plot(history.history['val_loss'], label='validation loss') 
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plt.xlabel('Epochs') 

plt.ylabel('Loss') 

plt.legend(fontsize=14) 

plt.show() 

 

#Saving the model 

model.save('trainedmodel_multi_v13-9-well2_lowproduction_short.h5') 

# Automated forecasting every day 

# Daily data input prediction 

# @profile # this code-line is called "Decorator" and used for debugging  

def daily_forecast(production_expected, field_pressure, saved_model): 

    # User defined variables 

    iterate = 30 # forecast for 30 days forward only. 

    error = 0.003 # is a changing variable based on forecast accuracy degradation 

    err_factor = 1 # polynomyal degree for regression  

    learning_rate=3e-7 # initial lr for daily re-training on new data LR(3e-7) 

     

    # Import ------------------------------------------------------------------ 

    Range = len(field_pressure) 

    actual = field_pressure.values[:,0] 

    new_model = saved_model 

    time = production_expected.values[:,0] 

    x_all = XScaler.transform(delta_fun(production_expected, Xi)) 

    y_all = YScaler.transform(delta_fun(field_pressure, Yi)) 

    truedata_df = production_expected.copy() 

    truedata_df['field_pressure']= actual 

    truedata_df.to_csv('animation/csv_export/truedata_df.csv') 

    # initialize empty variables 

    forecast_all = np.empty(shape=(0,1)) 

    P_err = P_err1 = P_err7 = P_err30 = np.empty(shape=(0,1)) 

    day1, day7, day30 = np.empty(shape=(3,0)) 

    f1, f7, f30 = np.empty(shape=(3,0)) 

    anomaly = np.empty(shape=(0,1)) 

    counter = 0 

    # Initial predictions based on model trained ------------------------------ 

    # forecast_old_all = new_model.predict(x_all) 

    # forecast_old_all = 

pd.DataFrame(YScaler.inverse_transform(forecast_old_all),columns=Yi.columns) 

    # forecast_old_all = full_fun(forecast_old_all, Yi) 
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    # looping over daily data -------------------------------------------------------- 

    for i in range(Range-iterate): 

        t_start = systime.time()         

        # predicting the input rates            

        if i<iterate: 

            g = np.poly1d(np.polyfit(time[0:i+1], production_expected.values[0:i+1,1], 

1)) 

            o = np.poly1d(np.polyfit(time[0:i+1], production_expected.values[0:i+1,2], 

1)) 

            w = np.poly1d(np.polyfit(time[0:i+1], production_expected.values[0:i+1,3], 

1)) 

        else: 

            g = np.poly1d(np.polyfit(time[i-iterate:i], production_expected.values[i-

iterate:i,1], 1)) 

            o = np.poly1d(np.polyfit(time[i-iterate:i], production_expected.values[i-

iterate:i,2], 1)) 

            w = np.poly1d(np.polyfit(time[i-iterate:i], production_expected.values[i-

iterate:i,3], 1)) 

        oo, ww, gg = o(time[0:i+iterate]), w(time[0:i+iterate]), g(time[0:i+iterate]) 

        x_all_mod_df = pd.DataFrame(np.column_stack((time[0:i+iterate], gg, oo, 

ww)), columns= production_expected.columns) 

        x_all_mod = XScaler.transform(delta_fun(x_all_mod_df, Xi)) 

        forecast = new_model(x_all_mod[i:i+iterate,:]) 

        forecast = 

pd.DataFrame(YScaler.inverse_transform(forecast),columns=Yi.columns) 

        forecast = full_fun(forecast, Yi) 

        forecast = forecast.values[:,0] 

        forecast_all = np.append(forecast_all[:i], forecast) 

        f1 = np.append(f1, forecast[0]) 

        f7 = np.append(f7, forecast[6]) 

        f30 = np.append(f30, forecast[-1])                   

         

        err1 = err(f1[i], actual[i]) 

        day1 = np.append(day1, err1)         

        if i>=6:  

            err7 = err(f7[i-6], actual[i]) 

            day7 = np.append(day7, err7) 

        if i>=iterate-1:  

            err30 = err(f30[i-iterate+1], actual[i]) 

            day30 = np.append(day30, err30)  

        if i<iterate-1: 

            if sum(day7)==0.0: day7 = np.zeros(shape=(i+1,)) 

            if sum(day30)==0.0: day30 = np.zeros(shape=(i+1,)) 
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        if i <iterate-1: 

            P_err = np.append(P_err[:i], error*forecast) 

            P_err1 = P_err7 = P_err30 = P_err 

            

        zp = np.linspace(time[0], time[i+iterate-1], i+iterate) 

         

        if i >= iterate-1:            

            z1 = np.poly1d(np.polyfit(zp[i-29:i+1], day1[-30:], err_factor))    

            z7 = np.poly1d(np.polyfit(zp[i-29:i+1], day7[-30:], err_factor))   

            z30 = np.poly1d(np.polyfit(zp[i-29:i+1], day30[-30:], err_factor)) 

            Ac = max_error(day1[-30:], z1(zp[i-29:i+1])) 

            Bc = max_error(day30[-30:], z30(zp[i-29:i+1])) 

             

            P_err1 = np.append(P_err1[:i], (z1(zp)[-

iterate+1]+np.sign(z1[0])*Ac)/100*f1[-1]) #appending the next expected error of 

next day forecast 

            P_err7 = np.append(P_err7[:i], z7(zp)[-iterate+1]/100*f7[-1]) 

            P_err30 = np.append(P_err30[:i], (z30(zp)[-

iterate+1]+np.sign(z1[0])*Bc)/100*f30[-1])                         

            errors_all_df = pd.DataFrame(np.column_stack((zp,  

                                          z1(zp),  

                                          z7(zp), 

                                          z30(zp) 

                                          )), columns=['zp','z1','z7','z30'])                     

            P_errors = pd.DataFrame(np.column_stack((P_err1,P_err7,P_err30)), 

columns=['P_err1','P_err7','P_err30'])   

            errors_all_df.to_csv('animation/csv_export/errors_all_df.csv') 

            P_errors.to_csv('animation/csv_export/P_errors.csv') 

             

            #Finding anomaly at the exact location when happening 

             

            anomaly = np.append(anomaly, (abs(err30) > abs(P_err30[-1]) or  

                                          abs(err1) > abs(P_err1[-1]) or  

                                          abs(P_err1[-1]) > abs(P_err30[-1]) 

                                          )) #  and A!=B and AA!=BB 

        else: anomaly = np.append(anomaly, False)      

           

         

        # saving data to excel ------------------------------------------------         

        x_all_mod_df['forecast_all']=forecast_all 

        x_all_mod_df.to_csv('animation/csv_export/x_all_mod_df.csv')                 

         

        alldays_df = pd.DataFrame(np.column_stack((actual[0:i+1],  

                                      f1, day1,  
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                                      f7, day7,  

                                      f30, day30,  

                                      anomaly)), 

                                  index=time[0:i+1], 

                                  columns=['actual', 

                                           'day1 pred','err1', 

                                           'day7 pred','err7', 

                                           'day30 pred','err30', 

                                           'anomaly'] 

                                  ) 

        alldays_df.to_csv('animation/csv_export/alldays_df.csv') 

         

        # setting the Learning rate in case the error is too big/small 

        if abs(day1[-1])>3.0 or sum(abs(day1[-7:])>0.1)==17: 

            learning_rate=1e-5 

            print("high lr {}".format(learning_rate)) 

        elif (abs(day1[-1])<3.0 and abs(day1[-1])>0.1): 

            learning_rate=1e-6         

        # Daily training 

        if i<iterate-1 or abs(day1[-1])>0.1:            

            modeltrain(x_all, y_all, i, learning_rate, new_model) 

            # Housekeeping: Trying to optimize excution time by cleaning old data 

stored in memory             

            del forecast, zp, g,gg, o,oo, w,ww, x_all_mod_df,x_all_mod, alldays_df, 

new_model # ,errors_all_df,P_errors,z1,z7,P_err             

            tf.keras.backend.clear_session() 

            # gc.collect() 

            new_model = 

tf.keras.models.load_model('DNNmodels/trainedmodel_multi_v13-

9_lowproduction_short_cont2.keras') 

 

        counter += 1     

        t_end = systime.time() 

        print('{} iteration, {:.2f}s'.format(i,t_end-t_start)) 

         

# @tf.function(experimental_relax_shapes=True) only works if i made my own 

manual epoch loop 

# @profile # this code-line is for debugging  

# @tf.function(reduce_retracing=True) 

def modeltrain(x, y, i, lr, new_model): 

    x = x[i,:].reshape(1,4) 

    y = y[i,:].reshape(1,1) 

    x=tf.convert_to_tensor(x) 

    y=tf.convert_to_tensor(y) 
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    new_model.compile(optimizer=tf.keras.optimizers.Adam(lr), loss='mse') 

    new_model.fit(x, y, 

                  batch_size=1, 

                  epochs=10,                    

                  verbose=0 

                  ) 

    new_model.save('DNNmodels/trainedmodel_multi_v13-

9_lowproduction_short_cont2.keras') 

 

def err(forecast, actual): 

    Error_increase = (actual-forecast)/actual*100 

    return Error_increase 

 

def lr(lr): 

    decayed_lr = 

tf.keras.optimizers.schedules.ExponentialDecay(initial_learning_rate=lr, 

                                                                decay_steps=10000, 

                                                                decay_rate=0.95, 

                                                                staircase=True)  

    optimizer = tf.keras.optimizers.Adam(decayed_lr) 

    return optimizer     

 

#%%-------------------------12----------------------------- 

daily_forecast(X_test0, Y_test0, saved_model= 

tf.keras.models.load_model('DNNmodels/trainedmodel_multi_v13-

9_lowproduction_short.h5')) 
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B. Libraries require installation. 

Package Version Package Version 

absl-py 1.4.0 pathspec 0.10.3 

alabaster 0.7.12 pcre 8.45 

arrow 1.2.3 pexpect 4.8.0 

astroid 2.14.2 pickleshare 0.7.5 

asttokens 2.0.5 pillow 9.4.0 

astunparse 1.6.3 pip 23.0.1 

atomicwrites 1.4.0 platformdirs 2.5.2 

attrs 22.1.0 pluggy 1.0.0 

autopep8 1.6.0 ply 3.11 

babel 2.11.0 poyo 0.5.0 

backcall 0.2.0 prompt-toolkit 3.0.36 

bcrypt 3.2.0 protobuf 3.19.6 

beautifulsoup4 4.11.1 psutil 5.9.0 

binaryornot 0.4.4 ptyprocess 0.7.0 

black 22.6.0 pure_eval 0.2.2 

bleach 4.1.0 pyasn1 0.4.8 

brotlipy 0.7.0 pyasn1-modules 0.2.8 

ca-certificates 2023.08.22 pycodestyle 2.10.0 

cachetools 5.3.0 pycparser 2.21 

certifi 2023.7.22 pydocstyle 6.3.0 

cffi 1.15.1 pyflakes 3.0.1 

chardet 4.0.0 pygments 2.11.2 

charset-normalizer 3.1.0 pylint 2.16.2 

click 8.0.4 pylint-venv 2.3.0 

cloudpickle 2.0.0 pyls-spyder 0.4.0 

colorama 0.4.6 pynacl 1.5.0 

columnar 1.4.1 pyopenssl 23.0.0 

comm 0.1.2 pyparsing 3.0.9 

contourpy 1.0.7 pyqt 5.15.7 

cookiecutter 1.7.3 pyqt5-sip 12.11.0 

cryptography 39.0.1 pyqtwebengine 5.15.7 

cudatoolkit 11.2.2 pyrsistent 0.18.0 

cudnn 8.1.0.77 pysocks 1.7.1 

cycler 0.11.0 python 3.9.16 

debugpy 1.5.1 python-dateutil 2.8.2 
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Package Version Package Version 

decorator 5.1.1 python-fastjsonschema 2.16.2 

defusedxml 0.7.1 python-lsp-black 1.2.1 

diff-match-patch 20200713 python-lsp-jsonrpc 1.0.0 

dill 0.3.6 python-lsp-server 1.7.1 

docstring-to-markdown 0.11 python-slugify 5.0.2 

docutils 0.18.1 pytoolconfig 1.2.5 

entrypoints 0.4 pytz 2022.7 

et-xmlfile 1.1.0 pywin32 305 

executing 0.8.3 pywin32-ctypes 0.2.0 

ffmpeg 4.2.2 pyyaml 6 

flake8 6.0.0 pyzmq 23.2.0 

flatbuffers 23.3.3 qdarkstyle 3.0.2 

flit-core 3.6.0 qstylizer 0.2.2 

fonttools 4.39.0 qt-main 5.15.2 

gast 0.4.0 qt-webengine 5.15.9 

giflib 5.2.1 qtawesome 1.2.2 

glib 2.69.1 qtconsole 5.4.0 

google-auth 2.16.2 qtpy 2.2.0 

google-auth-oauthlib 0.4.6 qtwebkit 5.212 

google-pasta 0.2.0 requests 2.28.2 

grpcio 1.51.3 requests-oauthlib 1.3.1 

gst-plugins-base 1.18.5 rope 1.7.0 

gstreamer 1.18.5 rsa 4.9 

h5py 3.8.0 rtree 1.0.1 

icu 58.2 scikit-learn 1.2.1 

idna 3.4 scipy 1.10.1 

imagesize 1.4.1 setuptools 65.6.3 

importlib-metadata 6.0.0 sip 6.6.2 

importlib-resources 5.12.0 six 1.16.0 

importlib_metadata 4.11.3 snowballstemmer 2.2.0 

inflection 0.5.1 sortedcontainers 2.4.0 

intervaltree 3.1.0 soupsieve 2.3.2. 

ipykernel 6.19.2 sphinx 5.0.2 

ipython 8.10.0 sphinxcontrib-applehelp 1.0.2 

ipython_genutils 0.2.0 sphinxcontrib-devhelp 1.0.2 

isort 5.9.3 sphinxcontrib-htmlhelp 2.0.0 

jedi 0.18.1 sphinxcontrib-jsmath 1.0.1 

jellyfish 0.9.0 sphinxcontrib-qthelp 1.0.3 

jinja2 3.1.2 sphinxcontrib-serializingh tml 1.1.5 
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Package Version Package Version 

jinja2-time 0.2.0 spyder 5.4.1 

joblib 1.2.0 spyder-kernels 2.4.2 

jpeg 9e sqlite 3.40.1 

jsonschema 4.17.3 stack_data 0.2.0 

jupyter_client 7.4.9 string-color 1.2.3 

jupyter_core 5.2.0 tensorboard 2.10.1 

jupyterlab_pygments 0.1.2 tensorboard-data-server 0.6.1 

keras 2.10.0 tensorboard-plugin-wit 1.8.1 

keras-preprocessing 1.1.2 tensorflow 2.10.1 

keyring 23.4.0 tensorflow-addons 0.21.0 

kiwisolver 1.4.4 tensorflow-estimator 2.10.0 

lazy-object-proxy 1.6.0 tensorflow-intel 2.11.0 

lerc 3 tensorflow-io-gcs-filesys 0.31.0 

libclang 15.0.6.1 termcolor 2.2.0 

libdeflate 1.17 text-unidecode 1.3 

libffi 3.4.2 textdistance 4.2.1 

libiconv 1.16 threadpoolctl 3.1.0 

libogg 1.3.5 three-merge 0.1.1 

libpng 1.6.39 time-profiler 0.0.2 

libsodium 1.0.18 tinycss2 1.2.1 

libspatialindex 1.9.3 toml 0.10.2 

libtiff 4.5.0 tomli 2.0.1 

libvorbis 1.3.7 tomlkit 0.11.1 

libwebp 1.2.4 toolz 0.12.0 

libwebp-base 1.2.4 tornado 6.2 

libxml2 2.9.14 tqdm 4.65.0 

libxslt 1.1.35 traitlets 5.7.1 

line_profiler 4.1.1 typeguard 2.13.3 

lxml 4.9.1 typing-extensions 4.5.0 

lz4-c 1.9.4 typing_extensions 4.4.0 

markdown 3.4.1 tzdata 2022g 

markupsafe 2.1.2 ujson 5.4.0 

matplotlib 3.7.1 unidecode 1.2.0 

matplotlib-inline 0.1.6 urllib3 1.26.14 

mccabe 0.7.0 vc 14.2 

memory_profiler 0.58.0 vs2015_runtime 14.27.29016 

mistune 0.8.4 watchdog 2.1.6 

mypy_extensions 0.4.3 wcwidth 0.2.5 

nbclient 0.5.13 webencodings 0.5.1 
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Package Version Package Version 

nbconvert 6.5.4 werkzeug 2.2.3 

nbformat 5.7.0 whatthepatch 1.0.2 

nest-asyncio 1.5.6 wheel 0.38.4 

numpy 1.24.2 win_inet_pton 1.1.0 

numpydoc 1.5.0 wincertstore 0.2 

oauthlib 3.2.2 wrapt 1.15.0 

openpyxl 3.1.1 xz 5.2.10 

openssl 1.1.1w yaml 0.2.5 

opt-einsum 3.3.0 yapf 0.31.0 

packaging 23 zeromq 4.3.4 

pandas 1.5.3 zipp 3.15.0 

pandocfilters 1.5.0 zlib 1.2.13 

paramiko 2.8.1 zstd 1.5.2 

parso 0.8.3   
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C. CMG simulation run summary. 

Field Total  Fluid  

 Oil Gas Water 

 ------- ------- ------- 

 (MSM3) (MMSM3) (MSM3) 

Cumulative Production 4210 1051.1 158.69 

Cumulative Injection NA 0 510.82 

Cumulative Gas Lift NA 0 NA 

Cumulative Aquifer Influx NA NA 5390.4 

Current Fluids In Place 7745 1055.7 12189 

Production Rates 0.9 0.13866 0.41385 

Injection Rates NA 0 0.30047 

 

Timesteps:   5016  Newton Cycles:     5024  Cuts:      0  Solver Iterations:        

37340 

  Average Implicitness    : 0.029 

  Fluid Component Model   : BLACKOIL (SINGLE-P) 

  Material Balances (owg): 1.000 1.000 1.000 

  Average Active Blocks:         783 Average Non-BHP Active Wells:     4 

  Total Blocks :        1092 Total Wells :     5 

  Active Blocks:         783 Non-BHP Active Wells:     5 

  Time at end of simulation:   5000.00     (days)    

  Average reservoir pressure excluding water zone: 25098.56 (kPa)     

  Total Number of Solver Failures:       0  Stalls:       0  ITERMAX Reached:       0 

  Jacobian Domains      1   

  Total lstpro/lstpar calls:     2  (    3) 

  Linear Solver: Aimsol 

  Preconditioner Ordering: REDBLACK 

  Preconditioner Degree           1 

  KMP_AFFINITY: Default 

  OMP_SCHEDULE: Default 

  Max Impl Blocks:       38  %Impl:  4.9%  (TS,CUT,NCYC): (  4929, 0,  1 ) 

  Max Solver Iterations (TS,CUT,NCYC):      11 (     1, 0,  1 ) 

  Number of threads set:    1 

  Total number of cpus:   12 

  Memory Usage Peak:       72 MB on TS:  3729 TS 1 Peak:       42 MB  Average:       

68 MB  VM Size:       79 MB 

  Memory Usage Final Size:         73 MB 

  Host computer: MYDUCK 

  CPU Time:            12.00 seconds 

  Elapsed Time:        51.73 seconds 

  End of Simulation: Normal Termination 


