

USING ANOMALY DETECTION WITH MACHINE LEARNING BY

ASSESSING THE BOTTOM HOLE PRESSURE CHANGES

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF

MIDDLE EAST TECHNICAL UNIVERSITY

BY

AHMED MAGDY A. E. KHALIL

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR

THE DEGREE OF MASTER OF SCIENCE

IN

PETROLEUM AND NATURAL GAS ENGINEERING

DECEMBER 2023

Approval of the thesis:

USING ANOMALY DETECTION WITH MACHINE LEARNING BY

ASSESSING THE BOTTOM HOLE PRESSURE CHANGES

submitted by AHMED MAGDY A. E. KHALIL in partial fulfillment of the

requirements for the degree of Master of Science in Petroleum and Natural Gas

Engineering, Middle East Technical University by,

Prof. Dr. Halil Kalıpçılar

Dean, Graduate School of Natural and Applied Sciences

Assoc. Prof. Dr. İsmail Durgut

Head of the Department, Petroleum and Natural Gas

Engineering Dept., METU

Assoc. Prof. Dr. Çağlar Sınayuç

Supervisor, Petroleum and Natural Gas Engineering Dept.,

METU

Examining Committee Members:

Asst. Prof. Dr. Mehmet Onur Doğan
Petroleum and Natural Gas Engineering Dept., METU

Asst. Prof. Dr. Doruk Alp
Petroleum and Natural Gas Engineering Dept., METU NCC

Date: 08.12.2023

Assoc. Prof. Dr. Çağlar Sınayuç

Petroleum and Natural Gas Engineering Dept., METU

iv

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also declare

that, as required by these rules and conduct, I have fully cited and referenced

all material and results that are not original to this work.

Name Last name: Ahmed Khalil

Signature:

v

ABSTRACT

USING ANOMALY DETECTION WITH MACHINE LEARNING BY

ASSESSING THE BOTTOM HOLE PRESSURE CHANGES

Khalil, Ahmed Magdy A. E.

Master of Science, Petroleum and Natural Gas Engineering

Supervisor: Assoc. Prof. Dr. Çağlar Sınayuç

December 2023, 77 pages

For achieving sustainability in producing from petroleum systems, it is vital to have

a field model as close as possible to the real situation in order to monitor production

and injection performance. In this study, it is aimed to develop a machine learning

model that can be used as a representative performance indicator and coupled with

an anomaly detection method. Machine learning consists of a supervised learning

DNN model with four inputs and one output. Inputs are time, oil, water, and gas rates

from well production. Output is the forecasted pressure performance of the well.

Anomaly detection is developed by observing the predicted next day forecast and

thirtieth day forecast given the previous data, after which it is compared with the

actual pressures corresponding with the dates of prediction. Using this algorithm, it

will help us forecast pressure or production, evaluate proposed scenarios, and

identify anomaly pressures due to unaccounted reservoir characteristics between

wells (like faults, permeability, or porosity changes). Additionally, the given model

algorithm will be able to be tested on many different wells in a relatively short time,

giving headroom to build an efficient development plan. Proposed scenarios can

consist of new infill wells, changes in operational conditions, or changes in

injection/production patterns. The thesis developed and tested an algorithm to

forecast and find anomaly. It showed accurate and robust results that match with the

results of a commercial simulator in spite of the complexity of the reservoir and the

fitting procedure of the machine learning model.

vi

Keywords: Petroleum systems, Pressure Performance, Machine Learning, Anomaly

Detection, Proxy Model.

vii

ÖZ

MAKİNE ÖĞRENME İLE ANOMALİ TESPİTİ UYGULAYARAK KUYU

DİBİ BASINÇ DEĞİŞİKLİKLERİNİ DEĞERLENDIRMEK

Khalil, Ahmed Magdy A. E.

Yüksek Lisans, Petrol ve Doğal gaz Mühendisliği

Tez Yöneticisi: Doç. Dr. Çağlar Sınayuç

Aralık 2023, 77 sayfa

Petrol sistemlerinden üretimde sürdürülebilirliğin sağlanması için üretim ve

enjeksiyon performansının izlenebilmesi amacıyla gerçeğe mümkün olduğunca

yakın bir saha modelinin olması hayati önem taşımaktadır. Bu çalışmada, temsili bir

performans göstergesi olarak kullanılabilecek ve bir anormallik tespit yöntemini

kullanan bir makine öğrenme modelinin geliştirilmesi amaçlanmaktadır. Makine

öğrenimi, dört girdi parametresi ve bir çıktı parametresi olan denetimli öğrenme

DNN (derin sinir ağı) modelinden oluşur. Kuyu üretiminden elde edilen girdiler

zaman, petrol, su ve gaz oranlarıdır. Çıktı kuyunun tahmin edilen basınç

performansıdır. Anormallik tespiti, eldeki verilere göre tahmin edilen ertesi gün ve

otuzuncu gün tahmininin gözlemlenmesi ve ardından tahmin tarihlerine karşılık

gelen gerçek basınç değerleri ile karşılaştırılmasıyla geliştirilir. Bu algoritmayı

kullanarak, basınç veya üretimi tahmin etmemize, önerilen senaryoları

değerlendirmemize ve kuyular arasındaki hesaba katılmayan rezervuar

özelliklerinden (faylar, geçirgenlik veya gözeneklilik değişiklikleri gibi)

kaynaklanan anormal basınç değerlerini belirlememize yardımcı olacaktır. Ek

olarak, verilen model algoritması nispeten kısa bir sürede birçok farklı kuyuda test

edilebilmekte ve verimli bir geliştirme planı oluşturmak için imkan tanımaktadır.

Önerilen senaryolar yeni enjeksiyon kuyularından, işletme koşullarındaki

değişikliklerden veya enjeksiyon/üretim modellerindeki değişikliklerden oluşabilir.

viii

Bu tezde, anormalliği tahmin etmek ve bulmak için bir algoritma geliştirilmiş ve test

edilmiştir. Rezervuarın karmaşıklığına ve makine öğrenimi modelinin eşleşme

prosedürüne bağlı olarak ticari simulator sonuçları ile karşılaştırıldığında doğru ve

sağlam sonuçlar göstermiştir.

Anahtar Kelimeler: Petrol sistemleri, Basınç Performansı, Makine Öğrenmesi,

Anomali Tespiti, Proxy Modeli

ix

To my Grandmother

x

ACKNOWLEDGMENTS

The author wishes to express his deepest gratitude to his supervisor Assoc. Prof. Dr.

Çağlar Sınayuç for their guidance, advice, criticism, encouragements, and insight

throughout the research.

I present great thanks to Asst. Prof. Dr. Mehmet Onur Doğan, Asst. Prof. Dr.

Doruk Alp, Asst. Prof. Dr. Emre Artun for their valuable insights. As well as Prof.

Dr. Serhat Akın for using his geophysical model.

I want to express my deep gratitude to all my instructors at METU Ankara and

METU NCC, particularly those in the Department of Petroleum & Natural Gas

Engineering. Their invaluable contributions, their patience with my shortcoming,

and encouragement that have been instrumental in shaping my academic journey and

professional development. We did not only take knowledge, but also absorbed

morals and manners from you. As you plant the seed of knowledge into us, shall it

grow and mature to be harvested and benefit the whole world.

I extend my heartfelt thanks to all my colleagues from METU, specifically those in

the Department of Petroleum & Natural Gas Engineering, for their unwavering

support throughout my undergraduate and graduate studies.

Finally, I also acknowledge METU Graduate School of Natural and Applied

Sciences for allowing me the opportunity to obtain my M.S. degree.

xi

TABLE OF CONTENTS

ABSTRACT ... v

ÖZ ... vii

ACKNOWLEDGMENTS ... x

TABLE OF CONTENTS ... xi

LIST OF TABLES ... xiii

LIST OF FIGURES ... xiv

LIST OF ABBREVIATIONS ... xvii

CHAPTERS

1 INTRODUCTION ... 1

2 LITERATURE REVIEW .. 3

2.1 AI and ML .. 3

2.1.1 AI applications in petroleum engineering ... 5

2.2 Anomaly Detection .. 9

2.2.1 Anomaly Detection in petroleum engineering 10

2.2.2 Deepwater Facility .. 11

2.3 Conventional approaches ... 13

3 STATEMENT OF THE PROBLEM ... 15

4 Hypothetical model .. 17

4.1 Reservoir model construction ... 17

4.1.1 Geological design .. 18

4.1.2 Development plan ... 22

4.2 Machine Learning Model ... 26

4.2.1 Input data .. 26

xii

4.2.2 Extrapolating new inputs ... 29

4.2.3 ML Model construction ... 29

4.2.4 Output data .. 34

5 RESULTS AND DISCUSSIONS ... 37

5.1 Reservoir simulation scenarios pressures ... 37

5.2 ML and Anomaly detection performance ... 39

5.2.1 Algorithm stage 1 .. 39

5.2.2 Algorithm stage 2 .. 42

5.2.3 Algorithm stage 3 .. 44

5.3 Other ML models performance ... 51

5.3.1 LSTM .. 51

5.3.2 Autoencoders – Unsupervised anomaly detection. 51

6 CONCLUSION ... 53

7 RECOMMENDATIONS FOR FUTURE WORK .. 55

REFERENCES .. 57

APPENDICES ... 61

A. Code Algorithm .. 61

B. Libraries require installation. .. 73

C. CMG simulation run summary. .. 77

xiii

LIST OF TABLES

TABLES

Table 2.1.Training and Testing Performances of Different Neural Network (Artun,

2022). .. 7

Table 4.1. Grid Array properties ... 21

Table 4.2 Reservoir fluid volume ... 22

Table 4.3. Wells perforation and depth ... 25

Table 4.4. Preprocessed data stages .. 29

Table 5.1. Model predictions, error calculated, and anomalies found and shown

graphically. .. 50

xiv

LIST OF FIGURES

FIGURES

Figure 2.1. Investigation of the proxy model and (CMG) results based (Ahmadi et

al., 2018). ... 6

Figure 2.2. Real vs predicted cross-plots of (a) net present value (NPV) and (b)

incremental oil recovery for the cyclic nitrogen injection problem (Artun, 2022). .. 7

Figure 2.3. Evaluation surface for search-2. Optimum location is found to be (x-

grid 7) (y-grid 12) (Akin et al., 2010) ... 8

Figure 2.4. KD-3 Well Future Flow Rates Prediction (Ariturk, 2019). 9

Figure 2.5. Visualization of normal and abnormal records in the gas data set

(Alharbi et al., 2022). .. 10

Figure 2.6. Model deployment solution using cloud computing platform (Feder,

2020). ... 12

Figure 2.7. Structures of forward and inverse-looking AI model (Ertekin & Sun,

2019) .. 14

Figure 4.1. Simulated reservoir model .. 18

Figure 4.2. Grid-top first layer .. 19

Figure 4.3. Grid-top second layer .. 19

Figure 4.4. Grid-top third layer ... 19

Figure 4.5. Grid-top fourth layer ... 20

Figure 4.6. Grid-top fifth layer .. 20

Figure 4.7. Grid-top sixth layer ... 20

Figure 4.8. Permeability distribution ... 21

Figure 4.9. PVT table oil-gas .. 22

Figure 4.10. Scenario 1: complexity .. 23

Figure 4.11. Scenario 2: complexity .. 24

Figure 4.12. Scenario 3: complexity .. 25

Figure 4.13. Added 1.0% gaussian noise to pressure output. 28

Figure 4.14. Example of layers constructed shapes. ... 30

Figure 4.15. SGD (left) versus Adam (right) .. 31

Figure 4.16. Loss vs Learning rate .. 32

xv

Figure 4.17. Loss vs learning rate ... 33

Figure 4.18. Tensorboard utility for hyper-parameters observation 33

Figure 5.1. Normal expected pressure (Blue) versus Abnormal pressure (Orange) 37

Figure 5.2. Scenario 2: Fixed oil rate production of two wells. 38

Figure 5.3. Scenario 3: pressure and production rate vs time. Well-1 pressure

before (purple) and after (dashed red) anomaly introduced. Oil rate for Well-1

(Orange), Well-2 (black), Well-3 (brown), Well-5(red), and water injection rate for

Well-4 (Dark blue). Water cut in Well-1 (sky blue). .. 38

Figure 5.4. Loss decreases with time during model training. 39

Figure 5.5. ML model forecasting pressure performance between day 1600 to day

2000. .. 40

Figure 5.6. Scenario 1 identification of anomaly, and training for adjustment. 40

Figure 5.7. One-time trained model struggling to forecast abnormal pressures. 41

Figure 5.8. No noise inputs and outputs data and the model performance. 41

Figure 5.9. Noise (1%) applied in inputs and outputs data and the model

performance. ... 41

Figure 5.10. Scenario 2 initial model fitting. .. 42

Figure 5.11. High LR (1e-5) and the model adjustment to pressure change 43

Figure 5.12. Low LR (1e-7) and the model adjustment to pressure change 43

Figure 5.13. Dynamic LR, a step wise change in LR to allow model to learn faster

with high error, and slowdown in learning when error is relatively smaller. 44

Figure 5.14. Scenario3: model trained initially on 50 days and its forecast error is

less than 0.3% (13 psi) for well-1. .. 45

Figure 5.15. Well-1 algorithm detected error during the whole simulation run. Red

arrows point towards error catched. .. 45

Figure 5.16. Case 1, Well-1 algorithm detected error on day 921. 46

Figure 5.17. Algorithm regression on well-1 errors and extrapolating to find

anomalies. ... 46

Figure 5.18. Case 2, Well-2 prediction found anomaly on day 2016. 47

Figure 5.19. Case 3 and Case 4 anomaly detected by well-1 forecast performance

graph on day 3326 and 3780 respectively. .. 48

Figure 5.20. Case 5 anomaly detected on day 4501. .. 49

xvi

Figure 5.21. LSTM predicts pressure as constant and place it where it minimizes

the error as much as possible during training. ... 51

Figure 5.22. Autoencoder recognizes no anomaly on the left example and some

parts of anomaly on the right example. ... 52

xvii

LIST OF ABBREVIATIONS

ABBREVIATIONS

AI Artificial Intelligence

ML Machine Learning

DNN Deep Neural Network

SGD Stochastic Gradient Descent

Adam Adaptive moment estimation

LR Learning Rate

LSTM Long Short Term Memory

RNN Recurrent Neural Network

bbl/d Barrel per day

ft feet

m meter

BHP Bottom Hole Pressure

CMG Computer Modelling Group Ltd.

psi Pounds per square inch

M unit A thousand of the unit

MM unit A million of the unit

MAE Mean Absolute Error

MSE Mean Square Error

RMSE Root Mean Square Error

1

CHAPTER 1

1 INTRODUCTION

Time is a valuable resource. As time moves in one direction, we are presented with

many decisions to take. Some may be small and intuitive, others are life changing,

but the only truth is that they cannot be taken back. That is why all resources are

used to make the right decision. Engineering simulation programs are used for

example, to simulate actual data where it gives us an opportunity to test decisions

before applying it in real life. However, it comes at the cost of more time. Here a

proxy model is presented where an algorithm is designed to reduce the time used on

simulation and increase the decision window.

AI and ML have recently been the focus to be integrated in every industry to

cooperate with big data analytics as more data is available frequently thanks to

technological advancements in equipment’s, apparatuses, and automation. Oil and

gas industry is no different. As it has even more data, it is integrated into the oil and

gas industry as well. From well placement (Akin et al., 2010) to economic decisions

and reservoir management (Ertekin & Sun, 2019) as seen more and more lots of

sectors are joining and adopting AI in their work. Learning and applying AI becomes

a useful tool for engineers cooperating with conventional methods to assist them

designing and developing more sophisticated solutions.

Multiple proxy model studies have been presented in literature that predict future

performance. Forecasting the Water-Cut in carbonate reservoir, oil recovery of a

single cyclic nitrogen injection, or cumulative gas recovery from shale wells are all

successfully implemented machine learning models (Artun, 2022). Additionally, a

heat-map generated for optimizing well placement (Akin et al., 2010), and flow rates

optimizations in a geothermal field (ARITURK, 2019). A second issue is identifying

2

anomalies early before it becomes a major problem. This is an issue of safety and

economics that solving it means a safe and smooth non-interrupted operational

environment that increases overall economical sustainability for longer. In petroleum

engineering, anomaly detection has been used to identify irregularities in gas flow

rate (Alharbi et al., 2022) and unplanned downtime (Feder, 2020).

Presenting here a hypothetical model with data obtained from a numerical simulation

model and given to an algorithm. The algorithm includes a machine learning proxy

model trains and forecasts, and an Anomaly detection that works coherently with the

proxy model and tries to alarm you as soon as an anomaly is risen to take the right

decisions. It can also be scaled to any number of wells. With the detection method

for sudden and slight changes in pressure data.

Here a hypothetical model is introduced and tested within the bounded complexity

of the geological model created for it. The introduced scenarios are meant to simulate

different development plans that can be applied and extended in the field. The ML

model is developed in a progressive way to show the stages of implementing a proxy

model. Finally, anomaly detection scans through the forecasted and actual pressure

data to find any potential anomalies not introduced during training.

3

CHAPTER 2

2 LITERATURE REVIEW

2.1 AI and ML

Artificial intelligence (AI) is a field of computer science that focuses on creating

intelligent machines that can mimic human behavior and thought processes such as

learning, reasoning, adapting, and self-correction (Noble & Noble, 2023). It involves

the development of algorithms and software that enable computers to process large

amounts of data, learn from patterns or features in the data, and make decisions or

predictions based on that information.

AI encompasses a wide range of techniques and technologies, including machine

learning, neural networks, expert systems, and natural language

processing (Covarrubias-Moreno, 2022). The development of AI has had a

significant impact on various sectors, including government, healthcare,

transportation, and security (Ashri, 2020). In medicine, AI has been used to improve

diagnosis, prognosis, and treatment, leading to greater accuracy and reliability in

healthcare (Freitas, 2018). AI has also found applications in forensic science, aiding

in crime scene investigation, DNA analysis, pattern recognition, and image

processing (Ahmed Alaa El-Din, 2022). While AI has its limitations, it serves as a

supplementary tool to human specialists and has the potential to contribute

significantly to various fields.

Machine learning is a branch of artificial intelligence that uses data and algorithms

to enable machines to learn from experience and perform tasks that would normally

require human intelligence. For example, machine learning can help machines

recognize faces, translate languages, recommend products, and drive cars (Yadav et

al., 2022).

4

There are different types of machine learning, depending on how the machines learn

from the data (IBM, 2023). Some of the most common types are:

• Supervised learning: The machine learns from labeled data, which means the

data has predefined categories or outcomes. The machine uses the data to

learn a function that maps the input to the output. The goal is to make accurate

predictions or classifications for new data. For example, supervised learning

can be used to classify spam emails, predict house prices, or recognize

handwritten digits.

• Unsupervised learning: The machine learns from unlabeled data, which

means the data has no predefined categories or outcomes. The machine uses

the data to discover patterns, structures, or features that are not obvious to

humans. The goal is to find hidden insights or groupings in the data. For

example, unsupervised learning can be used to cluster customers, detect

anomalies, or compress images.

• Reinforcement learning: The machine learns from its own actions and

feedback from the environment, which means the data is generated by the

machine’s interaction with the environment. The machine uses the data to

learn a policy that maximizes a reward or minimizes a cost. The goal is to

find the optimal behavior for a given situation. For example, reinforcement

learning can be used to play games, control robots, or optimize traffic

(Coursera, 2023).

Machine learning has many applications in various domains, such as business,

healthcare, education, and entertainment. Some of the benefits of machine learning

are (Coursera, 2023):

• It can automate tasks that are tedious or complex for humans.

• It can improve the quality, efficiency, and accuracy of products and services.

• It can enhance the creativity, innovation, and personalization of human

endeavors.

5

• It can generate new knowledge and insights from large and diverse data

sources.

However, machine learning also poses some challenges and risks, such as (Coursera,

2023):

• It can be biased, unfair, or unethical if the data or algorithms are not properly

designed, tested, or regulated.

• It can be vulnerable, unreliable, or harmful if the data or algorithms are

corrupted, manipulated, or hacked.

• It can be complex, opaque, or unpredictable if the data or algorithms are not

well understood, explained, or verified.

• It can be disruptive, competitive, or threatening if the data or algorithms are

not aligned with human values, goals, or interests.

2.1.1 AI applications in petroleum engineering

AI algorithms, including machine learning (ML), have been used to integrate data-

driven modeling and ML algorithms in different petroleum engineering challenges,

such as exploration and development, reservoir engineering, and well logging. The

use of AI in petroleum engineering aims to enhance efficiency, optimize production,

and provide valuable insights for decision-making in the industry. Some examples

where AI has been applied in petroleum engineering are,

1- Gas injection techniques, CO2 injection enhanced oil recovery (EOR)

procedures (Hadavimoghaddam et al., 2023). “Despite their black-box

nature, ANN models can understand the non-linear patterns that underpin

large datasets, making them suitable for a wide range of subsurface issues”

Hadavimoghaddam explains showing proxy model prediction accuracy for

oil production rate that stayed within 5% error (Figure 2.1).

6

2- Reservoir management (Lobut & Artun, 2023). In their paper titled

“Machine-Learning Based Selection of Candidate Wells for Extended Shut-

In Due to Fluctuating Oil Prices” with the use of an unsupervised machine

learning they categorized which well groups should shut-in given the

information data from an old (50+ years) production and over 150 wells.

3- Forecasting reservoir performance. Artun (2022) after testing through

different hyperparameters such as number of layers and neurons, he landed

on a neural network with 2 layers and neurons of 40-25. Mostly seen a higher

𝑅2 accuracy with more layers and neurons (Table 2.1). The chosen neural

network had the most accurate for both mainly focused variables (Net Present

Value and Incremental Recovery) (Figure 2.2).

Figure 2.1. Investigation of the proxy model and (CMG) results based (Ahmadi et

al., 2018).

7

Figure 2.2. Real vs predicted cross-plots of (a) net present value (NPV) and (b)

incremental oil recovery for the cyclic nitrogen injection problem (Artun, 2022).

Table 2.1.Training and Testing Performances of Different Neural Network (Artun,

2022).

8

2.1.1.1 Well placement.

Akin et al. (2010), in their paper “Optimization of well placement geothermal

reservoirs using artificial intelligence”, introduces a framework that employs

artificial neural networks and an optimization algorithm to determine the optimal

injection well location in complex carbonate geothermal reservoirs. The results

indicate that this approach effectively narrows down potential regions for optimum

well placement, offering a feasible alternative to exhaustive searches. Additionally,

the study underscores the importance of considering design parameters and injection

flow rates when optimizing well locations within such reservoirs.

Figure 2.3. Evaluation surface for search-2. Optimum location is found to be (x-grid

7) (y-grid 12) (Akin et al., 2010)

2.1.1.2 Optimizing Flow Rates.

Arıtürk (2019), in his thesis “Optimizing the Production and Injection Wells Flow

Rates in Geothermal Field Using Artificial Intelligence”, demonstrates that

employing Artificial Intelligence (AI) and machine learning (ML) techniques can

9

effectively predict future production and injection flow rates in geothermal fields.

By utilizing reliable field data, AI-based models outperform conventional methods,

addressing challenges such as gas presence, uncertain reservoir boundaries, and

non-isothermal fluid flow (ARITURK, 2019). These findings offer a data-driven

approach for optimizing power plant efficiency and continuous energy generation

in geothermal systems. An example of flow rates prediction in KD-3 well and data

set splitting for training and testing (Figure 2.4).

Figure 2.4. KD-3 Well Future Flow Rates Prediction (Ariturk, 2019).

2.2 Anomaly Detection

Anomaly detection is the process of identifying unexpected patterns in data. It is a

topic of growing interest due to its applicability in various fields such as intrusion

detection, fraud detection, fault detection, and system health monitoring. These

anomalies can be either positive or negative, but in all cases, their detection is crucial

for decision-making processes. This is particularly true in the petroleum industry,

where heavy extraction machinery like turbomachines is monitored by numerous

sensors to prevent damage (Martí et al., 2015). The authors introduce a new approach

for efficient anomaly detection in turbomachines, combining the Yet Another

Segmentation Algorithm (YASA) with a one-class support vector machine. This

method addresses the challenge of limited labeled training data. The effectiveness of

10

this approach is demonstrated through comparative studies with other methods on

benchmark problems and a real-life application related to oil platform

turbomachinery anomaly detection.

2.2.1 Anomaly Detection in petroleum engineering

Alharbi et al. (2022), in their paper “Explainable and Interpretable Anomaly

Detection Models for Production Data” paper concludes that establishing trust in

machine-learning models is essential for driving the fourth industrial revolution

(Alharbi et al., 2022). While white-box models offer transparency and

understandability (e.g., as if-then rules), explaining the decisions of black-box

models remains challenging. Through a comprehensive analysis of various models

on production data sets, the study emphasizes the significance of identifying

anomalies to ensure operational safety and well performance. Metrics such as F1

score, and complexity were used to compare model performance. The results reveal

variations in performance across different models and data sets. The study also

highlights the importance of local and global analysis for understanding model

decisions. The findings underscore that model selection should consider both

prediction performance and interpretability, aligning with the assertion that the

highest holdout accuracy doesn't necessarily indicate trustworthiness.

Figure 2.5. Visualization of normal and abnormal records in the gas data set (Alharbi

et al., 2022).

11

In the paper it shows how white-box models sometimes outperform black-box

models in anomaly detection tasks. Therefore, in this study, a white-box algorithm

for anomaly detection is built from scratch to fit and work with the ML model.

Anomaly detected regions colored is also inspired to be shown in the results plot.

2.2.2 Deepwater Facility

The deepwater facility has multiple sensor data for many aspects of their system,

including equipment measurements and health, trip sittings (Feder, 2020). Often

those sensors can falsely trigger the alarm system that causes unplanned shutdown.

Unplanned downtime is contributed by automation hardware failure, equipment

failure, process trips, and production ramp-up. According to the alarm database,

there were several incidents of unexpected shutdowns around these critical

components that caused negative consequences such as delayed production, total

facility closure, reduced sales volume, and higher operational costs. The ML solution

is then introduced to:

• Ingest numerous sensor data.

• Generate a single alarm indicating the health of a particular system or piece

of equipment.

• Predict abnormal events that could lead to a shutdown.

• Potentially provide insight to prevent upcoming shutdown through root-

cause analysis.

The anomaly detection based on autoencoder, and principal component analysis

algorithms were found to outperform other algorithms given the type of data. Using

statistical analysis on historical alarm data, several subsystems were identified for

the purpose of achieving reliable and robust predictions. This process incorporated

both process knowledge and critical equipment sensor data into machine learning

models for anomaly detection. These models, trained on historical records, were

designed to monitor patterns in sensor data in a multivariate setting and represent

12

system health through a single indicator known as an anomaly score. This real-time

prediction of anomalous behavior is crucial. When the goal is to reduce operational

and surveillance costs, it’s essential to proactively detect and diagnose unplanned

shutdowns. In this context, optimizing the maintenance of critical equipment can

significantly contribute to this effort.

This ML framework (Figure 2.6) is somewhat like this study algorithm where after

processing the real-time data the algorithm is then automatically choose whether to

be trained or deployed for prediction. The choice is based on the amount of error

found from the last observation.

Figure 2.6. Model deployment solution using cloud computing platform (Feder,

2020).

13

2.3 Conventional approaches

Some conventional methods for predicting the production of hydrocarbon resources,

such as decline-curve analysis and material balance, are not reliable in some

situations because of the complex features of these systems. Researchers have tried

to improve these methods, but there are still many challenges to overcome. Factors

such as adsorption/desorption, turbulent flow in tiny pores, flow dynamics in

fractures, and geomechanical effects due to fracturing make it difficult to build

accurate numerical models of the reservoirs (Al-Alwani et al. 2019). However, recent

advances in data collection, processing, and data-driven model building have

encouraged new attempts to enhance the modeling of these problems. Therefore,

there has been a growing number of publications that demonstrate the use of machine

learning algorithms to develop forecasting models for hydrocarbon resources(Artun,

2022).

AI models demonstrate their benefits in terms of rapid computational efficiency and

robust adaptability. Nonetheless, it's important to note that intelligent systems cannot

entirely supplant traditional reservoir engineering approaches, including high-

fidelity numerical simulation models and analytical tools.

While AI models significantly outpace high-fidelity numerical models in terms of

computational speed, it's crucial to recognize that intelligent systems require pre-

training before they can be employed to address a reservoir engineering challenge.

Even for well-established expert systems, there are always inherent error margins

that must be considered (Ertekin & Sun, 2019).

14

Figure 2.7. Structures of forward and inverse-looking AI model (Ertekin & Sun,

2019)

15

CHAPTER 3

3 STATEMENT OF THE PROBLEM

“Information is the oil of the 21st century, and analytics is the combustion engine.”

A quote by Peter Sondergaard can describe the data-driven world we live in. As

technology advances, we see more tools and equipment that facilitate data extraction.

Still, they are imprecise noisy-data, due to human and machine errors, that can lead

to ambiguous interpretation. The main objective is to develop a machine learning

model that can assess reading the pressure data of a petroleum field. It can detect any

anomaly introduced in pressure readings by forecasting the near future pressure data

then comparing it with the corresponding actual pressure data that measured from

wells. This model will help notify engineers about any sudden and, to a certain

extent, the subtle change in pressure from any of the existing wells.

17

CHAPTER 4

4 Hypothetical model

The main idea here is to design a well-fit proxy model to predict the bottom hole

pressure of a well and is sensitive enough to catch anomalies through pressure

readings. The proxy model built is a Deep Neural Network (DNN) that takes input

data from field production (time, oil rate, water rate, gas rate) and its output forecast

the production pressure for the near future. Firstly, in order to fit and train the model,

a simulation test environment that can be controlled is built to be the source of the

actual data. For that a complex geophysical system was designed on CMG reservoir

simulation that is capable to produce multiple scenarios that involve multiple wells

and geophysical properties. Secondly, a general machine learning model is built

using Tensorflow that will be trained on the data and will be the solution for a fast

reservoir performance metric for daily use. The model is applied, monitoring the

performance of each well individually. Thirdly, manually changing the hyper-

parameters of the model to fit the performance and match complexity of the well and

reservoir. Finally, the ML output is compared to the actual data from the simulation

and tweaked so that it matches perfectly and can show anomaly as early as possible.

4.1 Reservoir model construction

The geophysical reservoir model was imported from Middle East Technical

University, Petroleum and Natural Gas Engineering department course

(Optimization of petroleum recovery processes) and edited accordingly. The reason

this model is used is because of its structural complexity to be as close as real field

situation.

18

Figure 4.1. Simulated reservoir model

4.1.1 Geological design

4.1.1.1 Reservoir dimensions

There are mainly 6 layers, each differing in its own thickness and reservoir

properties. Grid type is Cartesian 13 x 14 x 6 that makes a cuboid shape of 1092

blocks. However, some blocks were deactivated to give us the irregular shape in

(Figure 4.1) with total 783 blocks active. The reservoir measures bulk area of

770,000 𝑚2 (1040 𝑚 ∗ 740 𝑚), with a gross thickness 460 𝑚.

19

Figure 4.2. Grid-top first layer

Figure 4.3. Grid-top second layer

Figure 4.4. Grid-top third layer

20

Figure 4.5. Grid-top fourth layer

Figure 4.6. Grid-top fifth layer

Figure 4.7. Grid-top sixth layer

21

4.1.1.2 Reservoir properties

Permeability is isotropic in each layer by itself but there are isolated sections where

permeability differs (Figure 4.8). The overall porosity, permeability, and thickness

of each layer is different (Table 4.1). The gas-oil contact and water-oil contact were

defined at (3100 m) and (3385 m) respectively. The reservoir is initially saturated as

pressure is less than bubble point pressure. There is Carter-Tracy (Infinite extent)

aquifer support attached to the last layer of the reservoir.

Figure 4.8. Permeability distribution

Table 4.1. Grid Array properties

22

Figure 4.9. PVT table oil-gas

Table 4.2 Reservoir fluid volume

Item Unit Value

Total oil in place 𝑚3 1.20E+07

Total water in place 𝑚3 6.45E+06

Total gas in place 𝑚3 2.11E+09

HC. Pore Volume 𝑀𝑚3 17520

Total Pore Volume. 𝑀𝑚3 23944

4.1.2 Development plan

Here, the idea is to have each well producing oil at a fixed rate different from other

wells, while observing pressure change in BHP. Production rates were chosen to be

the controllable variable, so well production and injection values are fixed and

pressure performance during field life is observed. After that, 5 main parameters are

exported to an Excel file to be used later by the ML model.

Many scenarios were developed for testing to make the proxy model more complex

and prove that it can handle multi-well design field. However, it summarizes the

scenarios development into 3 main algorithm progression check points.

23

4.1.2.1 Simulated scenarios

In order to advance in the proxy model to handle a verity of different fields with their

different needs, multiple scenarios are made in ascending order of complexity on the

commercial reservoir simulation.

4.1.2.1.1 Scenario 1

Starting with one well producing at a constant rate and observe the pressure

performance at the well location.

Figure 4.10. Scenario 1: complexity

24

4.1.2.1.2 Scenario 2

We increased the number of wells into two but fixed their production rates and

observed pressure performance from well-1.

Figure 4.11. Scenario 2: complexity

4.1.2.1.3 Scenario 3

Increasing even further the number of wells, with different rates changes during the

lifetime of the reservoir. Here, the problem will be:

1- well-1 and well-3 continue the fixed rate production.

2- Different rates and operational conditions for well-2.

3- Injection from well-4.

4- Well-5 is considered an anomaly with a small production rate that

affects pressure on the long run.

25

Figure 4.12. Scenario 3: complexity

4.1.2.2 Locations of the wells

Well locations chosen were following the 5-spot pattern for optimum production and

injection. Injection location was chosen for its relative higher depth and areal sweep

efficiency.

Table 4.3. Wells perforation and depth

 Type Perforated layers Depth (m)

Well-1 Producer 1-2 3337

Well-2 Producer 1-2 3257

Well-3 Producer 1 3364

Well-4 Injector 1-2-3 3420

Well-5 Anomaly

Producer

1-2 3327

26

4.2 Machine Learning Model

The Machine learning proxy model is built using the latest version of Tensorflow on

a python programming IDE (Spyder). But it can be imported and be used on any

machine given the fact that it has the libraries required for the program to run

(Appendix B). The model can be tweaked to fit and run on different wells on different

fields. A supervised machine learning DNN model takes input data (i.e. time, oil,

water, gas rate) and output data (i.e. pressure) and tried to fit its weights accordingly

to mimic its forecast to the actual output with respect to the loss function. An input

layer with a number of neurons presenting the number of input variables. A number

of (hidden) layers, sandwiched between the input layer and the output layer, are

presenting the term deep and complexity of our model. An output layer with a single

neuron representing the given point of focus variable for performance (pressure).

Additional layers can be added to the model to make it more robust and can be added

in-between as well. In this case, a gaussian noise layer is added after the input layer

to add a noise amount needed.

4.2.1 Input data

Importing the exported Excel data from the CMG simulated model output. Inputs for

the model are time, oil production rate, gas production rate, and water production

rate. After preprocessing the inputs, they are fed to the algorithm in order to train or

predict the future pressure within a time window.

4.2.1.1 Time window

Future pressure is predicted within a specific time window. That time window is the

resolution that the user can determine for the model to use. A longer time window

will allow the model to predict for a further time in future but will be less accurate.

A shorter time window will make the prediction more accurate within a small error

27

boundary but will debilitate the model of its capabilities. Time window can be set

based on the frequency of data that comes, i.e., minutes, hours, days. In this case, the

time window is set as 30 days to be predicted in future, and this main job is to catch

slight changes presented in the system that can only be seen in the long term. The

time window is also set for 1 day to catch any sudden changes and usually has a

smaller error margin than the 30th day time window.

4.2.1.2 Preprocessing

Applying preprocessing is an essential part to make sure it is compatible with

TensorFlow and for training to be efficient. Preprocessing is defined as:

a. Applying data difference from initial state.

b. Data splitting.

c. Add noise that corresponds to human and pressure gauge error (Figure 4.13).

d. Normalizing data.

4.2.1.2.1 Noise

Noise is manually added using a function to represent the equipment gauges and

human error. Figure 4.13 shows noise data resulted. A gaussian noise layer added

after the input layer gives the same results.

28

Figure 4.13. Added 1.0% gaussian noise to pressure output.

4.2.1.2.2 Normalization

Normalizing is applied using a Min-Max Scaler function, that records highest and

lowest value then normalizes any values in-between 0 and 1.

The scaler factors can be fitted based on expected maximum and minimum values of

the parameter. This won’t affect the model as long as the scaler being applied

consistently during fitting and forecasting of the model. The scaler has already been

fitted and used across all wells.

The initial state for the model is set at no production at the beginning. This state can

be changed for matured fields where it has already production.

29

Table 4.4. Preprocessed data stages

State

Time

(day)

Oil rate

(bbl/d)

Gas rate

(ft3/d)

Water rate

(bbl/d)

Pressure

(psi)

Initial 0 0 0 0 4395.49

New observed 30 1258 1.24 ∗ 106 6.69 ∗ 10−7 4383.65

Added noise

(3%)
30 1267 1.23 ∗ 106

6.68 ∗ 10−7 4458.28

Difference 30 1267 1.23 ∗ 106 6.68 ∗ 10−7 62.79

Normalized 0.0058 0.5636 0.8746 2.35 ∗ 10−10 0.9604

4.2.2 Extrapolating new inputs

As mentioned, in order for the model to forecast in the future, it requires the 4 inputs

to be present and representative of that time. Assuming to have a control over what

oil rate will be, that leaves us with 2 variables (gas and water rate) to be determined.

For that it is observed within a short period of time the rate change versus time

follows a linear pattern that can be easily extrapolated with suitable Numpy or Scikit

library functions.

4.2.3 ML Model construction

The construction here refers to how the model is built and compiled for the optimum

learning and testing results. Multiple models were tested including LSTM and

autoencoder anomaly detection.

4.2.3.1 Layers and nodes

The number of layers and nodes adds to the complexity of the model. As you increase

those numbers you are increasing the dimensionality and capacity. This adds more

30

weights that need fitting which prolongs training time. In this study, there are in total

4 layers used to build the proxy model. The input layer has 4 nodes for each of the

input parameters. The output layer has 1 node for the pressure forecast. Importantly,

2 hidden layers in between representing the depth of the model, and they have 60

each. Each node is connected to all other nodes in the adjacent layers (Figure 4.14).

In addition to the noise added to the data, Tensorflow also offers a gausian noise

layer that can be added to the model which builds tolerance for the model when noisy

data introduced in inputs.

Figure 4.14. Example of layers constructed shapes.

4.2.3.2 Loss function

The loss function job is to calculate the error difference in output from the model

and actual data during training. The model goal is to minimize the loss function as

Input

layer

Hidden

layer #1

𝑋1

𝑋4

𝑋2

𝑋3

𝑛1

𝑛3

𝑛60

𝑛2

Hidden

layer #2

𝑛1

𝑛3

𝑛60

𝑛2

Output

layer

𝑌

31

much as possible without overfitting data. It can be choosen which function to be

used from the available supported list by Tensorflow. MAE and MSE were both

tested and gave similar results. MSE were chosen as loss function.

𝑀𝑆𝐸 =
∑ (𝑦𝑖 − 𝑦𝑖̂)

2𝑛
0

𝑛

4.2.3.3 Optimization method

The optimization method is the technique responsible for updating the gradient

during fitting process of the model so it can reach the local minimum error, reported

by the loss function. Multiple methods are supported by Tensorflow, only two

methods were tested (SGD and Adam). Those are the most widely known methods

used in the industry. Adam gave a better fitting overall (Figure 4.15), so went with

it.

Figure 4.15. SGD (left) versus Adam (right)

4.2.3.4 Learning rate

Learning rate is another hyperparameter that defines the amount of step or

adjustment the gradient can take. A very high LR allows the model to learn faster

but can result in making it miss the global minima of error. A very low LR will take

32

the model too long to reach the global minima. So here it is testing the suitable

learning rate by increasing it periodically and testing it against loss.

Figure 4.16. Loss vs Learning rate

If needed to continue training the model when new fresh data becomes available, it

is important to carefully choose the learning rate here as it could alter weights

significantly those results in mismatching the earlier pressure performance.

4.2.3.4.1 Dynamic LR

Another idea introduced is adaptive or dynamic LR. Basically, a threshold is set for

the model to compare new errors introduced. Each threshold has its own LR

predefined. If it is higher than this threshold, it means that the model forecast is far

away from actual and needs to adjust the LR for a higher value to learn faster. Thus,

underfitting the model problem is reduced.

4.2.3.5 Model optimization

A couple of methods were used to optimize the model for its hyperparameters.

Including number of epochs used, number of units in each layer, learning rate, and

33

more. By utilizing step wise change in LR and observing at which point the curve is

at its lowest, that should give the sweet spot for the suitable LR that result into

smallest error (Figure 4.18). Tensorboard utility is available for checking the model

performance. By preparing the observation points of interest in the model,

hyperparameters can be checked against the model performance (Figure 4.20).

Figure 4.17. Loss vs learning rate

Figure 4.18. Tensorboard utility for hyper-parameters observation

34

4.2.4 Output data

The raw output from the proxy model needs to go through post-process in order to

be a representative pressure data that can be compared against actual data. Post-

process is composed of de-normalizing and adding back the difference in pressure.

4.2.4.1 Training and Forecasting

The first-time training process is crucial to have a representative model. The amount

of data available for training can determine some hyperparameters, like LR and

epochs. As soon as having a trained model, it can be saved, exported, or used to

forecast the inputs accordingly. Forecasting takes a fraction of a second.

4.2.4.2 Anomaly detection

This algorithm approach for detecting anomaly is by calculating the expected model

error after forecasting and comparing it to true error after actual data is available at

the time. In order to do that, three things were established:

1- The model keeps updating and training when each new value is available

given that the new forecast error is bigger than a threshold.

2- Defining variables that memorize the model expected forecast at some

specific times within the “time window”.

3- Comparing and extrapolating errors from those variables against actual

pressures

Forecasting error performance is bound to increase with time. The frequency at

which the model updates when new data is available keeps the model in check and

the threshold error at its accepted rate.

There are two variables defined. One variable collects the next day predicted

forecast. Another variable collects the end of time window predicted forecast (i.e.,

35

predicted forecast after 30 days passing). The reasoning behind this is when those

variables are compared to actual data, they produce percentage errors. Those errors

are then memorized and extrapolated to estimate how much error is to be expected

in the future forecasts.

Setting up the anomaly detection algorithm this way allows detection of sudden and

smooth changes in pressure performance that is not a local change in well conditions

that caused it. To name the possible range of pressure for day 1 prediction to be

“Range 1”, and the possible range of pressure for day 30 prediction to be “Range

30”. Consequently, three keys emerge where it can identify anomaly:

1- Actual pressure ∉ “Range 1” & “Range 30”. That means sudden

change in pressure not expected by both. (Condition A)

2- Actual pressure ∉ “Range 30” but Actual pressure ∈ “Range 1”.

That means it was a gradual pressure change that day 1 prediction

adapted to the change but day 30 didn’t. (Condition B)

3- “Range 1” ∉ “Range 30”. It means the day 1 forecast does not follow

same pattern as day 30 forecast. (Condition C)

4.2.4.3 Anomaly region

As part of the algorithm, I wanted to show where was first the anomaly is detected

by the model and the duration it took to adapt on the anomaly. Hence, a region was

highlighted on the plot graphing interface representing where the model has

detected any anomalies.

37

CHAPTER 5

5 RESULTS AND DISCUSSIONS

5.1 Reservoir simulation scenarios pressures

Scenario 1 had a 1 well producing at a constant rate, it produced pretty much a linear

decline. An abnormal pressure was introduced to see how the model will adapt to the

sudden pressure change (Figure 5.1).

Figure 5.1. Normal expected pressure (Blue) versus Abnormal pressure (Orange)

As two wells, in scenario 2, are producing at a fixed rate within a finite reservoir

area, BHP performance can be seen in (Figure 5.2).

38

Figure 5.2. Scenario 2: Fixed oil rate production of two wells.

Scenario 3 increases the complexity of 5 wells operating at the same time with

different rates (Figure 5.3).

Figure 5.3. Scenario 3: pressure and production rate vs time. Well-1 pressure

before (purple) and after (dashed red) anomaly introduced. Oil rate for Well-1

(Orange), Well-2 (black), Well-3 (brown), Well-5(red), and water injection rate for

Well-4 (Dark blue). Water cut in Well-1 (sky blue).

39

5.2 ML and Anomaly detection performance

5.2.1 Algorithm stage 1

Scenario 1 complexity is no match to the complexity of the model. Hence, the model

had no issue training and forecasting (Figure 5.5), given the fact that initially the

model is trained on 1600 data points (Figure 5.4). When anomaly was introduced,

the model showed an anomaly region and quickly adjusted itself to represent actual

performance (Figure 5.6). Although anomaly introduced on day 900, model took

long time to find it, and the reason is that the error limit that determines an anomaly

is high. So, to fix this problem a changing error and adapting error boundary based

on new forecast is applied in the final scenario. A second problem can be seen in

(Figure 5.7) is when not correctly having correctly fitted scaler and stop training the

model regularly. In here input data are tested first with no noise (Figure 5.8) then

with noise (Figure 5.9) added to see model performance.

Figure 5.4. Loss decreases with time during model training.

40

Figure 5.5. ML model forecasting pressure performance between day 1600 to day

2000.

Figure 5.6. Scenario 1 identification of anomaly, and training for adjustment.

41

Figure 5.7. One-time trained model struggling to forecast abnormal pressures.

Figure 5.8. No noise inputs and outputs data and the model performance.

Figure 5.9. Noise (1%) applied in inputs and outputs data and the model

performance.

42

5.2.2 Algorithm stage 2

This scenario, although it introduces two well producers with fixed production, the

model appears to be sharply declining which again imposes no problem from training

(Figure 5.10) and forecasting. However, it is shown in (Figure 5.11) that high LR

will allow the model to adjust faster but can’t find the local minima; hence, it

oscillates back and forth between actual pressure. In contrast, (Figure 5.12) had low

LR it adjusted slowly without oscillation. Consequently, applying a dynamic LR has

been developed in the algorithm and result can be seen in (Figure 5.13) where the

model learns faster with no oscillation applied.

Figure 5.10. Scenario 2 initial model fitting.

43

Figure 5.11. High LR (1e-5) and the model adjustment to pressure change

Figure 5.12. Low LR (1e-7) and the model adjustment to pressure change

44

Figure 5.13. Dynamic LR, a step wise change in LR to allow model to learn faster

with high error, and slowdown in learning when error is relatively smaller.

5.2.3 Algorithm stage 3

Focusing on well-1 forecasting and detection. Here, initiated training the model on

only a small portion of data. For example, well-1 (Figure 5.14) trained only on 50

days initially. The standard was set for the acceptable model error, from initial

model, to be less than 0.3%. Then the model is saved and used to continue the

training and forecasting cycle.

Looking at Scenario 3 (Figure 5.3), it is seen at least 5 major changes in pressure due

to external influence of other wells on the observed well-1. The goal is to identify

those changes from well-1 perspective; therefore, scenario 3 is divided into 5 cases

(Figure 5.15).

45

Figure 5.14. Scenario3: model trained initially on 50 days and its forecast error is

less than 0.3% (13 psi) for well-1.

Figure 5.15. Well-1 algorithm detected error during the whole simulation run. Red

arrows point towards error catched.

Case 2

Case 1

Case 3

Case 4 Case 5

46

5.2.3.1.1 Case 1

Well-2 started production at 900 days. The algorithm predicted the there is an error

at 921 days, 21 days after well-2 appeared (Figure 5.16). Error ranges are

calculated by firstly fitting data to the last couple of errors it seen, then extrapolate

(Figure 5.17). A linear regression is used here because after testing polynomial

regression, it gives more noise to the error. Due to errors not fitting perfectly to the

regression, an error range is added to the extrapolated error.

Figure 5.16. Case 1, Well-1 algorithm detected error on day 921.

Figure 5.17. Algorithm regression on well-1 errors and extrapolating to find

anomalies.

 -0.1

-0.05

0

0.05

0.1

0.15

880 890 900 910 920 930 940

day

Expected errors for 1 day
forecast

-0.1

-0.05

0

0.05

0.1

0.15

0.2

880 900 920 940

day

Expected errors for 30 day
forecast

47

5.2.3.1.2 Case 2

Well-5, the anomaly, has started producing at a very low rate (315 bbl/d). This well

is introduced as an anomaly that could belong to another company and out of this

reservoir management plan. Unfortunately, it has not been detected by well-1 due

to the change in pressure is very small as well as the model keeping adjusting to

new pressure values as being the representative value of the current field.

However, another well-2 in can be used to fit another model with the same

algorithm and observe well-2 performance. It got detected by it (Figure 5.18).

Figure 5.18. Case 2, Well-2 prediction found anomaly on day 2016.

5.2.3.1.3 Case 3

Here, Well-2 has stopped production, and Well-4 started injection as part of field

development after 3300 days. A change in pressure was detected (Figure 5.19) on

day 3326, 26 days after.

48

Figure 5.19. Case 3 and Case 4 anomaly detected by well-1 forecast performance

graph on day 3326 and 3780 respectively.

5.2.3.1.4 Case 4

On day 3700, Well-2 return to production, and the pressure change was seen by

well-1 on day 3780, 80 days later (Figure 5.19).

5.2.3.1.5 Case 5

Lastly, observing a sharp decline in pressure performance due to pressure support

not being enough to hold pressure at the current development plan. It is also

observed that a water flux increases in the well production (Figure 5.3). This

change was also detected by the algorithm in well-1 on day 4501 (Figure 5.20).

49

Figure 5.20. Case 5 anomaly detected on day 4501.

From (Table 5.1), it is seen that the model catches all sudden changes within a

delayed time. Although, the model didn’t show graphically the gradual change

caused by well-5 production, it was found by condition B in the table above. Because

(Table 5.1) is also exported data from the model, it is known that the ML algorithm

successfully caught the anomaly, yet some work on the detection algorithm needs to

be re-adjusted to be graphically shown. This can be further improved with a usable

interface for the ease of use of engineers.

50

Table 5.1. Model predictions, error calculated, and anomalies found and shown

graphically.

days

Actual

before

anomaly Actual

day1

pred

1st

error

% day 1

day30

pred

30th

error

% day 30

A
n
o
m

al
y

899 4181.1 4181.1 4177.0 0.1 4181.1 4175.5 0.1 4180.8 0

C
o
n
d
it

io
n
 B

(1
.1

 p
si

)

900 4180.9 4180.9 4176.5 0.1 4180.9 4175.6 0.1 4180.8 0

919 4172.3 4172.3 4173.2 0.0 4172.3 4172.6 0.1 4177.7 0

920 4171.8 4171.8 4173.0 0.0 4171.8 4172.5 0.1 4177.4 0

921 4171.3 4171.3 4172.9 0.0 4171.3 4172.4 0.1 4177.8 1

922 4170.7 4170.7 4172.9 -0.1 4170.7 4172.0 0.1 4177.1 1

1999 3713.2 3713.2 3717.0 -0.1 3713.2 3719.7 -0.2 3712.6 0

C
o
n
d
it

io
n
 B

(0
.7

 p
si

) 2000 3713.2 3712.9 3716.7 -0.1 3712.9 3719.7 -0.2 3712.6 0

2025 3705.4 3704.7 3708.6 -0.1 3704.7 3713.4 -0.2 3706.8 0

2026 3705.1 3704.4 3708.0 -0.1 3704.4 3713.1 -0.2 3706.5 0

2027 3704.8 3704.0 3707.8 -0.1 3704.0 3712.8 -0.2 3706.3 0

3299 3514.0 3467.5 3470.9 -0.1 3467.5 3471.9 -0.1 3467.5 0

C
o
n
d
it

io
n
 B

(1
.7

 p
si

) 3300 3514.0 3467.4 3471.0 -0.1 3467.4 3471.9 -0.1 3467.5 0

3324 3517.5 3470.6 3470.9 0.0 3470.6 3470.8 -0.1 3466.3 0

3325 3517.8 3470.8 3470.9 0.0 3470.8 3470.8 -0.1 3466.3 0

3326 3518.0 3471.0 3470.9 0.0 3471.0 3470.7 -0.1 3466.3 1

3699 3656.4 3607.5 3575.3 0.9 3607.2 3565.8 1.2 3608.4 0

C
o
n
d
it

io
n
 A

(3
.5

 p
si

)

3700 3656.4 3607.8 3575.7 0.9 3607.5 3565.8 1.2 3608.4 0

3701 3656.9 3608.0 3576.0 0.9 3607.7 3566.5 1.2 3609.1 0

3780 3648.9 3595.47290 3594.7 0.0 3595.47274 3591.9 0.5 3611.3 1

4485 3617.0 3524.7 3546.8 -0.6 3524.6 3551.2 -0.4 3538.1 0

C
o
n
d
ti

o
n
 B

(4
7
.7

 p
si

)

4490 3616.4 3517.6 3548.0 -0.9 3517.4 3550.6 -0.4 3537.2 0

4495 3615.8 3510.3 3549.7 -1.1 3509.8 3550.3 -0.4 3536.2 0

4500 3615.2 3503.4 3551.2 -1.4 3502.8 3549.8 -0.4 3535.2 0

4501 3615.0 3502.1 3551.6 -1.4 3501.4 3549.8 -0.4 3535.2 1

51

5.3 Other ML models performance

5.3.1 LSTM

LSTM is a type of RNN but performs better on long forecasting. For training and

forecasting it only depends on one parameter changing per time. Hence, compared

to the DNN model, LSTM would recognize any changes in production rates or

operational conditions to be an anomaly. Although trained on the same data, it

requires different preprocessing, and can only old pressure as input and it forecasts

the new pressure. Unfortunately, it was not successful in predicting (Figure 5.16)

shows a constant pressure all the time.

Figure 5.21. LSTM predicts pressure as constant and place it where it minimizes the

error as much as possible during training.

5.3.2 Autoencoders – Unsupervised anomaly detection.

Unsupervised anomaly detection is a type of ML that can detect errors in abnormal

changes in data giving the fact that it needs training on normal data patterns for as

much as it needs. When this ML applied in this study however, it presented error

only if it is outside the range of “normal” data. (Figure 5.17) shows both anomaly

situations, however it recognized only parts that fall outside the range of (4400 to

52

3550 psi) as anomaly. The reason for that is normal data that the model trained on

was also within the same range.

Figure 5.22. Autoencoder recognizes no anomaly on the left example and some

parts of anomaly on the right example.

53

CHAPTER 6

6 CONCLUSION

In this study, a numerical simulation model has been developed using a commercial

reservoir simulator to produce multiple problems that can be studied, and developed

on the algorithm based on it. The aim was to develop and test the algorithm for

forecasting reservoir pressure performance and anomaly detection under different

scenarios. The model was trained on historical data before any anomalies and

validated on new data with anomalies and noise.

The main findings of the thesis are:

1. The machine learning model was able to accurately forecast the pressure

performance in scenario 1, where the complexity of the reservoir was low,

and the pressure decline was linear. The model was able to detect and adjust

to the anomaly introduced in the data, as well as to handle the noise added to

the inputs and outputs. Performance was improved by using a fitted scaler.

2. The machine learning model was also able to forecast the pressure

performance in scenario 2, where the complexity of the reservoir was slightly

higher, and the pressure decline was sharper. The model was able to adapt to

the changes in the production rates of the two wells, but the learning rate was

a critical factor for the model adjustment. A high learning rate caused the

model to oscillate around the actual pressure, while a low learning rate

allowed the model to converge to the local minima, so a dynamic learning

rate was introduced to the algorithm.

3. The machine learning model showed promising results for forecasting

reservoir pressure performance and detecting anomalies in scenario 3, where

the complexity of the reservoir was the highest and the pressure decline was

the most irregular. The model was trained on a small portion of data initially

54

and then updated and validated on new daily incoming data. The model was

able to catch all sudden in the pressure performance of well-1, with some

delay and error. Although well-1 failed to find the gradual change given in

case 2, when the algorithm was applied to well-2, it detected the anomaly

from Well-2 forecasting performance.

4. The algorithm demonstrated its robustness and flexibility to learn beyond its

original knowledge when it is applied in a single well or as a group.

The thesis contributes to the field of reservoir engineering by providing a novel and

effective method for forecasting reservoir pressure performance and detecting

anomalies using machine learning. It also demonstrates the potential of machine

learning for solving complex and nonlinear problems in the oil and gas industry.

55

CHAPTER 7

7 RECOMMENDATIONS FOR FUTURE WORK

This study can be further improved with the following items:

1. Applying the machine learning model to other reservoirs and scenarios and

comparing its performance with conventional methods.

2. Further improving dynamic learning rate for a faster and more accurate

detection of anomalies.

3. Developing a user-friendly interface for the machine learning model that can

facilitate ease of use for engineers.

4. Creating a method to analyze all anomalies found from other model-well

output and generate a heatmap for the possible source location of the

problem.

57

REFERENCES

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M.,

Ghemawat, S., Irving, G., Isard, M. & others (2016). TensorFlow: A System

for Large-Scale Machine Learning. OSDI (p./pp. 265-283).

Ahmadi, M. A., Zendehboudi, S., & James, L. A. (2018). Developing a robust

proxy model of CO2 injection: Coupling Box–Behnken design and a

connectionist method. Fuel, 215, 904–914.

https://doi.org/10.1016/J.FUEL.2017.11.030

Akin, S., Kok, M. v., & Uraz, I. (2010). Optimization of well placement geothermal

reservoirs using artificial intelligence. Computers & Geosciences, 36(6),

776–785. https://doi.org/10.1016/J.CAGEO.2009.11.006

Alharbi, B., Liang, Z., Aljindan, J. M., Agnia, A. K., & Zhang, X. (2022).

Explainable and Interpretable Anomaly Detection Models for Production

Data. SPE Journal, 27(01), 349–363. https://doi.org/10.2118/208586-PA

Arıtürk, M. S. (2019). Optimizing the Production and Injection Wells Flow Rates in

Geothermal Field Using Artificial Intelligence. [Master’s dissertation, West

Virginia University]. West Virginia University Research Repository.

https://researchrepository.wvu.edu/etd/3772

Artun, E. (2022). Machine Learning Assisted Forecasting of Reservoir Performance.

Machine Learning Applications in Subsurface Energy Resource

Management, 185–206. https://doi.org/10.1201/9781003207009-14

Ashri, R. (2020). What Is AI. The AI-Powered Workplace, 15–29.

https://doi.org/10.1007/978-1-4842-5476-9_2

CMG (2021). CMG STARS Reservoir Simulation Software, Computer Modeling

Group Ltd. Calgary, Alberta, Canada.

Coursera. (2023). What Is Machine Learning? Definition, Types, and Examples.

https://www.coursera.org/articles/what-is-machine-learning

Covarrubias-Moreno, O. M. (2022). Artificial Intelligence and Systems Thinking in

the Public Sector (pp. 35–54). https://doi.org/10.4018/978-1-6684-5624-

8.ch002

Ertekin, T., & Sun, Q. (2019). Artificial Intelligence Applications in Reservoir

Engineering: A Status Check. Energies 2019, Vol. 12, Page 2897, 12(15),

2897. https://doi.org/10.3390/EN12152897

https://doi.org/10.1016/J.FUEL.2017.11.030
https://doi.org/10.1016/J.CAGEO.2009.11.006
https://doi.org/10.2118/208586-PA
https://researchrepository.wvu.edu/etd/3772
https://doi.org/10.1201/9781003207009-14
https://doi.org/10.1007/978-1-4842-5476-9_2
https://www.coursera.org/articles/what-is-machine-learning
https://doi.org/10.4018/978-1-6684-5624-8.ch002
https://doi.org/10.4018/978-1-6684-5624-8.ch002
https://doi.org/10.3390/EN12152897

58

Feder, J. (2020). Machine-Learning Approach Improves Deepwater Facility Uptime.

Journal of Petroleum Technology, 72(05), 54–55.

https://doi.org/10.2118/0520-0054-JPT

Freitas, M. A. de. (2018). Inteligência artificial na medicina. International Journal

of Social Science and Human Research, 2(11), 937–941.

https://doi.org/10.47191/IJSSHR/V3-I11-05

Hadavimoghaddam, F., Harandi, V. S., Mostajeran, M., & Zabihi, R. (2023).

Application of data mining in gas injection methods. Gas Injection Methods:

A Volume in Enhanced Oil Recovery Series, 359–380.

https://doi.org/10.1016/B978-0-12-822302-4.00012-0

IBM. (2023). What is Machine Learning? Retrieved December 1, 2023, from

https://www.ibm.com/topics/machine-learning

Khaleel, M., Ahmed, A. A., & Alsharif, A. (2023). Artificial Intelligence in

Engineering. Brilliance: Research of Artificial Intelligence, 3(1), 32–42.

https://doi.org/10.47709/BRILLIANCE.V3I1.2170

Kuchuk, J. (2009). Radius of Investigation for Reserve Estimation from Pressure

Transient Well Tests. SPE Middle East Oil and Gas Show and Conference.

doi: https://doi.org/10.2118/120515-MS

Lashari, S.-e.-Z. (2018). Application of Artificial Intelligence (AI) in Petroleum

Engineering Problems. West Virginia University, Master's Thesis.

Lobut, B., & Artun, E. (2023). Machine-Learning Based Selection of Candidate

Wells for Extended Shut-In Due to Fluctuating Oil Prices. Society of

Petroleum Engineers - SPE EuropEC - Europe Energy Conference Featured

at the 84th EAGE Annual Conference and Exhibition, EURO 2023.

https://doi.org/10.2118/214353-MS

Martí, L., Sanchez-Pi, N., Molina, J. M., & Garcia, A. C. B. (2015). Anomaly

detection based on sensor data in petroleum industry applications. Sensors

(Switzerland), 15(2), 2774–2797. https://doi.org/10.3390/S150202774

Mohaghegh, S. D. (n.d.). Data-driven reservoir modeling: top-down modeling

(TDM): a paradigm shift in reservoir modeling, the art and science of

building reservoir models based on field measurements. Society of Petroleum

Engineers.

Noble, R., & Noble, D. (2023). Artificial Intelligence. In Understanding Living

Systems (Understanding Life, pp. 99-112). Cambridge: Cambridge

University Press. https://doi.org/10.1017/9781009277396.009

https://doi.org/10.2118/0520-0054-JPT
https://doi.org/10.47191/IJSSHR/V3-I11-05
https://doi.org/10.1016/B978-0-12-822302-4.00012-0
https://www.ibm.com/topics/machine-learning
https://doi.org/10.47709/BRILLIANCE.V3I1.2170
https://doi.org/10.2118/120515-MS
https://doi.org/10.2118/214353-MS
https://doi.org/10.3390/S150202774
https://doi.org/10.1017/9781009277396.009

59

Pennsylvania State University. (2019, April 22). Theory meets application: Machine

learning techniques for geothermal exploration. PHYS.

https://phys.org/news/2019-04-theory-application-machine-techniques-

geothermal.html

Qinghua, Huang. (2022). Artificial Intelligence and Systems Thinking in the Public

Sector. https://doi.org/10.4018/978-1-6684-5624-8.ch002

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations

by back-propagating errors. Nature, 323, (533-536).

Yadav, S., Yadav, S., Srivastava, S. P., Gupta, S. K., & Mishra, S. (2022). Machine

Learning. Deep Learning for Targeted Treatments, 407–430.

https://doi.org/10.1002/9781119857983.CH13

https://phys.org/news/2019-04-theory-application-machine-techniques-geothermal.html
https://phys.org/news/2019-04-theory-application-machine-techniques-geothermal.html
https://doi.org/10.4018/978-1-6684-5624-8.ch002
https://doi.org/10.1002/9781119857983.CH13

61

APPENDICES

A. Code Algorithm

Importing libraries

import tensorflow as tf

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Dense, Dropout, GaussianNoise

from tensorboard.plugins.hparams import api as hp

import warnings

import matplotlib.pyplot as plt

import matplotlib

from matplotlib.animation import FuncAnimation, FFMpegWriter

import pandas as pd

import numpy as np

from statistics import mean

from sklearn.model_selection import train_test_split

from sklearn.metrics import accuracy_score, precision_score, recall_score,

r2_score, mean_absolute_error, max_error

from sklearn import preprocessing

import joblib

from time import sleep

from itertools import zip_longest

import multiprocessing as mp

import time as systime

import datetime

import gc

gc.enable()

warnings.simplefilter('ignore', np.RankWarning)

Confirm hardware integration

print("Num GPUs Available: ", len(tf.config.list_physical_devices('GPU')))

print("Num CPUs Available: ", len(tf.config.list_physical_devices('CPU')))

Importing data

data = pd.read_excel("test_7_withanomaly.xlsx", sheet_name=0, skiprows=4)

time = pd.DataFrame(data.iloc[:,0])

pressure = pd.DataFrame(data.iloc[:,5])

water = pd.DataFrame(data.iloc[:,4])

gas = pd.DataFrame(data.iloc[:,2])

oil = pd.DataFrame(data.iloc[:,3])

62

A function to calculate the difference/change in data

def delta_fun(data, initial):

 datay = data.copy().reset_index(drop=True)

 datay.loc[:] = datay.loc[:] - initial.values

 return datay

A function for plotting

def plot_series(time, series, format="-", start=0,

 label=None): # needs editing so i can add other graphs within same

function

 plt.plot(time, series, format, label=label)

 plt.xlabel("Time")

 plt.legend(fontsize=14)

 plt.grid(True)

 plt.show()

def pressure_plot(time, series, label):

 forecast = series[0].values[:,0]

 fig, ax = plt.subplots()

 for i in reversed(range(len(series))):

 ax.plot(time, series[i].values, label=label[i])

 error = 0.003

 P_err = forecast*error

 ax.fill_between(time[:,0], forecast+P_err, forecast-P_err, alpha=0.2,

color='green', label="Model error {}%".format(error*100))

 ax.set_xlabel("Time")

 ax.set_ylabel("Pressure")

 ax.legend(fontsize=10,loc='lower left')

 ax.grid(True)

 plt.show()

A function to reverse the difference in pressure

def full_fun(data, initial):

 datax = data.copy().reset_index(drop=True)

 datax.loc[:] = datax.loc[:] + initial.values

 return datax

Add Noise to data

def noisy(data,time,error):

 datax = data.copy()

 noise = np.random.normal(datax, (datax*error/3), datax.shape)

63

 noise = pd.DataFrame(noise, columns=datax.columns)

 for i in range(datax.shape[1]):

 y=datax.iloc[:, i]

 plt.scatter(time, noise.iloc[:, i], label= 'Data with Noise')

 plt.plot(time, y, label= 'True Data', color='r')

 P_err = y*error

 plt.fill_between(time.iloc[:,0], y+P_err, y-P_err, alpha=0.2, color='green',

label="Error range {}%".format(error*100))

 plt.xlabel("Time")

 plt.ylabel(datax.columns[i])

 plt.legend(fontsize=12)

 plt.grid(True)

 plt.show()

 return noise

Preprocessing and Splitting data into train, validation, and test

X = data.drop(data.columns[[1, 5]], axis=1)

X = noisy(data= X.iloc[:, 1:], time=time, error=0.0003)

X.insert(0, time.columns[0], time.values)

Y = pressure

Y = noisy(Y, time=time, error=0.0003)

Yi = Y.take([0])

Xi = pd.DataFrame([[0,0,0,0]],columns=X.columns)

x_train0, X_test1, y_train0, Y_test1 = train_test_split(X, Y, test_size=0.99,

shuffle=False)

X_test0 , Y_test0 = X_test1 , Y_test1

X_test1, X_test5, Y_test1, Y_test5 = train_test_split(X_test1, Y_test1,

test_size=500, shuffle=False)

X_test1, X_test4, Y_test1, Y_test4 = train_test_split(X_test1, Y_test1,

test_size=500, shuffle=False)

X_test1, X_test3, Y_test1, Y_test3 = train_test_split(X_test1, Y_test1,

test_size=500, shuffle=False)

X_test1, X_test2, Y_test1, Y_test2 = train_test_split(X_test1, Y_test1,

test_size=500, shuffle=False)

x_train, x_val, y_train, y_val = train_test_split(x_train0, y_train0, test_size=0.2,

shuffle=True)

xlastinput = ylastinput = xlastinput_ab = ylastinput_ab = pd.DataFrame() #reset

last inputs

x_train = delta_fun(x_train, Xi)

y_train = delta_fun(y_train, Yi)

x_test1 = delta_fun(X_test1, Xi)

y_test1 = delta_fun(Y_test1, Yi)

64

x_test2 = delta_fun(X_test2, Xi)

y_test2 = delta_fun(Y_test2, Yi)

x_test3 = delta_fun(X_test3, Xi)

y_test3 = delta_fun(Y_test3, Yi)

x_test4 = delta_fun(X_test4, Xi)

y_test4 = delta_fun(Y_test4, Yi)

x_test5 = delta_fun(X_test5, Xi)

y_test5 = delta_fun(Y_test5, Yi)

x_test0 = delta_fun(X_test0, Xi)

y_test0 = delta_fun(Y_test0, Yi)

x_diff = delta_fun(X, Xi)

y_diff = delta_fun(Y, Yi)

testing short

x_t = delta_fun(X.head(1400), Xi)

y_t = Y.head(1400)

x_t , x_tt , y_t, Y_tt = train_test_split(x_t, y_t, test_size=0.5, shuffle=False)

y_t = delta_fun(y_t, Yi)

#%% ----------------------3--------------------------------

#This step done only once, Scaler fitted for preprocessing

XScaler = preprocessing.MinMaxScaler().fit(x_diff) # (X-X.min())/(X.min()-

X.max())

YScaler = preprocessing.MinMaxScaler().fit(y_diff)

joblib.dump(XScaler, 'xtest6_multiwell.gz')

joblib.dump(YScaler, 'ytest6_multiwell.gz')

Normalizing data

XScaler = joblib.load('xtest6_multiwell.gz')

YScaler = joblib.load('ytest6_multiwell.gz')

x_train0 = XScaler.transform(x_train0)

y_train0 = YScaler.transform(y_train0)

x_train = XScaler.transform(x_train)

y_train = YScaler.transform(y_train)

x_val = XScaler.transform(x_val)

y_val = YScaler.transform(y_val)

x_test1 = XScaler.transform(x_test1)

y_test1 = YScaler.transform(y_test1)

x_test2 = XScaler.transform(x_test2)

y_test2 = YScaler.transform(y_test2)

x_test3 = XScaler.transform(x_test3)

y_test3 = YScaler.transform(y_test3)

x_test4 = XScaler.transform(x_test4)

65

y_test4 = YScaler.transform(y_test4)

x_test5 = XScaler.transform(x_test5)

y_test5 = YScaler.transform(y_test5)

x_test0 = XScaler.transform(x_test0)

y_test0 = YScaler.transform(y_test0)

x_normalized = XScaler.transform(x_diff)

y_normalized = YScaler.transform(y_diff)

Model structure build

tf.keras.backend.clear_session()

tf.random.set_seed(42) # Ensuring we get the same output with multiple runs

np.random.seed(42)

model = Sequential()

model.add(Dense(units=60, activation='relu', input_shape=(4,)))

model.add(GaussianNoise(0.01))

model.add(Dropout(0.1))

model.add(Dense(units=60, activation='relu', kernel_regularizer='l2'))#,

kernel_regularizer='l2'

model.add(Dense(units=1))

model.summary()

#%% Model Compile with increasing Learning rate to test suitable lr to use

optimizer = tf.keras.optimizers.Adam(learning_rate=1e-7)

lr_schedule = tf.keras.callbacks.LearningRateScheduler(

 lambda epoch: 1e-7 * 10 ** (epoch / 100))

model.compile(optimizer=optimizer, # default='rmsprop', an algorithm to be used

in backpropagation

 loss='mse',

 # Loss function to be optimized. A string (name of loss function), or a

tf.keras.losses.Loss instance.

 metrics=['mse'],

 # List of metrics to be evaluated by the model during training and testing.

Each of this can be a

 # string (name of a built-in function), function or a tf.keras.metrics.Metric

instance.

)

History fit

66

history = model.fit(x_train, y_train, batch_size=10, epochs=500,

validation_data=(x_val,y_val),callbacks=[lr_schedule])

Plot loss vs learning rate

plt.semilogx(history.history["lr"], history.history["loss"])

plt.semilogx(history.history["lr"], history.history['val_loss'], label='validation loss')

plt.xlabel('Learning rate')

plt.ylabel('loss')

plt.show()

Fitting model with adam optimizer

batch_size = 5

epochs=50

validation_split=0.2

initial_learning_rate=1e-3

decay_steps=10000

decay_rate=0.96

decayed_lr = tf.keras.optimizers.schedules.ExponentialDecay(initial_learning_rate,

 decay_steps,

 decay_rate,

 staircase=True)

optimizer = tf.keras.optimizers.Adam(decayed_lr)

model.compile(optimizer,

 loss='mse'

)

#es = tf.keras.callbacks.EarlyStopping(monitor='val_loss', mode='min',

min_delta=1e-4, verbose=1, patience=30)

#tqdm_callback = tfa.callbacks.TQDMProgressBar()

67

log_dir = "logs/fit/" + datetime.datetime.now().strftime("%Y%m%d-

%H%M%S")

tensorboard_callback = tf.keras.callbacks.TensorBoard(log_dir=log_dir,

histogram_freq=1)

hparams_dir = os.path.join(log_dir, 'validation')

with tf.summary.create_file_writer(hparams_dir).as_default():

hp.hparams_config(

hparams=HPARAMS,

metrics=[hp.Metric('epoch_accuracy')] # metric saved by tensorboard_cb

)

hparams_cb = hp.KerasCallback(

writer=hparams_dir,

hparams=HPARAMS

)

xx1=tf.convert_to_tensor(x_train)

yy1=tf.convert_to_tensor(y_train)

history = model.fit(xx1, yy1,

 batch_size,

 epochs,

 verbose=1,

 # callbacks= [tensorboard_callback], # ,hp.KerasCallback(log_dir,

hparams)

 validation_data=(x_val,y_val)

)

plt.plot(history.history['loss'], label='training loss')

plt.plot(history.history['val_loss'], label='validation loss')

68

plt.xlabel('Epochs')

plt.ylabel('Loss')

plt.legend(fontsize=14)

plt.show()

#Saving the model

model.save('trainedmodel_multi_v13-9-well2_lowproduction_short.h5')

Automated forecasting every day

Daily data input prediction

@profile # this code-line is called "Decorator" and used for debugging

def daily_forecast(production_expected, field_pressure, saved_model):

 # User defined variables

 iterate = 30 # forecast for 30 days forward only.

 error = 0.003 # is a changing variable based on forecast accuracy degradation

 err_factor = 1 # polynomyal degree for regression

 learning_rate=3e-7 # initial lr for daily re-training on new data LR(3e-7)

 # Import --

 Range = len(field_pressure)

 actual = field_pressure.values[:,0]

 new_model = saved_model

 time = production_expected.values[:,0]

 x_all = XScaler.transform(delta_fun(production_expected, Xi))

 y_all = YScaler.transform(delta_fun(field_pressure, Yi))

 truedata_df = production_expected.copy()

 truedata_df['field_pressure']= actual

 truedata_df.to_csv('animation/csv_export/truedata_df.csv')

 # initialize empty variables

 forecast_all = np.empty(shape=(0,1))

 P_err = P_err1 = P_err7 = P_err30 = np.empty(shape=(0,1))

 day1, day7, day30 = np.empty(shape=(3,0))

 f1, f7, f30 = np.empty(shape=(3,0))

 anomaly = np.empty(shape=(0,1))

 counter = 0

 # Initial predictions based on model trained ------------------------------

 # forecast_old_all = new_model.predict(x_all)

 # forecast_old_all =

pd.DataFrame(YScaler.inverse_transform(forecast_old_all),columns=Yi.columns)

 # forecast_old_all = full_fun(forecast_old_all, Yi)

69

 # looping over daily data --

 for i in range(Range-iterate):

 t_start = systime.time()

 # predicting the input rates

 if i<iterate:

 g = np.poly1d(np.polyfit(time[0:i+1], production_expected.values[0:i+1,1],

1))

 o = np.poly1d(np.polyfit(time[0:i+1], production_expected.values[0:i+1,2],

1))

 w = np.poly1d(np.polyfit(time[0:i+1], production_expected.values[0:i+1,3],

1))

 else:

 g = np.poly1d(np.polyfit(time[i-iterate:i], production_expected.values[i-

iterate:i,1], 1))

 o = np.poly1d(np.polyfit(time[i-iterate:i], production_expected.values[i-

iterate:i,2], 1))

 w = np.poly1d(np.polyfit(time[i-iterate:i], production_expected.values[i-

iterate:i,3], 1))

 oo, ww, gg = o(time[0:i+iterate]), w(time[0:i+iterate]), g(time[0:i+iterate])

 x_all_mod_df = pd.DataFrame(np.column_stack((time[0:i+iterate], gg, oo,

ww)), columns= production_expected.columns)

 x_all_mod = XScaler.transform(delta_fun(x_all_mod_df, Xi))

 forecast = new_model(x_all_mod[i:i+iterate,:])

 forecast =

pd.DataFrame(YScaler.inverse_transform(forecast),columns=Yi.columns)

 forecast = full_fun(forecast, Yi)

 forecast = forecast.values[:,0]

 forecast_all = np.append(forecast_all[:i], forecast)

 f1 = np.append(f1, forecast[0])

 f7 = np.append(f7, forecast[6])

 f30 = np.append(f30, forecast[-1])

 err1 = err(f1[i], actual[i])

 day1 = np.append(day1, err1)

 if i>=6:

 err7 = err(f7[i-6], actual[i])

 day7 = np.append(day7, err7)

 if i>=iterate-1:

 err30 = err(f30[i-iterate+1], actual[i])

 day30 = np.append(day30, err30)

 if i<iterate-1:

 if sum(day7)==0.0: day7 = np.zeros(shape=(i+1,))

 if sum(day30)==0.0: day30 = np.zeros(shape=(i+1,))

70

 if i <iterate-1:

 P_err = np.append(P_err[:i], error*forecast)

 P_err1 = P_err7 = P_err30 = P_err

 zp = np.linspace(time[0], time[i+iterate-1], i+iterate)

 if i >= iterate-1:

 z1 = np.poly1d(np.polyfit(zp[i-29:i+1], day1[-30:], err_factor))

 z7 = np.poly1d(np.polyfit(zp[i-29:i+1], day7[-30:], err_factor))

 z30 = np.poly1d(np.polyfit(zp[i-29:i+1], day30[-30:], err_factor))

 Ac = max_error(day1[-30:], z1(zp[i-29:i+1]))

 Bc = max_error(day30[-30:], z30(zp[i-29:i+1]))

 P_err1 = np.append(P_err1[:i], (z1(zp)[-

iterate+1]+np.sign(z1[0])*Ac)/100*f1[-1]) #appending the next expected error of

next day forecast

 P_err7 = np.append(P_err7[:i], z7(zp)[-iterate+1]/100*f7[-1])

 P_err30 = np.append(P_err30[:i], (z30(zp)[-

iterate+1]+np.sign(z1[0])*Bc)/100*f30[-1])

 errors_all_df = pd.DataFrame(np.column_stack((zp,

 z1(zp),

 z7(zp),

 z30(zp)

)), columns=['zp','z1','z7','z30'])

 P_errors = pd.DataFrame(np.column_stack((P_err1,P_err7,P_err30)),

columns=['P_err1','P_err7','P_err30'])

 errors_all_df.to_csv('animation/csv_export/errors_all_df.csv')

 P_errors.to_csv('animation/csv_export/P_errors.csv')

 #Finding anomaly at the exact location when happening

 anomaly = np.append(anomaly, (abs(err30) > abs(P_err30[-1]) or

 abs(err1) > abs(P_err1[-1]) or

 abs(P_err1[-1]) > abs(P_err30[-1])

)) # and A!=B and AA!=BB

 else: anomaly = np.append(anomaly, False)

 # saving data to excel --

 x_all_mod_df['forecast_all']=forecast_all

 x_all_mod_df.to_csv('animation/csv_export/x_all_mod_df.csv')

 alldays_df = pd.DataFrame(np.column_stack((actual[0:i+1],

 f1, day1,

71

 f7, day7,

 f30, day30,

 anomaly)),

 index=time[0:i+1],

 columns=['actual',

 'day1 pred','err1',

 'day7 pred','err7',

 'day30 pred','err30',

 'anomaly']

)

 alldays_df.to_csv('animation/csv_export/alldays_df.csv')

 # setting the Learning rate in case the error is too big/small

 if abs(day1[-1])>3.0 or sum(abs(day1[-7:])>0.1)==17:

 learning_rate=1e-5

 print("high lr {}".format(learning_rate))

 elif (abs(day1[-1])<3.0 and abs(day1[-1])>0.1):

 learning_rate=1e-6

 # Daily training

 if i<iterate-1 or abs(day1[-1])>0.1:

 modeltrain(x_all, y_all, i, learning_rate, new_model)

 # Housekeeping: Trying to optimize excution time by cleaning old data

stored in memory

 del forecast, zp, g,gg, o,oo, w,ww, x_all_mod_df,x_all_mod, alldays_df,

new_model # ,errors_all_df,P_errors,z1,z7,P_err

 tf.keras.backend.clear_session()

 # gc.collect()

 new_model =

tf.keras.models.load_model('DNNmodels/trainedmodel_multi_v13-

9_lowproduction_short_cont2.keras')

 counter += 1

 t_end = systime.time()

 print('{} iteration, {:.2f}s'.format(i,t_end-t_start))

@tf.function(experimental_relax_shapes=True) only works if i made my own

manual epoch loop

@profile # this code-line is for debugging

@tf.function(reduce_retracing=True)

def modeltrain(x, y, i, lr, new_model):

 x = x[i,:].reshape(1,4)

 y = y[i,:].reshape(1,1)

 x=tf.convert_to_tensor(x)

 y=tf.convert_to_tensor(y)

72

 new_model.compile(optimizer=tf.keras.optimizers.Adam(lr), loss='mse')

 new_model.fit(x, y,

 batch_size=1,

 epochs=10,

 verbose=0

)

 new_model.save('DNNmodels/trainedmodel_multi_v13-

9_lowproduction_short_cont2.keras')

def err(forecast, actual):

 Error_increase = (actual-forecast)/actual*100

 return Error_increase

def lr(lr):

 decayed_lr =

tf.keras.optimizers.schedules.ExponentialDecay(initial_learning_rate=lr,

 decay_steps=10000,

 decay_rate=0.95,

 staircase=True)

 optimizer = tf.keras.optimizers.Adam(decayed_lr)

 return optimizer

#%%-------------------------12-----------------------------

daily_forecast(X_test0, Y_test0, saved_model=

tf.keras.models.load_model('DNNmodels/trainedmodel_multi_v13-

9_lowproduction_short.h5'))

73

B. Libraries require installation.

Package Version Package Version

absl-py 1.4.0 pathspec 0.10.3

alabaster 0.7.12 pcre 8.45

arrow 1.2.3 pexpect 4.8.0

astroid 2.14.2 pickleshare 0.7.5

asttokens 2.0.5 pillow 9.4.0

astunparse 1.6.3 pip 23.0.1

atomicwrites 1.4.0 platformdirs 2.5.2

attrs 22.1.0 pluggy 1.0.0

autopep8 1.6.0 ply 3.11

babel 2.11.0 poyo 0.5.0

backcall 0.2.0 prompt-toolkit 3.0.36

bcrypt 3.2.0 protobuf 3.19.6

beautifulsoup4 4.11.1 psutil 5.9.0

binaryornot 0.4.4 ptyprocess 0.7.0

black 22.6.0 pure_eval 0.2.2

bleach 4.1.0 pyasn1 0.4.8

brotlipy 0.7.0 pyasn1-modules 0.2.8

ca-certificates 2023.08.22 pycodestyle 2.10.0

cachetools 5.3.0 pycparser 2.21

certifi 2023.7.22 pydocstyle 6.3.0

cffi 1.15.1 pyflakes 3.0.1

chardet 4.0.0 pygments 2.11.2

charset-normalizer 3.1.0 pylint 2.16.2

click 8.0.4 pylint-venv 2.3.0

cloudpickle 2.0.0 pyls-spyder 0.4.0

colorama 0.4.6 pynacl 1.5.0

columnar 1.4.1 pyopenssl 23.0.0

comm 0.1.2 pyparsing 3.0.9

contourpy 1.0.7 pyqt 5.15.7

cookiecutter 1.7.3 pyqt5-sip 12.11.0

cryptography 39.0.1 pyqtwebengine 5.15.7

cudatoolkit 11.2.2 pyrsistent 0.18.0

cudnn 8.1.0.77 pysocks 1.7.1

cycler 0.11.0 python 3.9.16

debugpy 1.5.1 python-dateutil 2.8.2

74

Package Version Package Version

decorator 5.1.1 python-fastjsonschema 2.16.2

defusedxml 0.7.1 python-lsp-black 1.2.1

diff-match-patch 20200713 python-lsp-jsonrpc 1.0.0

dill 0.3.6 python-lsp-server 1.7.1

docstring-to-markdown 0.11 python-slugify 5.0.2

docutils 0.18.1 pytoolconfig 1.2.5

entrypoints 0.4 pytz 2022.7

et-xmlfile 1.1.0 pywin32 305

executing 0.8.3 pywin32-ctypes 0.2.0

ffmpeg 4.2.2 pyyaml 6

flake8 6.0.0 pyzmq 23.2.0

flatbuffers 23.3.3 qdarkstyle 3.0.2

flit-core 3.6.0 qstylizer 0.2.2

fonttools 4.39.0 qt-main 5.15.2

gast 0.4.0 qt-webengine 5.15.9

giflib 5.2.1 qtawesome 1.2.2

glib 2.69.1 qtconsole 5.4.0

google-auth 2.16.2 qtpy 2.2.0

google-auth-oauthlib 0.4.6 qtwebkit 5.212

google-pasta 0.2.0 requests 2.28.2

grpcio 1.51.3 requests-oauthlib 1.3.1

gst-plugins-base 1.18.5 rope 1.7.0

gstreamer 1.18.5 rsa 4.9

h5py 3.8.0 rtree 1.0.1

icu 58.2 scikit-learn 1.2.1

idna 3.4 scipy 1.10.1

imagesize 1.4.1 setuptools 65.6.3

importlib-metadata 6.0.0 sip 6.6.2

importlib-resources 5.12.0 six 1.16.0

importlib_metadata 4.11.3 snowballstemmer 2.2.0

inflection 0.5.1 sortedcontainers 2.4.0

intervaltree 3.1.0 soupsieve 2.3.2.

ipykernel 6.19.2 sphinx 5.0.2

ipython 8.10.0 sphinxcontrib-applehelp 1.0.2

ipython_genutils 0.2.0 sphinxcontrib-devhelp 1.0.2

isort 5.9.3 sphinxcontrib-htmlhelp 2.0.0

jedi 0.18.1 sphinxcontrib-jsmath 1.0.1

jellyfish 0.9.0 sphinxcontrib-qthelp 1.0.3

jinja2 3.1.2 sphinxcontrib-serializingh tml 1.1.5

75

Package Version Package Version

jinja2-time 0.2.0 spyder 5.4.1

joblib 1.2.0 spyder-kernels 2.4.2

jpeg 9e sqlite 3.40.1

jsonschema 4.17.3 stack_data 0.2.0

jupyter_client 7.4.9 string-color 1.2.3

jupyter_core 5.2.0 tensorboard 2.10.1

jupyterlab_pygments 0.1.2 tensorboard-data-server 0.6.1

keras 2.10.0 tensorboard-plugin-wit 1.8.1

keras-preprocessing 1.1.2 tensorflow 2.10.1

keyring 23.4.0 tensorflow-addons 0.21.0

kiwisolver 1.4.4 tensorflow-estimator 2.10.0

lazy-object-proxy 1.6.0 tensorflow-intel 2.11.0

lerc 3 tensorflow-io-gcs-filesys 0.31.0

libclang 15.0.6.1 termcolor 2.2.0

libdeflate 1.17 text-unidecode 1.3

libffi 3.4.2 textdistance 4.2.1

libiconv 1.16 threadpoolctl 3.1.0

libogg 1.3.5 three-merge 0.1.1

libpng 1.6.39 time-profiler 0.0.2

libsodium 1.0.18 tinycss2 1.2.1

libspatialindex 1.9.3 toml 0.10.2

libtiff 4.5.0 tomli 2.0.1

libvorbis 1.3.7 tomlkit 0.11.1

libwebp 1.2.4 toolz 0.12.0

libwebp-base 1.2.4 tornado 6.2

libxml2 2.9.14 tqdm 4.65.0

libxslt 1.1.35 traitlets 5.7.1

line_profiler 4.1.1 typeguard 2.13.3

lxml 4.9.1 typing-extensions 4.5.0

lz4-c 1.9.4 typing_extensions 4.4.0

markdown 3.4.1 tzdata 2022g

markupsafe 2.1.2 ujson 5.4.0

matplotlib 3.7.1 unidecode 1.2.0

matplotlib-inline 0.1.6 urllib3 1.26.14

mccabe 0.7.0 vc 14.2

memory_profiler 0.58.0 vs2015_runtime 14.27.29016

mistune 0.8.4 watchdog 2.1.6

mypy_extensions 0.4.3 wcwidth 0.2.5

nbclient 0.5.13 webencodings 0.5.1

76

Package Version Package Version

nbconvert 6.5.4 werkzeug 2.2.3

nbformat 5.7.0 whatthepatch 1.0.2

nest-asyncio 1.5.6 wheel 0.38.4

numpy 1.24.2 win_inet_pton 1.1.0

numpydoc 1.5.0 wincertstore 0.2

oauthlib 3.2.2 wrapt 1.15.0

openpyxl 3.1.1 xz 5.2.10

openssl 1.1.1w yaml 0.2.5

opt-einsum 3.3.0 yapf 0.31.0

packaging 23 zeromq 4.3.4

pandas 1.5.3 zipp 3.15.0

pandocfilters 1.5.0 zlib 1.2.13

paramiko 2.8.1 zstd 1.5.2

parso 0.8.3

77

C. CMG simulation run summary.

Field Total Fluid

 Oil Gas Water

 ------- ------- -------

 (MSM3) (MMSM3) (MSM3)

Cumulative Production 4210 1051.1 158.69

Cumulative Injection NA 0 510.82

Cumulative Gas Lift NA 0 NA

Cumulative Aquifer Influx NA NA 5390.4

Current Fluids In Place 7745 1055.7 12189

Production Rates 0.9 0.13866 0.41385

Injection Rates NA 0 0.30047

Timesteps: 5016 Newton Cycles: 5024 Cuts: 0 Solver Iterations:

37340

 Average Implicitness : 0.029

 Fluid Component Model : BLACKOIL (SINGLE-P)

 Material Balances (owg): 1.000 1.000 1.000

 Average Active Blocks: 783 Average Non-BHP Active Wells: 4

 Total Blocks : 1092 Total Wells : 5

 Active Blocks: 783 Non-BHP Active Wells: 5

 Time at end of simulation: 5000.00 (days)

 Average reservoir pressure excluding water zone: 25098.56 (kPa)

 Total Number of Solver Failures: 0 Stalls: 0 ITERMAX Reached: 0

 Jacobian Domains 1

 Total lstpro/lstpar calls: 2 (3)

 Linear Solver: Aimsol

 Preconditioner Ordering: REDBLACK

 Preconditioner Degree 1

 KMP_AFFINITY: Default

 OMP_SCHEDULE: Default

 Max Impl Blocks: 38 %Impl: 4.9% (TS,CUT,NCYC): (4929, 0, 1)

 Max Solver Iterations (TS,CUT,NCYC): 11 (1, 0, 1)

 Number of threads set: 1

 Total number of cpus: 12

 Memory Usage Peak: 72 MB on TS: 3729 TS 1 Peak: 42 MB Average:

68 MB VM Size: 79 MB

 Memory Usage Final Size: 73 MB

 Host computer: MYDUCK

 CPU Time: 12.00 seconds

 Elapsed Time: 51.73 seconds

 End of Simulation: Normal Termination

