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Abstract
We give formulas for individual black hole masses in a merger, by using
Newtonian physics, in terms of the three measured quantities in the detector:
the initial wave frequency f1, the maximum detected frequency (chirp fre-
quency) f2, and the time elapse τ between these two frequencies. Newtonian
gravity provides an excellent pedagogical tool to understand the basic features
of gravitational wave observations, but it must be augmented with the
assumption of gravitational radiation from General Relativity for accelerating
masses as there is no gravitational wave Newtonian gravity. The simplest
approach would be to consider a binary system of two non-spinning masses
(two black holes) circling their common center of mass. All the computations
can be done within Newtonian physics, but the General Relativistic formula
for the power carried by gravitational waves is required in this scheme. It turns
out there is a subtle point: for the consistency of this simple, yet pedagogical
computation, taking the lowest order power formula from General Relativity
leads to complex individual masses. Here we remedy this problem and suggest
a way to write down an average power formula coming from perturbative
General Relativity.

Keywords: Newtonian limit, merger of black holes, gravitational waves,
course material for general relativity, post-Newtonian limit
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1. Introduction

Black hole collision and the physics of the ensuing gravitational wave emission, in its full
nonlinear form, is highly non-trivial; and allows only approximate analytical understanding in
the inspiral and ringdown phases. The crucial merger phase, when the amplitude of the
gravitational wave is the largest, is left to the numerical relativity computations. There is of
course no problem with this state of affairs, but it would be quite useful to have some
understanding of the merger and the gravitational radiation phenomena using basic intro-
ductory physics. Fortunately, two such beautiful expositions [1, 2], appeared where non-
relativistic physics is used to describe the merger and estimate the source parameters using the
measured data. Of course, as Newtonian theory does not allow gravitational waves by fiat,
this input must be taken from General Relativity (GR). So the only input from GR is the
energy loss per unit time (power) formula due to gravitational radiation. The papers [1, 2]
give a good understanding of the measured gravitational wave data in terms of interacting and
merging binaries. In the detectors, strain (relative change in the distances of the detector
mirrors), frequency change in the transient wave, and the total time in the detector frame are
measured. All the information about the source, such as the luminosity distance of the source,
the interacting masses, the energy lost to gravitational waves, etc, can be inferred using these
data and the underlying theory. Of course, if the underlying theory is Newtonian gravity, one
should only expect an order-of-magnitude matching, not an accurate one.

In almost all the popular talks given by the second author regarding gravitational wave
observations, a persistent question arises that is: how can one determine the individual masses
of the merging black holes? Of course, the correct answer can be obtained from full numerical
GR as stated above, hence there is no simple analytical formula for the individual masses in
terms of the observables or measured quantities in the detector. But, in the context of
Newtonian physics, we would like to remedy this here and give the masses of the merging
black holes in terms of the measured quantities in the detector. In no way this formula for the
masses can substitute actual, numerical calculations; it is just a heuristic discussion that aims
to provide students and teachers with a cursory understanding of the merging black holes. We
hope that this will be a nice amendment to the [1, 2]. See the main formulas as equation (13).
The crucial point will be this: the lowest-order gravitational power formula leads to complex
individual masses, not real ones, so one has to consider an effective power law that takes into
account higher-order corrections in GR.

2. Individual masses of black holes from Newtonian physics

Let us consider two non-spinning black holes with masses m1 and m2 moving in circular
orbits about their common center of mass. The total mass is mT=m1+m2 while the reduced
mass is m = m m

mT

1 2 . The Newtonian equation of motion is

m
m

= -
G m

r
r r, 1T

3
̈ ( )

with the relative position given as r= r2− r1. Then the orbital angular velocity reads

w =
Gm

r
. 2o

T2
3

( )
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In this circular orbit, the total energy of the system is

m
m m m

w= - = - = -E v
G m

r

G m

r
Gm

1

2 2 2
, 3T

T T
T o

2 2 3( ) ( )

where in the second and third equalities in (3), we used v= ωor with ωo given in (2). The
power loss due to gravitational radiation can be defined as negative of the rate of change in
the total energy as

m
w

w
= - = -P

E

t
Gm

t

d

d 3

d

d
. 4T

T o
o

loss
2 3 1 3( ) ( )

Needless to say, even though one can define and calculate the power loss formula as above,
gravitational radiation emission does not happen in Newtonian theory. So, there really is no
power loss, and the circular orbit is stable; but having learned from GR that accelerating mass
and energy radiate, we must introduce this concept to Newtonian theory by hand to proceed.
Then the next question is the following: given two orbiting masses as above, what could be
the emitted power formula? One can take guidance from electrodynamics for which one has
electromagnetic field radiation from an oscillating electric dipole. It turns out that in gravity,
due to the absence of negative masses, there are no gravitational dipoles, and the leading
quantity that is responsible for gravitational radiation is the time-dependent quadrupole
moment of the accelerating masses. Therefore the quadrupole moment should appear in the
power formula. With this knowledge, as argued in [1], a simple argument and dimensional
analysis lead us to the power loss formula up to a constant α via gravitational waves as

a
w

=P
GI

c
. 5o

GW

2 6

5
( )

Here I= μr2 is the moment of inertia which is time-dependent since r is time-dependent; and
α= 32/5 at the lowest (linear) order [3]. We shall keep this constant as α, since, as we will
show below, the linearized value is not sufficient to describe the LIGO data. Namely, it leads
to an inconsistency, i.e. it will yield complex individual masses of black holes. We can recast
(5) in such a way that the time-dependence is only on the orbital frequency ωo:

a
m w

=P
G m

c
. 6T o

GW

7 3 2 4 3 10 3

5
( )

Using (5) and (6) in Ploss= PGW, one arrives at

m
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which is usually written in terms of the so-called chirp mass [4]
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This tells us the time-dependence of the chirp mass during the merger, which does not change
much [2]. Hence we can assume it to be constant and integrate (9) to find the finite change in
the orbital frequency over a time interval of τ. But before we do that, let us relate the orbital
angular frequency ωo of the source to the frequency f measured in the detector or the
frequency of the gravitational wave at the detector. The relation is as follows: 2πf= 2ωo. Note
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that factor 2 on the right-hand side can be understood by explicitly writing the emitted power
in terms of the time dependence of the quadrupole moment. This can also be understood from
the fact that the gravitational field has spin-2, namely as the binary system rotates at an angle
of 2π, the emitted gravitational field rotates by an angle 4π.

There is another assumption we have made: the gravitational source is not far away from
our detectors. If this is not the case, we should also consider the redshift of the gravitational
wave due to the expansion of the Universe. This redshift of the gravitational wave is ana-
logous to the usual cosmological redshift of light coming from large cosmological distances.
The distances are conventionally measured by a dimensionless quantity, the so-called z-factor
defined as -z 1

f

f
emitted

observed
≔ . High z values refer to large distances. Our assumption of a close

source is valid because, in the first merger paper [4], the merging black holes were not far
away, indeed z-factor is just 0.09 [4]. But if one wants to incorporate the redshift of the
gravitational wave, one should set = w

p +
f

z1
o

( )
. So then, from (9), one has the chirp mass in

terms of the measured quantities as

⎛
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where f1 is the initial frequency detected and f2> f1 is the final one after a total recording time
τ.1 The individual masses of black holes from the definition of the chirp mass (8) and the total
mass follows as

⎜ ⎟
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It is clear that for this formula to be valid, one must have »m 2 2.2974T c c
6 5  . For

the first LIGO observation [4], these masses were given as mT= 70Me and = M30 ;c  and
since for these LIGO values =m 2.3333T c , the formula (11) is valid as expected.

Since we want to write m1,2 in terms of the measured quantities, we need to figure out what
the total mass mT is in terms of these quantities. For this purpose, we can assume that [1], the
merger stops once a Schwarzschild black hole with total mass mT is formed, and at that
moment the largest frequency wave with frequency f2 is emitted. So here we assume that
gravitational radiation carries only a small fraction of the initial total mass, and we also do not
consider the ringdown phase, that is the damped oscillations of the single black hole formed
after the merger which also leads to a generation of gravitational waves. These assumptions,
save the non-spinning assumption are rather reasonable assumptions. We cannot incorporate
the spin within the simple Newtonian framework. The Schwarzschild black hole with mass
mT has the radius r (that is the location of the event horizon) given as =r ;m G

c

2 T
2 therefore

p
= =m

c r

G

c

f G2 2 2
, 12T

2 3

2

( )

where in the second equality we used (2). Plugging the last equation and (10) in (11), one
arrives at the desired formula for the masses of individual black holes in terms of what is
observed in the detector: the observation time τ, the initial frequency f1 and the final
frequency f2.

1 In [1], f2 is taken to be infinite for the estimation of the chirp mass. Here we kept it just to get a better numerical
estimate.
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The result will be in kilograms. This formula is valid under the following condition that
makes the square root real
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Let us now apply this to the first LIGO observation [4], one can read the following frequencies
f1= 42Hz, f2= 300 Hz from the published frequency versus time graph. Plugging these in the
right-hand side of (14), one obtains the condition ατ� 0.5649. From the same data one can
estimate the time it takes the frequency to increase from f1 to f2 to be τ= 0.08 s, then the
condition (14) requires α� 7.0613. That means, if one naively takes α to have the lowest order
value coming from GR, that is α= 32/5= 6.4, then m1,2 as computed from (13) will be
complex numbers. In fact, in [1], α= 32/5, together with the other estimates for τ, f1, and f2
quoted above were used. Then one obtains m1,2= (38.07± 12.27i)Me, which are nonphysical.

The all-important conclusion one should derive from the above result is that to be able to
explain the black hole merger data in a somewhat semi-Newtonian analysis, one cannot just
take the lowest order term borrowed from GR in the radiated power formula (5). One has to
go beyond the first order in perturbation theory to obtain physically viable masses. But, then
the ensuing discussion becomes rather complicated since α in (5), instead of being the
constant 32/5, becomes a nonlinear function of the involved masses and the source fre-
quency. The resulting radiated power formula can only be computed in perturbation theory.
Such a computation is difficult and is beyond the scope of this paper, but if the reader accepts
the perturbative formula known in the literature, and is given below, then the ensuing dis-
cussion can be easily followed.

Let us first note that perturbative corrections to the usual Newtonian potential in GR are
often called post-Newtonian (PN) corrections; and the PN formalism is a powerful tool to
compute the backreaction effects of the emitted gravitational radiation on the source
especially in the near-zone approximation, that is when one is interested in the physics of
gravitational waves close to the gravitating object. Below we will use the power law at the
so-called 3.5 PN order. The designation 3.5 PN here refers to the approximation that one
considers all the corrections to the relevant physical quantities up to and including order

v

c

3.52

2( ) corrections where v is the speed of the source that depends on other physical para-

meters such as the masses and the relevant distances in the problem and c is the speed of light.
To be able to express the 3.5 PN order correction to the power law in terms of physical

variables, and quote the radiated power formula in a merging binary up to 3.5 PN order [5, 6],
as given by equation (5.257) in [7], let us define two dimensionless quantities

⎛
⎝

⎞
⎠

w
nx

Gm

c

m m

m
, . 15T o

T
3

2 3
1 2

2
≔ ≔ ( )

The order of x can be estimated to be =x v

c

2

2 ( ), so it a priori takes values as 0� x< 1,

while ν takes values in the interval 0� ν� 1/4, and the upper bound is satisfied when the

merging masses are equal. Then up to and including v

c

7

7 ( ), the power formula reads
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Here γE= 0.577.. is the Euler–Mascheroni constant. At the lowest order, one takes
g(x, ν)= 1, but as we argued above, this does not yield consistent results for individual
masses. One way to take into account this non-trivial dependence of g(x, ν) on x is to consider
its average value from initial x1 to the final x2 for fixed ν as the latter are given in terms of
masses and the former depends on the changing frequency. In the averaging process, one
must still be careful as the formula (16) fails for large x values. The maximum possible value
of ν is 0.25 which is attained if the two merging masses have exactly equal masses as stated
above. In the first merger data, the merging masses are approximately close to each other
(m1= 29Me, m2= 36Me), but not exactly equal, so we take ν= 0.24. Of course, strictly
speaking, due to the mass lost in radiation, ν also changes, but it does so very slightly, so we
ignore that. As for the relevant range of the x variable, even though theoretically one has
x ä [0, 1), one can see from the definition of x in (15), its maximum value when computed in
the Newtonian approximation, using (2) and (12) in the first equation of (15), turns out to be
1/2. Therefore, when one takes an average value of g, one has to consider the range x ä [0,
0.5]. But this range is really the maximum range, and as x gets closer to the upper bound, the
approximation fails to be accurate as one approaches the strong gravity regime. Thus we
considered the smaller interval x ä [0, 0.2855] and the upper limit denotes the relative speed
of the masses to be around a little over v= c/2. For this interval the average of g can be found
to be 〈g〉= 1.156 which suggests that one can take αeff= 37/5. See figure 1 For a two-
parameter plot of αeff which is relevant for other observed mergers that we have not discussed
here, see figure 2.

The upshot of this discussion is that to understand the problem at a semi-Newtonian level,
without going through rather cumbersome perturbative calculations, one has to choose an
effective a ¹eff

32

5
which should satisfy the bound (14). In the first LIGO observation [4], as

noted in the paragraph below (14), one has αeff� 7.0613. We argued above that the value
a = + =1 7.4eff

32

5
is a reasonable value to choose for the first LIGO observation. Of

course, staying in the noted bound (14), one can argue for some other value. We will show
below that the value we take produces impressively close values to the LIGO data.

But first, let us recast (13) in terms of the solar mass Me which is more convenient:

⎛

⎝
⎜

⎛

⎝
⎜

⎞

⎠
⎟

⎞

⎠
⎟pta

=  - -m
M

f

f

f f

11421
1 1

2 2 1 1
, 181,2

2

2
5 3

eff 1
8 3

2
8 3

 ( )

Eur. J. Phys. 45 (2024) 025601 Z T Ozkarsligil and B Tekin

6



where the frequencies are in hertz. Please note that we have changed α to αeff and we shall
use the value αeff= 37/5. Then using (18) gives the individual masses as m1= 30Me,
m2= 46Me, mT= 76Me; and the chirp mass as = M32 ;c  so we have =m 2.375T c
which satisfies the bound. These values are in reasonable comparison with the LIGO
estimates [4]: m1= 29Me, m2= 36Me, mT= 70Me and = M30c  and =m 2.3333T c .

We can also estimate the total mass carried away by the gravitational radiation. Integrating
the power (4) over the interval τ, one arrives at

ò ò
m

w
w m

pD = = = -
t t

-E P t t Gm t
t

Gm f fd
3

d
d

d 2
, 19T

o
T

0

2 3

0
0

1 3 2 3
2
2 3

1
2 3( ) ( ) ( ) ( ) ( )

which yields a total mass of ΔE/c2= 3.3Me which is a rather remarkable agreement with the
value given in [4], that is 3Me

Figure 1. αeff as defined by the second equality in (16) is plotted for ν= 0.24. The
horizontal line corresponds to 32/5= 6.4. The average value of αeff for the relevant
interval for the first LIGO data can be taken to be 37/5= 7.4.

Figure 2. αeff as defined by the second equality in (16) is plotted for the ranges ν ä [0,
1/4] and x ä [0.12, 0.20] (which is between the range stated in the text). The horizontal
plane corresponds to the linearized GR’s value of 32/5.
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3. Conclusions and discussions

Our goal in this work was to give a simple analytical (albeit approximate) formula for the
individual black hole masses in a merger in terms of the three measured quantities in the
detector, while staying within the context of Newtonian mechanics as much as possible, and
only using the radiated power formula from GR. The measured quantities are the initial ( f1)
and maximum wave frequency ( f2) and the time elapse (τ) between them as measured in the
detector. The formula (13) was derived in basic Newtonian physics in the spirit of [1, 2] with
one important improvement and refinement: the power formula carried by gravitational waves
cannot just be taken as the lowest order post-Newtonian term. Namely, the famous 32/5
factor leads to complex black hole masses when Newtonian theory is employed to understand
the LIGO data as was done [1]. The reason for this failure is easily understandable since, due
to the nonlinearity of GR, the radiated power depends rather non-trivially on the involved
masses and the frequency of the source. The full dependence of the radiated power on the
involved parameters is not known exactly. This is because, in the context of GR, there is no
genuine two-body system: whenever there are two interacting, accelerating masses, there is
always a third ‘body’ which is the emitted gravitational radiation. As is well-known, the
3-body problem even in Newtonian physics is not exactly solvable except for certain special
cases. Thus in GR, the binary black hole system is not exactly solvable: one either works
numerically or resorts to the perturbative calculations. In either case, one should define not a
constant α= 32/5, but a function as αeff= αeff( f, m1, m2) which only yields the constant
value 32/5 at the lowest order. But a detailed discussion on the self-consistent solutions to
this nonlinear equation is beyond the scope of this work which aims to discuss the problem in
the semi-Newtonian paradigm. Therefore, to keep the discussion simple, one can take a
constant average effective αeff as discussed in the previous section. For the first LIGO data,
this averaging procedure gave us αeff= 32/5+ 1 as suggested by the higher-order post-
Newtonian calculations. The resulting estimates are in rather remarkable agreement with the
observation, even though we have not considered the effect of the spin of the black holes.
There is an important caveat here that must be considered when a similar approach is to be
applied to other black hole merger data. First of all, in the spirit of not going through full data
analysis, we estimated the initial frequency and the final frequency and the time interval
between them by directly looking at the frequency versus time graphs. Of course, this type of
estimation is not very accurate, if one makes a different estimate, one needs to be careful in
using a reasonable αeff. This value should satisfy the bound (14).2
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