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Noncoprime action of a cyclic group

GÜLİN ERCAN* and İSMAİL Ş. GÜLOĞLU

Abstract. Let A be a finite nilpotent group acting fixed point
freely on the finite (solvable) group G by automorphisms. It is
conjectured that the nilpotent length of G is bounded above by
ℓ(A), the number of primes dividing the order of A counted with
multiplicities. In the present paper we consider the case A is cyclic
and obtain that the nilpotent length of G is at most 2ℓ(A) if |G|
is odd. More generally we prove that the nilpotent length of G is
at most 2ℓ(A) + c(G;A) when G is of odd order and A normalizes
a Sylow system of G where c(G;A) denotes the number of trivial
A-modules appearing in an A-composition series of G.

1. Introduction

Let H be a finite group. Dade conjectured in his 1969’s paper
[3] that whenever H is solvable and C is a Carter subgroup of H
there is a linear function g such that the nilpotent length h(H) is
at most g(ℓ(C)) where ℓ(C) denotes the number of (not necessarily
distinct) prime divisors of C. If A is a finite nilpotent group acting
fixed point freely on the finite group G by automorphisms, that is
CG(A) = {g ∈ G : ga = g for all a ∈ G} = 1, then one can regard
A as a Carter subgroup of the semidirect product GA with normal
complement G. This allows us to state a special case of the above
conjecture as follows.

Let A be a finite nilpotent group acting fixed point freely on the
finite group G by automorphisms. Then h(G) is bounded above by a
linear function of ℓ(A).

Although Dade established an exponential bound in the same pa-
per, no linear bound has been found so far even if A is cyclic. However,
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some special cases of this conjecture are known. It should be noted that
the best possible bound in this case is ℓ(A) due to the fact that for any
finite group A there is a finite solvable group G on which A acts co-
primely such that h(G) = ℓ(A) and CG(A) = 1. All the results in this
direction are listed in the survey paper [12] of Turull. This conjecture
is mostly studied under the assumption that (|G|, |A|) = 1 and the
best description of the results obtained so far is given in Theorem 2.1
in [13] as follows:

Let A be a finite group acting coprimely on the finite solvable group
G by automorphisms. Assume that for every subgroup A0 of A and
every A0-invariant irreducible elementary abelian section S of G there
is v ∈ S with CA0(v) = CA0(S). Then h(G) ≤ ℓ(A) + ℓ(CG(A)).

Notice that this yields immediately the best possible bound ℓ(A) in
case where CG(A) = 1.

As an example to the noncoprime case we can give a result of Turull,
namely the following.

Let A be a finite abelian group of squarefree exponent acting fixed
point freely on the finite solvable group G by automorphisms. Then
h(G) ≤ 5ℓ(A).

On the same lines the authors obtained in [5] as an example of a
partial special case that h(G) ≤ ℓ(A) under the assumption that A is
finite abelian of squarefree exponent coprime to 6 acting fixed point
freely on the group G of odd order. More recently, Jabara handled
the case where A is cyclic in [7], and obtained the polynomial bound
7ℓ(A)2 for h(G).

In 1990 [1] Bell and Hartley constructed an elegant example show-
ing that the nilpotentness condition on A cannot be freely dropped in
case of a noncoprime action. Namely, they proved the following.

For any finite nonnilpotent group A and a positive integer k, there
exists a finite solvable group G on which A acts fixed point freely and
h(G) = k.

In view of this result the conjecture should be restated as follows.
Let A be a finite nilpotent group acting fixed point freely on the

finite solvable group G by automorphisms. Then h(G) ≤ ℓ(A).
It should be noted that the solvability condition on G allows us to

ask about the nilpotent length of the group. However, this condition is
guaranteed by results of Rowley [9] and Belyaev-Hartley [2] in the cases
of a coprime fixed point free action of a group and a noncoprime fixed
point free action of a nilpotent group, respectively. Hence we remove
the solvability condition whenever the action is fixed point free.

It is our aim in the present paper to obtain a result in the non-
coprime situation which is similar to Theorem 2.1 in [13] mentioned
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above when A is cyclic. Let A act on the group G, and let c(G;A)
denote the number of trivial A-modules appearing as factors in any
A-composition series of G. We prove the following.

Theorem. Let A be a finite cyclic group acting on the finite group
G of odd order. Suppose that A normalizes a Sylow system of G. Then
h(G) ≤ 2ℓ(A) + c(G;A).

It is straightforward to show that c(G;A) = ℓ(CG(A)) in case where
G is solvable and (|G|, |A|) = 1. If A is nilpotent we shall see in Sec-
tion 3 that c(G;A) = 0 if and only if CG(A) = 1. It follows that as an
immediate consequence of the above theorem we have

Corollary. Let A be a finite cyclic group acting fixed point freely
on the finite group G of odd order. Then h(G) ≤ 2ℓ(A).

The paper is divided into three sections. Section 2 includes new
observations on the existence of homogeneous components and regular
modules as well as some known results on the existence of regular orbits.
Section 3 is reserved to the proof of the main theorem of the paper.

2. Existence of homogeneous components and regular

characters

This section is devoted to some key theorems which form bases
for the proofs of the main theorems of this paper. We start with the
following result as a preparation of the next theorem.

Theorem 2.1. Let A be a finite nilpotent group acting on a finite
solvable group G. Suppose that G/M is a GA-chief factor of G which
is an elementary abelian r-group for a prime r, and that A normalizes
a Hall r′-subgroup of GA. Let V be a kGA -module for a field k such
that VG is homogeneous. Then there is a homogeneous component of
VM which is stabilized by A.

Proof. Assume the contrary. Then VM is not homogeneous. Let
VM = W1⊕W2⊕· · ·⊕Ws be the decomposition of VM into its homoge-
neous components. As G acts transitively on {W1,W2, ...,Ws} we see
that GA = NGA(W1)G.

As G/M is irreducible A-module and an r-group we see that Ar ≤
CGA(G/M) = CNGA(W1)(G/M)G = LG where L = CNGA(W1)(G/M).
Clearly M ≤ G ∩ L and G ∩ L is normalized by G and NGA(W1) and
hence by GA = NGA(W1)G. Thus (G ∩ L)/M is a GA-submodule of
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the irreducible GA-module G/M and hence M = G ∩ L. We have
[G,L] ≤ M ≤ L and hence L E GA.

Set GA = GA/L. We have G ≤ Or(GA). On the other hand,
GA/LG ∼= A/(A ∩ LG) is an r′-group as Ar ≤ A ∩ LG. Thus we have
G = Or(GA) and GA = Or,r′(GA). Furthermore G is a minimal normal
subgroup of GA, that is an irreducible GA-module. In particular Ar ≤
G and hence Ar ≤ CG(GA) = 1, that is Ar ≤ L ≤ NGA(W1).

Let nowQ be anA-invariant Hall r′-subgroup ofGA. ThenQOr(GA) =

QG = GA = NGA(W1)G. Note that NGA(W1) ∩G is trivial. It follows

that Q and NGA(W1) are conjugate in GA. Without loss of generality,
we may assume that QL = NGA(W1). Since Q is an A -invariant Hall
r′-subgroup of GA we see that Q = QAr′ that is Ar′ ≤ Q ≤ NGA(W1)
and hence A leaves W1 invariant. This completes the proof. �

We now present a new result that we shall use as a tool to make up
for the lack of the Glauberman’s lemma in the case of a noncoprime
action.

Theorem 2.2. Let A be a finite nilpotent group acting on a finite
solvable group G and let V be a kGA-module for a field k such that
VG is homogeneous. If A normalizes a Sylow system of GA, then there
is a homogeneous component of VN which is stabilized by A for any
A-invariant normal subgroup N of G.

Proof. We consider a series

N =Mk < · · · ≤ M2 < M1 < M0 = G

whereMi is a maximal normal A-invariant subgroup ofMi−1 containing
N for i = 2, . . . , k. Applying Theorem 2.1 to the triple (V,G,M1) under
the action of A we obtain a homogeneous component V1 of VM1 which
is stabilized by A.We apply Theorem 2.1 to the triple (V1,M1,M2) and
get an A-invariant homogeneous component V2 of (V1)M2. Continuing
this process along the remaining terms of the above series we eventually
obtain a nontrivial homogeneous N -module U which is A-invariant. It
is apparent that A stabilizes the homogeneous component W of VN
such that U ≤W. This establishes the claim. �

The following result which is essentialy due to Dade is stated as a
proposition in [4].

Proposition 2.3. Let V be a faithful kA-module over a finite field
k of characteristic s. Assume that A = B × C where B is a cyclic
s-group and C is an s′-group which has a regular orbit on every C-
invariant irreducible section of V . Then A has a regular orbit on V .
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The next result is Theorem 1.1 in [14].

Proposition 2.4. Let A be a nilpotent group and let V be a faithful
FA-module over a field of characteristic s where Os(A) = 1. Suppose
that A involves no wreath product Z2≀Z2; and involves no wreath product
Zr ≀ Zr for r a Mersenne prime when s = 2. Then A has at least one
regular orbit on V.

We are ready now to prove a theorem which concludes the existence
of a regular module in a special configuration. Firstly we obtain the
following preliminary result.

Theorem 2.5. Let PQA be a finite group where P is a p-group and
Q is a q-group for distinct primes p and q such that q is not a Fermat
prime if p = 2. Assume that P ⊳ PQA, Q⊳QA. Assume further that
the following are satisfied:
(a) Either A is cyclic; or A is a noncyclic nilpotent group which is
Z2 ≀ Z2-free and Zr ≀ Zr-free for all Mersenne primes r.
(b) P is an extraspecial p-group for some prime p where CA(P ) = 1
and Z(P ) ≤ Z(PQA);
(c) Q/Q0 is of class at most two and of exponent dividing q where
Q0 = CQ(P ); and A0 = CA(Q/Q0) is either 1 or of prime order.
Assume that q is coprime to |A0| and [P,A0] = P when A0 6= 1.
(d) (pq, |A|) = 1 whenever A is noncyclic.

Let χ be a complex PQA-character such that χ
P
is faithful. Then

χ
A
contains the regular A-character.

Proof. Let (P,Q, χ) be a counterexample with |PQ|+ χ(1) min-
imum.

We shall proceed in a series of steps. To simplify the notation we
set G = PQ.

(1) χ is irreducible.

There exists an irreducible constituent χ
1
of χ which does not con-

tain Z(P ) in its kernel, that is (χ1)P is faithful. Then we have χ1 = χ
because otherwise χ1 contains the regular A-character by induction.

(2) χ
P
is homogeneous and Q0 = 1.

Notice that χ
Z(P )

is homogeneous since Z(P ) ≤ Z(GA). As is
well known the irreducible characters of the extraspecial group P are
uniquely determined by their restriction to Z(P ) so that χ

P
= eθ

for some faithful irreducible GA-invariant character θ of P and some
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positive integer e. The coprimeness condition (|P |, |QAp′|) = 1 enables

us to extend θ in a unique way to an irreducible character θ of GAp′

such that det(θ)(x) = 1 for each x ∈ QAp′ by [[6], 8.16]. On the other
hand θ1 = θ×1Q0 is an irreducible P ×Q0-character with Q0 ≤ Kerθ1.

We can extend θ1 uniquely to θ1 ∈ Irr(GAp′/Q0) with det(θ1)(x) = 1

for each x ∈ QAp′. Notice that (θ1)P = θ = θ
P
. So the uniqueness of

this extension implies Q0 ≤ Kerθ.
Observe that the set {ϕ : ϕ ∈ Irr(GAp′) such thatϕ

P
= θ} is

Ap-invariant, because θ
a = θ for each a ∈ Ap. Since det(θ

a
)(x) = 1

for each a ∈ Ap, the uniqueness of θ gives θ
a
= θ. Notice that in case

where A is cyclic θ is extendible to an irreducible GA-character, say

θ, by [[6], Corollary 11.22]. When A is noncylic, we know by hypoth-

esis (d) that GA = GAp′ and we put simply θ = θ respectively. Now

θ
P
= θ and Q0 ≤ Kerθ = G ∩ Kerθ. If θ(1) < χ(1) or Q0 6= 1, by

induction applied to the group GA/Q0 over θ we see that θ
A
contains

the regular A-character. Since χ is a constituent of θ
P
|GA, there exists

β ∈ Irr(GA/P ) such that χ = θ·β by [[6], 6.17] and hence χ
A
= θ

A
·βA.

We conclude that χ
A
contains the regular A-character, while θ

A
does.

Therefore without loss of generality we may assume that Q0 = 1 as
claimed.

(3) Theorem follows.

Notice that we can regard Irr(Q/Φ(Q)) as a faithful Fq(A/A0)-
module which is isomorphic to Q/Φ(Q). Applying Proposition 2.3 and
Proposition 2.4 in cases where A/A0 is cyclic and A/A0 is noncyclic,
respectively, we get a linear character λ1 of Q such that CA(λ1) = A0.

Theorem 1.3 in [13] applied to the group P (Q× A0) over χ shows
that one of the following holds:

(i) χ
QA0

contains the regular QA0-character;
(ii) A0 = 1, p = 2, and q is a Fermat prime;
(iii) A0 6= 1, Q is abelian and for some ζ ∈ Irr(QA0), χ|QA0 + ζ

contains the regular QA0-character;
(iv) A0 does not act faithfully on some irreducible A0-submodule

of P/Φ(P ).
By the hypothesis q is not a Fermat prime when p = 2. Furthermore

[P,A0] = P if A0 6= 1. Hence one of (i) or (iii) follows. Note that
A 6= A0 (see [8] and [10]). Let λ ∈ Irr(A0). Then CA(λ ⊗ λ1) =
A0 and χ

QA0
is A-invariant. Now λ ⊗ λ1 ⊆ χ

QA0
since at most one
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irreducible QA0-character is missing. Set ν = λ1 and µ = λ⊗ λ1. Now
µ|

A0
= λ, µ|

Q
= ν, CA(µ) = A0 and µ ⊆ χ

QA0
.

Let ζ ∈ Irr(A). Then ζ
A0

= eΣn
i=1λi where e is some positive

integer and the λi are distinct irreducible characters of A0. Set µi =
ν ⊗ λi for each i = 1, . . . , n. Now µi ∈ Irr(QA0) and hence contained
in χ

QA0
. Let ηi ∈ Irr(QA) such that µi ⊆ ηiQA0

and ηi ⊆ χ
QA
. Then

ηi = µi|
QA as CQA(µi) = QA0. Notice that µi are not A-conjugate

because the λi are all distinct. Thus the ηi are all distinct. Furthermore
ηiA = λi|

A and so [ηiA, ζ ] = e. Hence Σn
i=1ηi ⊆ χ

QA
and [Σn

i=1ηi, ζ ] =
ne = ζ(1). Repeat this argument for all ζ ∈ Irr(A) and let χ1 be the
smallest QA-character which contains Σn

i=1ηi for all ζ ∈ Irr(A). Now
χ1 ⊆ χ

QA
and [(χ1)A, ζ ] ≥ ζ(1). So the regular A-character is contained

in (χ
1
)
A
⊆ χ

A
. This completes the proof.

�

Another version of Theorem 2.5 in which the condition of being
extraspecial on P is weakened can be given as follows. This theorem is
stated in a generality which is not necessary in handling the case where
A is cyclic with the hope of applying it later to the discussion of the
case where A is nilpotent.

Theorem 2.6. Let GA be a finite group with G E GA where G is
solvable, A satisfies the condition (a) in Theorem 2.5 and normalizes a
Sylow system of G. Let P be a p-subgroup of G, for some prime p, such
that P/Z(P ) is elementary abelian, P EGA, Φ(P ) = P ′, exp(P ) = p if
p is odd, and P/Φ(P ) is completely reducible as a GB-module for any
subgroup B of A.

Let Q be an A-invariant q-subgroup of CG(Φ(P )) for a prime q
which is coprime to p|A|and not a Fermat prime if p = 2. Assume
that Q/Q0/Z(Q/Q0) is elementary abelian where Q0 = CQ(P ), and
QCG(P/P

′)EGA, and that [Q,P ] = P if P ′ 6= 1. Let A0 = CA(Q/Q0).
Assume that q is coprime to |A0| and [P,A0] = P when A0 6= 1.

Assume further that the following hold:
(i) P = [P,B]G for every B ≤ A with ℓ(B) ≥ 1,
(ii) if P is nonabelian, Q = [Q,C]NG(Q)Q0 for every C ≤ A with

ℓ(C) ≥ 2,
(iii) pq is coprime to |A| when A is noncyclic.
Let χ be a complex GA-character such that P 6≤ ker(χ). Then χ

A

contains the regular A-character.

Proof. It should be noted that in case where P is abelian there is
no loss in assuming that Q = 1. Suppose that the theorem is false and
choose a counterexample with |PQA|+ χ(1) minimum. χ contains an
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irreducible component such that P is not contained in its kernel. So χ
is irreducible by the minimality of |PQA|+χ(1). We may also assume
that χ

P
is faithful by the minimality of |PQA|+ χ(1).

Suppose that χ
G
is not homogeneous. Then there exists a proper

subgroup B of A and a GB-character ψ such that ψGA = χ. We must
have P 6≤ ker(ψ) because otherwise P is contained in the kernel of
every GA-conjugate of ψ and hence in ker(χ), which is not the case.
The minimality of χ implies that ψB contains the regular B-character.
Then χ

A
= ψ

B
|A and χ

A
contains the regular A-character, which is a

contradiction. Therefore χ
G
is homogeneous.

Suppose that N ≤ Z(P ) is a normal subgroup of GA such that
[N,Q] = 1. We claim that N ≤ Z(GA): Assume the contrary. Then
χ

N
is not homogeneous. By Theorem 2.2 there exists an A-invariant

irreducible constituent θ of χN . Then there exists an A-invariant proper
subgroup H of G and an irreducible HA-character ψ such that ψGA =
χ, θ ⊆ ψN and P 6≤ kerψ, and PQ ≤ CG(N) ≤ H. By the minimality
of |PQA| + χ(1), we get ψA contains the regular A-character. This
contradiction shows that N ≤ Z(GA).

Assume now that P is abelian. Then Q = 1, and so P ≤ Z(GA)
by the above paragraph. This contradicts the hypothesis (i) and hence
P is not abelian.

Since P/Φ(P ) is GA-completely reducible in any case there exists
E EGA containing Φ(P ) so that

P/Φ(P ) = Z(P )/Φ(P )⊕E/Φ(P ).

Then P = Z(P )E and hence Z(P )∩E = Z(E).We have P ′ = Φ(P ) ≤
Z(P ) by the hypothesis. So Φ(P ) ≤ Z(E). Also,

E/Φ(P ) ∩ Z(P )/Φ(P ) = 1

and hence Z(E) ≤ Φ(P ). Thus we have Z(E) = Φ(P ) = P ′. Notice
that Φ(P ) ≤ Z(GA) by an argument above and hence Φ(P ) = P ′ is
cyclic of prime order. As EEP we get Φ(E) ≤ Φ(P ) = Z(E). It follows
that Z(E) = E ′ = Φ(E) = Φ(P ) is cyclic of prime order, that is E is
extraspecial with [Z(E), QA] = 1. Notice that we have E = [E,B]G

for all B ≤ A with ℓ(B) ≥ 1. So it holds by induction that P = E.
Then [Z(P ), Q] = 1 which implies that Z(P ) ≤ Z(GA). Recall that
|CA(Q/Q0)| = 1 or a prime, by the hypothesis (ii). Applying now
Theorem 2.5 to the action of PQA on χ we obtain that χ

A
contains

the regular A-character, and the claim is established. �
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3. PROOF OF THE THEOREM

Definition 3.1. Let A act on the group solvable group G. We
denote the number of trivial A-modules appearing as factors in any A-
composition series of G by c(G;A). More generally, for any normal
A-series 1 = Nk+1 < Nk < Nk−1 < · · · < N1 of G and A-invariant
normal subgroups Mi for i = 1, . . . , k of G with Ni+1 ≤ Mi < Ni and

Pi = Ni/Mi, we write c(Pk, . . . , P1;A) for
∑k

i=1 c(Pi;A).

Remark 3.2. Let A act on G and normalizes a Sylow system of
G. Then by a slight modification of Lemma 8.2 of the same paper, one
can show the existence of an irreducible A-tower in Turull’s sense (see
[11]), namely the existence of sections Pi = Si/Ti, i = 1, . . . , h, of G
where Si and Ti are subgroups of G such that Ti ⊳ Si and h = h(G)
satisfying the following conditions:

( a) Pi is a nontrivial pi-group, for some prime pi,
(b) Φ(Pi) ≤ Z(Pi),Φ(Φ(Pi)) = 1 and if pi is odd, then Pi has

exponent pi,
( c) Pi is A-invariant, for i = 1, . . . , h,
(d) pi 6= pi+1, for i = 1, . . . , h− 1,
( e) Ti = Ker(Si on Pi+1), for i = 1, . . . , h− 1,
( f) Th = 1 and Sh ≤ F (G),
( g) [Φ(Pi+1), Si] = 1, for i = 1, . . . , h− 1,

(h) (
∏

1≤j<i

Sj)A acts irreducibly on P̃i.

We should also note that if A is a nilpotent group acting fixed point
freely on the group G, then A is a Carter subgroup of the semidirect
product GA having G as a normal complement, and hence Lemma 8.1
in [3] guarantees that A normalizes a Sylow system of G. Furthermore
in this case we clearly have c(G;A) = 0 which shows that the Corollary
is an immediate consequence of the Theorem.

Now we proceed to the proof of Theorem. Since A normalizes a
Sylow system of G, by the above remark we may assume the existence
of an irreducible A-tower P1, . . . , Ph with Pi = Si/Ti satisfying the
conditions (a)-(h) for each i = 1, . . . , h. Notice that it is sufficient to
establish the following claim in order to complete the proof of the the-
orem.

Let A be a cyclic group and let P1, . . . , Ph be a sequence of A-
invariant sections satisfying the conditions (a), (c), (d), (e) of a group
G of odd order. Then h ≤ 2ℓ+ c(Ph, . . . , P1;A).
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Let ℓ = ℓ(A) and h = h(G). By the above remark we may assume
that P1, . . . , Ph is an irreducible A-tower. Set V = Ph, P = Ph−1, Q =
Sh−2, X = PQSh−3 . . . S1, and let χ be theXA-character afforded by V.

(1) We can assume that χ is a complex character by the Fong-Swan
theorem.

(2 ) Q = [Q,B]Sh−3...S1Q0 for every B ≤ A with ℓ(B) ≥ 1, and hence
P = [P,B]X for every B ≤ A with ℓ(B) ≥ 1.

Proof. Let B ≤ A with ℓ(B) ≥ 1 such that Q 6= [Q,B]Sh−3...S1Q0.
Recall that the Frattini factor group ofQ/Q0 is Sh−3 . . . S1A-irreducible.
Hence [Q,B] ≤ Φ(Q)Q0, that is [Ph−2/Φ(Ph−2), B] = 1. It follows that
[Pi, B] = 1 for each i < h− 2. Then the sequence

Ph−2/Φ(Ph−2), Ph−3, . . . , P1

is an A-chain of length h− 2 centralized by B so that the cyclic group
A/B acts on each term of this chain. By induction assumption we have

h− 2 ≤ 2(ℓ− 1) + c(Ph−2/Φ(Ph−2), Ph−3, . . . , P1;A)

which is impossible. Hence Q = [Q,B]Sh−3...S1Q0 for every B ≤ A with
ℓ(B) ≥ 1.

Next let B ≤ A with ℓ(B) ≥ 1 such that P 6= [P,B]X . Set P1 =
[P,B]X . Recall that the Frattini factor group of P is XA-irreducible.
Hence P1 ≤ Φ(P ). Now B is trivial on P/Φ(P ). It follows that
[Q/Q0, B] = 1, which is not the case. �

(4) Theorem follows.

Proof. We are now ready to apply Theorem 2.6 to the action of
XA on V as P and Q satisfy the required hypothesis, and obtain
the contradiction that χ

A
contains the regular A-character, that is

CV (A) 6= 0. Since CV (A) is subnormal subgroup of Sh . . . S1A we see
that c(Ph−1 . . . P1;A) ≤ c(Ph . . . P1;A)− 1. Thus we have

h− 1 ≤ 2ℓ+ c(Ph . . . P1;A)− 1

which completes the proof. �
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