NILPOTENT RESIDUAL OF A FINITE GROUP

Eliana Rodrigues, Emerson de Melo, and G"ul"in Ercan

Abstract. Let F be a nilpotent group acted on by a group H via automorphisms and let the group G admit the semidirect product FH as a group of automorphisms so that $C_G(F) = 1$. We prove that the order of $\gamma_\infty(G)$, the rank of $\gamma_\infty(G)$ are bounded in terms of the orders of $\gamma_\infty(C_G(H))$ and H, the rank of $\gamma_\infty(C_G(H))$ and the order of H, respectively in cases where either FH is a Frobenius group; FH is a Frobenius-like group satisfying some certain conditions; or $FH = \langle \alpha, \beta \rangle$ is a dihedral group generated by the involutions α and β with $F = \langle \alpha \beta \rangle$ and $H = \langle \alpha \rangle$.

1. Introduction

Throughout all groups are finite. Let a group A act by automorphisms on a group G. For any $a \in A$, we denote by $C_G(a)$ the set \(\{ x \in G : x^a = x \} \), and write $C_G(A) = \bigcap_{a \in A} C_G(a)$. In this paper we focus on a certain question related to the strong influence of the structure of such fixed point subgroups on the structure of G, and present some new results when the group A is a Frobenius group or a Frobenius-like group or a dihedral group of automorphisms.

In what follows we denote by $A^\#$ the set of all nontrivial elements of A, and we say that A acts coprimely on G if $(|A|, |G|) = 1$. Recall that a Frobenius group $A = FH$ with kernel F and complement H can be characterized as a semidirect product of a normal subgroup F by H such that $C_F(h) = 1$ for every $h \in H^\#$. Prompted by Mazurov’s problem 17.72 in the Kourovka Notebook [26], some attention was given to the situation where a Frobenius group $A = FH$ acts by automorphisms on the group G. In the case where the kernel F acts fixed-point-freely

2020 Mathematics Subject Classification. 20D45.

Key words and phrases. Frobenius groups, Frobenius-like groups, Dihedral groups, Automorphisms, Nilpotent residual.
on G, some results on the structure of G were obtained by Khukhro, Makarenko and Shumyatsky in a series of papers [8], [9], [10], [11], [12], [13], [14]. They observed that various properties of G are in a certain sense close to the corresponding properties of the fixed-point subgroup $C_G(H)$, possibly also depending on H. In particular, when FH is metacyclic they proved that if $C_G(H)$ is nilpotent of class c, then the nilpotency class of G is bounded in terms of c and $|H|$. In addition, they constructed examples showing that the result on the nilpotency class of G is no longer true in the case of non-metacyclic Frobenius groups. However, recently in [6] it was proved that if FH is supersolvable and $C_G(H)$ is nilpotent of class c, then the nilpotency class of G is bounded in terms of c and $|FH|$.

Later on, as a generalization of Frobenius group the concept of a Frobenius-like group was introduced by Ercan and Güloğlu in [16], and their action studied in a series of papers [18], [19], [20], [23], [24], [21]. A finite group FH is said to be Frobenius-like if it has a nontrivial nilpotent normal subgroup F with a nontrivial complement H such that FH/F' is a Frobenius group with Frobenius kernel F/F' and complement H where $F' = [F,F]$. Several results about the properties of a finite group G admitting a Frobenius-like group of automorphisms FH aiming at restrictions on G in terms of $C_G(H)$ and focusing mainly on bounds for the Fitting height and related parameters as a generalization of earlier results obtained for Frobenius groups of automorphisms; and also new theorems for Frobenius-like groups based on new representation-theoretic results. In these papers two special types of Frobenius-like groups have been handled. Namely, Frobenius-like groups FH for which F' is of prime order and is contained in $C_F(H)$; and the Frobenius-like groups FH for which $C_F(H)$ and H are of prime orders, which we call Type I and Type II, respectively throughout the remainder of this paper.

In [25] Shumyatsky showed that the techniques developed in [14] can be used in the study of actions by groups that are not necessarily Frobenius. He considered a dihedral group $D = \langle \alpha, \beta \rangle$ generated by two involutions α and β acting on a finite group G in such a manner that $C_G(\alpha\beta) = 1$. In particular, he proved that if $C_G(\alpha)$ and $C_G(\beta)$ are both nilpotent of class c, then G is nilpotent and the nilpotency class of G is bounded solely in terms of c. In [5], a similar result was obtained for other groups. It should also be noted that in [24] an extension of [25] about the nilpotent length obtained by proving that the nilpotent length of a group G admitting a dihedral group of automorphisms in the same manner is equal to the maximum of the nilpotent lengths of the subgroups $C_G(\alpha)$ and $C_G(\beta)$.
Throughout we shall use the expression “\((a, b, \ldots)\)-bounded” to abbreviate “bounded from above in terms of \(a, b, \ldots\) only”. Recall that the rank \(r(G)\) of a finite group \(G\) is the minimal number \(r\) such that every subgroup of \(G\) can be generated by at most \(r\) elements. Let \(\gamma_\infty(G)\) denote the nilpotent residual of the group \(G\), that is the intersection of all normal subgroups of \(G\) whose quotients are nilpotent. Recently, in [4], de Melo, Lima and Shumyatsky considered the case where \(A\) is a finite group of prime exponent \(q\) and of order at least \(q^3\) acting on a finite \(q'\)-group \(G\). Assuming that \(|\gamma_\infty(C_G(a))| \leq m\) for any \(a \in A^\#\), they showed that \(\gamma_\infty(G)\) has \((m, q)\)-bounded order. In addition, assuming that the rank of \(\gamma_\infty(C_G(a))\) is at most \(r\) for any \(a \in A^\#\), they proved that the rank of \(\gamma_\infty(G)\) is \((m, q)\)-bounded. Later, in [3], it was proved that the order of \(\gamma_\infty(G)\) can be bounded by a number independent of the order of \(A\).

The purpose of the present article is to study the residual nilpotent of finite groups admitting a Frobenius group, or a Frobenius-like group of Type I and Type II, or a dihedral group as a group of automorphisms. Namely we obtain the following results.

Theorem A Let \(FH\) be a Frobenius, or a Frobenius-like group of Type I or Type II, with kernel \(F\) and complement \(H\). Suppose that \(FH\) acts on a finite group \(G\) in such a way that \(C_G(F) = 1\). Then

a) \(|\gamma_\infty(G)|\) is bounded solely in terms of \(|H|\) and \(|\gamma_\infty(C_G(H))|\);

b) the rank of \(\gamma_\infty(G)\) is bounded in terms of \(|H|\) and the rank of \(\gamma_\infty(C_G(H))\).

Theorem B Let \(D = \langle \alpha, \beta \rangle\) be a dihedral group generated by two involutions \(\alpha\) and \(\beta\). Suppose that \(D\) acts on a finite group \(G\) in such a manner that \(C_G(\alpha \beta) = 1\). Then

a) \(|\gamma_\infty(G)|\) is bounded solely in terms of \(|\gamma_\infty(C_G(\alpha))|\) and \(|\gamma_\infty(C_G(\beta))|\);

b) the rank of \(\gamma_\infty(G)\) is bounded in terms of the rank of \(\gamma_\infty(C_G(\alpha))\) and \(\gamma_\infty(C_G(\beta))\).

The paper is organized as follows. In Section 2 we list some results to which we appeal frequently. Section 3 is devoted to the proofs of two key propositions which play crucial role in proving Theorem A and Theorem B whose proofs are given in Section 4.

2. Preliminaries

If \(A\) is a group of automorphisms of \(G\), we use \([G, A]\) to denote the subgroup generated by elements of the form \(g^{-1}g^a\), with \(g \in G\) and \(a \in A\). Firstly, we recall some well-known facts about coprime action, see for example [7], which will be used without any further references.
Lemma 2.1. Let Q be a group of automorphisms of a finite group G such that $([G], [Q]) = 1$. Then

(a) $G = C_{G}(Q)[G, Q]$.
(b) Q leaves some Sylow p-subgroup of G invariant for each prime $p \in \pi(G)$.
(c) $C_{G/N}(Q) = C_{G}(Q)N/N$ for any Q-invariant normal subgroup N of G.

We list below some facts about the action of Frobenius and Frobenius-like groups. Throughout, a non-Frobenius Frobenius-like group is always considered under the hypothesis below.

Hypothesis* Let $F H$ be a non-Frobenius Frobenius-like group with kernel F and complement H. Assume that a Sylow 2-subgroup of H is cyclic and normal, and F has no extraspecial sections of order p^{2m+1} such that $p^{m} + 1 = |H_1|$ for some subgroup $H_1 \leq H$.

It should be noted that Hypothesis* is automatically satisfied if either $|F H|$ is odd or $|H| = 2$.

Theorem 2.2. Suppose that a finite group G admits a Frobenius group or a Frobenius-like group of automorphisms $F H$ with kernel F and complement H such that $C_{G}(F) = 1$. Then $C_{G}(H) \neq 1$ and $r(G)$ is bounded in terms of $r(C_{G}(H))$ and $|H|$.

Proposition 2.3. Let $F H$ be a Frobenius, or a Frobenius-like group of Type I or Type II. Suppose that $F H$ acts on a q-group Q for some prime q coprime to the order of H in case $F H$ is not Frobenius. Let V be a $kQF H$-module where k is a field with characteristic not dividing $|QH|$. Suppose further that F acts fixed-point freely on the semidirect product VQ. Then we have $C_{V}(H) \neq 0$ and

$$\text{Ker}(C_{Q}(H) \text{ on } C_{V}(H)) = \text{Ker}(C_{Q}(H) \text{ on } V).$$

Proof. See [17] Proposition 2.2 when $F H$ is Frobenius; [18] Proposition C when $F H$ is Frobenius-like of Type I; and [22] Proposition 2.1 when $F H$ is Frobenius-like of Type II. It can be easily checked that [17] Proposition 2.2 is valid when $C_{Q}(F) = 1$ without the coprimeness condition $(|Q|, |F|) = 1$.

The proof of the following theorem can be found in [25] and in [2].

Theorem 2.4. Let $D = \langle \alpha, \beta \rangle$ be a dihedral group generated by two involutions α and β. Suppose that D acts on a finite group G in such a manner that $C_{G}(\alpha \beta) = 1$. Then

(a) $G = C_{G}(\alpha)C_{G}(\beta)$;
(b) the rank of G is bounded in terms of the rank of $C_{G}(\alpha)$ and $C_{G}(\beta)$;
Proposition 2.5. Let $D = \langle \alpha, \beta \rangle$ be a dihedral group generated by the involutions α and β. Suppose that D acts on a q-group Q for some prime q and let V be a kQD-module for a field k of characteristic different from q such that the group $F = \langle \alpha \beta \rangle$ acts fixed point freely on the semidirect product VQ. If $C_Q(\alpha)$ acts nontrivially on V then we have $C_V(\alpha) \neq 0$ and $\text{Ker}(C_Q(\alpha) \text{ on } C_V(\alpha)) = \text{Ker}(C_Q(\alpha) \text{ on } V)$.

Proof. This is Proposition C in [24]. □

The next two results were established in [14, Lemma 1.6].

Lemma 2.6. Suppose that a group Q acts by automorphisms on a group G. If $Q = \langle q_1, \ldots, q_n \rangle$, then $[G, Q] = [G, q_1] \cdots [G, q_n]$.

Lemma 2.7. Let p be a prime, P a finite p-group and Q a p'-group of automorphisms of P.

a) If $|[P, q]| \leq m$ for every $q \in Q$, then $|Q|$ and $|[P, Q]|$ are m-bounded.

b) If $r([P, q]) \leq m$ for every $q \in Q$, then $r(Q)$ and $r([P, Q])$ are m-bounded.

We also need the following fact whose proof can be found in [1].

Lemma 2.8. Let G be a finite group such that $\gamma_\infty(G) \leq F(G)$. Let P be a Sylow p-subgroup of $\gamma_\infty(G)$ and H be a Hall p'-subgroup of G. Then $P = [P, H]$.

3. Key Propositions

We prove below a new proposition which studies the actions of Frobenius and Frobenius-like groups and forms the basis in proving Theorem A.

Proposition 3.1. Assume that FH be a Frobenius group, or a Frobenius-like group of Type I or Type II with kernel F and complement H. Suppose that F acts on a q-group Q for some prime q. Let V be an irreducible \mathbb{F}_pQFH-module where \mathbb{F}_p is a field with characteristic p not dividing $|Q|$ such that F acts fixed-point-freely on the semidirect product VQ. Additionally, we assume that q is coprime to $|H|$ in case where FH is not Frobenius. Then $r([V, Q])$ is bounded in terms of $r([C_V(H), C_Q(H)])$ and $|H|$.

Proof. Let $r([C_V(H), C_Q(H)]) = s$. We may assume that $V = [V, Q]$ and hence $C_V(Q) = 0$. By Clifford’s Theorem, $V = V_1 \oplus \cdots \oplus V_t$, direct sum of of Q-homogeneous components V_i, which are transitively
permuted by FH. Set $\Omega = \{V_1, \ldots, V_t\}$ and fix an F-orbit Ω_1 in Ω. Throughout, $W = \Sigma_{U \in \Omega} U$.

Now, we split the proof into a sequence of steps.

(1) We may assume that Q acts faithfully on V. Furthermore $\text{Ker}(C_Q(H) \text{ on } C_V(H)) = \text{Ker}(C_Q(H) \text{ on } V) = 1$.

Proof. Suppose that $\text{Ker}(Q \text{ on } V) \neq 1$ and set $\overline{Q} = Q/\text{Ker}(Q \text{ on } V)$. Note that since $C_Q(F) = 1$, F is a Carter subgroup of QF and hence also a Carter subgroup of $\overline{Q}F$ which implies that $C_{\overline{Q}}(F) = 1$. Notice that the equality $C_Q(H) = C_{\overline{Q}}(H)$ holds in case FH is Frobenius (see [14] Theorem 2.3). The same equality holds in case where FH is non-Frobenius due to the coprimeness condition $(q, |H|) = 1$. Then $[C_V(H), C_Q(H)] = [C_V(H), C_{\overline{Q}}(H)]$ and so we may assume that Q acts faithfully on V. Notice that by Proposition 2.3 we have

$$\text{Ker}(C_Q(H) \text{ on } C_V(H)) = \text{Ker}(C_Q(H) \text{ on } V) = 1$$

establishing the claim. \hfill \Box

(2) We may assume that $Q = \langle c^F \rangle$ for any nonidentity element $c \in C_{Z(Q)}(H)$ of order q. In particular Q is abelian.

Proof. We obtain that $C_{Z(Q)}(H) \neq 1$ as $C_Q(F) = 1$ by Proposition 2.3. Let now $1 \neq c \in C_{Z(Q)}(H)$ of order q and consider $\langle c^FH \rangle = \langle c^F \rangle$, the minimal FH-invariant subgroup containing c. Since V is an irreducible QFH-module on which Q acts faithfully we have that $V = [V, \langle c^F \rangle]$. Thus we may assume that $Q = \langle c^F \rangle$ as claimed. \hfill \Box

(3) $V = [V, c] \cdot [V, c^{f_1}] \cdots [V, c^{f_n}]$ where n is a $(s, |H|)$-bounded number. Hence it suffices to bound $r([W, c])$.

Proof. Notice that the group $C_Q(H)$ embeds in the automorphism group of $[C_V(H), C_Q(H)]$ by step (1). Then $C_Q(H)$ has s-bounded rank by Lemma 2.7. This yields by Theorem 2.2 that Q has $(s, |H|)$-bounded rank. Thus, there exist f_1, \ldots, f_n in F for an $(s, |H|)$-bounded number n such that $Q = \langle c^{f_1}, \ldots, c^{f_n} \rangle$. Now $V = [V, c] \cdot [V, c^{f_1}] \cdots [V, c^{f_n}] = \prod_{i=1}^{n} [V, c]^{f_i}$ by Lemma 2.6. This shows that we need only to bound $r([V, c])$ suitably. In fact it suffices to show that $r([W, c])$ is suitably bounded as $V = \Sigma_{h \in H} W^h$. \hfill \Box

(4) $H_1 = \text{Stab}_H(\Omega_1) \neq 1$. Furthermore the rank of the sum of members of Ω_1 which are not centralized by c and contained in a regular H_1-orbit, is suitably bounded.
NILPOTENT RESIDUAL OF A FINITE GROUP

Proof. Fix $U \in \Omega_1$ and set $Stab_F(U) = F_1$. Choose a transversal T for F_1 in F. Let $W = \sum_{t \in T} U^t$ where T is a transversal for F_1 in F with $1 \in T$. Then we have $V = \sum_{h \in H} W^h$. Notice that $[V, c] \neq 0$ by (1) which implies that $[W, c] \neq 0$ and hence $[U^t, c] = U^t$ for some $t \in T$. Without loss of generality we may assume that $[U, c] = U$.

Suppose that $Stab_H(\Omega_1) = 1$. Then we also have $Stab_H(U^t) = 1$ for all $t \in T$ and hence the sum $X_t = \sum_{h \in H} U^t$ is direct for all $t \in T$. Now, $U \leq X_1$. It holds that

$$C_{X_1}(H) = \{ \sum_{h \in H} v^h : v \in U\}.$$

Then $|U| = |C_{X_1}(H)| = ||C_{X_1}(H), c|| \leq ||C_V(H), C_Q(H)||$ implies $r(U) \leq s$. On the other hand $V = \bigoplus_{t \in T} X_t$ and

$$[C_V(H), c] = \bigoplus \{ [C_{X_t}(H), c] : t \in T \text{ with } [U^t, c] \neq 0 \} \leq [C_V(H), C_Q(H)].$$

In particular, $\{ t \in T : [U^t, c] \neq 0 \}$ is suitably bounded whence $r([W, c])$ is $(s, |H|)$-bounded. Hence we may assume that $Stab_H(\Omega_1) \neq 1$.

Notice that every element of a regular H_1-orbit in Ω_1 lies in a regular H-orbit in Ω. Let $U \in \Omega_1$ be contained in a regular H_1-orbit of Ω_1. Let X denote the sum of the members of the H-orbit of U in Ω, that is $X = \bigoplus_{h \in H} U^h$. Then $C_X(H) = \{ \sum_{h \in H} v^h : v \in U\}$. If $[U, c] \neq 0$ then by repeating the same argument in the above paragraph we show that $r(U) \leq s$ is suitably bounded. On the other hand the number, say m, of all H-orbits in Ω containing a member U such that $[U, c] \neq 0$ is suitably bounded because $m \leq r([C_V(H), c]) \leq s$. It follows then that the rank of the sum of members of Ω_1 which are not centralized by c and contained in a regular H_1-orbit, is suitably bounded. \hfill \Box

(5) We may assume that FH is not Frobenius.

Proof. Assume the contrary that FH is Frobenius. Let $H_1 = Stab_H(\Omega_1)$ and pick $U \in \Omega_1$. Set $S = Stab_{FH_1}(U)$ and $F_1 = F \cap S$. Then $|F : F_1| = |\Omega_1| = |FH_1 : S|$ and so $|S : F_1| = |H_1|$. Since $(|F_1|, |H_1|) = 1$, by the Schur-Zassenhaus theorem there exists a complement, say S_1 of F_1 in S with $|H_1| = |S_1|$. Therefore there exists a conjugate of U which is H_1-invariant. There is no loss in assuming that U is H_1-invariant. On the other hand if $1 \neq h \in H_1$ and $x \in F$ such that $U^{xh} = U^x$, then $[h, x] \in Stab_F(U) = F_1$ and so $F_1 x = F_1 x^h = (F_1 x)^h$. This implies that $F_1 x \cap C_F(h)$ is nonempty. Now the Frobenius action of H on F forces that $x \in F_1$. This means that for each $x \in F \setminus F_1$ we have $Stab_{FH_1}(U^x) = 1$. Therefore U is the unique member of Ω_1 which is H_1-invariant and all the H_1-orbits other than $\{U\}$ are regular. By (4), the rank of the sum of all members of Ω_1 other than U is is suitably
bounded. In particular $r(U)$ and hence $r([W, c])$ is suitably bounded in case where $[U^x, c] \neq 0$ for some $x \in F \setminus F_1$. Thus we may assume that c is trivial on U^x for all $x \in F \setminus F_1$. Now we have $[W, c] = [U, c] = U$.

Due to the action by scalars of the abelian group Q on U, it holds that $[Q, F_1] \leq C_Q(U)$. We also know that c^x is trivial on U for each $x \in F \setminus F_1$. Since $C_Q(F) = 1$, there are prime divisors of $|F|$ different from q. Let F_q' denote the q'-Hall subgroup of F. Clearly we have $C_Q(F_q') = 1$. Let now $y = \prod_{f \in F_q'} c^f$. Then we have

$$1 = y = \left(\prod_{f \in F_q' \cap F_q' F_1} c^f \right) \left(\prod_{f \in F_q' \setminus F_q'} c^f \right) \in c^{F_q' \cap F_q' F_1} C_Q(U).$$

As a consequence $c \in C_Q(U)$, because q is coprime to $|F_q'|$. This contradiction establishes the claim. \hfill \qed

(6) We may assume that the group FH is Frobenius-like of Type II.

PROOF. On the contrary we assume that FH is Frobenius-like of Type I. By (4), we have $H_1 = Stab_H(\Omega_1) \neq 1$. Choose a transversal T_1 for H_1 in H. Now $V = \bigoplus_{h \in T_1} W^h$. Also we can guarantee the existence of a conjugate of U which is H_1-invariant by means of the Schur-Zassenhaus Theorem as in (5). There is no loss in assuming that U is H_1-invariant.

Set now $Y = \sum_{x \in F} U^x$ and $F_2 = Stab_F(Y)$ and $F_1 = Stab_F(U)$. Clearly, $F_2 = F'F_1$ and Y is H_1-invariant. Notice that for all nonidentity $h \in H$, we have $C_F(h) \leq F' \leq F_2$. Assume first that $F = F_2$. This forces that we have $V = Y$. Clearly, $Y \neq U$, that is $F'' \not\leq F_1$, because otherwise $Q = [Q, F] = 1$ due to the scalar action of the abelian group Q on U. So $F' \cap F_1 = 1$ which implies that $|F : F_1|$ is a prime. Then $F_1 \leq F$ and $F'' \leq F_1$ which is impossible. Therefore $F \neq F_2$.

If $1 \neq h \in H$ and $t \in F$ such that $Y^th = Y^t$ then $[h, t] \in F_2$. Now, $F_2t = F_2t^h = (F_2t)^h$ and this implies the existence of an element in $F_2t \cap C_F(h)$. Since $C_F(h) \leq F'' \leq F_2$ we get $t \in F_2$. In particular, for each $t \in F \setminus F_2$ we have $Stab_H(Y^t) = 1$.

Let S be a transversal for F_2 in F. For any $t \in S \setminus F_2$ set $Y_t = Y^t$ and consider $Z_t = \sum_{h \in H} Y_t^h$. Notice that $V = Y \oplus \bigoplus_{t \in S \setminus F_2} Z_t$. As the sum Z_t is direct we have

$$C_{Z_t}(H) = \left\{ \sum_{h \in H} v^h : v \in Y_t \right\}$$

with $|C_{Z_t}(H)| = |Y_t|$. Then $r([Y_t, c]) = r([C_{Z_t}(H), c]) \leq s$ for each $t \in S \setminus F_2$ with $[Y_t, c] \neq 0$. On the other hand,

$$\Sigma\{r([C_{Z_t}(H), c]) : t \in S \text{ with } [Y_t, c] \neq 0\} \leq r([C_{Y}(H), c]) \leq s$$
First assume that $F \cup U \cup V$ have $V = Y \oplus \bigoplus_{t \in S \setminus F_2} Z_t$. Thus we may assume that c is trivial on \(\bigoplus_{t \in S \setminus F_2} Z_t \) and hence $|Y, c| = [Y, c]$.

There are two cases now: We have either $F' \cap F_1 = 1$ or $F' \leq F_1$. First assume that $F' \leq F_1$. Then we get $F_1 = F_2$ because $F_2 = F' F_1$.

Now $U = Y$. Due to the action by scalars of the abelian group Q on U, it holds that $[Q, F_1] \leq C_Q(U)$. From this point on we can proceed as in the proof of step (5) and observe that $C_Q(F_{q'}) = 1$. Letting now $y = \prod_{f \in F_{q'}} c^f$, we have

\[
1 = y = (\prod_{f \in F_1 \cap F'} c^f) (\prod_{f \in F_{q'} \setminus F_1} c^f) \in c^{F_1 \cap F'} C_Q(U),
\]

implying that $c \in C_Q(U)$, because q is coprime to $|F_{q'}|$.

Thus we have $F_1 \cap F' = 1$. First assume that $H_1 = H$. Then Y is H-invariant and $F_1 H$ is a Frobenius group. Note that $C_U(F_1) = 1$ as $C_V(F) = 1$, and hence $C_Y(F_1) = 1$ since $F' \leq Z(F)$. We consider now the action of $QF_1 H$ on Y and the fact that $r([C_Y(H), C_Q(H)]) \leq s$.

Then step (5), we obtain that $r(Y) = r([Y, Q])$ is $(s, |H|)$-bounded. Next assume that $H_1 \neq H$. Choose a transversal for H_1 in H and set $Y_1 = \Sigma_{h \in T_1} Y^h$. Clearly this sum is direct and hence

\[
C_{Y_1}(H) = \{ \sum_{h \in T_1} v^h : v \in Y \}
\]

with $|[C_{Y_1}(H), c]| = |[Y, c]|$. Then $r([Y, c]) = r([C_{Y_1}(H), c]) \leq s$ establishing claim (6).

(7) The proposition follows.

Proof. From now on FH is a Frobenius-like group of Type II, that is, H and $C_F(H)$ are of prime orders. By step (4) we have $H = H_1 \neq Stab_H(\Omega_1)$ since $|H|$ is a prime. Now $V = W$. We may also assume by the Schur-Zassenhaus theorem as in the previous steps that there is an H-invariant element, say U in Ω. Let T be a transversal for $F_1 = Stab_F(U)$ in F. Then $F = \bigcup_{t \in T} F_1 t$ implies $V = \bigoplus_{t \in T} U^t$.

It should also be noted that we have $|\{ t \in T : [U^t, c] \neq 0 \}|$ is suitably bounded as

\[
[C_V(H), c] = \bigoplus \{ [C_{X_t}(H), c] : t \in T \text{ with } [U^t, c] \neq 0 \} \leq [C_V(H), C_Q(H)]
\]

where $X_t = \bigoplus_{h \in H} U^{th}$.

Let X be the sum of the components of all regular H-orbits on Ω, and let Y denote the sum of all H-invariant elements of Ω. Then
V = X ⊕ Y. Suppose that \(U^t = U \) for \(t \in T \) and \(1 \neq h \in H \). Now \([t, h] \in F_1 \) and so the coset \(F_t \) is fixed by \(H \). Since the orders of \(F \) and \(H \) are relatively prime we may assume that \(t \in C_F(H) \).

Conversely for each \(t \in C_F(H) \), \(U^t \) is \(H \)-invariant. Hence the number of components in \(Y \) is \(|T \cap C_F(H)| = |C_F(H) : C_{F_1}(H)| \) and so we have either \(C_F(H) \leq F_1 \) or not.

If \(C_F(H) \not\leq F_1 \) then \(C_{F_1}(H) = 1 \) whence \(F_1 H \) is Frobenius group acting on \(U \) in such a way that \(C_U(F_1) = 1 \). Then \(r(U) \) is \((s, |H|)-\)bounded by step (5) since \(r([C_U(H), C_Q(H)]) \leq s \) holds. This forces that \(r([V, c]) \) is bounded suitably and hence the claim is established.

Thus we may assume that \(C_F(H) \leq F_1 \). Then \(Y = U \) is the unique \(H \)-invariant \(Q \)-homogeneous component. If \([U^t, c] \neq 0\) for some \(t \in F \setminus F_1 \) we can bound \(r(U) \) and hence \(r([V, c]) \) suitably. Thus we may assume that \(c \) is trivial on \(U^t \) for each \(t \in F \setminus F_1 \). Due to the action of the abelian group \(Q \) on \(U \), it holds that \([Q, F_1] \leq C(Q)\) from this point on we can proceed as in the proof of step (5) and observe that \(C_Q(F_q') = 1 \). Letting now \(y = \prod_{f \in F_q'} c^j \), we have

\[
1 = y = \left(\prod_{f \in F_t \cap F_q'} c^j \right) \left(\prod_{f \in F_q' \setminus F_1} c^j \right) \in c^{|F_t \cap F_q'|} C_Q(U).
\]

implying that \(c \in C_Q(U) \), because \(q \) is coprime to \(|F_q'| \). This final contradiction completes the proof of Proposition 3.1.

The next proposition studies the action of a dihedral group of automorphisms and is essential in proving Theorem B.

Proposition 3.2. Let \(D = \langle \alpha, \beta \rangle \) be a dihedral group generated by two involutions \(\alpha \) and \(\beta \). Suppose that \(D \) acts on a \(q \)-group \(Q \) for some prime \(q \). Let \(V \) be an irreducible \(\mathbb{F}_p QD \)-module where \(\mathbb{F}_p \) is a field with characteristic \(p \) not dividing \(|Q| \). Suppose that \(C_V Q(F) = 1 \) where \(F = \langle \alpha \beta \rangle \). If \(\max \{ r([C_V(\alpha), C_Q(\alpha)]), r([C_V(\beta), C_Q(\beta)]) \} \leq s \), then \(r([V, Q]) \) is \(s \)-bounded.

Proof. We set \(H = \langle \alpha \rangle \). So \(D = FH \). By Lemma 2.4 and Theorem 2.6 we have \([V, Q] = [V, C_Q(\alpha)][V, C_Q(\beta)]\). Then it is sufficient to bound the rank of \([V, C_Q(H)]\). Following the same steps as in the proof of Proposition 3.1 by replacing Proposition 2.3 by Proposition 2.4, we observe that \(Q \) acts faithfully on \(V \) and \(Q = \langle c^F \rangle \) is abelian with \(c \in C_{Z(Q)}(H) \) of order \(q \). Furthermore \(\text{Ker}(C_Q(H)) \) on \(C_V(H) \) = \(\text{Ker}(C_Q(H)) \) on \(V \) = 1. Note that it suffices to bound \(r([V, c]) \) suitably.

Let \(\Omega \) denote the set of \(Q \)-homogeneous components of the irreducible \(QD \)-module \(V \). Let \(\Omega_1 \) be an \(F \)-orbit of \(\Omega \) and set \(W = \sum_{U \in \Omega} U. \)
Then we have \(V = W + W^\alpha \). Suppose that \(W^\alpha \neq W \). Then for any \(U \in \Omega_1 \) we have \(\text{Stab}_H(U) = 1 \). Let \(T \) be a transversal for \(\text{Stab}_F(U) = F_1 \) in \(F \). It holds that \(V = \sum_{t \in T} X_t \) where \(X_t = U^t + U^{t^\alpha} \). Now \([V, c] = \sum_{t \in T} [X_t, c] \) and \(C_V(H) = \sum_{t \in T} C_{X_t}(H) \) where \(C_{X_t}(H) = \{ w + w^\alpha : w \in U^t \} \). Since \([V, c] \neq 0\) there exists \(t \in T \) such that \([U^t, c] \neq 0\), that is \([U^t, c] = U^t \). Then \([C_{X_t}(H), c] = C_{X_t}(H) \). Since \(r([C_V(H), C_Q(H)]) \leq s \) we get \(r(U) = r(C_{X_t}(H)) \leq s \). Furthermore it follows that \(\{ t \in T : [U^t, c] \neq 0 \} \) is \(s \)-bounded and as a consequence \(r([V, c]) \) is suitably bounded. Thus we may assume that \(W^\alpha = W \) which implies that \(\Omega_1 = \Omega \) and \(H \) fixes an element, say \(U \), of \(\Omega \) as desired.

Let \(U^t \in \Omega \) be \(H \)-invariant. Then \([t, \alpha] \in F_1 \). On the other hand \(t^{-1} t^\alpha = t^{-2} \) since \(\alpha \) inverts \(F \). So \(F_1 t \) is an element of \(F/F_1 \) of order at most 2 which implies that the number of \(H \)-invariant elements of \(\Omega \) is at most 2. Let now \(Y \) be the sum of all \(H \)-invariant elements of \(\Omega \). Then \(V = Y \oplus \bigoplus_{i=1}^m X_i \) where \(X_1, \ldots X_m \) are the sums of elements in \(H \)-orbits of length 2. Let \(X_i = U_i \oplus U_i^\alpha \). Notice that if \([U_i, c] \neq 0\) for some \(i \), then we obtain \(r(U) = r(U_i) \leq s \) by a similar argument as above. On the other hand we observe that the number of \(i \) for which \([U_i, c] \neq 0\) is \(s \)-bounded by the hypothesis that \(r([C_V(H), c]) \leq s \). It follows now that \(r([V, c]) \) is suitably bounded in case where \([U_i, c] \neq 0\) for some \(i \).

Thus we may assume that \(c \) centralizes \(\bigoplus_{i=1}^m X_i \) and that \([U, c] = U \). Due to the scalar action by scalars of the abelian group \(Q \) on \(U \), it holds that \([Q, F_1] \leq C_Q(U) \). As \(F_1 \leq FH \), we have \([Q, F_1] \leq C_Q(V) = 1 \). Clearly we have \(C_Q(F_{q'}) = 1 \) where \(F_{q'} \) denotes the Hall \(q' \)-part of \(F \) whose existence is guaranteed by the fact that \(C_Q(F) = 1 \). Let now \(y = \prod_{f \in F_q} c^f \). Then we have \(1 = y = (\prod_{f \in F_q \cap F_{q'}} c^f \prod_{f \in F_q \setminus F_1} c^f) \in c^{[F_q \cap F_{q'}]} C_Q(U) \). As a consequence \(c \in C_Q(U) \), because \(q \) is coprime to \(|F_{q'}| \). This contradiction completes the proof of Proposition 3.2.

\(\square \)

4. Proofs of theorems

Firstly, we shall give a detailed proof for Theorem A part (b). The proof of Theorem A (a) can be easily obtained by just obvious modifications of the proof of part (b).

First, we assume that \(G = PQ \) where \(P \) and \(Q \) are \(FH \)-invariant subgroups such that \(P \) is a normal \(p \)-subgroup for a prime \(p \) and \(Q \) is
a nilpotent p'-group with $|[C_p(H), C_Q(H)]| = p^s$. We shall prove that $r(\gamma_\infty(G))$ is $(s, |H|)$-bounded. Clearly $\gamma_\infty(G) = [P, Q]$. Consider an unrefinable FH-invariant normal series

$$P = P_1 > P_2 > \cdots > P_k > P_{k+1} = 1.$$

Note that its factors P_i/P_{i+1} are elementary abelian. Let $V = P_k$. Since $C_V(Q) = 1$, we have that $V = [V, Q]$. We can also assume that Q acts faithfully on V. Proposition 3.1 yields that $r(V)$ is $(s, |H|)$-bounded. Set $S_i = P_i/P_{i+1}$. If $[C_{S_i}(H), C_Q(H)] = 1$, then $[S_i, Q] = 1$ by Proposition 2.3. Since $C_P(Q) = 1$ we conclude that each factor S_i contains a nontrivial image of an element of $[C_P(H), C_Q(H)]$. This forces that $k \leq s$. Then we proceed by induction on k to obtain that $r([P, Q])$ is an $(s, |H|)$-bounded number, as desired.

Let $F(G)$ denote the Fitting subgroup of a group G. Write $F_0(G) = 1$ and let $F_{i+1}(G)$ be the inverse image of $F(G/F_i(G))$. As is well known, when G is soluble, the least number h such that $F_h(G) = G$ is called the Fitting height $h(G)$ of G. Let now r be the rank of $\gamma_\infty(C_G(H))$. Then $C_G(H)$ has r-bounded Fitting height (see for example Lemma 1.4 of [15]) and hence G has $(r, |H|)$-bounded Fitting height.

We shall proceed by induction on $h(G)$. Firstly, we consider the case where $h(G) = 2$. Indeed, let P be a Sylow p-subgroup of $\gamma_\infty(G)$ and Q an $F'H$-invariant Hall p'-subgroup of G. Then, by the preceding paragraphs and Lemma 2.3 the rank of $P = [P, Q]$ is $(r, |H|)$-bounded and so the rank of $\gamma_\infty(G)$ is $(r, |H|)$-bounded. Assume next that $h(G) > 2$ and let $N = F_2(G)$ be the second term of the Fitting series of G. It is clear that the Fitting height of $G/\gamma_\infty(N)$ is $h - 1$ and $\gamma_\infty(N) \leq \gamma_\infty(G)$. Hence, by induction we have that $\gamma_\infty(G)/\gamma_\infty(N)$ has $(r, |H|)$-bounded rank. As a consequence, it holds that

$$r(\gamma_\infty(G)) \leq r(\gamma_\infty(G)/\gamma_\infty(N)) + r(\gamma_\infty(N))$$

completing the proof of Theorem A(b).

The proof of Theorem B can be directly obtained as in the above argument by replacing Proposition 3.1 by Proposition 3.2 and Proposition 2.3 by Proposition 2.5.

References

DEPARTMENT OF ACADEMIC AREAS, INSTITUTO FEDERAL DE GOIÁS, FORMOSA-GO 73813-816, BRAZIL
Email address: eliana.rodrigues@ifg.edu.br

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF BRASÍLIA, BRASÍLIA-DF 70910-900, BRAZIL
Email address: emerson@mat.unb.br

DEPARTMENT OF MATHEMATICS, MIDDLE EAST TECHNICAL UNIVERSITY, 06800, ANKARA/TURKEY
Email address: ercan@metu.edu.tr