NILPOTENT RESIDUAL OF A FINITE GROUP

Eliana Rodrigues, Emerson de Melo, and Gülin Ercan

Abstract

Let F be a nilpotent group acted on by a group H via automorphisms and let the group G admit the semidirect product $F H$ as a group of automorphisms so that $C_{G}(F)=1$. We prove that the order of $\gamma_{\infty}(G)$, the rank of $\gamma_{\infty}(G)$ are bounded in terms of the orders of $\gamma_{\infty}\left(C_{G}(H)\right)$ and H, the rank of $\gamma_{\infty}\left(C_{G}(H)\right)$ and the order of H, respectively in cases where either $F H$ is a Frobenius group; $F H$ is a Frobenius-like group satisfying some certain conditions; or $F H=\langle\alpha, \beta\rangle$ is a dihedral group generated by the involutions α and β with $F=\langle\alpha \beta\rangle$ and $H=\langle\alpha\rangle$.

1. Introduction

Throughout all groups are finite. Let a group A act by automorphisms on a group G. For any $a \in A$, we denote by $C_{G}(a)$ the set $\left\{x \in G: x^{a}=x\right\}$, and write $C_{G}(A)=\bigcap_{a \in A} C_{G}(a)$. In this paper we focus on a certain question related to the strong influence of the structure of such fixed point subgroups on the structure of G, and present some new results when the group A is a Frobenius group or a Frobenius-like group or a dihedral group of automorphisms.

In what follows we denote by $A^{\#}$ the set of all nontrivial elements of A, and we say that A acts coprimely on G if $(|A|,|G|)=1$. Recall that a Frobenius group $A=F H$ with kernel F and complement H can be characterized as a semidirect product of a normal subgroup F by H such that $C_{F}(h)=1$ for every $h \in H^{\#}$. Prompted by Mazurov's problem 17.72 in the Kourokva Notebook [26], some attention was given to the situation where a Frobenius group $A=F H$ acts by automorphisms on the group G. In the case where the kernel F acts fixed-point-freely

[^0]on G, some results on the structure of G were obtained by Khukhro, Makarenko and Shumyatsky in a series of papers [8], [9], [10], 11], [12], 13], [14. They observed that various properties of G are in a certain sense close to the corresponding properties of the fixed-point subgroup $C_{G}(H)$, possibly also depending on H. In particular, when $F H$ is metacyclic they proved that if $C_{G}(H)$ is nilpotent of class c, then the nilpotency class of G is bounded in terms of c and $|H|$. In addition, they constructed examples showing that the result on the nilpotency class of G is no longer true in the case of non-metacyclic Frobenius groups. However, recently in [6] it was proved that if FH is supersolvable and $C_{G}(H)$ is nilpotent of class c, then the nilpotency class of G is bounded in terms of c and $|F H|$.

Later on, as a generalization of Frobenius group the concept of a Frobenius-like group was introduced by Ercan and Güloğlu in [16], and their action studied in a series of papers [18], [19], [20], [23],[24], 21]. A finite group $F H$ is said to be Frobenius-like if it has a nontrivial nilpotent normal subgroup F with a nontrivial complement H such that $F H / F^{\prime}$ is a Frobenius group with Frobenius kernel F / F^{\prime} and complement H where $F^{\prime}=[F, F]$. Several results about the properties of a finite group G admitting a Frobenius-like group of automorphisms FH aiming at restrictions on G in terms of $C_{G}(H)$ and focusing mainly on bounds for the Fitting height and related parameters as a generalization of earlier results obtained for Frobenius groups of automorphisms; and also new theorems for Frobenius-like groups based on new representation-theoretic results. In these papers two special types of Frobenius-like groups have been handled. Namely, Frobenius-like groups $F H$ for which F^{\prime} is of prime order and is contained in $C_{F}(H)$; and the Frobenius-like groups $F H$ for which $C_{F}(H)$ and H are of prime orders, which we call Type I and Type II, respectively throughout the remainder of this paper.

In [25] Shumyatsky showed that the techniques developed in [14] can be used in the study of actions by groups that are not necessarily Frobenius. He considered a dihedral group $D=\langle\alpha, \beta\rangle$ generated by two involutions α and β acting on a finite group G in such a manner that $C_{G}(\alpha \beta)=1$. In particular, he proved that if $C_{G}(\alpha)$ and $C_{G}(\beta)$ are both nilpotent of class c, then G is nilpotent and the nilpotency class of G is bounded solely in terms of c. In [5], a similar result was obtained for other groups. It should also be noted that in [24] an extension of [25] about the nilpotent length obtained by proving that the nilpotent length of a group G admitting a dihedral group of automorphisms in the same manner is equal to the maximum of the nilpotent lengths of the subgroups $C_{G}(\alpha)$ and $C_{G}(\beta)$.

Throughout we shall use the expression " (a, b, \ldots)-bounded" to abbreviate "bounded from above in terms of a, b, \ldots only". Recall that the $\operatorname{rank} \mathbf{r}(G)$ of a finite group G is the minimal number r such that every subgroup of G can be generated by at most r elements. Let $\gamma_{\infty}(G)$ denote the nilpotent residual of the group G, that is the intersection of all normal subgroups of G whose quotients are nilpotent. Recently, in [4], de Melo, Lima and Shumyatsky considered the case where A is a finite group of prime exponent q and of order at least q^{3} acting on a finite q^{\prime}-group G. Assuming that $\left|\gamma_{\infty}\left(C_{G}(a)\right)\right| \leq m$ for any $a \in A^{\#}$, they showed that $\gamma_{\infty}(G)$ has (m, q)-bounded order. In addition, assuming that the rank of $\gamma_{\infty}\left(C_{G}(a)\right)$ is at most r for any $a \in A^{\#}$, they proved that the rank of $\gamma_{\infty}(G)$ is (m, q)-bounded. Later, in [3], it was proved that the order of $\gamma_{\infty}(G)$ can be bounded by a number independent of the order of A.

The purpose of the present article is to study the residual nilpotent of finite groups admitting a Frobenius group, or a Frobenius-like group of Type I and Type II, or a dihedral group as a group of automorphisms. Namely we obtain the following results.

Theorem A Let FH be a Frobenius, or a Frobenius-like group of Type I or Type II, with kernel F and complement H. Suppose that $F H$ acts on a finite group G in such a way that $C_{G}(F)=1$. Then
a) $\left|\gamma_{\infty}(G)\right|$ is bounded solely in terms of $|H|$ and $\left|\gamma_{\infty}\left(C_{G}(H)\right)\right|$;
b) the rank of $\gamma_{\infty}(G)$ is bounded in terms of $|H|$ and the rank of $\gamma_{\infty}\left(C_{G}(H)\right)$.
Theorem B Let $D=\langle\alpha, \beta\rangle$ be a dihedral group generated by two involutions α and β. Suppose that D acts on a finite group G in such a manner that $C_{G}(\alpha \beta)=1$. Then
a) $\left|\gamma_{\infty}(G)\right|$ is bounded solely in terms of $\left|\gamma_{\infty}\left(C_{G}(\alpha)\right)\right|$ and $\left|\gamma_{\infty}\left(C_{G}(\beta)\right)\right|$;
b) the rank of $\gamma_{\infty}(G)$ is bounded in terms of the rank of $\gamma_{\infty}\left(C_{G}(\alpha)\right)$ and $\gamma_{\infty}\left(C_{G}(\beta)\right)$.
The paper is organized as follows. In Section 2 we list some results to which we appeal frequently. Section 3 is devoted to the proofs of two key propositions which play crucial role in proving Theorem A and Theorem B whose proofs are given in Section 4.

2. Preliminaries

If A is a group of automorphisms of G, we use $[G, A]$ to denote the subgroup generated by elements of the form $g^{-1} g^{a}$, with $g \in G$ and $a \in A$. Firstly, we recall some well-known facts about coprime action, see for example $\mathbf{7}$, which will be used without any further references.

Lemma 2.1. Let Q be a group of automorphisms of a finite group G such that $(|G|,|Q|)=1$. Then
(a) $G=C_{G}(Q)[G, Q]$.
(b) Q leaves some Sylow p-subgroup of G invariant for each prime $p \in \pi(G)$.
(c) $C_{G / N}(Q)=C_{G}(Q) N / N$ for any Q-invariant normal subgroup N of G.
We list below some facts about the action of Frobenius and Frobeniuslike groups. Throughout, a non-Frobenius Frobenius-like group is always considered under the hypothesis below.

Hypothesis* Let FH be a non-Frobenius Frobenius-like group with kernel F and complement H. Assume that a Sylow 2-subgroup of H is cyclic and normal, and F has no extraspecial sections of order $p^{2 m+1}$ such that $p^{m}+1=\left|H_{1}\right|$ for some subgroup $H_{1} \leq H$.

It should be noted that Hypothesis* is automatically satisfied if either $|F H|$ is odd or $|H|=2$.

Theorem 2.2. Suppose that a finite group G admits a Frobenius group or a Frobenius-like group of automorphisms FH with kernel F and complement H such that $C_{G}(F)=1$. Then $C_{G}(H) \neq 1$ and $\mathbf{r}(G)$ is bounded in terms of $\mathbf{r}\left(C_{G}(H)\right)$ and $|H|$.

Proposition 2.3. Let FH be a Frobenius, or a Frobenius-like group of Type I or Type II. Suppose that FH acts on a q-group Q for some prime q coprime to the order of H in case $F H$ is not Frobenius. Let V be a $k Q F H$-module where k is a field with characteristic not dividing $|Q H|$. Suppose further that F acts fixed-point freely on the semidirect product $V Q$. Then we have $C_{V}(H) \neq 0$ and

$$
\operatorname{Ker}\left(C_{Q}(H) \text { on } C_{V}(H)\right)=\operatorname{Ker}\left(C_{Q}(H) \text { on } V\right) .
$$

Proof. See [17] Proposition 2.2 when $F H$ is Frobenius; [18] Proposition C when FH is Frobenius-like of Type I; and [22] Proposition 2.1 when $F H$ is Frobenius-like of Type II. It can be easily checked that [17] Proposition 2.2 is valid when $C_{Q}(F)=1$ without the coprimeness condition $(|Q|,|F|)=1$.

The proof of the following theorem can be found in [25] and in [2].
Theorem 2.4. Let $D=\langle\alpha, \beta\rangle$ be a dihedral group generated by two involutions α and β. Suppose that D acts on a finite group G in such a manner that $C_{G}(\alpha \beta)=1$. Then
(a) $G=C_{G}(\alpha) C_{G}(\beta)$;
(b) the rank of G is bounded in terms of the rank of $C_{G}(\alpha)$ and $C_{G}(\beta)$;

Proposition 2.5. Let $D=\langle\alpha, \beta\rangle$ be a dihedral group generated by the involutions α and β. Suppose that D acts on a q-group Q for some prime q and let V be a $k Q D$-module for a field k of characteristic different from q such that the group $F=\langle\alpha \beta\rangle$ acts fixed point freely on the semidirect product $V Q$. If $C_{Q}(\alpha)$ acts nontrivially on V then we have $C_{V}(\alpha) \neq 0$ and $\operatorname{Ker}\left(C_{Q}(\alpha)\right.$ on $\left.C_{V}(\alpha)\right)=\operatorname{Ker}\left(C_{Q}(\alpha)\right.$ on $\left.V\right)$.

Proof. This is Proposition C in [24].
The next two results were established in [15, Lemma 1.6] .
Lemma 2.6. Suppose that a group Q acts by automorphisms on a group G. If $Q=\left\langle q_{1}, \ldots, q_{n}\right\rangle$, then $[G, Q]=\left[G, q_{1}\right] \cdots\left[G, q_{n}\right]$.

Lemma 2.7. Let p be a prime, P a finite p-group and Q a p^{\prime}-group of automorphisms of P.
a) If $|[P, q]| \leq m$ for every $q \in Q$, then $|Q|$ and $|[P, Q]|$ are m bounded.
b) If $r([P, q]) \leq m$ for every $q \in Q$, then $r(Q)$ and $r([P, Q])$ are m-bounded.

We also need the following fact whose proof can be found in [1].
Lemma 2.8. Let G be a finite group such that $\gamma_{\infty}(G) \leq F(G)$. Let P be a Sylow p-subgroup of $\gamma_{\infty}(G)$ and H be a Hall p^{\prime}-subgroup of G. Then $P=[P, H]$.

3. Key Propositions

We prove below a new proposition which studies the actions of Frobenius and Frobenius-like groups and forms the basis in proving Theorem A.

Proposition 3.1. Assume that FH be a Frobenius group, or a Frobenius-like group of Type I or Type II with kernel F and complement H. Suppose that $F H$ acts on a q-group Q for some prime q. Let V be an irreducible $\mathbb{F}_{p} Q F H$-module where \mathbb{F}_{p} is a field with characteristic p not dividing $|Q|$ such that F acts fixed-point-freely on the semidirect product VQ. Additionaly, we assume that q is coprime to $|H|$ in case where $F H$ is not Frobenius. Then $\mathbf{r}([V, Q])$ is bounded in terms of $\mathbf{r}\left(\left[C_{V}(H), C_{Q}(H)\right]\right)$ and $|H|$.

Proof. Let $\mathbf{r}\left(\left[C_{V}(H), C_{Q}(H)\right]\right)=s$. We may assume that $V=$ [$V, Q]$ and hence $C_{V}(Q)=0$. By Clifford's Theorem, $V=V_{1} \oplus \cdots \oplus V_{t}$, direct sum of of Q-homogeneous components V_{i}, which are transitively
permuted by $F H$. Set $\Omega=\left\{V_{1}, \ldots, V_{t}\right\}$ and fix an F-orbit Ω_{1} in Ω. Throughout, $W=\Sigma_{U \in \Omega_{1}} U$.

Now, we split the proof into a sequence of steps.
(1) We may assume that Q acts faithfully on V. Furthermore $\operatorname{Ker}\left(C_{Q}(H)\right.$ on $\left.C_{V}(H)\right)=\operatorname{Ker}\left(C_{Q}(H)\right.$ on $\left.V\right)=1$.

Proof. Suppose that $\operatorname{Ker}(Q$ on V$) \neq 1$ and set $\bar{Q}=Q / \operatorname{Ker}(Q$ on V$)$. Note that since $C_{Q}(F)=1, F$ is a Carter subgroup of $Q F$ and hence also a Carter subgroup of $\bar{Q} F$ which implies that $C_{\bar{Q}}(F)=1$. Notice that the equality $\overline{C_{Q}(H)}=C_{\bar{Q}}(H)$ holds in case $F H$ is Frobenius (see [14] Theorem 2.3). The same equality holds in case where $F H$ is non-Frobenius due to the coprimeness condition $(q,|H|)=1$. Then $\left[C_{V}(H), C_{Q}(H)\right]=\left[C_{V}(H), C_{\bar{Q}}(H)\right]$ and so we may assume that Q acts faithfully on V. Notice that by Proposition 2.3 we have

$$
\operatorname{Ker}\left(C_{Q}(H) \text { on } C_{V}(H)\right)=\operatorname{Ker}\left(C_{Q}(H) \text { on } V\right)=1
$$

establishing the claim.
(2) We may assume that $Q=\left\langle c^{F}\right\rangle$ for any nonidentity element $c \in C_{Z(Q)}(H)$ of order q. In particular Q is abelian.

Proof. We obtain that $C_{Z(Q)}(H) \neq 1$ as $C_{Q}(F)=1$ by Proposition 2.3. Let now $1 \neq c \in C_{Z(Q)}(H)$ of order q and consider $\left\langle c^{F H}\right\rangle=$ $\left\langle c^{F}\right\rangle$, the minimal $F H$-invariant subgroup containing c. Since V is an irreducible $Q F H$-module on which Q acts faithfully we have that $V=\left[V,\left\langle c^{F}\right\rangle\right]$. Thus we may assume that $Q=\left\langle c^{F}\right\rangle$ as claimed.
(3) $V=[V, c] \cdot\left[V, c^{f_{1}}\right] \cdots\left[V, c^{f_{n}}\right]$ where n is a $(s,|H|)$-bounded number. Hence it suffices to bound $\mathbf{r}([W, c])$.

Proof. Notice that the group $C_{Q}(H)$ embeds in the automorphism group of $\left[C_{V}(H), C_{Q}(H)\right]$ by step (1). Then $C_{Q}(H)$ has s-bounded rank by Lemma 2.7. This yields by Theorem 2.2 that Q has $(s,|H|)$ bounded rank. Thus, there exist $f_{1}=1, \ldots, f_{n}$ in F for an $(s,|H|)$ bounded number n such that $Q=\left\langle c^{f_{1}}, \ldots, c^{f_{n}}\right\rangle$. Now $V=[V, c]$. $\left[V, c^{f_{2}}\right] \cdots\left[V, c^{f_{n}}\right]=\prod_{i=1}^{n}[V, c]^{f_{i}}$ by Lemma [2.6. This shows that we need only to bound $\mathbf{r}([V, c])$ suitably. In fact it suffices to show that $\mathbf{r}([W, c])$ is suitably bounded as $V=\Sigma_{h \in H} W^{h}$.
(4) $H_{1}=\operatorname{Stab}_{H}\left(\Omega_{1}\right) \neq 1$. Furthermore the rank of the sum of members of Ω_{1} which are not centralized by c and contained in a regular H_{1}-orbit, is suitably bounded.

Proof. Fix $U \in \Omega_{1}$ and set $\operatorname{Stab}_{F}(U)=F_{1}$. Choose a transversal T for F_{1} in F. Let $W=\sum_{t \in T} U^{t}$ where T is a transversal for F_{1} in F with $1 \in T$. Then we have $V=\sum_{h \in H} W^{h}$. Notice that $[V, c] \neq 0$ by (1) which implies that $[W, c] \neq 0$ and hence $\left[U^{t}, c\right]=U^{t}$ for some $t \in T$. Without loss of generality we may assume that $[U, c]=U$.

Suppose that $\operatorname{Stab}_{H}\left(\Omega_{1}\right)=1$. Then we also have $\operatorname{Stab}_{H}\left(U^{t}\right)=1$ for all $t \in T$ and hence the sum $X_{t}=\sum_{h \in H} U^{t h}$ is direct for all $t \in T$. Now, $U \leq X_{1}$. It holds that

$$
C_{X_{t}}(H)=\left\{\sum_{h \in H} v^{h}: v \in U^{t}\right\} .
$$

Then $|U|=\left|C_{X_{1}}(H)\right|=\left|\left[C_{X_{1}}(H), c\right]\right| \leq\left|\left[C_{V}(H), C_{Q}(H)\right]\right|$ implies $\mathbf{r}(U) \leq s$. On the other hand $V=\bigoplus_{t \in T} X_{t}$ and
$\left[C_{V}(H), c\right]=\bigoplus\left\{\left[C_{X_{t}}(H), c\right]: t \in T\right.$ with $\left.\left[U^{t}, c\right] \neq 0\right\} \leq\left[C_{V}(H), C_{Q}(H)\right]$.
In particular, $\left\{t \in T:\left[U^{t}, c\right] \neq 0\right\}$ is suitably bounded whence $\mathbf{r}([W, c])$ is $(s,|H|)$-bounded. Hence we may assume that $\operatorname{Stab}_{H}\left(\Omega_{1}\right) \neq 1$.

Notice that every element of a regular H_{1}-orbit in Ω_{1} lies in a regular H-orbit in Ω. Let $U \in \Omega_{1}$ be contained in a regular H_{1}-orbit of Ω_{1}. Let X denote the sum of the members of the H-orbit of U in Ω, that is $X=\bigoplus_{h \in H} U^{h}$. Then $C_{X}(H)=\left\{\sum_{h \in H} v^{h}: v \in U\right\}$. If $[U, c] \neq 0$ then by repeating the same argument in the above paragraph we show that $\mathbf{r}(U) \leq s$ is suitably bounded. On the other hand the number, say m, of all H-orbits in Ω containing a member U such that $[U, c] \neq 0$ is suitably bounded because $m \leq \mathbf{r}\left(\left[C_{V}(H), c\right]\right) \leq s$. It follows then that the rank of the sum of members of Ω_{1} which are not centralized by c and contained in a regular H_{1}-orbit, is suitably bounded.
(5) We may assume that FH is not Frobenius.

Proof. Assume the contrary that $F H$ is Frobenius. Let $H_{1}=$ $\operatorname{Stab}_{H}\left(\Omega_{1}\right)$ and pick $U \in \Omega_{1}$. Set $S=\operatorname{Stab}_{F H_{1}}(U)$ and $F_{1}=F \cap S$. Then $\left|F: F_{1}\right|=\left|\Omega_{1}\right|=\left|F H_{1}: S\right|$ and so $\left|S: F_{1}\right|=\left|H_{1}\right|$. Since $\left(\left|F_{1}\right|,\left|H_{1}\right|\right)=1$, by the Schur-Zassenhaus theorem there exists a complement, say S_{1} of F_{1} in S with $\left|H_{1}\right|=\left|S_{1}\right|$. Therefore there exists a conjugate of U which is H_{1}-invariant. There is no loss in assuming that U is H_{1}-invariant. On the other hand if $1 \neq h \in H_{1}$ and $x \in F$ such that $U^{x h}=U^{x}$, then $[h, x] \in \operatorname{Stab}_{F}(U)=F_{1}$ and so $F_{1} x=F_{1} x^{h}=\left(F_{1} x\right)^{h}$. This implies that $F_{1} x \cap C_{F}(h)$ is nonempty. Now the Frobenius action of H on F forces that $x \in F_{1}$. This means that for each $x \in F \backslash F_{1}$ we have $\operatorname{Stab}_{H_{1}}\left(U^{x}\right)=1$. Therefore U is the unique member of Ω_{1} which is H_{1}-invariant and all the H_{1}-orbits other than $\{U\}$ are regular. By (4), the rank of the sum of all members of Ω_{1} other than U is is suitably
bounded. In particular $\mathbf{r}(U)$ and hence $\mathbf{r}([W, c])$ is suitably bounded in case where $\left[U^{x}, c\right] \neq 0$ for some $x \in F \backslash F_{1}$. Thus we may assume that c is trivial on U^{x} for all $x \in F \backslash F_{1}$. Now we have $[W, c]=[U, c]=U$.

Due to the action by scalars of the abelian group Q on U, it holds that $\left[Q, F_{1}\right] \leq C_{Q}(U)$. We also know that c^{x} is trivial on U for each $x \in F \backslash F_{1}$. Since $C_{Q}(F)=1$, there are prime divisors of $|F|$ different from q. Let $F_{q^{\prime}}$ denote the q^{\prime}-Hall subgroup of F. Clearly we have $C_{Q}\left(F_{q^{\prime}}\right)=1$. Let now $y=\prod_{f \in F_{q^{\prime}}} c^{f}$. Then we have

$$
1=y=\left(\prod_{f \in F_{1} \cap F_{q^{\prime}}} c^{f}\right)\left(\prod_{f \in F_{q^{\prime}} \backslash F_{1}} c^{f}\right) \in c^{\left|F_{1} \cap F_{q^{\prime}}\right|} C_{Q}(U) .
$$

As a consequence $c \in C_{Q}(U)$, because q is coprime to $\left|F_{q^{\prime}}\right|$. This contradiction establishes the claim.
(6) We may assume that the group FH is Frobenius-like of Type II.

Proof. On the contrary we assume that $F H$ is Frobenius-like of Type I. By (4), we have $H_{1}=\operatorname{Stab}_{H}\left(\Omega_{1}\right) \neq 1$. Choose a transversal T_{1} for H_{1} in H. Now $V=\bigoplus_{h \in T_{1}} W^{h}$. Also we can guarantee the existence of a conjugate of U which is H_{1}-invariant by means of the Schur-Zassenhaus Theorem as in (5). There is no loss in assuming that U is H_{1}-invariant.

Set now $Y=\Sigma_{x \in F^{\prime}} U^{x}$ and $F_{2}=\operatorname{Stab}_{F}(Y)$ and $F_{1}=\operatorname{Stab}_{F}(U)$. Clearly, $F_{2}=F^{\prime} F_{1}$ and Y is H_{1}-invariant. Notice that for all nonidentity $h \in H$, we have $C_{F}(h) \leq F^{\prime} \leq F_{2}$. Assume first that $F=F_{2}$. This forces that we have $V=Y$. Clearly, $Y \neq U$, that is $F^{\prime} \not \leq F_{1}$, because otherwise $Q=[Q, F]=1$ due to the scalar action of the abelian group Q on U. So $F^{\prime} \cap F_{1}=1$ which implies that $\left|F: F_{1}\right|$ is a prime. Then $F_{1} \unlhd F$ and $F^{\prime} \leq F_{1}$ which is impossible. Therefore $F \neq F_{2}$.

If $1 \neq h \in H$ and $t \in F$ such that $Y^{t h}=Y^{t}$ then $[h, t] \in F_{2}$. Now, $F_{2} t=F_{2} t^{h}=\left(F_{2} t\right)^{h}$ and this implies the existence of an element in $F_{2} t \cap C_{F}(h)$. Since $C_{F}(h) \leq F^{\prime} \leq F_{2}$ we get $t \in F_{2}$. In particular, for each $t \in F \backslash F_{2}$ we have $\operatorname{Stab}_{H}\left(Y^{t}\right)=1$.

Let S be a transversal for F_{2} in F. For any $t \in S \backslash F_{2}$ set $Y_{t}=Y^{t}$ and consider $Z_{t}=\Sigma_{h \in H} Y_{t}^{h}$. Notice that $V=Y \oplus \bigoplus_{t \in S \backslash F_{2}} Z_{t}$. As the sum Z_{t} is direct we have

$$
C_{Z_{t}}(H)=\left\{\sum_{h \in H} v^{h}: v \in Y_{t}\right\}
$$

with $\left|C_{Z_{t}}(H)\right|=\left|Y_{t}\right|$. Then $\mathbf{r}\left(\left[Y_{t}, c\right]\right)=\mathbf{r}\left(\left[C_{Z_{t}}(H), c\right]\right) \leq s$ for each $t \in S \backslash F_{2}$ with $\left[Y_{t}, c\right] \neq 0$. On the other hand,

$$
\Sigma\left\{\mathbf{r}\left(\left[C_{Z_{t}}(H), c\right]\right): t \in S \text { with }\left[Y_{t}, c\right] \neq 0\right\} \leq \mathbf{r}\left(\left[C_{V}(H), c\right]\right) \leq s
$$

whence $\left|\left\{t \in S \backslash F_{2}:\left[Y_{t}, c\right] \neq 0\right\}\right|$ is suitably bounded. So the claim is established if there exists $t \in S \backslash F_{2}$ such that $\left[Y_{t}, c\right] \neq 0$, since we have $V=Y \oplus \bigoplus_{t \in S \backslash F_{2}} Z_{t}$. Thus we may assume that c is trivial on $\bigoplus_{t \in S \backslash F_{2}} Z_{t}$ and hence $[V, c]=[Y, c]$.

There are two cases now: We have either $F^{\prime} \cap F_{1}=1$ or $F^{\prime} \leq F_{1}$. First assume that $F^{\prime} \leq F_{1}$. Then we get $F_{1}=F_{2}$ because $F_{2}=F^{\prime} F_{1}$. Now $U=Y$. Due to the action by scalars of the abelian group Q on U, it holds that $\left[Q, F_{1}\right] \leq C_{Q}(U)$. From this point on we can proceed as in the proof of step (5) and observe that $C_{Q}\left(F_{q^{\prime}}\right)=1$. Letting now $y=\prod_{f \in F_{q^{\prime}}} c^{f}$, we have

$$
1=y=\left(\prod_{f \in F_{1} \cap F_{q^{\prime}}} c^{f}\right)\left(\prod_{f \in F_{q^{\prime}} \backslash F_{1}} c^{f}\right) \in c^{\left|F_{1} \cap F_{q^{\prime}}\right|} C_{Q}(U) .
$$

implying that $c \in C_{Q}(U)$, because q is coprime to $\left|F_{q^{\prime}}\right|$.
Thus we have $F_{1} \cap F^{\prime}=1$. First assume that $H_{1}=H$. Then Y is H-invariant and $F_{1} H$ is a Frobenius group. Note that $C_{U}\left(F_{1}\right)=1$ as $C_{V}(F)=1$, and hence $C_{Y}\left(F_{1}\right)=1$ since $F^{\prime} \leq Z(F)$. We consider now the action of $Q F_{1} H$ on Y and the fact that $\mathbf{r}\left(\left[C_{Y}(H), C_{Q}(H)\right]\right) \leq s$. Then step (5), we obtain that $\mathbf{r}(Y)=\mathbf{r}([Y, Q])$ is $(s,|H|)$-bounded. Next assume that $H_{1} \neq H$. Choose a transversal for H_{1} in H and set $Y_{1}=\Sigma_{h \in T_{1}} Y^{h}$. Clearly this sum is direct and hence

$$
C_{Y_{1}}(H)=\left\{\sum_{h \in T_{1}} v^{h}: v \in Y\right\}
$$

with $\left|\left[C_{Y_{1}}(H), c\right]\right|=|[Y, c]|$. Then $\mathbf{r}([Y, c])=\mathbf{r}\left(\left[C_{Y_{1}}(H), c\right]\right) \leq s$ establishing claim (6).

(7) The proposition follows.

Proof. From now on $F H$ is a Frobenius-like group of Type II, that is, H and $C_{F}(H)$ are of prime orders. By step (4) we have $H=$ $H_{1}=\operatorname{Stab}_{H}\left(\Omega_{1}\right)$ since $|H|$ is a prime. Now $V=W$. We may also assume by the Schur-Zassenhaus theorem as in the previous steps that there is an H-invariant element, say U in Ω. Let T be a transversal for $F_{1}=\operatorname{Stab}_{F}(U)$ in F. Then $F=\bigcup_{t \in T} F_{1} t$ implies $V=\bigoplus_{t \in T} U^{t}$. It should also be noted that we have $\left|\left\{t \in T:\left[U^{t}, c\right] \neq 0\right\}\right|$ is suitably bounded as

$$
\left[C_{V}(H), c\right]=\bigoplus\left\{\left[C_{X_{t}}(H), c\right]: t \in T \text { with }\left[U^{t}, c\right] \neq 0\right\} \leq\left[C_{V}(H), C_{Q}(H)\right]
$$

where $X_{t}=\bigoplus_{h \in H} U^{t h}$.
Let X be the sum of the components of all regular H-orbits on Ω, and let Y denote the sum of all H-invariant elements of Ω. Then
$V=X \oplus Y$. Suppose that $U^{t h}=U^{t}$ for $t \in T$ and $1 \neq h \in H$. Now $[t, h] \in F_{1}$ and so the coset $F_{1} t$ is fixed by H. Since the orders of F and H are relatively prime we may assume that $t \in C_{F}(H)$. Conversely for each $t \in C_{F}(H), U^{t}$ is H-invariant. Hence the number of components in Y is $\left|T \cap C_{F}(H)\right|=\left|C_{F}(H): C_{F_{1}}(H)\right|$ and so we have either $C_{F}(H) \leq F_{1}$ or not.

If $C_{F}(H) \not \leq F_{1}$ then $C_{F_{1}}(H)=1$ whence $F_{1} H$ is Frobenius group acting on U in such a way that $C_{U}\left(F_{1}\right)=1$. Then $\mathbf{r}(U)$ is $(s,|H|)$ bounded by step (5) since $\mathbf{r}\left(\left[C_{U}(H), C_{Q}(H)\right]\right) \leq s$ holds. This forces that $\mathbf{r}([V, c])$ is bounded suitably and hence the claim is established.

Thus we may assume that $C_{F}(H) \leq F_{1}$. Then $Y=U$ is the unique H-invariant Q-homogeneous component. If $\left[U^{t}, c\right] \neq 0$ for some $t \in$ $F \backslash F_{1}$ we can bound $\mathbf{r}(U)$ and hence $\mathbf{r}([V, c])$ suitably. Thus we may assume that c is trivial on U^{t} for each $t \in F \backslash F_{1}$. Due to the action of the abelian group Q on U, it holds that $\left[Q, F_{1}\right] \leq C_{Q}(U)$. From this point on we can proceed as in the proof of step (5) and observe that $C_{Q}\left(F_{q^{\prime}}\right)=1$. Letting now $y=\prod_{f \in F_{q^{\prime}}} c^{f}$, we have

$$
1=y=\left(\prod_{f \in F_{1} \cap F_{q^{\prime}}} c^{f}\right)\left(\prod_{f \in F_{q^{\prime}} \backslash F_{1}} c^{f}\right) \in c^{\left|F_{1} \cap F_{q^{\prime}}\right|} C_{Q}(U) .
$$

implying that $c \in C_{Q}(U)$, because q is coprime to $\left|F_{q^{\prime}}\right|$. This final contradiction completes the proof of Proposition 3.1.

The next proposition studies the action of a dihedral group of automorphisms and is essential in proving Theorem B.

Proposition 3.2. Let $D=\langle\alpha, \beta\rangle$ be a dihedral group generated by two involutions α and β. Suppose that D acts on a q-group Q for some prime q. Let V be an irreducible $\mathbb{F}_{p} Q D$-module where \mathbb{F}_{p} is a field with characteristic p not dividing $|Q|$. Suppose that $C_{V Q}(F)=1$ where $F=\langle\alpha \beta\rangle$. If $\max \left\{\mathbf{r}\left(\left[C_{V}(\alpha), C_{Q}(\alpha)\right]\right), \mathbf{r}\left(\left[C_{V}(\beta), C_{Q}(\beta)\right]\right)\right\} \leq s$, then $\mathbf{r}([V, Q])$ is s-bounded.

Proof. We set $H=\langle\alpha\rangle$. So $D=F H$. By Lemma 2.6 and Theorem 2.4, we have $[V, Q]=\left[V, C_{Q}(\alpha)\right]\left[V, C_{Q}(\beta)\right]$. Then it is sufficient to bound the rank of $\left[V, C_{Q}(H)\right]$. Following the same steps as in the proof of Proposition 3.1 by replacing Proposition 2.3 by Proposition 2.4, we observe that Q acts faithfully on V and $Q=\left\langle c^{F}\right\rangle$ is abelian with $c \in C_{Z(Q)}(H)$ of order q. Furthermore $\operatorname{Ker}\left(C_{Q}(H)\right.$ on $\left.C_{V}(H)\right)=$ $\operatorname{Ker}\left(C_{Q}(H)\right.$ on $\left.V\right)=1$. Note that it suffices to bound $\mathbf{r}([V, c])$ suitably.

Let Ω denote the set of Q-homogeneous components of the irreducible $Q D$-module V. Let Ω_{1} be an F-orbit of Ω and set $W=\Sigma_{U \in \Omega_{1}} U$.

Then we have $V=W+W^{\alpha}$. Suppose that $W^{\alpha} \neq W$. Then for any $U \in \Omega_{1}$ we have $\operatorname{Stab}_{H}(U)=1$. Let T be a tranversal for $\operatorname{Stab}_{F}(U)=F_{1}$ in F. It holds that $V=\Sigma_{t \in T} X_{t}$ where $X_{t}=U^{t}+U^{t \alpha}$. Now $[V, c]=\Sigma_{t \in T}\left[X_{t}, c\right]$ and $C_{V}(H)=\Sigma_{t \in T} C_{X_{t}}(H)$ where $C_{X_{t}}(H)=$ $\left\{w+w^{\alpha}: w \in U^{t}\right\}$. Since $[V, c] \neq 0$ there exists $t \in T$ such that $\left[U^{t}, c\right] \neq 0$, that is $\left[U^{t}, c\right]=U^{t}$. Then $\left[C_{X_{t}}(H), c\right]=C_{X_{t}}(H)$. Since $\mathbf{r}\left(\left[C_{V}(H), C_{Q}(H)\right]\right) \leq s$ we get $\mathbf{r}(U)=\mathbf{r}\left(C_{X_{t}}(H)\right) \leq s$. Furthermore it follows that $\left|\left\{t \in T:\left[U^{t}, c\right] \neq 0\right\}\right|$ is s-bounded and as a consequence $\mathbf{r}([V, c])$ is suitably bounded. Thus we may assume that $W^{\alpha}=W$ which implies that $\Omega_{1}=\Omega$ and H fixes an element, say U, of Ω as desired.

Let $U^{t} \in \Omega$ be H-invariant. Then $[t, \alpha] \in F_{1}$. On the other hand $t^{-1} t^{\alpha}=t^{-2}$ since α inverts F. So $F_{1} t$ is an element of F / F_{1} of order at most 2 which implies that the number of H-invariant elements of Ω is at most 2 . Let now Y be the sum of all H-invariant elements of Ω. Then $V=Y \oplus \bigoplus_{i=1}^{m} X_{i}$ where $X_{1}, \ldots X_{m}$ are the sums of elements in H-orbits of length 2. Let $X_{i}=U_{i} \oplus U_{i}^{\alpha}$. Notice that if $\left[U_{i}, c\right] \neq 0$ for some i, then we obtain $\mathbf{r}(U)=\mathbf{r}\left(U_{i}\right) \leq s$ by a similar argument as above. On the other hand we observe that the number of i for which $\left[U_{i}, c\right] \neq 0$ is s-bounded by the the hypothesis that $\mathbf{r}\left(\left[C_{V}(H), c\right]\right) \leq s$. It follows now that $\mathbf{r}([V, c])$ is suitably bounded in case where $\left[U_{i}, c\right] \neq 0$ for some i.

Thus we may assume that c centralizes $\bigoplus_{i=1}^{m} X_{i}$ and that $[U, c]=U$. Due to the scalar action by scalars of the abelian group Q on U, it holds that $\left[Q, F_{1}\right] \leq C_{Q}(U)$. As $F_{1} \unlhd F H$, we have $\left[Q, F_{1}\right] \leq C_{Q}(V)=1$. Clearly we have $C_{Q}\left(F_{q^{\prime}}\right)=1$ where $F_{q^{\prime}}$ denotes the Hall q^{\prime}-part of F whose existence is guaranteed by the fact that $C_{Q}(F)=1$. Let now $y=\prod_{f \in F_{q^{\prime}}} c^{f}$. Then we have

$$
1=y=\left(\prod_{f \in F_{1} \cap F_{q^{\prime}}} c^{f}\right)\left(\prod_{f \in F_{q^{\prime}} \backslash F_{1}} c^{f}\right) \in c^{\left|F_{1} \cap F_{q^{\prime}}\right|} C_{Q}(U)
$$

As a consequence $c \in C_{Q}(U)$, because q is coprime to $\left|F_{q^{\prime}}\right|$. This contradiction completes the proof of Proposition 3.2.

4. Proofs of theorems

Firstly, we shall give a detailed proof for Theorem A part (b). The proof of Theorem A (a) can be easily obtained by just obvious modifications of the proof of part (b).

First, we assume that $G=P Q$ where P and Q are $F H$-invariant subgroups such that P is a normal p-subgroup for a prime p and Q is
a nilpotent p^{\prime}-group with $\left|\left[C_{P}(H), C_{Q}(H)\right]\right|=p^{s}$. We shall prove that $\mathbf{r}\left(\gamma_{\infty}(G)\right)$ is $\left((s,|H|)\right.$-bounded. Clearly $\gamma_{\infty}(G)=[P, Q]$. Consider an unrefinable FH -invariant normal series

$$
P=P_{1}>P_{2}>\cdots>P_{k}>P_{k+1}=1 .
$$

Note that its factors P_{i} / P_{i+1} are elementary abelian. Let $V=P_{k}$. Since $C_{V}(Q)=1$, we have that $V=[V, Q]$. We can also assume that Q acts faithfully on V. Proposition 3.1 yields that $\mathbf{r}(V)$ is $(s,|H|)$ bounded. Set $S_{i}=P_{i} / P_{i+1}$. If $\left[C_{S_{i}}(H), C_{Q}(H)\right]=1$, then $\left[S_{i}, Q\right]=1$ by Proposition 2.3. Since $C_{P}(Q)=1$ we conclude that each factor S_{i} contains a nontrivial image of an element of $\left[C_{P}(H), C_{Q}(H)\right]$. This forces that $k \leq s$. Then we proceed by induction on k to obtain that $\mathbf{r}([P, Q])$ is an $(s,|H|)$-bounded number, as desired.

Let $F(G)$ denote the Fitting subgroup of a group G. Write $F_{0}(G)=$ 1 and let $F_{i+1}(G)$ be the inverse image of $F\left(G / F_{i}(G)\right)$. As is well known, when G is soluble, the least number h such that $F_{h}(G)=G$ is called the Fitting height $h(G)$ of G. Let now r be the rank of $\gamma_{\infty}\left(C_{G}(H)\right.$). Then $C_{G}(H)$ has r-bounded Fitting height (see for example Lemma 1.4 of [15]) and hence G has $(r,|H|)$-bounded Fitting height.

We shall proceed by induction on $h(G)$. Firstly, we consider the case where $h(G)=2$. Indeed, let P be a Sylow p-subgroup of $\gamma_{\infty}(G)$ and Q an $F H$-invariant Hall p^{\prime}-subgroup of G. Then, by the preceeding paragraphs and Lemma 2.8, the rank of $P=[P, Q]$ is $(r,|H|)$-bounded and so the rank of $\gamma_{\infty}(G)$ is $(r,|H|)$-bounded. Assume next that $h(G)>$ 2 and let $N=F_{2}(G)$ be the second term of the Fitting series of G. It is clear that the Fitting height of $G / \gamma_{\infty}(N)$ is $h-1$ and $\gamma_{\infty}(N) \leq \gamma_{\infty}(G)$. Hence, by induction we have that $\gamma_{\infty}(G) / \gamma_{\infty}(N)$ has $(r,|H|)$-bounded rank. As a consequence, it holds that

$$
\mathbf{r}\left(\gamma_{\infty}(G)\right) \leq \mathbf{r}\left(\gamma_{\infty}(G) / \gamma_{\infty}(N)\right)+\mathbf{r}\left(\gamma_{\infty}(N)\right)
$$

completing the proof of Theorem $\mathrm{A}(\mathrm{b})$.
The proof of Theorem B can be directly obtained as in the above argument by replacing Proposition 3.1 by Proposition 3.2, and Proposition 2.3 by Proposition 2.5,

References

[1] C. Acciarri, P. Shumyatsky and A Thillaisundaram, Conciseness of coprime commutators in finite groups, Bull. Aust. Math. 89 (2014), 252-258.
[2] E. de Melo, Fitting Height of a Finite Group with a Metabelian Group of Automorphisms. Communication in Algebra 43 (2015), 4797-4808.
[3] E. de Melo, Nilpotent residual and Fitting subgroup of fixed points in finite groups. J. Group Theory 22 (2019), 1059-1068.
[4] E. de Melo, A. S. Lima and P. Shumyatsky Nilpotent residual of fixed points. Arch. Math 111 (2018) 13-21.
[5] E. de Melo, J. Caldeira, On finite groups admitting automorphisms with nilpotent centralizers. J. Algebra 493 (2018) 185-193.
[6] E. de Melo, J. Caldeira, Supersolvable Frobenius groups with nilpotent centralizers. J. Pure and Applied Algebra 223 (2019) 1210-1216.
[7] D. Gorenstein, Finite Groups, Harper and Row, London, New York, 1991.
[8] N. Y. Makarenko and P. Shumyatsky, Frobenius groups as groups of automorphisms, Proc. Am. Math. Soc. 138 No. 10 (2010) 3425-3436 .
[9] N. Yu. Makarenko, E. I. Khukhro, and P. Shumyatsky, Fixed points of Frobenius groups of automorphisms, Dokl. Akad. Nauk, 437, No. 1 (2011) 20-23.
[10] E. I. Khukhro, The nilpotent length of a finite group admitting a Frobenius group of automorphisms with a fixedpoint-free kernel. Algebra Logika, 49 (2010), 819-833; English transl, Algebra Logic, 49 (2011) 551-560.
[11] E. I. Khukhro, Fitting height of a finite group with a Frobenius group of automorphisms, J. Algebra 366 (2012), 1-11.
[12] E. I. Khukhro, Rank and order of a finite group admitting a Frobenius group of automorphisms. Algebra Logika 52 (2013) 99-108; English transl., Algebra Logic 52 (2013) 72-78.
[13] E.I. Khukhro EI, N.Yu Makarenko, Finite groups and Lie rings with a metacyclic Frobenius group of automorphisms. J. Algebra 386 (2013) 77-104.
[14] E. I. Khukhro, N. Yu Makarenko and P. Shumyatsky, Frobenius groups of automorphisms and their fixed points, Forum Math. 26 (2014), 73-112.
[15] E. I. Khukhro, P. Shumyatsky, Finite groups with Engel sinks of bounded rank, Glasgow Mathematical Journal 60 (2018), 695-701.
[16] İ.Ş. Güloğlu, G. Ercan, Action of a Frobenius-like group, J Algebra 402, (2014) 533-543.
[17] G. Ercan, İ.Ş. Güloğlu, E. Öğüt, Nilpotent Length of a Finite Solvable Group with a Frobenius Group of Automorphisms, Com. Algebra 42 issue 11, (2014) 4751-4756.
[18] G. Ercan, İ.Ş. Güloğlu, Action of a Frobenius-like group with fixed-point-free kernel. J Group Theory 17, (2014) 863-873.
[19] G. Ercan, İ.乌̧. Güloğlu, E.I. Khukhro, Rank and Order of a Finite Group admitting a Frobenius-like Group of Automorphisms, Algebra and Logic, 53 Issue 3, (2014) 258-265.
[20] G. Ercan, İ.Ş. Güloğlu, E.I.Khukhro, Derived length of a Frobenius-like kernel, J Algebra 412, (2014) 179-188.
[21] G. Ercan, İ.Ş. Güloğlu, Action of a Frobenius-like group with kernel having central derived subgroup, International Journal of Algebra and Computation 26 No. 6 (2016) 1257-1265.
[22] G. Ercan, İ.Ş. Güloğlu, On the influence of fixed point free nilpotent automorphism groups, Monat. Math. 184 (2017) 531-538.
[23] G. Ercan, İ.Ş. Güloğlu, E.I. Khukhro, Frobenius-like groups as groups of automorphisms. Turk J Math. 38 (2014) 965 - 976.
[24] G. Ercan, İ.Ş. Güloğlu, (2017) Finite groups admitting a dihedral group of automorphisms. Algebra and Discrete Mathematics 23. Number 2, 223-229.
[25] P. Shumyatsky, The dihedral group as group of automorphisms. J. Algebra 375 (2013), 1-12.
[26] Unsolved problems in group theory. The Kourovka Notebook. 18th edition, Institute of Mathematics, Novosibirsk 2014.

Department of Academic Areas, Instituto Federal de Goiás, FormosaGO 73813-816, Brazil

Email address: eliana.rodrigues@ifg.edu.br
Department of Mathematics, University of Brasília, Brasília-DF 70910-900, Brazil

Email address: emerson@mat.unb.br
Department of Mathematics, Middle East Technical University, 06800, Ankara/TURKEY

Email address: ercan@metu.edu.tr

[^0]: 2020 Mathematics Subject Classification. 20D45.
 Key words and phrases. Frobenius groups, Frobenius-like groups, Dihedral groups, Automorphisms, Nilpotent residual.

