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A B S T R A C T

In this paper, Cohen-Grossberg neural networks with unpredictable and compartmental periodic
unpredictable strengths of connectivity between cells and inputs are investigated. To approve
Poisson stability and unpredictability in neural networks, the method of included intervals and
contraction mapping principle are used. The existence, uniqueness, and exponential stability
of unpredictable and Poisson stable outputs are discussed. Examples with numerical simulations
that support the theoretical results are provided. The dependence of the neural network dynamics
on the numerical characteristic, the degree of periodicity, is shown.

1. Introduction
Cohen–Grossberg neural networks (CGNNs) were first proposed by Cohen and Grossberg in 1983 [1]. The class of

networks has intensive applications within various engineering and scientific fields such as neuro-biology, population
biology, and computing technology. Such applications strongly depend on the dynamic behavior of networks, so the
analysis of the dynamics of the model is necessary.

As is known, CGNNs include many well-known neural networks, such as the Lotka-Volterra system, cellular neural
networks, Hopfield neural networks, and are described as follows:

𝑥′𝑖(𝑡) = −𝑎𝑖(𝑥𝑖(𝑡))
[

𝑏𝑖(𝑥𝑖(𝑡)) −
𝑛
∑

𝑗=1
𝑐𝑖𝑗(𝑡)𝑓𝑗(𝑥𝑗(𝑡)) + 𝑣𝑖(𝑡)

]

, (1)

where 𝑖 = 1, 2,⋯ , 𝑛, is the number of neurons; 𝑥𝑖(𝑡) is the state of 𝑖th neuron at time 𝑡; 𝑎𝑖(𝑥𝑖(𝑡)) is an amplification
function; 𝑏𝑖(𝑥𝑖(𝑡)) is the rate with which the unit self-regulates or resets its potential, when isolated from other units
and inputs; 𝑐𝑖𝑗(𝑡) is the strengths of connectivity between cell 𝑖 and 𝑗 at time 𝑡; the function 𝑣𝑖(𝑡) is an external input
source introduced from outside the network to cell 𝑖 at time 𝑡.

In recent decades, scientists have been investigating the dynamics of modified CGNNs. Of great interest to
researchers are oscillations with recurrence. Therefore, periodic, almost-periodic solutions of CGNNs are deeply
studied [2, 3, 4, 5, 6, 7]. For instance, in paper [8], using the approximation technique, periodic and homoclinic solutions
of Cohen–Grossberg neural networks with time-varying delays were investigated. The following model, where the
external inputs are discontinuous periodic is considered,

𝑑𝑥𝑖(𝑡)
𝑑𝑡

= 𝑎𝑖(𝑥𝑖(𝑡))
[

− 𝑏𝑖(𝑡)𝑥𝑖(𝑡) +
𝑛
∑

𝑗=1
𝑐𝑖𝑗(𝑡)𝑔𝑗(𝑥𝑗(𝑡)) +

𝑛
∑

𝑗=1
𝑑𝑖𝑗(𝑡)𝑔𝑗(𝑥𝑗(𝑡 − 𝜏𝑖𝑗(𝑡))) + 𝐼𝑖(𝑡)

]

, 𝑖 = 1, 2,… , 𝑛. (2)

By means of functional differential inclusions, in the article [9], the periodicity and multi periodicity of CGNNs
with discontinuous right-hand sides and time-varying and infinite delays were studied. The authors assumed that in the
following neural network, all coefficients and input data are continuous periodic functions,

𝑑𝑥𝑖(𝑡)
𝑑𝑡

= 𝑞𝑖(𝑥𝑖(𝑡))
[

− 𝑑𝑖(𝑡)𝑥𝑖(𝑡) +
∑𝑛
𝑗=1 𝑎𝑖𝑗(𝑡)𝑓𝑗(𝑥𝑗(𝑡)) +

∑𝑛
𝑗=1 𝑏𝑖𝑗(𝑡)𝑓𝑗(𝑥𝑗(𝑡 − 𝜏(𝑡)))
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+
∑𝑛
𝑗=1 𝑐𝑖𝑗(𝑡) ∫

∞
0 𝑓𝑗(𝑥𝑗(𝑡 − 𝑠))𝑙𝑗(𝑠)𝑑𝑠 + 𝐼𝑖(𝑡)

]

, 𝑖 = 1, 2,… , 𝑛. (3)

Several improved criteria to derive positive solutions with𝜔−periodicity and𝜔−multi-periodicity for CGNNs (3) with
impulses are given in [10].

In [11], the authors obtained sufficient conditions to verify the existence, exponential stability and stabilization of
periodic solutions of CGNNs with impulses,

⎧

⎪

⎨

⎪

⎩

𝑥′𝑖(𝑡) = −𝛼𝑖(𝑥𝑖)
[

− 𝛽𝑖(𝑡, 𝑥𝑖) +
𝑛
∑

𝑗=1

(

𝑎𝑖𝑗(𝑡)𝑓𝑗(𝑥𝑗) + 𝑏𝑖𝑗(𝑡)𝑔𝑗(𝑥𝑗)
)

+ 𝐽𝑖(𝑡)
]

, 𝑡 ≥ 0, 𝑡 ≠ 𝑡𝑘,

Δ𝑥𝑖(𝑡𝑘) = 𝑥𝑖(𝑡𝑘) − 𝑥𝑖(𝑡−𝑘 ) = 𝐼𝑖𝑘(𝑡𝑘, 𝑥𝑖(𝑡−𝑘 )), 𝑘 ∈ ℕ, 𝑖 = 1, 2,… , 𝑛.

The most sophisticated recurrent functions are Poisson stable ones [12, 13]. But we have not found Poisson stable
oscillations of CGNNs in the literature. Perhaps because previously known methods of confirming Poisson stability are
not so easy for comprehension and applications. To simplify this task, in papers [14, 15], we have proposed a relation
between intervals of convergence for inputs and outputs of models. It is called the method of included intervals, and
has been successfully applied to the study of Poisson stable motions in neural networks [16, 17].

In order to strengthen the role of recurrence as a chaotic ingredient, the Poisson stability was extended to the
unpredictability property [18]. Thus, the concept of unpredictable functions was introduced. Moreover, any system
which admits unpredictable solution has Poincare chaos [18]. In papers [19, 20, 21], the synchronization of Poincare
chaos in semiconductor gas discharge models was considered. Currently, Poisson stable and unpredictable oscillations
of Hopfield type neural networks [22, 23], shunting inhibitory cellular neural networks [16, 24], and inertial neural
networks [17], have been investigated.

The remainder of this paper is structured as follows. In the next section, the basic definitions are given. The theorem
on the unpredictability of a compartmental periodic unpredictable functions is announced. The conditions for neural
networks that are sufficient to obtain the results of the article are presented. The neural network (1) reduced to a
quasi-linear model, which, in turn, is convenient for investigating the existence of a unique solution and its stability. In
Sections 3 and 4 it is proved that unpredictable and Poisson stable motions take place in the dynamics of the CGNNs (1)
when the strengths of connectivity between cells and inputs are Poisson stable, unpredictable or compartmental periodic
unpredictable. Moreover, it is shown that the solutions are exponentially stable. Section 5 contains the numerical
examples that confirm the feasibility of theoretical results. The section is closed with examples of CGNNs (1), where
the strengths of connectivity between cells and inputs are compartmental periodic unpredictable functions. Finally,
prospects of the obtained results for chaos control and synchronization in neural networks are discussed in Conclusions.

2. Reduction of the model to a quasilinear mode
In this section, in order to use the methods of the first approximation, by an integral transformation we reduce a

strongly nonlinear model (1) to a quasi-linear system. Throughout the paper, we will use the norm ‖𝑔‖ = max
𝑖=1,2,…,𝑛

|

|

𝑔𝑖|| ,

where |⋅| is the absolute value.
Let us commence with the definitions of Poisson stable and unpredictable functions.

Definition 2.1. [25] A bounded function 𝑔(𝑡) ∶ ℝ → ℝ𝑛 is called Poisson stable if there exists a sequence 𝑡𝑝, 𝑡𝑝 → ∞
as 𝑝→ ∞, such that ‖𝑔(𝑡 + 𝑡𝑝) − 𝑔(𝑡)‖ → 0 uniformly on compact subsets of ℝ.

Definition 2.2. [18] A bounded function 𝑔 ∶ ℝ → ℝ𝑛 is said to be unpredictable if there exist positive numbers 𝜖0, 𝛿
and sequences 𝑡𝑝 → ∞, 𝑠𝑝 → ∞ as 𝑝 → ∞, such that ‖𝑔(𝑡 + 𝑡𝑝) − 𝑔(𝑡)‖ → 0 uniformly on compact subsets of ℝ and
‖𝑔(𝑡 + 𝑡𝑝) − 𝑔(𝑡)‖ > 𝜖0 for each 𝑡 ∈ [𝑠𝑝 − 𝛿, 𝑠𝑝 + 𝛿] and 𝑝 ∈ ℕ.

The sequence 𝑡𝑝, 𝑝 = 1, 2,… , in Definitions 2.1,2.2 is called the convergence sequence, and correspondingly we
shall say about the convergence property, while the existence of positive numbers 𝜖0, 𝛿 and sequence 𝑠𝑝 is said to be
the separation property.

It is easily seen, reading the last two definitions, that all unpredictable functions make a subset of Poisson stable
functions specified with an additional property of separation. It was proved in [18] that the property guarantees chaotic
dynamics of the unpredictable motion. Loosely speaking, one can say that an unpredictable function is a Poisson stable
function with assigned chaotic behavior.
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In paper [15], unpredictable functions that combine periodic dynamics with the unpredictability were considered.
These functions are called compartmental periodic unpredictable, and allow to see new types of oscillations. The
definition of compartmental periodic unpredictable function is as follows:

Definition 2.3. [15] A function 𝑓 (𝑡) ∶ ℝ → ℝ𝑛 is said to be a compartmental periodic unpredictable function
if 𝑓 (𝑡) = 𝐺(𝑡, 𝑡), where 𝐺(𝑢, 𝑣) is a continuous bounded function, periodic in 𝑢 uniformly with respect to 𝑣, and
unpredictable in 𝑣 uniformly with respect to 𝑢, i.e., there exist positive numbers 𝜔, 𝜖0, 𝛿 and sequences 𝑡𝑝, 𝑠𝑝, both of
which diverge to infinity, such that 𝐺(𝑢 + 𝜔, 𝑣) = 𝐺(𝑢, 𝑣) for all 𝑢, 𝑣 ∈ ℝ, sup

𝑢∈ℝ
‖𝐺(𝑢, 𝑣 + 𝑡𝑝) −𝐺(𝑢, 𝑣)‖ → 0 as 𝑝→ ∞

uniformly on bounded intervals of 𝑣, and ‖𝐺(𝑢, 𝑣 + 𝑡𝑝) − 𝐺(𝑢, 𝑣)‖ > 𝜖0 for 𝑣 ∈ [𝑠𝑝 − 𝛿, 𝑠𝑝 + 𝛿], 𝑢 ∈ ℝ and 𝑝 ∈ ℕ.

Let us consider convergence sequence 𝑡𝑝, and fix a positive number 𝜔. We shall call a number 𝜏𝜔 as Poisson shift
of the sequence 𝑡𝑝 with respect to 𝜔 if there exist a subsequence 𝑡𝑝𝑙 of the sequence such that 𝑡𝑝𝑙 → 𝜏𝜔(𝑚𝑜𝑑 𝜔) as
𝑙 → ∞. Denote by 𝜔 the set of all Poisson shifts. The set 𝜔 is not empty, it can consist of several or even an infinite
number of elements. The number 𝜅𝜔 = 𝑖𝑛𝑓 𝜔, 0 ≤ 𝜅𝜔 < 𝜔, is called Poisson number with respect to the number 𝜔.
If 𝜅𝜔 = 0, then we say that the sequence 𝑡𝑝 satisfies kappa property with respect to the number 𝜔.

The unpredictability of compartmental functions is confirmed by the following theorem.

Theorem 2.1. [15] Assume that a continuous and bounded function 𝐺(𝑢, 𝑣) ∶ ℝ × ℝ → ℝ𝑛, is 𝜔−periodic in 𝑢. The
function 𝑓 (𝑡) = 𝐺(𝑡, 𝑡) is unpredictable if the following conditions are valid,

(i) for each 𝜖 > 0 there exists a positive number 𝜂 such that ‖𝐺(𝑡 + 𝑠, 𝑡) − 𝐺(𝑡, 𝑡)‖ < 𝜖 if |𝑠| < 𝜂, 𝑡 ∈ ℝ;

there exist sequences 𝑡𝑝, 𝑠𝑝 both of which diverges to infinity as 𝑝→ ∞, and positive numbers 𝜖0, 𝛿, such that

(ii) the sequence 𝑡𝑝 satisfies kappa property with respect to the period 𝜔;

(iii) ‖𝐺(𝑡, 𝑡 + 𝑡𝑝) − 𝐺(𝑡, 𝑡)‖ → 0, uniformly on each bounded interval 𝐼 of 𝑡;

(iv) inf
[𝑠𝑝−𝛿,𝑠𝑝+𝛿]

‖𝐺(𝑡, 𝑡 + 𝑡𝑝) − 𝐺(𝑡, 𝑡)‖ > 𝜖0, 𝑝 ∈ ℕ.

It is obvious that conditions (𝑖)− (𝑖𝑣) of the last theorem are weaker than those in Definition 2.2, but they are easily
verifiable.

In this paper, we consider CGNNs (1), provided that a solution 𝑥(𝑡) is bounded such that sup𝑡∈ℝ ‖𝑥(𝑡)‖ < 𝐻0,
where 𝐻0 is a fixed positive number.

The following assumptions are needed throughout this paper,

(C1) each 𝑎𝑖(𝑠), 𝑖 = 1, 2,… , 𝑛, |𝑠| < 𝐻0, is continuous and there exist positive numbers 𝑎𝑖 and 𝑎𝑖 such that
𝑎𝑖 ≤ 𝑎𝑖(𝑠) ≤ 𝑎𝑖, 𝑖 = 1, 2,… , 𝑛;

(C2) functions 𝑏𝑖(𝑠), 𝑖 = 1, 2,… , 𝑛, are continuous;

(C3) functions 𝑓𝑖, 𝑖 = 1, 2,… , 𝑛, are Lipschitzian with constants𝐿𝑓𝑖 , |𝑓𝑖(𝑠1)−𝑓𝑖(𝑠2)| ≤ 𝐿𝑓𝑖 |𝑠1−𝑠2| for all |𝑠1| < 𝐻0,
|𝑠2| < 𝐻0;

(C4) inputs 𝑣𝑖(𝑡) and strengths of connectivity between cells 𝑐𝑖𝑗(𝑡), 𝑖 = 1, 2,… , 𝑛, 𝑗 = 1, 2,… , 𝑛, are unpredictable
with common sequences of convergence 𝑡𝑝 and separation sequence 𝑠𝑝, 𝑝 = 1, 2,… .

Condition (C1) implies that for each 𝑖 = 1, 2,… , 𝑛, there exists a function ℎ𝑖(𝑠) such that ℎ𝑖(𝑠) = ∫ 𝑠0
1

𝑎𝑖(𝜏)
𝑑𝜏,

ℎ𝑖(0) = 0. Obviously, ℎ′𝑖(𝑠) = 1∕𝑎𝑖(𝑠). By 𝑎𝑖(𝑠) > 0, we obtain that ℎ𝑖(𝑠) is increasing in 𝑠 and the inverse function
(ℎ𝑖)−1(𝑠) is existential, continuous, and differential. So, (ℎ−1𝑖 )′(𝑠) = 𝑎𝑖(𝑠), where (ℎ−1𝑖 )′ is the derivative of function
(ℎ−1𝑖 )(𝑠) in 𝑠.

It is not difficult to see that

|ℎ−1𝑖 (𝑠1) − ℎ−1𝑖 (𝑠2)| = (ℎ−1𝑖 )′(𝜁 )(𝑠1 − 𝑠2)| = |𝑎𝑖(𝜁 )||𝑠1 − 𝑠2|, 𝑖 = 1, 2,⋯ , 𝑛,

M. Akhmet et al.: Preprint submitted to Elsevier Page 3 of 17
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for |𝑠1| < 𝐻0, |𝑠2| < 𝐻0, and 𝜁 between 𝑠1, 𝑠2. This is why, the function ℎ−1𝑖 (𝑠) satisfies Lipschitz conditions

𝑎𝑖|𝑠1 − 𝑠2| ≤ |ℎ−1𝑖 (𝑠1) − ℎ−1𝑖 (𝑠2)| ≤ 𝑎𝑖|𝑠1 − 𝑠2|, 𝑖 = 1, 2,… , 𝑛, (4)

if |𝑠1| < 𝐻0, |𝑠2| < 𝐻0.
We propose the following transformation, which reduces the highly non-linear model to a quasilinear one,

𝑦𝑖(𝑡) = ℎ𝑖(𝑥𝑖(𝑡)), 𝑖 = 1, 2,… , 𝑛. (5)

One has that 𝑦′𝑖(𝑡) = ℎ′𝑖(𝑥𝑖(𝑡))𝑥
′
𝑖(𝑡) =

𝑥′𝑖(𝑡)
𝑎𝑖(𝑥𝑖(𝑡))

and 𝑥𝑖(𝑡) = ℎ−1𝑖 (𝑦𝑖(𝑡)). Since ‖𝑥(𝑡)‖ < 𝐻0, then ‖𝑦(𝑡)‖ < 𝐻, where

𝐻 =
𝐻0

max𝑖 𝑎𝑖
, for all 𝑡 ∈ ℝ.

Using substitution (5) for the system (1), we get that

𝑦′𝑖(𝑡) = −𝑢𝑖(𝑦𝑖(𝑡))𝑦𝑖(𝑡) +
𝑛
∑

𝑗=1
𝑐𝑖𝑗(𝑡)𝑓𝑗(ℎ−1𝑗 (𝑦𝑗(𝑡))) + 𝑣𝑖(𝑡), (6)

where 𝑢𝑖(𝑠) =
𝑏𝑖(ℎ−1𝑖 (𝑠))

𝑠
, 𝑖 = 1, 2,… , 𝑛.

For the sake of simplicity, we will use notations:

𝑚𝑐𝑖𝑗 = sup
𝑡∈ℝ

|𝑐𝑖𝑗(𝑡)|, 𝑚𝑓𝑖 = sup
𝑡∈ℝ

|𝑓𝑖(𝑡)|, 𝑚𝑣𝑖 = sup
𝑡∈ℝ

|𝑣𝑖(𝑡)|,

for each 𝑖 = 1, 2,… , 𝑛; 𝑗 = 1, 2,… , 𝑛.
Assume that for all 𝑖 = 1, 2,… , 𝑛, the following conditions are satisfied,

(C5) there exist positive numbers 𝑚𝑖,𝑀𝑖 such that 0 < 𝑚𝑖 ≤ 𝑢𝑖(𝑠) ≤𝑀𝑖, for |𝑠| < 𝐻 ;

(C6) there exists positive number 𝐿𝑢𝑖 such that |𝑢𝑖(𝑠1) − 𝑢𝑖(𝑠2)| ≤ 𝐿𝑢𝑖 |𝑠1 − 𝑠2| for all |𝑠1| < 𝐻, |𝑠2| < 𝐻 ;

(C7) 1
𝑚𝑖

(

𝑛
∑

𝑗=1
𝑚𝑐𝑖𝑗𝑚

𝑓
𝑖 + 𝑚𝑣𝑖

)

< 𝐻 ;

(C8) 1
𝑚𝑖

(𝐿𝑢𝑖
𝑚𝑖

(
𝑛
∑

𝑗=1
𝑚𝑐𝑖𝑗𝑚

𝑓
𝑖 + 𝑚𝑣𝑖 ) +

𝑛
∑

𝑗=1
𝑚𝑐𝑖𝑗𝐿

𝑓
𝑖 𝑎𝑖

)

< 1.

According to the theory of differential equations [26], the bounded function 𝑦(𝑡) = (𝑦1(𝑡), 𝑦2(𝑡),⋯ , 𝑦𝑛(𝑡)), is a
solution of system (6) if and only if the following equalities

𝑦𝑖(𝑡) = ∫

𝑡

−∞
𝑒− ∫ 𝑡𝑠 𝑢𝑖(𝑦𝑖(𝜏))𝑑𝜏

(

𝑛
∑

𝑗=1
𝑐𝑖𝑗(𝑠)𝑓𝑗(ℎ−1𝑗 (𝑦𝑗(𝑠))) + 𝑣𝑖(𝑠)

)

𝑑𝑠, (7)

are valid for all 𝑖 = 1, 2,… , 𝑛.

3. Unpredictable and Poisson stable motions
In this part of the paper, the existence of Poisson stable and unpredictable dynamics of the neural network

(1) is considered. The neural network (1) with unpredictable and compartmental periodic unpredictable strengths
of connectivity between cells and external inputs is investigated. Using the method of included intervals [15] and
contraction mapping principle, it is proved that Theorem 3.1 on the existence exponentially stable Poisson stable
solution is valid. Moreover, it is shown by Theorem 3.2 that the unpredictable motions, which are exponentially stable,
are present in the dynamics of the neural network (1).
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Denote by  the set of functions 𝜙 = (𝜙1, 𝜙2,⋯ , 𝜙𝑛), where each 𝜙𝑖, 𝑖 = 1, 2,… , 𝑛, is Poisson stable with
convergence sequence 𝑡𝑝, 𝑝 = 1, 2,⋯ , and |𝜙𝑖(𝑡)| < 𝐻, 𝑡 ∈ ℝ, 𝑖 = 1, 2,⋯ , 𝑛.

Define on  the operator 𝑇 such that 𝑇𝜙(𝑡) = (𝑇1𝜙(𝑡), 𝑇2𝜙(𝑡),⋯ , 𝑇𝑛𝜙(𝑡)), where

𝑇𝑖𝜙(𝑡) = ∫

𝑡

−∞
𝑒− ∫ 𝑡𝑠 𝑢𝑖(𝜙𝑖(𝜏))𝑑𝜏

(

𝑛
∑

𝑗=1
𝑐𝑖𝑗(𝑠)𝑓𝑗(ℎ−1𝑗 (𝜙𝑗(𝑠))) + 𝑣𝑖(𝑠)

)

𝑑𝑠, 𝑖 = 1, 2,… , 𝑛. (8)

Lemma 3.1. The operator 𝑇 is invariant in  provided that conditions (𝐶1) − (𝐶7) are satisfied.

Proof. Fix a function 𝜙 ∈ . We have that

|𝑇𝑖𝜙(𝑡)| ≤ ∫

𝑡

−∞
𝑒− ∫ 𝑡𝑠 𝑢𝑖(𝜙𝑖(𝜏))𝑑𝜏

(

𝑛
∑

𝑗=1
|𝑐𝑖𝑗(𝑠)||𝑓𝑗(ℎ−1𝑗 (𝜙𝑗(𝑠)))| + |𝑣𝑖(𝑠)|

)

𝑑𝑠 ≤

∫

𝑡

−∞
𝑒−𝑚𝑖(𝑡−𝑠)

(

𝑛
∑

𝑗=1
𝑚𝑐𝑖𝑗𝑚

𝑓
𝑖 + 𝑚𝑣𝑖

)

𝑑𝑠 ≤ 1
𝑚𝑖

(

𝑛
∑

𝑗=1
𝑚𝑐𝑖𝑗𝑚

𝑓
𝑖 + 𝑚𝑣𝑖

)

,

for each 𝑖 = 1, 2,… , 𝑛. Therefore, condition (C7) implies that ‖𝑇𝜙(𝑡)‖0 < 𝐻.
Next, applying the method of included intervals [15], we will show that the sequence of images 𝑇𝜙(𝑡+𝑡𝑝) uniformly

converges to 𝑇𝜙(𝑡) as 𝑝→ ∞ on compact subsets of ℝ.
Let us fix an arbitrary 𝜖 > 0 and a section [𝛼, 𝛽],−∞ < 𝛼 < 𝛽 < ∞. There exist numbers 𝛾, 𝜉 such that 𝛾 < 𝛼 and

𝜉 > 0, which satisfy the following inequalities:

1
𝑚𝑖
𝑒−𝑚𝑖(𝛼−𝛾)

(

𝑛
∑

𝑗=1
𝑚𝑐𝑖𝑗(𝑚

𝑓
𝑖 + 1

4
𝐿𝑓𝑖 𝑎𝑖𝐻) + 𝑚𝑣𝑖

)

< 𝜖
8
, (9)

𝐿𝑢𝑖
𝑚2
𝑖

𝜉
(

𝑛
∑

𝑗=1
𝑚𝑐𝑖𝑗𝑚

𝑓
𝑖 + 𝑚𝑣𝑖

)

< 𝜖
4
, (10)

and

1
𝑚𝑖
𝜉
(

𝑛
∑

𝑗=1
𝑚𝑐𝑖𝑗𝐿

𝑓
𝑖 𝑎𝑖 + 𝑛𝑚

𝑓
𝑖 + 1

)

< 𝜖
4
, (11)

for all 𝑖 = 1, 2,… , 𝑛.
Since the functions 𝑣𝑖(𝑡), 𝑐𝑖𝑗(𝑡), 𝑖, 𝑗 = 1, 2,… , 𝑝, are unpredictable, 𝜙(𝑡) belongs to , and the convergence

sequence, 𝑡𝑝, is common to all of them, then the following inequalities are true: |𝑣𝑖(𝑡 + 𝑡𝑝) − 𝑣𝑖(𝑡)| < 𝜉, |𝑐𝑖𝑗(𝑡 +
𝑡𝑝) − 𝑐𝑖𝑗(𝑡)| < 𝜉, |𝜙𝑖(𝑡 + 𝑡𝑝) − 𝜙𝑖(𝑡)| < 𝜉 for 𝑡 ∈ [𝛾, 𝛽]. We obtain that

|𝑇𝑖𝜙(𝑡 + 𝑡𝑝) − 𝑇𝑖𝜙(𝑡)| ≤
|

|

|∫

𝑡

−∞
𝑒− ∫ 𝑡𝑠 𝑢𝑖(𝜙𝑖(𝜏+𝑡𝑝))𝑑𝜏 (

𝑛
∑

𝑗=1
𝑐𝑖𝑗(𝑠 + 𝑡𝑝)𝑓𝑗(ℎ−1𝑗 (𝜙𝑗(𝑠 + 𝑡𝑝))) + 𝑣𝑖(𝑠 + 𝑡𝑝))𝑑𝑠 −

∫

𝑡

−∞
𝑒− ∫ 𝑡𝑠 𝑢𝑖(𝜙𝑖(𝜏))𝑑𝜏 (

𝑛
∑

𝑗=1
𝑐𝑖𝑗(𝑠)𝑓𝑗(ℎ−1𝑗 (𝜙𝑗(𝑠))) + 𝑣𝑖(𝑠))𝑑𝑠

|

|

|

≤ ∫

𝑡

−∞

|

|

|

𝑒− ∫ 𝑡𝑠 𝑢𝑖(𝜙𝑖(𝜏+𝑡𝑝))𝑑𝜏 − 𝑒− ∫ 𝑡𝑠 𝑢𝑖(𝜙𝑖(𝜏)))𝑑𝜏 |
|

|

×

|

|

|

𝑛
∑

𝑗=1
𝑐𝑖𝑗(𝑠 + 𝑡𝑝)𝑓𝑗(ℎ−1𝑗 (𝜙𝑗(𝑠 + 𝑡𝑝))) + 𝑣𝑖(𝑠 + 𝑡𝑝)

|

|

|

𝑑𝑠 +

∫

𝑡

−∞
𝑒− ∫ 𝑡𝑠 𝑢𝑖(𝜙𝑖(𝜏))𝑑𝜏 |

|

|

𝑝
∑

𝑗=1
𝑐𝑖𝑗(𝑠 + 𝑡𝑝)

(

𝑓𝑗(ℎ−1𝑗 (𝜙𝑗(𝑠 + 𝑡𝑝))) − 𝑓𝑗(ℎ−1𝑗 (𝜙𝑗(𝑠)))
)

+
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𝑝
∑

𝑗=1
(𝑐𝑖𝑗(𝑠 + 𝑡𝑝) − 𝑐𝑖𝑗(𝑠))𝑓𝑗(ℎ−1𝑗 (𝜙𝑗(𝑠))) + 𝑣𝑖(𝑠 + 𝑡𝑝) − 𝑣𝑖(𝑠)

|

|

|

𝑑𝑠,

for each 𝑖 = 1, 2,… , 𝑛.
Consider the sum of integrals in the last inequality on two intervals, (−∞, 𝛾] and (𝛾, 𝑡].Using inequalities (9)–(11),

we get that the following estimates are correct for each 𝑖 = 1, 2,… , 𝑛 ∶

𝐼1 = ∫

𝛾

−∞

|

|

|

𝑒− ∫ 𝑡𝑠 𝑢𝑖(𝜙𝑖(𝜏+𝑡𝑝))𝑑𝜏 − 𝑒− ∫ 𝑡𝑠 𝑢𝑖(𝜙𝑖(𝜏)))𝑑𝜏 |
|

|

|

|

|

𝑛
∑

𝑗=1
𝑐𝑖𝑗(𝑠 + 𝑡𝑝)𝑓𝑗(ℎ−1𝑗 (𝜙𝑗(𝑠 + 𝑡𝑝))) + 𝑣𝑖(𝑠 + 𝑡𝑝)

|

|

|

𝑑𝑠 +

∫

𝛾

−∞
𝑒− ∫ 𝑡𝑠 𝑢𝑖(𝜙𝑖(𝜏))𝑑𝜏 |

|

|

𝑝
∑

𝑗=1
𝑐𝑖𝑗(𝑠 + 𝑡𝑝)

(

𝑓𝑗(ℎ−1𝑗 (𝜙𝑗(𝑠 + 𝑡𝑝))) − 𝑓𝑗(ℎ−1𝑗 (𝜙𝑗(𝑠)))
)

+

𝑝
∑

𝑗=1
(𝑐𝑖𝑗(𝑠 + 𝑡𝑝) − 𝑐𝑖𝑗(𝑠))𝑓𝑗(ℎ−1𝑗 (𝜙𝑗(𝑠))) + 𝑣𝑖(𝑠 + 𝑡𝑝) − 𝑣𝑖(𝑠)

|

|

|

𝑑𝑠 ≤

∫

𝛾

−∞
2𝑒−𝑚𝑖(𝑡−𝑠)

(

𝑛
∑

𝑗=1
𝑚𝑐𝑖𝑗𝑚

𝑓
𝑖 + 𝑚𝑣𝑖

)

𝑑𝑠 + ∫

𝛾

−∞
𝑒−𝑚𝑖(𝑡−𝑠)

(

𝑛
∑

𝑗=1
𝑚𝑐𝑖𝑗𝐿

𝑓
𝑖 𝑎𝑖𝐻 + 2

𝑛
∑

𝑗=1
𝑚𝑐𝑖𝑗𝑚

𝑓
𝑖 + 2𝑚𝑣𝑖

)

𝑑𝑠 ≤

2
𝑚𝑖
𝑒−𝑚𝑖(𝛼−𝛾)

(

𝑛
∑

𝑗=1
𝑚𝑐𝑖𝑗𝑚

𝑓
𝑖 + 𝑚𝑣𝑖

)

+ 1
𝑚𝑖
𝑒−𝑚𝑖(𝛼−𝛾)

(

𝑛
∑

𝑗=1
𝑚𝑐𝑖𝑗𝐿

𝑓
𝑖 𝑎𝑖𝐻 + 2

𝑛
∑

𝑗=1
𝑚𝑐𝑖𝑗𝑚

𝑓
𝑖 + 2𝑚𝑣𝑖

)

𝑑𝑠 ≤

4
𝑚𝑖
𝑒−𝑚𝑖(𝛼−𝛾)

(

𝑛
∑

𝑗=1
𝑚𝑐𝑖𝑗(𝑚

𝑓
𝑖 + 1

4
𝐿𝑓𝑖 𝑎𝑖𝐻) + 𝑚𝑣𝑖

)

< 𝜖
2
,

and

𝐼2 = ∫

𝑡

𝛾
|𝑒− ∫ 𝑡𝑠 𝑢𝑖(𝜙𝑖(𝜏+𝑡𝑝))𝑑𝜏 − 𝑒− ∫ 𝑡𝑠 𝑢𝑖(𝜙𝑖(𝜏))𝑑𝜏

|

|

|

|

𝑛
∑

𝑗=1
𝑐𝑖𝑗(𝑠 + 𝑡𝑝)𝑓𝑗(ℎ−1𝑗 (𝜙𝑗(𝑠 + 𝑡𝑝))) + 𝑣𝑖(𝑠 + 𝑡𝑝)

|

|

|

𝑑𝑠 +

∫

𝑡

𝛾
𝑒− ∫ 𝑡𝑠 𝑢𝑖(𝜙𝑖(𝜏))𝑑𝜏 |

|

|

𝑛
∑

𝑗=1
𝑐𝑖𝑗(𝑠 + 𝑡𝑝)(𝑓𝑗(ℎ−1𝑗 (𝜙𝑗(𝑠 + 𝑡𝑝))) − 𝑓𝑗(ℎ−1𝑗 (𝜙𝑗(𝑠)))) +

𝑛
∑

𝑗=1
(𝑐𝑖𝑗(𝑠 + 𝑡𝑝) − 𝑐𝑖𝑗(𝑠))𝑓𝑗(ℎ−1𝑗 (𝜙𝑗(𝑠))) + 𝑣𝑖(𝑠 + 𝑡𝑝) − 𝑣𝑖(𝑠)

|

|

|

𝑑𝑠 ≤

∫

𝑡

𝛾
𝑒− ∫ 𝑡𝑠 𝑢𝑖(𝜙𝑖(𝜏))𝑑𝜏 |

|

|

𝑒− ∫ 𝑡𝑠 (𝑢𝑖(𝜙𝑖(𝜏+𝑡𝑝))−𝑢𝑖(𝜙𝑖(𝜏)))𝑑𝜏 − 1||
|

(

𝑛
∑

𝑗=1
|𝑐𝑖𝑗(𝑠 + 𝑡𝑝)||𝑓𝑗(ℎ−1𝑗 (𝜙𝑗(𝑠 + 𝑡𝑝)))| + |𝑣𝑖(𝑠 + 𝑡𝑝)|

)

𝑑𝑠 +

∫

𝑡

𝛾
𝑒− ∫ 𝑡𝑠 𝑢𝑖(𝜙𝑖(𝜏))𝑑𝜏

(

𝑛
∑

𝑗=1
|𝑐𝑖𝑗(𝑠 + 𝑡𝑝)||𝑓𝑗(ℎ−1𝑗 (𝜙𝑗(𝑠 + 𝑡𝑝))) − 𝑓𝑗(ℎ−1𝑗 (𝜙𝑗(𝑠)))| +

𝑛
∑

𝑗=1
|𝑐𝑖𝑗(𝑠 + 𝑡𝑝) − 𝑐𝑖𝑗(𝑠)||𝑓𝑗(ℎ−1𝑗 (𝜙𝑗(𝑠)))| + |𝑣𝑖(𝑠 + 𝑡𝑝) − 𝑣𝑖(𝑠)|

)

𝑑𝑠 <

∫

𝑡

𝛾
𝑒−𝑚𝑖(𝑡−𝑠)𝐿𝑢𝑖 (𝑡 − 𝑠) sup

𝑡∈ℝ
|𝜙𝑖(𝑠 + 𝑡𝑝) − 𝜓𝑖(𝑠)|

(

𝑛
∑

𝑗=1
𝑚𝑐𝑖𝑗𝑚𝑓 + 𝑚𝑣𝑖

)

𝑑𝑠 +

∫

𝑡

𝛾
𝑒−𝑚𝑖(𝑡−𝑠)

(

𝑛
∑

𝑗=1
𝑚𝑐𝑖𝑗𝐿

𝑓
𝑖 𝑎𝑖𝜉 + 𝑛𝜉𝑚

𝑓
𝑖 + 𝜉

)

𝑑𝑠 ≤

1
𝑚2
𝑖

𝐿𝑢𝑖 𝜉
(

𝑛
∑

𝑗=1
𝑚𝑐𝑖𝑗𝑚

𝑓
𝑖 + 𝑚𝑣𝑖

)

+ 1
𝑚𝑖
𝜉
(

𝑛
∑

𝑗=1
𝑚𝑐𝑖𝑗𝐿

𝑓
𝑖 𝑎𝑖 + 𝑛𝑚

𝑓
𝑖 + 1

)

< 𝜖
4
+ 𝜖

4
= 𝜖

2
.

M. Akhmet et al.: Preprint submitted to Elsevier Page 6 of 17



Cohen-Grossberg neural networks with unpredictable and Poisson stable dynamics

This is why, for all 𝑡 ∈ [𝛼, 𝛽] and 𝑖 = 1, 2,… , 𝑛, we have that |𝑇𝑖𝜙(𝑡 + 𝑡𝑝) − 𝑇𝑖𝜙(𝑡)| ≤ 𝐼1 + 𝐼2 < 𝜖. So, the function
𝑇𝜙(𝑡 + 𝑡𝑝) uniformly convergences to 𝑇𝜙(𝑡) on compact subsets of ℝ, and it is true that 𝑇 ∶  → .□

Lemma 3.2. Assume that conditions (𝐶1) − (𝐶8) are valid. Then the operator 𝑇 is contractive in .

Proof. Let functions 𝜙 and 𝜓 belong to . For fixed 𝑖 = 1, 2,… , 𝑛, we have that

|𝑇𝑖𝜙(𝑡) − 𝑇𝑖𝜓(𝑡)| ≤
|

|

|∫

𝑡

−∞
𝑒− ∫ 𝑡𝑠 𝑢𝑖(𝜙𝑖(𝜏))𝑑𝜏

(

𝑛
∑

𝑗=1
𝑐𝑖𝑗(𝑠)𝑓𝑗(ℎ−1𝑗 (𝜙𝑗(𝑠))) + 𝑣𝑖(𝑠)

)

𝑑𝑠 −

∫

𝑡

−∞
𝑒− ∫ 𝑡𝑠 𝑢𝑖(𝜓𝑖(𝜏))𝑑𝜏

(

𝑛
∑

𝑗=1
𝑐𝑖𝑗(𝑠)𝑓𝑗(ℎ−1𝑗 (𝜓𝑗(𝑠))) + 𝑣𝑖(𝑠)

)

𝑑𝑠||
|

≤

|

|

|∫

𝑡

−∞
𝑒− ∫ 𝑡𝑠 𝑢𝑖(𝜙𝑖(𝜏))𝑑𝜏 (1 − 𝑒− ∫ 𝑡𝑠 (𝑢𝑖(𝜓𝑖(𝜏))−𝑢𝑖(𝜙𝑖(𝜏)))𝑑𝜏 )

(

𝑛
∑

𝑗=1
𝑐𝑖𝑗(𝑠)𝑓𝑗(ℎ−1𝑗 (𝜙𝑗(𝑠))) + 𝑣𝑖(𝑠)

)

𝑑𝑠||
|

+

|

|

|∫

𝑡

−∞
𝑒− ∫ 𝑡𝑠 𝑢𝑖(𝜓𝑖(𝜏))𝑑𝜏

(

𝑛
∑

𝑗=1
𝑐𝑖𝑗(𝑠)𝑓𝑗(ℎ−1𝑗 (𝜓𝑗(𝑠))) −

𝑛
∑

𝑗=1
𝑐𝑖𝑗(𝑠)𝑓𝑗(ℎ−1𝑗 (𝜓𝑗(𝑠)))

)

𝑑𝑠||
|

≤

∫

𝑡

−∞
𝑒−𝑚𝑖(𝑡−𝑠)𝐿𝑢𝑖 sup

𝑡∈ℝ
|𝜙𝑖 − 𝜓𝑖|(𝑡 − 𝑠)

(

𝑛
∑

𝑗=1
|𝑐𝑖𝑗(𝑠)||𝑓𝑗(ℎ−1𝑗 (𝜙𝑗(𝑠)))| + |𝑣𝑖(𝑠)|

)

𝑑𝑠 +

∫

𝑡

−∞
𝑒−𝑚𝑖(𝑡−𝑠)

(

𝑛
∑

𝑗=1
|𝑐𝑖𝑗(𝑠)||𝑓𝑗(ℎ−1𝑗 (𝜓𝑗(𝑠)))| −

𝑛
∑

𝑗=1
|𝑐𝑖𝑗(𝑠)||𝑓𝑗(ℎ−1𝑗 (𝜓𝑗(𝑠)))|

)

𝑑𝑠 ≤

1
𝑚2
𝑖

𝐿𝑢𝑖 (
𝑛
∑

𝑗=1
𝑚𝑐𝑖𝑗𝑚

𝑓
𝑖 + 𝑚𝑣𝑖 ) sup

𝑡∈ℝ
|𝜙𝑖 − 𝜓𝑖| +

1
𝑚𝑖

𝑛
∑

𝑗=1
𝑚𝑐𝑖𝑗𝐿

𝑓
𝑖 𝑎𝑖 sup

𝑡∈ℝ
|𝜙𝑖 − 𝜓𝑖| ≤

1
𝑚𝑖

(𝐿𝑢𝑖
𝑚𝑖

(
𝑛
∑

𝑗=1
𝑚𝑐𝑖𝑗𝑚

𝑓
𝑖 + 𝑚𝑣𝑖 ) +

𝑛
∑

𝑗=1
𝑚𝑐𝑖𝑗𝐿

𝑓
𝑖 𝑎𝑖

)

sup
𝑡∈ℝ

|𝜙𝑖 − 𝜓𝑖|.

In accordance with condition (C8), the operator 𝑇 is contractive in .□

Denote 𝐿𝑢 = max
(𝑖)

𝐿𝑢𝑖 , 𝑚 = min
(𝑖)
𝑚𝑖, 𝑚𝑐 = max

(𝑖)

𝑛
∑

𝑗=1
𝑚𝑐𝑖𝑗 , 𝐿𝑓 = max

(𝑖)
𝐿𝑓𝑖 , 𝑚𝑣 = max

(𝑖)
𝑚𝑣𝑖 , �̄� = max

(𝑖)
𝑎𝑖, and 𝜎 is a

positive number such that 𝜎 < 𝑚.
The following condition will be needed to prove the exponential stability of the solution,

(C9) 𝐻𝐿𝑢
1
𝜎 + 𝐿𝑢(𝑚𝑐𝑚𝑓 + 𝑚𝑣)

1
𝜎

(

2
𝑚−𝜎 + 1

𝑚

)

+ 𝑚𝑐𝐿𝑓 �̄�
1

𝑚−𝜎 < 1.

Theorem 3.1. The system (1) admits a unique exponentially stable Poisson stable solution provided that conditions
(𝐶1) − (𝐶9) are fulfilled.

Proof. Let us show the completeness of the set . Consider a sequence 𝜙𝑘(𝑡) in , which converges on ℝ to a limit
function 𝜙(𝑡). Fix a section 𝐼 ⊂ ℝ. We have that

‖𝜙(𝑡 + 𝑡𝑝) − 𝜙(𝑡)‖ ≤ ‖𝜙(𝑡 + 𝑡𝑝) − 𝜙𝑘(𝑡 + 𝑡𝑝)‖ + ‖𝜙𝑘(𝑡 + 𝑡𝑝) − 𝜙𝑘(𝑡)‖ + ‖𝜙𝑘(𝑡) − 𝜙(𝑡)‖. (12)

One can take sufficiently large numbers 𝑝 and 𝑘 such that each term on the right-hand-side of (12) is smaller than
𝜖
3 for an arbitrary 𝜖 > 0 and 𝑡 ∈ 𝐼 . The inequality (12) implies that 𝜙(𝑡+ 𝑡𝑝) converges to 𝜙(𝑡) uniformly on 𝐼. That is,
the set  is complete.

By Lemmas 3.1 and 3.2, on the invariance and contractiveness of the operator 𝑇 in the set , one can obtain
that there exists a unique fixed point 𝑧 ∈  of the operator 𝑇 , which is a solution of the system (6) and satisfies the
convergence property. Thus, the function 𝑧(𝑡) = (𝑧1(𝑡), 𝑧2(𝑡),… , 𝑧𝑛(𝑡)) is a unique Poisson stable solution of the system
(6).

Now, let us discuss the stability of the solution 𝑧(𝑡).
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It is true that the solution 𝑧(𝑡) = (𝑧1(𝑡), 𝑧2(𝑡),… , 𝑧𝑛(𝑡)) satisfies the integral inequality

𝑧𝑖(𝑡) = 𝑧𝑖(𝑡0)𝑒
− ∫ 𝑡𝑡0 𝑢𝑖(𝑧𝑖(𝜏))𝑑𝜏 + ∫

𝑡

𝑡0
𝑒− ∫ 𝑡𝑠 𝑢𝑖(𝑧𝑖(𝜏))𝑑𝜏

(

𝑛
∑

𝑗=1
𝑐𝑖𝑗(𝑠)𝑓𝑗(ℎ−1𝑗 (𝑧𝑗(𝑠))) + 𝑣𝑖(𝑠)

)

𝑑𝑠,

for all 𝑖 = 1,… , 𝑛.
Let 𝑦(𝑡) = (𝑦1(𝑡), 𝑦2(𝑡),… , 𝑦𝑛(𝑡)), 𝑖 = 1,… , 𝑛, be another solution of system (6). Then, for each 𝑖 = 1,… , 𝑛, we

have that

𝑦𝑖(𝑡) = 𝑦𝑖(𝑡0)𝑒
− ∫ 𝑡𝑡0 𝑢𝑖(𝑦𝑖(𝜏))𝑑𝜏 + ∫

𝑡

𝑡0
𝑒− ∫ 𝑡𝑠 𝑢𝑖(𝑦𝑖(𝜏))𝑑𝜏

(

𝑛
∑

𝑗=1
𝑐𝑖𝑗(𝑠)𝑓𝑗(ℎ−1𝑗 (𝑦𝑗(𝑠))) + 𝑣𝑖(𝑠)

)

𝑑𝑠,

and

𝑦𝑖(𝑡) − 𝑧𝑖(𝑡) = (𝑦𝑖(𝑡0) − 𝑧𝑖(𝑡0))𝑒
− ∫ 𝑡𝑡0 𝑢𝑖(𝑧𝑖(𝜏))𝑑𝜏 + 𝑦𝑖(𝑡0)(𝑒

− ∫ 𝑡𝑡0 𝑢𝑖(𝑦𝑖(𝜏))𝑑𝜏 − 𝑒− ∫ 𝑡𝑡0 𝑢𝑖(𝑧𝑖(𝜏))𝑑𝜏 ) +

∫

𝑡

𝑡0
(𝑒− ∫ 𝑡𝑠 𝑢𝑖(𝑦𝑖(𝜏))𝑑𝜏 − 𝑒− ∫ 𝑡𝑡0 𝑢𝑖(𝑧𝑖(𝜏))𝑑𝜏 )

(

𝑛
∑

𝑗=1
𝑐𝑖𝑗(𝑠)𝑓𝑗(ℎ−1𝑗 (𝑦𝑗(𝑠))) + 𝑣𝑖(𝑠)

)

𝑑𝑠 −

∫

𝑡

𝑡0
𝑒− ∫ 𝑡𝑠 𝑢𝑖(𝑧𝑖(𝜏))𝑑𝜏

(

𝑛
∑

𝑗=1
𝑐𝑖𝑗(𝑠)𝑓𝑗(ℎ−1𝑗 (𝑦𝑗(𝑠))) −

𝑛
∑

𝑗=1
𝑐𝑖𝑗(𝑠)𝑓𝑗(ℎ−1𝑗 (𝑧𝑗(𝑠)))

)

𝑑𝑠. (13)

Denote 𝜔(𝑡) = 𝑦(𝑡) − 𝑧(𝑡) and 𝜔(𝑡0) = 𝑦(𝑡0) − 𝑧(𝑡0), where 𝜔(𝑡) = (𝜔1(𝑡), 𝜔2(𝑡),… , 𝜔𝑛(𝑡)). Relation (13) implies that
𝜔(𝑡) satisfy the next equation,

𝜔𝑖(𝑡) = 𝜔𝑖(𝑡0))𝑒
− ∫ 𝑡𝑡0 𝑢𝑖(𝑧𝑖(𝜏))𝑑𝜏 + (𝜔𝑖(𝑡0) + 𝑧𝑖(𝑡0))(𝑒

− ∫ 𝑡𝑡0 𝑢𝑖(𝜔𝑖(𝜏)+𝑧𝑖(𝜏))𝑑𝜏 − 𝑒− ∫ 𝑡𝑡0 𝑢𝑖(𝑧𝑖(𝜏))𝑑𝜏 ) +

∫

𝑡

𝑡0
(𝑒− ∫ 𝑡𝑠 𝑢𝑖(𝜔𝑖(𝜏)+𝑧𝑖(𝜏))𝑑𝜏 − 𝑒− ∫ 𝑡𝑡0 𝑢𝑖(𝑧𝑖(𝜏))𝑑𝜏 )

(

𝑛
∑

𝑗=1
𝑐𝑖𝑗(𝑠)𝑓𝑗(ℎ−1𝑗 (𝜔𝑗(𝑠) + 𝑧𝑗(𝑠))) + 𝑣𝑖(𝑠)

)

𝑑𝑠 −

∫

𝑡

𝑡0
𝑒− ∫ 𝑡𝑠 𝑢𝑖(𝑧𝑖(𝜏))𝑑𝜏

(

𝑛
∑

𝑗=1
𝑐𝑖𝑗(𝑠)𝑓𝑗(ℎ−1𝑗 (𝜔𝑗(𝑠) + 𝑧𝑗(𝑠))) −

𝑛
∑

𝑗=1
𝑐𝑖𝑗(𝑠)𝑓𝑗(ℎ−1𝑗 (𝑧𝑗(𝑠)))

)

𝑑𝑠, (14)

for 𝑖 = 1,… , 𝑛.
Now, let us construct the sequence of successive approximation 𝜔𝑘(𝑡), 𝑘 ≥ 0, such that

𝜔0(𝑡) = (𝜔1(𝑡0)𝑒
− ∫ 𝑡𝑡0 𝑢1(𝑧1(𝜏))𝑑𝜏 , 𝜔2(𝑡0)𝑒

− ∫ 𝑡𝑡0 𝑢2(𝑧2(𝜏))𝑑𝜏 ,⋯ , 𝜔𝑛(𝑡0)𝑒
− ∫ 𝑡𝑡0 𝑢𝑛(𝑧𝑛(𝜏))𝑑𝜏 ). (15)

In what follows, inequality

|𝑒− ∫ 𝑡𝑡0 𝑢𝑖(𝑦𝑖(𝜏))𝑑𝜏 − 𝑒− ∫ 𝑡𝑡0 𝑢𝑖(𝑧𝑖(𝜏))𝑑𝜏
| ≤ 𝑒−𝑚𝑖(𝑡−𝑡0) ∫

𝑡

𝑡0
𝐿𝑢𝑖 |𝑦𝑖(𝜏) − 𝑧𝑖(𝜏)|𝑑𝜏, 𝑡 ≥ 𝑡0, 𝑖 = 1, 2,⋯ , 𝑛, (16)

will be intensively utilized. To approve (16), formula 𝑒𝑥 − 𝑒𝑦 = 𝑒𝑐(𝑥 − 𝑦) is applied with 𝑥 = − ∫ 𝑡𝑡0 𝑢𝑖(𝑦𝑖(𝜏))𝑑𝜏, 𝑦 =
− ∫ 𝑡𝑡0 𝑢𝑖(𝑧𝑖(𝜏))𝑑𝜏, and a number 𝑐 between 𝑥 and 𝑦.Moreover, it is easy to check that relation 𝑐 < −𝑚𝑖(𝑡− 𝑡0) is correct.

Therefore, using (14), we obtain that for each 𝑖 = 1, 2,… , 𝑛, the following inequalities are correct,

|𝜔𝑘+1𝑖 (𝑡)| ≤ |𝜔𝑖(𝑡0)|𝑒−𝑚𝑖(𝑡−𝑡0) +𝐻𝑒−𝑚𝑖(𝑡−𝑡0) ∫

𝑡

𝑡0
𝐿𝑢𝑖 |𝜔

𝑘
𝑖 (𝜏)|𝑑𝜏 +

∫

𝑡

𝑡0
𝑒−𝑚𝑖(𝑡−𝑡0)

(

∫

𝑠

𝑡0
𝐿𝑢𝑖 |𝜔

𝑘
𝑖 (𝜏)|𝑑𝜏

)

(
𝑛
∑

𝑗=1
𝑚𝑐𝑖𝑗𝑚

𝑓
𝑖 + 𝑚𝑣𝑖 )𝑑𝑠 + ∫

𝑡

𝑡0
𝑒−𝑚𝑖(𝑡−𝑡0)

𝑛
∑

𝑗=1
𝑚𝑐𝑖𝑗𝐿

𝑓
𝑖 𝑎𝑖|𝜔

𝑘
𝑖 (𝑠)|𝑑𝑠. (17)

From (15) it follows that

‖𝜔0(𝑡)‖ ≤ (‖𝜔(𝑡0)‖ + 𝜖)𝑒−𝜎(𝑡−𝑡0),
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where 𝜖 is a positive number such that

𝜖 > ‖𝜔(𝑡0)‖
𝐻𝐿𝑢

1
𝜎 + 𝐿𝑢(𝑚𝑐𝑚𝑓 + 𝑚𝑣)

1
𝜎

(

2
𝑚−𝜎 + 1

𝑚

)

+ 𝑚𝑐𝐿𝑓 �̄�
1

𝑚−𝜎

1 −𝐻𝐿𝑢
1
𝜎 − 𝐿𝑢(𝑚𝑐𝑚𝑓 + 𝑚𝑣)

1
𝜎

(

2
𝑚−𝜎 + 1

𝑚

)

− 𝑚𝑐𝐿𝑓 �̄�
1

𝑚−𝜎

. (18)

Assume that for fixed 𝑘 ∈ ℕ the following inequality is valid:

‖𝜔𝑘(𝑡)‖ ≤ (‖𝜔(𝑡0)‖ + 𝜖)𝑒−𝜎(𝑡−𝑡0).

Applying inequality (17) we get that

‖𝜔𝑘+1(𝑡)‖ ≤ ‖𝜔(𝑡0)‖𝑒−𝑚(𝑡−𝑡0) +𝐻𝑒−𝑚(𝑡−𝑡0) ∫

𝑡

𝑡0
𝐿𝑢(‖𝜔(𝑡0)‖ + 𝜖)𝑒−𝜎(𝑠−𝑡0)𝑑𝑠 +

∫

𝑡

𝑡0
𝑒−𝑚(𝑡−𝑠)𝐿𝑢(𝑚𝑐𝑚𝑓 + 𝑚𝑣)

[

∫

𝑠

𝑡0
(‖𝜔(𝑡0)‖ + 𝜖)𝑒−𝜎(𝜏−𝑡0)𝑑𝜏

]

𝑑𝑠 + ∫

𝑡

𝑡0
𝑒−𝑚(𝑡−𝑠)𝑚𝑐𝐿𝑓 �̄�(‖𝜔(𝑡0)‖ + 𝜖)𝑒−𝜎(𝑠−𝑡0)𝑑𝑠 ≤

‖𝜔(𝑡0)‖𝑒−𝑚(𝑡−𝑡0) +𝐻𝑒−𝑚(𝑡−𝑡0)𝐿𝑢(‖𝜔(𝑡0)‖ + 𝜖)
1
𝜎
|𝑒−𝜎(𝑡−𝑡0) − 1| +

∫

𝑡

𝑡0
𝑒−𝑚(𝑡−𝑠)𝐿𝑢(𝑚𝑐𝑚𝑓 + 𝑚𝑣)(‖𝜔(𝑡0)‖ + 𝜖)

1
𝜎
|𝑒−𝜎(𝑠−𝑡0) − 1|𝑑𝑠 + ∫

𝑡

𝑡0
𝑒−𝑚(𝑡−𝑠)𝑚𝑐𝐿𝑓 �̄�(‖𝜔(𝑡0)‖ + 𝜖)𝑒−𝜎(𝑠−𝑡0)𝑑𝑠 ≤

‖𝜔(𝑡0)‖𝑒−𝑚(𝑡−𝑡0) +𝐻𝑒−𝑚(𝑡−𝑡0)𝐿𝑢(‖𝜔(𝑡0)‖ + 𝜖)
1
𝜎
|𝑒−𝜎(𝑡−𝑡0) − 1| +

𝐿𝑢(𝑚𝑐𝑚𝑓 + 𝑚𝑣)(‖𝜔(𝑡0)‖ + 𝜖)
1
𝜎

( 1
𝑚 − 𝜎

[𝑒−𝜎(𝑡−𝑡0) + 𝑒−𝑚(𝑡−𝑡0)] + 1
𝑚
𝑒−𝑚(𝑡−𝑡0)

)

+

𝑚𝑐𝐿𝑓 �̄�(‖𝜔(𝑡0)‖ + 𝜖)
1

𝑚 − 𝜎
[𝑒−𝜎(𝑡−𝑡0) − 𝑒−𝑚(𝑡−𝑡0)] ≤ ‖𝜔(𝑡0)‖𝑒−𝜎(𝑡−𝑡0) +𝐻𝑒−𝜎(𝑡−𝑡0)𝐿𝑢(‖𝜔(𝑡0)‖ + 𝜖)

1
𝜎
+

𝐿𝑢(𝑚𝑐𝑚𝑓 + 𝑚𝑣)(‖𝜔(𝑡0)‖ + 𝜖)
1
𝜎

( 2
𝑚 − 𝜎

+ 1
𝑚

)

𝑒−𝜎(𝑡−𝑡0) + 𝑚𝑐𝐿𝑓 �̄�(‖𝜔(𝑡0)‖ + 𝜖)
1

𝑚 − 𝜎
𝑒−𝜎(𝑡−𝑡0) ≤

(

‖𝜔(𝑡0)‖ +
(

𝐻𝐿𝑢
1
𝜎
+ 𝐿𝑢(𝑚𝑐𝑚𝑓 + 𝑚𝑣)

1
𝜎

( 2
𝑚 − 𝜎

+ 1
𝑚

)

+ 𝑚𝑐𝐿𝑓 �̄�
1

𝑚 − 𝜎

)

(‖𝜔(𝑡0)‖ + 𝜖)
)

𝑒−𝜎(𝑡−𝑡0),

for all 𝑘 = 0, 1,⋯ . Condition (C9) and assumption (18) imply that ‖𝜔𝑘(𝑡)‖ ≤ (‖𝜔(𝑡0)‖ + 𝜖)𝑒−𝜎(𝑡−𝑡0) for each
𝑘 = 0, 1,⋯ .

Now, let us show that the sequence 𝜔𝑘(𝑡) uniformly converges. Applying inequality (17), we obtain that

‖𝜔1(𝑡) − 𝜔0(𝑡)‖ ≤ 𝐻𝑒−𝑚(𝑡−𝑡0) ∫

𝑡

𝑡0
𝐿𝑢‖𝜔

0(𝜏)‖𝑑𝜏 + ∫

𝑡

𝑡0
𝑒−𝑚(𝑡−𝑡0)

(

∫

𝑠

𝑡0
𝐿𝑢‖𝜔

0(𝜏)‖𝑑𝜏
)

(𝑚𝑐𝑚𝑓 + 𝑚𝑣)𝑑𝑠 +

∫

𝑡

𝑡0
𝑒−𝑚(𝑡−𝑡0)𝑚𝑐𝐿𝑓 �̄�‖𝜔

0(𝑠)‖𝑑𝑠 ≤ 𝐻𝐿𝑢𝑒
−𝑚(𝑡−𝑡0)

∫

𝑡

𝑡0
(‖𝜔(𝑡0)‖ + 𝜖)𝑒−𝜎(𝑠−𝑡0)𝑑𝑠 +

∫

𝑡

𝑡0
𝑒−𝑚(𝑡−𝑠)𝐿𝑢(𝑚𝑐𝑚𝑓 + 𝑚𝑣)

[

∫

𝑠

𝑡0
(‖𝜔(𝑡0)‖ + 𝜖)𝑒−𝜎(𝜏−𝑡0)𝑑𝜏

]

𝑑𝑠 + ∫

𝑡

𝑡0
𝑒−𝑚(𝑡−𝑠)𝑚𝑐𝐿𝑓 �̄�(‖𝜔(𝑡0)‖ + 𝜖)𝑒−𝜎(𝑠−𝑡0)𝑑𝑠 ≤

(

𝐻𝐿𝑢
1
𝜎
+ 𝐿𝑢(𝑚𝑐𝑚𝑓 + 𝑚𝑣)

1
𝜎

( 2
𝑚 − 𝜎

+ 1
𝑚

)

+ 𝑚𝑐𝐿𝑓 �̄�
1

𝑚 − 𝜎

)

(‖𝜔(𝑡0)‖ + 𝜖)𝑒−𝜎(𝑡−𝑡0),

and

‖𝜔2(𝑡) − 𝜔1(𝑡)‖ ≤ 𝐻𝑒−𝑚(𝑡−𝑡0) ∫

𝑡

𝑡0
𝐿𝑢‖𝜔

1(𝜏) − 𝜔0(𝜏)‖𝑑𝜏 +

∫

𝑡

𝑡0
𝑒−𝑚(𝑡−𝑠)

(

∫

𝑡

𝑡0
𝐿𝑢‖𝜔

1(𝜏) − 𝜔0(𝜏)‖𝑑𝜏
)

(𝑚𝑐𝑚𝑓 + 𝑚𝑣)𝑑𝑠 + ∫

𝑡

𝑡0
𝑒−𝑚(𝑡−𝑡0)𝑚𝑐𝐿𝑓 �̄�‖𝜔

1(𝑠) − 𝜔0(𝑠)‖𝑑𝑠 ≤
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(

𝐻𝐿𝑢
1
𝜎
+ 𝐿𝑢(𝑚𝑐𝑚𝑓 + 𝑚𝑣)

1
𝜎

( 2
𝑚 − 𝜎

+ 1
𝑚

)

+ 𝑚𝑐𝐿𝑓 �̄�
1

𝑚 − 𝜎

)2
(‖𝜔(𝑡0)‖ + 𝜖)𝑒−𝜎(𝑡−𝑡0).

By the method of mathematical induction, it can be shown that

‖𝜔𝑘+1(𝑡) − 𝜔𝑘(𝑡)‖ ≤

(

𝐻𝐿𝑢
1
𝜎
+ 𝐿𝑢(𝑚𝑐𝑚𝑓 + 𝑚𝑣)

1
𝜎

( 2
𝑚 − 𝜎

+ 1
𝑚

)

+ 𝑚𝑐𝐿𝑓 �̄�
1

𝑚 − 𝜎

)𝑘+1

(‖𝜔(𝑡0)‖ + 𝜖)𝑒−𝜎(𝑡−𝑡0),

for all 𝑘 ≥ 0. Condition (C9) gives that sup𝑡∈[𝑡0,∞) ‖𝜔𝑘+1(𝑡) − 𝜔𝑘(𝑡)‖ → 0 as 𝑘 → ∞. Thus, the sequence 𝜔𝑘(𝑡)
uniformly converges to the unique solution, 𝜔(𝑡) = 𝑦(𝑡) − 𝑧(𝑡), of the integral equation (14), which satisfy inequality

‖𝑦(𝑡) − 𝑧(𝑡)‖ ≤ (‖𝑦(𝑡0) − 𝑧(𝑡0)‖ + 𝜖)𝑒−𝜎(𝑡−𝑡0). (19)

Consequently, the Poisson stable solution 𝑧(𝑡) of the system (6) is exponentially stable.
Now, consider a function 𝑤(𝑡) = (𝑤1(𝑡), 𝑤2(𝑡),… , 𝑤𝑛(𝑡)), such that 𝑤𝑖(𝑡) = ℎ−1𝑖 (𝑧𝑖(𝑡)), 𝑖 = 1, 2,… , 𝑛. According

to substitution (5), the function 𝑤(𝑡) is a unique solution of system (1). let us show that 𝑤(𝑡) is Poisson stable. Using
inequality (4), on a fixed bounded interval 𝐼 ⊂ ℝ, we obtain that

|𝑤𝑖(𝑡 + 𝑡𝑝) −𝑤𝑖(𝑡)| = |ℎ−1𝑖 (𝑧𝑖(𝑡 + 𝑡𝑝)) − ℎ−1𝑖 (𝑧𝑖(𝑡))| ≤ 𝑎𝑖|𝑧𝑖(𝑡 + 𝑡𝑝) − 𝑧𝑖(𝑡)|,

for all 𝑖 = 1, 2,… , 𝑛. Thus, each sequence 𝑤𝑖(𝑡 + 𝑡𝑝), 𝑖 = 1, 2,… , 𝑛, uniformly converges to 𝑤𝑖(𝑡), 𝑡 ∈ 𝐼, as 𝑝 → ∞,
and one can conclude that the function 𝑤(𝑡) = (𝑤1(𝑡), 𝑤2(𝑡),… , 𝑤𝑛(𝑡)) is a unique Poisson stable solution of neural
network (1).

Finally, we will check that the solution𝑤(𝑡) is exponentially stable. If 𝑥(𝑡) = ℎ−1(𝑦(𝑡)) is another solution of system
(1) then we obtain that

‖𝑥(𝑡) −𝑤(𝑡)‖ = ‖ℎ−1(𝑦(𝑡)) − ℎ−1(𝑧(𝑡))| ≤ �̄�‖𝑦(𝑡) − 𝑧(𝑡)‖ ≤ �̄�(‖𝑦(𝑡0) − 𝑧(𝑡0)‖ + 𝜖)𝑒−𝜎(𝑡−𝑡0).

Consequently, the Poisson stable solution 𝑤(𝑡) of the neural network (1) is exponentially stable. □

Theorem 3.2. Assume that conditions (𝐶1)−(𝐶9) are satisfied. Then CGNN (1) admits a unique exponentially stable
unpredictable solution.

Proof. Due to the previous theorem, there exists a unique exponentially stable Poisson stable solution𝑤(𝑡) = ℎ−1(𝑧(𝑡))
of neural network (1). Now, we will prove the unpredictability of 𝑤(𝑡). Firstly, we will show that the Poisson stable
solution 𝑧(𝑡) of system (6) satisfies the separation property.

Applying the relations

𝑧𝑖(𝑡) = 𝑧𝑖(𝑠𝑝) − ∫

𝑡

𝑠𝑝
𝑢𝑖(𝑧𝑖(𝑠))𝑧𝑖(𝑠)𝑑𝑠 + ∫

𝑡

𝑠𝑝

𝑛
∑

𝑗=1
𝑐𝑖𝑗(𝑠)𝑓𝑗(ℎ−1𝑗 (𝑧𝑗(𝑠)))𝑑𝑠 + ∫

𝑡

𝑠𝑝
𝑣𝑖(𝑠)𝑑𝑠

and

𝑧𝑖(𝑡 + 𝑡𝑝) = 𝑧𝑖(𝑡 + 𝑡𝑝) − ∫

𝑡

𝑠𝑝
𝑢𝑖(𝑧𝑖(𝑠 + 𝑡𝑝))𝑧𝑖(𝑠 + 𝑡𝑝)𝑑𝑠 + ∫

𝑡

𝑠𝑝

𝑛
∑

𝑗=1
𝑐𝑖𝑗(𝑠 + 𝑡𝑝)𝑓𝑗(ℎ−1𝑗 (𝑧𝑗(𝑠 + 𝑡𝑝)))𝑑𝑠 + ∫

𝑡

𝑠𝑝
𝑣𝑖(𝑠 + 𝑡𝑝)𝑑𝑠,

we obtain that

𝑧𝑖(𝑡 + 𝑡𝑝) − 𝑧𝑖(𝑡) = 𝑧𝑖(𝑡 + 𝑡𝑝) − 𝑧𝑖(𝑡𝑝) − ∫

𝑡

𝑠𝑝
𝑢𝑖(𝑧𝑖(𝑠 + 𝑡𝑝))𝑧𝑖(𝑠 + 𝑡𝑝)𝑑𝑠 + ∫

𝑡

𝑠𝑝
𝑢𝑖(𝑧𝑖(𝑠))𝑧𝑖(𝑠)𝑑𝑠 +

∫

𝑡

𝑠𝑝

𝑛
∑

𝑗=1
𝑐𝑖𝑗(𝑠 + 𝑡𝑝)𝑓𝑗(ℎ−1𝑗 (𝑧𝑗(𝑠 + 𝑡𝑝)))𝑑𝑠 − ∫

𝑡

𝑠𝑝

𝑛
∑

𝑗=1
𝑐𝑖𝑗(𝑠)𝑓𝑗(ℎ−1𝑗 (𝑧𝑗(𝑠)))𝑑𝑠 + ∫

𝑡

𝑠𝑝
𝑣𝑖(𝑠 + 𝑡𝑝)𝑑𝑠 − ∫

𝑡

𝑠𝑝
𝑣𝑖(𝑠)𝑑𝑠,

for each 𝑖 = 1, 2,… , 𝑛.
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There exist positive numbers 𝛿1 and integers 𝑙, 𝑘 such that, for each 𝑖, 𝑗 = 1, 2,… , 𝑛, the following inequalities are
satisfied:

𝛿1 < 𝛿; (20)

|𝑐𝑖𝑗(𝑡 + 𝑠) − 𝑐𝑖𝑗(𝑠)| < 𝜖0(
1
𝑙
+ 2
𝑘
), 𝑡 ∈ ℝ, (21)

|𝑣𝑖(𝑡 + 𝑠) − 𝑣𝑖(𝑠)| < 𝜖0(
1
𝑙
+ 2
𝑘
), 𝑡 ∈ ℝ, (22)

𝛿1
(

1 − (1
𝑙
+ 2
𝑘
)(𝐿𝑢𝑖𝐻 +𝑀𝑖 + 𝑛𝑚

𝑓
𝑖 +

𝑛
∑

𝑗=1
𝑚𝑐𝑖𝑗𝐿

𝑓
𝑖 𝑎𝑖)

)

> 3
2𝑙
, (23)

|𝑧𝑖(𝑡 + 𝑠) − 𝑧𝑖(𝑡)| < 𝜖0min( 1
𝑘
, 1
4𝑙
), 𝑡 ∈ ℝ, |𝑠| < 𝛿1. (24)

Let the numbers 𝛿1, 𝑙 and 𝑘, as well as numbers 𝑛 ∈ ℕ, and 𝑖 = 1,… , 𝑛, be fixed. Consider the following two
alternatives: (i) |𝑧𝑖(𝑡𝑝 + 𝑠𝑝) − 𝑧𝑖(𝑠𝑝)| < 𝜖0∕𝑙; (ii) |𝑧𝑖(𝑡𝑝 + 𝑠𝑝) − 𝑧𝑖(𝑠𝑝)| ≥ 𝜖0∕𝑙.

(i) Using (24), one can show that

|𝑧𝑖(𝑡 + 𝑡𝑝) − 𝑧𝑖(𝑡𝑝)| ≤ |𝑧𝑖(𝑡 + 𝑡𝑝) − 𝑧𝑖(𝑡𝑝 + 𝑠𝑝)| + |𝑧𝑖(𝑡𝑝 + 𝑠𝑝) − 𝑧𝑖(𝑠𝑝)| + |𝑧𝑖(𝑠𝑝) − 𝑧𝑖(𝑡)|

<
𝜖0
𝑙
+
𝜖0
𝑘

+
𝜖0
𝑘

= 𝜖0(
1
𝑙
+ 2
𝑘
), 𝑖 = 1, 2,⋯ , 𝑛, (25)

if 𝑡 ∈ [𝑠𝑝, 𝑠𝑝 + 𝛿1]. The inequalities (20)–(25) imply that

|𝑧𝑖(𝑡 + 𝑡𝑝) − 𝑧𝑖(𝑡)| ≥ ∫

𝑡

𝑠𝑝
|𝑣𝑖(𝑠 + 𝑡𝑝) − 𝑣𝑖(𝑠)|𝑑𝑠 − |𝑧𝑖(𝑡 + 𝑡𝑝) − 𝑧𝑖(𝑡𝑝)| −

∫

𝑡

𝑠𝑝

(

|𝑢𝑖(𝑧𝑖(𝑠 + 𝑡𝑝)) − 𝑢𝑖(𝑧𝑖(𝑠))||𝑧𝑖(𝑠 + 𝑡𝑝)| + |𝑢𝑖(𝑧𝑖(𝑠))||𝑧𝑖(𝑠 + 𝑡𝑝) − 𝑧𝑖(𝑠)|
)

𝑑𝑠 −

∫

𝑡

𝑠𝑝

𝑛
∑

𝑗=1

(

|𝑐𝑖𝑗(𝑠 + 𝑡𝑝) − 𝑐𝑖𝑗(𝑠)||𝑓𝑗(ℎ−1𝑗 (𝑧(𝑠 + 𝑡𝑝)))| +
𝑛
∑

𝑗=1
|𝑐𝑖𝑗(𝑠)||𝑓𝑗(ℎ−1𝑗 (𝑧(𝑠 + 𝑡𝑝))) − 𝑓𝑗(ℎ−1𝑗 (𝑧(𝑠)))|

)

𝑑𝑠 >

𝛿1𝜖0 −
𝜖0
𝑙
− 𝛿1(𝐿𝑢𝑖𝐻 +𝑀𝑖)𝜖0(

1
𝑙
+ 2
𝑘
) − 𝛿1

(

𝑛𝜖0(
1
𝑙
+ 2
𝑘
)𝑚𝑓𝑖 +

𝑛
∑

𝑗=1
𝑚𝑐𝑖𝑗𝐿

𝑓
𝑖 𝑎𝑖𝜖0(

1
𝑙
+ 2
𝑘
)
)

>
𝜖0
2𝑙

for 𝑡 ∈ [𝑠𝑝, 𝑠𝑝 + 𝛿1].
(ii) If |𝑧𝑖(𝑡𝑝 + 𝑠𝑝) − 𝑧𝑖(𝑠𝑝)| ≥ 𝜖0∕𝑙, it is not difficult to find that (24) implies:

|𝑧𝑖(𝑡 + 𝑡𝑝) − 𝑧𝑖(𝑡)| ≥ |𝑧𝑖(𝑡𝑝 + 𝑠𝑝) − 𝑧𝑖(𝑠𝑝)| − |𝑧𝑖(𝑠𝑝) − 𝑧𝑖(𝑡)| − |𝑧𝑖(𝑡 + 𝑡𝑝) − 𝑧𝑖(𝑡𝑝 + 𝑠𝑝)| >
𝜖0
𝑙
−
𝜖0
4𝑙

−
𝜖0
4𝑙

=
𝜖0
2𝑙
, 𝑖 = 1, 2,… , 𝑛,

if 𝑡 ∈ [𝑠𝑝 − 𝛿1, 𝑠𝑝 + 𝛿1] and 𝑝 ∈ ℕ. So, the cases (𝑖) and (𝑖𝑖) imply that the solution 𝑧(𝑡) satisfies separation property,
and it can be concluded that 𝑧(𝑡) is an unpredictable solution of system (6), with sequences 𝑡𝑝, 𝑠𝑝 and positive numbers
𝛿1
2 ,

𝜖0
2𝑙 .
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Finally, we show that the solution 𝑤(𝑡) = ℎ−1(𝑧(𝑡)) of the neural network (1) is also unpredictable. Actually,
applying condition (4), we get that

|𝑤𝑖(𝑡 + 𝑡𝑝) −𝑤𝑖(𝑡)| = |ℎ−1𝑖 (𝑧𝑖(𝑡 + 𝑡𝑝)) − ℎ−1𝑖 (𝑧𝑖(𝑡))| ≥ 𝑎𝑖|𝑧𝑖(𝑡 + 𝑡𝑝) − 𝑧𝑖(𝑡)| > 𝑎𝑖
𝜖
2𝑙
, 𝑖 = 1, 2,⋯ , 𝑛,

for all 𝑡 ∈ [𝑠𝑝 −
𝛿1
2 , 𝑠𝑝 +

𝛿1
2 ]. Thus, the neural network (1) admits a unique exponentially stable unpredictable solution.

□

4. The model with compartmental strength of connectivity and inputs
In order to increase the applicability of this study, CGNNs (1) with compartmental periodic unpredictable strengths

of connectivity between cells , 𝑐𝑖𝑗(𝑡), and input data, 𝑣𝑖(𝑡), are considered. Under additional conditions, Theorems 4.1
and 4.2 on the Poisson stability and unpredictability in the neural networks are proved, in this section.

Assume that the following condition is valid,

(C10) functions 𝑐𝑖𝑗(𝑡) and 𝑣𝑖(𝑡), 𝑖 = 1, 2,⋯ , 𝑛, 𝑗 = 1, 2,⋯ , 𝑛, are compartmental periodic unpredictable such that
𝑐𝑖𝑗(𝑡) = 𝐶𝑖𝑗(𝑡, 𝑡), 𝑣𝑖(𝑡) = 𝑉𝑖(𝑡, 𝑡), where the functions 𝐶𝑖𝑗(𝜃, 𝜏), and 𝑉𝑖(𝜃, 𝜏) are 𝜔−periodic in 𝜃 uniformly with
respect to 𝜏, and unpredictable in 𝜏 with common sequences of convergence 𝑡𝑝, and separation 𝑠𝑝, 𝑝 = 1, 2,… ,
uniformly with respect to 𝜃.

Denote �̄�𝑐𝑖𝑗 = sup
𝜃,𝜏∈ℝ

|𝐶𝑖𝑗(𝜃, 𝜏)|, �̄�𝑣𝑖 = sup𝜃,𝜏∈ℝ |𝑉𝑖(𝜃, 𝜏)|.

The following assumptions are required,

(C11) the convergence sequence 𝑡𝑝 satisfies kappa property with respect to 𝜔;

(C12) 1
𝑚𝑖

(

𝑛
∑

𝑗=1
�̄�𝑐𝑖𝑗𝑚

𝑓
𝑖 + �̄�𝑣𝑖

)

< 𝐻 ;

(C13) 1
𝑚𝑖

(𝐿𝑢𝑖
𝑚𝑖

(
𝑛
∑

𝑗=1
�̄�𝑐𝑖𝑗𝑚

𝑓
𝑖 + �̄�𝑣𝑖 ) +

𝑛
∑

𝑗=1
�̄�𝑐𝑖𝑗𝐿

𝑓
𝑖 𝑎𝑖

)

< 1;

(C14) 𝐻𝐿𝑢
1
𝜎
+ 𝐿𝑢(�̄�𝑐𝑚𝑓 + 𝑚𝑣)

1
𝜎

( 2
𝑚 − 𝜎

+ 1
𝑚

)

+ �̄�𝑐𝐿𝑓 �̄�
1

𝑚 − 𝜎
< 1,

where �̄�𝑐 = max
(𝑖)

𝑛
∑

𝑗=1
�̄�𝑐𝑖𝑗 , 𝑚𝑣 = max

(𝑖)
�̄�𝑣𝑖 , 𝑖 = 1, 2,… , 𝑛.

Theorem 4.1. Let conditions (𝐶1)−(𝐶3), (𝐶5), (𝐶6), and (𝐶10)−(𝐶14) are valid. Then neural network (1) possesses
a unique exponentially stable Poisson stable solution.

Proof. Under conditions (𝐶10), (𝐶11) and Theorem 2.1, the functions 𝑐𝑖𝑗(𝑡) and 𝑣𝑖(𝑡) are unpredictable. Therefore,
using the technique of proving Theorem 3.1, one can ensure that the neural network (1) admits a unique Poisson stable
solution with exponential property. □

Similarly to the proofs of Theorems 3.1 and 3.2, it can be shown that the following statement is true.

Theorem 4.2. Assume that conditions (𝐶1)− (𝐶3), (𝐶5), (𝐶6), and (𝐶10)− (𝐶14) are satisfied. Then neural network
(1) possesses a unique exponentially stable unpredictable solution.

5. Numerical analysis
This part of the paper contains three examples of the neural networks, which approve the theoretical results of the

main body. They demonstrate the chaotic nature of the dynamics in all three models, and two last ones are simulated
with compartmental strengths of connectivity and inputs to find that a special parametric characteristic, degree of
periodicity, can be utilized for estimation of contributions of components such as periodicity and unpredictability.
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For shaping unpredictable inputs of the neural networks, we shall use results of previous papers, in particular [15],
such that the functions are products of hybrid systems. Let us take into account the logistic mapping equation

𝜆𝑖+1 = 𝜇𝜆𝑖(1 − 𝜆𝑖),

where 𝑖 ∈ ℤ, 𝜇 ∈ [3 + (2∕3)1∕2, 4]. Define a piecewise continuous function 𝜋(𝑡) such that 𝜋(𝑡) = 𝜆𝑖𝜉(𝑡 − 𝑖ℎ),
𝑡 ∈ (𝑖ℎ, (𝑖 + 1)ℎ], where ℎ is a positive constant, and 𝜉(𝑡) ∶ (0, ℎ] → ℝ is a continuous function. In paper [15], it
was proved that the function 𝜋(𝑡) is discontinuous unpredictable function. Moreover, applying the function 𝜋(𝑡), it was
constructed continuous unpredictable function Ξ(𝑡) = ∫ 𝑡−∞ 𝑒

−𝛼(𝑡−𝑠)𝜋(𝑠)𝑑𝑠, where 𝛼 is a positive real number.
The number ℎ is said to be the length of step of the functions 𝜋(𝑡) and Ξ(𝑡). For compartmental unpredictable

functions, the ratio of the period and the length of step, ∇ = 𝜔∕ℎ, is called the degree of periodicity.
Below we will use unpredictable function Θ(𝑡) = ∫ 𝑡−∞ 𝑒

−3(𝑡−𝑠)𝜋(𝑠)𝑑𝑠, with 𝜋(𝑡) = 𝜆𝑖(𝑡 − 𝑖) if 𝑡 ∈ (𝑖ℎ, (𝑖 + 1)ℎ].
Firstly, let us show the dynamics of CGNNs (1) with unpredictable synaptic connections and inputs.

Example 1. Let us consider of the following CGNNs,

𝑥′𝑖(𝑡) = −𝑎𝑖(𝑥𝑖(𝑡))
[

𝑏𝑖(𝑥𝑖(𝑡)) −
𝑛
∑

𝑗=1
𝑐𝑖𝑗(𝑡)𝑓𝑗(𝑥𝑗(𝑡)) + 𝑣𝑖(𝑡)

]

, (26)

where 𝑖 = 1, 2, 3, 𝑓 (𝑠) = 0.5 arctan(𝑠), 𝑎1(𝑠) = cos(0.1𝑠), 𝑎2(𝑠) = cos(0.2𝑠), 𝑎3(𝑠) = cos(0.05𝑠), 𝑏1(𝑠) = 2 sin(0.4𝑠),
𝑏2(𝑠) = 6 sin(0.5𝑠), 𝑏3(𝑠) = 4 sin(0.2𝑠), 𝑐11(𝑡) = 0.2Θ(𝑡), 𝑐12(𝑡) = 0.05Θ(𝑡), 𝑐13(𝑡) = 0.1Θ(𝑡), 𝑐21(𝑡) = 0.1Θ(𝑡),
𝑐22(𝑡) = 0.2Θ(𝑡), 𝑐23(𝑡) = 0.05Θ(𝑡), 𝑐31(𝑡) = 0.05Θ(𝑡), 𝑐32(𝑡) = 0.1Θ(𝑡), 𝑐33(𝑡) = 0.2Θ(𝑡), 𝑣1(𝑡) = 1.5Θ(𝑡),
𝑣2(𝑡) = 2.5Θ(𝑡), 𝑣3(𝑡) = 2Θ(𝑡). Calculate 𝐻0 = 1, 𝑎1 = 0.995, 𝑎2 = 0.98, 𝑎3 = 0.999, 𝑚𝑓1 = 𝑚𝑓2 = 𝑚𝑓3 = 𝜋∕4,
𝐿𝑓1 = 𝐿𝑓2 = 𝐿𝑓3 = 0.5,

∑3
𝑗=1 𝑚

𝑐
1𝑗 =

∑3
𝑗=1 𝑚

𝑐
2𝑗 =

∑𝑛
𝑗=1 𝑚

𝑐
3𝑗 = 7∕60, 𝑚𝑣1 = 0.5, 𝑚𝑣2 = 0.84, and 𝑚𝑣3 = 0.67.

Taking into account that ℎ𝑖(𝑠) = ∫ 𝑠0
1

𝑎𝑖(𝜏)
𝑑𝜏, 𝑖 = 1, 2, 3, one can find ℎ−11 (𝑠) = ∫ 𝑠0 cos(0.1𝜏)𝑑𝜏 = 10 sin(0.1𝑠),

ℎ−12 (𝑠) = ∫ 𝑠0 cos(0.2𝜏)𝑑𝜏 = 5 sin(0.2𝑠), ℎ−13 (𝑠) = ∫ 𝑠0 cos(0.05𝜏)𝑑𝜏 = 20 sin(0.05𝑠). The functions 𝑢𝑖(𝑠) =
𝑏𝑖(ℎ−1𝑖 (𝑠))

𝑠 ,
𝑖 = 1, 2, 3, such that 𝑢1(𝑠) = 2 sin(2(sin(0.1𝑠)))

𝑠 , 𝑢2(𝑠) = 6 sin(2.5(sin(0.2𝑠)))
𝑠 , 𝑢3(𝑠) = 4 sin(4(sin(0.05𝑠)))

𝑠 . Thus, we get that
0.78 ≤ 𝑚1 ≤ 2; 2.86 ≤ 𝑚2 ≤ 6; 0.8 ≤ 𝑚3 ≤ 4, and the function 𝑢𝑖(𝑠), 𝑖 = 1, 2, 3, satisfy Lipschitz condition
with 𝐿𝑢1 = 0.02, 𝐿𝑢2 = 0.06, 𝐿𝑢3 = 0.04. Conditions (C1)–(C8) are satisfied with above described functions and
constants. The assumption (C9) is valid since 𝐻 = 1.1, 𝐿𝑢 = 0.06, 𝜎 = 0.4, 𝑚 = 0.78, 𝑚𝑐 = 7∕60, 𝑚𝑓 = 𝜋∕4,
𝐿𝑓 = 0.5 and �̄� = 1. According Theorem 3.2 there exists a unique unpredictable solution, 𝑧(𝑡) = (𝑧1(𝑡), 𝑧2(𝑡), 𝑧3(𝑡)),
of neural network (26). In Figures 1 and 2 the solution 𝑥(𝑡) = (𝑥1(𝑡), 𝑥2(𝑡), 𝑥3(𝑡)), which exponentially converges to
the unpredictable solution 𝑤(𝑡) is shown.
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Figure 1: The coordinates of solution 𝑥(𝑡) of the neural network (26) with initial values 𝑥1(0) = 0.2, 𝑥2(0) = 0.2, and
𝑥3(0) = 0.2.

In the next examples we consider CGNNs (26) with compartmental periodic unpredictable inputs, and show how
its dynamics depends on the degree of periodicity.
Example 2. Let us take the neural networks (26) with the same coefficients as in Example 1, with the only difference
that the strengths of connectivity and input data are compartmental periodic unpredictable: 𝑐11(𝑡) = 0.1 sin(𝜋𝑡)Θ(𝑡),
𝑐12(𝑡) = 0.2 cos(4𝜋𝑡)Θ(𝑡), 𝑐13(𝑡) = 0.1 sin(2𝜋𝑡)Θ(𝑡), 𝑐21(𝑡) = 0.2 cos(𝜋𝑡)Θ(𝑡), 𝑐22(𝑡) = 0.05 sin(2𝜋𝑡)Θ(𝑡),
𝑐23(𝑡) = 0.1 cos(2𝜋𝑡)Θ(𝑡), 𝑐31(𝑡) = 0.05 sin(4𝜋𝑡)Θ(𝑡), 𝑐32(𝑡) = 0.1 cos(𝜋𝑡)Θ(𝑡), 𝑐33(𝑡) = 0.2 sin(4𝜋𝑡)Θ(𝑡), 𝑣1(𝑡) =
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Figure 2: Trajectory of the solution 𝑥(𝑡).

4 cos(2𝜋𝑡)Θ(𝑡), 𝑣2(𝑡) = 2 sin(2𝜋𝑡)Θ(𝑡), 𝑣3(𝑡) = 3 cos(𝜋𝑡)Θ(𝑡). The function Θ(𝑡) is such that Θ(𝑡) = ∫ 𝑡−∞ 𝑒
−3(𝑡−𝑠)𝜋(𝑠)𝑑𝑠,

with 𝜋(𝑡) = 𝜆𝑖(𝑡 − 𝑖) if 𝑡 ∈ (10𝑖, 10(𝑖 + 1)]. As we see, the periodic components are 2−periodic, and the degree of
periodicity, ∇, is equal to 1/5. The convergence sequence 𝑡𝑝 is a subsequence of numbers 10𝑝, 𝑝 = 0, 1, 2,⋯ , so it
satisfies the kappa property. All conditions of Theorem 4.2 are satisfied. Figures 3 and 4 demonstrate the dynamics of
(26), with initial values 𝑥1(0) = 𝑥2(𝑡) = 𝑥3(0) = 0.2, and ∇ = 1∕5.
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Figure 3: The coordinates of solution 𝑥(𝑡) of the neural network (26), which approach the coordinates of unpredictable
solution 𝑧(𝑡). The degree of periodicity is equal to 1/5.
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Figure 4: Trajectory of solution 𝑥(𝑡), which approximates the unpredictable solution 𝑧(𝑡). The degree of periodicity is equal
to 1/5.

If Θ(𝑡) = ∫ 𝑡−∞ 𝑒
−3(𝑡−𝑠)𝜋(𝑠)𝑑𝑠, where 𝜋(𝑡) = 𝜆𝑖(𝑡− 𝑖) for 𝑡 ∈ (2𝑖, 2(𝑖+ 1)], then the degree of periodicity is equal to

one. And we get irregular behaviour of neural network (26), which is presented in Figures 5 and 6.
Example 3. In this part, we take compartmental periodic unpredictable functions with common 40−periodic
components such that 𝑐11(𝑡) = 0.1 sin(0.1𝜋𝑡)Θ(𝑡), 𝑐12(𝑡) = 0.2 cos(0.4𝜋𝑡)Θ(𝑡), 𝑐13(𝑡) = 0.1 sin(0.2𝜋𝑡)Θ(𝑡),
𝑐21(𝑡) = 0.2 cos(0.1𝜋𝑡)Θ(𝑡), 𝑐22(𝑡) = 0.05 sin(0.2𝜋𝑡)Θ(𝑡), 𝑐23(𝑡) = 0.1 cos(0.2𝜋𝑡)Θ(𝑡), 𝑐31(𝑡) = 0.05 sin(0.4𝜋𝑡)Θ(𝑡),
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Figure 5: Dynamics of the coordinates of solution 𝑥(𝑡), which approach the coordinates of unpredictable solution 𝑧(𝑡). The
degree of periodicity is equal to 1.
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Figure 6: The irregular trajectory of solution 𝑥(𝑡) when the degree of periodicity is equal to 1.

𝑐32(𝑡) = 0.1 cos(0.1𝜋𝑡)Θ(𝑡), 𝑐33(𝑡) = 0.2 sin(0.4𝜋𝑡)Θ(𝑡), 𝑣1(𝑡) = 4 cos(0.1𝜋𝑡)Θ(𝑡), 𝑣2(𝑡) = 2 sin(0.1𝜋𝑡)Θ(𝑡), 𝑣3(𝑡) =
3 cos(0.05𝜋𝑡)Θ(𝑡). The function Θ(𝑡) is determined on intervals (𝑖, 𝑖 + 1], and the degree of periodicity is equal to 40.
Figure 7 shows the time series of the coordinates 𝑥1(𝑡), 𝑥2(𝑡) and 𝑥3(𝑡) of the solution 𝑥(𝑡) of (26). The coordinates
𝑥1 − 𝑥2 and 𝑥1 − 𝑥2 − 𝑥3 of the trajectory are demonstrated in Figures 8 and 9, respectively. Analyzing numerical
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Figure 7: The time series of the coordinates 𝑥1(𝑡), 𝑥2(𝑡) and 𝑥3(𝑡) of the solution of system (26), which exponentially
converges to the coordinates of unpredictable solution. The degree of periodicity is equal to 40.

examples for neural network with compartmental periodic unpredictable input data, it is possible to make interesting
observations regarding the predominance of periodicity and unpredictability of outputs. Figure 7 shows that if ∇ > 1
then the graphs admit a clear periodic shape, which is enveloped by the unpredictability. In contrast, if ∇ ≤ 1, one can
see in Figures 3 and 5 that the unpredictability prevails.

6. Conclusions
In this paper we provide theoretical as well as numerical results for Poisson stable and unpredictable oscillations

in CGNNs with variable unpredictable and compartmental periodic unpredictable strengths of connectivity between

M. Akhmet et al.: Preprint submitted to Elsevier Page 15 of 17



Cohen-Grossberg neural networks with unpredictable and Poisson stable dynamics

−0.25 −0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25
−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

x
1

x
2

Figure 8: The projection of the trajectory of neural network (26) on the 𝑥1 − 𝑥2 plane for 𝑡 ∈ [0, 1000]. The degree of
periodicity is equal to 40.
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Figure 9: The trajectory of system (26) for 𝑡 ∈ [0, 1000] when the degree of periodicity is equal to 40.

cells and inputs. Sufficient conditions were obtained to guarantee the existence of exponentially stable unpredictable
and Poisson stable solutions. By numerical simulations, it is shown how a special technical characteristic, the degree
of periodicity, effects to estimate contributions of periodic and unpredictable arguments to the behaviour of the neural
network. We compared Figures 1,3,5 and 7 with experimental data in papers [27, 28, 29], and it was found that they are
surprisingly similar. It means that the unpredictable functions can find applications in solutions of industrial problems.
In addition, since the efficiency of neural networks strongly depends on the choice of input data [30, 31], it will be
productive if the study of synchronization takes into account the compartmental periodic unpredictable functions.
[32, 33, 34, 35, 36, 37]
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