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1. INTRODUCTION

Software  Defect  Prediction(SDP)  is  a  way  to  predict  potential  bugs  in  the  software.  Traditional

methods try to achieve this by using software metrics such as Halstead Complexity Measures, object

oriented measures like inheritance depth and coupling, McCabe Complexity Metrics etc.[1]. These

metrics  provide  a  quantitative  measure  of  software  complexity.  Software  complexity  is  a  good

indicator of how prone the particular software is to defects. Therefore they can be used as features for

machine learning methods to train and predict  software defects;  methods such as Support  Vector

Machine(SVM), Naive Bayes, Random Forest etc. are trained using software metrics obtained from

buggy and non-buggy code. The resulting model is used with metrics from other pieces of software to

predict potential bugs in them. 

Fig. 1 Non-Defective Code

Fig. 2 Defective Code
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However these kinds of methods have an important shortcoming; two different pieces of code, one of

them defective and the other one being clean, can have same software metrics. For example in the

code in Fig. 1 pushes to the stack and pops from it at the end of the loop. It is a defect to pop from the

stack when it is empty, like it is done in Fig. 2. However both codes exhibit the same software metrics

in terms of complexity. When non-buggy code and buggy code have the same metrics, it becomes

impossible to predict defects using traditional methods that use software metrics only. To overcome

such shortcoming, one possible way is to look at semantic information that is inside the software code.

Such methods can learn complicated relations between the statements in the code itself and predict

bugs  more  accurately.  This  is  usually  achieved  by  creating  an  Abstract  Syntax  Tree(AST)

representation of the source code and training deep learning models on them using buggy and non-

buggy code to learn how to predict defects in software. 

This project aims to explore recent works that employ semantic methods for SDP. It will do so by

making a  survey of  most  cited  research papers  that  have been released in  the  last  5  years.  The

structure of this survey is as follows: section 2 presents the basic topics that are used in the surveyed

methods. Section 3 goes over similar surveys done in the area of semantic methods in software defect

prediction. Section 4 presents the methodology used in creating this survey. Section 5 provides the

survey of methods. Section 6 provides a conclusion to the work.
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2. BACKGROUND INFORMATION

In this section, some of the important concepts used in the semantic SDP methods are explained.

2.1. Software Defect Prediction

To  predict  buggy  software  modules  from  non-buggy  software  modules,  data  is  collected.  Then

modules are labeled for training purposes. A machine learning algorithm is trained with this data to

predict whether a software module contains a bug or not. There are two categories of software defect

prediction depending on the data it is used to train the algorithm and the test data that is used to

predict  an  outcome.  If  the  data  used to  train  the  algorithm and the  data  that  is  used to  test  the

algorithm come from the same software project it is called Within Project Defect Prediction(WPDP).

If the data used for training purposes is from different project then the data used to make predictions,

it  is  called  Cross  Project  Defect  Prediction(CPDP)[1].  The  performance  of  the  algorithm highly

depends  on  the  kind  of  prediction  done  and  the  research  done  differentiates  between  these  two

categories.

2.2. Abstract Syntax Tree

Abstract Syntax Tree(AST) is a tree data structure that encapsulates the syntactic information of the

source code. Source code is made of tokens and each token has a specific type, like function call,

variable declaration etc. The tokenized source code is converted into a tree structure which represents

each token with a node containing its data and its type. The relationship between the nodes and the

type of the nodes can then be used to extract semantic information about the source code.

2.3. Long Short-Term Memory

Long Short-Term Memory(LSTM)[2] is a type of Recurrent Neural Network(RNN). A typical cell can

be seen in Fig. 1. Conventional RNN's suffer from vanishing and exploding gradient issues due to the

backpropagation. LSTM networks solve this problem by introducing three gates: input, output and

forget gates. These gates control the flow of error propagation and ensure a constant error flow. It uses

the input of current time step and previous time step to control the gates and update the cell state.

LSTM networks excel at working with long sequences of data.

Fig. 3 An LSTM Cell
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2.4. Deep Belief Network

Deep Belief Network(DBN)[3] is a type of unsupervised neural network architecture based on layers

of Restricted Boltzmann Machines(RBM). They are generative models, which mean they model the

data as a probability distribution. It consists of an input layer and several hidden layers. Each hidden

layer is used to model the joint probability distribution between input and consequent layers.

2.5. Word Embedding

Word embedding is  a  way to represent  words as numerical  vectors.  These numerical  vectors are

placed  in  vector  space  using  their  semantic  meanings.  This  means  that  words  which  are  similar

semantically are placed closer in the vector space.  A widely used method is  word2vec[4].  Word

embedding is used to convert text into a representation that neural networks can work with.

2.6. Attention

Attention[5] is a mechanism used in modelling long sequential data in neural networks. Traditional

sequential processing favors recent information over older information. To keep the older context

relevant for longer, attention mechanism is introduced. An attention mechanism consists of Query(Q),

Value(V) and Key(K) layers. Output is calculated by calculating a weight from Q and K vectors,

which is then multiplied by the V vector to get the output. The output is weighted with consideration

to importance, this helps filtering unimportant data out and highlighting important data, much like

giving an attention to specific subject.

2.7. Graph Representation Learning

Graphs  are  structures  that  consist  of  nodes  and  connections.  They  are  used  for  representing

relationships between objects. For example AST can be represented by a graph like in Fig. 2. Graph

Representation Learning[6] is a method used in machine learning where the input consists of graphs.

The algorithm learns features that represent the structure of the graph and can perform various tasks

such as node classification, graph classification and community detection.

Fig. 4 Graph Representation of AST
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3. RELATED WORKS

Akimova et al.[7] provide a survey of SDP methods for automatic feature extraction that uses deep

learning.  They explored the deep learning methods used in  SDP and they explored the common

challenges deep learning methods face. They found a lack of large datasets that are labelled. They

suggest  the  use  of  large  language  models  that  are  trained  on  source  code  using  self-supervised

methods to alleviate this problem. Another issue they found is the imbalance of classes in labelled

data. Due to the nature of SDP, there are much more non-defective code than there are defective code.

They suggest the use of oversampling methods like SMOTE to overcome the imbalance. Finally they

consider the lack of context searching in deep learning methods. Long term dependencies can be

important to finding defects in source code and to overcome this problem they suggest transformer

architecture. Lastly, they introduced the trends in using deep learning for SDP. They found large

language models which are aimed at Natural Language Processing(NLP) tasks to be gaining traction

in newer studies. Omri et al.[8] provide an overview of deep learning in SDP. First they go over

traditional methods in two sections; CPDP and WPDP. Finally they go over latest SDP techniques that

use deep learning. Abdu et al.[9] explore SDP methods that use semantic features obtained from the

source code. They explore main motivations behind using semantic features in SDP and introduce

deep learning techniques used to extract semantic features from source code. They comparatively

examine  the  methods  based  on  their  performance.  They  point  out  that  source  code  can  have

differences  which  causes  bugs,  while  the  metrics  used  in  traditional  methods  cannot  adequately

capture the differences enough to predict the defects. They suggest using semantic methods which can

capture  the difference in  semantic  information between two pieces of  code better.  They go over

available datasets, both labelled and unlabelled which can be used for supervised training tasks aswell

as large language models. They compare the performance of deep learning techniques with existing

SDP models. The following work will summarize the most impactful studies in the last 5 years, some

of which have not been covered before, as well as several works that came out in 2023.
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4. METHODOLOGY

This work aims to explore semantic methods, which use the semantic information inside the source

code to predict defects in software. For this work done in between years 2018-2023 are considered

only. The following queries were used to search for related works:

 “software defect prediction” AND “semantic”

 “software fault prediction” AND “semantic”

The databases used are IEEE Xplore, Hindawi, Google Scholar, ACM Digital Library, MDPI, PLOS

ONE, Springer Link. 

Table 1. Table of Research Results

Database Number of Results
IEEE Xplore 116
Hindawi 257
ACM Digital Library 74
MDPI 41
PLOS ONE 209
Springer Link 354

The related works were sorted by their citation counts. Studies that were not using a semantic method

to predict software defects were excluded. Works with at least 20 citations are included in the survey.

This  methodology however,  favors  older  works  in  the  literature  since  they  will  be  getting  more

citations. To include more recent works, this work also includes works with highest citations from

2023 that are below 20 citations. A total of 16 studies are included in this survey.
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5. SOFTWARE DEFECT PREDICTION METHODS

Table 2. Table of Studies

Author Methodology Highlights
Wang et al.[10] DBN One  of  the  earliest  works  to

introduce  semantic  method  to
SDP.

Liang et al.[11] LSTM Enhanced the capability of LSTM
using  the  word  embedding
CBOW.

Dam et al.[12] Tree-Based LSTM Improved  the  performance  by
utilizing the tree structure of the
AST.

Fan et al.[13] Bidirectional LSTM Utilized Bidirectional LSTM with
an  attention  layer  to  perform
SDP.

Chen et al.[14] Deep  Transfer  Learning  for

Defect Prediction(DTL-DP)

Novel methodology that converts
source  code  into  images  and
utilizes  image  classification
networks.

Wang et al.[15] Gated Hierarchical LSTM Utilizes  both  traditional  features
and  features  extracted  from
AST’s using gated merge layer.

Xu et al.[16] GNN They  created  their  database  by
utilizing GitHub pull requests.

Deng et al.[17] Bidirectional LSTM They use Bidirectional LSTM to
perform SDP.

Huo et al.[18] CNN Novel method that includes code
comments aswell as source code
in building SDP.

Cai et al.[19] Tree Based Embedding CNN They create a method that tries to
improve CPDP by using TCA to
create transferable features.

Pan et al.[20] CodeBERT They use a  language model  that
combines programming language
and  natural  language  queries  to
perform SDP.

Qui et al.[22] Transfer CNN They  train  a  CNN  using  both
source  and  target  project  to
improve CPDP performance.

Munir et al.[23] Gated Recurrent Unit-LSTM Provides  statement  level  defect
prediction,  unlike  other  methods
which  are  file  level  or  change
level.

Wang et al.[24] Graph CNN They  construct  graph
representation of the source code
and use it to perform SDP.

Shen et al.[25] BERT + Graph CNN They  use  a  language  model  to
generate features which are then
used  to  train  GCNN to  perform
SDP.

Yao et al.[28] Tree-based CNN They  perform  defect  feature
mining  by  first  training  a  TCC
with  defective  code  to  perform
SDP.
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Wang et al.[10] build a software defect prediction model using Deep Belief Network(DBN). They

extract token vectors from AST representation of the source code and perform defect prediction on

file-level and change-level. File-level defect prediction process predicts whether a given source file

contains software defects while change-level defect prediction process focuses on commits made in a

Version Control System(VCS) like Git. They use AST of Java language and extract 3 types of nodes

from the AST: methods invocations, declarations and control flow statements. They exclude any other

AST node. Since methods invocations and declarations are project specific, they record them as their

node type to improve CPDP. The DBN based defect prediction model outperforms state of the art

methods in WPDP by 13% and CPDP by 6% for file level defect prediction. For change level defect

prediction the DBN method outperforms the state of the art methods by 5.1% and 2.9% for WPDP and

CPDP respectively.

Liang et al.[11] train a SDP model using Long-Short Term Memory(LSTM) neural network. They

extract token sequence from the AST and convert it into real valued vectors using a word embedding

model. The word embedding model used is the Continuous Bag of Words(CBOW) model provided by

word2vec. From AST, 3 types of nodes are extracted: Method invocation and class instance creation,

declaration and control flow nodes. Method invocation and class instance creation and declaration

nodes are recorded using their names. These names are further preprocessed into substrings to convert

different styles of namings used between projects to a uniform style. This method improves upon state

of the art methods in both WPDP and CPDP.

Dam et al.[12] use a tree-based LSTM network to perform SDP. They parse the source code into an

AST representation. The root of AST represents the whole source file and its children are the elements

of source file such as class declarations, method declarations, method body contents etc. The AST

nodes are converted into real valued vectors in the embedding step using ast2vec methodology. An

embedding  matrix  is  trained  along  the  LSTM  model  to  perform  word  embedding.  The  AST  is

recursively traversed and each node is fed into the LSTM. The hidden state and context vectors are

calculated for each node and is then used to calculate the same vectors for the parent. The output of

children nodes are combined to be fed into the parent node's LSTM. Finally a classifier is used at the

top node to predict whether given source file contains defects or not. They used Logistic Regression

and Random Forest classifiers in this paper. They used two dataset, one provided by Samsung's own

code base called Tizen Operating System and another from PROMISE dataset. They have found that

for  WPDP and Samsung dataset,  RF classifier  outperformed the  LR classifier.  The RF classifier

performed very well  across  four  metrics:  F-measure,  Recall,  Precision and Area Under  the ROC

Curve. All metrics provided a value of 0.9 for RF while LR only provided high recall but provided

many false positives. For WPDP and PROMISE dataset they observed LR performing better. They

explained this difference due to the fact that PROMISE dataset having smaller number of data points.

Overall they have found their method to have higher recall but lower precision than state of the art

method in WPDP. They note that higher recall is preferable to higher precision because the cost of
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missing defects are higher than cost of having false positives. They achieved similar results for CPDP,

where there is high recall and low precision. They have found that their predictions are considerably

better than random prediction from AOC metric.

Fan et al.[13] propose an defect prediction via attention based recurrent neural network(DP-ARNN).

They focus on file level WPDP. They parse the source code into AST and perform node filtering.

They pick nodes of method invocations, nodes of declarations and nodes of control flow and drop

every other node. They perform depth first traversal to form token vectors. Then they perform an

integer mapping of tokens where each token maps into a unique integer. To handle class imbalance in

the SDP training data they perform oversampling to not lose important data. They selected 7 open

source  projects  from  Apache  to  form  dataset.  Their  arhitecture  consist  of  an  embedding  layer,

Bidirectional-LSTM(BiLSTM) layer,  an attention layer,  two fully connected layers and an output

layer. The embedding layer is trained together with the whole network. They use a BiLSTM network

because a bug might be caused by not only samples from before, but also from after the training

sample. Going bidirectional means the network can learn from both directions. They compare their

work to  two different  deep learning methods,  namely CNN and RNN(BiLSTM without  attention

mechanism) networks. They found that DP-ARNN improves upon compared works, specifically 14%

on F1 measure and 7% on AUC metric.

Chen  et  al.[14]  propose  a  Deep  Transfer  Learning  for  Defect  Prediction(DTL-DP)  that  avoids

intermediary representations like AST and instead converts the source code into an image. This way

they can also leverage the already existing image classification networks capabilities.  DTL-DP is

made of two stages: source code visualization and DTL. For source code visualization they convert

each character in the source code into pixels by using their ASCII values as pixel intensity. They

implement  a  novel  data  augmentation  method  by  converting  consecutive  3  pixel  values  into

permutations of RGB(RGB, BGR, GBR...). This way they can increase the amount of data by 6 fold.

Their network architecture consists of an input layer, 5 convolutional layers from AlexNet(conv1-

conv5),  an  attention  layer  and  4  fully  connected  layers  acting  as  the  classifier.  They  used  the

PROMISE dataset for their work. DTL-DP performs competitively with state of the art method in

WPDP and outperforms other deep learning based methods.

Wang et al.[15] use a Gated Hierarchical LSTM(GH-LSTM) architecture to perform SDP. They use

both semantic features and traditional features in their work. They first process source code into AST

representation. They extract three types of AST nodes: method invocation, declaration and control

flow types. Then they train a word embedding model called GloVe. For traditional SDP features they

selected 18 code metrics provided by the PROMISE dataset. They feed both the embedded features

and traditional features hierarchically into LSTM networks. The output of the LSTM networks are

then fed into  a  gate  layer  composed of  fully  connected network to  filter  out  the  data.  Resulting

features are concatenated to create a combined feature, which is fed into a last fully connected layer to
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classify the code as  buggy or  clean.  To evaluate  their  model  they have picked 10 projects  from

PROMISE dataset. They found that GH-LSTM improves upon the performance of state of the art

WPDP tasks.

Xu et al.[16] deploy graph representation learning model to train a model. They created GitHub pull

request(GHPR) dataset where they queried GitHub repositories for defect fixing pull requests(PR).

Pull requests are better than git commits because they contain less noise due to being reviewed before

being accepted. They collected the code before the fix as defected sample and code after the fix as

clean sample. For projects, they selected them based on two criterias: projects having at least 1000

forks and projects being Java language projects. They choose projects with at least 1000 forks because

that indicated more PR activities. They collected PR's that have been merged into master branch and

marked as a defect in the PR. Then they extracted the source code from commits in the PR. The

source code is parsed into AST representation and mapped into integers. The fixes applied to defects

are only a small part of the AST, so to remove redundant information and noise the AST tree's are

pruned using Louvain Algorithm. This leaves AST subtrees that are related to the defect. They use a

topic model to capture the semantic high level meaning of the source code. The AST subtrees are

treated as the graph and the concept features extracted from topic model are used as graph attributes.

These are given as input to the GNN. Their work improves upon the performance of state of the art

DP.

Deng et al.[17] propose DP-LSTM which is based on Bidirectional LSTM. They parse the source

code into AST representation, create a mapping between integers and AST nodes and perform word

embedding  to  create  numerical  vectors  from tokens.  Token  sequences  are  fed  into  the  BiLSTM

network to train it. A Logistic Regression classifier is used to classify outputs as buggy/non-buggy.

They choose PROMISE dataset to evaluate their model. They found that their model outperforms state

of the art methods in F-measure.

Huo et al.[18] introduce Convolutional Neural Network for Comments Augmented Program(CAP-

CNN). They include the comments in the source code to generate semantic information. Their claim is

that comments include extra information on describing the structure of the code. They split source

code into source code and comments part.  They form vectors using word2vec model. Since code

comments and code itself have different structure, they use two CNN's to process embedding vectors.

The resulting features are then fed into a fully connected network to classify the source code as

defective or not. They propose a novel training method to overcome the problem that not every code

contains comments. They found that they can improve the performance of SDP over state of the art

methods.

Cai et al.[19] developed a method to improve CPDP tasks called tree-based-embedding convolutional

neural network with transferable hybrid feature learning(TBCNN-THFL). They note that real valued
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vectors  obtained from AST's  of  the  source  code do not  represent  the  semantic  distance  between

different projects really well. They used PROMISE dataset for their work. They parse the source code

into AST; they ignore nodes other than the following three: method invocation, declaration nodes and

control flow nodes. To capture the context, they use the parent and the children of a node together

with the central node to train CBOW word embedding. Then they use a 1-D convolutional layer, a

maximum  pool  layer,  a  fully  connected  layer  and  an  output  layer.  They  augment  the  features

generated by the  output  layer  by concatenating handcrafted  features  used in  [26].  They feed the

augmented features into TCA[27] to generate transferable features. They use a LR classifier to decide

whether source code is buggy or not. To overcome the data imbalance problem they use synthetic

minority oversampling(SMOTE). Their method shows improvement over state of the art methods.

Pan  et  al.[20]  introduce  CodeBERT,  a  pre-trained  programming  language  model  for  SDP tasks.

CodeBERT[21] is  a  transformer based natural  language/programming language pre-trained model

created by Microsoft.  They first  choose a prediction model  for  their  work.  Traditional  prediction

model  takes  in  the  source  code  as  input  and  outputs  whether  it  contains  a  bug  or  not.  Since

CodeBERT can also understand natural language they create two more prediction models: one which

takes source code and a declarative sentence such as "The code is buggy" and outputs whether the

sentence matches the source code; another one which takes a list of keywords like "bug", "defect",

"error"  etc.  and  the  source  code,  which  outputs  whether  the  list  matches  the  source  code.  They

tokenize the source code and perform a mapping to integers, they use BertTokenizer provided by the

CodeBERT. They perform random oversampling to deal with the class imbalance. They use both pre-

trained CodeBERT model and training it from scratch using the same architecture. For pre-trained

model they reuse the weights of the encoder-decoder part and reset the weights of the classification

parts. They use the PROMISE dataset for their work. They found that the pre-trained CodeBERT

model outperforms the one trained from scratch and it is also 4 times faster to train. They also found

that both sentence based and keyword based prediction models outperform traditional models when

performing SDP.

Qui et al.[22] offer a novel method for CPDP called Transfer Convolutional Neural Network(TCNN).

They introduce a matching layer into CNN for matching different distributions of different projects to

improve CPDP. They build an AST representation from source code first and perform a mapping into

integers for each node. They feed both source project with labels and target project without labels into

the CNN. They calculate classification loss from source project's output and calculate a distribution

divergence between source and target  projects  using the matching layer.  The aim of  the training

process is minimizing both classification error and distribution divergence. Finally they combine the

generated features with traditional features into what is called transferable joint features and use a LR

classifier to get the output.  They used PROMISE dataset  for their  work. They found that TCNN

outperforms traditional metrics in CPDP. It also provides better SDP performance compared to the

state of the art method.
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Munir et al.[23] propose a statement-level defect prediction method called Attention-Based Gated

Recurrent Unit(GRU)-LSTM(DP-AGL). Traditional methods focus on file, function or class defect

prediction. They parse the source code into AST structure and pick 32 metrics from nodes. These

metrics include but not limited lo literal string, literal count, variable count etc. They embed tokens

into the metrics vector to form a matrix where rows are the lines of the program and columns are the

metrics/tokens. They train a GRU-LSTM layer and an attention layer. They used Code4Bench for

C/C++ dataset in their work. They compared their work to SLDeep model and a Random Forest based

SDP model and they have found it to be more effective.

Wang et al.[24] provide a cross version defect prediction system(CVDP) in their work. CVDP only

focuses on parts of code that may be affected by the changes. They look for keywords such as "fix",

"bug",  "defect"  in  version  control  system commits.  The  commits  contain  the  code  segment  that

included the defective code and the code segment that fixed the defect. They first construct AST from

the functions in the code. From the AST, they create control flow relationship. This control flow

relation ship forms a graph where the edges of the graph follow the execution of the code statements.

They also model data flow dependencies by creating three types of edges between nodes: variable

definition  edge,  variable  use  edge  and  variable  modification  edge.  From  the  graph  they  have

constructed, they extract both features about nodes and features about changes. The code features

include features like whether the node is a  control flow node or not, number of function calls etc. The

code change features includes features like number of revisions, number of modified lines etc. The

constructed  graph  and  features  matrix  is  used  for  training  the  Graph  Convolutional  Neural

Network(GCNN). An output layer using Soft Max as classifier is used to detect whether the code

change includes a defect or not. Their work outperformed 3 other CVDP methods in F1 score. They

also compared their work to a CPDP work called ADCNN, using the same datasets and found that it

also performed 27% higher in F1 score.

Shen et al.[25] use a GCNN based on a pre-trained BERT model. They first parse the source code into

AST representation. They use BERT to extract code semantic features from the code. They extract

descriptive  features  from code  comments  using  Latent  Dirichlet  Assignmnet(LDA)  and  fuse  the

features together by concatenating them together. They perform oversampling to deal with the class

imbalance problem. Specifically they use GraphSMOTE to generate a graph and create a balanced

graph. They use GraphSAGE model to process the data. They use an output layer using Soft Max as

classifier. They compared their work to Pan's CNN, Seml and GCN2defect and it outperformed all of

them respectively by 9.7%, 6.6% and 4.9% in F1 measure.

Yao et al.[28] introduce Program Semantic Feature Mining(PSFM) method for SDP. They use the

code text and syntax structure information to create semantic information for the program. They first

extract the AST of the source code. They create a token sequence by traversing the AST by breadth

first traversal. They use Tree-based CNN(TBCNN) to create syntax structure information. They use
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an  attention  module  with  the  token  sequence  to  create  text  information.  They  fuse  these  two

information using cross multiplication. Finally they use a CNN network to mine defect features. They

feed the features into LR classifier to detect whether the source code is buggy or not. They found that

their work performed best compared to other deep learning based methods.
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6. CONCLUSION

This survey presented the latest, most cited works in software defect prediction that focus on semantic

methods.  A total  of  17  studies  were  surveyed,  from the  last  5  years  where  studies  were  picked

according to their citation counts. To avoid only including older studies from 2023 were also included.

All the works converted the source code into AST representation to extract semantic information from

the source  code eventually.  While  most  works  directly  converted AST representation into  vector

representations, some works utilized the fact that AST is a graph, that the nodes and their relationships

contain  extra  information.  There  are  also  works  that  try  to  enhance  the  results  by  including  the

traditional metrics together with features created by the neural networks. Most studies use LSTM and

CNN to train on the vector  representations while  several  studies  utilized BERT language model,

specifically CodeBERT pre-trained model for programming languages. They utilize natural language

prompts with source code information to predict defects in the code. Semantic methods showed a

significant improvement over traditional methods in performance. One of the challenges all works

faced was the imbalance of datasets. The datasets contain more clean pieces of data compared to the

buggy pieces of data. Most works decided to use oversampling instead of undersampling to avoid

losing information. Some works utilized SMOTE technique to perform oversampling. All the previous

works focus on performing SDP on a single programming language. Future works are recommended

to consider cross programming language SDP. This will increase the applicability of the semantic

SDP methods. Also it enables even more data for a model as they will no longer be constrained to data

from single language.
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