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ABSTRACT

RELATIVE DISTANCES APPROACH FOR MULTI-TRAVELING
SALESMEN PROBLEM

Ergüven, Emre

M.S., Department of Computer Engineering

Supervisor: Prof. Dr. Faruk Polat

January 2024, 80 pages

This study aims to find a solution for the Multi-Traveling Salesman Problem (M-

TSP). Within the problem, multiple tasks (e.g cargo delivery, warehouse placement)

are executed by multiple agents (e.g traveling salesman, autonomous robots). There

are two main objectives for these problems; the first one is minimizing the total path

cost, and the second one is minimizing the maximum cost of salesmen (makespan).

We mainly focused on minimizing the total cost. But fully focusing on decreasing

the total cost mostly results with an increase on the makespan. Our method keeps the

makespan in a reasonable range. Due to the combinatorial structure of the problem,

finding the cost-optimal solutions is impossible (with current conditions). Solutions

must be found quickly in order to be applicable in real-life. So, it can be said that

the third objective of the problem is reducing the complexity and time to find the

solutions.

The MTSP problem is generally tried to be solved in two separate phases. In the

first phase, tasks are assigned to salesmen with different approaches (e.g K-Means,

DBSCAN). Second phase is finding optimal routes for each salesman. The prob-
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lem within the second stage is identical to the Traveling Salesman Problem (TSP).

Our relative distance model combines these phases within one method with a novel

heuristic approach. With our model, tasks can be easily added and removed from the

problem space and live-scheduling can be enabled.

All of these methods mentioned are implemented on C++ and visualized on Python

Keywords: Traveling Salesman Problem, Multi Traveling Salesman Problem, Com-

binatorial Optimization, Heuristic Methods, Task Assignment
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ÖZ

ÇOKLU GEZGİN SATICI PROBLEMİ İÇİN GÖRELİ MESAFELER
YAKLAŞIMI

Ergüven, Emre

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Faruk Polat

Ocak 2024 , 80 sayfa

Bu çalışma, Çoklu Gezgin Satıcı Problemini çözmeyi amaçlamaktadır. Bu problem-

lerde, görevler (kargo teslimatı, depo yerleştirimi) birden çok etmen (gezgin satıcı,

otonom robot) tarafından tamamlanmaya çalışılır. Bu gibi problemlerde iki ana hedef

vardır; birincisi toplam kat edilen mesafeyi minimize etmektir, ikincisi de bir etmen

tarafından kat edilen maksimum mesafeyi minimize etmektir.

Bu çözümdeki ana öncelik toplam kat edilen mesafeyi minimize etmektir. Fakat ta-

mamen toplam kat edilen mesafeyi minimize etmeye odaklanmak, bir etmen tara-

fından kat edilen maksimum mesafeyi artırabilir. Bu çalışmada sunulan yöntem, bir

etmen tarafından kat edilen maksimum mesafeyi de makul bir seviyede tutmaktadır.

Problemin kombinatoryal yapıda olması sebebiyle maliyeti minmize eden bir çözümü

bulmak imkansızdır (günümüz koşullarında). Gerçek hayatta uygulanabilirlik için çö-

zümün hızlı bir şekilde bulunması gerekmektedir. Yani, şu söylenebilir ki; problemin

üçüncü hedefi, çözüm bulunana kadarki karmaşıklığı ve harcanan zamanı düşürmek-

tir.
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Çoklu gezgin satıcı problemi, genellikle iki ayrı aşamada çözülmeye çalışılır. İlk aşa-

mada görevler kullanıcılara farklı yaklaşımlarla verilir (k-ortalamalar kümesi, yoğun-

luk tabanlı mekansal uygulamaların gürültüyle kümelenmesi). İkinci aşama ise her

gezgin için verilen görevlerin optimal sıralamasıdır. İkinci aşamadaki problem gez-

gin satıcı problemiyle aynıdır. Göreli Mesafe modelimiz bu fazları tek bir yöntemde

özgün bir keşifsel yaklaşımla birleştirir. Modelimiz sayesinde görevler kolayca iptal

edilebilir veya yeni görevler eklenebilir ve canlı planlama sağlanabilir.

Yukarıda belirtilen tüm metodlar C++’da çalıştırılmış ve Python’da görselleştirilmiş-

tir.

Anahtar Kelimeler: Gezgin Satıcı Problemi, Çoklu Gezgin Satıcı Problemi, Kombi-

natoryal Optimizasyon, Buluşsal Yöntemler, Görev Tayini
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Problem Definition

Combinatorial Optimization[1] is one of the problems in Computer Science where

the objective is to find the best combination, arrangement or picks of discrete ele-

ments from a finite set under problem-specific constraints. Some of the real-world

combinatorial optimization problems are Traveling Salesman Problem[2], Job-Shop

Scheduling Problem, Maximum Cut Problem and Task Assignment Problem.

Combinatorial Optimization Problems are hard to solve because of some reasons.

Firstly; most of the combinatorial optimization problems are NP-hard, it means that

the optimality of a solution cannot be guaranteed in a polynomial time. Secondly,

the solution space is exponentially growing with the size of problem and it makes

the problem unsolvable in a reasonable duration. Thirdly, there can be more than one

objectives that should be satisfied but mostly these objectives are conflicting like min-

imizing the total cost and maximizing the resource utilization. Lastly, gathering and

processing the data in real-life combinatorial optimization problems mostly involve

the uncertainties, noises and the like.

Some combinatorial optimization problems are the mixture of other combinatorial

optimization problems like Supply Chain Optimization (facility location problem and

network optimization problem) or Multi Traveling Salesman Problem (task assign-

ment problem and traveling salesman problem). The subject of this study is finding

efficient solutions to Multi Traveling Salesman Problem with low levels of complex-

ity.
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Figure 1.1: sample M-TSP instance with a solution

The Multi Traveling Salesman Problem (M-TSP) is an extended version of the Trav-

eling Salesman Problem (TSP) in which the ideal visit order of destinations is tried

to be determined. In this version, N destination points must be visited by k salesmen,

regardless of whether they are in the same location before departure. The problem has

similar objectives and constraints with the Multi Agent Path Finding with Multiple

Deliveries (MAPF-MD) problem. The MAPF-MD is the generalized version of the

Multi Agent Path Finding (MAPF) problem in which each agent is matched with a

single task. (one to one correspondence between agents and target nodes). It can be

said that the biggest difference between MAPF-MD and MTSP is that the paths in

the MAPF-MD problem must be collision-free. This restriction is not prioritized in

MTSP.

Various real-life scenarios that can be represented as an MTSP instance. Mobile e-

charging stations, taxi networks, healthcare services and scenarios in which numerous

goals have to be visited by multiple salesperson, vehicle etc. can be considered as a

MTSP instance. Applying the MTSP concepts can be crucial for Disaster Manage-

ment in different areas as follows:

• Reconnaissance activities to explore extent of the damage

• Search and Rescue Organizations

2



Figure 1.2: Towns affected from the 6 February Earthquake

• Distribution of Emergency Supplies (water, food etc.)

• Evacuation Planning

We lost many people in the 6 February Earthquake[3] due to lack of planning and

organization. If the problem had been considered with MTSP principles and the so-

lutions were tried in the earthquake drills, far fewer people would die.

Two ultimate motivations lie behind this study. The first one is the improvable envi-

ronment of the problem. MTSP literature is relatively newer than the other combina-

torial optimization problems and this situation led us to think creative and find novel

solutions. Second one is the real-life applicability of the problem. Creative ideas and

novel approaches for this problem may result better solutions for the problems that

people face in reality.

1.2 Proposed Methods and Models

Heuristic algorithms are well suited to deal with the challenges of Combinatorial

Optimization Problems because heuristics quickly provide approximate solutions. As

the size of the samples increases, the importance of speed will become more evident.

There are common heuristics for combinatorial optimization problems such as genetic

algorithms or greedy algorithms. In this problem, we used a greedy heuristic to ini-
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tialize the solution. After initialization, suitable improvement heuristics are applied

and the final solution is ready.

The Multi Traveling Salesman Problem is generally tried to be solved in two separate

stages. First, tasks are distributed to each salesman, and then corresponding paths are

created with the given tasks. In this study, these two stages are combined with a new

heuristic which will be presented in the following sections.

1.3 Contributions and Novelties

Our contributions are as follows:

• The Multi-Traveling Salesman Problem has been relatively received less atten-

tion than other combinatorial optimization problems. This study will contribute

to the enrichment of the existing MTSP literature.

• Alongside the literature enhancement, the study will also applicable to the real-

life problems because the solution method doesn’t require a well structured and

complex data.

• The study and the solution is extendable to the other complex variants of prob-

lem like Prioritized Multi Traveling Salesman Problem

The Novelties are as follows:

• The solution approach in the study can also be applied into TSP and it also

results well.

• The methodology presented in this study is suitable to different kinds of MTSP

scenarios.

– All salesmen can start from different locations.

– All salesmen can start from the same location.

– While some salesmen start from same location, others can start from dif-

ferent locations.
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• Most of the studies for the MTSP splits the problem into two stages, our ap-

proach finds the solution within only one stage.

• Most studies on combinatorial optimization problems involve randomness in

their structure. But our method doesn’t contain any random factor within its

algorithm. It provides consistency.

1.4 The Outline of the Thesis

The thesis aims to introduce a novel heuristic method that efficiently finds solutions

with near-optimal and relatively reasonable makespan values.

Chapter 2 starts with the brief introduction of problems which will be analyzed and

tried to be solved in the next chapters. After the introduction step, backgrounds of the

methods and algorithms are categorized and explained the reasons behind whether

they used in our approach or not.

Chapter 3 presents the related articles and works that covers the problems, algorithms

or approaches mentioned within the thesis. The chapter is categorized and organized

according the topics they covered.

In the fourth chapter mathematical and verbal descriptions of the problem are repre-

sented. These descriptions cover the constraints and the objectives of the problem.

After the description part, pseudo codes are given with the example instances of the

problem. At the end of chapter, brute force algorithm’s pseudo-codes are shown to

provide benchmarks in the experimental results and evaluations part.

Performance of the solutions provided by Relative Distances Approach is evaluated

by different methods in fifth chapter;

• First, outputs are compared with Wang’s [4], Ndiaye’s [5] and Lou’s [6] re-

search.

• For the smaller problem instances, the outputs are evaluated by the complete

brute force algorithm which all possible task assignment and sequencing sce-

narios are examined.
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• In the moderate size problem instances, the results are evaluated by the partial

brute force algorithm which looks at the alternative sequencing options only.

• The extreme-size instances are visualized and evaluated by their intersection-

status.

Chapter 6 provides the brief conclusion and the targeted future works that extended

from this thesis are presented.
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CHAPTER 2

BACKGROUND

In this section, TSP, MTSP and some other problems that closely related to MTSP are

briefly described and visualized to make descriptions clearer. After the description,

backgrounds of methods and algorithms used to solve MTSP are given.

2.1 TSP

The Traveling Salesman Problem (TSP) is well-known combinatorial optimization

problem in Computer Science and Operations Research. In this problem, set of cities

and the distances between them are given. The objective is to find the shortest pos-

sible path/tour that covers all cities starting from a determined city. The problem is

an NP-Hard (Non-Deterministic Polynomial-Time Hard) problem, which means that

the problem becomes extremely difficult to solve as the number of cities increases.

Finding the best solutions for larger instances is computationally challenging.

Figure 2.1: sample TSP instance proposed in TSP-LIB with a solution
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Let n be the number of cities. dij is the distance between the cities i and j. xij is

the Boolean variable that shows whether the path i to j discovered in the route of the

Traveling Salesman. Mathematical formulation of the TSP is as follows:

xij ∈ {0, 1}
i ̸=j

(2.1)

n∑
i=1

xij = 1

i ̸=j

(2.2)

n∑
j=1

xij = 1

j ̸=i

(2.3)

∑
i∈S

∑
j∈S

xij ≤| S | −1

i ̸=j S⊂N 2≤|S|≤n−1

(2.4)

Each decision variable that represents whether the path is selected or not can only be

0 or 1 (2.1).

Constraint 2.2 states that each city can have only one path which departs from itself.

Analogous to 2.2, 2.3 states that each city can have only one path which arrives to

itself.

Some extensions of TSP don’t require the Hamiltonian Cycle. The salesman can

finish the path at a node different from where s/he started. This kind of an extension

will be the subject of the main problem of thesis.

2.4 is a constraint that prevents sub-tours within the problem space.

n∑
i=1

n∑
j=1

dij ∗ xij

i ̸=j

(2.5)

The cost function of the TSP can be formulated as shown in 2.5. Minimization of this

function is the ultimate objective of the problem.
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2.2 MTSP

The Multi Traveling Salesman Problem (MTSP) is an extension of the Traveling

Salesman Problem (TSP). In the regular definition of the MTSP, there are multiple

salesmen that starts from the same depot and the ultimate objective is to minimize

the total distance covered without leaving any city unvisited. The approach presented

in this thesis finds solutions for all types of MTSP problems in terms of depot dis-

tribution. Salesmen can start from whether the same depot or different depots or a

combination of both scenarios (some from same some from different depots). The

classical definition points the total distance minimization as an objective but mini-

mizing the maximum distance covered by a salesman also targeted in some studies.

Related mathematical expressions of the MTSP will be given in the next sections with

the possible variants.

2.3 MAPF

The Multi Agent Path Finding is a problem that aims to find collision-free paths from

the agents’ starting locations to their assigned targets in a shared space.

The problem can also have some additional constraints like avoiding collisions with

the moving obstacles or speed/resource limitations.

The Multi Agent Path Finding with Multiple Delivery Locations (MAPF-MD) is an

extension of the MAPF that agents have more than one target locations and decide

the order of visit. In this variant, finding collision-free paths are also prioritized like

MAPF.

Figure 2.2: sample MAPF instance
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2.4 VRP

The Vehicle Routing Problem is a combinatorial optimization problem that targets to

optimize costs in parallel with the demand satisfaction goals. In the problem, vehicles

start from the central depot and distributes the goods to the customers. There can be

various constraints like truck capacities, delivery deadlines etc.

Both MTSP and VRP focus on the minimizing the total cost, their differences come

from the constraints and application areas.

Figure 2.3: sample VRP instance

2.5 Brute Force Approach

The Brute Force Approach is a clear and exhaustive strategy to solve the problems.

The approach systematically looks at the all possible combinations/permutations to

find the optimal solution of a problem. It guarantees the optimality of a solution and

can be beneficial problems with small size of problem instances. If the brute force

approach is selected to solve MTSP, the complexity of solution becomes (N !)m. (N

is the number of cities and m is the number of salesmen). For a problem instance with

15 cities and 3 salesmen, approximate number of iterations will be (15!)3 = 2.236 by

brute force approach.

2.6 Exact Algorithms

Exact Algorithms are designed to solve a computational problem with the guarantee

of optimality. These algorithms are also exploring the entire solution space to ensure
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that the optimal solution is found. These algorithms are closer to brute force approach

than the heuristic methods. Here are the some exact algorithms can deployed to solve

MTSP.

2.6.1 Integer Linear Programming

Integer Linear Programming is an approach that converts combinatorial optimization

problems to linear programming models with some constraints to assign integer val-

ues to variables. This type of method requires an ILP solver like CPLEX or Gurobi.

It guarantees the optimality of a solution but the complexity grows exponentially with

the increasing number of cities and salesmen.

2.6.2 Branch and Bound

The Branch and Bound algorithm is an approach that uses the problem through di-

vide and conquer approach. It systematically splits the problem into the smaller sub-

problems, finds optimal solutions these smaller ones and connects the sub-solutions to

generate a solution to the main problem. If there is no time limitation, it will find the

global optimal solution. It can not be applicable in real-world problems with larger

instances.

2.7 Heuristic Methods

Heuristic methods are solution approaches which give importance to reducing com-

plexity in parallel to reach optimality by using some practical rules or principles. For

the instances which have larger sizes, heuristics are beneficial to find approximate so-

lutions in a timely manner. Unlike exact algorithms that provide optimality, heuristics

try to find quick & near optimal solutions instead of an exact optimal solution. You

can find the well-known heuristic methods that can be deployed to solve the MTSP.
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2.7.1 Local Search Algorithms

Local Search is a heuristic algorithm that tries to solve combinatorial optimization

problems by maximizing the objective function. It requires an initial solution, after

the initial solution is constructed the approach reduces cost by changes in an iterative

way. The most-known examples of the local search are 2-opt, 3-opt and or-opt.

Figure 2.4: 2-opt and or-opt

2.7.2 Genetic Algorithms

Genetic Algorithms are the heuristics inspired by the natural selection and genetic

processes. The aim of the genetic algorithms is to find approximate solutions in a

timely manner. After the construction of initial solution, it tries to reduce cost by

different steps like crossing-over or mutation.

2.7.3 Swarm Intelligence Algorithms

Swarm Intelligence algorithms are the optimization approach that inspired by the col-

lective mechanisms in which the individuals are interacting to generate a collective

strategy. These algorithms simulate the principles of collaborative organizations with

decentralized decision-making systems. The most common Swarm Intelligence Al-

gorithms are as follows; Ant colony Optimization, Bee Algorithm, Firefly Algorithm,

Bat Algorithm.
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2.7.4 Simulated Annealing

Simulated Annealing is a probabilistic approach inspired from the metallurgy. In

the annealing process of metallurgy, materials are heated and cooled to finalize the

structure. The analogy can be explained in the approach as; generated solutions con-

verge to local optimum points but avoid to stay local optimums to explore the global

optimum points.

Figure 2.5: Simulated Annealing

2.7.5 Greedy Algorithms

Greedy algorithms promise the simple and intuitive methods to solve the combina-

torial optimization problems. The idea behind the algorithm is to make decisions to

reach local optima in each stage and try to converge globally optimal solution.

The ultimate difference between the greedy algorithms and the other heuristics is the

no need for initial solution in greedy algorithms. It means that greedy algorithm can

build a solution from nothing.

In the thesis, a novel greedy algorithm builds the initial solution and then the solution

is improved by a genetic algorithm. Greedy algorithm is selected to obtain consistent

result and avoid randomness.
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CHAPTER 3

RELATED WORK

3.1 Traveling Salesman Problem

Traveling Salesman Problem has a history that covers several centuries.

The first written source about Traveling Salesman Problem was written in 1832 by an

old commis-voyageur [7]. The book mentions the problem and gives examples about

tours through Germany and Switzerland. But it doesn’t propose any mathematical

solution. The first problems related to Traveling Salesman Problem were discussed

by Thomas Kirkman and also the Irish mathematician Rowan Hamilton who invented

the Icosian game which targets to find Hamiltonian Cycle. Discussions about the

work of Hamilton and Kirkman can be found in [8]. In 1930, Traveling Salesman

Problem is mathematically formulated by Karl Menger [9]. His formulation aimed to

find the shortest route within the cities which have to be visited once only.

Dantzig et al. [10] have tried to solve 49-state problem that aims to an optimal tour

that covers all states. Their approach contains adding some inequalities to the prob-

lem and pruning the possible solution set. Their perspective was relatively close to

the Branch and Bound Algorithm. In 1976, Nicos Christofides [11] proposed an ap-

proximation algorithm that guarantees that its output is at most 3/2 times worse than

the optimal solution. His method had continued to provide the best "worst case sce-

nario" until 2011. In this year; Gharan et al. [12] decreased the worst case ratio to

3/2-ϵ0 (ϵ0 > 0) by a randomized rounding approach.

There were many methods and approaches that deployed to solve Traveling Salesman

Problem. Integer Programming techniques to solve TSP were formulated by Miller
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et al. [13]. Diaby[14] proposed both linear and non-linear techniques to solve TSP.

Imdat et al.[15] and Hungerlander [16] tried to solve TSP by an integer linear pro-

gramming approach with time window constraints. Egon et al[17] presented Branch

and Bound Techniques to solve Traveling Salesman Problem with different kinds of

relaxations. Some vehicle-specific TSP’s are also tried to be solved by branch and

bound. Poikonen’s study [18] is a good example on this.

Genetic Algorithms are also deployed to solve TSP’s. Friesleben and Merz [19] tried

to find near-optimum solutions to the TSP. Deng et al. [20] executed the genetic

algorithm in an hybrid cellular way. Bat Algorithm[21] is executed by Osaba et al

to solve symmetric and asymmetric TSPs. An adaptive Simulated Annealing[22]

approach is deployed with a greedy search.

Studies on TSP have been reviewed so far. From that point, articles and studies related

to MTSP will be presented.

3.2 Multi Traveling Salesman Problem

3.2.1 Brief History and Problem Variations

The Multi Traveling Salesman Problem (MTSP) field does not have as much research

activity as the field of the Traveling Salesman Problem (TSP). Due to this fact, some

closer problems to MTSP like VRP or MAPF-MD will also be mentioned for provid-

ing a broader perspective.

One of the first MTSP related effort is done by Dantzig [23] who tried to find a solu-

tion to the 49-state problem mentioned in TSP. They proposed a procedure based on

a linear programming formulation to optimize the dispatching process executed by

multiple trucks. Clarke and Wright[24] criticized the Dantzig’s approach and modi-

fied it to solve the problem with their known Clarke & Wright Savings Algorithm.

Some different areas are also covered in MTSP area like Greenstein [25]’s early work

at 1970. The aim of the study is optimizing the cost of multi-edition press printing

process. The terms in the article is analogous to the MTSP problem like plate change
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costs - costs between cities. He formulated a mixed-integer program and stated that

optimal solution can not be found due to the problem size. Then he proposed a heuris-

tic to find a near-optimal solution. The press scheduling problem is mentioned as an

MTSP problem also by Carter et al.[26]. They applied a genetic algorithm to solve

the problem.

After Greenstein’s effort, Angel et al. [27] tried to solve a bus scheduling problem as

an MTSP problem with additional constraints. They aimed to minimize the number of

routes and the total distance covered by buses with capacity and deadline constraints.

There are also some studies about the school bus scheduling problems with different

variants like single school - multiple schools or single loading - mixed loading. Park

and Kim[28] provided a review of articles about school bus scheduling problem.

As mentioned in the introduction, disaster management processes can also be consid-

ered as an MTSP problem. Cheikhrouhou et al.[29] presented an analytical hierarchy

based MTSP solution for the disaster management systems. Bodaghi et al.[30] pro-

posed a mixed integer programming model to optimize the resource allocation in a

stochastic environment. They also presented a case study about a Victorian Bushfire

scenario. Bodaghi[31] has also provided a review of studies about multi resource

emergency recovery operations.

3.2.2 Minimizing Different Objectives

Although some studies[32] made an effort to optimize alternative metrics, most of

the studies[33],[34] aimed to minimize total distance/cost for Traveling Salesman

Problems. When the number of salesman changes 1 to multiple, additional objective

options will be available. So, it can be said that there are various objective options for

Multi Traveling Salesman Problem.

The first option is minimizing the maximum distance covered by a salesman. In many

real-life applications like collecting products within a depot by forklifts to a single

truck, minimizing the maximum cost or time is important. The first min-max MTSP

is proposed by França et al.[35]. They deployed the Tabu Search and K Nearest

Neighbour methods and compared their performances. Variety of methods can be
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applied to solve the minmax MTSP problem like reinforcement learning[36] or neural

networks[37].

Some studies tried to enhance the balance between salesmen. Minmax problem is

also trying to minimize the maximum distance covered by a salesman, but maxi-

mizing the minimum distance is also aimed in this objective. In real life, ensuring

the balance among workers is important to avoid possible problems among workers.

Vandermeulen et al.[38] provided a solution to balanced task allocation.

Some studies tried to optimize the total distance covered by all salesmen for multi

traveling salesman problems. Minimizing the total cost makes sense in real-life cases

without deadlines or waiting customers. Tabu search [39] and integer programming

[40] can be applied to solve the minsum MTSP.

Within the most studies on MTSP, multi objective minimization is the key target.

That’s the most applicable approach in real life because solutions both provide quick-

ness and cost minimization. Zhen et al. [41] proposed a two stage algorithm to

optimize two objectives. They initialized the solution with a clustering method and

tried to improve the solution with a neighborhood search. Ant Colony[42] method is

also used by Chen et al. to minimize the two objectives. Our thesis’s objective is also

minimizing both objectives.

3.2.3 Probabilistic vs. Deterministic

Two types of MTSP instances can be proposed, the first one is the probabilistic. In this

type of problem; costs, number of salesmen or cities can be changed through time.

Although the probabilistic environment receives less attention, it can be applicable in

real life. Carreno et al.[43] presented the probabilistic Multi Robot Systems problem

and tried to solve it with a model based reinforcement learning method. Dynamic

routing can also be subject of MTSP problem like Garn’s[44] study.

The second type is deterministic MTSP instance. Most MTSP studies are based on

a deterministic environment like [45] and [46]. The thesis’s effort is also done on a

deterministic problem environment.
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3.2.4 Depots & Types of Paths

The standard version of MTSP is defined with a single depot and closed paths. Closed

path means that the salesman must finish the tour at the starting city. In terms of

these two breakdowns, there can be four different problem variants. The first one

is the single-depot and closed path variant, Thenepalle and Singamsetty[47] tried to

solve an MTSP problem with a single depot and open paths but one of the salesmen

should finish the tour in the depot. In Wang’s[48] variant, all salesmen must return to

the fixed-single depot. Ghafurian[49] presented an Ant Colony problem to solve the

Multi Depot MTSP with closed paths. In Assaf & Ndiaye’s study [5], there are multi

depots and salesmen shouldn’t return to their depots.

The thesis provides solutions for both single depot & multi depot open path MTSP’s.

Finding the collision free paths can also be an another variant for the problem like

Semiz et al’s [50] study. We didn’t specifically avoid from collisions but our approach

will provide solutions without any intersections whether in a path of salesman or

among paths of salesmen.
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CHAPTER 4

PROPOSED WORK

In this chapter, we will provide the mathematical description of the Multi Traveling

Salesman Problem with objective and constraint formulations. After that, proposed

method will be presented with the reasons and explanations in a verbal and visual

way.

4.1 Problem Description

Let N be the number of cities and K be the number of salesmen. cij is the cost

between the cities i and j. Sijk is the Boolean variable that shows whether the path i

to j discovered in the route of the Salesman k. fik represents whether the salesman k

starts from city i.

4.1.1 Constraints

cij > 0
i ̸=j ∀i ∀j

(4.1)

Costs between cities must be positive as been ruled in classical Traveling Salesman

Problem.

Sijk ∈ {0, 1}
i ̸=j ∀i ∀j ∀k

(4.2)

Any salesman can traverse between any pair of cities. In real life problems there can

be some additional constraints like this vehicle can not be used between given cities
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due to weather conditions etc.

fik
∀i ∀k
∈ {0, 1} (4.3)

A salesman can start from any city.

∑
∀i

K

k=1

fik ≤ K (4.4)

A city can be a starting point of any salesman. And it can also be the starting points of

multiple salesmen. If the problem is a single-depot MTSP,
∑K

k=1 fik will be ∈ {0, 1}.
If all salesmen have to start from different cities

∑K
k=1 fik will be ∈ {0, K}.

N∑
i=1

fik

∀k

= 1 (4.5)

Each salesman have to start from one city. A Salesman can not start from multiple

cities.

N∑
j=1

K∑
k=1

�����Sijk = 1 Sijk ≤ 1

i ̸=j ∀i

(4.6)

In the close path variants of MTSP, strikethroughed constraint have to be applied. But

in the open path variant, final destinations of the salesmen can not be a starting point

of any pairs.

N∑
i=1

N∑
j=1

Sijk ≥ 1

i ̸=j ∀k

(4.7)

All salesmen have to traverse between any pair of cities at least once. The constraint

keeps all salesmen active.
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N∑
i=1

K∑
k=1

Sijk + fjk = 1

i ̸=j ∀j

(4.8)

If a city is not a starting point of any salesman, it has to be visited by a salesman in

exactly one time.

N∑
i=1

K∑
k=1

(fik +
N∑
j=1

Sijk)

i ̸=j

= N (4.9)

Total number of traverses in an MTSP instance should be equal to the difference

between the number of cities and the number of unique starting cities.

Other than the mathematical formulations, a path of a salesman should not intersect

itself in an Euclidean Traveling Salesman Problem. Because if an intersection oc-

curs in a path, it can not be optimal and it should be transformed to a path without

intersection.

As mentioned in the Urban Operations Research Book [51] the optimum traveling

salesman tour does not intersect itself. Cost of two intersecting paths is always more

than the non-intersecting alternatives due to the triangle inequality. As shown in

Figure 4.1 |ao| + |co| + |ob| + |od| > |ab| + |cd| because |ao| + |ob| > |ab| and

|co|+ |od| > |cd|

Figure 4.1: A self intersecting path

We can also state the same principle for the multi traveling salesman problem, if there

23



exists any intersection between two salesmen, they can reduce the cost by swapping

their cities.

4.1.2 Objectives

As stated in the previous chapters, there can be multiple objectives for a multi travel-

ing salesman problem. The first one is the minimizing the total distance covered by

salesmen. It can be represented as;

N∑
i=1

N∑
j=1

K∑
k=1

Sijk ∗ cij

i ̸=j

(4.10)

Minimizing the maximum distance covered by a salesman can also be aimed. The

objective function can be formulated as;

max
N∑
i=1

N∑
j=1

Sijk ∗ cij

i ̸=j ∀k

(4.11)

4.2 Relative Distance Approach

Relative Distance Approach redefines the distance description for the multi traveling

salesman problem.

Classical description of distance is dependent to only the two objects that the distance

been measured between them. In MTSP, this type of distance definition is insufficient

because there are multiple salesmen and cities in the environment.

Let’s define mik as the optimal marginal insertion cost of city i to the path of salesman

k, Mi as the
∑K

k=1 mik and pk is the current distance of salesman k’th path. d is the

minimum distance between all pairs of cities. The Relative Distance Coefficient (rdik)

for each city can be formulated as follows;
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rdik = Mi/(
√
mik ∗

√
d+ pk)

∀i
(4.12)

Figure 4.2: An example MTSP instance

In Figure 4.2; salesman 1 starts from city A, salesman 2 starts from city B, salesman

3 starts from C. The minimum distance between cities is
√
5 = 2, 24.

Table 4.1: Regular Distance Matrix

Regular Distances Between Salesmen and Cities

Salesman U V X Y Z

1 2,24 7,28 4 7,21 6,32

2 7,28 2,24 7,21 4 7,21

3 7,21 7,21 5 5 2,24

Total 16,73 16,73 16,21 16,21 15,77

Relative distance coefficients can be calculated by the 4 parameters;

• Mi (16,73 for City U)

• mik (7,21 for Salesmen 2 & City X)

• d+ pk (2,24+0 for each salesman because there is no assignment yet)
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Table 4.2: Relative Distance Coefficients

Relative Distances Between Salesmen and Cities

Salesman & City Relative Distance

rd1U 16, 73/(
√
2, 24 ∗

√
2, 24 + 0) = 7, 47

rd1V 16, 73/(
√
7, 28 ∗

√
2, 24 + 0) = 4, 14

rd1X 16, 21/(
√
4 ∗
√
2, 24 + 0) = 5, 42

rd1Y 16, 21/(
√
7, 21 ∗

√
2, 24 + 0) = 4, 03

rd1Z 15, 77/(
√
6, 32 ∗

√
2, 24 + 0) = 4, 19

rd2U 16, 73/(
√
7, 28 ∗

√
2, 24 + 0) = 4, 14

rd2V 16, 73/(
√
2, 24 ∗

√
2, 24 + 0) = 7, 47

rd2X 16, 21/(
√
7, 21 ∗

√
2, 24 + 0) = 4, 03

rd2Y 16, 21/(
√
4 ∗
√
2, 24 + 0) = 5, 42

rd2Z 15, 77/(
√
7, 21 ∗

√
2, 24 + 0) = 3, 92

rd3U 16, 73/(
√
7, 21 ∗

√
2, 24 + 0) = 4, 16

rd3V 16, 73/(
√
7, 21 ∗

√
2, 24 + 0) = 4, 16

rd3X 16, 21/(
√
5 ∗
√
2, 24 + 0) = 4, 84

rd3Y 16, 21/(
√
5 ∗
√
2, 24 + 0) = 4, 84

rd3Z 15, 77/(
√
2, 24 ∗

√
2, 24 + 0) = 7, 04

The Relative Distance Coefficients between Salesman 1 & City U and Salesman 2

& City V have the maximum values among other coefficients. We can assign U to

salesman 1 as shown in Figure 4.3.

When looked at the distances carefully, closeness of Z to salesman 3 is also equal to

U-1 or V-2 but relative distance coefficient of Z-3 is smaller than these two. Because

Z is more closer to 1 and 2 than U-2, U-3 and V-1, V-3.

After the assignment of city U to Salesman 1, new relative distance coefficients are

shown in the Table 4.3;

The cities V, X, Y and Z should be inserted after city U to optimize the total distance

covered by salesman 1. It is not a general case. If city X was inserted first, city U

would be inserted between city A and city X.
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Figure 4.3: Example MTSP instance after first task assignment

Table 4.3: Relative Distance Coefficients after U is Assigned to Salesman 1

Relative Distances Between Salesmen and Cities

Salesman & City Relative Distance

���rd1U City U is assigned to Salesman 1

rd1V 16, 73/(
√
8 ∗
√
2, 24 + 2, 24) = 2, 79

rd1X 16, 21/(
√
2, 24 ∗

√
2, 24 + 2, 4) = 5, 12

rd1Y 16, 21/(
√
7, 62 ∗

√
2, 24 + 2, 24) = 2, 77

rd1Z 15, 77/(
√
5 ∗
√
2, 24 + 2, 24) = 3, 33

���rd2U City U is assigned to Salesman 1

rd2V 16, 73/(
√
2, 24 ∗

√
2, 24 + 0) = 7, 47

rd2X 16, 21/(
√
7, 21 ∗

√
2, 24 + 0) = 4, 03

rd2Y 16, 21/(
√
4 ∗
√
2, 24 + 0) = 5, 42

rd2Z 15, 77/(
√
7, 21 ∗

√
2, 24 + 0) = 3, 92

���rd3U City U is assigned to Salesman 1

rd3V 16, 73/(
√
7, 21 ∗

√
2, 24 + 0) = 4, 16

rd3X 16, 21/(
√
5 ∗
√
2, 24 + 0) = 4, 84

rd3Y 16, 21/(
√
5 ∗
√
2, 24 + 0) = 4, 84

rd3Z 15, 77/(
√
2, 24 ∗

√
2, 24 + 0) = 7, 04
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With the relative distances approach, all cities can be assigned to salesmen iteratively

as shown in Figure 4.4.

Figure 4.4: Example MTSP instance after all assignments

Actually, the output of the Relative Distances Approach is not different from the

classical approach (assign cities to salesmen first with clustering then find optimum

paths among assigned cities). But, what if the city Q is added to the map?

Figure 4.5: Example MTSP instance with the city Q

The top relative distance coefficient is measured between Salesman 3 and City Q as

shown in Table 4.5. The pair is not the closest salesman-city pair on the map. More-

over, City Q is not the closest city to Salesman 3 (Z is closer). But Q is significantly

far away from the other salesmen. Because of this, Q should be assigned to Salesman

3 first.
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Table 4.4: Regular Distance Matrix with City Q

Regular Distances Between Salesmen and Cities

Salesman U V X Y Z Q

1 2,24 7,28 4 7,21 6,32 13,42

2 7,28 2,24 7,21 4 7,21 12

3 7,21 7,21 5 5 2,24 5

Total 16,73 16,73 16,21 16,21 15,77 30,41

Table 4.5: Relative Distance Coefficients with City Q

Relative Distances Between Salesmen and Cities

Salesman & City Relative Distance

rd1U 16, 73/(
√
2, 24 ∗

√
2, 24 + 0) = 7, 47

rd1V 16, 73/(
√
7, 28 ∗

√
2, 24 + 0) = 4, 14

rd1X 16, 21/(
√
4 ∗
√
2, 24 + 0) = 5, 42

rd1Y 16, 21/(
√
7, 21 ∗

√
2, 24 + 0) = 4, 03

rd1Z 15, 77/(
√
6, 32 ∗

√
2, 24 + 0) = 4, 19

rd1Q 30, 42/(
√
13, 42 ∗

√
2, 24 + 0) = 5, 55

rd2U 16, 73/(
√
7, 28 ∗

√
2, 24 + 0) = 4, 14

rd2V 16, 73/(
√
2, 24 ∗

√
2, 24 + 0) = 7, 47

rd2X 16, 21/(
√
7, 21 ∗

√
2, 24 + 0) = 4, 03

rd2Y 16, 21/(
√
4 ∗
√
2, 24 + 0) = 5, 42

rd2Z 15, 77/(
√
7, 21 ∗

√
2, 24 + 0) = 3, 92

rd2Q 30, 42/(
√
12 ∗
√
2, 24 + 0) = 5, 87

rd3U 16, 73/(
√
7, 21 ∗

√
2, 24 + 0) = 4, 16

rd3V 16, 73/(
√
7, 21 ∗

√
2, 24 + 0) = 4, 16

rd3X 16, 21/(
√
5 ∗
√
2, 24 + 0) = 4, 84

rd3Y 16, 21/(
√
5 ∗
√
2, 24 + 0) = 4, 84

rd3Z 15, 77/(
√
2, 24 ∗

√
2, 24 + 0) = 7, 04

rd3Q 30, 42/(
√
5 ∗
√
2, 24 + 0) = 9, 09
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Figure 4.6: Q is Assigned to Salesman 3

Table 4.6: Relative Distance Coefficients after Q is Assigned to Salesman 3

Relative Distances Between Salesmen and Cities

Salesman & City Relative Distance

rd1U 16, 73/(
√
2, 24 ∗

√
2, 24 + 0) = 7, 47

rd1V 16, 73/(
√
7, 28 ∗

√
2, 24 + 0) = 4, 14

rd1X 16, 21/(
√
4 ∗
√
2, 24 + 0) = 5, 42

rd1Y 16, 21/(
√
7, 21 ∗

√
2, 24 + 0) = 4, 03

rd1Z 15, 77/(
√
6, 32 ∗

√
2, 24 + 0) = 4, 19

rd2U 16, 73/(
√
7, 28 ∗

√
2, 24 + 0) = 4, 14

rd2V 16, 73/(
√
2, 24 ∗

√
2, 24 + 0) = 7, 47

rd2X 16, 21/(
√
7, 21 ∗

√
2, 24 + 0) = 4, 03

rd2Y 16, 21/(
√
4 ∗
√
2, 24 + 0) = 5, 42

rd2Z 15, 77/(
√
7, 21 ∗

√
2, 24 + 0) = 3, 92

rd3U 16, 73/(
√
7, 21 ∗

√
2, 24 + 2, 24) = 1, 50

rd3V 16, 73/(
√
7, 21 ∗

√
2, 24 + 2, 24) = 1, 60

rd3X 16, 21/(
√
5 ∗
√
2, 24 + 2, 24) = 1, 61

rd3Y 16, 21/(
√
5 ∗
√
2, 24 + 2, 24) = 1, 67

rd3Z 15, 77/(
√
2, 24 ∗

√
2, 24 + 2, 24) = 1, 91
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After Q is assigned to Salesman 3, relative distance coefficients are recalculated and

it can be seen that rd1Z > rd3Z and rd2Z > rd3Z . That’s an expected result because

if Z is assigned to Salesman 3 after Q, it should traverse in a zigzag way.

According to new coefficients, U will be assigned to Salesman 1, V will be assigned

to Salesman 2. At the end of the process, Z is assigned to Salesman 1.

Figure 4.7: Final State of the Map

The total distance covered by salesmen is 16,79. The detailed numbers are shown in

Table 4.7:

Table 4.7: Total Distance by Relative Distances Approach

Distances Within The Paths of Salesman

Salesman Cities Relative Distance

1 A→U 2,24

1 U→X 2,24

1 X→Z 2,83

2 B→V 2,24

2 V→Y 2,24

3 C→Q 5

total A→U→X→Z B→V→Y C→Q 16,79
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Figure 4.8: Task Assignment with Classical Approach

If the cities are assigned to the salesmen with the regular distance criteria, Z will be

assigned to Salesman 1.

Table 4.8: Total Distance by Classical Approach

Distances Within The Paths of Salesman

Salesman Cities Relative Distance

1 A→U 2,24

1 U→X 2,24

2 B→V 2,24

2 V→Y 2,24

3 C→Z 2,24

3 Z→Q 7,21

total A→U→X B→V→Y C→Q→Z 18,41

The total distance of the solution generated by the regular distance criteria is more

than the relative distance approach. Our approach performed 8.8% better than the

classical approach in terms of the total distance covered by salesmen. If the objective

is minimizing the maximum distance covered by a salesman, our approach performed

22,7% (9.45 vs. 7.31) better than the classical approach.
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4.3 Improvement Heuristics

After the greedy task assignment, two improvement heuristics are applied to decrease

the total cost. The first one is swapping the part of assigned cities among salesmen.

Second one is reversing the orders of cities assigned to a salesman.

An example output of the relative distance approach and its total cost can be seen in

Figure 4.14.

Figure 4.9: An example MTSP Output

The green-colored cities will be the subject of the task swapping procedure among

salesmen. The first swapping operation is done for the city 13 between the salesmen

starts from city 23 and city 12.

The salesman starts from 23 draws a G shaped path due to having the upper left cities

(7,24,43) of the map in its schedule. These nodes are transferred to the salesman starts

from 1 and the total distance is reduced.
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Figure 4.10: MTSP Output after Task Swapping

City 11 is transferred from the salesman starts from 23 to the salesman starts from 34.

After these swapping operations, the total distance covered by salesman is reduced

from 403 to 394.

In Figure 4.11, a sample task reversing procedure can be seen. The salesman starts

from City 5, reversed the 50-16 chain to 16-50 chain.

Figure 4.11: MTSP Output after the Task Reversing

Another task reversing procedure is visualized in Figure 4.12. The salesman starts

34



from city 9 reversed the 29-21-34-30 chain to 30-34-21-29 chain.

Figure 4.12: MTSP Output after the Task Reversing

In summary, the proposed solution method consists of two phases;

• Constructing an Initial Solution via Relative Distance Approach

• Improvement with Two Operations

– Task Swapping between Salesmen

– Reversing the Tasks of Salesman

4.4 Algorithm & Pseudo Code

The principles and the mechanism of the approach are given in the previous section.

Here, you can find the pseudo code and the related explanations. After the pseudo

code, complexity of each part will be shown with respect to the number of cities and

the number of salesmen

At the initialization part of the problem, (N−M)×M → θ(N×M−M2) iterations

were executed to find the initial relative distance coefficients (lines 2-12).

After that, the city-salesman pair with the highest relative distance coefficient is de-

termined and the city is assigned to the salesman with the optimal position (lines

13-14).
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Algorithm 1 Task Assignment & Ordering With Relative Distance Approach
1: NumberofAssignedCities = NumberOfDistinctStartingCities

2: for i = 1 to N do

3: for k = 1 to M do

4: mik ← cik

5: end for

6: Mi ←Mi +mik

7: end for

8: for i = 1 to N do

9: for k = 1 to M do

10: rdik ←Mi/(
√
mik ∗

√
d)

11: end for

12: end for

13: (AssignedCity, AssigneeSalesman)← argmaxik(rdik)

14: AssignTheCity(AssignedCity, AssigneeSalesman)

15: NumberofAssignedCities = NumberofAssignedCities+ 1

16: while NumberofAssignedCities ≤ N do

17: for i = 1 to N do

18: rdiAssigneeSalesman ←Mi/(
√
miAssigneeSalesman ∗

√
d+ pAssigneeSalesman)

19: end for

20: (AssignedCity, AssigneeSalesman)← argmaxik(rdik)

21: AssignTheCity(AssignedCity, AssigneeSalesman)

22: NumberofAssignedCities = NumberofAssignedCities+ 1

23: end while
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Within each iteration of while loop, the only relative distance coefficient updates are

done for the salesman with the most recent task assignment. Because other relative

distance coefficients didn’t changed by the assignment. The fact can be observed

from the differences between Table 4.2 & Table 4.3 and Table 4.5 & Table 4.6.

Before the while loop, M+1 cities are already assigned. In each iteration of while

loop, one city is assigned to a salesman. It means that there will be N-M-1 iterations

within the while loop. In x’th iteration, relative distance coefficients of N-M-x cities

with the most recent salesman are re-calculated.

The complexity of each relative distance recalculation is θ(⌈N
M
⌉) in x’th iteration of a

while. The average-time complexity of the problem becomes (N −M − 1)× (N −
M − x)× N

M
→ θ(N

3

M
).

Before completing the Relative Distance Approach, the importance of the third pa-

rameter
√

d+ pAssigneeSalesman should be explained. With this parameter, relative

distance coefficient becomes inversely proportional to path length of a salesman. The

inverse proportion makes difficult the assignment of new city to the salesmen with

higher distance costs. Without this parameter unbalanced task assignments, more-

over task-less salesmen would be observed.

Figure 4.13: An Output Without Third Parameter

An example task allocation sequence by relative distance approach can be seen from

Figure 4.13.
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Figure 4.14: MTSP Output after the Task Reversing
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4.5 Brute Force Method

In the MTSP literature, there are various researches with different categories like

open path & close path or single depot & multiple depots. However, the absence of a

standardized input instances makes it difficult to compare results across studies. Due

to this situation, two different brute force algorithms are deployed to evaluate our

algorithm’s performance.

The first brute force method looks for the best solution among almost all possible

scenarios.

This method can be used to evaluate our algorithm’s performance for N ≤ 16 and

M ≤ 4

Algorithm 2 Complete Brute Force Approach

1: Number ← (M+1)N−M−1
M

2: OptimalCost = INF

3: for i = Number to Number ×M do

4: RadixedNumber = Radix(Number,M + 1)

5: TaskAssignmentArray = NumberToArray(RadixedNumber)

6: if IsProper(TaskAssignmentArray) then

7: while NewPermutation(TaskAssignmentArray)exists do

8: TasksWithOrders = NewPermutation(TaskAssignmentArray)

9: CostOfScenario = CalculateCost(TasksWithOrders)

10: if CostOfScenario < OptimalCost then

11: OptimalCost = CostOfScenario

12: OptimalSolution = TasksWithOrders

13: end if

14: end while

15: end if

16: end for

In this algorithm (M+1)N−M−1
M

is treated as a magic number to explore different task

assignments iteratively.
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Assume that there are 14 cities and 3 salesmen that starts from different cities.

(11111111111)4 = 40 + 41 + 42 + ...+ 410 = (4)11−1
3
→ (M+1)N−M−1

M
.

(11111111111)4 represents the assignment array on base four. It means that all cities

are assigned to salesman 1. There are 11 digits because of the number of unassigned

cities. The next assignment arrays will become (11111111112)4, (11111111113)4

then (11111111121)4 to (33333333333)4.

Before proceeding to permutation part, the task assignment is examined according

to the task allocation balance. If more than 2(N−M)
M

cities assigned to a salesman,

it doesn’t considered proper and procedure continues to acquire a proper task as-

signment array. After determining task assignments, permutations within the task

assignments are tried to find best solution.

Complexity of this procedure is O(N !M).

The second brute force algorithm is used to evaluate relative distance approach’s out-

puts in terms of task orderings only. It doesn’t seek for new assignment options due

to the exponentially increasing execution times. It can be applied to instances with
N
M
≤ 10.

Let lk be the number of cities assigned to salesman k. Complexity of the partial brute

force method is (max(lk)− 1)!

40



Algorithm 3 Partial Brute Force Approach
1: NumberofAssignedCities = NumberOfDistinctStartingCities

2: for i = 1 to N do

3: for k = 1 to M do

4: mik ← cik

5: end for

6: Mi ←Mi +mik

7: end for

8: for i = 1 to N do

9: for k = 1 to M do

10: rdik ←Mi/(
√
mik ∗

√
d)

11: end for

12: end for

13: (AssignedCity, AssigneeSalesman)← argmaxik(rdik)

14: AssignTheCity(AssignedCity, AssigneeSalesman)

15: NumberofAssignedCities← NumberofAssignedCities+ 1

16: while NumberofAssignedCities ≤ N do

17: for i = 1 to N do

18: rdiAssigneeSalesman ←Mi/(
√
miAssigneeSalesman ∗

√
d+ pAssigneeSalesman)

19: end for

20: (AssignedCity, AssigneeSalesman)← argmaxik(rdik)

21: AssignTheCity(AssignedCity, AssigneeSalesman)

22: NumberofAssignedCities← NumberofAssignedCities+ 1

23: end while

24: TaskAssignmentArray is constructed

25: while NewPermutation(TaskAssignmentArray)exists do

26: TasksWithOrders← NewPermutation(TaskAssignmentArray)

27: CostOfScenario← CalculateCost(TasksWithOrders)

28: if CostOfScenario < OptimalCost then

29: OptimalCost← CostOfScenario

30: OptimalSolution← TasksWithOrders

31: end if

32: end while
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CHAPTER 5

EXPERIMENTAL RESULTS AND EVALUATIONS

In this chapter, outputs of the relative distances approach and running times will be

presented for different number of cities, number of salesmen and starting cities. Cur-

rent studies and researches are prioritized to compare performances but most of stud-

ies tried to solve Single Depot MTSP[52] or Closed Path MTSP [53]. Most of the re-

searches didn’t evaluate their performances with the public data sets like TSPLIB[54].

Due to this situation, randomly generated instances are also used and we compared

our performance with Brute Force methods’ outputs. 3 Groups were determined to

make precise evaluation and accurate analyses.

• In this group, Problem Instances with ≤ 16 cities and ≤ 4 salesmen are evalu-

ated. Complete Brute Force method is deployed to determine the performance

of Relative Distances Approach.

• Problem instances with > 16 and ≤ 60 cities and N
M
≤ 10 are in this group.

Partial Brute Force method is applied to observe the performance of Relative

Distances Approach.

• Problem instances with > 60 cities are in this group. Other studies are used

to compare our algorithm’s performance. Also, visual outputs are provided to

show the feasibility of our solutions.

5.1 Instances with Less Than 17 Cities

Here, we used ulysses16 instance from TSPLIB and E15, which is generated ran-

domly.
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For Ulysses16; 2-salesmen, 3-salesmen, 4-salesmen variants are tried. Within these

variants, single-depot and multi-depot cases are examined.

You can find the compared stats of relative distances approach and complete brute

force method for ulysses16 & 4 salesmen variant in Table 5.1.

Table 5.1: Overall Results for Ulysses16 - 4 Salesmen

Ulysses16 - 4 Salesmen

Metric Relative Distances Brute Force

Average Total Cost 39,330 39,330

Average Makespan 21,3 21,3

Elapsed Time (ms) 0,5 526252

With the relative distances approach, the best solutions are explored within only 0,5

milliseconds (+1.000.000 times faster). In Figure 5.1, some sample outputs of relative

distances approach for 4-salesmen variant are given.

Figure 5.1: Outputs of Ulysses16 with 4 salesmen within different depot scenarios

The left one shows the instance that each salesmen start from different cities (3, 10,

15, 16). In the second version, 2 salesmen start from same city, others start from other

cities (6, 8, 8, 12). The last version shows the single depot (12) case. For all types of

depot scenarios, the optimal solutions are obtained.
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For the 3-salesmen variant of the Ulysses16, the optimal solutions are also obtained

by relative distances approach.

You can find the compared stats of relative distances approach and complete brute

force method for ulysses16 & 3 salesmen variant in Table 5.2.

Table 5.2: Overall Results for Ulysses16 - 3 Salesmen

Ulysses16 - 3 Salesmen

Metric Relative Distances Brute Force

Average Total Cost 42,583 42,583

Average Makespan 25,871 25,871

Elapsed Time (ms) 0,9 611108

Thanks to the relative distances approach, the best solutions are explored within only

0,9 milliseconds (+600.000 times faster). In Figure 5.2, some sample outputs of rela-

tive distances approach for 3-salesmen variant are given.

Figure 5.2: Outputs of Ulysses16 with 3 salesmen within different depot scenarios

On the left, all salesmen starts from different cities (3,5,6). Two salesmen starts from

12 and the other starts from 16 at the second instance. All salesmen starts from 10

at the right instance. For multi-depot, multi&single-depot and single-depot variants,

optimal results are found in milliseconds.
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The relative distances approach didn’t produce the optimal result for all Ulysses16 -

2 Salesmen variants. You can see the stats of the experimental results in Table 5.3.

Table 5.3: Overall Results for Ulysses16 - 2 Salesmen

Ulysses16 - 2 Salesmen

Metric Relative Distances Brute Force

Average Total Cost 47,962 47,585

Average Makespan 33,010 33,917

Elapsed Time (ms) 1,2 770993

First, instances that relative distances approach found the optimal solution are shown

in Figure 5.3.

Figure 5.3: Outputs of Ulysses16 with 2 salesmen within different depot scenarios

As mentioned in previous variants, this approach can also find optimal results on

single-depot instances and multi-depot instances.

But it’s been observed that some instances in which our approach didn’t find the

optimal result.

Relative Distances Approach has more total cost (49,1281 & 47,6198) than Brute

Force method but it has reduced makespan (27,5476 & 31,1749) for the example

instance shown in Figure 5.4.
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Table 5.4: Relative Distance Approach vs. Brute Force Method

Ulysses16 - 2 Salesmen

Metric Relative Distances Brute Force

Total Cost 49,128 47,620

Makespan 27,547 31,174

Elapsed Time (ms) 1,2 875396

Figure 5.4: Relative Distances Approach vs Brute Force for Ulysses16 with 2 sales-

men

Up to this point, it can be said that relative distances approach is not dominated by

the brute force method in terms of two different objectives.

In TSPLIB, the minimum size instance is Ulysses16. Other instances have larger sizes

and can not be examined by the complete brute force method. Due to this factor, we

used a randomly generated instance, E15.

For E15; 1-salesman, 2-salesmen and 3 salesmen variants are observed. Within these

options, single-depot and multi-depot cases are examined.

You can find the compared stats of the relative distance approach and complete brute

force method used for E15 & 3 salesmen variant in Table 5.5.
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Table 5.5: Relative Distance Approach vs. Brute Force Method

E15 - 3 Salesmen

Metric Relative Distances Brute Force

Total Cost 51,005 50,380

Makespan 25,060 27,150

Elapsed Time (ms) 0,7 105696

In Figure 5.5, examples of E15 instances are shown whether the optimal solution is

found or not by Relative Distance Approach.

Figure 5.5: Outputs of E15 with 3 salesmen within different depot scenarios

The left one shows the multi depot case, second figure shows 2 starting depots (9,15)

and the last one shows the single depot case (14).

The last output is not the cost-optimal solution. Cost-optimal solution has less total

cost but more makespan (31,542 &30,761).

You can find the compared stats of the relative distance approach and complete brute
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Figure 5.6: Relative Distances Approach vs Brute Force for E15 with 3 salesmen

starts from same depot

force method used for E15 & 2 salesmen variant in Table 5.6.

Table 5.6: Relative Distance Approach vs. Brute Force

E15 - 2 Salesmen

Metric Relative Distances Brute Force

Total Cost 58,919 58,644

Makespan 33,882 37,481

Elapsed Time (ms) 0,8 64791

Figure 5.7: Outputs of E15 with 2 salesmen within different depot scenarios

Multi depot & single depot cases shown in Figure 5.7. The first solution is cost-

optimal but the second solution is not.

The single depot 2 salesman variant of the E15 didn’t solved in terms of the cost-

optimality. But again, makespan of the cost-optimal solution is higher than the rela-

tive distance approach’s output (35,635 vs. 32,527).
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Figure 5.8: Relative Distances Approach vs Brute Force for E15 with 2 salesmen

starts from same depot

Relative Distances Approach can also finds solutions to the Traveling Salesman Prob-

lem. In this case, it is not the cost-optimal but the 1.66% worse solution is obtained

in milliseconds.

Figure 5.9: Relative Distances Approach vs Brute Force for E15 with 1 salesman

5.2 Instances with between 17 and 60 Cities

From this section, Complete Brute Force approach can not be applicable due to the

exponentially growing solution spaces.

We will evaluate our work according to four references in this section and the next

section;

• Wang et al’s[4] work

• Ndiaye et al’s [5] work

• Lou et al’s [6] work
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• Partial Brute Force Approach

In this section, we examine relative distances approach’s performance on eil51 and

berlin52 instances from TSPLIB. This evaluation will be based on task orders, alterna-

tive task assignment options will not be considered due to the exponentially growing

solution space.

You can find the compared stats of the relative distance approach and partial brute

force method used for eil51 & 5 salesmen variant in Table 5.7.

Table 5.7: Relative Distance Approach vs. Partial Brute Force

eil51 - 5 Salesman

Metric Relative Distances Brute Force

Total Cost 394,602 394,431

Makespan 113,425 113,425

Elapsed Time (ms) 5 36340

Example problem instances that optimal orders can be found by relative distances

approach are given in Figure 5.10.

Figure 5.10: Outputs of eil51 with 5 salesmen

There also exist some instances that optimal orders didn’t found. In the example

shown from Figure 5.11, it can be seen that cities 23,7,43 and 24 re-ordered by the

partial brute force approach and reduced cost by 0.513 (0.12%). To guarantee the

optimality of orders, much more iterations should be executed and the elapsed time

increases by 6800 times (5 to 34300). There is a trade-off between the elapsed time

and the total cost here.
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Figure 5.11: Relative Distance Approach vs. Partial Brute Force for 5 salesmen

Detailed stats for different eil51 instances with 6 salesmen are given in the table.

Table 5.8: Relative Distance Approach vs. Partial Brute Force

eil51 - 6 Salesmen

Metric Relative Distances Brute Force

Total Cost 394,26 393,61

Makespan 90,35 89,86

Elapsed Time (ms) 4,7 39411

Example problem instances that optimal orders can be found by relative distances

approach are given in Figure 5.12.

Figure 5.12: Outputs of eil51 with 6 salesmen

On the left, all salesmen started from different cities. Right figure shows the instance

that 6 salesmen starts from 3 cities two by two.

There is also an instance that the relative distances approach didn’t find the optimals.

In the left side of Figure 5.13, cities 7,23,24 and 43 are also not in an optimal order.
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Figure 5.13: Relative Distance Approach vs. Partial Brute Force for 6 Salesman

Also; 50,9,30,34,41,26,20,3,35 and 36 should be re-ordered to find the optimal orders.

The cost difference between two results is 1.967 (0.47%). To find the order-optimal

solution, 14000 times slower (56700/4) process should be executed.

For the berlin52 instance, all executions obtained the order-optimal results. You can

find the detailed stats in 5.9.

Table 5.9: Relative Distance Approach vs. Partial Brute Force for berlin52

berlin52

Salesmen Metric Relative Distances Brute Force

5 Total Cost 6404,44 6404,44

6 Total Cost 6140,84 6140,84

7 Total Cost 5851,25 5851,25

8 Total Cost 5919,63 5919,63

5 Makespan 2280,9 2280,9

6 Makespan 1489,6 1489,6

7 Makespan 1960,3 1960,3

8 Makespan 1686,9 1686,9

5 Elapsed Time (ms) 5 29526

6 Elapsed Time (ms) 4,3 1755

7 Elapsed Time (ms) 4 241

8 Elapsed Time (ms) 4 47

In Figure 5.14, multi-depot instances and multi&single instances are shown.
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Figure 5.14: Outputs of Relative Distance Approach for berlin52

5.3 Instances with More Than 60 Cities

There doesn’t exist any open-path multiple-depot MTSP research on the literature

except Wang’s, Ndiaye’s and Lou’s study. Under this condition, comparison tables

between these studies and our RDA will be provided first. Then, solutions with larger

problem sizes will be visualized and evaluated based on their shapes & intersections.

All these three studies didn’t provide the starting cities of the salesmen. Due to this

fact, it can be said that they presented the results by the most proper starting cities

for them. Our starting cities are not selected to reach the optimality. Beating Wang’s,

Ndiaye’s and Lou’s results is sufficient to be presented here. Because, this problem

doesn’t seek for the optimal starting cities.

According to this table, it can be said that the relative distance method can easily
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Table 5.10: Smodel vs RDA in terms of total cost and elapsed time

Comparison between Smodel and RDA

Instance Agents Smodel (cost & ms) RDA (cost & ms)

eil51 2 403 & 12 400 & 4

eil51 4 365 & 12 363 & 4

eil51 5 356 & 12 352 & 3

berlin52 2 7409 & 11 6705 & 4

berlin52 3 7019 & 11 6764 % 3

berlin52 7 5818 & 11 5607 & 3

pr136 2 101736 & 265 92316 & 21

pr136 3 99358 & 265 90681 & 17

pr136 8 88254 & 265 83745 & 17

st70 3 613 & 34 600 & 7

st70 4 579 & 34 571 & 7

pr439 5 105894 & 1428 102557 & 849

pr439 7 100341 & 1428 99329 & 982

Lin318 2 47065 & 1458 44096 & 610

Lin318 10 40986 & 1458 39539 & 356

provide solution to the different types of problem instances based on their sizes or

salesman counts.

The RDA results in Tables 5.10, 5.11 and 5.12 don’t show the completely optimal

scenarios in the given conditions because MTSP doesn’t aim to determine the starting

points on the map. RDA finds the proper results in a given instance regardless of the

depot counts or salesman distribution.

The results obtained by the relative distances approach are shown at Appendix.

There doesn’t exist any study that presented an MTSP algorithm and shown their

applications on pr1002 or usa13509 maps. Due to their enormous sizes, their opti-

malities can not be guaranteed.
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As mentioned in the previous chapters, self intersections and intersections between

salesmen are the signals of the inoptimal solutions. As can be seen from our appli-

cations, there doesn’t exist any intersection on pr1002 and usa13509 maps. They can

be seen from the Appendix.
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Table 5.11: Ndiaye’s Transformation Algorithm vs RDA in terms of total cost and

elapsed time

Comparison between Transformation Algorithm and RDA

Instance Agents Assaf & Ndiaye (cost &

ms)

RDA (cost & ms)

gr24 2 1109 & 6700 1075 & 1

gr24 3 1011 & 3200 956 & 1

gr24 5 900 & 1800 848 & 1

gr48 2 4522 & 10000 4430 & 3

gr48 3 4394 & 10000 4289 % 3

gr48 5 4041 & 23200 3915 & 3

ftv33 2 1141 & 8200 1095 & 2

ftv33 3 1073 & 4600 964 & 2

ftv33 5 973 & 3400 845 & 2

ftv35 2 1283 & 20900 1257 & 2

ftv35 3 1193 & 16500 1128 & 2

ftv35 5 1094 & 3500 1013 & 2

ftv38 2 1345 & 9700 1311 & 2

ftv38 3 1259 & 51400 1240 & 2

ftv38 5 1182 & 12400 1118 & 2

ftv44 2 1460 & 184400 1450 & 3

ftv44 3 1407 & 14100 1355 & 2

ftv44 5 1317 & 5500 1224 & 2

ftv47 2 1623 & 290000 1567 & 3

ftv47 3 1540 & 13400 1483 & 3

ftv47 5 1471 & 36000 1330 & 2
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Table 5.12: Lou’s Partheno-Genetic Algorithm vs RDA in terms of total cost and

elapsed time

Comparison between Partheno-Genetic Algorithm and RDA

Instance Agents Lou (cost) RDA (cost)

eil51 3 409 378

eil76 3 526 504
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

In this thesis, we worked on the Multi-Depot Open-Path Multi Traveling Salesman

Problem. In general, there are two different objectives for the problem; minimizing

the total distance covered by all salesmen and minimizing the maximum distance

covered by a salesman. Our aim is to minimize the total distance and to keep the

maximum distance (makespan) in a reasonable level.

Due to the combinatorial structure of the problem, optimal solutions can not be found

in polynomial time. The fact makes the problem insolvable in real life applications.

To reach the optimal or near-optimal solutions, greedy heuristics are deployed in the

thesis.

Apart from the other researches, tour method didn’t split the problem into two sec-

tions as task assignment and the arranging the assigned tasks in an order. We proposed

the Relative Distances Approach that combines these two phases into one stage.

Relative Distances Approach assigns a city to a salesman with respect to the three

parameters.

• Sum of marginal insertion costs to salesmen’s paths.

• Minimum marginal insertion cost to a salesman’s path.

• Calculated distance of the salesman with the minimum marginal insertion cost.
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By the parameters given above, relative distance coefficients are calculated for each

salesman & city pair in. The pair with the highest coefficient is matched and the

calculation continues iteratively until all cities are assigned to salesmen. Complexity

of this step is O(N
3

M
). It means that the problem is solved in polynomial time.

After the iterative assignment step, task swapping and order reversing heuristics are

applied to reduce the total distance covered by the salesmen.

Performance of the solutions provided by Relative Distances Approach is evaluated

by different methods.

• First, outputs are compared with Wang’s [4], Ndiaye’s [5] and Lou’s [6] re-

search.

• For the smaller problem instances, the outputs are evaluated by the complete

brute force algorithm which all possible task assignment and sequencing sce-

narios are examined.

• In the moderate size problem instances, the results are evaluated by the partial

brute force algorithm which looks at the alternative sequencing options only.

• The extreme-size instances are visualized and evaluated by their intersection-

status.

6.2 Future Work

To make the problem more applicable in real-life, some constraints and coefficients

will be added into the problem.

• Priority of the tasks will have an importance in the problem. As mentioned

in the introduction, disaster management is an application area of the MTSP.

Giving importance coefficients according to damage levels of the locations will

ensure the applicability.

• Deadlines will be inserted into a problem, it can be important in real life sce-

narios like same-day delivery.
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APPENDIX A

APPENDIX FROM SMODEL & RDA COMPARISON

Figure A.1: Output from the 1st line of Table 5.10

Figure A.2: Output from the 2nd line of Table 5.10
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Figure A.3: Output from the 3rd line of Table 5.10

Figure A.4: Output from the 4th line of Table 5.10
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Figure A.5: Output from the 5th line of Table 5.10

Figure A.6: Output from the 6th line of Table 5.10
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Figure A.7: Output from the 7th line of Table 5.10

Figure A.8: Output from the 8th line of Table 5.10
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Figure A.9: Output from the 9th line of Table 5.10

Figure A.10: Output from the 10th line of Table 5.10
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Figure A.11: Output from the 11th line of Table 5.10

Figure A.12: Output from the 12th line of Table 5.10
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Figure A.13: Output from the 13th line of Table 5.10
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APPENDIX B

APPENDIX FOR LARGER INSTANCES

Figure B.1: RDA’s solution to the pr1002 instance with 5 salesmen found in 30 secs.
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Figure B.2: RDA’s solution to the pr1002 instance with 17 salesmen found in 16 secs.

Figure B.3: RDA’s solution to the pr1002 instance with 30 salesmen found in 9 secs.
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Figure B.4: RDA’s solution to the usa13509 instance with 10 salesmen found in 1214

secs.

Figure B.5: From the visual, it can be misunderstood that there are intersections in

some regions
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Figure B.6: There is no intersection in the first rectangle

Figure B.7: Zoomed in more to the region 1
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Figure B.8: There is no intersection in the second rectangle

Figure B.9: Zoomed in more to the region 2
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Figure B.10: There is no intersection in the third rectangle
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