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ABSTRACT

RATE SPLITTING FOR INTERFERENCE CHANNELS WITH DEEP
REINFORCEMENT LEARNING

Irkıçatal, Osman Nuri

M.S., Department of Electrical and Electronics Engineering

Supervisor: Assoc. Prof. Dr. Ayşe Melda Yüksel Turgut

Co-Supervisor: Assist. Prof. Dr. Elif Tuğçe Ceran Arslan

January 2024, 82 pages

In recent advancements within communication systems, the rate-splitting multiple

access (RSMA) technique has emerged as a crucial strategy to address interference,

a persistent challenge in modern communication systems. This study examines the

detailed application of precoding methodologies within RSMA, focusing on the com-

plex environment of multiple-antenna interference channels and leveraging the ca-

pabilities of deep reinforcement learning. The primary objective is to optimize pre-

coders and allocate transmit power for both common and private data streams, re-

quiring a nuanced approach involving multiple decision-makers within a continuous

action space. To address this challenge, the study proposes the utilization of a multi-

agent deep deterministic policy gradient (MADDPG) framework. Within this frame-

work, decentralized agents operate with partial observability but collectively learn

from a centralized critic, navigating a multi-dimensional continuous policy space to

optimize actions. Simulation outcomes highlight the effectiveness of the proposed

rate-splitting method, achieving the information-theoretical upper bound for the sum

rate in the single-antenna scenario. Even in multiple-antenna settings, its perfor-
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mance closely approaches this theoretical limit, outperforming benchmarks set by

other techniques such as MADDPG without rate-splitting, maximal ratio transmis-

sion, zero-forcing, and leakage-based precoding methods. These compelling results

emphasize the promising potential of this deep reinforcement learning-driven RSMA

approach in communication systems by substantially mitigating interference and op-

timizing transmission rates and overall system performance.

Keywords: Deep reinforcement learning, Interference channels, Multi agent deep

deterministic policy gradient (MADDPG), Rate-splitting multiple access (RSMA).
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ÖZ

GİRİŞİM KANALLARI İÇİN DERİN PEKİŞTİRMELİ ÖĞRENME İLE HIZ
BÖLÜMÜ

Irkıçatal, Osman Nuri

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. Ayşe Melda Yüksel Turgut

Ortak Tez Yöneticisi: Dr. Öğr. Üyesi Elif Tuğçe Ceran Arslan

Ocak 2024 , 82 sayfa

İletişim sistemlerindeki son gelişmeler ile, hız bölmeli çoklu erişim tekniği (RSMA)

tekniği, çağdaş iletişim sistemlerindeki süregelen bir sorun olan girişimi ele almak

için önemli bir strateji olarak ortaya çıkmıştır. Bu çalışma, RSMA içinde ön kodlama

yöntemlerinin detaylı bir şekilde uygulanmasını inceleyerek, özellikle çok antenli gi-

rişim kanallarının karmaşık alanına odaklanarak, derin pekiştirmeli öğrenmenin yete-

neklerinden yararlanmayı amaçlamaktadır. Temel amaç, ortak ve özel olarak adlandı-

rılan her iki tür veri akışı için ön kodlayıcıları ve iletim gücünü optimize etmektir ve

bu da sürekli bir eylem alanında çoklu karar vericiyi içeren detaylı bir yaklaşım ge-

rektirir. Bu zorluğu ele almak için çalışma, çoklu ajan derin belirli politika gradyanı

(MADDPG) çerçevesinin kullanılmasını önermektedir. Bu çerçeve içinde, dağıtılmış

ajanlar kısmi gözlem yeteneğiyle çalışır ancak merkezi bir eleştirmenden birlikte öğ-

renir, çok boyutlu bir sürekli politika alanında gezinerek eylemleri optimize eder. Si-

mülasyon sonuçları, önerilen hız-bölme yönteminin etkinliğini vurgular ve tek anten

senaryosunda toplam hız için bilgi teorik üst sınırına ulaştığını gösterir. Çoklu an-
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tenli ortamlarda bile performansı bu teorik üst sınır ile yakındır ve ayrıca hız-bölümü

kullanmadan MADDPG, maksimum oranlı iletim, sıfıra zorlama ve sızıntı tabanlı

ön kodlama gibi diğer tekniklerin belirlediği referansları aşar. Bu sonuçlar, bu de-

rin öğrenme destekli RSMA yaklaşımının, girişimi önemli ölçüde azaltarak iletişim

sistemlerinde iletim hızlarını ve genel sistem performansını iyileştirme potansiyelini

vurgular.

Anahtar Kelimeler: Derin pekiştirmeli öğrenme, Çok ajanlı derin belirgin politika

gradyanı, Hız bölmeli çoklu erişim (RSMA).
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advisor, whose exceptional collaboration and immense assistance have been indis-

pensable throughout my research. Her willingness to share extensive knowledge and

experiences has significantly advanced my studies. I am deeply grateful for her con-

tinual guidance and support in all aspects of my work.

My parents, Hatice Irkıçatal and Cemalattin Irkıçatal, along with my sister, Erva

Irkıçatal, and brother, Mehmet Emin Irkıçatal have been the unwavering sources of

support on my journey. Their dedication and unwavering belief in my academic pur-

suits have been the driving force behind my achievements from the very beginning.

I am thankful to all my colleagues whose contributions, too numerous to mention,

have been a constant presence throughout this work.

Lastly, I extend my utmost gratitude to my beloved wife, Beyza Nur Irkıçatal. Through-

out this journey, your exceptional patience and unwavering support during the most

challenging times have been priceless. Your enduring love has been the most pre-

cious gift, and words cannot fully convey how deserving you are of the very best in

everything.

x



TABLE OF CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

ÖZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

LIST OF ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . xviii

CHAPTERS

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Related Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Contributions and Novelties . . . . . . . . . . . . . . . . . . . . . . 9

1.4 Notation and Outline . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 SYSTEM MODEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1 RSMA System Formulation for the SISO Case . . . . . . . . . . . . 16

2.2 RSMA System Formulation for the MISO Case . . . . . . . . . . . . 17

2.3 RSMA System Formulation for the MIMO Case . . . . . . . . . . . 19

xi



3 MADDPG FOR PRECODING AND POWER ALLOCATION COEFFI-
CIENTS OPTIMIZATION . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1 MADDPG Algorithm Construction in the SISO case . . . . . . . . . 22

3.2 MADDPG Algorithm Construction in the MISO case . . . . . . . . . 24

3.3 MADDPG Algorithm Construction in MIMO case . . . . . . . . . . 25

3.4 MADDPG Algorithm Summary . . . . . . . . . . . . . . . . . . . . 27

4 BENCHMARK PRECODING SCHEMES . . . . . . . . . . . . . . . . . . 29

4.1 MADDPG with no Rate-Splitting . . . . . . . . . . . . . . . . . . . 29

4.2 Maximum Ratio Transmission (MRT) . . . . . . . . . . . . . . . . . 30

4.3 Zero-Forcing (ZF) . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.4 Leakage Based Precoding . . . . . . . . . . . . . . . . . . . . . . . 32

4.5 Interference Channel Upper Bounds . . . . . . . . . . . . . . . . . . 33

4.5.1 SISO Weak Interference Channel . . . . . . . . . . . . . . . . 33

4.5.2 SISO Mixed Interference Channel . . . . . . . . . . . . . . . 36

4.5.3 SISO Strong Interference Channel . . . . . . . . . . . . . . . 37

4.5.4 MIMO Channel Capacity . . . . . . . . . . . . . . . . . . . . 38

4.6 No Interference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5 SIMULATION RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.1 Performance Measures . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.2 Numerical Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

xii



REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

A APPENDIX-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

B APPENDIX-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

C APPENDIX-3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

D APPENDIX-4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

xiii



LIST OF TABLES

TABLES

Table 1.1 Some existing works that use a DRL in communication . . . . . . . 8

Table 5.1 Hyperparameters of MADDPG algorithm for SISO . . . . . . . . . 45

Table 5.2 Hyperparameters of MADDPG algorithm for MISO . . . . . . . . . 46

Table 5.3 Hyperparameters of MADDPG algorithm for MIMO . . . . . . . . 47

xiv



LIST OF FIGURES

FIGURES

Figure 1.1 Illustration of a typical RSMA scenario [1]. . . . . . . . . . . . 3

Figure 1.2 The basic reinforcement learning scenario [2]. . . . . . . . . . . 5

Figure 2.1 System architecture for MADDPG with rate-splitting for SISO

case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Figure 2.2 System architecture for MADDPG with rate-splitting for MISO

case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Figure 2.3 System architecture for MADDPG with rate-splitting for MIMO

case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Figure 3.1 MADDPG algorithm structure for SISO case . . . . . . . . . . . 22

Figure 3.2 MADDPG algorithm structure for MISO case . . . . . . . . . . 25

Figure 3.3 MADDPG algorithm structure for MIMO case . . . . . . . . . . 26

Figure 4.1 MADDPG with no RS system model [3] . . . . . . . . . . . . . 30

Figure 5.1 Average sum-rate achieved by MADDPG and the upper bound

due to [4] and [5] for single-antenna base stations, M = 1, and two

users each equipped with single antenna (Q = 1). The MADDPG

curves are obtained by averaging 25 runs, each having 200 time steps

after the algorithm achieves convergence. . . . . . . . . . . . . . . . . 48

xv



Figure 5.2 Convergence curve achieved by MADDPG for multiple-antenna

base stations, (M = 3), and two users each equipped with single an-

tenna (Q = 1) when SNR = 10 dB . . . . . . . . . . . . . . . . . . . . 50

Figure 5.3 Evolution of the weighted sum-rate for MADDPG with rate-

splitting for SNR = 10 dB and for varying β defined in (2.14a). The

skip from one dot to the next represents 100 episodes of training, with

the dots appearing after a delay of 500 episodes. . . . . . . . . . . . . . 51

Figure 5.4 Average sum-rate achieved by MADDPG and the benchmark

schemes for three-antenna base stations, M = 3, and two users each

equipped with single antenna (Q = 1). The MADDPG curves are

obtained by averaging 50 runs, each having 1000 time steps after the

algorithm achieves convergence. . . . . . . . . . . . . . . . . . . . . . 52

Figure 5.5 Confidence bound achieved by MADDPG for three-antenna base

stations, M = 3, and two users each equipped with single antenna

(Q = 1). The confidence interval are obtained by averaging 1000 runs,

each having 1000 time steps after the algorithm achieves convergence. . 54

Figure 5.6 Channel estimation under fixed imperfection over SNR achieved

by MADDPG for three-antenna base stations, M = 3, and two users

each equipped with single antenna (Q = 1). . . . . . . . . . . . . . . . 55

Figure 5.7 Channel estimation under varying imperfection over SNR achieved

by MADDPG for three-antenna base stations, M = 3, and two users. . . 56

Figure 5.8 Decoding order estimation achieved by MADDPG for three-

antenna base stations, M = 3, and two users each equipped with single

antenna (Q = 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Figure 5.9 The average sum-rate achieved by MADDPG algorithm, along

with benchmark schemes, is evaluated in the context of a communica-

tion system with three-antenna base stations (M = 3) and two users

each equipped with three antennas (Q = 3). . . . . . . . . . . . . . . . 58

xvi



Figure A.1 Overview of multi-agent decentralized actor, centralized critic

approach [6]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

xvii



LIST OF ABBREVIATIONS

BC Broadcast channel

BS Base station

CSI Channel state information

CSIT Channel state information at transmitter

DDPG Deep deterministic policy gradient

DRL Deep reinforcement learning

DQL Deep Q-learning

DL Deep learning

DQN Deep Q-network

D2D Device-to-device

i.i.d Independent and identically distributed

IFC Interference channel

MADDPG Multi-agent deep deterministic policy gradient

MADQN Multi-agent deep Q-network

MADDQN Multi-agent double deep Q-network

MAD3QN Multi-agent dueling double deep Q-network

MADRL Multi-agent deep reinforcement learning

MDP Markov decision process

MIMO Multiple-input multiple-output

MISO Multiple-input single output

ML Machine learning

MRT Maximal ratio combining

MG Markov game

OFDM Orthogonal frequency-division multiplexing

xviii



PPO Proximal policy optimization

RSMA Rate splitting multiple access

RS Rate splitting

RIS Reconfigurable intelligent surface

SISO Single input single output

SIC Successive interference cancellation

SLNR Signal-to-leakage-and-noise ratio

SNR Signal-to-noise ratio

SINR Signal-to-interference and noise ratio

TRPO Trust region policy optimization

TD Temporal difference

UAV Unmanned aerial vehicle

UE User equipment

ZF Zero forcing

3D Three dimensional

xix



xx



CHAPTER 1

INTRODUCTION

1.1 Motivation

The imperative for high data rates and reliable connectivity in 6G networks is a direct

response to the escalating demands of data-intensive applications and services [7].

Building upon the foundation laid by 5G, the evolution to 6G is fueled by the exi-

gencies of cutting-edge technologies such as augmented and virtual reality, the in-

ternet of things (IoT), high-definition video streaming, remote healthcare, and au-

tonomous systems [8]. These applications mandate not only accelerated data transfer

but also uninterrupted and reliable connectivity, necessitating advancements beyond

the capabilities of existing networks. One of the principal impediments to achieving

such connectivity at higher data rates is interference. As 6G networks envisage ultra-

densification, characterized by an unprecedented deployment of small cells and con-

nected devices in close proximity, interference becomes a paramount challenge. The

physical closeness of transmitters and devices amplifies interference accumulation,

compromising the quality of signals and impeding the seamless transmission of data.

This ultra-densification, while enhancing network capacity, concurrently intensifies

the complexities associated with interference management [9]. To counteract the

deleterious effects of interference in this context, state-of-the-art interference man-

agement techniques are indispensable. These techniques encompass advanced signal

processing methodologies, spectrum-sharing strategies, cognitive radio systems, arti-

ficial intelligence-driven algorithms, and innovative modulation schemes [10]. They

collectively constitute a robust toolkit for mitigating interference and optimizing spec-

trum utilization in ultra-dense 6G networks. In essence, the transition from 5G to 6G

is propelled by the need to cater to a diverse array of data-intensive applications. The

1



evolution involves not only upgrading existing technologies but also confronting the

challenges posed by ultra-densification. This paradigm shift is essential to meet the

burgeoning demands of a connected world [11], ensuring that 6G networks deliver

the high data rates and reliable connectivity required for the seamless functioning of

futuristic applications.

Rate-splitting multiple access (RSMA) presents a flexible and powerful tool in mod-

ern communication systems, especially within the realm of interference management.

Its usage extends across a spectrum of scenarios where interference poses a significant

challenge to reliable and high-rate data transmission. One prominent application lies

in addressing the interference challenges inherent in ultra-dense 6G networks [12].

In these densely populated network environments, where transmitters and devices are

intricately interwoven in close proximity, interference becomes a critical bottleneck.

RSMA’s ability to divide transmitted messages into distinct layers—common and pri-

vate—proves instrumental in navigating these interference networks. By allocating

portions of the message to the common layer, which is decoded by all receivers be-

fore individual private messages as illustrated in Figure 1.1, successive interference

cancellation (SIC) enables a stepwise decoding process. This approach aims to al-

leviate interference by sequentially eliminating signals from already decoded layers,

allowing subsequent receivers to progressively recover their intended information. In

multi-user systems, the RSMA network incorporates a decoding order due to SIC. The

decoding order plays a crucial role in determining the achievable rate in the network.

As users decode and cancel interference successively, the order in which this process

occurs affects the overall rate of data transmission in the system. This dynamic fea-

ture allows the RSMA network to adapt and optimize its performance based on the

specific decoding sequence, ensuring efficient communication in the presence of in-

terference. RSMA ensures a balanced approach to reducing interference without sac-

rificing the reliability of the intended data streams. This makes RSMA a valuable as-

set for future communication systems where ultra-densification leads to interference

accumulation, enabling these networks to sustain high data rates and reliable con-

nectivity despite challenging interference scenarios. Moreover, RSMA’s applicability

extends beyond network densification—it finds utility in various contexts, including

IoT communications [13], wireless sensor networks, and scenarios demanding se-
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cure and efficient data transmission in interference-prone environments. Its flexible

approach to handling interference makes RSMA a useful and promising technique

for creating smooth, high-rate, and interference-resistant communication systems in

various applications and network environments.

However, solving optimization problems for RSMA presents significant challenges

due to their inherent non-convex nature. [14] These intricacies become particularly

pronounced in scenarios marked by a multitude of users or an expanded array of

rate-splitting layers. The crux of the challenge lies in the non-convex nature of these

optimization problems. This non-convexity translates into a maze of potential rate-

splitting configurations that grows exponentially as the number of users or layers

increases. Consequently, the search space for finding the optimal solution expands

dramatically, rendering the task of pinpointing the most efficient rate-splitting com-

bination a computationally arduous endeavor. This computational burden escalates

significantly, demanding sophisticated algorithms and robust computational resources

like MATLAB CVX tools [15] to navigate the exponentially expansive solution space

for the optimization problem [16] effectively. Devising strategies to tackle this com-

plexity is paramount, as it directly impacts the practical implementation and efficiency

of RSMA in real-world communication systems.

Figure 1.1: Illustration of a typical RSMA scenario [1].

Deep Reinforcement Learning (DRL) stands out as a crucial tool in grappling with
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the intricate challenges embedded within Rate-Splitting Multiple Access (RSMA),

particularly concerning optimization. RSMA’s complexity, intertwined with its vast

solution space, necessitates sophisticated navigation techniques. DRL, with its ca-

pacity to glean optimal strategies through interactions with environments, presents a

promising avenue to tackle these intricacies. Within the framework of a Markov deci-

sion process (MDP), DRL adapts and learns within RSMA’s intricate solution space,

decoding complex patterns. This empowers DRL algorithms to gradually optimize

rate-splitting strategies in dynamic and convoluted interference scenarios, ultimately

augmenting communication systems’ efficiency. DRL’s utilization not only unravels

RSMA’s complexities but also propels the evolution of more adaptive and efficient in-

terference management techniques in contemporary communication networks. At its

core, DRL offers a robust framework, combinating deep learning and reinforcement

learning techniques to learn optimal behaviors by interacting with an environment

to achieve specific objectives. With its components—agent, environment, and re-

ward mechanism [17]—DRL systems aim to maximize cumulative rewards over time

by learning effective actions in varied environmental states as illustrated in the Fig-

ure 1.2. Leveraging deep neural networks, DRL showcases adaptability in handling

high-dimensional spaces, making it ideal for scenarios with vast action spaces and

dynamic, uncertain environments. This adaptability positions DRL as an invaluable

tool in addressing optimization challenges within communication networks, notably

in RSMA, where intricate navigation through expansive solution spaces is paramount.

Reinforcement learning, especially DRL, is increasingly employed in solving com-

munication problems in 5G and 6G due to its adaptability to dynamic and complex

environments. Unlike traditional machine learning solutions, RL learns from inter-

actions with the environment, making it suitable for scenarios where the system’s

behavior is not fully known. RL excels in handling uncertainties and incomplete

information, crucial features in communication networks. It efficiently optimizes re-

source allocation, addressing challenges such as power control, precoder optimization

and bandwidth allocation [18]. With decentralized decision-making capabilities, RL

aligns well with the distributed nature of communication systems. Additionally, RL

handles non-stationary and non-linear dynamics, making it effective in capturing the

complexities of communication channels. It encourages exploration of novel strate-
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Figure 1.2: The basic reinforcement learning scenario [2].

gies, valuable in the rapidly evolving landscape of 6G. Despite the availability of

other machine learning approaches, RL’s unique attributes make it a valuable tool for

optimizing communication networks for performance, efficiency, and adaptability.

1.2 Related Literature

Interference channels have been a subject of significant research and study within

the field of information theory and communications. Over the years, various seminal

works and literature have contributed to understanding and addressing interference

in communication systems. Shannon’s pioneering work in the 1940s and 1950s, par-

ticularly in his landmark paper "A Mathematical Theory of Communication," [19]

initiated the study of information theory and channel capacity, which forms the the-

oretical basis for interference channels. Significant contributions in the 1970s and

1980s expanded the understanding of interference channels. While the work [20] by

Thomas M. Cover and Abbas El Gamal, delved into the theoretical aspects of multiple

access channels and interference, providing fundamental insights into channel capac-

ity and achievable rates in the presence of interference, the work [21] by T. Han and K.

Kobayashi, discusses novel strategies or methodologies that enable the transmission

of data over interference channels while achieving rates that were previously unattain-
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able using conventional approaches. While the precise capacity region of interference

channels remains unknown, seminal works such as [5] and [22] have provided valu-

able insights. These studies propose upper bounds within approximately one bit of the

true capacity region, specifically for single-antenna and multiple-antenna interference

channels, respectively. Despite the complexity of determining the exact capacity re-

gion, these upper bounds offer crucial benchmarks and indications, shedding light on

the potential limits of information transmission in both single and multiple antenna

interference scenarios. Such findings contribute significantly to our understanding,

guiding further exploration and development of communication strategies in envi-

ronments with high interference. Another study [4] focuses on Gaussian channels,

mathematically modeling noise in communication systems, and after normalization,

presents the specific mathematical form of the Gaussian interference channel. The

goal is to define theoretical limits on data transmission rates in Gaussian IFC, offering

insights into achievable communication rates under strong interference conditions.

Rate-splitting was first proposed by Han and Kobayashi [21] as a novel technique

for interference channel. They introduced the concept of rate-splitting as an innova-

tive technique tailored specifically for interference channels. Rate-splitting involves

the segmentation of transmitted messages into two distinct layers: a common layer

shared by multiple users and a private layer specific to individual receivers. This pio-

neering idea aimed to address the challenges posed by interference in communication

channels by enabling a balance between treating interference as noise and decoding

all messages efficiently [12]. By ensuring that all receivers first decode the common

messages before extracting private information, rate-splitting offered a novel strat-

egy to optimize communication in the presence of interference. Since its proposal,

rate-splitting has remained a cornerstone of study and exploration in information the-

ory, serving as a foundation for numerous advancements in interference management

techniques within modern communication networks [23]. Researchers have its appli-

cations, complexities, performance bounds, and practical implementations, highlight-

ing its significance [24] in enhancing communication efficiency in environments with

high interference.

The application of Deep Reinforcement Learning (DRL) in communication systems,

particularly in the context of interference channels and rate-splitting, showcases an
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evolving landscape of innovative strategies. Leveraging the Markov Decision Process

(MDP) framework, researchers have delved into formulating intricate problems like

power allocation within communication networks. Introducing a DRL and MADRL

scheme rooted in the multi-agent Deep Deterministic Policy Gradient (MADDPG)

algorithm which is explained in Appendix A, recent studies, such as [25], have fo-

cused on identifying optimal precoders for transmitters. Prior research, exemplified

by [3] and [26], has explored precoding challenges in multi-cell multi-user interfer-

ence channels, though without integrating rate-splitting techniques.

However, addressing the complexities of interference channels necessitates more de-

tailed approaches. Studies, including [27] and [28], have employed DRL methodolo-

gies, specifically the proximal policy optimization (PPO) algorithm, to tackle power

allocation problems in single-cell communications while incorporating rate-splitting

strategies. Other than that, the study [29] investigates how to manage resources and

address interference among sensing, energy harvesting, and communication func-

tionalities by using trust region policy optimization (TRPO). Furthermore, recent

advancements, such as [30], have utilized Q-learning, namely DQN, techniques to

maximize the signal-to-interference-noise ratio (SINR) in multi-access orthogonal

frequency division multiplexing (OFDM) networks, illustrating the potential of DRL

in enhancing network performance without employing rate-splitting.

Moreover, in the realm of three-dimensional (3D) UAV-based networks, investiga-

tions like [31] have highlighted the efficacy of DRL in mitigating interference. De-

spite these strides, coordinating transmission schemes in interference channels, par-

ticularly addressing joint precoding and power allocation problems, remains an in-

tricate challenge. Other research, such as [32] and [33] delve into energy-efficient

power and rate allocation. The study [32] centers on managing interference in ad-

vanced 6G networks, examining a model within a single-cell single-antenna RSMA

network’s downlink. In contrast, [33] focuses on wireless device-to-device (D2D) un-

derlaid cellular networks, specifically addressing scenarios where multiple D2D pairs

engage in simultaneous wireless information and power transfer.

The studies [34], [35] and [23] explore the integration of RSMA and reconfigurable

intelligent surface (RIS) techniques in next-generation networks. They focus on max-
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Table 1.1: Some existing works that use a DRL in communication

Papers DRL Method Investigated Channel Optimization Problem Inclusion of RSMA Cell/Antenna Configuration

[25]
MADQN, MADDQN,

MAD3QN
Broadcast channel Pilot contamination ✗ Cell-free massive MIMO

[3, 26] MADDPG/DDPG Interference channel Precoder ✗
Multi-user Multi-cell

single-cell MISO

[27, 28] PPO Broadcast channel
Precoder and power

allocation coefficient
✓ Multi-user single-cell SISO

[29] TRPO Broadcast channel
Energy harvesting, sensing and

communication capabilities
✓ Multi-user single-cell MISO

[30] DQL Interference channel Beamformer and power ✗ Multi-user multi-cell MISO

[31] DRL Interference channel Beamformer and power ✗ Single-user multi-cell MISO

[32] DQL Broadcast channel Energy efficiency ✗ Multi-user single-cell MISO

[33] MADQL Broadcast channel Energy efficiency and power ✗ Multi-user single-cell MISO

[23, 34, 35] DL/DDPG Broadcast channel Precoder and power ✓/✗ Multi-user single-cell MIMO

This work MADDPG Interference channel
Precoder and power

allocation coefficient
✓

multi-user SISO,

multi-user MISO,

multi-user MIMO

imizing sum rates in RSMA IoT networks, improving robustness against imperfect

channel information in tera-hertz multi-user MIMO systems, and optimizing resource

efficiency in cellular networks through joint base stations (BS) and RIS design. Using

DRL, hybrid data-model driven schemes, and novel optimization frameworks, these

works aim to enhance spectral efficiency while balancing various network metrics.

The summary of the existing works in the literature is presented in Table 1.1.

The main idea is to consider the coordination challenges as situations where multiple

agents work together within interference channels. These agents must learn and adapt,

coordinating their actions with each other to improve communication performance.

Remarkably, the proposed approach, a pioneering initiative, introduces a novel appli-

cation of DRL. It tackles the complex power allocation and precoder design problems

within interference channels, specifically integrating rate-splitting techniques. This

novel approach stands as a significant advancement, marking the first instance of em-

ploying DRL to resolve the power allocation and precoder problem for interference

channels with rate-splitting challenges, paving the way for more efficient and adaptive

interference management strategies.
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1.3 Contributions and Novelties

Existing research on RSMA and the broadcast channel (BC) within wireless com-

munication networks showcases diverse approaches, some integrating learning algo-

rithms while others rely on conventional optimization methods. These studies focus

on enhancing efficiency and resource allocation but often overlook the learning as-

pects associated with decoding orders and channel estimation errors.

Numerous investigations [15], [36] delve into RSMA and BC, addressing resource

allocation, power control, and spectral efficiency without employing learning algo-

rithms. Instead, they utilize traditional optimization techniques, heuristic approaches,

or game theory principles to optimize system performance.

Conversely, a subset of research [27], [28], [29] within RSMA and BC domains lever-

ages learning algorithms, particularly DRL or other machine learning (ML) methods.

These studies explore optimal resource allocation, power distribution, and rate assign-

ment through adaptable AI-based approaches, contributing to improved performance

in communication networks.

However, most existing works in RSMA and BC neglect aspects such as learning

decoding orders and addressing channel estimation errors. These elements, critical

in optimizing network efficiency and reliability, are yet to be thoroughly examined

within the context of RSMA and BC paradigms. Therefore, while current research

focuses on resource allocation and performance enhancement, there remains untapped

potential in exploring learning mechanisms for decoding and mitigating channel es-

timation errors in inteference channels. The key contributions of this work are sum-

marized as follows:

• The work introduces a novel MADDPG algorithm customized for optimizing

precoding and power allocation coefficients in multiple antenna interference

channels employing rate-splitting strategies.

• The algorithm’s framework allows for centralized learning while enabling de-

centralized execution, which contributes a decentralized and scalable frame-

work for interference management without the need for constant coordination

9



from a central entity.

• The work compares the performance of the proposed MADDPG algorithm

against existing baseline schemes and upper bounds. It showcases the supe-

riority of MADDPG with rate splitting, demonstrating optimal outcomes par-

ticularly in scenarios with multiple antennas at base stations and single antenna

cases.

• The work investigates the impact of channel estimation errors, and incorpo-

rate optimal decoding order selection for common and private messages into

the learning algorithm. These steps enhance the algorithm’s robustness and

broaden its scope of application.

• The study provides a comprehensive analysis of RSMA, outlining its intricacies

and challenges, particularly in managing interference and decoding strategies

for multiple messages. It introduces and explores the utilization of DRL within

RSMA networks, showcasing its potential to optimize resource allocation, ad-

dress interference, and manage complex decoding strategies efficiently.

1.4 Notation and Outline

In this section, we introduce the notations crucial for mathematical operations used

throughout this thesis. To differentiate quantities, lowercase letters (e.g., w) denote

scalars, lowercase boldface letters (e.g., w) denote vectors, while uppercase boldface

letters (e.g., W) represent matrices. The complex conjugate of scalar w is denoted

as w∗, and its magnitude is denoted as |w|. Additionally, the determinant, inverse,

transpose, and Hermitian of a matrix W are represented by |W|, W−1, WT , and WH ,

respectively. To specify the entry in the ith row and jth column of a a matrix W,

we use the notation [W](i, j). Moreover, [W](i, :) and [W](:, j) denote the ith row

and the jth column of W, respectively. Similarly, [w](i) signifies the ith element of a

vector w. For vectors, ∥w∥ represents the Euclidean norm of w. Complex Gaussian

random variables with a mean of µ and variance of σ2 are denoted as CN
(
µ, σ2

)
,

while CN
(
w,R

)
symbolizes complex Gaussian random vectors with a mean of w

and a covariance matrix R. Expectation is depicted as E(·), and the trace operator is
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denoted by Tr (·). For simplicity, network parameters of DRL will be indicated as

Qν
θi
(s, a1, a2), where θi denotes parameterization by another network, specifically the

critic network for each agent, and ν represents the policy under consideration.

The remainder of this work follows a structured progression. Chapter 2 delineates

the RSMA system model, explicating its key components and architectural underpin-

nings. In Chapter 3, the focus is directed towards the specialized MADDPG algo-

rithm tailored explicitly for RSMA, detailing its adaptations and intricacies within

this context. Chapter 4 introduces benchmark schemes utilized for comparative anal-

ysis against the proposed MADDPG algorithm. Moving forward, Chapter 5 syn-

thesizes and presents the findings derived from simulation results, offering insights

into the performance evaluations and contrasts between the proposed algorithm and

benchmarks. Lastly, Chapter 6 encapsulates the study’s conclusions drawn from the

preceding sections and outlines potential pathways for future research, providing a

comprehensive structure to elucidate the efficacy and implications of the proposed

MADDPG approach in RSMA.
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CHAPTER 2

SYSTEM MODEL

The general structure of the system model will be given in this chapter. The spe-

cific explanation about the configurations, namely SISO, MISO and MIMO, will be

presented in the coming sections.

The system model considers an interference channel (IFC) comprising two base sta-

tions (BS) each having M1 and M2 antennas and two users each having Q1 and Q2

antennas respectively paired with each BSi, i = 1, 2. The BSi sends the message Si

to user equipment, UEi. The number of messages that can be transmitted in RSMA,

UN
i , restricted by antenna configurations as follows :

UN
i ≤ min(Mi, Qi). (2.1)

To enable better interference mitigation, Si is split into a common and a private part,

i.e., Sc
i and Sp

i . The Qi common and private messages at each BSi are independently

encoded into streams bic and bip where bic, bip ∈ CMi×1 and respectively precoded

with Wic and Wip, where Wic and Wip ∈ CMi×Mi . All messages b1c, b1p, b2c and

b2p are independent from each other, and E{binb∗in} = 1, i = 1, 2, n = c, p. Then,

the transmitted signal of BSi, xi ∈ CMi×1 where j ̸= i and i, j ∈ {1, 2}, is defined

as

xi = Wicbic +Wipbip. (2.2)

To satisfy the power constraints at each one of the transmitters, we assume |wikc|2 ≤
Pik and |wikp|2 ≤ Pik, where

∑Mi

k=1 Pik is the total power of BSi, and wikc and wikp

are representing the k’th column of Wic and Wip respectively. The received signal at

user UEi is then written as

yi = Hixi +Gjxj + ni. (2.3)
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Here j indicates the index of the interfering signal, j = 1, 2 and j ̸= i. The channel

gain between BSi and UEi is indicated as Hi ∈ CQi×Mi . Similarly, the channel gain

between BSj and UEi is Gj ∈ CQi×Mj . The entries in Hi and Gj are independent

and identically distributed (i.i.d.) and complex valued random variables. The trans-

mitters BSi are informed about their outgoing channel gains Hi and Gi, while the

receivers UEi know only their incoming channel gains Hi and Gj The noise term at

UEi is denoted with ni. It is circularly symmetric complex Gaussian with mean zero

and variance σ2
n,iIQi, i.e., ni ∈ CN

(
0, σ2

n,iIQi

)
. Also n1 and n2 are independent

from each other. For simplicity, we will take σ2
n,i = N0. In the following subsection

rate expressions for rate-splitting are explained.

In order to be able to write the achievable rates for RSMA, the decoding order for bic

and bip have to be determined at both users [1]. Moreover, to attain the best possible

achievable rates, one has to consider all possible choices of these decoding orders.

For the particular system model we study, we take 2 different decoding orders into

consideration for each one of the users. Namely, UEi either decodes in the order (a)

or (b) in 2.4.

(a)bjc → bic → bip

(b)bic → bjc → bip. (2.4)

For example, when UE1 decodes according to the order given in (a) and UE2 decodes

according to (b), the achievable rates at UE1 are as follows :

R1
2c = log2 det

(
IQ1 +G2W2cW2c

HG2
H(

∑
n={c,p}

H1W1nW1n
HH1

H

+G2W2pW2p
HG2

H +N0IQ1)
−1
)

(2.5)

R1
1c = log2 det

(
IQ1 +H1W1cW1c

HH1
H(H1W1pW1p

HH1
H

+G2W2pW2p
HG2

H +N0IQ1)
−1
)

(2.6)

R1p = log2 det
(
IQ1 +H1W1pW1p

HH1
H(G2W2pW2p

HG2
H +N0IQ1)

−1
)

(2.7)

and the achievable rates at UE2 are as follows :
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R2
2c = log2 det

(
IQ2 +H2W2cW2c

HH2
H(

∑
n={c,p}

G1W1nW1n
HG1

H

+H2W2pW2p
HH2

H +N0IQ2)
−1
)

(2.8)

R2
1c = log2 det

(
IQ2 +G1W1cW1c

HG1
H(G1W1pW1p

HG1
H

+H2W2pW2p
HH2

H +N0IQ2)
−1
)

(2.9)

R2p = log2 det
(
IQ2 +H2W2pW2p

HH2
H(G1W1pW1p

HG1
H +N0IQ2)

−1
)
(2.10)

Since the common messages should be decoded at both receivers, common message

rates are actually limited with the minimum of (2.5) and (2.8) and of (2.6) and (2.9).

Thus, we define R1c and R2c as

R1c = min(R1
1c, R

2
1c) (2.11)

R2c = min(R1
2c, R

2
2c). (2.12)

Then, the rate for UEi, i = 1, 2, can be calculated as

Ri = Ric +Rip. (2.13)

Note that one can write 4 different sets of achievable rates as in (2.5)-(2.10), consid-

ering different combinations of decoding orders listed in (a) and (b) in 2.4. Then, for

a given β ∈ [0, 1], that is the given weights of the user rates, and a given decoding

order, the objective is to maximize

max
wikc,wikp,Pic,Pip

βR1 + (1− β)R2 (2.14a)

s.t. |wikc|2 + |wikp|2 ≤ Pik, (2.14b)

i = 1, 2

k = 1, 2, ..,Mi

Mi∑
k=1

Pik = Pi (2.14c)

where wikc and wikp represent the k’th column of Wic and Wip respectively. Also,

Pik = Pikc + Pikp.
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Figure 2.1: System architecture for MADDPG with rate-splitting for SISO case

2.1 RSMA System Formulation for the SISO Case

In the SISO scenario, we expect that the number of messages transmitted in the

RSMA structure is limited to one. This limitation is due to the conditions specified

in Equation (2.1), where M1, M2, Q1, and Q2 are all set to 1. Then, the transmitted

signal of BSi, xi ∈ C1×1 where j ̸= i and i, j ∈ {1, 2}, is defined as

xi =
√
αicbic +

√
αipbip. (2.15)

Since there is no need to determine any precoder vector, wi, in Equation 2.2, αic and

αip become Pic and Pip where αin ∈ [0, 1], n = c, p, indicates the power ratio of the

encoded data bin. Note that αic + αip = Pi. The received signal at user UEi is then

written as

yi = hixi + gjxj + ni. (2.16)

Here j indicates the index of the interfering signal, j = 1, 2 and j ̸= i. Then for the

decoding order of b2c → b1c → b1p, the achievable rates at UE1 can be written as

follows :
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R1
2c = log

(
1 +

|g2|2α2c∑
n={c,p} |h1|2α1n + |g2|2α2p +N0

)
(2.17)

R1
1c = log

(
1 +

|h1|2α1c

|h1|2α1p + |g2|2α2p +N0

)
(2.18)

R1p = log

(
1 +

|h1|2α1p

|g2|2α2p +N0

)
(2.19)

and for the decoding order b2c → b2c → b1p, achievable rates at UE2 are

R2
2c = log

(
1 +

|h2|2α2c∑
n={c,p} |g1|2α2n + |h2|2α2p +N0

)
(2.20)

R2
1c = log

(
1 +

|g1|2α1c

|g1|2α1p + |h2|2α2p +N0

)
(2.21)

R2p = log

(
1 +

|h2|2α2p

|g1|2α1p +N0

)
. (2.22)

Here |x|2 means xxH . The general system architecture that summarizes the whole

network structure is given in Figure 2.1. Then, the rates are calculated exactly the

same as (2.11)-(2.13).

Note that one can write 4 different sets of achievable rates as in (2.17)-(2.22), consid-

ering different combinations of decoding orders listed in (a) and (b) in 2.4. Then, for

a given β ∈ [0, 1] and a given decoding order, the objective is to maximize

max
αic,i=1,2

βR1 + (1− β)R2 (2.23a)

s.t. αic + αip ≤ Pi, i = 1, 2. (2.23b)

2.2 RSMA System Formulation for the MISO Case

Considering the MISO case, it can be anticipated that messages that will be trans-

mitted through the communication channel in RSMA structure are restricted by 1

according to (2.1). Even if we take M1 and M2 as 3, (2.1) is restricted by Q1 and

Q2 for each users. For simplicity, these antenna numbers are taken as 1 for this case.
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Figure 2.2: System architecture for MADDPG with rate-splitting for MISO case

Then, the transmitted signal of BSi, xi ∈ C3×1 where j ̸= i and i, j ∈ {1, 2}, is

defined as

xi =
√
αicwicbic +

√
αipwipbip. (2.24)

To satisfy the power constraints at each one of the transmitters, we assume |wic|2 ≤
Pi and |wip|2 ≤ Pi, where Pi is the total power of BSi. Also αin ∈ [0, 1], n = c, p,

indicates the power ratio of the encoded data bin. Note that αic + αip = 1. The

received signal at user UEi is then written as

yi = hixi + gjxj + ni. (2.25)

Here j indicates the index of the interfering signal, j = 1, 2 and j ̸= i. The channel

gain between BSi and UEi is indicated as hi ∈ C1×M . Similarly, the channel gain

between BSj and UEi is gj ∈ C1×M . The entries in hi and gj are independent and

identically distributed (i.i.d.) and complex valued random variables. Then for the

same configurations, the achievable rates at UE1 can be written as follows :
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R1
2c = log

(
1 +

|g2w2c|2α2c∑
n={c,p} |h1w1n|2α1n + |g2w2p|2α2p +N0

)
(2.26)

R1
1c = log

(
1 +

|h1w1c|2α1c

|h1w1p|2α1p + |g2w2p|2α2p +N0

)
(2.27)

R1p = log

(
1 +

|h1w1p|2α1p

|g2w2p|2α2p +N0

)
(2.28)

and the achievable rates at UE2 are

R2
2c = log

(
1 +

|h2w2c|2α2c∑
n={c,p} |g1w1n|2α2n + |h2w2p|2α2p +N0

)
(2.29)

R2
1c = log

(
1 +

|g1w1c|2α1c

|g1w1p|2α1p + |h2w2p|2α2p +N0

)
(2.30)

R2p = log

(
1 +

|h2w2p|2α2p

|g1w1p|2α1p +N0

)
. (2.31)

The general system architecture that summarizes the whole network structure is given

in Figure 2.2. Then, the rates are calculated exactly the same as (2.11)-(2.13).

Note that one can write 4 different sets of achievable rates as in (2.26)-(2.22), consid-

ering different combinations of decoding orders listed in (a) and (b) in very first part

of System Model on page 15. Then, for a given β ∈ [0, 1] and a given decoding order,

the objective is to maximize

max
wic,wip,αic,i=1,2

βR1 + (1− β)R2 (2.32a)

s.t. αic|wic|2 + (1− αic)|wip|2 ≤ Pi, i = 1, 2. (2.32b)

2.3 RSMA System Formulation for the MIMO Case

The general derivations of the expressions are given through page 2.2-2.14c for MIMO

case. One can see the general system architecture in Figure 2.3.

MIMO RSMA outperforms SISO and MISO RSMA configurations in several ways.

With multiple antennas at both ends, MIMO RSMA enables simultaneous transmis-

sion of multiple data streams, which can be seen in equation (2.2), enhancing spectral
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Figure 2.3: System architecture for MADDPG with rate-splitting for MIMO case

efficiency and offering higher data rates. It harnesses spatial diversity and multiplex-

ing gains, effectively managing interference and improving reliability against channel

fading. The system’s adaptability and robustness to varying channel conditions fur-

ther highlight its superiority, allowing for adaptive strategies and increased overall

flexibility in wireless communication setups.

However, its complexity escalates notably compared to SISO and MISO RSMA sys-

tems. The increased complexity primarily stems from the need to handle multiple

antennas at both the transmitter and receiver ends, resulting in heightened signal pro-

cessing demands and computational requirements. MIMO RSMA involves intricate

spatial processing, necessitating sophisticated algorithms for beamforming, precod-

ing, and decoding across multiple antenna elements. Moreover, managing interfer-

ence and decoding orders becomes more challenging with the increased dimension-

ality and complexity introduced by multiple antennas. Therefore, learning based so-

lution will be presented in the next chapter.
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CHAPTER 3

MADDPG FOR PRECODING AND POWER ALLOCATION

COEFFICIENTS OPTIMIZATION

In this section, we propose to use multi-agent deep reinforcement learning algorithm

with decentralized policies and joint action optimization in order to solve the aver-

age sum-rate maximization problem defined in Chapter 2. Specifically, we adopt the

MADDPG algorithm [6], which is an extension of the well-known deep deterministic

policy gradient (DDPG) algorithm [37] tailored specifically for multi-agent systems.

It is a powerful algorithm that has been successfully applied to challenging tasks in

signal processing and communication areas [38], [25].

MADDPG employs centralized training and decentralized execution, where all agents

share a common critic network to facilitate joint action optimization, and decentral-

ized execution, where each agent independently executes its learned policy based on

local observations. Specifically, the critic network in MADDPG takes as input not

only the local observations and actions of an individual agent, but also the observa-

tions and actions of all other agents in the system. By doing so, the critic can learn a

centralized value function that takes into account the joint actions of all agents. This

centralized value function can then be used to train each agent’s policy network.

On the other hand, during execution or deployment, each agent only has access to its

own local observations and actions, namely, each agent i at the BSi chooses precod-

ing vectors and power allocation coefficient based on local information characterized

by outgoing channels only. This is known as decentralized execution, as each agent

acts independently based on its own observations and policies without relying on in-

formation from other agents. By decoupling execution from learning, MADDPG is

able to handle complex multi-agent systems, where agents have limited or incomplete
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Figure 3.1: MADDPG algorithm structure for SISO case

information about the system as a whole.

The forthcoming sections present specific algorithmic details. While we address de-

coding order estimation in this algorithm, we avoid excessive repetition of similar el-

ements in the algorithm specifics. Nonetheless, we are exploring two scenarios: one

utilizing decoding order estimation, while the other employs an exhaustive search.

The sole divergence between them lies in the count of actor networks integrated into

the system. To incorporate decoding order estimation, an additional actor network is

necessary, maintaining the same inputs as the others but generating a discrete output

that specifies the decoding sequence.

3.1 MADDPG Algorithm Construction in the SISO case

In the realm of the multi-agent actor-critic based reinforcement learning, we need to

define environment, actions, states and rewards. For each decoding order, we consider

an environment with two agents. The overall system for the SISO case is summarized
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in Fig. 3.1.

In this system, each agent i at BSi chooses a precoding vector a power allocation

coefficient αic based on the local observation oi = [hi gi], i ∈ {1, 2}. We construct

an actor network for the the power allocation coefficient αic, and a critic network

to evaluate the performance of policies for each agent i. Let µ = {µϕ1(o1), µϕ2(o2)}
denote the set of policies parameterized by ϕ = {ϕ1, ϕ2}. The agents will choose their

actions ai = [αic] according to the partial state oi by following a deterministic policy

ai = µϕi
(oi). To ensure sufficient exploration, we also add a noise vector, whose

entries are i.i.d. according to N (0, σ2
N) to the deterministic action ai = µϕi

(oi).

Then, the gradient of the expected reward J(ϕi) for each agent i can be computed as

∇ϕi
J(ϕi) = E

[
∇aiQ

µ
θi
(s, a1, a2)|ai=µϕi

(oi)∇ϕi
µϕi

(oi)
]
, (3.1)

where Qµ
θi
(s, a1, a2) represents the state action value function parameterized by the

critic network with θi for each agent. It takes as input the state information s =

(o1, o2), i.e., channel gains for all users, and the actions a = (a1, a2) of all agents, and

outputs the Q-value for agent i.

Each agent receives a collaborative reward, denoted by rβ , which is a function of the

environmental state and actions taken according to state observation.

rβ = βr1 + (1− β)r2, (3.2)

where r1 = R1c + R1p and r2 = R2c + R2p for the case of RSMA, and β and

1 − β denote the given weights of the user rates, defined in (2.23a). MADDPG

uses this rate expression to maximize the total discounted return, which is given by

R =
∑∞

t=0 γ
trµβ,t where rµβ,t is the average sum-rate reward obtained under policy µ

at time t, and γ ∈ [0, 1] denotes the discount factor.

The critic network estimates the Q-value function Qµ
θi
(s, a1, a2), which is the ex-

pected cumulative reward starting from state s = (h1, g1, h2, g2) and taking a joint

action a under policies µ = {µϕ1 , µϕ2}. MADDPG algorithm employs an expe-

rience replay buffer which records the experiences of all agents and stores tuples

< s, a1, a2, rβ, s
′ >. A mini-batch of B experience tuples < sj, a1,j, a2,j, rβ,j, s

′
j >

B

j=1

are randomly sampled from the replay buffer D, where s′j = (o′1,j, o
′
2,j) and rβ,j
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denote the next state and reward observed after actions a1,j , a2,j are taken at state

sj = (o1,j, o2,j), respectively.

In addition, target networks from the DQN algorithm [39] are adopted to provide

stability between actor and critic updates. Target actor networks and critic networks

are denoted by µ− and Q− and parameterized by ϕ− and θ−, respectively.

We update the critic network by minimizing the mean-squared temporal difference

(TD) error L(θi) in sampled mini-batch.

L(θi) =
1

B

B∑
j=1

(
yj −Qµ

θi
(sj, a1,ja2,j)

)2
, (3.3)

where the TD target yj is computed as

yj = rβ,j + γQµ−

θi
(s′j, µϕ−

1
(o′1,j), µϕ−

2
(o′2,j)). (3.4)

Then, we update the actor network for each agent i by using the deterministic policy

gradient as

∇ϕi
J(ϕi) ≈

1

B

B∑
j=1

∇aiQ
µ
θi
(sj, a1,j, a2,j)∇ϕi

µϕi
(oi). (3.5)

The target networks are then updated softly to match actor and critic parameters

ϕ−
i ← τϕi + (1− τ)ϕ−

i θ−i ← τθi + (1− τ)θ−i , (3.6)

where 0 < τ < 1 is a hyper-parameter controlling the update rate. Finally, we

select the best sum-rate over all decoding orders. This is known as exhaustive search.

However, as stated earlier, we also integrated the decoding order estimation to this

algorithm for all antenna configurations.

3.2 MADDPG Algorithm Construction in the MISO case

Since the number of BS is chosen as 2, we consider an environment with two agents.

The overall system is summarized in Fig. 3.2.

In this system, each agent i at BSi chooses a precoding vector wi = [wic wip],

different from SISO case, and a power allocation coefficient αic based on the local
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Figure 3.2: MADDPG algorithm structure for MISO case

observation oi = [hi gi], i ∈ {1, 2}. We construct an actor network for the precoding

vector wi, the power allocation coefficient αic, and a critic network to evaluate the

performance of policies for each agent i. Let µ = {µϕ1(o1), µϕ2(o2)} denote the

set of policies parameterized by ϕ = {ϕ1, ϕ2}. The agents will choose their actions

ai = [αic wic wip] according to the partial state oi by following a deterministic policy

ai = µϕi
(oi). To ensure sufficient exploration, we also add a noise vector, whose

entries are i.i.d. according to N (0, σ2
N) to the deterministic action ai = µϕi

(oi).

Then, the gradient of the expected reward J(ϕi) for each agent i can be computed

same as 3.1. The remaining derivations and formulas, spanning from 3.2 to 3.6, are

consistent across all sections except for the algorithm hyperparameters and the state

representation s = (h1, g1,h2, g2).

3.3 MADDPG Algorithm Construction in MIMO case

We examine an environment containing two agents for every decoding order. The

entire system is outlined in Figure 3.3. In this setup, each agent i at BSi chooses a

precoding vector Wi = [Wic Wip] and a power allocation coefficient Pic based on the
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Figure 3.3: MADDPG algorithm structure for MIMO case

local observation Oi = [Hi Gi], i ∈ {1, 2}. We construct Qi actor networks for the

precoding vectors wik and an actor network for the the power allocation coefficients

Pikc, and a critic network to evaluate the performance of policies for each agent i. Let

µ = {µϕ1(O1), µϕ2(O2)} denote the set of policies parameterized by ϕ = {ϕ1, ϕ2}.
The agents will choose their actions ai = [Pi1c Pi2c · · · PiQic wi1c wi1p wi2c wi2p · · ·
wiQic wiQip] according to the partial state Oi by following a deterministic policy

ai = µϕi
(Oi). To ensure sufficient exploration, we also add a noise vector, whose

entries are i.i.d. according to N (0, σ2
N) to the deterministic action ai = µϕi

(Oi).

Then, the gradient of the expected reward J(ϕi) for each agent i can be computed

same as 3.1. The remaining derivations and formulas, spanning from 3.2 to 3.6,

are consistent across all sections except for the algorithm hyperparameters, the state

representation s = (H1,G1,H2,G2) and observations, Oi.
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3.4 MADDPG Algorithm Summary

MADDPG is an extension of the DDPG algorithm designed for cooperative or com-

petitive scenarios involving multiple interacting agents. It combines the actor-critic

framework of DDPG with multiple actor and critic networks, each agent having its

own policy to select actions based on local observations. This approach allows agents

to learn and interact in environments where their actions affect not only their local

rewards but also the global system performance. Agents iteratively update their poli-

cies using experiences sampled from their own interactions, enabling decentralized

execution based on centralized learning. This algorithm facilitates coordination and

learning in scenarios with multiple decision-making entities while leveraging experi-

ence sharing to improve overall performance in complex environments. The specific

MADDPG algorithm for MIMO Sum-Rate Maximization is given in Algorithm 1.

To obtain other antenna configurations, one needs to replace the particular parts with

equations derived in Section 3.1 and Section 3.2.
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Algorithm 1 MADDPG for Sum-Rate Maximization

Initialize actor networks µϕi
(Oi) and critic networks Qθi(si, ai,1, ai,2) with weights

θi and ϕi

Initialize target networks µ− and Q− with weights θ−i ← θi and ϕ−
i ← ϕi

Initialize replay buffer D
for episode = 1, . . . , E do

for t = 1, . . . , T do

for each agent i do

Observe partial state Oi = (Hi,Gi)

Select action ai = µϕi
(Oi),

Execute action with exploration noise:

ai = µϕi
(Oi) +N (0, σ2

N).

Observe reward ri.

end for

Observe the sum-rate reward rβ = βr1 + (1− β)r2 and state

s = (O1 O2) = (H1,G1,H2,G2) and next state s′

Add transition (s, a1, a2, rβ, s
′) to D

Sample a minibatch of B transitions:

(sj, a1,j, a2,j, rβ,j, s
′
j) from D

Compute target action:

a′j = µ−(o′j)

Compute target Q-value:

yj = rβ,j + γQ−(s′j, a
′
1,j, a

′
2,j)

Update each critic by minimizing the loss:

L(θi) =
1
B

∑B
j=1(yj −Qµ

θi
(sj, ai,1, ai,2))

2

Update each actor using the sampled policy gradient:

∇ϕi
J(ϕi) ≈ 1

B

∑B
j=1∇aiQ

µ
θi
(sj, a1,j, a2,j)∇ϕi

µϕi
(Oi)

Soft update target networks:

θ−i ← τθi + (1− τ)θ−i , ϕ−
i ← τϕi + (1− τ)ϕ−

i

end for

end for
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CHAPTER 4

BENCHMARK PRECODING SCHEMES

In this section, we will be explaining the benchmark precoding schemes MADDPG

with no RS [3], maximum ratio transmission [40], zero-forcing precoding [40], and

leakage based precoding [41]. We will also compare with the upper bounds [4, 5, 22]

on interference channels.

4.1 MADDPG with no Rate-Splitting

If there is no rate-splitting, our scheme reduces to the one in [3]. Also, the system

model reduces to Figure 4.1. There is no common message, bic = ∅, and wic is an all

zero vector. the one in that for MADDPG without rate-splitting, (3.2) can be modified

by using r1 = R1 and r2 = R2 that are given in (4.1) and (4.2). Also, since we only

optimize precoders, but not αic or αip, we use actions only for precoder evaluation.

Then, the rates achieved by this scheme for MIMO case become

Rπ
1 = log det

(
IQ1 + (H1W

π
1 W

π,H
1 HH

1 )(G2W
π
2 W

π,H
2 GH

2 +N0IQ1)
−1
)

(4.1)

Rπ
2 = log det

(
IQ1 + (H2W

π
2 W

π,H
2 HH

2 )(G1W
π
1 W

π,H
1 GH

1 +N0IQ1)
−1
)

(4.2)

where π = {drl} indicates the precoders for MADDPG without rate-splitting.

For the case the expressions (4.1) and (4.2) become

Rπ
1 = log

(
1 +

|h1w
π
1 |2

|g2w
π
2 |2 +N0

)
(4.3)
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Figure 4.1: MADDPG with no RS system model [3]

Rπ
2 = log

(
1 +

|h2w
π
2 |2

|g1wπ
1 |2 +N0

)
, (4.4)

Please note that the terms in the expressions 4.3 and 4.4 become scalar for SISO case.

This scheme will then be used to justify the rate-splitting gain in the Chapter 5, when

we present thesimulation results.

4.2 Maximum Ratio Transmission (MRT)

Maximum ratio transmission is employed at the transmitter side, where transmit an-

tenna weights are matched to the channel [42], [40]. This way, the maximum received

SNR is attained at the intended receivers. This process takes advantage of the spa-

tial diversity offered by multiple antennas at both the transmitter and receiver ends.

By adjusting the transmission weights in this manner, MRT aims to maximize the

received signal power, effectively exploiting the available spatial dimensions and en-

30



hancing the system’s overall performance in terms of reliability and data throughput.

However, maximal ratio transmission does not take interference into consideration.

In maximum ratio transmission there is no rate-splitting and there is no common

message, bic = ∅, wic is an all zero vector, and for MIMO, MISO and SISO cases

precoder expressions are as follows:

For a MIMO system Wmrt
i = Wip, where

Wmrt
i = HH

i . (4.5)

For a MISO system wmrt
i = wip, where

wmrt
i = hH

i . (4.6)

For a SISO system wmrt
i = wip, where

wmrt
i = hH

i . (4.7)

4.3 Zero-Forcing (ZF)

As in maximum ratio transmission, there is no rate-splitting in zero-forcing transmis-

sion, and the transmitters aim to eliminate interferences among data streams by setting

the transmission weights such that the signal transmitted from each antenna is orthog-

onal to the interference caused on the other receiving antennas. This is achieved by

using the pseudo-inverse of the channel matrix to create a null space for the interfer-

ence, i.e., by projecting input data symbols on the null space of Gi. By nullifying the

interference, ZF seeks to improve the reliability of data transmission without causing

mutual interference among the multiple antennas, thereby enhancing the overall sys-

tem performance in terms of throughput and signal quality. However, ZF might be

sensitive to noise and can lead to amplication of noise in the process of eliminating

interference. As a result, for ZF bic = ∅, wic is an all zero vector, and

for a MIMO system W zf
i = Wip, where

W zf
i = (GH

i Gi)
−1HH

i , (4.8)
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for a MISO system wzf
i = wip, where

wzf
i = (gH

i gi)
−1hH

i , (4.9)

and for a SISO system wzf
i = wip, where

wzf
i = (gHi gi)

−1hH
i . (4.10)

4.4 Leakage Based Precoding

SLNR precoding technique is designed to optimize signal transmission in multi-user

communication systems by minimizing interference among users while considering

the system’s noise. Unlike traditional SNR-based approaches, SLNR focuses on min-

imizing both interference and noise to enhance the overall signal quality. In SLNR

precoding, the precoding matrix is computed to maximize the desired signal power

while minimizing the interference caused to other users. It aims to maintain a high

signal-to-leakage-plus-noise ratio for the intended receiver, hence reducing interfer-

ence while considering the system noise level. This precoding strategy is particularly

useful in multi-user scenarios where reducing interference among users is crucial to

improve overall system performance. In other words, leakage is a measure of how

much signal power leaks into the other users. In this precoding scheme, the aim is to

maximize the SLNR [41]. The leakage based precoder can be computed as follows:

For a MIMO systemk k’th column of W slnr
i , W slnr

ik , is equal to the eigenvector that

corresponds to the largest eigenvalue of
(
(N0I +GH

ikGik)
−1HH

ikHik

)
where Gik and

Hik represent the k’th row of Gi and Hi respectively.

For a MISO system wslnr
i is equal to the eigenvector that corresponds to the largest

eigenvalue of
(
(N0I + gH

i gi)
−1hH

i hi

)
.

For a SISO system wslnr
i is equal to the eigenvector that corresponds to the largest

eigenvalue of
(
(N0I + gHi gi)

−1hH
i hi

)
which is just a scalar.

Similar to maximum ratio transmission and zero-forcing, there is no rate-splitting in

leakage based precoding. The achievable rates for maximum ratio transmission, zero-
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forcing and leakage based precoding can all be written as in (4.1) and (4.2), where

π = {mrt, zf, slnr}.

4.5 Interference Channel Upper Bounds

In [4] and [5], the authors suggest upper bounds for single antenna interference chan-

nels. In the next section, for the single antenna case, we will use the upper bound

given in [5] for weak and mixed interference conditions. Although the definitions

and explanations can be found in Appendix B, C, and D, the calculations and deduc-

tions for the weak and mixed interference channel are presented in [5], whereas [4]

provides the derivations for the strong interference channel. Also, when some of the

devices have multiple antennas, the above bounds are not directly applicable and we

use the upper bound calculated in [22]. The derived expressions for computation are

as follows :

4.5.1 SISO Weak Interference Channel

The weak interference channel describes a communication scenario where the inter-

ference imposed by one transmitter on the intended receiver of another transmitter is

relatively weak compared to the signal power received at the intended receiver. In this

context, the interference level is relatively lower than the received signal strength, al-

lowing for more manageable interference mitigation techniques and potentially better

communication performance compared to strong interference scenarios. For the weak

interference condition, [5] is used for the upper bound evaluation. The computation

of upper bound differs according to the interference terms.

4.5.1.1 INR1 ≥ 1 and INR2 ≥ 1

This condition aligns with the achievable region outlined in Appendix B.1, where

INRp1 = 1 and INRp2 = 1. Consequently, adopting this criterion implies that we

retain a considerable degree of optimality by essentially treating the entirety of user

2’s signal as noise at receiver 1 and reciprocally treating the entirety of user 1’s signal

33



as noise at receiver 2. By doing so, the rates can be expressed as follows

R1 ≤ log (2 + SNR1)− 1

R2 ≤ log (2 + SNR2)− 1

R1 +R2 ≤ log (2INR2 + SNR1) + log

(
1 +

1 + SNR2

INR2

)
− 2

R1 +R2 ≤ log (2INR1 + SNR2) + log

(
1 +

1 + SNR1

INR1

)
− 2

R1 +R2 ≤ log

(
1 + INR1 +

SNR1

INR2

)
+ log

(
1 + INR2 +

SNR2

INR1

)
− 2

2R1 +R2 ≤ log (1 + SNR1 + INR1) + log

(
1 + INR2 +

SNR2

INR1

)
+ log

(
2 +

SNR1

INR2

)
− 3

R1 + 2R2 ≤ log (1 + SNR2 + INR2) + log

(
1 + INR1 +

SNR1

INR2

)
+ log

(
2 +

SNR2

INR1

)
− 3. (4.11)

4.5.1.2 INR1 < 1 and INR2 ≥ 1

This requirement coincides with the attainable area specified in Appendix B.1, specif-

ically with INRp2 = 1. As a result, adhering to this criterion implies maintaining a

significant level of optimality, essentially treating the complete signal from user 1 as

noise at receiver 2.

In such an instance, the rate expressions are as follows:

R1 ≤ log

(
1 +

SNR1

1 + INR1

)
R2 ≤ log (2 + SNR2)− 1

R1 +R2 ≤ log

(
INR2 +

SNR1

1 + INR1

)
+ log

(
1 +

1 + SNR2

INR2

)
− 1

R1 +R2 ≤
(
1 +

SNR1

1 + INR1

)
+ log (2 + SNR2)− 1

R1 +R2 ≤ log

(
INR2 +

SNR1

1 + INR1

)
+ log

(
1 +

1 + SNR2

INR2

)
− 1
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2R1 +R2 ≤ log (1 + SNR1 + INR1) + log (1 + INR2 + SNR2)

+ log

(
1 + INR1 +

SNR1

INR2

)
− log 2 (1 + INR1)

2

R1 + 2R2 ≤ log (2 + SNR2) + log

(
INR2 +

SNR1

1 + INR1

)
+ log

(
1 +

1 + SNR2

INR2

)
− 2. (4.12)

4.5.1.3 INR1 ≥ 1 and INR2 < 1

This condition aligns with the achievable region outlined in Appendix B.1, where

INRp1 = 1. Consequently, adopting this criterion implies that we retain a consider-

able degree of optimality by essentially treating the entirety of user 2’s signal as noise

at receiver 1. In this case, rate expression are as follows

R1 ≤ log (2 + SNR1)− 1

R2 ≤ log

(
1 +

SNR2

1 + INR2

)
R1 +R2 ≤ log

(
INR1 +

SNR1

1 + INR2

)
+ log

(
1 +

1 + SNR2

INR1

)
− 1

R1 +R2 ≤
(
1 +

SNR1

1 + INR2

)
+ log (2 + SNR2)− 1

R1 +R2 ≤ log

(
INR1 +

SNR1

1 + INR2

)
+ log

(
1 +

1 + SNR2

INR1

)
− 1

2R1 +R2 ≤ log (1 + SNR1 + INR2) + log (1 + INR1 + SNR2)

+ log

(
1 + INR2 +

SNR1

INR1

)
− log 2 (1 + INR2)

2

R1 + 2R2 ≤ log (2 + SNR2) + log

(
INR1 +

SNR1

1 + INR2

)
+ log

(
1 +

1 + SNR2

INR1

)
− 2. (4.13)

4.5.1.4 INR1 < 1 and INR2 < 1

Assessing the attainable region B.1 by setting INRp1 = INR1 and INRp2 = INR2,

and eliminating unnecessary constraints, yields the subsequent region

R1 ≤ log

(
1 +

SNR1

1 + INR1

)
R2 ≤ log

(
1 +

SNR2

1 + INR2

)
. (4.14)
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4.5.2 SISO Mixed Interference Channel

A mixed interference channel represents a communication scenario involving multi-

ple transmitters and receivers, where the interference levels among the different com-

munication links vary in strength. Unlike the weak or strong interference channels,

the mixed interference channel encompasses a combination of interference scenar-

ios, ranging from weak to strong, across the different transmitter-receiver pairs. This

variability in interference levels poses additional challenges in managing interference

and optimizing communication performance due to the diverse interference strengths

present in the channel. For the mixed interference condition, [5] is used for the upper

bound evaluation. The computation of upper bound differs according to user’s inter-

ference. It is assume that INR1 ≥ SNR2 and INR2 < SNR1 in the mixed interference

channel. A remarkable feature of this channel is that user 2’s message can be fully

decoded at receiver 1. Using this fact, a natural scheme for user 2 is to use all of his

power on the common message, i.e., set INRp1 = 0. We also let INRp2 to be as

close to 1 as possible.

4.5.2.1 INR2 > 1

In this case we use the Han–Kobayashi scheme HK(1,0) which is defined in Appendix

B.1. By evaluating that, we have the following rate expressions

R1 ≤ log (1 + SNR1)

R2 ≤ log (2 + SNR2)− 1

R1 +R2 ≤ log (INR2 + SNR1) + log

(
1 +

1 + SNR2

INR2

)
− 1

R1 +R2 ≤ log (1 + INR1 + SNR1)

R1 +R2 ≤ log

(
1 + INR1 +

SNR1

INR

)
+ log (1 + INR2)− 1

2R1 +R2 ≤ log (1 + INR2) + log (1 + SNR1 + INR1)

+ log

(
1 +

SNR1

INR2

)
− 1

R1 + 2R2 ≤ log (1 + SNR2 + INR2)

+ log

(
1 + INR1 +

SNR1

INR2

)
− 1. (4.15)
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4.5.2.2 INR2 < 1

In this case we use the Han–Kobayashi scheme HK(INR2,0) which is defined in

Appendix B.1. By evaluating that, we have the following rate expressions

R1 ≤ log (1 + SNR1)

R2 ≤ log

(
1 +

SNR2

1 + INR2

)
R1 +R2 ≤ log (1 + SNR1) + log

(
1 +

SNR2

1 + INR2

)
R1 +R2 ≤ log (1 + SNR1 + INR1)

2R1 +R2 ≤ (1 + SNR1) + log (1 + SNR1 + INR1)

R1 + 2R2 ≤ log

(
1 +

SNR2

1 + INR2

)
+ log (1 + SNR1 + INR1) . (4.16)

4.5.3 SISO Strong Interference Channel

In the context of communication systems, a strong interference channel denotes a

scenario where interference significantly affects the transmission between multiple

transmitter-receiver pairs. In such channels, the interference levels are notably higher

compared to the signal strength, leading to substantial degradation in the quality of

received signals. In situations with strong interference, the most effective approach is

to use joint decoding. This means solving for every user simultaneously. This method

is considered optimal and ensures better outcomes in handling strong interference,

making it a suitable solution for such scenarios. For the strong interference condition,

[4] is used for the upper bound evaluation. We have the following rate expressions

under strong interference condition which is expressed in Appendix C.

0 ≤ R1 ≤ log

(
1 +

P1

N1

)
,

0 ≤ R2 ≤ log

(
1 +

P2

N2

)
,

0 ≤ R1 +R2 ≤ min

[
log

(
1 +

P1 + χP2

N1

)
, log

(
1 +

νP1 + P2

N2

)]
. (4.17)
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4.5.4 MIMO Channel Capacity

In multi-user MIMO systems applying rate-splitting, the channel capacity character-

izes the maximum achievable rate at which information can be reliably transmitted

over the channel. Rate-splitting in MIMO allows the transmission of multiple mes-

sage signals with different priorities. It divides the transmitted signal into two parts:

a common part, decoded by both receivers, and a private part, intended for a specific

receiver. The channel capacity with rate-splitting accounts for this division, consider-

ing the optimal allocation of power and transmission strategies for both the common

and private messages. It defines the maximum achievable rate for each user while

ensuring successful reception and decoding at the receivers, leveraging the spatial de-

grees of freedom provided by multiple antennas at both ends of the communication

link. The analysis involves optimizing the power allocation, precoding strategies, and

decoding orders to maximize the overall achievable rates while considering the inter-

ference among different users. For the MIMO interference channel capacity [22] is

used for the upper bound evaluation which is indicated in 4.18, and the necessary pa-

rameters (ρ11, ρ12, ρ22, ρ21, K1 and K2) for computation are provided in Appendix D.

R1 ≤ log det
[
IQ1 + ρ11H1H

H
1

]
R2 ≤ log det

[
IQ2 + ρ22H2H

H
2

]
R1 +R2 ≤ log det

[
IQ2 + ρ12G1G

H
1 + ρ22H2H

H
2

]
+ log det

[
IQ1 + ρ11H1K1H

H
1

]
R1 +R2 ≤ log det

[
IQ1 + ρ21G2G

H
2 + ρ11H1H

H
1

]
+ log det

[
IQ2 + ρ22H2K2H

H
2

]
R1 +R2 ≤ log det

[
IQ1 + ρ21G2G

H
2 + ρ11H1K1H

H
1

]
+ log det

[
IQ2 + ρ12G1G

H
1 + ρ22H2K2H

H
2

]
2R1 +R2 ≤ log det

[
IQ1 + ρ21G2G

H
2 + ρ11H1H

H
1

]
+ log det

[
IQ1 + ρ11H1K1H

H
1

]
+ log det

[
IQ2 + ρ12G1G

H
1 + ρ22H2K2H

H
2

]
R1 + 2R2 ≤ log det

[
IQ2 + ρ12G1G

H
1 + ρ22H2H

H
2

]
+ log det

[
IQ2 + ρ22H2K2H

H
2

]
+ log det

[
IQ1 + ρ21G2G

H
2 + ρ11H1K1H

H
1

]
(4.18)

When we are averaging over different channel conditions in the next section, for

each channel realization we check the interference condition (weak, mixed or strong),

apply the appropriate bound and then take the average.
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4.6 No Interference

For this case, interference terms are assumed to be 0 to obtain a trivial upper-bound.

The rates achieved by each user for a MIMO system written as

R1 = log det
(
IQ1 + (H1W1W

H
1 HH

1 )(N0IQ1)
−1
)

(4.19)

R2 = log det
(
IQ1 + (H2W2W

H
2 HH

2 )(N0IQ1)
−1
)
, (4.20)

where Wi = Wmrt
i , for a MISO system

R1 = log

(
1 +
|h1w1|2

N0

)
(4.21)

R2 = log

(
1 +
|h2w2|2

N0

)
, (4.22)

where wi = wmrt
i , and for a SISO system

R1 = log

(
1 +
|h1w1|2

N0

)
(4.23)

R2 = log

(
1 +
|h2w2|2

N0

)
, (4.24)

where wi = wmrt
i .
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CHAPTER 5

SIMULATION RESULTS

In this Chapter, we delve into an exhaustive examination of simulation results for the

transmission scheme introduced in Chapter 3. This method is meticulously compared

against its subset, the MADDPG with no rate-splitting [3], offering valuable insights

into the role of rate-splitting in shaping the overall performance. Moreover, we extend

our investigation to encompass a comprehensive set of benchmark schemes outlined

in Chapter 4, covering a spectrum of scenarios including SISO, MISO and MIMO

configurations. This extensive analysis allows us to examine the proposed scheme’s

adaptability and efficacy across diverse communication scenarios.

The benchmark schemes considered in our simulations span well-established method-

ologies for interference channels with multiple antennas. The comparative study sys-

tematically evaluates the proposed MADDPG with rate-splitting against these bench-

marks, unraveling the nuanced intricacies of each scheme in SISO, MISO and MIMO

cases. By conducting such a comprehensive set of simulations, our aim is to provide a

holistic understanding of the strengths, weaknesses, and applicability of each scheme

across a range of communication scenarios. This thorough examination serves as a

critical step in elucidating the effectiveness and robustness of the proposed MADDPG

with rate-splitting, showcasing its relative performance against alternative methodolo-

gies in diverse and challenging communication environments.

5.1 Performance Measures

Our primary objective is to maximize the sum-rate in a communication system by

optimizing both the power allocation coefficient and the precoder. Maximizing the
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sum-rate in RSMA is crucial as it directly correlates with the overall efficiency and

throughput of the communication system. A higher sum-rate implies the ability to

transmit more information per unit of time, leading to improved data transfer capa-

bilities and enhanced network performance. Utilizing the MADDPG algorithm be-

comes essential in this context, as it provides a framework for the coordinated learn-

ing of multiple agents to optimize the sum-rate. MADDPG enables these agents to

adapt their strategies collaboratively, ensuring a balanced and effective allocation of

resources, such as power and decoding orders, to maximize the sum-rate in RSMA-

based communication systems. This optimization process, particularly in the context

of RSMA, introduces inherent complexities. The nature of RSMA, with its simulta-

neous consideration of common and private streams, renders traditional optimization

approaches less effective, making the utilization of RL approaches inevitable. In ad-

dition to maximizing the sum-rate, our study will delve into the performance impli-

cations of decoding order estimation, investigating how the system adapts to varying

orders of decoding for transmitted messages. Furthermore, we will rigorously exam-

ine the system’s resilience in the face of channel estimation errors, a crucial consid-

eration in practical communication scenarios. This multifaceted exploration aims to

provide a nuanced understanding of the proposed model’s capabilities, particularly in

the intricate landscape of RSMA, reinforcing the necessity of RL in addressing its

inherent complexities.

5.2 Numerical Settings

The instantiation of the MADDPG algorithm was conducted within the PyTorch 1.9.1

framework. The training architecture was meticulously designed, employing four

fully connected layers for both the critic and actors, thereby affording adaptability and

sophistication in the learning process. The algorithm’s convergence was vigilantly

monitored across numerous episodes, each comprising 200 time steps, culminating

in the acquisition of rates across varied SNR scenarios. Detailed specifications of

pertinent values pertaining to episodes and network parameters are documented in

Tables 5.1, 5.2, and 5.3, ensuring transparency and reproducibility.

Within the simulated environment, the channel coefficients hi, hi, Hi, and gi, gi,

42



Gi for i = 1, 2 are presumed to follow an independent and identically distributed

(i.i.d.) circularly symmetric complex Gaussian distribution with zero mean and unit

variance. This modeling paradigm aligns with established conventions in the repre-

sentation of wireless communication channels. Moreover, the introduction of channel

estimation errors, a practical consideration in real-world scenarios, is systematically

explored. The examination of these errors encompasses two distinct modalities: the

first, wherein the estimation error dynamically fluctuates with the SNR value, and the

second, where it remains invariant. The estimated channel can be represented as

H̃i = Hi +Ei (5.1)

where the resulting estimation error, denoted by Ei, arises from the disparity between

the estimated channel coefficients, represented by H̃i, and the actual channel coeffi-

cients denoted as Hi. It is important to note that these matrices Ei, Hi, and H̃i all

belong to the complex field and have dimensions Qi ×Mi, i.e. CQi×Mi . In the case

of varying imperfections, each entry [Ei](i, j) is determined as (SNR−0.6)
5

CN (0, σ2),

where σ2 = 1. It is crucial to highlight that the estimation error solely influences the

computation of precoders, while the rates are computed employing the exact channel

coefficients. For clarity, this means that the actor network in each agent incorporates

estimated channel coefficients, whereas the reward function is formulated based on

the exact channel coefficients.

Irrespective of the antenna configuration, be it SISO, MISO, or MIMO the total power

Pi in the power allocation equation (2.14c) is consistently set to 1. Additionally, for

the purpose of decoding order estimation, an additional actor network is introduced

for each agent across all antenna configurations, as elucidated in Chapter 3.

Our investigation will encompass a comprehensive analysis of our communication

scheme across diverse SNR regimes, specifically considering the case where SNR is

defined as the reciprocal of the noise power N0 (i.e., SNR = 1/N0), given that the

signal power is fixed at 1. This SNR parameterization is consistent with the power

constraint considerations outlined in Chapter 2, where N0 represents the noise power.

To maintain uniformity and adhere to power constraints, the precoders employed in

each scheme will undergo normalization by their respective magnitudes. This nor-
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malization process ensures that the power constraints are consistently satisfied across

various SNR scenarios, facilitating a systematic evaluation of the scheme’s perfor-

mance under different signal-to-noise conditions.

5.3 Simulation Results

The careful adjustment of hyperparameters is paramount in RL as it significantly in-

fluences the algorithm’s performance and convergence. Hyperparameters, such as the

learning rate, discount factor, exploration noise, and network architecture parameters,

play a pivotal role in shaping the RL agent’s behavior during training. Suboptimal

hyperparameter settings can impede convergence, hinder learning, or lead to insta-

bility in the training process. Conversely, well-tuned hyperparameters are crucial for

achieving a balance between exploration and exploitation, ensuring effective learning

and adaptation to complex environments. Fine-tuning hyperparameters is a delicate

process that requires a comprehensive understanding of the specific characteristics

of the problem domain. Experimentation and iterative adjustments are essential to

finding an optimal set of hyperparameters that facilitates efficient learning and robust

performance of RL algorithms.

In that context, the MADDPG algorithm is strategically configured to accommodate

the distinctive characteristics of SISO, MISO, and MIMO interference channel sce-

narios. In the SISO case in Table 5.1, where there is a single-antenna transmitters and

receivers, the algorithm adopts a streamlined approach with a moderate minibatch

size, hidden size, and episode length. This design prioritizes efficiency within the

simplicity of a singular communication link.

As we move to the MISO scenario in Table 5.2, involving multiple-antenna trans-

mitters and a single-antenna receivers, the algorithm undergoes targeted adjustments.

These adaptations include an increased replay memory, additional training episodes,

and a slight tuning of the learning rate. These modifications cater to the heightened

complexity introduced by multiple transmitters feeding into a shared receiver.

The MIMO configuration in Table 5.3, characterized by multiple transmitters and re-

ceivers, demands a more intricate strategy. To address this complexity, the algorithm
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Table 5.1: Hyperparameters of MADDPG algorithm for SISO

Parameter Value Parameter Value

discount factor γ 0.99 optimizer Adam

minibatch size B 64 loss function MSE loss

replay memory length D 7000 no. of connected layers 4

activation function ReLU learning rate 10−4

hidden size 36 episode length T 200

update rate τ 0.01 exploration noise σ2
N 0.1

number of episodes E 2400 weight of user rates β 0.5

incorporates a larger minibatch size, an additional connected layer, and an augmented

hidden size. The learning rate is further refined to strike a balance that accommodates

the intricacies introduced by multiple antennas. Training is extended over a larger

number of episodes, ensuring the algorithm captures the dynamics of the MIMO

channel.

In essence, the tailored adjustments across SISO, MISO, and MIMO scenarios under-

score the algorithm’s adaptability and its ability to flexibly navigate the diverse chal-

lenges posed by different interference channel configurations. These adjustments,

reflecting a understanding of each scenario, emphasize the MADDPG algorithm’s ro-

bustness and efficacy in learning optimal policies suited to the intricacies of SISO,

MISO, and MIMO communication setups.

In this specific setup, our system formulation aligns with the specifications detailed

Section 2.1 in Chapter 2 under the SISO system characteristics. The solution method-

ology closely adheres to the outlined structure presented in Chapter 3, focusing specif-
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Table 5.2: Hyperparameters of MADDPG algorithm for MISO

Parameter Value Parameter Value

discount factor γ 0.99 optimizer Adam

minibatch size B 64 loss function MSE loss

replay memory length D 10000 no. of connected layers 4

activation function ReLU learning rate 10−4

hidden size 36 episode length T 200

update rate τ 0.01 exploration noise σ2
N 0.1

number of episodes E 4000 weight of user rates β 0.5

ically on the SISO scenario (refer to section 3.2). To evaluate the upper bound, we

rely on methodologies presented in [4] and [5]. The details and specific parameters

needed for this computation are extensively explained in Chapter 4. In the subsequent

parts, namely parts 4.5.2, 4.5.1, and 4.5.3, these parameters are applied to the same

channel coefficients utilized in the MADDPG framework during the testing phase.

This structured approach ensures consistency in the assessment of the upper bound,

as the channel conditions for both the upper bound evaluation and MADDPG test-

ing are aligned, facilitating a meaningful and reliable comparison. For this particular

SISO analysis, we assume that the base station is equipped with a single antenna,

while each user possesses a single antenna as well. This antenna configuration en-

ables us to thoroughly examine and assess the system performance within the defined

SISO framework.

In Figure 5.1, a graphical representation illustrates the average sum-rate as a function

of SNR in a scenario involving single-antenna base stations (M = 1) and two users.
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Table 5.3: Hyperparameters of MADDPG algorithm for MIMO

Parameter Value Parameter Value

discount factor γ 0.99 optimizer Adam

minibatch size B 128 loss function MSE loss

replay memory length D 15000 no. of connected layers 5

activation function ReLU learning rate 5× 10−5

hidden size 64 episode length T 200

update rate τ 0.01 exploration noise σ2
N 0.1

number of episodes E 12000 weight of user rates β 0.5

In this setup, the system formulation is based on the configuration described in Sec-

tion 2.1, while the solution methodology aligns with the structure outlined in Section

3.1. The objective is to discern the impact of rate-splitting on performance. The plot

includes curves for the MADDPG algorithm both with and without rate-splitting,

alongside the upper bound elucidated in Chapter 4. Notably, the results indicate that

MADDPG with rate-splitting can attain the average upper bound, signifying its effi-

cacy in approaching theoretical limits. Furthermore, as SNR increases, the disparity

between the performances of MADDPG with and without rate-splitting, illustrating

the rate-splitting gain, becomes more pronounced. This observation underscores the

significance of rate-splitting as a strategic mechanism for augmenting the sum-rate,

particularly in scenarios characterized by higher Signal-to-Noise Ratios. The MAD-

DPG curves are derived from averaging 25 runs, each consisting of 200 time steps,

post-convergence of the algorithm.

In this particular configuration, our system formulation adheres to the specifications

detailed in Chapter 2 under the heading of MISO system characteristics (see section
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Figure 5.1: Average sum-rate achieved by MADDPG and the upper bound due to [4]

and [5] for single-antenna base stations, M = 1, and two users each equipped with

single antenna (Q = 1). The MADDPG curves are obtained by averaging 25 runs,

each having 200 time steps after the algorithm achieves convergence.

2.2). The solution methodology, on the other hand, closely follows the outlined struc-

ture presented in Chapter 3, specifically addressing the MISO scenario (refer to Sec-

tion 3.2). To assess the upper bound, we employ methodologies outlined in [22]. The

pertinent parameters for computation are extensively discussed in Chapter 4. Sub-

sequently, in the following part, namely part 4.5.4, these parameters are applied to

the identical channel coefficients used in the MADDPG framework during the testing

phase. This systematic approach ensures uniformity in the upper bound assessment,

as the channel conditions for both the upper bound evaluation and MADDPG testing

are harmonized, allowing for a meaningful and reliable comparison. For this spe-

cific MISO analysis, we assume that the base station is equipped with three antennas,

while each user possesses a single antenna. This antenna configuration allows us to

explore and evaluate the system performance under the outlined MISO setup, provid-
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ing insights into the behavior and efficacy of the proposed solution in this specific

antenna configuration.

In examining the convergence behavior of the proposed algorithm in the MISO case,

a comprehensive analysis is conducted by plotting the convergence curves. In Figure

5.2, we present the average sum-rate versus the number of training episodes for the

MISO scenario, and for a more insightful comparison, we include the upper bound

as well. The convergence curves depict the performance evolution of the MADDPG

algorithm, providing a visual representation of its learning trajectory over the course

of training episodes. The incorporation of the upper bound serves as a benchmark,

elucidating the algorithm’s proximity to the theoretical limits. This visual analy-

sis not only facilitates an assessment of the algorithm’s convergence speed but also

provides insights into how well the proposed solution converges towards the upper

bound, shedding light on the effectiveness of the MADDPG algorithm in addressing

the challenges posed by the MISO configuration. The convergence curve was drawn

only for the MISO case, as a deliberate decision to avoid overwhelming the context

with an excess of convergence curves and to maintain clarity and focus in the analysis.

In Figure 5.3, we illustrate the learning curve depicting the evolution of the weighted

sum-rate under a 10 dB SNR. The learning curve analysis allows us to explore the

rate region by varying the weight parameter (β). By observing how the system’s

performance changes with different beta values, we gain insights into the impact of

user rate weights on the overall learning process. This provides a comprehensive

view of the algorithm’s behavior across a range of rate configurations, aiding in the

assessment of its adaptability and responsiveness to changes in user rate priorities.

The training process involves averaging our model over 100 runs, each comprising

1000 time steps realizations. Notably, this learning curve considers scenarios with no

interference and includes an upper bound evaluation. In this context, the weighting

parameter (β) is set to 0.5, signifying an equal weight distribution for each user. The

choice of β plays a crucial role in determining the emphasis placed on individual user

rates within the sum-rate optimization process. The learning curve provides insights

into the convergence and performance of the proposed approach under these specified

conditions, offering a comprehensive view of the training dynamics and the achieved

sum-rate outcomes.
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Figure 5.2: Convergence curve achieved by MADDPG for multiple-antenna base

stations, (M = 3), and two users each equipped with single antenna (Q = 1) when

SNR = 10 dB .

In Figure 5.4, we present a detailed analysis of the average sum-rate results for

M = 3. The comparison involves multiple schemes, including MADDPG with and

without rate-splitting, maximum ratio transmission (MRT), zero-forcing (ZF), and

leakage-based precoding. Additionally, the upper bound, as defined in [22] and pro-

vided in 4, serves as a reference for assessing the performance achieved by the pro-

posed approach. Analyzing the results, it is evident that MADDPG with rate-splitting

outperforms its no rate-splitting counterpart, which illustrates the rate-splitting gain

and exhibits superior performance compared to MRT, ZF, and leakage-based precod-

ing. MRT experiences challenges in the presence of severe interference, leading to

a convergent behavior rather than maintaining an increasing average sum-rate curve.

On the other hand, ZF, while immune to interference, struggles to achieve sufficiently

high signal power, resulting in limited performance. Leakage-based precoding strikes

a balance between desired signal power and leakage power, leading to higher rates
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Figure 5.3: Evolution of the weighted sum-rate for MADDPG with rate-splitting for

SNR = 10 dB and for varying β defined in (2.14a). The skip from one dot to the

next represents 100 episodes of training, with the dots appearing after a delay of 500

episodes.

than both MRT and ZF. The unique advantages of MADDPG with rate-splitting be-

come apparent in this comparison. Firstly, MADDPG utilizes the SINR as a metric,

which is more relevant for evaluating system performance. Secondly, the incorpo-

ration of rate-splitting enables MADDPG to intelligently manage interference. In

scenarios with weak interference, more power is allocated to private messages, while

in the presence of strong interference, common messages are transmitted with higher

power. The consideration of all possible decoding orders further enhances the adapt-

ability of MADDPG with rate-splitting, resulting in superior performance compared

to benchmark schemes. This comprehensive analysis sheds light on the nuanced ben-

efits and capabilities of the proposed approach in addressing interference challenges

in multi-antenna scenarios.
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Figure 5.4: Average sum-rate achieved by MADDPG and the benchmark schemes for

three-antenna base stations, M = 3, and two users each equipped with single antenna

(Q = 1). The MADDPG curves are obtained by averaging 50 runs, each having 1000

time steps after the algorithm achieves convergence.

The confidence bounds of the RL results, specifically obtained through the MAD-

DPG algorithm, showcase the robustness and reliability of the proposed approach. In

assessing the performance of the system, the inclusion of confidence bounds adds a

layer of statistical significance to the obtained results. The confidence bounds were

derived by leveraging the information gathered from multiple runs of the MADDPG

algorithm. To calculate the confidence bounds, the results were averaged over a

significant number of runs, providing a representative performance metric. Subse-

quently, the standard deviation of each run was computed. By adding and subtracting

this standard deviation from the averaged line, a confidence bound was established,

offering insights into the variability and consistency of the RL algorithm’s perfor-

mance across different runs. This approach to confidence bounds is particularly valu-

able in reinforcing the reliability of the observed trends and outcomes. The incor-
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poration of upper bounds in the comparison further contextualizes the RL results,

allowing for a nuanced understanding of the algorithm’s proximity to the theoreti-

cal performance limits. The robustness of the confidence bounds, derived through

careful statistical analysis, enhances the credibility of the RL results, providing stake-

holders and researchers with a comprehensive perspective on the algorithm’s perfor-

mance under varying conditions. The comprehensive assessment of the confidence

bounds, as illustrated in Figure 5.5, augments the overall reliability and robustness

of the acquired results derived from the MADDPG algorithm. The promising aspect

of these confidence bounds becomes more pronounced when considering the exten-

sive nature of the evaluation, encompassing a total of 1000 runs, each comprising

1000 time steps. After 2500 episodes, the algorithm consistently produces similar

results. This stability and consistency in performance indicate the robustness of our

proposed solution. The algorithm’s ability to maintain comparable outcomes across

multiple episodes highlights its reliability in handling the complexities of the MISO

scenario. This robust behavior is crucial for ensuring the dependable and consistent

performance of the algorithm under varying conditions, contributing to its practical

applicability and effectiveness in real-world settings.

In Figure 5.6, we systematically investigate the impact of a fixed value of imperfec-

tion over SNR, as defined in equation 5.1 in section 5.2. The imperfection is set as
(10−0.6)

5
CN (0, σ2) with σ2 = 1. Additionally, Figure 5.7 explores the scenario where

imperfection varies according to (SNR−0.6)
5

CN (0, σ2), with the same σ2 = 1. In these

analyses, the resilience and adaptability of the proposed RSMA framework, espe-

cially MADDPG with rate-splitting, are highlighted. This quality becomes partic-

ularly pronounced when compared against alternative schemes, including ZF, MRT,

leakage-based precoding, and non-rate-splitting MADDPG. The intricate architecture

of the RSMA system, with its unique rate-splitting mechanism, exhibits exceptional

proficiency in alleviating the deleterious effects of channel estimation errors. The

inherent resilience observed in RSMA translates into a robust and dependable per-

formance, showcasing the superiority of the proposed framework under diverse SNR

conditions. This comparative analysis reinforces the adaptability and reliability of

RSMA, positioning it as a promising solution in realistic communication scenarios

where channel imperfections are prevalent and challenging to address effectively.
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Figure 5.5: Confidence bound achieved by MADDPG for three-antenna base stations,

M = 3, and two users each equipped with single antenna (Q = 1). The confidence

interval are obtained by averaging 1000 runs, each having 1000 time steps after the

algorithm achieves convergence.

In scenarios with imperfect channel state information at the transmitter (CSIT), the

conventional schemes—ZF, MRT, leakage-based precoding, and non-rate-splitting

MADDPG—encounter challenges in maintaining their performance due to their lim-

ited adaptability to variations in channel conditions. On the contrary, MADDPG with

rate-splitting, displays a remarkable capacity to navigate through the complexities

introduced by imperfect CSIT. When there are channel estimation errors, the actual

channel conditions may differ from the estimated ones. SIC helps in handling these

errors by iteratively canceling the interference, which becomes especially valuable

in scenarios where accurate channel information is challenging to obtain. As a re-

sult, RSMA with SIC demonstrates resilience to channel estimation errors, making

it a robust choice for communication systems, particularly in the presence of imper-

fect channel knowledge. The ability to effectively manage and mitigate the impact

54



0 2 4 6 8 10 12 14 16 18 20

SNR(dB)

0

2

4

6

8

10

12

14

16

A
v
e
ra

g
e
 S

u
m

 R
a
te

 (
b
it
s
/c

h
a
n
n
e
l 
u
s
e
)

No interference

Upper Bound [18]

MA-DDPG + RSMA

MADDPG + RSMA with Imperfect CSIT

Leakage Based Precoder

MA-DDPG + non-RSMA

Leakage Based Precoder + Imperfect CSIT

MA-DDPG + non-RSMA + Imperfect CSIT

ZF

ZF + Imperfect CSIT

MRT

MRT + Imperfect CSIT

Figure 5.6: Channel estimation under fixed imperfection over SNR achieved by

MADDPG for three-antenna base stations, M = 3, and two users each equipped

with single antenna (Q = 1).

of fixed channel estimation errors marks a pivotal distinction for RSMA, reinforcing

its standing as a robust and reliable solution in real-world and demanding commu-

nication environments. This robustness in the face of imperfect CSIT not only un-

derscores the adaptability of MADDPG with rate-splitting but also positions it as a

preferred choice for communication systems, where accurate channel information is

challenging to obtain. The enhanced performance and reliability exhibited by RSMA

in the presence of imperfect CSIT contribute to its broader applicability, especially in

practical communication scenarios where environmental conditions and system un-

certainties necessitate a robust and adaptable solution.

In the context of decoding order estimation, an additional actor network is introduced

for each agent. Our investigation into the performance of this decoding order esti-

mation involves two key scenarios. Firstly, we examine the case where there is a
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Figure 5.7: Channel estimation under varying imperfection over SNR achieved by

MADDPG for three-antenna base stations, M = 3, and two users.

fixed value of channel estimation error over SNR, as defined earlier in this Chapter.

The second scenario considers a situation with no channel estimation error. Remark-

ably, our findings reveal that decoding order estimation exhibits superior performance

across different SNR regimes. This observation is particularly noteworthy as it un-

derscores the robustness and efficiency of the proposed MADDPG framework under

decoding order estimation. Decoding order estimation is a critical aspect, especially

considering the complexity introduced by the RSMA structure, particularly in the SIC

part. The significance of this result lies in the ability of MADDPG to maintain supe-

rior performance even with decoding order estimation, addressing a crucial concern

related to the complexity of RSMA, particularly in the SIC component. This suggests

that by incorporating decoding order estimation, the system can achieve competitive

performance while mitigating the associated complexity. This nuanced exploration

of decoding order estimation adds valuable insights to the understanding of RSMA’s

adaptability and efficacy in addressing practical challenges in communication sys-

tems.
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Figure 5.8: Decoding order estimation achieved by MADDPG for three-antenna base

stations, M = 3, and two users each equipped with single antenna (Q = 1).

These insightful findings regarding the superior performance of decoding order es-

timation, particularly in the presence of fixed channel estimation errors and across

various SNR regimes, are visually depicted in Figure 5.8. The depicted results pro-

vide a clear and illustrative representation of the robustness and effectiveness of the

proposed MADDPG framework in addressing the complexities associated with de-

coding order estimation in the context of the Rate-Splitting Multiple Access (RSMA)

structure.

In our investigation, we observed a widening gap between the training and test perfor-

mance as we progressed from SISO to MISO and MIMO scenarios. This increasing

gap can be attributed to the growing number of parameters that need to be estimated

as we move to more complex antenna configurations. The inherent challenges of

training a model with an expanding parameter space contribute to this performance

gap.

Furthermore, we noted a noteworthy trend in the decreasing performance gap between
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Figure 5.9: The average sum-rate achieved by MADDPG algorithm, along with

benchmark schemes, is evaluated in the context of a communication system with

three-antenna base stations (M = 3) and two users each equipped with three anten-

nas (Q = 3).

Zero Forcing (ZF) and the proposed MADDPG+RSMA method as we transitioned

from MISO to MIMO scenarios. This phenomenon can be explained by the inher-

ent characteristics of ZF and its adaptability to the increased complexity of MIMO

systems. ZF is known for its ability to mitigate interference in multi-antenna scenar-

ios, and as the number of antennas increases in MIMO configurations, ZF may be

better suited to exploit spatial diversity and handle interference effectively. The ob-

served improvement in ZF’s performance through MISO to MIMO scenarios could

be attributed to its inherent capabilities in these complex setups.

Examining the number of training episodes across SISO, MISO, and MIMO configu-

rations, a consistent upward trend was observed. This escalation in training episodes

is a consequence of the heightened complexity inherent in transitioning from SISO
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to MIMO configurations. The increase in the number of antennas and parameters

in the communication system demands more extensive training to optimize the rein-

forcement learning model effectively. The complexity of MIMO scenarios introduces

additional intricacies, requiring the learning agent to navigate a larger action space

and gain a more nuanced understanding of the environment. Consequently, the it-

erative learning process is extended to accommodate the increased complexity and

ensure the convergence of the reinforcement learning algorithm to an optimal policy.

In the context of a multiple antenna scenario, the challenges associated with estimat-

ing parameters become more pronounced, leading to a potential decrease in estima-

tion performance. As the number of antennas increases, the complexity of the com-

munication system grows, and a higher number of parameters need to be estimated.

This heightened complexity introduces additional intricacies in capturing and mod-

eling the nuances of the channel, making parameter estimation a more challenging

task. Consequently, the performance of parameter estimation may exhibit a decline

in accuracy due to the increased dimensionality and complexity of the estimation

problem.

Moreover, the observed differences between the results obtained during training and

testing phases can be attributed to the challenges posed by the growing number of

parameters. During the training phase, the algorithm adapts to the training data, at-

tempting to learn the underlying patterns and relationships within the given parame-

ter space. However, when the model encounters the testing phase with a potentially

different set of conditions, including different channel realizations or environmental

factors, the generalization performance may vary. The discrepancies between training

and testing results highlight the impact of the escalating parameter count in massive

MIMO scenarios and underscore the need for robust algorithms capable of handling

the inherent complexities introduced by massive MIMO configurations.

In Figure 5.9 we present a detailed analysis of the average sum-rate results for M =

3 and Q = 3, our proposed MADDPG+RSMA method consistently outperforms

benchmark schemes such as ZF, MRT, and Leakage-Based Precoder. This superi-

ority can be attributed to the unique advantages offered by RSMA. By intelligently

allocating power and managing interference, RSMA ensures more efficient resource
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utilization, resulting in enhanced overall system performance. The robustness and

adaptability of our proposed method in the face of increasing complexity and inter-

ference make it a promising solution for advanced communication scenarios.
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CHAPTER 6

CONCLUSION

6.1 Conclusions

RSMA has become a remarkable transmission strategy in the development of com-

munication systems, especially in the transitions from 5G to the anticipated advance-

ments in 6G. This research delves into the complexities of RSMA, specifically fo-

cusing on precoding within a multiple-antenna interference channel, and employs

DRL techniques. The primary objective is to optimize precoders and manage trans-

mit power for both common and private data streams. Successfully addressing this

challenge, particularly in the continuous action space, necessitates the collaboration

of multiple decision-makers. The choice of utilizing DRL, as opposed to other ma-

chine learning methods, is crucial. DRL proves critical in handling the intricate nature

of RSMA tasks, offering a more adaptive and efficient approach to mitigating inter-

ference in modern communication systems.

Our approach tackles the complex optimization landscape of multiple antenna in-

terference channels employing rate-splitting strategies by harnessing a MADDPG

framework. The MADDPG algorithm, specifically tailored for the optimization of

precoding and power allocation coefficients, exhibits a distinctive framework that al-

lows for centralized learning while enabling decentralized execution. This dual capa-

bility makes a significant contribution, providing a decentralized and scalable solution

for interference management without the need for constant coordination from a cen-

tral entity. This adaptability and robustness enhance the algorithm’s effectiveness in

real-world scenarios, making it a valuable tool for addressing the challenges posed

by interference in multiple antenna environments. The results from our simulations
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highlight the effectiveness of the rate-splitting method we proposed. In cases with

a single antenna, our approach achieves the information-theoritical sum-rate upper

bound. Even in scenarios with multiple antennas, it demonstrates impressive proxim-

ity to the upper bound. Additionally, our method outperforms alternative approaches

such as MADDPG without rate-splitting, maximal ratio transmission, zero-forcing,

and leakage-based precoding in both single and multiple antenna cases, showcasing

its superior performance in terms of sum-rate.

In addition to these, our work delves into the intricate aspects of channel estimation

errors and optimal decoding order selection within the learning algorithm. These

deliberate considerations contribute significantly to the algorithm’s robustness and

expand its applicability to various scenarios. Our comprehensive analysis demon-

strates the superior performance of our proposed approach compared to other baseline

schemes, particularly in the contexts of decoding order and channel estimation cases.

In terms of channel estimation, RSMA proves to be robust, showcasing resilience

against errors in estimating the channel conditions. Moreover, the incorporation of

optimal decoding order selection eliminates considerable complexity, further enhanc-

ing the efficiency and practicality of the proposed algorithm in managing interference

and decoding strategies for multiple messages.

We have also investigated the learning curve, accompanied by the variation in the

weight of the user, serves as a powerful tool to explore the rate region systematically,

providing insights into the algorithm’s adaptability across different scenarios. This

dynamic approach enables us to understand how the system performance varies with

changes in the weight assigned to users, shedding light on the algorithm’s flexibility

in different user-centric scenarios. Additionally, the inclusion of a confidence bound

in our results signifies the reliability and robustness of our proposed algorithm. The

confidence bound acts as a measure of certainty in the algorithm’s performance, bol-

stering confidence in its consistency across various conditions. In conclusion, the

learning curve and confidence bound collectively underscore the versatility, reliabil-

ity, and robustness of our proposed MADDPG algorithm, making it a promising so-

lution for optimizing precoding and power allocation coefficients in multiple antenna

interference channels employing rate-splitting strategies.
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Appendix A

APPENDIX-1

In this section, we will break down the Multi-Agent Deep Deterministic Policy Gra-

dient (MADDPG) algorithm which is outlined in [6], exploring how it works and

understanding its fundamental structure for learning policies in a multi-agent setting.

We start our explanation by introducing DDPG, which serves as a foundation and

single-agent version preceding the broader MADDPG framework. In recent years,

there has been a surge in efforts to tackle challenges in RL, particularly in scenarios

reflecting real-life complexities. The focus of many of these approaches has shifted

towards frameworks involving multiple agents. When dealing with scenarios like

robotics, it becomes apparent that considerations must extend beyond the individual

agent to include interactions with other agents, such as robots or humans, sharing the

same environment. This category of algorithms is commonly known as MADRL. For

a comprehensive overview of MADRL, [43] serves as a valuable survey.

Most recent achievements in RL primarily pertain to single-agent scenarios, where an

agent takes a series of sequential actions influencing the environment, receiving a new

state and a corresponding reward. The environment is typically modeled as a MDP,

aiming to find a policy mapping from the state space to an action space distribution

for maximizing cumulative rewards. However, the assumption of a stationary envi-

ronment doesn’t extend well to multi-agent frameworks, where the actions of each

agent impact the states and rewards of others. In MADRL, the problem is treated as a

generalization of MDP called Markov Game (MG). Traditional RL methods like Q-

Learning or policy gradient face challenges in adapting to multi-agent scenarios due

to issues like changing environments affecting learning stability and high variance

gradient estimates in coordination-dependent scenarios.
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Figure A.1: Overview of multi-agent decentralized actor, centralized critic approach

[6].

In policy gradient methods, we directly update the policy. This policy essentially

maps the state space to a probability distribution over the action space. The updating

process usually involves using a form of gradient ascent, specifically designed for a

performance function, which is commonly associated with the state value function:

∇θJ(θ) = Es∼pπ ,a∼πθ
[∇θ logπθ(a | s)Qπ(s, a)]

DDPG serves as a variation of Deterministic Policy Gradient, where we utilize deep

neural networks to approximate both the deterministic policy and the critic. This

algorithm operates off-policy and incorporates a replay buffer, which necessitates a

continuous action space. It’s worth noting that MADDPG can be viewed as a further

development of DDPG. In DDPG, the gradient is expressed as follows:
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∇θJ(θ) = Es∼D

[
∇θµθ(a | s)∇aQ

µ(s, a)|a=µθ(s)

]
The proposed algorithm [6], MADDPG, addresses the mentioned limitations by rely-

ing solely on local information during execution, avoiding assumptions about a differ-

entiable model for environmental dynamics or any specific communication method.

Moreover, it is designed to be applicable in both cooperative and competitive frame-

works.

The fundamental concept of MADDPG involves enriching the information utilized in

actor-critic policy gradient methods. In the training phase, each agent’s centralized

critic accesses its own policy and the policies of all other agents. However, during

execution, individual agents use only their own policy in a decentralized manner.

Despite the centralization, employing a separate critic for each agent, as opposed to a

single critic for all agents, provides the advantage of accommodating diverse reward

functions, essential for addressing competitive frameworks as illustrated in A.1.

We examine N agents, each equipped with an individual continuous deterministic pol-

icy and a dedicated centralized action-value function. This function takes input from

the actions of all agents and state information (typically corresponding to the obser-

vations of all agents) to generate the agent’s Q-value as output. The update process

for each agent’s critic involves the use of a replay buffer, similar to the approach in

DQN [44], accessing state transitions, actions, and associated rewards of all agents.

Subsequently, the loss function employed for updating the critic is formulated in a

manner similar to DQN:

L (θi) = Ex,a,r,x′

[
(Qµ

i (x, a1, . . . , aN)− y)
2
]
, y = ri+γQµ′

i (x′, a′1, . . . , a
′
N)
∣∣∣
a′j=µ′

j(oj)

,

This equation is applicable when every agent can access the policies of other agents,

allowing the actions to be computed and utilized as input for the critic. In situations

where this assumption is not feasible, agents can employ approximations of other

agents’ policies. In such cases, agent i refines the parameters corresponding to the
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policy of agent j in an online manner, incorporating an entropy regularizer that mod-

ifies the target used for updating the critic:

L
(
ϕj
i

)
= −Eoj ,aj

[
log µ̂j

i (aj | oj) + λH
(
µ̂j

i

)]
,

ŷ = ri + γQµ′

i

(
x′, µ̂′1

i (o1) , . . . ,µ
′
i (oi) , . . . , µ̂

′N
i (oN)

)
,

The primary objective of computing the critic is to update the actor, which is the

component employed during execution. To achieve this, we can iteratively progress

in the direction of the negative/positive gradient. This is particularly relevant for

deterministic policies, where the input comprises the observations of the agents:

∇θiJ (µi) = Ex,a∼D

[
∇θiµi (ai | oi)∇aiQ

µ
i (x, a1, . . . , aN)|ai=µi(oi)

]
,

In a competitive environment, addressing non-stationarity poses a significant chal-

lenge, as agents might overly tailor their behaviors to mimic others. To tackle this

issue, the authors suggest training a set of K sub-policies for each agent. During

each episode, an agent randomly selects one of its K sub-policies and samples from a

dedicated replay buffer associated with that sub-policy. In this scenario, the gradient

update for the ensemble of policies is modified accordingly:

∇
θ
(k)
i
Je (µi) =

1

K
E

x,a∼D(k)
i

[
∇

θ
(k)
i
µ

(k)
i (ai | oi)∇aiQ

µi (x, a1, . . . , aN)
∣∣∣
ai=µ

(k)
i (oi)

]
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Appendix B

APPENDIX-2

In this section, we present the prerequisites, definitions, and calculations required

for assessing upper bounds outlined in [5]. Consider a two-user complex Gaussian

interference channel with two transmitter-receiver pairs with single antenna at both

sides, each aiming to communicate exclusively within their respective pairs. These

transmissions are represented by the following equations.

y1 = h1x1 + g2x2 + z1

y2 = g1x1 + h2x2 + z2

where for i = 1, 2, xi ∈ C is subject to a power constraint Pi, i.e., E
[
|xi|2

]
≤ Pi,

and the noise processes zi ∼ CN (0, N0) are independent and identically distributed

(i.i.d.) over time.

While the capacity region of the complex Gaussian interference channel may depend

on the phases of the channel gains {hi,j}, the inner and outer bounds that we present

in this part only depend on the magnitudes {|hi,j|}. As a result, we can use for our

bounds a parameterization in terms of the signal-to-noise and interference-to-noise

ratios. For i = 1, 2, let SNRi = |hii|2 Pi/N0 be the SNR of user i, and INR1 =

|g2|2 P2/N0

(
INR2 = |g1|2 P1/N0

)
be the interference to noise ratio of user 1.

Definition 1: Weak interference channel is the channel that the parameters of the

Gaussian interference channel satisfy INR1 < SNR2 and INR2 < SNR1.

Definition 2: Mixed interference channel is the channel that the parameters of the

Gaussian interference channel satisfy INR1 ≥ SNR2 and INR2 < SNR1, or INR1

< SNR2 and INR2 ≥ SNR1.

Definition 3: Strong interference channel is the channel that the parameters of the
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Gaussian interference channel satisfy INR1 ≥ SNR2 and INR2 ≥ SNR1.

Definition 4: An achievable region is said to be within one bit of the capacity region

if for any rate pair (R1, R2) on the boundary of the achievable region, the rate pair

(R1+1, R2+1) is not achievable. Equivalently, (R1− 1, R2− 1) is in the achievable

region for any rate pair (R1, R2) in the capacity region.

Theorem 1: The achievable region for weak interference channel

R (min (1, INR2) ,min (1, INR1))

is within one bit of the capacity region of the Gaussian weak interference channel.

The Han-Kobayashi scheme, introduced in [21], stands out as the most renowned

achievable approach for handling interference channels. A more streamlined but

equally effective version of the Han-Kobayashi achievable region was recently pre-

sented in [45], outlined in Lemma 1. This simplified region’s achievability was sub-

sequently established through a direct coding theorem in [ [46], Theorem 1] (for

a specific focus on a noncompound interference channel, refer to [ [46], Sec. VI-

A], noting that the region described in Lemma 1 is derived by applying the Fourier-

Motzkin elimination method to the inequalities definingR(4)
in in [ [46]], alongside the

expressions R1 = S1 + T1 and R2 = S2 + T2).

Lemma 1: Let P∗ be the set of joint probability distributions P ∗(·) that factor as

P ∗ (q, w1, w2, x1, x2, y1, y2)

= P (q) · P (w1, x1 | q) · P (w2, x2 | q) · P (y1, y2 | x1, x2) .

where w1 (w2) is the common information of user 1 (user 2) that can be decoded

at both receivers, and q is the timesharing parameter. For the Gaussian interference

channel, if we use Gaussian codebooks, and use u1 and u2 to denote the private infor-

mation of user 1 and user 2 respectively.

For a fixed P ∗ ∈ P∗, letR (P ∗) be the set of (R1, R2) satisfying
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R1 ≤I (x1; y1 | w2q) (B.1)

R2 ≤I (x2; y2 | w1q)

R1 +R2 ≤I (x2w1; y2 | q) + I (x1; y1 | w1w2q)

R1 +R2 ≤I (x1w2; y1 | q) + I (x2; y2 | w1w2q)

R1 +R2 ≤I (x1w2; y1 | w1q) + I (x2w1; y2 | w2q)

2R1 +R2 ≤I (x1w2; y1 | q) + I (x1; y1 | w1w2q)

+ I (x2w1; y2 | w2q)

R1 + 2R2 ≤I (x2w1; y2 | q) + I (x2; y2 | w1w2q)

+ I (x1w2; y1 | w1q) .

Then the Han-Kobayashi achievable region is given byR =
⋃

P ∗∈P∗R (P ∗).

x1 = u1 + w1

x2 = u2 + w2

where u1, u2, w1, and w2 are independent complex Gaussian random variables. Dif-

ferent P ∗ ∈ P∗ correspond to different power splits between common and private

messages, and different time-sharing strategies between the power splits.

Let’s consider a scenario with a fixed power distribution—no time-sharing—between

the private and common information of two users. Here, denote Pu1 as the power of

user 1’s private message and Pu2 as that of user 2’s private message. We introduce

INRp2 as the interference-to-noise ratio of user 1’s private message at receiver 2, and

INRp1 as the interference-to-noise ratio of user 2’s private message at receiver 1.

INRp2 =
|g1|2 Pu1

N0

INRp1 =
|g2|2 Pu2

N0

.

It’s clear that 0 ≤ INRp2 ≤ INR2 and 0 ≤ INRp1 ≤ INR1. With these def-

initions, the Signal-to-Noise Ratio (SNR) of user 1’s private message at receiver

1 becomes SNRp1 = INRp2SNR1, while the SNR of user 2’s private message at

receiver 2 is SNRp2 = INRp1
SNR2

INR1
. We can specify a Han-Kobayashi achievable
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scheme with a fixed power allocation using INRp2 and INRp1 . This particular Han-

Kobayashi scheme, characterized by parameters INRp2 and INRp1 , is denoted as

HK(INRp2 , INRp1), with its associated achievable region labeled as R (INRp2 , INRp1)

Notice that HK(INRp2 , INRp1) and R (INRp2 , INRp1) pertain to a Han-Kobayashi

scheme characterized by a consistent division of private and common message power,

without employing time-sharing (i.e., the time-sharing variable q remains constant).

Hence, R (INRp2 , INRp1) ⊂ R, wherein R represents the broader Han-Kobayashi

achievable region outlined in Lemma 1. Generally, this inclusion is strict, signifying

that by altering power allocations and employing time-sharing among various divi-

sions of private and common message powers, a larger rate region can be achieved.

However, it becomes evident that employing a strategic fixed allocation of private

and common message power without time-sharing yields a rate region that closely

approaches the channel’s capacity region.

To evaluate the Han-Kobayashi region for the Gaussian interference channel, even if

we restrict ourselves to use only Gaussian codebooks, we need to consider all possi-

ble power splits and different time-sharing strategies among them. This is in general

very complicated and a calculation of a subset of the Han-Kobayashi achievable re-

gion using some special choices of power splitting and time sharing strategies can be

found in [47]. We know in [5] that a good power splitting should have the property

that INRp2 = 1 and INRp1 = 1, i.e., the interference-to-noise ratio of each user’s

private message at the other user’s receiver is one. it is also shown that this power

splitting can achieve to within one bit the symmetric rate capacity of the symmetric

Gaussian interference channel. In the next section, it will shown that this is also a

good splitting for the entire capacity region. More specifically, we will show that by

choosing INRp2 , INRp1 as close to 1 as possible, we can achieve rates within one bit

of the whole capacity region.

To assess the Han-Kobayashi region concerning the Gaussian interference channel,

even within the constraint of exclusively using Gaussian codebooks, it’s necessary

to explore all potential power distribution scenarios and various time-sharing strate-

gies among them. This task is generally intricate, and a computation of a subset

of the Han-Kobayashi achievable region, employing specific choices of power allo-
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cation and time-sharing strategies, is detailed in [47]. However, drawing from the

insights gained in [5], we recognize that an optimal power distribution should ex-

hibit INRp2 = 1 and INRp1 = 1. In other words, the interference-to-noise ratio

of each user’s private message at the opposite user’s receiver equals one. It is also

demonstrated that this particular power distribution nearly achieves the symmetric

rate capacity of the symmetric Gaussian interference channel, differing by only one

bit.
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Appendix C

APPENDIX-3

In this section, we present the prerequisites, definitions, and calculations required

for assessing upper bounds outlined in [4]. The capacity region for an interference

channel when two distinct messages are transmitted has been established primarily

for scenarios involving highly potent interference [48, 49]. However, these capacities

have been computed solely for very strong interference scenarios [50]- [51], as well

as for certain straightforward cases. Our focus is to delve into this issue across a

broader spectrum of channels characterized by strong interference.

Once appropriately normalized, a Gaussian interference channel is represented by the

following expression:

y1 = x1 +
√
χx2 + n1,

y2 =
√
νx1 + x2 + n2,

In this context, xi, yi, and ni (where i = 1, 2) denote sampled values of the input

signal, output signal, and superposed noise, respectively. The noise is assumed to

adhere to a Gaussian distribution and exhibit white characteristics within the specified

frequency band, with a power of Ni for both noise sources. Importantly, these noise

sources remain independent of the input signals. Additionally, the powers of the input

signals are constrained to values lower than Pi (i = 1, 2). Within this framework, χ

and ν represent the level of interference present in the first and second output signals

y1 and y2, respectively.

Carleial [50] demonstrated that interference doesn’t diminish the capacity in scenarios

of very intense interference, namely when χ and ν satisfy the following conditions
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simultaneously:
χ ≥ (P1 +N1) /N2,

ν ≥ (P2 +N2) /N1.
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Appendix D

APPENDIX-4

In this section, we outline the prerequisites, definitions, and computations necessary

to evaluate the upper bounds as detailed in [22]. The scenario involves a two-user

Multiple-Input Multiple-Output Interference Channel (MIMO IC) where transmitter

i (denoted as Txi) possesses Mi antennas, and receiver i (denoted as Rxi) has Ni

antennas, respectively, for i = 1, 2. This specific MIMO IC is henceforth referenced

as the (M1, N1,M2, N2 ) MIMO IC.

Let Gi ∈ CNj×Mi denote the channel matrix between Txi and Rxj , with |Gi|2F =

1. This normalization doesn’t affect the generality as the Frobenius norm of an

unnormalized channel matrix can be absorbed in Signal-to-Noise Ratio (SNR) or

Interference-to-Noise Ratio (INR) considerations.

We focus on a time-invariant or fixed channel, where the channel matrices remain

constant throughout the communication duration. At any given time t, Txi selects

a vector Xit ∈ CMi×1 and transmits
√
PiXit across the channel. We assume the

following average input power constraint at Txi:

1

n

n∑
t=1

Tr (Qit) ≤ 1

for i ∈ {1, 2}, where Qit = E
(
XitX

H
it

)
. Note that in the above power constraint, Qit

’s can depend on the channel matrices. The received signals at time t can be written

as
Y1t =

√
ρ11H1X1t +

√
ρ21G2X2t + Z1t

Y2t =
√
ρ22H2X2t +

√
ρ12G1X1t + Z2t

Here, Zit ∈ CNi×1 stands for independent and identically distributed complex Gaus-

sian variables CN (0, INi
) across both i and t. ρii and ρij denote the Signal-to-Noise
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Ratio (SNR) at receiver i and Interference-to-Noise Ratio (INR) at receiver j, respec-

tively, where i ̸= j ∈ 1, 2.

In subsequent discussions, the MIMO IC, defined by channel matrices, SNRs, and

INRs as described above, will be denoted as IC(H, ρ̄), whereH = {H1, G1, G2, H2}
and ρ̄ = [ρ11, ρ12, ρ21, ρ22].

If the normalized signal vector, Xi, possesses a covariance matrix Qi, the covari-

ance matrix of the received signal at Rxi becomes PiHiQiH
H
i . Consequently, the

total received signal power amounts to Tr
(
PiHiQiH

H
i

)
, leading to the correspond-

ing Signal-to-Noise Ratio (SNR) of ρii =
Pi Tr(HiQiH

H
i )

Ni
. The Interference-to-Noise

Ratios (INRs) of the channel, denoted as ρij , can be computed in a similar manner.

ni = m̂ji +max {(mii log (Mi) +mij log (Mi + 1)) min {Ni,Ms} log (Mx)}

for 1 ≤ i ̸= j ≤ 2, with Mx = max {M1,M2} ,Ms = (M1+ M2) ,mij repre-

senting the rank of the matrix Gi, and m̂ij = mij log
(

(Mi+1)
Mi

)
. Note that mij ≤

min {Mi, Nj}.

The achievable region of this explicit HK coding scheme is within (n∗
1, n

∗
2) bits to the

capacity region, where

n∗
i = min {Ni,Ms} log (Mx) + m̂ji, for 1 ≤ i ̸= j ≤ 2.

To keep things concise, we introduce the matrices as follows:

Ki ≜
(
IMi

+ ρijG
H
i Gi

)−1
1 ≤ i ̸= j ≤ 2.
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