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ABSTRACT

SYNCHRONIZATION OF CHAOS THROUGH UNPREDICTABILITY IN
DYNAMICAL SYSTEMS

Başkan, Kağan

Ph.D., Department of Physics

Supervisor: Prof. Dr. Seçkin Kürkcüoğlu

Co-Supervisor: Prof. Dr. Marat Akhmet

January 2024, 118 pages

The investigation of chaos synchronization spans three decades, resulting in the de-

velopment of several methods such as identical, phase, and generalized synchroniza-

tion. However, conventional methods often fail to detect synchronized patterns in sys-

tems lacking fully unison dynamics. To address this limitation, delta synchronization

of Poincaré chaos is introduced, aiming to explain partially synchronized patterns.

This novel synchronization type is built upon unpredictability, a concept that reveals

chaotic dynamics in systems based on characteristic time sequences—specifically,

sequences of convergence and separation. The presence of unpredictability guaran-

tees Poisson stable motion and sensitivity by examining a single trajectory (or single

initial condition set) of a system.

Numerically, delta synchronization captures the common characteristic time sequences

of unpredictability in both coupled and uncoupled systems. This method is applied

to various models in this thesis, encompassing distinctive dynamics defined by or-

dinary, partial, and delay differential equations. In the case of unidirectionally cou-

pled gas-discharge semiconductor systems, the absence of generalized synchroniza-
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tion is noted. For Mackey-Glass delay systems, generalized synchronization occurs

only after surpassing a well-known threshold. Importantly, delta synchronization is

demonstrated to occur in regions where generalized synchronization is absent for

these models. Additionally, the same phenomenon is observed in the uncoupled

Hindmarsh-Rose neural network for noise intensity domains where identical synchro-

nization is absent, yet delta synchronization exists. This model is constructed with

Markovian noise, and noise-induced synchronization is investigated. In the domains

of generalized and identical synchronization, a stronger form of delta synchroniza-

tion—complete synchronization of unpredictability—is detected.

Keywords: Unpredictability, Delta synchronization, Gas-discharge semiconductor

systems, Mackey-Glass systems, Hindmarsh-Rose neural network
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ÖZ

DİNAMİK SİSTEMLERDE ÖNGÖRÜLEMEZLİK YOLUYLA KAOS
SENKRONİZASYONU

Başkan, Kağan

Doktora, Fizik Bölümü

Tez Yöneticisi: Prof. Dr. Seçkin Kürkcüoğlu

Ortak Tez Yöneticisi: Prof. Dr. Marat Akhmet

Ocak 2024 , 118 sayfa

Kaos senkronizasyonunun araştırılması otuz yıla yayılıyor ve bu da özdeş, fazlı ve

genelleştirilmiş senkronizasyon gibi çeşitli yöntemlerin geliştirilmesiyle sonuçlanı-

yor. Bununla birlikte, geleneksel yöntemler, tamamen uyumlu bir dinamiğin bulun-

madığı sistemlerde senkronize kalıpları tespit etmekte sıklıkla başarısız oluyor. Bu

sınırlamayı gidermek için, kısmen senkronize edilmiş kalıpları açıklamayı amaçla-

yan Poincaré kaosunun delta senkronizasyonu tanıtılmıştır. Bu yeni senkronizasyon

türü, karakteristik zaman dizilerine, özellikle de yakınsama ve ayrılma dizilerine da-

yalı olarak, sistemlerdeki kaotik dinamikleri ortaya çıkaran bir kavram olan öngörü-

lemezlik üzerine inşa edilmiştir. Öngörülemezliğin varlığı, bir sistemin tek bir yörün-

gesini (veya tek bir başlangıç koşul kümesini) inceleyerek Poisson kararlı hareketini

ve hassasiyetini garanti eder.

Sayısal olarak, delta senkronizasyon hem bağlı hem de bağlı olmayan sistemlerde

öngörülemezliğin ortak karakteristik zaman dizilerini yakalar. Bu yöntem, bu tez-

deki adi, kısmi ve gecikmeli diferansiyel denklemlerle tanımlanan farklı dinamikleri
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kapsayan çeşitli modellere uygulanmıştır. Tek yönlü olarak bağlı gaz deşarjlı yarı

iletken sistemler durumunda, genelleştirilmiş senkronizasyonun bulunmadığı belir-

lenmiştir. Mackey-Glass gecikme sistemleri için genelleştirilmiş senkronizasyon yal-

nızca belirli bir eşiğin aşılmasından sonra gerçekleşir. Bu modeller için genelleşti-

rilmiş senkronizasyonun bulunmadığı bölgelerde delta senkronizasyonunun meydana

geldiği gösterilmiştir. Ek olarak aynı fenomen, özdeş senkronizasyonun olmadığı an-

cak delta senkronizasyonunun mevcut olduğu gürültü yoğunluğu alanları için bağlı

olmayan Hindmarsh-Rose sinir ağında da gözlemlenir. Bu model Markov gürültüsü

ile oluşturulmuş ve gürültü kaynaklı senkronizasyon araştırılmıştır. Genelleştirilmiş

ve özdeş senkronizasyonun olduğu alanlarda, delta senkronizasyonunun daha güçlü

bir biçimi - öngörülemezliğin tam senkronizasyonu - tespit edilmiştir.

Anahtar Kelimeler: Öngörülemezlik, Delta senkronizasyon, Gaz deşarjlı yarı iletken

sistemler, Mackey-Glass sistemleri, Hindmarsh-Rose sinir ağı
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CHAPTER 1

INTRODUCTION

1.1 Motivation

The analysis of synchronization in chaotic systems spans three decades [1–9]. Exist-

ing methods to detect synchronization, such as generalized and identical synchroniza-

tion [7, 10], primarily focus on fully synchronized trajectories of coupled or uncou-

pled dynamical systems. However, these conventional methods fails to detect partially

synchronized patterns, resulting in undetected synchronization in various systems.

The primary motivation of this thesis is to introduce a method capable of detect-

ing synchronized behavior in chaotic systems, especially in the absence of conven-

tional synchronization types. This novel method, termed delta synchronization of

Poincaré chaos, is introduced in Ref. [11]. It is built upon the concept of unpre-

dictability [12], which has been both theoretically and numerically applied to various

systems [13–21]. The method utilizes characteristic common time values of unpre-

dictability among coupled or uncoupled systems, forming sequences of convergence

and separation, to detect unified chaotic behavior.

The choice of models to which delta synchronization is applied aims to provide a

comprehensive view of various dynamical systems, including ordinary, partial, and

delay differential equations. Gas-discharge plasma systems, Mackey-Glass delay

systems, and the Hindmarsh-Rose neural network are investigated within the frame-

work of delta synchronization. The studies constituting this thesis are published in

Refs. [11, 22–24].
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1.2 Historical perspective

The Dutch researcher Christiaan Huygens, renowned for his work in optics, tele-

scope, and clock construction, was likely the first scientist to observe and describe

the synchronization phenomenon in the seventeenth century [10]. During a sea trial

of clocks designed for longitude determination, Huygens noticed that a pair of pen-

dulum clocks hanging from a common support had synchronized. Their oscillations

coincided perfectly, with the pendula moving in opposite directions. This discovery

had a significant impact on the technological and scientific advancements of the time,

greatly enhancing the accuracy of time measurements.

Huygens provided not only a precise description but also a qualitative explanation

of the mutual synchronization effect. He correctly grasped that the alignment of the

rhythms of two clocks was the result of an imperceptible motion of the beam. In

contemporary terms, this implies that the clocks were synchronized in anti-phase due

to coupling through the beam [10].

In the mid-nineteenth century, in his renowned treatise "The Theory of Sound," fa-

mous physicist William Strutt (Lord Rayleigh) [25] described the intriguing phe-

nomenon of synchronization in acoustical systems [10]. He explained that when two

organ pipes of the same pitch stand side by side, complications may arise, occasion-

ally causing issues in practice. In extreme cases, the pipes may almost silence each

other. Even with more moderate mutual influence, the pipes may speak in absolute

unison, despite small inevitable differences. Rayleigh observed not only mutual syn-

chronization, where two distinct but similar pipes start sounding in unison, but also

the quenching effect (oscillation death) when coupling leads to the suppression of

oscillations in interacting systems.

A new phase in the exploration of synchronization emerged with the progress of elec-

trical and radio engineering [10]. On February 17, 1920, W. H. Eccles and J. H.

Vincent submitted a British patent application confirming their discovery of the syn-

chronization property of a triode generator—an uncomplicated electrical device based

on a vacuum tube that produces a periodically alternating electrical current [26]. The

frequency of this current oscillation is determined by the parameters of the scheme’s

2



elements, such as capacitance. In their experiments, Eccles and Vincent coupled

two generators with slightly different frequencies and demonstrated that the coupling

compelled the systems to vibrate with a common frequency.

A few years later, Edward Appleton and Balthasar van der Pol replicated and ex-

panded upon the experiments of Eccles and Vincent, marking the first step in the

theoretical exploration of this effect [27, 28]. Examining the simplest case, they

demonstrated that the frequency of a generator can be entrained or synchronized by a

weak external signal with a slightly different frequency. These studies held significant

practical importance as triode generators became fundamental components of radio

communication systems. The synchronization phenomenon was employed to stabi-

lize the frequency of a powerful generator with the assistance of a weak but highly

precise one [10].

Since the publication by Pecora and Carroll [1] on the synchronization of chaotic sys-

tems, this phenomenon has garnered significant attention in the literature on chaotic

phenomena for three decades. The authors discovered that it is feasible to achieve

synchronization between two identical chaotic systems under appropriate unidirec-

tional coupling schemes. This result is somewhat counterintuitive due to the intrinsic

instability of chaotic systems, leading to the exponential divergence of trajectories

that are initially close [7].

Various synchronization types have been developed in literature including identical

(complete) synchronization [1], phase synchronization [29], generalized synchroniza-

tion [3,4], anticipated synchronization [30], amplitude envelope synchronization [31],

lag synchronization [32] and delta synchronization [11].

1.3 Types of chaos synchronization

The synchronization of chaos can be explored between two or more chaotic systems,

whether they are coupled or uncoupled. Unidirectional coupling involves two sys-

tems: a drive (master) and a response (slave). In this arrangement, the response is

influenced by the data from the drive, but the reverse is not true. These systems can

either be identical or differ in nature, and are predominantly investigated in physical
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and engineering contexts. Conversely, bidirectional coupling necessitates information

transfer between two systems, a phenomenon commonly applicable to physiological

systems as well.

Identical synchronization involves two identical chaotic systems within a unidirec-

tional coupling scheme [1]. Following a transient period, the attainment of an identi-

cal trajectory for the parameters of interest results in identical synchronization. The

asymptotic stability of synchronization can be assessed through conditional Lyapunov

exponents or an approach based on Lyapunov functions [7]. This type of synchroniza-

tion finds applications in diverse scientific fields, including secure communication

devices and meteorological models [7].

Drive-response systems composed of systems described by delayed equations can

exhibit a type of synchronization where the response state, x(t), synchronizes with a

state of the drive that occurs at a time τ in the future, x(t + τ). This form of syn-

chronization is termed anticipated synchronization [30] because the actual value of

the state variable of the response is the same as the corresponding drive state variable

will have at a time τ in the future [7].

In the examination of identical synchronization under unidirectional coupling, it has

been assumed that the response is an identical, or nearly identical, copy of the drive.

However, the response can differ from the drive. The synchronization of these types of

systems is investigated under generalized synchronization [3], wherein the trajectory

of the response system can be predicted based on the given trajectory of the drive

system.

The first case involves response system parameters that are very different from the

corresponding parameters of the drive. This occurs when the drive and the response

are systems of the same nature, sharing the same physical structure but with individual

differences that might be substantial. For instance, the drive could be an electric

circuit with a specific design or arrangement of elements, and the response could be a

copy of this circuit with the same design but with one or more specific elements being

notably different.

The second case arises when the nature of the two systems is different; that is, the
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systems are structurally different. Using the example of an electric circuit, the drive

and the response could both be electric circuits but with distinct designs, meaning

different elements arranged in different ways. Alternatively, the drive could still be an

electric circuit controlling a system of an entirely different nature, such as an optical

system or a biological tissue [7].

The existence of generalized synchronization is achieved by the satisfaction of an

asymptotic stability condition, which involves the solution of the response system

and a functional of the drive system. This condition must be met for a set of initial

conditions for both the drive and response systems. Approaches for detecting gener-

alized synchronization can be classified into three categories: the analysis of condi-

tional Lyapunov exponents [4], the auxiliary system approach [5], and the statistical

estimations of predictability [3].

Amplitude envelope synchronization is a type of synchronization observed between

two mutually coupled chaotic oscillators that are parametrically different [31]. It can

manifest on its own or in combination with other forms of synchronization. In its pure

form, it emerges at very low coupling strength and is a subtle form of synchronization

that does not introduce significant correlations between the amplitudes or phases of

the variables of the oscillators. In this case, the only correlated results are the en-

velopes of equivalent variables of the two oscillators. This implies that the extrema

each system variable can reach in a given time interval are correlated [7].

Phase synchronization in periodically driven chaotic systems implies that the chaotic

oscillator aligns its evolution with the applied force. This means that the phase of

the oscillator is adjusted to match the phase of the external force. Beyond its signif-

icance as a fundamental phenomenon, this has implications in various scientific and

engineering scenarios. For instance, when dealing with an ensemble of similar but

not identical chaotic oscillators, achieving phase synchronization can introduce co-

herence in their collective behavior, even if they initially exhibit incoherence. This is

particularly relevant when a weak external force is applied.

The concept of phase synchronization extends to situations involving non-identical,

mutually coupled chaotic oscillators. In such cases, the same principles, definitions

of phase, and observation techniques used for a single chaotic oscillator apply to each
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of the coupled oscillators. Here, phase synchronization indicates that, due to the

coupling, the phase dynamics of each oscillator are adjusted to synchronize with the

phase of the other oscillator, while their amplitudes remain uncorrelated [7, 29].

Beyond phase synchronization, there exists a state known as lag synchronization [32].

In the phase-synchronized state, the maxima or minima of the dynamical variables in

the system, while uncorrelated in amplitude, do not occur simultaneously. Specif-

ically, the signal from the system with a lower frequency experiences some delay

compared to the system with a higher frequency. With a further increase in coupling

strength, a correlation between the amplitudes of the system variables may emerge,

although a time lag between them is still present, resulting in a shifted relationship

between the systems [7].

Delta synchronization examines the characteristic time values of unpredictability to

reveal the synchronized behavior of systems [11]. The common sequences of con-

vergence and separation, which characterize an unpredictable trajectory, between the

drive and response systems indicate unified dynamics. The numerical degree of syn-

chronization serves as a metric demonstrating the presence and strength of the syn-

chronization.

In this thesis, delta synchronization is employed across various models to show syn-

chronization in models where conventional methods fail to detect the phenomenon.

For comparison, identical and generalized synchronization with auxiliary system ap-

proach are also employed. The advantages of our method are presented in detail with

numerical features of the method. It is important to note that this study considers the

numerical detection and applications of delta synchronization with a robust theoreti-

cal foundation in unpredictability.

1.4 Unpredictability

There are various types of chaos, each characterized by specific features. The first

type is homoclinic chaos [33], originating from Poincaré’s famous manuscript [34].

Another type is Devaney chaos [35], defined by transitivity, Lorenz sensitivity [36],

and the presence of infinitely many unstable periodic motions that are dense in the
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chaotic attractor. The third type is Li-Yorke chaos [37], identified by the presence

of a scrambled set in which any pair of distinct points are proximal and frequently

separated.

It’s important to note that the key distinction of homoclinic chaos from the others

lies in its sensitivity and frequent separation features. Homoclinic chaos assumes the

presence of a homoclinic structure and, crucially, instability. Lorenz [36] was the

first to certify the divergence of nearby motions as sensitivity, a specific form of in-

stability. Li and Yorke [37] later employed frequent separation and proximality for

the same purpose. The absence of a quantitative description of instability in homo-

clinic chaos sets it apart from more recent definitions, causing some inconvenience.

This is because sensitivity is considered one of the essential ingredients of chaos in

its modern understanding. While Poincaré himself was aware of the divergence of

initially nearby trajectories, he did not provide precise instructions on how it should

be quantified.

In Ref. [12], the concept of a Poisson stable point is developed, extending the idea

to the concept of an unpredictable point, which is characterized by convergence to

the initial state and separation from this state as time evolves, by using unpredictabil-

ity as individual sensitivity for a motion. Therefore, starting from a single point on

a trajectory, it leads to a phenomenon referred to as Poincaré chaos in Ref. [12].

This phenomenon brings various types of chaos closer together, providing an alter-

native description of motions in dynamics with a homoclinic structure. Additionally,

it incorporates ingredients similar to more recent chaos types, including transitivity,

sensitivity, frequent separation, and proximality. The presence of infinitely many pe-

riodic motions in later definitions can be substituted by a continuum of Poisson stable

orbits.

The concept of unpredictable motion examines time sequences at the moments of

convergence to the initial point and separation from the initial trajectory [12–14].

These are termed the sequence of convergence and the sequence of separation, re-

spectively. The coexistence of these sequences indicates the presence of Poincaré

chaos in the system [12–14]. Chaos was initially introduced in the Poincaré recur-

rence theorem [38], which states that certain dynamical systems in continuous time
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will, after a sufficiently long but finite time, return to a state arbitrarily close to their

initial state. Individual motions of the dynamics are Poisson stable. The final version

of the theorem was proved using methods of measure theory in [39].

The motions of Poincaré chaotic dynamics [12–14] are Poisson stable and addition-

ally equipped with an unpredictability property. In literature, sensitivity is defined by

the change of motion due to the change of initial conditions. By focusing on a single

trajectory, unpredictability defines sensitivity by the separation of motions starting

with a small difference which converges to zero. It is demonstrated in Ref. [12] that

the dynamics are sensitive, and consequently, all ingredients of chaos are present.

Reconsidering the recurrence theorem under the condition of unpredictability is of

strong interest to maximize its connection with chaotic dynamics.

Numerically, the sequence of convergence captures the moments in time when a sin-

gle trajectory passes close to its initial state within a distance δ, a value that diminishes

with each recurrence. Let’s denote these time values in the sequence as tn. If the same

single trajectory start from times tn and initial state (or the state at t = 0) separate

from each other with a distance greater than ∆, which is a relatively large number,

then the time values are recorded at the sequence of separation. The existence of both

sequences demonstrates the sensitivity and inherently chaotic dynamics of a system.

Consequently, if one mistakenly considers nearby points instead of the initial position

of an orbit, an error larger than a specific number is guaranteed in subsequent obser-

vations of the dynamics, even though the initial mistake can be arbitrarily small. This

motion is illustrated in Fig. (1.1).

The numerical degree of unpredictability arises from an algorithm designed to detect

unpredictable motions within a dynamical system. It is defined as min(δ)/∆, signify-

ing how much the trajectory numerically converges to its initial point while maintain-

ing a constant separation distance. The presence and intensity of unpredictability can

be inferred from this numerical characteristic, with smaller values indicating stronger

unpredictable trajectories [11].

The topology of uniform convergence on any compact subset of the real axis is em-

ployed to introduce unpredictable functions, utilizing the same dynamics that intro-

duced Poisson functions in Ref. [15]. This study integrates chaos investigation into
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Figure 1.1: Illustration of unpredictability.

the theory of differential equations, as initiated in Refs. [16–19]. The detailed con-

struction of an unpredictable function and its application to differential equations is

presented in Ref. [15]. To outline the procedure, the construction begins with un-

predictable sequences as motions of symbolic dynamics and the logistic map. Sub-

sequently, an unpredictable function is determined through an improper convolution

integral with a relay function.

The theoretical relationship between unpredictable motions and generalized synchro-

nization is explored in a recent study [20]. This paper establishes that if the drive

system has an unpredictable solution and generalized synchronization exists in the

coupled system, then the response system must also have an unpredictable solution.

The papers [11, 22–24] provide numerical support for this argument. Another note-

worthy exploration of unpredictability is presented in the paper [21], which broadens

the scope of unpredictable motions. The approach is highlighted as applicable to

chaos synchronization research.

1.5 Delta synchronization of Poincaré chaos

Delta synchronization of Poincaré chaos is introduced in Ref. [11], rooted in the the-

ory of unpredictability. Diverging from other synchronization methods, it does not

emphasize a full synchronization of systems, or identical trajectories. Instead, it an-
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alyzes the characteristic time values of unpredictability to demonstrate a unified dy-

namical behavior. Nevertheless, the specific conditions of delta synchronization lead

to complete synchronization of unpredictability, implying fully synchronized motion.

This coexists with other types of chaos synchronization [23, 24].

Let us consider two systems. The sequence of finite convergence captures the time

values, un, for both systems, during which they simultaneously approach their ini-

tial state with a distance smaller than δ. If, starting from the initial time and un,

the trajectories of both systems diverge concurrently, the time values of this separa-

tion constitute the common sequence of separation. These specific times characterize

unpredictability, and it is established that they are sufficient to demonstrate the sensi-

tivity of a system.

Numerically, ’finite’ convergence implies that the distance between the trajectories

at the recurrence, δ, does not approach zero sufficiently even over an extended sim-

ulation time. The case of numerically sufficient convergence represents a distinctive

feature, termed as complete synchronization of unpredictability [11, 22–24]. While

this special case still centers on the characteristic times of the trajectory, the coex-

istence of full synchronization and complete synchronization of unpredictability is

demonstrated in Refs. [23, 24]. The theoretical analysis for delta synchronization is

not yet developed except within the theory of unpredictability.

The primary advantage of the delta synchronization lies in its ability to detect both

weak and strong synchronization patterns. Unlike other methods in the literature

that rely on complete unison patterns, delta synchronization is capable of identifying

partially synchronized dynamics between two systems. This is achieved by leveraging

characteristic features of Poincaré chaos, enabling the detection of both subtle and

robust synchronization patterns.

Synchronization strength refers to the dominance of synchronized patterns over the

corresponding motions. The numerical degree of synchronization has been developed

to detect the existence and strength of synchronization in systems. This feature also

enables a comparison of synchronization strength across different parameter regimes

of the systems. The effectiveness of the method requires a sufficiently long simulation

time to reveal synchronized patterns. In this thesis, the corresponding time sequences
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are presented in tables along with their numerical degrees of synchronization.

Delta synchronization is systematically compared to generalized and identical syn-

chronization in the models presented in this thesis. The chosen models span different

dynamical systems, including ordinary, partial, and delay differential equations. No-

tably, the delta synchronization method is versatile and applicable to various dynam-

ical systems, irrespective of whether they are coupled or uncoupled.

The method has demonstrated its advantages over other synchronization methods in

a range of models, including gas discharge semiconductor models with a simple fluid

approach [11], extended fluid models of gas discharge systems [22], the Mackey-

Glass model [23], and the Hindmarsh-Rose neural network [24].

1.6 Gas-discharge semiconductor model

Gas discharge plasmas play a crucial role in various industrial technologies and scien-

tific applications [40–43]. Advancing our understanding of the fundamental physics

underlying plasma processes is essential for progress in these fields. While experi-

ments and numerical modeling serve as key points for enhancing this understanding,

experimental investigations can be impractical in certain scenarios due to their cost

and labor-intensive nature. Consequently, numerical modeling approaches become

preferable in such situations [44].

Modeling gas discharge, however, presents challenges due to the large number of par-

ticles involved and the complexity of their interactions. The sheer scale makes it im-

practical to follow each particle individually. Instead, statistical descriptions are em-

ployed, involving the definition of probability distribution functions for each species

of particles within the discharge medium. The time evolution of these functions is

then described by the Boltzmann equation. Analytical solutions for the Boltzmann

equation are feasible only for idealized models and within a limited range of condi-

tions [44]. To address a broader range of scenarios, numerical modeling approaches

have been developed and categorized into fluid models, kinetic (particle) models, and

hybrid models. These numerical methods offer a more versatile means of tackling

the complexities involved in gas discharge modeling across various conditions and
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systems.

Fluid models are constructed from moments of the Boltzmann equation, which are ob-

tained by multiplying the Boltzmann equation by powers of velocity and integrating

over velocity space. The first three moments of the Boltzmann equation correspond to

particle, momentum, and energy conservation, respectively. To simplify this reduced

set of equations, a drift-diffusion approximation for fluxes is introduced in this study.

Fluid models can be categorized into two main approaches: the "simple fluid ap-

proach" and the "extended fluid approach." [44] The simple fluid approach relies

solely on the first two moments of the Boltzmann equation. In this approach, trans-

port and rate coefficients are dependent on the local value of the reduced electric field.

This assumption is referred to as the local field approximation (LFA). To enhance the

accuracy of the simple fluid model, the extended fluid model is introduced, incorpo-

rating the electron energy balance equation. This allows the definition of transport

and rate coefficients as functions of the local mean energy, known as the local mean

energy approximation (LMEA).

Fluid models offer the advantage of computational efficiency, making them suitable

for conducting analyses and calculations involving geometrically complex, higher-

dimensional scenarios, and intricate chemistry. However, their main disadvantage

lies in their inability to provide high accuracy, as they do not treat particles at the ki-

netic level. For instance, fluid models cannot accurately capture nonlocal transport of

electrons comprehensively [45]. As a result, they are more suitable for high-pressure

discharges where nonlocal effects are not as crucial, as opposed to scenarios where

such effects play a significant role [45].

In addition to the structures mentioned earlier, gas-discharge semiconductor systems

(GDSSs) can exhibit a diverse range of temporal behaviors, including homogeneous

stationary and oscillating modes, as well as chaotic behavior [46, 47]. Experimental

investigations have identified the presence of homogeneous oscillations in a GDSS

containing nitrogen gas [48]. These varied behaviors underscore the complex and

dynamic nature that can emerge in GDSSs.

A well-established occurrence in gas discharge systems involves the onset of insta-
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bility within the uniform steady state of an electric current-carrying medium. This

phenomenon arises when the differential resistivity, denoted by the relationship be-

tween the applied voltage and discharge current, turns negative [49, 50]. Specifically,

it occurs when an increase in current coincides with a decrease in voltage across the

discharge. Consequently, the current-voltage characteristic (CVC) displays a seg-

ment with a negative slope, signifying the existence of negative differential resistivity

(NDR) in the system. This scenario corresponds to the sub-normal glow regime sit-

uated between the Townsend discharge and the normal glow discharge phases within

the classical glow discharge context. The NDR in this regime plays a crucial role

in the emergence of instabilities and oscillations, frequently observed in gas dis-

charges [51,52]. These instabilities have the potential to give rise to various structural

patterns within the gas discharge, underscoring the intricate and dynamic nature of

plasma behavior in this specific regime.

A one-dimensional simple fluid model is considered for synchronization investigation

in this thesis, specifically examining temporal oscillations of plasma variables in the

direction perpendicular to both the gas discharge and semiconductor layers, resulting

in a transition between Townsend discharge and the normal glow discharge (referred

to as the subnormal regime). Along the transverse dimension, the system demon-

strates spatial homogeneity. Previous research, including works by Refs. [53–57], has

delved into the transition of GDSSs from regular periodic behavior to fully chaotic

states during subnormal oscillations. The unpredictable dynamics of the model is

further explored in Ref. [11].

The primary focus of our investigation is on the regime characterized by chaotic os-

cillations. We establish unidirectional coupling between GDSSs to explore chaos

synchronization. The unperturbed system is denoted as the drive system, with the

discharge potential serving as a perturbation for the response system. Despite the

coupled system, consisting of the drive and response systems, not exhibiting gener-

alized synchronization as outlined by Ref. [53], our goal is to identify a more com-

prehensive form of synchronization. We have demonstrated that both the drive and

response systems display delta synchronization of chaos (DSC). Utilizing the DSC

method in the coupled system, we illustrate that the two models behave in harmony,

characterized by a shared sequence of finite convergence and a sequence of separation
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determined through numerical analysis [11].

To enhance the analysis of the semiconductor gas discharge system concerning chaos

synchronization, a more realistic and advanced one-dimensional fluid model was de-

veloped, as outlined in [22]. This model, based on the extended fluid model or local

mean energy approximation [58], was applied to the same system and the chaos syn-

chronization is investigated in a manner similar to the simple fluid model. Although

the specific details of this study are not covered in the current thesis, the results are

briefly acknowledged due to their significance in the context of the delta synchroniza-

tion method’s development. This approach offers a more comprehensive understand-

ing of the system’s dynamics, and its findings can contribute to the refinement of delta

synchronization techniques, as elaborated in the reference [22].

1.7 Mackey-Glass model

Several chronic and acute diseases manifest altered periodicity in observable symp-

toms. Examples include irregular breathing patterns observed in adults with Cheyne-

Stokes respiration and fluctuations in peripheral white blood cell counts in chronic

granulocytic leukemia. Prior to famous Mackey-Glass paper [59], theoretical studies

on the control of respiration [60] and hematopoiesis [61] have linked disease pro-

cesses to oscillatory instabilities within mathematically complex models. In Ref [59],

the initiation of disease is linked to bifurcations in the dynamics of the first-order

differential-delay equations, which model physiological systems. The study reveals

that simple mathematical models of physiological systems anticipate the existence

of periodic and aperiodic dynamic regimes, mirroring those observed in human dis-

ease. Referred to as the Mackey-Glass model, this model extends the work of Li and

Yorke [37], May [62], May and Oster [63].

The model is also investigated in electronics. An analog electronic circuit is devel-

oped and examined in Ref. [64]. This circuit serves as a high-dimensional chaos

generator and provides a tool for investigating chaos in infinite dimensional delay

systems. Electronic circuit applications of Mackey-Glass model are also utilized in

chaos synchronization research as in Refs. [65, 66].
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Chaos synchronization is of utmost importance in the field of secure communication.

The concept has been explored in the context of delay differential equations in the

literature [67–69]. Additionally, the Mackey-Glass system offers a straightforward

yet powerful tool for applications in secure communication [70, 71].

The Mackey-Glass model, a delay differential equation, exhibits chaotic behavior

across various parameter regimes [59, 72]. Adjusting the delay time induces transi-

tions from periodic to chaotic oscillations. This thesis comprehensively investigates

this transition, showing the emergence of new periods and the dynamics behind it.

The chaos analysis is substantiated by a bifurcation diagram. The unpredictable be-

havior of specific parameter regimes is demonstrated through sequences of conver-

gence and separation, as well as the numerical degree of unpredictability [23].

Investigations into the synchronization behavior of unidirectionally coupled Mackey-

Glass drive-response systems have been undertaken, with specific synchronization

thresholds highlighted in previous studies [65,73–76]. Notably, according to the find-

ings in Ref. [75], generalized and complete synchronization in coupled systems are

only achieved above a particular threshold of coupling parameter.

Furthermore, Ref. [73] delves into synchronization’s existence when the coupling pa-

rameter surpasses a specific threshold, considering different delay times in the drive

and response systems. Analytical and numerical insights into the relationship be-

tween synchronization thresholds and delay times are provided by Ref. [74]. Addi-

tionally, Ref. [76] conducts a comprehensive analysis of synchronization regimes and

stability conditions for two linearly and nonlinearly coupled Mackey-Glass systems.

In the present thesis, we aim to explore the synchronized behavior of Mackey-Glass

drive-response systems [23], employing parameters identical to those in Ref. [75]

on both sides of the previously defined synchronization threshold. The assessment

of synchronization behavior is conducted using the DSC. The primary motivation

is to demonstrate the occurrence of synchronous chaotic behavior in drive-response

Mackey-Glass systems, particularly within regions lacking generalized synchroniza-

tion.

Previous research emphasizes the sensitivity of synchronization in these systems to
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the coupling constant between the Mackey-Glass systems, leading to a distinct syn-

chronization threshold. Consistent findings in prior studies indicate synchronization’s

presence on one side of this threshold and its absence on the other [65, 73–76]. Fur-

thermore, evidence suggests the coexistence of both generalized and complete syn-

chronization on the same side of the threshold [73, 75].

Our investigation demonstrated that synchronization can occur and be detected by

the DSC method even below the synchronization threshold, where no synchroniza-

tion was previously identified [23]. Furthermore, in the region where generalized

synchronization is known to exist, we have discovered the coexistence of complete

synchronization of unpredictability, a specific case of DSC. To substantiate our argu-

ment, we have rigorously analyzed the numerical characteristics of our method.

1.8 Hindmarsh-Rose neural network

The Hindmarsh-Rose neural model, introduced in the work by Hindmarsh and Rose

[77], originated from the discovery of a unique cell in the brain of the pond snail

Lymnaea. This cell, initially silent, exhibited a prolonged burst when depolarized

by a short current pulse. A similar response was observed in various molluscan burst

neurons that had been hyperpolarized to cease bursting, as reported in Ref. [78]. Con-

tinually hyperpolarized cells, when depolarized by a short current pulse, generated an

action potential followed by a slow depolarizing after-potential. Burst discharges trig-

gered by depolarizing current pulses have also been documented in crustaceans [79]

and vertebrates [80].

To explain these phenomena, Hindmarsh and Rose introduced a small deformation to

the narrow channel in their model, creating two additional equilibrium points. The re-

sulting three equilibrium point model featured both a stable equilibrium point (silent

state) and a stable limit cycle (repetitively firing state). The transition between these

states could be triggered by a short current pulse. The introduction of a third and

slower differential equation representing adaptation was found to terminate the dis-

charge, producing either an isolated burst or a depolarizing after-potential, depending

on parameter choices. Application of a steady depolarizing current to this model led
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to periodic bursting. In the phase plane, these bursts were observed to be generated

by the movement of one of the nullclines between a position with one equilibrium

point and a position with three equilibrium points.

In a related work by Plant and Kim [81], a model of bursting, extending the Hodgkin-

Huxley model [82], was discussed. The Hindmarsh-Rose model retained the main

features of Plant and Kim’s model but presented a simpler explanation of bursting us-

ing a two-dimensional phase plane. This simplicity facilitated a better understanding

of interactions between bursting neurons.

The Hindmarsh-Rose model consists of three differential equations that capture dif-

ferent facets of a single neuron’s behavior. These equations pertain to the neuron’s

membrane potential, the recovery variable responsible for fast ion transport, and the

adaptation current [77]. The model has been a subject of extensive research, with

investigations delving into various synchronization scenarios [83–88].

The significance of synchronization extends to studies of neural networks, partic-

ularly in the context of information exchange among neurons within an ensemble

[89–91]. Its relevance becomes pronounced in the investigation of neurodegenera-

tive diseases such as Alzheimer’s and Parkinson’s, where abnormal synchronization

patterns in the brain have been observed [92, 93]. This emphasizes the crucial need

to understand and quantify synchronization, presenting potential applications in both

scientific inquiry and practical contexts.

Experimental evidence underscores the ability of external currents to induce chaotic

behavior in neurons [94, 95]. Nevertheless, deterministic models often face chal-

lenges in capturing real-world scenarios due to inherent external perturbations, com-

monly referred to as noise. Previous studies have demonstrated that this noise can

lead to synchronization in neural networks [96–101]. Our research aims to com-

prehend noise-induced synchronization within individual Hindmarsh-Rose neurons,

employing innovative methods to explore this phenomenon more comprehensively.

In the realm of noise-induced synchronization, prior investigations have predomi-

nantly utilized Gaussian white noise, as evident in references [99–101]. In con-

trast, our study adopts a novel approach by examining synchronization within the
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Hindmarsh-Rose model in the presence of Markovian noise. Noise terms charac-

terized by Markov properties have diverse applications in various research domains

[102–104]. In our research, we generate noise using Markov chains, ensuring adher-

ence to the fundamental principles of Markov properties [105–107]. The methods

employed for generating these noise terms are elaborated in Ref. [108], which intro-

duces the concept of Markov coefficients in Duffing-type equations. The stochastic

noise produced through these methods possesses a notable attribute—unpredictability

[109].

The noise-induced synchronization research in this thesis [24] demonstrates the pres-

ence of delta synchronization of chaos in the absence of identical synchronization.

Furthermore, it reveals complete synchronization of unpredictability beyond a certain

threshold of noise intensity. The findings are supported by tables of corresponding

sequences and numerical characteristics.

1.9 Contributions and Novelties

This thesis comprises four publications [11,22–24], which focus on the application of

delta synchronization to gas-discharge semiconductor models [11, 22], the Mackey-

Glass model [23], and the Hindmarsh-Rose neural network [24]. The contributions

to the literature and the novelties introduced by these studies can be explained as

follows:

Gas-discharge semiconductor systems [11, 22]:

• Conventional methods, such as generalized synchronization, prove inadequate

in detecting unison patterns within unidirectionally coupled gas-discharge sys-

tems utilizing a simple fluid approach [53]. The effectiveness of generalized

synchronization is tested in the model using the auxiliary system approach, and

its absence is conclusively demonstrated.

• The numerical proof of unpredictable trajectories in phase space is established

through sequences of convergence and separation, as well as the numerical de-

gree of unpredictability.
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• Delta synchronization of chaos is observed in the coupled systems, as evi-

denced by the accompanying tables and the numerical degree of synchroniza-

tion.

• Similar results are obtained within the same model, utilizing a more realistic

approach known as the extended fluid model. The outcomes of this study are

mentioned briefly, but the detailed discussion is beyond the scope of this thesis.

Mackey-Glass delay systems [23]:

• The emergence of new periods and the transition to chaos are numerically ex-

plained for a specific parameter regime.

• The unpredictability of the model is demonstrated for a specific delay time,

accompanied by corresponding tables and numerical characteristics.

• A unidirectionally coupled system is established, and a threshold distinguish-

ing the regions possessing generalized synchronization from those with no syn-

chronization is determined.

• Delta synchronization of chaos is observed below the threshold where general-

ized synchronization is absent.

• Above the threshold, the coexistence of complete synchronization of unpre-

dictability and generalized synchronization is observed.

Hindmarsh-Rose neural network [24]:

• The chaotic regime is analyzed through interspike intervals and membrane po-

tential, with the external current serving as a control parameter.

• A noise model is developed based on Markov chains and unpredictable func-

tions, implemented in the uncoupled neurons to investigate noise-induced syn-

chronization.

• Unpredictability for all non-zero noise intensities is demonstrated through the

numerical degree of unpredictability.
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• The existence of identical synchronization for high noise intensities is demon-

strated.

• Delta synchronization is observed for non-zero values of noise intensity.

• Coexistence of complete synchronization of unpredictability with identical syn-

chronization is detected.

The novel chaos synchronization method, delta synchronization of Poincaré chaos,

is applied to four systems with diverse dynamics, including ordinary, partial, and de-

lay differential equations. In contrast to conventional methods, delta synchronization

emphasizes partially synchronized patterns characterized by time sequences of unpre-

dictability. Therefore, in many systems, a unified chaotic dynamic cannot be detected

by conventional methods. We demonstrate that these patterns are effectively detected

by the delta synchronization method. Moreover, the special case of this approach,

complete synchronization of unpredictability, can be classified as a strong-type syn-

chronization, which generally coexists with conventional methods.

1.10 Organization of the thesis

This thesis focuses on the application of delta synchronization of Poincaré chaos to

various models. The numerical method introduced as delta synchronization is rooted

in the theory of unpredictability. In Chp. 2, theoretical foundations and the numeri-

cal implementation of unpredictability are discussed. Building upon this concept, the

delta synchronization method is constructed, and definitions and algorithms related

to these fields are presented in detail. Additionally, other synchronization methods

applied in this thesis, namely generalized and identical synchronization, are also dis-

cussed in this chapter.

The application of delta synchronization to gas-discharge semiconductor models is

discussed in Chp. 3. This chapter covers the construction of the system with govern-

ing equations and modeling approaches, explores the chaotic regime of the system,

and examines the application of unpredictability. Using this information, a unidirec-

tionally coupled system is constructed, and the existence of delta synchronization is
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demonstrated in the absence of generalized synchronization.

Chp. 4 focuses on the synchronization of chaos in the Mackey-Glass system. The

emergence of new periods and the transition to chaos are thoroughly investigated.

Unpredictability is demonstrated for the coupled system. The synchronization thresh-

old is analyzed for conventional methods, and the numerical proof of the existence

of delta synchronization below the threshold and complete synchronization of unpre-

dictability above it is provided.

Chp. 5 discusses noise-induced synchronization of Hindmarsh-Rose neurons. The

chaotic regime is illustrated through interspike interval bifurcation diagrams and the

dynamics of membrane potential under different external currents. Markovian noise,

constructed based on Markov chains and unpredictable functions, is implemented in

the model. While identical synchronization and complete synchronization of unpre-

dictability are demonstrated for high noise intensity domains, the existence of delta

synchronization for non-zero noise intensities, even for the lower values, is revealed.

The general results and common features of the models discussed in this thesis are

summarized in Chp. 6.

21



22



CHAPTER 2

UNPREDICTABILITY AND SYNCHRONIZATION

2.1 Introduction

In this chapter, we will discuss unpredictability, its synchronization, and various

chaos synchronization methods in the literature which are used in this thesis. These

methods include generalized and identical synchronization. Unpredictability plays a

crucial role in the study of chaos in dynamical systems [12–14]. This methodology

relies on time sequences, which comprise convergence and separation events. Con-

vergence moments are identified based on the Poincaré recurrence theorem1, while

separation instances record the deviations between trajectories originating from the

initial state and the states at convergence moments [12].

Synchronization can be identified by examining commonalities in these sequences, as

introduced in Ref. [11]. Delta synchronization of chaos occurs when unpredictable

systems share sequences of finite convergence and separation. "Finite convergence"

implies that the sequence does not numerically return to its initial state within a suf-

ficiently long simulation. Conversely, complete synchronization of unpredictability

is observed when the sequence numerically converges. To distinguish between these

two phenomena, we will introduce numerical characteristics and conduct an analysis

based on the number of elements in sequences.

Conventional methods have been developed for chaos synchronization [7,10]. In this

thesis, we will employ the approaches of generalized synchronization with an aux-

1 Poincaré recurrence theorem asserts that certain dynamical systems eventually return to a state arbitrarily
close to their initial state for continuous systems [38]. If the phase space volume of a dynamical system remains
invariant, as is the case with Hamiltonian systems due to Liouville’s theorem, and if the system has bounded
trajectories, then, for every open set, orbits intersecting this set will do so infinitely often [110].
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iliary system and identical synchronization [4, 5] for comparison with our methods.

Studies have shown that delta synchronization of chaos can detect synchronization in

specific domains where conventional methods may fail to do so [11, 22–24].

2.2 Unpredictability

The foundational work in mathematical dynamics, originally established by Poincaré

[34] and further developed by Birkhoff [111], served as both a starting point and a

cornerstone for subsequent explorations and comprehensive examinations of com-

plex dynamics [36,37,62,112,113]. Poincaré investigated the concept of homoclinic

chaos2 [38], and a Poisson stable trajectory of a strange attractor, an attractor with

a fractal structure, is discovered by Lorenz [36]. It’s possible that Hilmy was the

first to define a quasi-minimal set as the closure of the hull of a Poisson stable mo-

tion [114, 115]. In Ref. [115], there’s a theorem by Hilmy stating the existence of an

uncountable collection of Poisson stable trajectories within a quasi-minimal set. A

modification of the Poisson stable points to unpredictable points was introduced in

Ref. [12] such that the quasi-minimal set is chaotic.

Fig. (2.1) visualizes where unpredictability occurs as a recurrence. This figure illus-

trates various types of recurrent motions, including the conservative ones, as well as a

novel addition: the unpredictable motion. In the diagram, irregularity increases from

left to right, with the unpredictable motion being the most irregular of them all. It is

distinctly chaotic, a characteristic that has been theoretically proven [12].

Figure 2.1: The types of recurrence

While this thesis primarily focuses on the numerical implementations of unpredictabil-

ity, it’s important to emphasize that the theoretical framework is constructed based on

Refs. [12–14]. It is worth noting that the analysis of unpredictability and synchroniza-

2 Homoclinic orbit is a trajectory including the intersection of the stable and unstable manifolds [38].
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tion in dynamical systems of this study is exclusively carried out through numerical

methods.

2.2.1 Theoretical Backgrounds

Let (X, d) be a metric space, where X is a set and d is a metric. T refer to either the set

of real numbers or the set of integers. Then, conditions of a mapping f : T×X → X

to be a flow on X are given as follows [116].

(i) f(0, p) = p for all p ∈ X;

(ii) f(t, p) is continuous in the pair of variables t and p;

(iii) f(t1, f(t2, p)) = f(t1 + t2, p) for all t1, t2 ∈ T and p ∈ X .

If the conditions (i), (ii), (iii) are satisfied for a mapping f : T+ ×X → X , where T+

denote either the set of non-negative real numbers or the set of non-negative integers,

then the mapping is a semi-flow on X [116].

Let f be a flow on X and a point p ∈ X . Also suppose that U is any neighborhood of

p. Then, Poisson stability can be defined for H1 > 0 and H2 < 0 as follows [115].

(i) p is positively Poisson stable if there exists t ≥ H1 such that f(t, p) ∈ U .

(ii) p is negatively Poisson stable if there exists t ≤ H2 such that f(t, p) ∈ U .

(iii) p is Poisson stable if it is both positively and negatively Poisson stable.‘

Let the closure of the trajectory T (p) = {f(t, p) : t ∈ T} be denoted by Ωp for a

fixed p ∈ X , i.e., Ωp = T (p). The conditions for Ωp to be a quasi-minimal set are

given as follows [115].

(i) p is a Poisson stable point.

(ii) T is contained in a compact subset of X .
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For the positive semi-trajectory T +(p) = {f(t, p) : t ∈ T+} through p, the closure

is Ω+
p = T +(p) . The following theorem is stated in Ref. [114] and can be proved by

the methods given in Refs. [114, 115].

Theorem 1. [12] Suppose that p ∈ X is positively Poisson stable and T +(p) is

contained in a compact subset of X . If Ω+
p is neither a rest point (fixed point) nor a

cycle, then Ω+
p contains an uncountable set of motions everywhere dense and posi-

tively Poisson stable.

The following analysis of unpredictability includes semi-flows, but it is also valid for

flows. The definition of unpredictability can be given as follows.

Definition 1. [12] The trajectory through a point p ∈ X and the point itself are

unpredictable if there exists a positive number ∆ and the sequences of convergence

tn and separation sn , both of which diverge to infinity, such that limn→∞ f(tn, p) = p

and d[f(sn, f(tn, p)), f(sn, p)] ≥ ∆ for each natural number n.

The definition of unpredictability states that if, by mistake, a neighboring point f(tn, p)

is chosen instead of the point p, then the distance between these points will satisfy the

inequality d[f(sn, f(tn, p)), f(sn, p)] ≥ ∆. This illustrates the sensitivity of motion

when considering a single trajectory. However, in well-known studies [34–38, 113],

sensitivity is often regarded as a property of a system with a specific set of initial data,

involving the comparison of the behavior of at least a couple of solutions.

Let’s state the following lemmas.

Lemma 1. [12] If p ∈ X is an unpredictable point, then T+(p) is neither a rest point

nor a cycle.

Proof. [12] Let the number ∆ and the sequences tn, sn be as in Def. 1. Suppose that

there exists a positive number w such that f(t + w, p) = f(t, p) for all t ∈ T+. Due

to the continuity of f(t, p), there exists a positive number δ such that if d[p, q] < δ

and 0 ≤ t ≤ w, then d[f(t, p), f(t, q)] < ∆ . Let’s fix a natural number n such that

d[f(tn, p), p] < δ . One can find an integer m and a number w0 satisfying 0 ≤ w0 ≤ w

such that sn = mw + w0. Then,

d[f(sn, f(tn, p)), f(sn, p)] = d[f(w0, f(tn, p)), f(w0, p)] < sn .
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However, this contradicts with the following equation from the Def. 1.

d[f(sn, f(tn, p)), f(sn, p)] = d[f(tn + sn, p), f(sn, p)] ≥ sn .

Therefore, T+(p) is neither a rest point nor a cycle.

Lemma 2. [12] If a point p ∈ X is unpredictable, then every point of the trajectory

T +(p) is also unpredictable.

Proof. [12] Let the number ∆ and the sequences tn, sn be as in Def. 1. Fix an

arbitrary point q ∈ T +(p) such that q = f(t̄, p) for some t̄ ∈ T+. Then, one can

verify that

lim
n→∞

f(tn, q) = lim
n→∞

(tn + t̄, p) = lim
n→∞

f(t̄, f(tn, p)) = f(t̄, p) = q .

Now, select a natural number n0 such that sn > t̄ for each n ≥ n0 . Let us denote

kn = sn − t̄ ; then, for n ≥ n0, we have

d[f(tn + kn, q), f(kn, q)] = d[f(tn + kn, f(t̄, p)), f(kn, f(t̄, p))]

= d[f(tn + sn, p), f(sn, p)]

≥ ∆ .

It is evident that kn → ∞ as n → ∞. Consequently, the point q is unpredictable.

Remark 1. The constant ∆ is uniform across all points on an unpredictable trajec-

tory.

Refs. [35,36] states that dynamics on a set L ⊆ X is sensitive if there exists a positive

number ∆ such that for each l ∈ L and each positive number δ there exist a point

lδ ∈ L and a positive number sδ such that d[lδ, l] < δ and d[f(sδ, lδ), f(sδ, l)] ≥ ∆ .

Theorem 2. [12] The dynamics on Ω+
p is sensitive if p ∈ X is an unpredictable

point.

Proof. Let ∆ > 0 denote the unpredictability constant corresponding to the point p.

Consider an arbitrary positive number δ , and take a point r ∈ Ω+
p .

Firstly, let’s examine the case where r ∈ T +(p) . According to lemma 2, there exist

sequences tn and sn diverging to infinity such that limn→∞ f(tn, r) = r and d[f(tn +
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sn, r), f(sn, r)] ≥ ∆ for each n. Fix a natural number n0 such that d[f(tn0 , r), r] < δ .

In this case, the inequality d[f(sn0 , f(tn0 , r)), f(sn0 , r)] ≥ ∆ holds.

Now, suppose that r ∈ Ω+
p \ T +(p) . One can find a sequence ηm, ηm → ∞ as m →

∞ , such that limm→∞ f(ηm, p) = r . According to lemma 2, for each m ∈ N , there

exist sequences un and vn diverging to infinity such that limn→∞ f(um
n , f(ηm, p)) =

f(ηm, p) and d[f(vmn , f(u
m
n , f(ηm, p))), f(v

m
n , f(ηm, p))] ≥ ∆ for n ∈ N .

Let m0 be a natural number such that d[f(ηm0 , p), r] < δ/2 . Suppose that there exists

a natural number n1 such that

d[f(vm0
n1

, f(ηm0 , p)), f(v
m0
n1

, r)] ≥ ∆/2 .

If this is the case, sensitivity is proved. Otherwise, choose n2 ∈ N satisfying

d[f(um0
n2

, f(ηm0 , p), f(ηm0 , p))] < δ/2

so that

d[f(um0
n2

, f(ηm0 , p)), r] ≤ d[f(um0
n2

, f(ηm0 , p), f(ηm0 , p))] + d[f(ηm0 , p), r] < δ .

It can be confirmed that

d[f(vm0
n2

, f(um0
n2

, f(ηm0 , p))), f(v
m0
n2

, r)] ≥

d[f(vm0
n2

, f(um0
n2

, f(ηm0 , p))), f(v
m0
n2

, f(ηm0 , p))]− d[f(vm0
n2

, f(ηm0 , p)), f(v
m0
n2

, r)]

> ∆/2

Therefore, the theorem is proved.

For an unpredictable point p, existence of sensitivity in the set Ω+
p has been proven in

theorem (2). A similar proof for a flow f can be used to verify the sensitivity in Ωp .

Based on the aforementioned lemmas and theorems, following definition is proposed.

Definition 2. The dynamics on the quasi-minimal set Ωp is called Poincaré chaotic if

p is an unpredictable point.

Thus, chaos originates from a single function, extending the spectrum of possibilities

beyond equilibrium, periodic, quasi-periodic, almost periodic, recurrent functions,

and Poisson stable motion to include unpredictable motion as a new element.
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2.2.2 Numerical Implementation

The numerical existence of unpredictability is demonstrated in various models, as

seen in Refs. [11, 22–24]. This method relies on identifying sequences of conver-

gence and separation within a model, requiring a sufficiently long simulation time to

accumulate an adequate amount of data.

Let’s elaborate on Def. (1), which will be applied numerically to the correspond-

ing models in this thesis. In Def. (1), each return of a trajectory to its initial state

is denoted by n. We introduce a non-increasing sequence, δn, which represents

the maximum possible distance between the initial point p and f(tn, p), satisfying

d[p, f(tn, p)] ≤ δn.

Then, we define the moments tn that meet the conditions d[p, f(tn, p)] ≤ δn and

limn→∞ f(tn, p) = p as the sequences of convergence. These moments represent

when trajectories return close to their initial state.

On the other hand, the sequence of separation, denoted as sn, comprises moments that

satisfy d[f(sn, f(tn, p)), f(sn, p)] ≥ ∆. These moments capture the times at which

trajectories, starting from p and f(tn, p), diverge from each other. Corresponding

illustration is given in Fig. (1.1)

In addition to existence of the sequences, a numerical characteristic called degree of

numerical unpredictability to measure the strength and presence of unpredictability

have been developed and applied various models [11, 22–24]. This degree of numer-

ical unpredictability, denoted as αk for a finite number k, is defined as follows:

αk =
min1,2,...,kδn

∆
. (2.1)

The unpredictability of the motion is confirmed when αk has a small value that con-

verges to zero as k becomes larger. Numerically, smaller αk values indicate stronger

chaotic behavior. This can be illustrated using the following analogy: If the simu-

lation begins with a point arbitrarily close to the initial point, f(tn, p), rather than

the initial point, f(0, p), the error can be expressed as 1/αk. Therefore, a smaller αk

implies a stronger degree of chaos.

It’s important to note that in numerical simulations, the number of elements in the
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sequence of convergence tn and the sequence δn are both equal to n. However, the

number of elements in the sequence of separation does not necessarily have to be n.

This discrepancy can occur when the time values in tn approach the total simulation

time, causing the simulation to end before the trajectory diverges. In Equation (2.1),

k represents the number of elements in the sequence of separation.

Consider a differential equation ẋ = f(x). Let the simulation of this equation be

in a time domain T ∈ [T i, T f ] with the time difference ∆T . The algorithm for

unpredictability, as described in [22, 24], is provided in Algorithm (1).

In this algorithm, δ, ∆δ, and ∆ are constants that must be chosen based on the scale

of the motion. δ should be a small number, while a large number ∆ satisfies ∆ ≫ δ.

The decrement of δ at each iteration is indicated by ∆δ. The algorithm finds the

corresponding values of tn, sn, δn and the degree of numerical unpredictability α. It

is important to note that if the numbers of elements of tn and sn are not same, the 21st.

line should take the last δn value at which sn exists.

Transient time should not be considered in the algorithm. Then, the existence of the

sequences in which the time values cover the entire simulation, and small α value

confirms the unpredictability in a model.

This algorithm is versatile and applicable to various types of differential equations. It

has been successfully applied to ordinary and partial differential equations in Ref. [11,

22, 24], and to delay differential equations in Ref. [23]. The dimension of the differ-

ential equations, denoted by d, must satisfy d ≥ 1. Additionally, the unpredictability

can be applied to stochastic systems, as demonstrated in Ref. [24].

2.3 Synchronization through Unpredictability

Unpredictability analysis centers around two key sequences: sequences of conver-

gence and separation. Each time a trajectory returns to its initial state, these sequences

capture the moments of convergence and divergence. These sequences are sufficient

to demonstrate chaotic behavior over an extended simulation.

Similarly, synchronization of chaos among dynamical systems can be detected using
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Algorithm 1: Algorithm for Unpredictability
Input: δ

Input: ∆δ

Input: ∆

1 n = 0;

2 q = 0;

3 for T = T i +∆T : ∆T : T f do

4 if ∥x(T )− x(T i)∥ < (δ − n ∗∆δ) then

5 n = n+ 1;

6 tn = T % Sequence of convergence;

7 end

8 end

9 δlast = δ − n ∗∆δ;

10 for T = T i +∆T : ∆T : T f do

11 for i = 1 : 1 : n do

12 if ∥x(ti + T )− x(T )∥ > ∆ then

13 if T > q then

14 si = T % Sequence of separation;

15 q = T ;

16 break;

17 end

18 end

19 end

20 end

21 α = δlast
∆

% Degree of numerical unpredictability
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a similar analysis. For each return of a trajectory to its initial state, the essential time

values for synchronization are the same as those used in the unpredictability analysis,

specifically the moments of convergence and divergence.

In contrast, other synchronization methods in the literature, such as generalized, iden-

tical, and phase synchronization, focus on fully synchronized systems where corre-

sponding parameters follow precisely the same trajectory. One drawback of these

methods is that they conclude no synchronization at all when fully synchronized sys-

tems are absent. However, unpredictability characterizes chaos primarily by the sig-

nificant moments of a trajectory, and synchronization of these moments reveals chaos

synchronization.

Let the unidirectionally coupled systems be given as

ẋ = f(x) , (2.2a)

ẏ = g(y, h(x)) , (2.2b)

where these two systems, (2.2a) and (2.2b), are called drive and response systems3,

respectively. Suppose that both systems have unpredictable solutions. Then, defini-

tion of delta synchronization of chaos, as in [11, 22–24], can be given as follows.

Definition 3. [11] The systems 2.2a and 2.2b with unpredictable motions x(t) and

y(t) admit the delta synchronization of chaos, if there exist positive numbers δ,∆1,∆2 ,

for δ < ∆1,2, the sequence of finite convergence un and sequence of separation vn

such that ∥x(un)− x(0)∥ + ∥y(un)− y(0)∥ = δn ≤ δ, ∥x(un + vn)− x(vn)∥ ≥
∆1 and ∥y(un + vn)− y(vn)∥ ≥ ∆2, n = 1, 2, . . . .

Here, the distance is computed by the Euclidean norm ∥.∥. The definition contains

two ∆ values, which are ∆1 and ∆2 corresponding to systems (2.2a) and (2.2b),

respectively. To establish the presence of DSC, the values ∆1 and ∆2 are set equal to

the values used in the unpredictability analysis.

For DSC to exist, two conditions must be met. First, there must be un values that

satisfy the inequality ∥x(un)− x(0)∥+∥y(un)− y(0)∥ = δn ≤ δ, where δ decreases
3 For the analysis of synchronization through unpredictability, systems (2.2a) and (2.2b) do not have to be

unidirectionally coupled. They can be bidirectionally coupled or uncoupled as well. In those cases, the following
definition, algorithm and analysis do not change.
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for each n. Then, the presence of vn values that simultaneously satisfy the inequali-

ties ∥x(un + vn)− x(vn)∥ ≥ ∆1 and ∥y(un + vn)− y(vn)∥ ≥ ∆2 demonstrates the

existence of DSC.

In the context of DSC, synchronization doesn’t necessitate limn→∞ δn = 0. Instead,

we refer to un as a sequence of finite convergence. However, sequence of finite con-

vergence should encompass moments spanning the entire simulation, not just a por-

tion of it. The presence of both un and vn confirms the system exhibits DSC.

The finite convergence property of DSC categorizes it as a form of weak synchro-

nization. Notably, in numerical simulations, the sequences used for unpredictability

analysis always have more elements than those for DSC due to this finite convergence.

However, this unique feature gives our method the ability to detect weak synchroniza-

tion patterns that other methods may miss.

In various studies [11, 22, 23], the presence of DSC has been observed in regions

where generalized synchronization does not exist. These models involve drive-response

systems, for which the auxiliary systems method does not confirm generalized syn-

chronization. A similar phenomenon is seen in Ref. [24], which explores noise-

induced synchronization. In this case, identical synchronization is compared to DSC,

and the results demonstrate that DSC exists even when identical synchronization is

absent.

A special form of the DSC, known as complete synchronization of unpredictability,

differentiate from the DSC with its complete convergence. In this type, the conver-

gence of un series is evident, leading to δn approaching zero as n becomes large in

numerical simulations.

Complete synchronization of unpredictability has been observed in regions where

other synchronization methods like generalized and identical synchronization ex-

ist [23, 24]. Furthermore, numerical studies reveal that complete synchronization of

unpredictability features sequences with a number of elements that are nearly equal

to the number of elements in the unpredictability sequences.

Additionally, a unique numerical characteristic of DSC, termed the degree of numer-

ical synchronization, can be defined to indicate the presence and strength of synchro-
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nization [11]. It is calculated as follows.

αsync
k =

δk
min(∆1,∆2)

. (2.3)

DSC is confirmed for αsync
k < 1 with sufficiently large sequences un and vn covering

the entire simulation. Smaller αsync
k indicates stronger synchronization since smaller

values imply more common time values in the sequence of finite convergence and

separation. Complete synchronization of unpredictability is achieved when αsync
k →

0 as k → ∞.

Let the Equations (2.2a) and (2.2b) be numerically solved in a time domain T ∈
[T i, T f ] with the time difference ∆T . The synchronization through unpredictability

can be applied to the systems simultaneously by using Algorithm (2).

The values δ and ∆δ must be common in unpredictability analyses of Eqs. (2.2a)

and (2.2b), and the synchronization analysis of unpredictability. For consistency, the

values ∆1 and ∆2 must come from the unpredictability analyses of Eqs. (2.2a) and

(2.2b), respectively. As in the numerical unpredictability analysis, if the numbers of

elements of tn and sn are not same, the 21st. line should take the last δn value that sn

exists.

In Algorithm (2), the conditions at the at 4th. and 12th. lines define the process of

identifying sequences of finite convergence and separation, as per Def. (3). According

to the algorithm, the time values found in synchronization analysis do not have to be

contained in the unpredictability sequences.

Numerical studies have shown that these values can differ for coupled systems [11,

22, 23], whereas they tend to be identical for uncoupled systems [24]. The reason is

even though driven systems differentiate from drive systems by a small perturbation

and synchronization still occurs, this small difference leads to a slight time disparity

between the elements of sequences in unpredictability and synchronization analyses.

In contrast, uncoupled systems involve two identical systems initiated with different

initial conditions, resulting in no observable difference in these models.

The method has been numerically tested on various models. However, although the
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numerical implementation based on the Algorithm (2) can be easily implemented in

the corresponding models, theoretical aspects of the method have not been developed

yet.

Algorithm 2: Algorithm for Delta Synchronization of Chaos
Input: δ

Input: ∆δ

Input: ∆1

Input: ∆2

1 n = 0;

2 q = 0;

3 for T = T i +∆T : ∆T : T f do

4 if ∥x(T )− x(T i)∥+ ∥y(T )− y(T i)∥ < (δ − n ∗∆δ) then

5 n = n+ 1;

6 un = T % Sequence of finite convergence;

7 end

8 end

9 δlast = δ − n ∗∆δ;

10 for T = T i +∆T : ∆T : T f do

11 for i = 1 : 1 : n do

12 if ∥x(ui + T )− x(T )∥ > ∆1 && ∥y(ui + T )− y(T )∥ > ∆2 then

13 if T > q then

14 vi = T % Sequence of separation;

15 q = T ;

16 break;

17 end

18 end

19 end

20 end

21 αsync = δlast
min(∆1,∆2)

% Degree of numerical synchronization
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2.4 Identical Synchronization

Identical synchronization analyze the phenomenon between systems initiated with

different sets of initial conditions [7]. Let two systems be given as follows.

ẋ = f(x) , (2.4a)

ẏ = g(y, x) , (2.4b)

where Equations (2.4a) and (2.4b) are drive and response systems, respectively. The

variable y of the response system can be subjected to continuous control or to replace-

ment of variables such as decomposition of drive system into subsystems and using

the new variables.

Identical synchronization between these systems occurs if there are sets of initial

condition Ix ⊂ Rd for the drive and Iy ⊂ Rr for the response, such that for all

x(0) ∈ Ix and y(0) ∈ Iy

lim
t→∞

∥y(t)− x(t)∥ = 0 . (2.5)

If the same initial conditions are chosen for the drive and response systems, syn-

chronization will occur such that x(t) = y(t) for all t > 0. The stability of the

synchronization can be tested by conditional Lyapunov exponents.

Let the difference between the drive and response systems be δ(x, y) ≡ y − x ̸= 0.

Then, evolution of δ(x, y) in time can be given as follows.

δ̇(x, y) = g(y, x)− f(x) . (2.6)

Asymptotically stable synchronization is achieved if the all Lyapunov exponents of

Equation (2.6) are negative for y = x. Since these Lyapunov exponents are com-

puted for a particular state of the drive system, Eq. (2.6), they are called conditional

Lyapunov exponents.

These Lyapunov exponents can be calculated by linearizing Equation (2.6) around the

synchronized state y = x,

δ̇(x, y) = J(x)δ(x, y) , (2.7)

with the Jacobian

J(x) =
∂g(y, x)

∂y

∣∣∣∣
y=x

, (2.8)

36



of response system vector field. Subsequently, procedures to find Lyapunov expo-

nents are fallowed, and stability of synchronization is determined [7]. Alternatively,

Lyapunov functions [7] can be used to determine the stability of the synchronization

instead of Lyapunov exponents [117].

2.5 Generalized synchronization

Identical synchronization is considered when the response is identical or nearly iden-

tical to the drive system. On the other hand, generalized synchronization is a tool for

studying the synchronization of nonidentical chaotic systems. Systems amenable to

generalized synchronization can be classified into two categories:

1. Similar Nature Systems: In this case, the systems share the same underlying

physical structure but exhibit individual differences. For instance, the drive and

response systems may both be electric circuits, but they have distinct element

values (e.g., capacitance, resistance) in each system.

2. Different Nature Systems: Here, the systems have different physical structures

or designs. For example, both the drive and response systems could be elec-

tric circuits, but with distinct circuit designs. Additionally, systems can differ

conceptually, such as biological neurons and optical devices.

Let a unidirectionally coupled system be given as follows.

ẋ = f(x) , (2.9a)

ẏ = g(y, h(x)) , (2.9b)

where these two equations, (2.9a) and (2.9b), define drive and response systems, re-

spectively. Generally, x(t) = y(t) is not achieved for all t due to the different nature

of the drive and response systems. However, synchronization can still be achieved for

nonidentical systems since the dynamic of the response can be completely predicted

by the drive. This is known as the generalized synchronization [3].

Generalized synchronization is achieved if the initial condition sets Ix and Iy exist
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such that x(0) ∈ Ix and y(0) ∈ Iy, and the following condition is satisfied

lim
t→∞

∥y(t)− ϕ[x(t)]∥ = 0 , (2.10)

with ϕ[x(t)] a functional determining the phase space trajectory of y(t) from the tra-

jectory of x(t) [7]. When the functional is identity, ϕ[x(t)] = x(t), identical synchro-

nization is recovered.

Detecting generalized synchronization can be challenging in various situations, lead-

ing to the development of specific criteria and algorithms for this purpose. There are

three primary methods for identifying generalized synchronization [7]:

• Analyses of conditional Lyapunov exponents [4].

• Application of the auxiliary system approach [5].

• Utilization of statistical predictability estimations [3].

The auxiliary system approach is considered and utilized in this thesis. It relies on the

predictability aspect of synchronization, which means that if two identical replicas of

the response systems, starting from distinct initial conditions within the synchroniza-

tion basin of attraction, are both influenced by the same drive system, they should

ultimately reach the same state once transient behaviors have subsided. To achieve

this, the auxiliary system approach involves employing an extra response system that

mirrors the original response system and operates independently of it.

Let us call the identical copy of the response system given in Equation (2.9b) auxiliary

system and denote it by y′(t). For x0 ∈ Ix and y(0), y′(0) ∈ Iy, the condition for the

generalized synchronization can be given as follows.

lim
t→∞

∥y(t)− y′(t)∥ = 0 , (2.11)

which is called the asymptotic stability condition. This condition is examined after

the transient regime in the numerical simulations.

Numerically, parametric plots of the auxiliary system versus the can be a test to

observe the presence of generalized synchronization. If the motion takes place on

y(t) = y′(t) line, existence of the generalized synchronization is confirmed.
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CHAPTER 3

DELTA SYNCHRONIZATION OF POINCARÉ CHAOS IN GAS

DISCHARGE-SEMICONDUCTOR SYSTEMS

3.1 Introduction

A gas discharge semiconductor system (GDSS) is a plasma system that combines gas

discharge with a high-ohmic semiconductor barrier. In this study, a one-dimensional

fluid model using the drift-diffusion approximation is being discussed. This model

considers only electrons and ions as plasma species. In the existing literature, this

particular GDSS model is referred to as a simple fluid model or a local field ap-

proximation [45, 118–120]. It focuses primarily on ionization processes that occur in

regions with weak electric fields within the discharge gap. Despite its omission of

non-local ionization effects, this model can still provide a qualitative understanding

of the fundamental behaviors of discharge systems.

Since our model is one-dimensional, temporal oscillations of plasma variables be-

tween Townsend discharge and the normal glow discharge (i.e., subnormal regime)

occur only along the direction perpendicular to the gas discharge and semiconductor

layers. In the transverse dimension, the system exhibits spatial homogeneity. Previ-

ous literature [53–57] has investigated the transition of GDSSs from regular periodic

behavior to fully chaotic states in subnormal oscillations.

In this study, our focus is on the regime where chaotic oscillations occur. We estab-

lish unidirectional coupling between GDSSs to explore chaos synchronization. The

unperturbed system is referred to as the drive system, and we use the discharge po-

tential of the drive system as a perturbation for the response system. Although the

coupled system (comprising the drive and response systems) does not exhibit gener-
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alized synchronization as indicated by [53], our aim is to identify a more general form

of synchronization. We have demonstrated that both the drive and response systems

exhibit Delta Synchronization of Chaos (DSC). By employing the DSC method in the

coupled system, we show that the two models behave in unison, characterized by a

common sequence of finite convergence and a sequence of separation that we have

numerically determined. The research related to this chapter is published in Ref. [11].

3.2 Fluid Modeling of Plasma

Velocity distribution function f(r,v, t) can be used for the description of plasma

species. The function yields the probability of finding particles at a specific position

and velocity of a six dimensional phase space (r,v) [44, 121]. According to the

kinetic theory of plasmas, the Boltzmann equation is employed to describe the time

evolution of f(r,v, t) under the influence of external forces.

The kinetic Boltzmann1 equation can be given as

∂fj
∂t

+∇r · vfj +
qj
mj

∇v · [(E+ v×B)fi] =
∑
k

Ckfk , (3.1)

where each plasma species are represented as j. The quantity of particles within

the volume drdv can be determined using the expression fjdrdv. In this context,

E and B denote the local electric and magnetic fields, respectively. The particle’s

charge and mass are represented as qj and mj , respectively. Any elastic or inelastic

collisions experienced by a particle are described by the operator Ck corresponding

to the species k.

Due to the computational inefficiency of solving the Boltzmann equation directly,

Eq.(3.1) can be multiplied by the velocity v with different power orders and can

be integrated along the velocity instead. The resulting equations, corresponding to

different orders of velocity power, yield moments of the Boltzmann equation. These

moments and functional integrals are used to define macroscopic quantities such as

plasma particle number density, velocity, and energy. As in Ref. [44], these equations

are then coupled with Maxwell’s equations to establish a self-consistent plasma fluid

theory.
1 Vectors are represented by bold characters.
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The zeroth order moment of the Boltzmann equation can be obtained by multiplying

Eq.(3.1) by v0 = 1 and integrating over the velocity as follows.∫
∂fj
∂t

dv +

∫
∇r · vfj dv +

qj
mj

∫
∇v · [(E+ v×B)fj] dv

=

∫ ∑
k

Ckfk dv .
(3.2)

Let us introduce the particle density,

nj(r, t) =

∫
fj(r,v, t) dv , (3.3)

and the average fluid velocity,

⟨v⟩ = uj(r, t) =
1

nj(r, t)

∫
vfj(r,v, t) dv . (3.4)

The following term vanishes by the Gauss theorem.

qj
mj

∫
∇v · [(E+ v×B)fj] dv = 0 . (3.5)

We can see this by separating the equation as follows [121].∫
(E · ∇v)fjdv =

∫
∇v · (fE)dv =

∮
Sv

fE · dsv = 0 , (3.6)

The reason last term vanishes is that while the surface area increases as v2, all phys-

ical distributions approaches zero faster such as Maxwellian distribution which ap-

proaches zero as e−v2 .

The second term of Eq. (3.5) vanishes as follows.∫
((v×B) · ∇v)fjdv =

∫
∇v · (f(v×B))dv −

∫
f∇v · (v×B)dv

=

∮
Sv

f(v×B) · dsv −
∫

f∇v · (v×B)dv = 0
(3.7)

Here, first integral vanishes as in Eq. (3.6). The second integral also vanishes since

(v×B) is perpendicular to ∇v.

Let Sj =
∑

k nk⟨Ck⟩, which represents the inelastic collisions influencing the popu-

lation of species. Then, as in Ref. [44], Eq.(3.2) becomes

∂nj

∂t
+∇ · (njuj) = Sj . (3.8)

which is the continuity equation.

41



For the first order moment, Eq.(3.1) is multiplied by v1 = v and integrated over the

velocity as follows.∫
v
∂fj
∂t

dv +

∫
v∇r · vfj dv +

qj
mj

∫
v∇v · [(E+ v×B)fj] dv

=

∫ ∑
k

vCkfk dv .
(3.9)

After taking the necessary steps as in Ref. [45], Eq.(3.9) turns into the following equa-

tion, which corresponds to the fundamental principle of momentum conservation.

mjnj
duj

dt
= qjnj(E+ uj ×B)−∇pj −∇ · πj +Rj , (3.10)

where πj = Pi−piI is the traceless pressure tensor such that Pi is the pressure tensor,

pi is the partial pressure corresponding to the thermal velocity and I is the identity

matrix [45]. Rj/mj =
∑

k nk⟨Ckv⟩ is the rate of momentum exchange through

collisions among different species.

The second order moment can be found by multiplying both side of Eq.(3.1) by v2

and integrating over velocity as follows.∫
v2

∂fj
∂t

dv +

∫
v2∇r · vfj dv +

qj
mj

∫
v2∇v · [(E+ v×B)fj] dv

=

∫ ∑
k

v2Ckfk dv .
(3.11)

By manipulating this equation as in Ref. [45] and using the following Maxwellian

distribution function

Fj(v) =

(
mj

2πkBTj

)3/2

exp

(
− mjv

2

2kBTj

)
(3.12)

with kBTj =
pj
nj

, where pj is the partial pressure and kB is the Boltzmann constant,

we end up with the following energy balance equation

3

2
nj

d

dt
(kBTj) + pj∇ · uj = −πj∇ · uj −∇ · qj +Qj . (3.13)

Here, qj is heat flow vector and Qj , rate of heat exchange, is responsible for elastic

and inelastic collisions such that qi = ni⟨12miw
2w⟩ where w is the thermal velocity2.

Although Eqs. (3.8), (3.10), (3.13) define the dynamics of species in a plasma, more

equations are required to define the dynamics comprehensively.
2 A more detailed analysis can be found in Refs. [44, 45]

42



3.2.1 Two-fluid model

The fluid equations (3.8), (3.10), (3.13), which were derived previously, are employed

to describe a plasma consisting of electrons and a single species of ions. These equa-

tions collectively illustrate the behavior of two coupled fluid components. Let us

assume that viscosity effects are negligible.

For the electrons, fluid equations can be given as follows.

∂ne

∂t
+∇ · (neue) = Se ,

mene
due

dt
= qene(E+ ue ×B)−∇pe +Re,i ,

3

2
ne

d

dt
(kBTe) + pe∇ · ue = −∇ · qe +Qe,i .

(3.14)

For the ions, fluid equations become

∂ni

∂t
+∇ · (niui) = Si ,

mini
dui

dt
= qini(E+ ui ×B)−∇pi +Re,i ,

3

2
ni

d

dt
(kBTi) + pi∇ · ui = −∇ · qi +Qe,i .

(3.15)

Within the provided equations, n denotes the particle number density, while S repre-

sents the rate at which particles are either created or destroyed. R and Q signify the

momentum and rates of energy exchange, respectively. m corresponds to the mass of

the particles, and p is defined as the pressure, where p = nkBT . The electron and ion

species are indicated by the subscripts e and i, respectively.

In order to describe a plasma system comprehensively, governing the behavior of

electric and magnetic fields requires the "two-fluid" equations to be considered with

Maxwell’s equations [44], which can be given as follows.

ϵ0∇ · E = σ ,

∇× E = −∂B

∂t
,

∇ ·B = 0 ,

1

µ0

∇×B = j+ ϵ0
∂E

∂t

(3.16)
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where σ and j stand for the charge and current densities, respectively. It is important

to note that the spatial distribution of electric charges and the flow of electric current

within the plasma system can be obtained by σ and j in the Maxwell’s equations.

3.2.2 Drift-Diffusion Approximation

Drift diffusion approximation considers weakly ionized low temperature gas dis-

charge plasmas. The discharge is distant from a state of local thermodynamic equilib-

rium, indicating that the temperature of electrons is notably higher than the temper-

atures of other species. It is assumed that the background gas temperature is equiv-

alent to temperature of all heavy particles. Then, the total pressure is expressed as

p = NkbT , where N =
∑

i ni for all species i.

When the inertia terms are neglected on the left hand side of the momentum conser-

vation equation (3.10), which is also included in Eqs.(3.14) and (3.15), the particle

flux density in the absence of magnetic field (B = 0) can be found as follows:

Γk = nkuk = sgn(qk)µknkE−Dk∇nk , (3.17)

where k denotes the species of particles: electrons, ions, and neutral species. Here,

the particle mobility and diffusion coefficients are given as µk = |qk|/(mkνk) and

Dk = kBTkµk/qk, where νk is the collision frequency. For the electrons and ions,

Eq.(3.17) can be given as

Γe = neuk = −µeneE−De∇ne ,

Γi = niuk = µiniE−Di∇ni ,
(3.18)

where subscripts e and i represent electrons and ions, respectively.

Let us substitute Eq.(3.17) into the first equations of Eqs. (3.14) and (3.15), then the

two-fluid equations with drift-diffusion approximation are given as [44]
∂nk

∂t
+∇ · (sgn(qk)µknkE−Dk∇nk) = Sk (3.19)

It is important to note that this equation is coupled with the Poisson equation for the

electric field E to build a self-consistent model. Poisson equation is given as

−ϵ0
∂2φ

∂x2
=

∑
k

qknk , (3.20)

where φ is the potential.
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3.3 Simple Fluid Model

We have discussed the governing equations of the glow discharge as a fluid model

derived from the moments of the Boltzmann equation, which are continuity, momen-

tum conservation and energy equations. Additionally, to ensure a comprehensive

model for the electric field distribution, these equations are coupled with the Pois-

son equation. Two-fluid equations with drift-diffusion approximation are derived by

transforming the momentum equation such that particle flux densities are taken into

account.

Electron transport and collisional reaction rate coefficients in the fluid equations are

responsible for the particle collisions dynamics. Thus, determining these coefficients

is important for the accuracy of the model. In this chapter, local field approxima-

tion (LFA) is considered for the description of electrons’ transport and rate coeffi-

cients [44, 118] such that they are described as functions of the local reduced electric

field E/p, where E is the magnitude of the electric field and p is the pressure. Fur-

thermore, mobility and diffusion (transport coefficients) can be taken constant by

using the Einstein relation D/µ = kBT/e. A fluid model of gas discharge plasma

constructed on this approximation is called simple fluid model.

Then, the equations of the model can be given as follows [44].

∂nk

∂t
+∇ · Γk = Sk ,

Γk = sgn(qk)µknkE−Dk∇nk ,

ϵ0∇ · E =
∑
k

qknk ,

E = −∇φ ,

(3.21)

for each species k. For both the electrons and ions, the source term is defined as

Sk = α|Γe| − βneni, where α = α(E) is the first Townsend coefficient, which is the

rate coefficient of electron impact ionization, and β is the electron-ion recombination

coefficient [45]. Additionally, the electric potential is denoted as φ.
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3.4 Description of the Gas-Discharge Semiconductor Model

The present study examines a DC-driven planar gas discharge system, in which one of

the electrodes is constructed from a high-ohmic semiconductor. This system features

a large aspect ratio, meaning that the gap between the electrodes is much smaller

than the system’s transverse dimensions. Such a gas discharge-semiconductor system

has been previously explored both experimentally and numerically, as documented

in various references [48, 54–56, 119, 120, 122–133]. This system is schematically

represented in Fig. (3.1). In the diagram, an external circuit, including a resistor

and a supplied voltage source, is connected to the gas discharge gap and the GaAs

semiconductor layer, both of which are sandwiched between two planar electrodes.

Figure 3.1: The schematic illustration of a planar gas discharge coupled with a semi-

conductor layer.

A spatially one-dimensional model is developed for the analysis. This model, also

known as DC discharge plasma model, extends in a direction perpendicular to the

electrode layers and does not consider spatial variations in the parallel direction to

the layers (transverse direction). In other words, our focus is on temporal oscillations

occurring in a transversely homogeneous mode. The one-dimensional model is also

based on a simple fluid model for gas discharge in nitrogen, akin to those employed in

numerous numerical investigations of GDSSs [54,55,57,120,127,128,131,133,134].

Within this model, two plasma species, namely the electrons and the positive ions,
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are considered, and two types of ionization processes take place: electron impact ion-

ization within the bulk of the gas and secondary electron emission from the cathode

surface.

The mobility coefficients are given as approximation by µep = 2×105 cm2 Torr V−1s−1

and µip = 699 cm2 Torr V−1s−1. The corresponding diffusion coefficients, De and

Di, are determined by the Einstein relation, which is D/µ = kBT/e. The ionization

rate can be expressed as a function of the reduced electric field by Townsend formula

such that α = Ap exp(−Bp/|E|), where p is the pressure of the gas and constants A,

B are A = 12 cm−1Torr−1 and B = 343 V cm−1Torr−1 [135].

The anode and cathode ends of the gas discharge are positioned at x = 0 and x = d,

respectively. The semiconductor layer extends up to d = dg + ds, where dg and ds

represent the lengths of the discharge gap and the semiconductor layer, respectively.

Boundary conditions for ions and electrons at the anode (x = 0) are determined by

the following equations.

ni = 0 and
∂ne

∂x
= 0, (3.22)

The boundary conditions for the cathode (x = d) can be given as follows.

∂ni

∂x
= 0 and µene = γµini, (3.23)

where γ is the secondary emission coefficient.

To complete the system of equations, the external circuit equation is integrated into

the GDSS model to account for the semiconductor layer. It is given as

τs
∂U(t)

∂t
= Ut − U(t)−RsJ(t) . (3.24)

Here, U(t) denotes the discharge voltage, Ut = U(t) + Us(t) represents the total

stationary voltage, Rs = ds/σs is the resistance of the semiconductor, Cs = ϵsϵ0/ds

is the capacitance per area, and τs = CsRs = ϵsϵ0/σs is the Maxwell time scale of

the semiconductor with dielectric constant ϵs, conductivity σs, and permittivity of free

space ϵ0. In addition to the total current density J(t), the currents of species can be

given for electrons and positive ions as Je = −µeneE and Ji = µiniE, respectively.

The input parameters are defined same as in the experiment [48] and in theoretical

works [54, 56, 57], which are demonstrated in Table (3.1).
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Table 3.1: Input parameters of the one-dimensional simple fluid model

Description Input parameters

Pressure of nitrogen gas p = 40 mbar

Gas temperature Tg = 297K

Discharge gap width dg = 1.4 mm

GaAs layer width ds = 1.5 mm

GaAs dielectric constant ϵs = 13.1

GaAs conductivity σs = (2.6× 105Ωcm)−1

Secondary emission coefficient γ = 0.08

Electron mobility coefficient µep = 2× 105 cm2TorrV−1s−1

Ion mobility coefficient µip = 699 cm2TorrV−1s−1

The applied total voltage Ut and the semiconductor resistance Rs serve as control pa-

rameters. By appropriately adjusting these two parameters, we restrict the discharge

system to operate in the regime where it corresponds to the transition from Townsend

to glow discharge.

Our model is initially developed in dimensionful units, but the results are presented

in terms of dimensionless parameters. The process of nondimensionalization for this

model is primarily conducted as outlined in [56,133]. The corresponding expressions

to transform the results into a dimensionless parameters are as follow.

U =
U

E0X0

, J =
J

en0X0/t0
, τ =

t

t0
, Rs =

Rs

E0t0/en0

, (3.25)

where the intrinsic parameters are

X0 ≈ 2.78× 10−5 m, t0 ≈ 4.05× 10−11 s,

n0 ≈ 2.05× 1018 m−3, E0 ≈ 1.03× 106 V/m.
(3.26)

3.5 Periodic and Chaotic Oscillations

In this section, we use a bifurcation diagram presented in Fig. (3.2) to unveil the

regions of regularity and chaos. Similar diagrams have been explored in previous

studies such as [54,120,133]. Within this diagram, the bifurcation curve, determined
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as a function of two control parameters, Ut and Rs, serves to distinguish the stable

stationary solutions from the unstable ones, where temporal oscillations occur. Left

side of the curve in Fig. (3.2) covers the stable stationary solutions such as point (a),

while right side includes unstable ones such as (b), (c), (d).

Figure 3.2: Bifurcation diagram separating stable stationary region from unstable

region. Points denoted by (a), (b), (c) and (d) indicate regimes with Ut = 17.04,

17.68, 18.71 and 20.11 at Rs = 30709 , respectively.

In this figure, the horizontal line corresponds to calculations with a constant semi-

conductor resistance value Rs = 30709, while the total applied potential Ut varies.

Different Ut values are marked as points (a), (b), (c), and (d), and the corresponding

phase portraits are also provided in Fig. (3.3).
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Figure 3.3: Phase portraits of trajectories in the U -J plane, computed for correspond-

ing (a), (b), (c) and (d) points in figure (3.2).

In Fig. (3.3), while the trajectory of oscillations has an inward spiral converging to

a stationary point in (a), the stationary state is unstable and develops into a limit

cycle in (b). A new periodic trajectory emerges with the doubled period in (c). This

period-doubling bifurcation is considered as a route to temporal chaos [136–138] as

it is verified by the chaotic patterns of (d). The two curves on each plot represent

the load (red curve) U = Ut − RsJ and current-voltage characteristic (CVC) of

gas discharge (black curve) U = U(J). The intersection point of the CVC and load

curves represents the stationary solution, or equilibrium point.

In the next section, the drive and response systems are configured as the coupled GDS

systems using the bifurcation points Ut, Rs specified at regime point (d) in Fig. (3.2),

along with the corresponding phase portrait in Fig. (3.3)-(d).

3.6 Delta synchronization of chaos in the coupled GDSS

In this section, we conduct simulations for both the drive and response systems, where

the response system is established using the voltage of the drive system as a perturba-
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tion. Both systems, characterized by the values (Ut,Rs) specified at regime point (d)

in Fig. (3.2), exhibit chaotic solutions. The method for detecting chaos, as discussed

in Chp.2, is referred to as unpredictability.

Moreover, besides the existence of sequences of convergence and separation sepa-

rately in both systems, we will demonstrate that they have common corresponding

finite convergence and separation sequences, indicating that the coupled system ex-

hibits delta synchronization of chaos (DSC). However, it’s important to note that

the system lacks generalized synchronization. Therefore, the DSC method offers a

broader approach to chaos synchronization.

The data for the drive, response, and synchronized systems are computed in the same

simulation, ensuring that the time values align across all different analyses. Conse-

quently, the sequences un and vn for the synchronized system, as well as tn and sn

for the drive and response systems, are obtained within the same numerical analysis.

Based on the modeling approaches in previous sections, the drive system can be de-

scribed as follows.

∂nk

∂t
+

∂Γk

∂x
= Sk ,

Γk = sgn(qk)µknkE −Dk
∂nk

∂x
,

− ϵ0
∂2φ

∂x2
=

∑
k

qknk ,

τs
∂U(t)

∂t
= Ut − U(t)−RsJ(t) ,

(3.27)

with the boundary conditions

Anode (x = 0): ni = 0 ,
∂ne

∂x
= 0 , φ = 0 ,

Cathode (x = d):
∂ni

∂x
= 0 , µene = γµini , φ = −U .

(3.28)

The values of U , obtained from the solution of Eq.(3.27), are incorporated into the

response system as a perturbation. This perturbation term constitutes the sole distinc-

tion between the drive and response systems. Here are the governing equations for
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the response system.

∂ñk

∂t
+

∂Γ̃k

∂x
= S̃k ,

Γ̃k = sgn(qk)µkñkẼ −Dk
∂ñk

∂x
,

− ϵ0
∂2φ̃

∂x2
=

∑
k

qkñk ,

τs
∂V (t)

∂t
= Vt − V (t)−RsJ̃(t) + δU(t) ,

(3.29)

with the boundary conditions

Anode (x = 0): ñi = 0 ,
∂ñe

∂x
= 0 , φ̃ = 0 ,

Cathode (x = d):
∂ñi

∂x
= 0 , µeñe = γµiñi , φ̃ = −V .

(3.30)

To determine the convergence sequence tn, we place a circle with a radius δn, centered

at the initial point. In the U(τ)− J(τ) phase portraits, the horizontal U -axis and the

vertical J -axis have different scales, with U ∈ [8, 18] and J ∈ [0, 10−3]. The U -axis

is selected as the reference for δn, and the J -axis is rescaled by multiplying it by 104

within the circle equation. In other words, the circles for each n value are defined by

the equation:
√

(U (τ)−U(0))2 + ((J(τ)− J(0))× 104)2 = δn.

Then, we identify the time values that satisfy ∥ϕ(tn)− ϕ(0)∥ < δn, where ϕ(τ) =

(U(τ),J(τ)× 104) with τ(t) = t/t0. The radii δn become smaller with each itera-

tion. After obtaining the tn values, we derive the sn sequence for a specific ∆ such

that it satisfies ∥ϕ(tn + sn)− ϕ(sn)∥ ≥ ∆ for each n.

In the drive system, we set U t = 20.11 and Rs = 30709. As demonstrated in the

previous section, this system exhibits chaotic behavior. The chaotic solution of the

drive system is illustrated in Fig. (3.4). The simulation time is τend = 1.61× 108 with

a time step of ∆τ = 823.33. There are 173 tn values for this system in the range

tn ∈ [1.27× 105, 1.46× 108], and the radii decrease at each step by 0.001, taking the

following values: δn = 0.18, 0.1790, ..., 0.0080. For ∆ = 7.2, there are 173 sn values

in the range sn ∈ [4.12× 103, 1.45× 107].

It is important to note that the tn and sn sequences consist of time values in dimen-

sionless units, as defined in the previous section. The presence of the sequences tn
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Figure 3.4: U − J plot of the drive system at U t = 20.11 and Rs = 30709

and sn demonstrates that the system exhibits unpredictable behavior and is chaotic.

The degree of numerical unpredictability for the drive system is α ≃ 0.001. The data

points (U(tn),J(tn)) are indicated by the red markers in Fig. (3.4), and the corre-

sponding tn, sn, and δn values are provided in Table (3.2).

Based on the results from this simulation, we have demonstrated that for the drive

GDSS, the degree of unpredictability is given by α = minn=1,2,..,173 δn
∆

= 0.008
7.2

=

0.001111.... This value is relatively small. Meanwhile, the dimensionless time length

of the simulation is τend = 1.61 × 108, which is quite large. According to the as-

sumptions stemming from Def. (1), one can conclude that the unpredictability of the

solution for the drive system is confirmed.

In the response system, we use the same parameters as in the drive system, with

V t = 20.11 and Rs = 30709. The only difference between the response system and

the drive system is the presence of the perturbation term δU(t) coming from the drive

system. We choose a nonzero constant δ = 0.047. The chaotic solution of this system

is depicted in Fig. (3.5), and the simulation time and time difference match those of

the drive system.

There are 172 tn values for this system in the range tn ∈ [1.38 × 105, 1.60 × 108],

with radii decreasing at each step, mirroring the values used in the drive system. For

∆ = 2.8, there are 172 sn values in the range sn ∈ [1.65× 104, 9.02× 105]. The red
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Table 3.2: Sequences of convergence tn and divergence sn with δn values for the drive

system.

n tn sn δn

1 126793 4117 0.180

2 222299 4940 0.179

3 270052 5763 0.178

4 317805 6587 0.177

5 364735 7410 0.176
...
...

169 134574915 14129164 0.012

170 136979861 14187620 0.011

171 137969504 14429679 0.010

172 138725321 14477433 0.009

173 145558959 14513659 0.008

marked data points in Fig. (3.5) represent (V (tn),J(tn)).

The existence of the tn and sn sequences in the response system indicates that it also

exhibits unpredictable behavior. The degree of numerical unpredictability for the

response system is α ≃ 0.003. The corresponding tn, sn, and δn values are provided

in Table (3.3).

Based on the data of the simulations, one can conclude that the degree of unpre-

dictability has a value of α = minn=1,2,..,172 δn
∆

= 0.009
2.8

= 0.00321.... This value is

relatively small. Additionally, the dimensionless time parameter has a large value,

τend = 1.61× 108. These findings confirm the unpredictability of the solution for the

response GDSS as in the drive system.

Since both the drive and response systems exhibit unpredictable solutions, the exam-

ination of DSC between the systems proceeds as follows. We aim to find common

un and vn sequences in both systems such that ∥x(un)− x(0)∥ + ∥y(un)− y(0)∥ <

2×δn, where δn values are taken the same as in the drive and response systems. Here,

54



Figure 3.5: V − J plot of the response system at V t = 20.11 and Rs = 30709

x(τ) = (U drive(τ),Jdrive(τ)) and y(τ) = (V resp.(τ),J resp.(τ)). We set ∆1 = 7.2

and ∆2 = 2.8 to ensure sufficient separation.

In Fig. (3.6), both the drive and response GDSSs are depicted. The blue and red data

points correspond to the drive and response systems, respectively. The green data

points represent (U (un),J(un)), and the yellow data points represent (V (un),J(un)),

where un values are the same in both systems. The x(0) and y(0) values are also same

as the unpredictability analysis to maintain consistency.

Figure 3.6: U ,V − J plot of both drive (blue) and response (red) systems
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Table 3.3: Sequences of convergence tn and divergence sn with δn values for the

response system.

n tn sn δn

1 138319 16467 0.180

2 139143 17290 0.179

3 199246 18113 0.178

4 200069 18937 0.177

5 200892 19760 0.176
...
...

168 108691070 862026 0.013

169 121822358 894960 0.012

170 140256714 899076 0.011

171 152259217 900723 0.010

172 159626373 901546 0.009

There are 53 un values and 52 vn values, as listed in table (3.4). The degree of

synchronization is calculated as αsync ≃ 0.046. The analysis demonstrates that both

systems approach their initial points at the same time values, un, within a given radius,

and they diverge from these points at the same time values, vn.

The latest numerical data for the coupled GDSSs reveals a degree of synchronization,

αsync
52 = δ52

min(∆1,∆2)
= 0.129

2.8
= 0.0460714..., which is a finite number. Additionally,

the large dimensionless computational time, τend = 1.61 × 108, suggests that the

Def. (3) of DSC has been numerically satisfied.

The phenomenon in which both systems share the same un and vn values reveals

a new type of synchronization, which we have termed "delta synchronization of

chaos [11]." This approach differs from generalized synchronization, and we will

demonstrate that even in the absence of generalized synchronization, we can observe

synchronization between the drive and response systems using this method.

One widely accepted method for identifying synchronized chaotic motion is general-
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Table 3.4: Common un, vn and δn values of drive and response systems

n un vn δn

1 2104431 73276 0.180

2 3140180 74099 0.179

3 3977506 74923 0.178

4 5158984 75746 0.177

5 5159808 76569 0.176
...
...

49 147159511 10672001 0.132

50 147207265 10692585 0.131

51 147703732 10695055 0.130

52 148084111 11110013 0.129

53 160175533 - 0.128

ized synchronization [4,5], as elaborated in Chp.2. We will adopt the auxiliary system

approach of generalized synchronization to compare our findings with this method. A

similar analysis was conducted in Ref. [53], revealing that this coupled system does

not exhibit generalized synchronization.

In auxiliary system approach, the asymptotic stability condition given in Eq.(2.11)

should be satisfied to verify existence of generalized synchronization. It is important

to note that the transient solutions are ignored in this process. The discharge volt-

ages of the response and auxiliary systems will be considered in the application of

Eq.(2.11).

Consider the drive and response systems defined in Equations (3.27) and (3.29), re-

spectively. The auxiliary system is an exact replica of the response system, with the

only distinction being its initialization with different initial conditions. The equations
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for the auxiliary system are as follows.

∂n̄k

∂t
+

∂Γ̄k

∂x
= S̄k ,

Γ̄k = sgn(qk)µkn̄kĒ −Dk
∂n̄k

∂x
,

− ϵ0
∂2φ̄

∂x2
=

∑
k

qkn̄k ,

τs
∂W (t)

∂t
= Wt −W (t)−RsJ̄(t) + δU(t) ,

(3.31)

with the boundary conditions

n̄i = 0 ,

∂n̄k

∂x
= 0 ,

µen̄e = γµin̄i ,

φ̄0 = 0 , φ̄dg = −W ,

(3.32)

where W t = 20.11, Rs = 30709 and δ = 0.047 as in the response system.

The solutions of V and W are depicted in the V −W plot shown in Fig. (3.7). Since

the plot is not confined to the V = W line, the asymptotic stability condition given

in Eq. (2.11) is not satisfied. Consequently, the drive and response systems do not

exhibit generalized synchronization.

Figure 3.7: W − V plot at W t = 20.11, Rs = 30709

These findings indicate that synchronization can still occur between the drive and
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response systems, even in the absence of generalized synchronization, and this syn-

chronization can be detected using the DSC method.

3.7 Discussion

A gas-discharge semiconductor system is constructed through the use of a two-fluid

model. The simple fluid model of the system is formulated using the drift-diffusion

approximation. The governing equations of the system are derived to provide a com-

prehensive analysis.

We have applied the delta synchronization of chaos to a specific chaotic regime of

the GDSSs, which are described within the corresponding parametric regime. A bi-

furcation diagram was used to differentiate the stable stationary regions from the un-

stable regions where temporal oscillations occur. We considered the Poincaré chaotic

regime in the parameter space and established the drive and response systems, unidi-

rectionally coupled by perturbing the response system with the unpredictable solution

of the drive system. Unpredictability was numerically demonstrated in both GDSSs.

The existence of a common sequence of finite convergence, denoted as un, and a se-

quence of separation, denoted as vn, for the drive and response systems, demonstrates

that these systems exhibit delta synchronization of chaos. The common sequence of

finite convergence indicates that the unpredictable motions of both systems approach

their initial points at the same moments. Simultaneously, the common sequence of

separation shows that the trajectories, which start converging at moments un and the

initial moment u0 in both systems, diverge from each other at the same moments vn.

The numerical values of these common sequences un and vn are presented in a table

for each n.

Additionally, it was shown that the coupled GDSSs do not exhibit generalized syn-

chronization when using the auxiliary system approach. Thus, DSC is revealed as a

more general synchronization method than generalized synchronization.

The primary novelty of this research lies in demonstrating that systems that do not

exhibit canonical types of synchronization can still be considered synchronized based
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on their chaotic characteristics, which can be identified using the delta synchroniza-

tion approach.

3.8 Further analysis on gas-discharge systems

In this study, a one-dimensional simple fluid model with a drift-diffusion approxima-

tion for electron and ion particle fluxes was employed. This model, which is quali-

tatively sufficient to describe the fundamental properties of a nitrogen gas discharge

system, successfully confirmed the existence of delta synchronization of chaos. It’s

noteworthy that this synchronization method was demonstrated even though the sys-

tem did not exhibit generalized synchronization, as discussed in this chapter and

Ref. [11].

To further advance the analysis of the semiconductor gas discharge system in terms

of chaos synchronization, a more realistic and advanced one-dimensional fluid model

was developed [22]. This model, known as the "extended fluid model" or "local

mean energy approximation" (LMEA) model [58], was employed in the same sys-

tem. While the details of this study are not presented in the current thesis, the results

will be briefly mentioned due to their significance for the development of the delta

synchronization method. This approach provides a more comprehensive understand-

ing of the dynamics of the system, and its outcomes can contribute to the refinement

of delta synchronization techniques, as discussed in the reference [22].

The comparison between these two modeling approaches is summarized as follows.

1. Types of particles:

• In the simple fluid model, only two kinds of particles, electrons, and ions,

are taken into consideration.

• The extended fluid model includes a total of seven different particle species,

including electrons, ions, excited molecules, and ground state molecules.

2. Plasma chemical reactions:

• In the simple fluid model, the only occurring reactions involve electron
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impact ionization and secondary electron emission from the cathode sur-

face.

• The extended fluid model broadens the scope by including a range of reac-

tions. These include direct ionization, secondary emission from the wall,

elastic collisions, electron-induced excitations, vibrations, rotations, col-

lisions between molecules, and relaxation reactions.

3. Governing equations:

• The simple fluid model solves a simplified set of equations, specifically

the two-fluid equations using the drift-diffusion approximation. It also

incorporates Poisson’s equation to ensure self-consistency in the model.

• The extended fluid model introduces a more complex set of equations. It

includes continuity equations for each of the seven particle species and

Poisson’s equation to determine the electric field profile. Moreover, it

includes the electron energy equation.

4. Electron kinetic coefficients:

• In the simple fluid model, electron transport coefficients as diffusion and

mobility are assumed to be constants. The ionization rate coefficient, also

known as the Townsend ionization coefficient, is defined based on the

local electric field. This approach leads to the simple fluid model being

referred to as the "local field approximation" (LFA).

• The extended fluid model takes a different approach. It defines electron

transport coefficients (diffusion and mobility) and rate coefficients for

electron-induced plasma chemical reactions as functions of mean electron

energy, derived from a separate online electron Boltzmann solver.

5. Nonlocality of electrons:

• The simple fluid model neglects the nonlocal ionization events that occur

in regions with a weak electric field. This is because the ionization rate is

exclusively defined as a function of the local electric field, which increases

with electric field strength.
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• In contrast, the extended fluid model explicitly incorporates the nonlocal-

ity of electrons. It describes ionization events by defining transport and

rate coefficients as functions of mean electron energy rather than relying

on the local electric field. This means that ionization can occur indepen-

dently of the electric field strength in a specific region within the discharge

tube.

6. Practical importance:

• In various industrial plasma devices such as energy-saving lamps, projec-

tors, and flat plasma display panels, instability and chaotic oscillations are

undesirable. Addressing and comprehending these erratic behaviors using

advanced and realistic fluid models is crucial. This approach is particu-

larly relevant when considering factors such as computational efficiency

and speed. Given that the extended fluid model offers greater sophistica-

tion compared to the simple fluid model, utilizing this modeling approach

in our analyses enables us to draw more precise conclusions about these

practical applications.

It is important to emphasize that the comparisons presented above primarily pertain

to the electron dynamics within the models. Electron behavior is the least precisely

known aspect in these models due to the nonlocal characteristics of electrons in gas

discharge systems. The choice of approximations, whether it’s the Local Field Ap-

proximation (LFA) or the Local Mean Energy Approximation (LMEA), significantly

influences the accuracy of these models.

The chaos synchronization analyses, employing this modeling approach, are carried

out, in Ref. [22], in a manner similar to the simple fluid model discussed in this chap-

ter. The results reveal that the systems in the detailed model exhibit unpredictability,

and the delta synchronization of chaos is observed in the model in the absence of gen-

eralized synchronization. Furthermore, the research in Ref. [22] demonstrates that

more complex and realistic models yield even more unpredictable and synchronous

behaviors, and the delta synchronization approach allows us to detect and compare

the intensity of synchronization across different approaches.
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CHAPTER 4

REVEALING CHAOS SYNCHRONIZATION BELOW THE THRESHOLD

IN COUPLED MACKEY-GLASS SYSTEMS

4.1 Introduction

Time-delay systems play a vital role in the field of chaos synchronization, particularly

in applications related to secure communication [67–69]. The current study focuses

on the concept of delta synchronization of chaos (DSC) within the context of Mackey-

Glass systems. These systems are described by first-order delay differential equations

and were initially developed to model blood production. Notably, they exhibit chaotic

behaviors for specific parameter regimes [59, 72].

Researchers have employed electronic circuit implementations of these models, en-

abling experimental investigations into the synchronization of chaotic systems [64–

66]. This practical approach offers insights into real-world applications of chaos syn-

chronization, including secure communication.

The synchronization behavior of unidirectionally coupled Mackey-Glass drive re-

sponse systems has been a subject of investigation, with previous studies highlighting

specific synchronization thresholds [65, 73–76]. For instance, the research Ref. [75]

has indicated that coupled systems achieve generalized and complete synchronization

only above a particular threshold. In this chapter, we aim to explore the synchronized

behavior of Mackey-Glass drive-response systems [23], using parameters identical to

those in Ref. [75], on both sides of this threshold. We employ the DSC to assess

synchronization behavior.

Additionally, Ref. [73] discusses the existence of synchronization when the coupling
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parameter exceeds a certain threshold, while also considering different delay times

in the drive and response systems. Ref. [74] offers both analytical and numerical

insights into the relationship between synchronization thresholds and delay times.

Furthermore, in Ref. [76], synchronization regimes and stability conditions of two

linearly and nonlinearly coupled Mackey-Glass systems are comprehensively ana-

lyzed. These studies collectively contribute to our understanding of synchronization

phenomena in Mackey-Glass systems under various conditions.

This chapter’s primary motivation is to show the occurrence of synchronous chaotic

behavior in drive-response Mackey-Glass systems, specifically within regions that

lack generalized synchronization. It is discussed in prior research that synchroniza-

tion in these systems is sensitive to the coupling constant between the Mackey-Glass

systems, leading to a distinct synchronization threshold. Previous studies consistently

indicate that synchronization is present on one side of this threshold while absent on

the other [65,73–76]. Moreover, there is evidence that both generalized and complete

synchronization coexist on the same side of the threshold [73, 75].

In our investigation, we make a novel observation: synchronization can occur and be

identified by the DSC method even below the synchronization threshold, where no

synchronization was previously detected. Additionally, in the region where general-

ized synchronization is known to exist, we find the coexistence of complete synchro-

nization of unpredictability, a special case of DSC. These findings align with similar

results obtained in Refs. [11,22], underscoring the significance of our synchronization

research and providing a robust basis for the DSC method.

The numerical characteristics of our method have been rigorously analyzed to sub-

stantiate our argument. In this study, we have demonstrated that synchronization of

unpredictability serves as evidence for the existence of chaos synchronization. Our

findings suggest that uncovering synchronous dynamics in regions previously consid-

ered asynchronous for coupled systems may have implications for the field of secure

communication.

Furthermore, we have observed the coexistence of both complete synchronization of

unpredictability and generalized synchronization above the synchronization thresh-

old. This insight adds an intriguing layer to our understanding of complex synchro-
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nization phenomena. The findings of this research, which is covered in this chapter,

is published in Ref. [23].

4.2 Mackey-Glass System

Mackey-Glass equation is a delay differential equation with the form [72]

dx(t)

dt
= F (x(t), x(t− τ)) , (4.1)

where τ is the delay time. To be well-posed, a problem represented in this form

requires initial data, which includes the values of the function x(t) over an interval of

time τ . In numerical computations, the function x(t) in the interval t ∈ [0, τ ] is called

history of the system. Delay equations depict systems in which a stimulus results in a

response that is delayed in time. Practical examples of such systems can be found in

various fields, including control theory, economics, population biology, physics, and

others.

The equation describing the Mackey-Glass system is as follows:

dx

dt
= f(x, xτ ) ≡

axτ

1 + (xτ )b
− cx . (4.2)

In this equation, xτ ≡ x(t− τ) represents the time-delay variable. The parameters τ ,

a, b, and c are all real numbers greater than zero, with τ representing the delay time.

The model originally defines the blood production. In this context, x(t) represents

the concentration of blood at the time t, while x(t − τ) is the concentration when

the body signals the need for more blood [72]. Patients with leukemia may experi-

ence a significantly large time delay τ , leading to oscillations in the concentration of

blood. When τ is even larger, the concentration can vary chaotically, as originally

demonstrated by Mackey and Glass [59].

The dynamical behavior of the Mackey-Glass system has been extensively explored,

particularly focusing on periodic and chaotic oscillations, by varying its parameters

[59,72–75,139]. Different parameter settings in the model lead to variations in several

crucial characteristics. These include the delay time (τ ) determining the transition to

chaotic regimes, the stability and oscillatory patterns exhibited by the model, the
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occurrence of bifurcation cascades, and the impact of perturbations applied to the

system [139–142]. In this study, we specifically consider the input parameters used

in Refs. [73, 75], where a, b, and c are fixed at 2, 10, and 1, respectively 1.

4.3 Transition to chaos

The transition from periodic oscillations to chaotic ones in the Mackey-Glass system

is achieved by adjusting the delay time τ . An increase in τ results in the emergence of

new periods through period-doubling bifurcations, while periodic behaviors vanish,

leading to a complete shift to chaotic states. This local change in stability is referred

to as Hopf bifurcation [143, 144].

Figure 4.1: Time oscillations of variable x at τ = 1.40 and τ = 1.565. Point A at

τ = 1.40 evolves into an inflexion point at τ = 1.565.

This transition is evident when analyzing the emergence of new periods. Fig. (4.1)

illustrates the temporal oscillations of variable x at two different values of τ , specifi-

cally τ = 1.40 and τ = 1.565. At τ = 1.40, point A takes on a certain characteristic,

but it transforms into an inflection point at τ = 1.565. The formation of an inflection

point within the waveform corresponds to the emergence of a new period along the

curve f(x, xτ ) = 0 as seen in the return map shown in Fig. (4.2).

1 Another common parameter set in the literature is achieved by scaling these parameters as a = 0.2, b = 0.1
and c = 10.
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Figure 4.2: Emerging of a new period along the curve f(x, xτ ) = 0.

To identify the initiation of a new period’s formation, Fig. (4.3) presents the results

at several values of τ , namely τ = 1.40, 1.456, 1.49, 1.565. It’s worth noting that

at τ = 1.456, point A intersects the curve f(x, xτ ) = 0, representing the birth of

a new period. At τ = 1.49 and τ = 1.565, point A becomes the maximum of the

corresponding waveform and intersects the solution of the curve f(x, xτ ) = 0 at an

additional intersection point, representing a local minimum within this new periodic

motion.

Figure 4.3: The beginning of a new period formation along the curve f(x, xτ ) = 0.

Calculations are carried out at τ = 1.40, 1.456, 1.49, and 1.565.
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The point A occurs when both the first and second derivatives of the function are

equal to zero (dx
dt

= d2x
dt2

= 0). This particular scenario is depicted in Fig. (4.4). It’s

noteworthy that the intersection point of the first and second derivatives along the y

axis corresponds to point A in the solution x(t).

Figure 4.4: Time oscillations of x, dx
dt

, d2x
dt2

, where the intersection point of dx
dt

and d2x
dt2

along the y-axis corresponds to the point A on the solution x.

The diagram in Fig. (4.5), depicting the onset of the period-doubling bifurcation cas-

cade in the x(t) and τ plane, is obtained by considering local maxima (peaks) of

oscillations against the delay time. It’s important to note that a single new branch

emerges suddenly at τ = 1.475, and this birth is dependent on the chosen values of

constants a and b [140–142].

It’s worth mentioning that more typical bifurcations, excluding the abrupt emergence

and disappearance of branches, can be achieved by selecting appropriate constant

values. Different bifurcation diagrams for various values of a, b, and c are presented in

Refs. [140–142]. By altering these parameters, the system’s dynamics can transition

from chaotic to periodic behavior within specific ranges of the delay time, followed

by a return to chaotic regimes. However, this particular behavior is not observed with

the parameters used in this paper.

The vertical lines in the bifurcation diagram, Fig. (4.5), correspond to the values of

τ = 1.2, 1.4, 1.55, and 2.5, representing the regimes (a)-(d) illustrated in Fig. (4.6).
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Figure 4.5: The onset of the period-doubling bifurcation cascade. The regimes (a),

(b), (c), and (d) correspond to those in Fig. (4.6).

The transient solutions are not included in this analysis. In Fig. (4.6a), the oscillations

deviate from the fixed point x = 1 and eventually evolve into limit cycle oscillations

with a single period. Fig. (4.6b) exhibits oscillations with two periods, and a new

periodic trajectory (the third one) emerges from an existing one in Fig. (4.6c). Period-

doubling bifurcation is often regarded as a typical pathway to temporal chaos [145,

146], and Fig. (4.6d) illustrates a fully chaotic state.

In Refs. [73, 75], the stable and unstable oscillations at the fixed point x = 1 were

categorized by altering τ , while keeping the same values for a, b, and c. It was deter-

mined that the solutions exhibit chaotic behavior when τ > 1.68. In the subsequent

analysis, we consider a fully chaotic state with τ = 100.

4.4 Synchronization of chaos

The unidirectionally coupled Mackey-Glass systems with the constants mentioned in

previous section are defined as follows.

dx

dt
=

2xτ

1 + x10
τ

− x , (4.3a)

dy

dt
=

2yτ
1 + y10τ

− y + ε(x− y) . (4.3b)
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(a) (b)

(c) (d)

Figure 4.6: Phase space trajectories of the oscillations in the plane of dx
dt

and x for

various delay values τ defined in Fig. (4.5).

Here, xτ ≡ x(t−τ), yτ ≡ y(t−τ), and ε represents the coupling constant. Equations

(4.3a) and (4.3b) are referred to as the drive and response systems, respectively. The

value of τ is fixed at τ = 100 to ensure chaotic motion [73, 75].

To analyze generalized synchronization, the auxiliary system can be defined as fol-

lows.

dz

dt
=

2zτ
1 + z10τ

− z + ε(x− z). (4.4)

The only difference between the auxiliary and response systems is their histories, or

solutions at t ≤ τ . Generalized synchronization is achieved for the drive and response

systems if the asymptotic stability condition (2.11) is satisfied for the response and

auxiliary systems. It is important to note that transient solutions are ignored in this

analysis.
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The synchronization threshold for generalized synchronization is provided in the pa-

per [75], with a value of approximately εc ≈ 0.702. Generalized synchronization

occurs when ε surpasses the synchronization threshold, i.e., ε > εc, while it is ab-

sent when ε falls below the threshold, i.e., ε < εc. In this study, we consider two

specific coupling constants to compare the DSC with generalized synchronization.

One coupling constant is slightly above but still in the vicinity of the synchroniza-

tion threshold, with ε = 0.71. The other has a lower value, significantly below the

threshold, at ε = 0.6.

The unpredictability and DSC analyses in both regions are conducted with a simu-

lation time of tsim = 500000 and a time step of ∆t = 0.2. The drive and response

systems also use the same values of tsim and ∆t for consistency.

4.4.1 Synchronization of chaos above the threshold

At ε = 0.71, for the coupled systems (4.3a) and (4.3b), generalized synchronization

has been confirmed using the auxiliary system (4.4), indicated in Fig. (4.7). The

figure illustrates the motion occurring on the y = z line, signifying the fulfillment of

the asymptotic stability condition (2.11). The analysis excludes the transient regime.

Figure 4.7: Projection of response and auxiliary systems on (y, z) plane for ϵ = 0.71

after transient regime.
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(a) Drive system (b) Response system

Figure 4.8: Phase portraits of drive and response systems for ε = 0.71. Red marks

represent (x(tn), ẋ(tn)) and (y(tn), ẏ(tn)).

In the unpredictability analysis, we have set ∆d = 1.4 for the drive system and

∆r = 1.19 for the response system. The values of δ decrease for each member of

the convergence and separation sequences, starting with δ1 = 0.0500, δ2 = 0.0497,

δ3 = 0.0494, and so on. The phase portraits of the drive and response systems are

presented in Fig. (4.8). In Figs.(4.8a) and (4.8b), the red marks indicate (x(tn), ẋ(tn))

and (y(tn), ẏ(tn)), respectively.

The drive system’s unpredictable motion is outlined in Table (4.1), which provides

details about the sequences of convergence and separation, along with the corre-

sponding δn values. The table includes 163 pairs of tn and sn, with δ163 = 0.0014.

The degree of numerical unpredictability, denoted as α, is calculated as α163 =

0.0014/1.4 = 0.001. This small value is achieved over an extensive simulation time

of tsim = 500000. Consequently, the drive system exhibits unpredictability in accor-

dance with the conditions outlined in Def. (1).

The unpredictable behavior of the response system is illustrated in Table (4.2). The ta-

ble lists the sequences of convergence and separation at 165 time instances. Over the

extensive simulation time of tsim = 500000, the smallest distance between the trajec-

tories and the initial point is δ165 = 0.0008. The degree of unpredictability, denoted

as α, is calculated as α165 = 0.0008/1.19 ≈ 0.0007, which is a sufficiently small

value indicative of the chaotic nature of the motion. Therefore, the response system
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Table 4.1: Sequences of convergence tn and separation sn with δn values for the drive

system.

n tn sn δn

1 1006 1420 0.0500

2 1017 2332 0.0497

3 1114 3401 0.0494

4 1409 3667 0.0491

5 1606 4384 0.0488
...
...

159 126954 139195 0.0026

160 182244 139343 0.0023

161 211316 141346 0.0020

162 216785 141724 0.0017

163 307457 141799 0.0014

exhibits unpredictable behavior in line with the conditions specified in Def. (1).

The common sequences of convergence un and separation vn, according to the condi-

tions specified in Def. (3), are presented in Table (4.3). The sequence of convergence

un consists of 155 time instances, while the sequence of separation vn comprises 151

time moments. For the largest vn value, δn value observed during the simulation is

δn = 0.005, which is a small value given the simulation time tsim = 500000.

It is essential to note that the separation moments vn for n = 152, 153, 154, and 155

are not detected within the simulation time. Prolonging the simulation further to

detect more vn moments is not necessary for two reasons. First, the 151 elements

in the sequence of separation are sufficiently close in number to the lengths of the

sequences in the drive and response systems, which consist of 163 and 165 time

instances, respectively. Second, the value of δ151 = 0.005 is considered sufficiently

small for the synchronization analysis.

Hence, based on the conditions set forth in Def. (3), the complete synchronization
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Table 4.2: Sequences of convergence tn and separation sn with δn values for the

response system for ε = 0.71.

n tn sn δn

1 1006 110 0.0500

2 1017 197 0.0497

3 1114 713 0.0494

4 1409 832 0.0491

5 1606 833 0.0488
...
...

161 126235 13408 0.0020

162 126954 13416 0.0017

163 182244 13440 0.0014

164 183663 13502 0.0011

165 486244 13587 0.0008

of unpredictability is verified with the degree of numerical synchronization αsynch
151 =

0.0036. This is a stronger form of delta synchronization of chaos implying almost

equal amount of elements of the sequences of convergence and separation in unpre-

dictability analysis is synchronized in a sufficiently large simulation time. Further-

more, it will be demonstrated in the next subsection that the degree of numerical

synchronization in complete synchronization of unpredictability is smaller compared

to delta synchronization of chaos.

The analysis demonstrates the coexistence of generalized synchronization and com-

plete synchronization of unpredictability above the synchronization threshold. The

coupling constant ε = 0.71 is intentionally selected near the threshold value of

εc ≈ 0.702. This choice is deliberate as the increase in this value strengthens syn-

chronization and already implies the simultaneous presence of both synchronization

types.
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Table 4.3: Common sequences of convergence un and separation vn with δn between

drive and response systems ε = 0.71.

n un vn δn

1 1006 3607 0.0500

2 1017 3913 0.0497

3 1738 4369 0.0494
...
...

145 216785 181017 0.0068

146 216959 181879 0.0065

147 235239 182025 0.0062

148 254539 182691 0.0059

149 282905 183994 0.0056

150 302035 185132 0.0053

151 307457 187115 0.0050

152 312688 - 0.0047

153 343333 - 0.0044

154 362248 - 0.0041

155 486244 - 0.0038

4.4.2 Synchronization of chaos below the threshold

Synchronization of chaos below the threshold is explored for the coupled systems de-

scribed in Eqs. (4.3a) and (4.3b) at ε = 0.60. By utilizing the auxiliary system defined

in Eq. (4.4), it is apparent that the coupled systems lack generalized synchronization

at ε = 0.60, as depicted in Fig. (4.9). This figure illustrates that the motion does not

occur along the y = z line, affirming the non-satisfaction of the asymptotic stability

condition (2.11) and thus confirming the absence of generalized synchronization.

The unpredictability analysis is conducted on the response system with the new cou-

pling value of ε = 0.60 and ∆r = 1.42. The distance values between the initial point

and y(tn) are δ1 = 0.0500, δ2 = 0.0497, δ3 = 0.0494, and so on. The phase portrait
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Figure 4.9: Projection of response and auxiliary systems on (y, z) plane for ϵ = 0.60

after transient regime.

of the response system, represented by red marks, is shown in Fig. (4.10). Since the

coupling ε remains unchanged in the drive system, it is exactly the same as in section

4.4.1. Therefore, the phase portrait and unpredictability table from the previous sub-

section, shown in Fig. (4.8a) and table (4.1), are still applicable for this analysis. It’s

essential to note that the sole difference between the response system in this section

and that in section 4.4.1 is the coupling constant.

The response system’s sequences of convergence and separation, along with the cor-

responding δn values, are displayed in Table (4.4). This table comprises 165 time

points, with a final distance of δ165 = 0.0008 between y(0) and y(t165). The degree

of numerical unpredictability, α165 ≈ 0.0006, is a sufficiently small value achieved

within the extensive simulation duration of tsim = 500000. Therefore, the unpre-

dictability is confirmed based on the conditions outlined in Def. (1).

The common sequences of finite convergence and divergence, as defined in Def. (3),

are detailed in Table (4.5). This table contains 132 un values in the sequence of finite

convergence, and no common time moment is detected after v108 in the sequence of

separation. The minimum relevant distance, δ108 = 0.0179, is comparatively larger

than in the previous unpredictability and complete synchronization of unpredictabil-

ity analyses. The degree of numerical synchronization, αsynch
108 = 0.013, is 3.6 times
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Figure 4.10: Phase portrait of response system for ε = 0.6. Red marks represent

(y(tn), ẏ(tn)).

greater than the degree of numerical synchronization for the analysis above the thresh-

old, yet still less than one. Hence, delta synchronization of chaos is confirmed accord-

ing to Def. (3).

At ε = 0.60, falling below the synchronization threshold of approximately ε ≈ 0.702

specified for the generalized synchronization analysis with the provided parameters

[75], the delta synchronization of chaos is identified in the absence of generalized

synchronization.

Previous analyses in literature, such as [73, 75], have explored chaos synchroniza-

tion and identified the critical coupling value in the Mackey-Glass system for this

phenomenon. In our study, we reproduced the results above the threshold as pre-

sented in Ref. [75] and demonstrated the coexistence of generalized synchronization

and complete synchronization of unpredictability. Existing literature predominantly

addresses synchronization types above the threshold [65, 73–76]. However, our re-

search shows the existence and detection of this phenomenon using the DSC method

below the threshold. Hence, our study verifies the synchronization of chaos through

unpredictability on both sides of the threshold.
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Table 4.4: Sequences of convergence tn and divergence sn with δn values for the

response system with ε = 0.60.

n tn sn δn

1 1006 2823 0.0500

2 1017 3306 0.0497

3 1111 3340 0.0494

4 1409 3667 0.0491

5 1606 4384 0.0488
...
...

161 188812 178538 0.0020

162 219069 179205 0.0017

163 235464 179861 0.0014

164 238264 180461 0.0011

165 301502 180473 0.0008

4.5 Discussion

In this research, we’ve delved into chaos synchronization within Mackey-Glass time-

delay systems. Through investigating the unpredictability of both the drive and re-

sponse systems, we have substantiated the presence of chaos in both contexts. Our

exploration of the synchronization phenomenon has been carried out using the in-

novative DSC method, rooted in unpredictability analysis. The main novelty of our

work lies in uncovering synchronization in an area previously deemed unattainable by

traditional methods [75]. Notably, we’ve detected chaotic systems’ synchronization

for a coupling constant situated below the typical synchronization threshold.

Through adjusting the coupling constant beyond the synchronization threshold in uni-

directionally coupled Mackey-Glass systems, we observed alterations in the synchro-

nization properties of the model. Above the synchronization threshold, we noted

the simultaneous presence of generalized synchronization and complete synchroniza-

tion of unpredictability. Notably, even when the coupling approached the threshold
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Table 4.5: Common sequences of convergence un and divergence vn with δn between

drive and response systems ε = 0.60.

n un vn δn

1 1017 2332 0.0500

2 1738 2389 0.0497

3 1938 3710 0.0494
...
...

105 159340 310116 0.0188

106 167894 311753 0.0185

107 169829 312105 0.0182

108 172648 314333 0.0179

109 188812 - 0.0176
...
...

132 497535 - 0.0107

closely but still exceeded it, the DSC analysis identified the existence of complete

synchronization of unpredictability.

Our most significant finding emerges from the analysis below the synchronization

threshold, where generalized synchronization is not observed. In this domain, we’ve

demonstrated the presence of delta synchronization of chaos, a unique form of syn-

chronization that examines time sequences within the model. Consequently, the

threshold is no longer a prerequisite for chaos synchronization uncovered via un-

predictability. These results align with analogous findings in other models as docu-

mented in Refs. [11,22], underscoring the potential of the DSC method to reveal syn-

chronization in the absence of generalized synchronization. However, whether there

exists a boundary for achieving synchronization through unpredictability remains an

open question.

To support our analyses and findings, we have included numerical details regarding

unpredictability and DSC, along with tables illustrating time sequences of conver-
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gence and separation. Our results show that both the drive and response systems

exhibit unpredictable behavior for all coupling constants, as evidenced by the de-

gree of numerical unpredictability. Above the threshold, strong degree of numerical

synchronization is observed, supporting the existence of complete synchronization of

unpredictability. However, below the threshold, the numerical characteristic shows a

substantial increase, signifying weaker synchronization and confirming the presence

of delta synchronization of chaos.
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CHAPTER 5

MARKOVIAN NOISE-INDUCED DELTA SYNCHRONIZATION

APPROACH FOR HINDMARSH-ROSE MODEL

Synchronization’s importance spans to neural network studies, particularly in infor-

mation exchange among neurons within an ensemble [89–91]. It has implications for

neurodegenerative diseases like Alzheimer’s and Parkinson’s, where abnormal syn-

chronization patterns in the brain have been noted [92, 93]. This underscores the ne-

cessity to comprehend and measure synchronization, offering potential applications

in both scientific inquiry and practical contexts.

Experimental evidence highlights how external currents can induce chaotic behavior

in neurons [94, 95]. However, deterministic models often struggle to capture real-

world scenarios due to inherent external perturbations, termed noise. Previous studies

have shown that this noise can trigger synchronization in neural networks [96–101].

Our research delves into understanding noise-induced synchronization within individ-

ual Hindmarsh-Rose neurons, using innovative methods to explore this phenomenon

more comprehensively.

The Hindmarsh-Rose model comprises three differential equations that represent dis-

tinct aspects of a single neuron’s behavior. These equations relate to the neuron’s

membrane potential, the recovery variable that is responsible for fast ion transport,

and the adaptation current [77]. Extensive research has focused on this model, ex-

ploring diverse synchronization scenarios [83–88].

In the field of noise-induced synchronization, previous studies have primarily em-

ployed Gaussian white noise, as seen in Refs. [99–101]. This study, on the other

hand, takes a novel approach by investigating synchronization within the Hindmarsh-
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Rose model in the presence of Markovian noise. This extension of our research scope

provides a fresh perspective on the phenomenon of synchronization.

Noise terms based on Markov properties find a wide array of applications across di-

verse research domains [102–104]. In our study, we construct noise using Markov

chains, designed to adhere to the fundamental principles of Markov properties [105–

107]. The specific methods used to generate these noise terms are detailed in Ref. [108],

which introduces the concept of Markov coefficients within Duffing-type equations.

This stochastic noise, derived through these methods, possesses a distinct and notable

attribute—unpredictability [109]. This inherent unpredictability is characterized by

specific numerical features related to convergence and separation sequences, making

it particularly suitable for observing novel synchronization phenomena that cannot

be detected using Gaussian white noise. However, it’s important to note that the un-

predictability of Gaussian noise remains an open problem in the field. This inherent

unpredictability plays a significant role in our investigation of synchronization phe-

nomena within the Hindmarsh-Rose model.

This study introduces significant advancements in the study of Hindmarsh-Rose neu-

ral networks. It breaks from traditional studies that mostly employ Gaussian white

noise and explore generalized or identical synchronization [99–101]. Instead, it adopts

an innovative approach by incorporating continuous and unpredictable Markovian

noise in these systems, revealing synchronization phenomena through novel meth-

ods.

Notably, this research demonstrates the existence of delta synchronization of chaos

(DSC) in the absence of identical synchronization (IS), similar to other instances

where DSC occurs independently of generalized synchronization [11, 22, 23]. More-

over, it unveils complete synchronization of unpredictability past a specific threshold

of noise intensity, akin to synchronization observations triggered by certain coupling

constants in Mackey-Glass systems [23]. These findings highlight the broad applica-

bility and importance of these synchronization discoveries. The findings and details

of this research, which is rigorously covered in the present chapter, have been pub-

lished in Ref. [24].
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5.1 Hindmarsh-Rose Model with Markovian Noise

The Hindmarsh-Rose neuron model characterizes the dynamics of a single neuron,

capturing phenomena such as spiking-bursting behavior and chaos. The model can

be described as follows [77].

ẋ = y − ax3 + bx2 − z + I ,

ẏ = c− dx2 − y ,

ż = r(s(x− x0)− z) ,

(5.1)

where x is membrane potential, y is the recovery variable associated with the transport

of fast ions, sodium and potassium, and z is the adaptation current. a, b, c, d, r, s, x0

are real constants. I is the external current. The parameters are taken as a = 1, b = 3,

c = 1, d = 5, r = 0.006, s = 4, and x0 = −1.6.

The system displays various bursting patterns as the parameter I is varied. The mem-

brane potential x exhibits spiking-bursting behavior, as depicted in Fig. (5.1). At

I = 1, the solution is stationary. As I increases beyond 1, spiking-bursting behav-

ior is initiated. Periodic patterns are observed at I = 1.5 and I = 2, while chaotic

dynamics emerge at I = 3 and I = 3.4. The system transitions back to a periodic

regime at I = 4.

To depict the shift between periodic and chaotic dynamics, Fig. (5.2) displays the bi-

furcation cascade of interspike intervals (ISI) concerning the external current I . The

ISI measures the time gap between consecutive spikes, excluding the transient regime.

Within the range I = [2.9, 3.4], irregular ISIs leading to chaos dominate, while pe-

riodic dynamics are evident before and after this interval. This study specifically

concentrates on the chaotic behavior observed at I = 3.

5.1.1 Markovian noise

Let a Markov chain be given for n ≥ 0 as follows

Xn+1 = Xn +Θn , (5.2)
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Figure 5.1: Different bursting patterns of membrane potential x for various external

currents I .

with X0 = 0, and random numbers Θn are defined as

Θn =


−0.5 , for Xn = 5

−0.5 or 0.5 , for Xn ̸= −5 or 5

0.5 , for Xn = −5

(5.3)

Hence, the values of Xn are confined within the interval [−5, 5] with a probability dis-

tribution given by P (Θn = 0.5) = P (Θn = −0.5) = 1
2

when Xn ̸= −5, 5. The prob-

abilities at the boundaries are P (Θn = −0.5) = 1 and P (Θn = 0.5) = 1 for Xn = 5

and Xn = −5, respectively. Defining the state space as S = {s0, s1, . . . , s21} =

{−5,−4.5, . . . , 5}, the sequence conforms to a Markov chain with the Markov prop-

erty P (Xn+1 = si|X0 . . . Xn) = P (Xn+1 = si|Xn) for si ∈ S and n ≥ 0 [105–107].
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Figure 5.2: Bifurcation diagram of ISIs vs external current I .

It’s important to note that the infinite realizations of the dynamics exhibit unpre-

dictability, as demonstrated in Ref. [109].

Let ρ-type piecewise constant unpredictable functions be constructed through the

Markov chain Xn such that ρ(t) = Xn for t ∈ [hn, h(n + 1)). Fig. (5.3) depicts

the time evolution of ρ(t) for h = 0.001 and t = [0, 2].

Figure 5.3: Time evolution of ρ(t).

σ-type piecewise functions can be derived from ρ-type functions, specifically using

the relationship σ(t) = ρ2(t) + ρ(t). This function, determined by the Markov chain,
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is both discontinuous and unpredictable, as demonstrated in Ref. [13]. Fig. (5.4)

presents the time evolution of σ(t).

Figure 5.4: Time evolution of σ(t).

Consider the stochastic differential equation given by

γ′(t) = αγ(t) + σ(t) , (5.4)

where α is a negative number. It has been demonstrated that Eq.(5.4) possesses a

continuous, unpredictable, and exponentially stable unique solution denoted as Θ(t)

[147]. For our analysis, we will utilize the solution γ(t) with initial condition γ(0) =

0.6 and α = −3, which exponentially converges to the unpredictable function Θ(t)

[108]. The solution is illustrated in Fig. (5.5) for t ∈ [0, 50].

Given the specified parameters, the solution of Eq.(5.4) is utilized as noise in this

investigation. It’s important to note that Figs.(5.3), (5.4), and (5.5) provide snapshots

of ρ(t), σ(t), and γ(t) in small-time intervals, primarily for illustrative purposes.
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Figure 5.5: Time evolution of the noise.

5.1.2 Uncoupled Hindmarsh-Rose neurons with Markovian noise

The uncoupled Hindmarsh-Rose equations with Markovian noise are expressed as

follows.

ẋi = yi − ax3
i + bx2

i − zi + I +Dγ(t) ,

ẏi = c− dx2
i − yi ,

żi = r(s(xi − x0)− zi) ,

(5.5)

where i = 1, 2 denotes systems one and two. The parameters are set as a = 1, b = 3,

c = 1, d = 5, r = 0.006, s = 4, x0 = −1.6, and I = 3.0. Here, D represents

the noise intensity, and γ(t) is the Markovian noise generated as described in section

5.1.1. This same γ(t) is employed as noise in Eq. (5.5) for i = 1, 2. The only

distinction between the two neurons lies in their initial conditions.

Synchronization is examined in the uncoupled systems based on the provided param-

eters. identical synchronization is identified through the analysis of synchronization

errors between the two neurons. The average error is calculated as follows.

⟨e⟩ =
〈√

(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2
〉
, (5.6)

where ⟨·⟩ denotes a time average. ⟨e⟩ = 0 indicates that the neurons exhibit identical

synchronization. The phenomenon is further explored through the lens of unpre-
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dictability. Def. (3) is applied to the neurons, and the obtained results are compared

to identical synchronization.

5.2 Numerical Results

The uncoupled Hindmarsh-Rose neurons, governed by equation (5.5), undergo simu-

lation with Markovian noise over the interval t ∈ [0, 106]. In this context, throughout

the paper, the terms "neuron-1" and "neuron-2" refer to the instances where i = 1

and i = 2 in equation (5.5). The synchronization errors corresponding to various

noise intensities are depicted in Fig. (5.6). This figure demonstrates that identical

synchronization is attained when D ≥ 3, as indicated by e = 0 within this range.

Figure 5.6: Average errors for different noise intensities.

The unpredictability of neuron-1 and neuron-2 is evaluated using Def. (1) and Al-

gorithm (1). This involves employing a sequence of δ values starting from 0.2 and

decreasing incrementally (0.199, 0.198, . . .) with ∆ = 6. Fig. (5.7) illustrates the

degrees of numerical unpredictability for different noise intensities.

Remarkably, the results depicted in Figs.(5.7a) and (5.7b) closely match each other,

indicating that both neurons consistently display sufficiently small degrees of unpre-

dictability across all noise intensities. Furthermore, the numbers of elements n in all

sequences tn and sn fall within the range of n = [109, 200] for all noise intensities.
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This confirms that unpredictability for both neurons is validated according to Def. (1).

(a) Neuron-1 (b) Neuron-2

Figure 5.7: Degrees of numerical unpredictability for different noise intensities.

To explore synchronization through unpredictability, we employ Def. (3) on both

neurons using Algorithm (2), maintaining consistent values for δ and ∆ as in the

unpredictability test. In Fig. (5.8), the degree of numerical synchronization is depicted

for each D value. It is evident that small αs values confirm synchronization, and the

number of elements n in the corresponding sequences ranges from 65 to 101 for

stochastic cases with low noise intensities D. In contrast, in the deterministic case

where D = 0, the number of elements in these sequences is limited to n = 12, which

is insufficient to confirm synchronization.

Moreover, for D ≥ 3.8, αs noticeably decreases, and the number of elements in

the sequences significantly increases, reaching values of n ≥ 185 within this range.

Notably, the number of elements in the sequences of unpredictability matches those in

the sequences of synchronization for D ≥ 3.8. Based on Def. (3), it can be inferred

that DSC exists for D < 3.8, while complete synchronization of unpredictability

occurs for D ≥ 3.8. For a more in-depth analysis, we will concentrate on two specific

noise intensities: D = 1 and D = 4.7.

Let’s consider the case with D = 1. Unpredictability is indeed affirmed by the nu-

merical characteristics α1 = 0.0090 and α2 = 0.0085 for neuron-1 and neuron-2,

respectively. Table (5.1) furnishes details regarding the initial and final elements of

the convergence and separation sequences. Tables (5.1a) and (5.1b) document the
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Figure 5.8: Degrees of numerical synchronization for different noise intensities.

instances of convergence and separation throughout the entire simulation time, which

spans t = 106. However, a form of weak synchronization is apparent between the

two neurons, as indicated by Table (5.2). This table reveals that the sequences of

finite convergence and separation consist of only 65 elements, adequate for demon-

strating synchronization but not robust synchronization. The numerical degree of

synchronization is αs = 0.023. Hence, it can be inferred that the neurons exhibit

delta synchronization of chaos, as outlined in Def. (3).

Unpredictability for D = 4.7 is confirmed through the numerical degrees of un-

predictability, yielding α1 = α2 = 0.0017 for neuron-1 and neuron-2. Table (5.3)

provides details regarding the initial and final elements of the convergence and sepa-

ration sequences. There are 191 elements in the sequences, which are listed in Tables

(5.3a) and (5.3b) for both neurons. These sequences span the entire simulation du-

ration, suggesting that extending the simulation further would result in even larger

sequences. With these observations and the substantial simulation time, it is estab-

lished that Def. (1) holds true for both neurons.

Table (5.4) provides the moments of convergence and separation for the synchroniza-

tion analysis of both neurons. A comparison between Tables (5.3) and (5.4) reveals

that all elements within them are identical. Considering this, along with the fact that

αs = 0.0017, it can be concluded that a stronger form of synchronization exists,
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Table 5.1: Sequences of convergence and separation at D = 1 for unpredictability

analysis.

n tn sn δn

1 10115 10 0.200

2 11695 20 0.199

3 14673 32 0.198

4 17222 42 0.197

5 19254 53 0.196
...
...

143 857496 1506 0.058

144 884036 1518 0.057

145 896628 1529 0.056

146 953966 1540 0.055

147 962762 1550 0.054

(a) Neuron-1

n tn sn δn

1 10114 10 0.200

2 11695 20 0.199

3 14502 31 0.198

4 17722 42 0.197

5 19537 53 0.196
...
...

146 889607 1550 0.055

147 910979 1561 0.054

148 914535 1571 0.053

149 938866 1582 0.052

150 982731 1592 0.051

(b) Neuron-2

specifically, complete synchronization of unpredictability.

The occurrence of synchronization induced by noise has been thoroughly investi-

gated in the realm of Hindmarsh-Rose neurons, with a predominant focus on Gaussian

white noise, as evidenced in references [83, 99–101]. These inquiries have unveiled

that Gaussian noise prompts identical synchronization among Hindmarsh-Rose neu-

rons. Nevertheless, there has been a conspicuous lack of research thus far employing

Markovian noise to explore synchronization within Hindmarsh-Rose neural systems.

Nevertheless, our numerical findings indicate that synchronization can indeed be in-

duced by Markovian noise, resulting in both identical synchronization and DSC. In

the case of identical synchronization, the phenomenon between both neurons be-

comes evident beyond a certain threshold of noise intensity. This suggests that syn-

chronization is not immediately apparent when examining the synchronization error

right after the introduction of noise into the system. However, in alignment with pre-
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Table 5.2: Sequences of finite convergence and separation at D = 1 in synchroniza-

tion analysis.

n un vn δn

1 10302 10 0.200

2 17722 22 0.199

3 39972 32 0.198

4 43708 45 0.197

5 55483 57 0.196
...
...

61 864683 713 0.140

62 870097 725 0.139

63 907934 736 0.138

64 914535 750 0.137

65 972672 761 0.136

vious studies that have compared DSC to generalized synchronization [11, 22, 23],

our results demonstrate that synchronization can be identified through unpredictabil-

ity analysis.

Specifically, DSC starts to manifest itself following the application of Markovian

noise. This intriguing discovery implies that the synchronization phenomenon oc-

curs in a domain where identical synchronization is not present. Furthermore, our

results unveil another notable insight: complete synchronization of unpredictability,

representing a more robust form of synchronization, emerges in the vicinity where

identical synchronization begins to occur.

Essentially, our study introduces two innovations. First, it pioneers the use of Marko-

vian noise as a novel tool for exploring synchronization in Hindmarsh-Rose neural

systems. Second, it reveals the presence of synchronization in domains where con-

ventional methods fail to detect it, thus enhancing our understanding of synchroniza-

tion phenomena within these neural systems.
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Table 5.3: Sequences of convergence and separation for D = 4.7

n tn sn δn

1 10372 10 0.200

2 12052 20 0.199

3 13734 30 0.198

4 15296 40 0.197

5 16845 50 0.196
...
...

187 884876 1880 0.014

188 930712 1890 0.013

189 944907 1900 0.012

190 957918 1910 0.011

191 979328 1920 0.010

(a) Neuron-1

n tn sn δn

1 10372 10 0.200

2 12052 20 0.199

3 13734 30 0.198

4 15296 40 0.197

5 16845 50 0.196
...
...

187 884876 1880 0.014

188 930712 1890 0.013

189 944907 1900 0.012

190 957918 1910 0.011

191 979328 1920 0.010

(b) Neuron-2

5.3 Discussion

This research delves into the complex domain of synchronization phenomena within

uncoupled Hindmarsh-Rose systems. It introduces a novel approach by employing

continuous and unpredictable Markovian noise on both neurons, resulting in several

noteworthy findings and contributions.

In the absence of noise, the deterministic system lacks any synchronization. How-

ever, the introduction of Markovian noise induces synchronization, and its strength

escalates with increasing noise intensities. Expanding on previous studies that have

investigated identical synchronization induced by Gaussian white noise [83,99–101],

this research reaffirms similar synchronization patterns when Markovian noise is ap-

plied to the neurons.

What distinguishes this research is the discovery that synchronization can manifest in

regions where traditional methods, such as generalized and identical synchronization,
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Table 5.4: Common sequences of convergence and separation for D = 4.7

n un vn δn

1 10372 10 0.200

2 12052 20 0.199

3 13734 30 0.198

4 15296 40 0.197

5 16845 50 0.196
...
...

187 884876 1880 0.014

188 930712 1890 0.013

189 944907 1900 0.012

190 957918 1910 0.011

191 979328 1920 0.010

are unable to detect it. This intriguing phenomenon, in line with our previous findings

in other dynamical systems [11,22,23], is also observed in Hindmarsh-Rose neurons.

Within these regions, the neurons demonstrate delta synchronization of chaos.

Numerical analyses illuminate the existence of unpredictability in the neurons across

all noise intensities. Crucially, synchronization arises as a consequence of noise. Dif-

ferent levels of noise intensity lead to various synchronization types of unpredictabil-

ity. Lower intensities give rise to delta synchronization, while higher intensities result

in complete synchronization of unpredictability—a more robust form of synchroniza-

tion.

To gain a more profound understanding, the study analyzes two specific noise in-

tensities: D = 1 and D = 4.7. In the case of D = 1, a portion of the sequences

in the unpredictability analysis displays synchronization, indicating a weak form of

synchronization known as delta synchronization of chaos. Conversely, for D = 4.7,

all elements of the sequences of convergence and separation synchronize through-

out the simulation. Thus, complete synchronization of unpredictability is confirmed,

representing a more robust form of synchronization. These findings are supported
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by numerical degrees of synchronization, providing the evidence of synchronization

between stochastic neurons.

In summary, this study not only introduces a pioneering approach using Markovian

noise to examine synchronization in Hindmarsh-Rose neural systems but also reveals

synchronization phenomena in regions that traditional methods fail to capture. It

advances our comprehension of synchronization by showing various synchronization

types induced by different noise intensities in the presence of Markovian noise.
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CHAPTER 6

CONCLUSION

Unpredictability is the core of the analyses covered in this thesis. It characterizes a

chaotic behavior with sequences of convergence and separation. While the former

explains the recurrence in the dynamics by indicating the Poisson stability, the latter

describes the Lorenz sensitivity. The theory was constructed in Ref. [12], and has

been applied to various models. The method requires a single trajectory to explain

sensitivity and confirm chaotic motion. Hence, chaos stems from a single function,

expanding the range of possibilities beyond equilibrium, periodic, quasi-periodic, al-

most periodic, recurrent functions, and Poisson stable motion to include unpredictable

motion as a novel element. Particularly, this type of chaotic motion is called Poincaré

chaos.

Numerical investigation of unpredictability is conducted by exploring the conver-

gence and separation sequences in a sufficiently long simulation after the transient

regime of the dynamics. The sequence of convergence includes the moments when

the trajectory passes close to its initial point with a distance δ. This distance gets

smaller at each iteration, indicating that the motion is Poisson stable. The time values

in the sequence, covering the entire simulation, imply that prolonging the simulation

assures convergence. In the sequence of separation, two trajectories starting from the

convergence time and initial state are analyzed. The moments when both trajectories

separate from each other with a distance ∆ are recorded in the sequence of separation.

The sensitivity in the dynamics is revealed by the existence of these sequences.

The theoretical background of unpredictability, as detailed in Ref. [12], is thoroughly

explained. Additionally, the numerical implementation, utilizing an algorithm for

finding the sequences of convergence and separation, is discussed. The algorithm pre-
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sented in this thesis is general and can be applied to most dynamical systems. In this

study, it is tested on partial, delay and ordinary differential equations. To determine

the existence and strength of unpredictability, a numerical degree of unpredictability

is introduced and applied in all analyses of this study.

The synchronized behavior of chaotic systems can be identified by analyzing the com-

mon sequences of convergence and separation, a phenomenon we term delta syn-

chronization of chaos. In contrast to other synchronization methods which focuses

on fully synchronized motions, such as generalized synchronization, delta synchro-

nization reveals unison patterns in the dynamics. This is achieved by examining the

characteristic time values of unpredictability.

The finite sequence of convergence records time values when trajectories simulta-

neously pass near their initial state, with the distance between them decreasing at

each iteration. Conversely, the common sequence of separation includes time values

when trajectories, starting at convergence time, simultaneously diverge from their

initial state. These common characteristic time values of unpredictability effectively

demonstrate the synchronized patterns of the systems.

Complete synchronization of unpredictability is achieved when the distance to the

initial state converges zero in a sufficiently long simulation. In this scenario, the

sequences have more elements, with the number of elements approaching that of

the sequences in unpredictability analysis. To infer the existence and strength of

synchronization, a numerical degree of synchronization is introduced and applied

across all models in this thesis.

The delta synchronization method is defined, and the algorithm for its application

is presented. Tables containing the sequences of delta synchronization are provided

in the models presented in this thesis, along with necessary comparisons to other

methods in the literature. Particularly, generalized synchronization with auxiliary

systems approach and identical synchronization is utilized for comparison.

Identical synchronization examines chaotic systems that are identical (or nearly iden-

tical) but initiated with different initial conditions. Synchronization is achieved if the

difference between the drive and response systems’ solutions is zero after the transient
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time. On the other hand, generalized synchronization examines the synchronization

of nonidentical chaotic systems. It is achieved if the asymptotic stability condition is

satisfied after the transient regime. The auxiliary systems approach is utilized in the

analyses presented in this thesis. With this approach, the synchronization between the

response system and the auxiliary system ensures the synchronization of the drive and

response systems. The auxiliary system is identical to the response system, differing

only in initial conditions.

In the first model [11], we analyzed a gas discharge semiconductor system that com-

bines gas discharge with a high-ohmic semiconductor barrier for the synchronization

of chaos. A one-dimensional fluid model is constructed using the drift-diffusion ap-

proximation. This model considers only electrons and ions as plasma species, referred

to as a simple fluid model, and focuses on ionization processes occurring in regions

with weak electric fields within the discharge gap. The fluid equations and modeling

are comprehensively described.

The transition of the gas discharge semiconductor model from regular periodic be-

havior to fully chaotic states in subnormal oscillations is demonstrated. The chaotic

region is considered for synchronization analysis within a defined parameter regime.

Drive and response systems are constructed such that the discharge potential of the

drive system is supplied to the response system as a perturbation with a constant mul-

tiplier. In the literature, it is concluded that there is no generalized synchronization for

the same coupled systems [53]. Similarly, the absence of generalized synchronization

is demonstrated using the auxiliary systems approach.

Unpredictability is confirmed in both drive and response systems by applying Algo-

rithm (1). The numerical degrees of unpredictability are small numbers for both sys-

tems, approximately α ≈ 0.0011 for the drive system and α ≈ 0.003 for the response

system. The delta synchronization analysis demonstrates that approximately 1/3 of

the unpredictability sequence is synchronized, with a degree of numerical synchro-

nization αsync ≈ 0.046. The outcomes are supported by figures, tables and numerical

characteristics of unpredictability and delta synchronization.

The results reveal a synchronized pattern in gas discharge semiconductor systems,

detectable by delta synchronization methods. However, conventional methods such
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as generalized synchronization, which focus on fully synchronized dynamics, fail to

detect this pattern. It is important to note that similar results are observed in the same

system modeled with local mean energy [22], considering a more realistic modeling

approach that better aligns with experiments.

The second model studied in this thesis is the Mackey-Glass system [23]. It consists

of a delay differential equation in which the delay time defines the transition from

periodic regimes to chaos. This transition is comprehensively investigated in this

study. For a given parameter regime, the delay time is used as a control parameter,

and the emergence of new periods is demonstrated by adjusting this parameter. It is

demonstrated that the formation of an inflection point corresponds to a new period.

The transition is also depicted via a period-doubling bifurcation diagram.

By using the solution of the drive system as a perturbation in the response, synchro-

nization of chaos is examined for unidirectionally coupled Mackey-Glass systems.

The auxiliary system is constructed as a copy of the response system with different

initial conditions. Both the drive and response systems exhibit unpredictability for

different values of the coupling constant.

Varying the coupling constant change the synchronized behavior of the systems.

Thus, a threshold for the coupling constant is defined in the literature [65, 73–76]. In

a similar manner to the literature, it is demonstrated that generalized synchronization

exists above the threshold and it is absent below it via the auxiliary system approach.

Applying the delta synchronization method to the model shows that complete syn-

chronization of unpredictability coexists with generalized synchronization. The cou-

pling constant is taken near the threshold, as larger values imply coexistence with

increased strength of synchronization. The number of elements in the sequences of

unpredictability and synchronization is close to each other. The numerical degree of

synchronization is αsync = 0.0036.

The main novelty of the study lies in the analysis of synchronization below the thresh-

old, where generalized synchronization does not exist. The coupling constant is taken

relatively far away from the threshold since close values already imply synchroniza-

tion. The existence of delta synchronization is confirmed with the degree of numerical
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synchronization αsync = 0.013, which is 3.6 times larger than the value in the above-

threshold analysis; thus, it shows weaker synchronization. Hence, the synchronized

patterns are detected via the delta synchronization method when other methods fail.

The final model discussed in this thesis is the Hindmarsh-Rose neural network [24].

This model elucidates the dynamics of a single neuron characterized by spiking-

bursting behavior, with synchronization being attributed to the communication be-

tween neurons. By manipulating the external current as a control parameter, the

model exhibits both periodic and chaotic membrane potential patterns. The transi-

tion between chaotic and periodic dynamics, and vice versa, is illustrated through the

bifurcation diagram of interspike intervals.

The study explores noise-induced synchronization in the uncoupled Hindmarsh-Rose

model. While Gaussian white noise is typically employed in the literature for such

analyses, we construct Markovian noise based on Markov chains, utilizing unpre-

dictable functions. This choice stems from the unpredictability inherent in the final

function used as noise. The stochastic construction of the model with Markovian

noise is elaborated upon in detail.

By holding all parameters constant, except for the noise intensity, we observe diverse

synchronization patterns and dynamics as the noise intensity serves as a control pa-

rameter. At higher levels of noise intensity, neurons exhibit identical synchronization,

a phenomenon detected through the time average of an error function. The presence

of unpredictability across all domains of noise intensity is demonstrated for both neu-

rons through the numerical degree of unpredictability.

The application of the delta synchronization method to the model reveals that syn-

chronization initiates immediately after the introduction of noise, and neurons be-

come synchronized irrespective of noise intensity. This is evidenced by the numerical

degree of synchronization consistently observed across all noise intensities. In the

deterministic case, or when noise intensity is absent, the sequences exhibit an insuffi-

cient number of elements, failing to span the entire simulation.

By analyzing both the number of elements in the sequences and the numerical de-

gree of synchronization, we deduce the existence of delta synchronization for lower
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noise intensities, while complete synchronization of unpredictability is observed for

higher noise intensities. To provide further insight into the results, we concentrate

on two specific noise intensities: one below and one above the threshold for identical

synchronization.

Below the threshold, we illustrate that unpredictability sequences are partially syn-

chronized, covering the entire simulation. The numerical degree of synchronization

is small enough to signify delta synchronization. In contrast, above the threshold,

all members of unpredictability sequences are synchronized, and the numerical de-

gree of synchronization is significantly smaller, indicating the presence of complete

synchronization of unpredictability.

In conclusion, this thesis introduces a method of delta synchronization grounded in

unpredictability and applies it to various dynamical systems [11, 22–24]. The results

demonstrate that delta synchronization successfully detects synchronized patterns in

domains where conventional methods fail to do so. Additionally, it is observed that

complete synchronization of unpredictability coexists with conventional methods in

approximately the same domains.
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mackey-glass system,” Physics Letters A, vol. 201, no. 1, pp. 42–46, 1995.

[65] A. Kittel, J. Parisi, and K. Pyragas, “Generalized synchronization of chaos in

electronic circuit experiments,” Physica D: Nonlinear Phenomena, vol. 112,

no. 3-4, pp. 459–471, 1998.

[66] S. Sano, A. Uchida, S. Yoshimori, and R. Roy, “Dual synchronization of chaos

in mackey-glass electronic circuits with time-delayed feedback,” Physical Re-

view E, vol. 75, no. 1, p. 016207, 2007.

[67] W. Kinzel, A. Englert, and I. Kanter, “On chaos synchronization and secure

communication,” Philosophical Transactions of the Royal Society A: Mathe-

matical, Physical and Engineering Sciences, vol. 368, no. 1911, pp. 379–389,

2010.

[68] D. Li, Z. Wang, J. Zhou, J. Ni, et al., “A note on chaotic synchronization

of time-delay secure communication systems,” Chaos, Solitons & Fractals,

vol. 38, no. 4, pp. 1217–1224, 2008.

[69] O. Kwon, J. H. Park, and S. Lee, “Secure communication based on chaotic

synchronization via interval time-varying delay feedback control,” Nonlinear

Dynamics, vol. 63, pp. 239–252, 2011.

[70] C. Li, X. Liao, and K.-w. Wong, “Chaotic lag synchronization of coupled time-

delayed systems and its applications in secure communication,” Physica D:

Nonlinear Phenomena, vol. 194, no. 3-4, pp. 187–202, 2004.

[71] T. M. Hoang, N. V. Son, and M. Nakagawa, “A secure communication sys-

tem using projective-lag synchronization of multidelay mackey-glass systems,”

in 2006 First International Conference on Communications and Electronics,

pp. 325–330, IEEE, 2006.

[72] J. D. Farmer, “Chaotic attractors of an infinite-dimensional dynamical system,”

Physica D: Nonlinear Phenomena, vol. 4, no. 3, pp. 366–393, 1982.

[73] L. Dong and Z. Zhi-Gang, “Multiple attractors and generalized synchroniza-

tion in delayed mackey–glass systems,” Chinese Physics B, vol. 17, no. 11,

p. 4009, 2008.

109



[74] K. Pyragas, “Synchronization of coupled time-delay systems: Analytical esti-

mations,” Physical Review E, vol. 58, no. 3, p. 3067, 1998.

[75] M. Zhan, X. Wang, X. Gong, G. Wei, and C.-H. Lai, “Complete synchroniza-

tion and generalized synchronization of one-way coupled time-delay systems,”

Physical Review E, vol. 68, no. 3, p. 036208, 2003.

[76] E. Shahverdiev, R. Nuriev, R. Hashimov, and K. Shore, “Chaos synchroniza-

tion between the mackey–glass systems with multiple time delays,” Chaos,

Solitons & Fractals, vol. 29, no. 4, pp. 854–861, 2006.

[77] J. L. Hindmarsh and R. Rose, “A model of neuronal bursting using three cou-

pled first order differential equations,” Proceedings of the Royal society of Lon-

don. Series B. Biological sciences, vol. 221, no. 1222, pp. 87–102, 1984.

[78] S. H. Thompson and S. J. Smith, “Depolarizing afterpotentials and burst

production in molluscan pacemaker neurons,” Journal of Neurophysiology,

vol. 39, no. 1, pp. 153–161, 1976.

[79] D. F. Russell and D. K. Hartline, “Slow active potentials and bursting motor

patterns in pyloric network of the lobster, panulirus interruptus,” Journal of

Neurophysiology, vol. 48, no. 4, pp. 914–937, 1982.

[80] P. Schwindt and W. Crill, “Role of a persistent inward current in motoneuron

bursting during spinal seizures.,” Journal of Neurophysiology, vol. 43, no. 5,

pp. 1296–1318, 1980.

[81] R. Plant and M. Kim, “Mathematical description of a bursting pacemaker neu-

ron by a modification of the hodgkin-huxley equations,” Biophysical journal,

vol. 16, no. 3, pp. 227–244, 1976.

[82] A. L. Hodgkin and A. F. Huxley, “A quantitative description of membrane

current and its application to conduction and excitation in nerve,” The Journal

of physiology, vol. 117, no. 4, p. 500, 1952.

[83] Q. Lu, H. Gu, Z. Yang, X. Shi, L. Duan, and Y. Zheng, “Dynamics of firing

patterns, synchronization and resonances in neuronal electrical activities: ex-

periments and analysis,” Acta Mechanica Sinica, vol. 24, no. 6, pp. 593–628,

2008.

110



[84] D. Hrg, “Synchronization of two hindmarsh–rose neurons with unidirectional

coupling,” Neural Networks, vol. 40, pp. 73–79, 2013.

[85] A. Bandyopadhyay and S. Kar, “Impact of network structure on synchroniza-

tion of hindmarsh–rose neurons coupled in structured network,” Applied Math-

ematics and Computation, vol. 333, pp. 194–212, 2018.

[86] Z.-L. Wang and X.-R. Shi, “Chaotic bursting lag synchronization of hind-

marsh–rose system via a single controller,” Applied Mathematics and Com-

putation, vol. 215, no. 3, pp. 1091–1097, 2009.

[87] M. Ge, Y. Jia, Y. Xu, L. Lu, H. Wang, and Y. Zhao, “Wave propagation and

synchronization induced by chemical autapse in chain hindmarsh–rose neu-

ral network,” Applied Mathematics and Computation, vol. 352, pp. 136–145,

2019.

[88] S. Xia and L. Qi-Shao, “Firing patterns and complete synchronization of cou-

pled hindmarsh–rose neurons,” Chinese Physics, vol. 14, no. 1, p. 77, 2005.

[89] H. Yu and J. Peng, “Chaotic synchronization and control in nonlinear-coupled

hindmarsh–rose neural systems,” Chaos, Solitons & Fractals, vol. 29, no. 2,

pp. 342–348, 2006.

[90] I. Belykh, E. De Lange, and M. Hasler, “Synchronization of bursting neurons:

What matters in the network topology,” Physical review letters, vol. 94, no. 18,

p. 188101, 2005.

[91] M. Dhamala, V. K. Jirsa, and M. Ding, “Enhancement of neural synchrony by

time delay,” Physical review letters, vol. 92, no. 7, p. 074104, 2004.

[92] M. G. Knyazeva, M. Jalili, A. Brioschi, I. Bourquin, E. Fornari, M. Hasler,

R. Meuli, P. Maeder, and J. Ghika, “Topography of eeg multivariate phase

synchronization in early alzheimer’s disease,” Neurobiology of Aging, vol. 31,

no. 7, pp. 1132–1144, 2010.

[93] P. J. Uhlhaas and W. Singer, “Neural synchrony in brain disorders: Rele-

vance for cognitive dysfunctions and pathophysiology,” Neuron, vol. 52, no. 1,

pp. 155–168, 2006.

111



[94] J.-W. Shuai and D. M. Durand, “Phase synchronization in two coupled chaotic

neurons,” Physics Letters A, vol. 264, no. 4, pp. 289–297, 1999.

[95] M. V. Ivanchenko, G. V. Osipov, V. D. Shalfeev, and J. Kurths, “Phase syn-

chronization in ensembles of bursting oscillators,” Phys. Rev. Lett., vol. 93,

p. 134101, Sep 2004.

[96] C. Kurrer and K. Schulten, “Noise-induced synchronous neuronal oscilla-

tions,” Phys. Rev. E, vol. 51, pp. 6213–6218, Jun 1995.

[97] J. D. Touboul, C. Piette, L. Venance, and G. B. Ermentrout, “Noise-induced

synchronization and antiresonance in interacting excitable systems: Applica-

tions to deep brain stimulation in parkinson’s disease,” Phys. Rev. X, vol. 10,

p. 011073, Mar 2020.

[98] J. W. Shuai and K. W. Wong, “Noise and neural networks,” Phys. Rev. E,

vol. 57, pp. 7002–7007, Jun 1998.

[99] Y. Wu, J. Xu, D. He, and D. J. Earn, “Generalized synchronization induced by

noise and parameter mismatching in hindmarsh–rose neurons,” Chaos, Solitons

& Fractals, vol. 23, no. 5, pp. 1605–1611, 2005.

[100] S. Xia and L. Qi-Shao, “Coherence resonance and synchronization of

hindmarsh–rose neurons with noise,” Chinese physics, vol. 14, no. 6, p. 1088,

2005.

[101] D. He, P. Shi, and L. Stone, “Noise-induced synchronization in realistic mod-

els,” Physical Review E, vol. 67, no. 2, p. 027201, 2003.

[102] D. Jones and M. Lorenz, “An application of a markov chain noise model

to wind generator simulation,” Mathematics and Computers in Simulation,

vol. 28, no. 5, pp. 391–402, 1986.

[103] A. Mahmood and M. Chitre, “Modeling colored impulsive noise by markov

chains and alpha-stable processes,” in OCEANS 2015 - Genova, pp. 1–7, 2015.

[104] M. Kaledin, E. Moulines, A. Naumov, V. Tadic, and H.-T. Wai, “Finite

time analysis of linear two-timescale stochastic approximation with marko-

vian noise,” in Proceedings of Thirty Third Conference on Learning Theory

112



(J. Abernethy and S. Agarwal, eds.), vol. 125 of Proceedings of Machine

Learning Research, pp. 2144–2203, PMLR, 09–12 Jul 2020.

[105] J. A. Gubner, Probability and random processes for electrical and computer

engineers. New York, U.S.A: Cambridge University Press, 2006.

[106] S. Karlin and H. M. Taylor, A First Course in Stochastic Processes. New York,

U.S.A: Academic Press, second edition ed., 1975.

[107] S. P. Meyn and R. L. Tweedie, Markov chains and stochastic stability. London,

U.K.: Springer London, 1993.

[108] M. Akhmet, M. Tleubergenova, and A. Zhamanshin, “Unpredictable solutions

of duffing type equations with markov coefficients,” Carpathian Journal of

Mathematics, vol. 39, no. 3, pp. 568–582, 2023.

[109] M. Akhmet, “Unpredictability in markov chains,” Carpathian Journal of Math-

ematics, vol. 38, no. 1, pp. 13–19, 2022.

[110] L. Barreira, “Poincaré recurrence: old and new,” in XIVth International

Congress on Mathematical Physics, pp. 415–422, World Scientific, 2006.

[111] G. D. Birkhoff, Dynamical systems, vol. 9. Providence, U.S.A: American

Mathematical Soc., 1927.

[112] M. Henon, “A two-dimensional mapping with a strange attractor,” Communi-

cations in Mathematical Physics, vol. 50, pp. 69–77, 1976.

[113] S. Smale, Diffeomorphisms with Many Periodic Points, ch. Differential and

Combinatorial Topology, pp. 63–80. Princeton, U.S.A: Princeton University

Press, 1965.

[114] H. Hilmy, “Sur les ensembles quasi-minimaux dans les systemes dynamiques,”

Annals of Mathematics, no. 4, pp. 899–907, 1936.

[115] V. V. Nemytskii and V. V. Vladimirovich, Qualitative theory of differential

equations. Princeton, U.S.A: Princeton University Press, 1960.

[116] G. R. Sell, Topological dynamics and ordinary differential equations. London,

U.K: Van Nostrand–Reinbold Company, 1971.

113



[117] R. He and P. Vaidya, “Analysis and synthesis of synchronous periodic and

chaotic systems,” Physical Review A, vol. 46, no. 12, p. 7387, 1992.

[118] G. Grubert, M. Becker, and D. Loffhagen, “Why the local-mean-energy ap-

proximation should be used in hydrodynamic plasma descriptions instead of

the local-field approximation,” Physical Review E, vol. 80, no. 3, p. 036405,

2009.

[119] Y. P. Raizer and J. E. Allen, Gas discharge physics, vol. 2. Springer Berlin,

1997.

[120] I. Rafatov and C. Yesil, “Transition from homogeneous stationary to oscillating

state in planar gas discharge–semiconductor system in nitrogen: Effect of fluid

modelling approach,” Physics of Plasmas, vol. 25, no. 8, p. 082107, 2018.

[121] U. S. Inan and M. Gołkowski, Principles of plasma physics for engineers and

scientists. Cambridge, UK: Cambridge University Press, 2010.

[122] C. Strümpel, H.-G. Purwins, and Y. A. Astrov, “Spatiotemporal filamentary

patterns in a dc-driven planar gas discharge system,” Physical review E, vol. 63,

no. 2, p. 026409, 2001.

[123] E. Ammelt, Y. A. Astrov, and H.-G. Purwins, “Stripe turing structures in a two-

dimensional gas discharge system,” Physical Review E, vol. 55, no. 6, p. 6731,

1997.

[124] Y. A. Astrov, E. Ammelt, and H.-G. Purwins, “Experimental evidence for

zigzag instability of solitary stripes in a gas discharge system,” Physical re-

view letters, vol. 78, no. 16, p. 3129, 1997.

[125] Y. A. Astrov and Y. A. Logvin, “Formation of clusters of localized states in a

gas discharge system via a self-completion scenario,” Physical Review Letters,

vol. 79, no. 16, p. 2983, 1997.

[126] E. Gurevich, A. Moskalenko, A. Zanin, Y. A. Astrov, and H.-G. Purwins, “Ro-

tating waves in a planar dc-driven gas-discharge system with semi-insulating

gaas cathode,” Physics Letters A, vol. 307, no. 5-6, pp. 299–303, 2003.

114



[127] M. Mokrov and Y. P. Raizer, “Simulation of current filamentation in a dc-driven

planar gas discharge–semiconductor system,” Journal of Physics D: Applied

Physics, vol. 44, no. 42, p. 425202, 2011.
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