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ABSTRACT

A UNIFIED SLOPE DESIGN FRAMEWORK FOR DIFFERENT ROCK
SLOPE FAILURE MECHANISMS

Kahveci, Mustafa Serhan
Master of Science, Mining Engineering
Supervisor: Asst. Prof. Dr. Ahmet Giines YARDIMCI

January 2024, 122 pages

Slope stability analysis requires an extensive knowledge on geomechanics and
computational simulations. This research develops a practical approach in the
preliminary analysis of slope failure modes for rock slopes with different
specifications in terms of rock mass quality, slope height, overall slope angle, upper
face inclination and discontinuity orientations. Parametric analyses were conducted
on computational models using Finite Element Method and Limit Equilibrium
Method. In total, 10041 different conditions were simulated to generate a reliable
database for the construction of a new slope design framework. Slope performance
was evaluated in terms of the mechanical indicators such as the total displacement,
max shear strain and factor of safety. The model outputs were used to train an
Artificial Neural Network (ANN) model to overcome the difficulties in
interpretation of conventional tables and plots. The ANN model was tested using

benchmark cases. The results provided a high correlation implying the proposed



method is successful in predicting the failure mode in rock slopes. The study
outcomes have potential to provide a reliable tool for slope stability that may be

useful for inexperienced technical staff.

Keywords: Rock Slope Stability, Finite Element Method, Limit Equilibrium
Method, Slope Failure Mode, Machine Learning
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0z

FARKLI KAYA SEVI YENILME MEKANIZMALARI ICIN
BIRLESTIRILMIS BIiR SEV TASARIM SISTEMIi

Kahveci, Mustafa Serhan
YUksek Lisans, Maden Miihendisligi
Tez Yoneticisi: Dr. Ogr. Uyesi Ahmet Giines YARDIMCI

Ocak 2024, 122 sayfa

Sev duraylilik aragtirmasi jeomekanik ve hesaplamali benzetimler konusunda genis
bir bilgi birikimi gerektirmektedir. Bu arastirma, kaya kitle kalitesi, sev yliksekligi,
genel sev agisi, tist basamak egimi ve siireksizlik yonleri gibi farkli kosullar altinda
sev yenilme modunun belirlenmesinde kullanilabilecek pratik bir 6nctl ¢oziimleme
yontemi gelistirmektedir. Hesaplamali modeller iizerinde sonlu elemanlar yontemi
ve denge esitlik yontemi kullanilarak parametrik ¢éziimlemeler yiiriitilmiistiir. Yeni
gelistirilen sev tasarim yonteminde kullanilacak guvenilir bir veri tabani olusturmak
Uzere toplam 10041 farkli senaryo Uretilmistir. Sev performansi; toplam yer
degistirme ve en yiksek kesme gerinimi gibi mekanik faktorler ve giivenlik faktord
cinsinden  degerlendirilmistir. Konvansiyonel ~ tablo  ve  grafiklerin
degerlendirilmesinde olusan zorluklar1 gidermek amaciyla model ¢iktilariyla bir
yapay sinir aglart (YSA) modeli egitilmistir. YSA modeli referans modellerle
karsilastirilarak test edilmistir. Sonuclar, Onerilen yontem ile kaya sevlerinde

yenilme modunun basariyla tahmin edilebilecegini gosteren yiksek korelasyon

vii



degerleri saglamistir. Calisma c¢iktilart sev duraylilik degerlendirmelerinde
tecriibesiz teknik personel icin faydali olabilecek giivenilir bir ara¢ saglama

potansiyeline sahiptir.

Anahtar Kelimeler: Kaya Sev Durayliligi, Sonlu Elemanlar Yo6ntemi, Denge Esitlik

Yontemi, Sev Yenilme Modu, Makine Ogrenmesi
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CHAPTER 1

INTRODUCTION

Slope stability is a concern of mining, geology, and civil engineering disciplines due
to elevating mining operations, urbanization, and infrastructure constructions.
Regarding soil and rock bears different geomechanical characteristics and slope mass
may involve both, slope stability can be considered a multidisciplinary act to protect
safety. Empirical tools are the common language to handle communication between
technical staff with different backgrounds. Slope mass classification systems and
slope performance charts have been widely used as a preliminary stage of stability
assessment. However, these methods may also be misleading as they are either valid
under restricted conditions or lacks of mechanical or kinematical considerations.
Computational simulations of slope stability provide more comprehensive
information about the slope performance by investigation of stress and deformation
fields, before, during and after the excavation. However, they require skilled
operators with a solid background in geomechanics, mathematics and computer
programming. Even for the numerical simulations, a preliminary design tool would
be considered useful as the computational expense would be reduced by determining
a brief scope for modeling. Parametric studies have potential to provide the overall
slope behavior under various circumstances. However, as the slope performance
longs to a crowded parameter set with extensive ranges, interpretation of the
simulation outputs poses difficulties. Conventional two-dimensional data plots
would involve multiple data series and still all of the variables cannot be represented
in a single graph. Therefore, alternative methods would be considered to provide a
user-friendly interface for the interpretation of parametric studies.



This study investigates the slope performance with mechanical simulations for
various conditions and suggests an auxiliary tool for the preliminary slope stability
analysis. The current literature on the empirical and numerical slope evaluation
proposes solutions for rock masses of particular quality, slope geometries, structural
conditions, and depths. The purpose of this study is to cover a wider range of
geometric, geomechanical and structural conditions with a reliable database
comprised of mechanical assessments. The proposed method makes use of the
current empirical methods and expert view to assign the elastic and plastic behavior
of the rock mass. Initially, the parametric study outputs were presented using
traditional charts and tables to compare similar conditions and assess suitable slope
design. Later, a machine learning-based model was developed to provide a user-
friendly tool for interpreting the numerical simulations. The study aims to make
geomechanical data accessible to inexperienced users by reducing modeling and

computational difficulties and avoiding potential modeling errors.

1.1 Problem Statement

The main focus of this research is the mitigation of accidents caused by slope
failures. Slope failures can have significant and dire consequences, including
damage to critical infrastructure, loss of life, disruption of ecosystems, and economic
hardship. It is crucial to address and mitigate the risks associated with slope
instability to ensure the safety and well-being of individuals, communities and

sustainable production in mines.

Traditional slope design methods are often limited in their applicability and can be
costly and difficult to update due to their reliance on case histories. As a more
effective alternative, numerical models are used to simulate slope behavior under
various conditions. However, these models can be complex and require advanced

knowledge of geomechanics to prepare, run, and interpret. Additionally, solving



complex problems using numerical models can be computationally intensive and

time-consuming, making them impractical for quick analyses.

Furthermore, interpreting model results often requires specialized expertise. This
study introduces an improved methodology that enables users with basic skills to

effectively utilize numerical model results.

1.2 Objectives and Scope of the Study

The objective of this study is to provide a simple and reliable tool for assessing slope
stability. This will be achieved by computational simulations to monitor the effects
of different factors such as slope height, overall slope angle, material properties,
upper face inclinations, and failure plane properties on the slope performance.
Instead of relying on traditional tables and 2D plots to interpret model outputs,
advanced statistical models will be used. To summarize, the study aims to achieve

the following objectives:

I.  To create a user-friendly slope design tool for non-experts in geomechanical
simulations.
Il. To assess the efficiency of different slope designs featuring diverse
geomechanical characteristics.
I1l.  To create a reliable database of mechanical indicators for slope performance
through numerical simulations with parametric analyses.
IV.  Tocompare conventional tables and 2D plots with a machine learning-driven

model.



1.3

Research Methodology

The research methodology is illustrated in the Figure 1.1, depicting the stages

involved in designing and implementing the study. The following steps were taken

to achieve the research objectives:

VI.

VII.

Outlining the modeling scenarios.

Determining geomechanical and geometrical properties for the rock mass and
structural discontinuities.

Determining the numerical simulation method conforming to the simulated
case.

Tracking the mechanical slope performance indicators from the numerical
simulations.

Examining the relationship between the parameters by interpreting numerical
modeling data using conventional tables and 2D plots.

Determining the limitations of the conventional data presentation methods
and their inability to clearly present numerical model results.

Using artificial neural networks to train a statistical model from numerical
data
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Figure 1.1 The flowchart of the methodology

1.4

The proposed method is expected to provide a reliable alternative for the preliminary
design of rock slopes. Based on the comprehensive mechanical background, it is
expected to be a complementary solution to the kinematic analysis and slope
performance charts. Also, the numerical workload can potentially be reduced with
the quick assessment of slopes. It is expected to induce a new understanding in

developing slope stability methods by numerical simulations instead of the empirical

tools based on field observations.

Expected Contributions to Literature

(database)




1.5  Organization of the Thesis

This dissertation presents a new approach to the assessment of rock slope stability.
It places special emphasis on the continuum and discontinuum material behavior. In
Chapter 1, the research's context, importance, and goals are discussed, along with

the thesis structure and research questions.

In Chapter 2, the current state of knowledge on slope stability analysis, machine
learning applications, and geomechanical parameters is thoroughly examined from
the literature. The chapter offers a comprehensive review, detailing the key concepts
and theories within the field, and provides a strong foundation for subsequent

chapters to build upon.

In Chapter 3, the approach and procedures utilized to determine the geomechanical
parameters are covered. It discusses the techniques and data collection methods
employed in this crucial aspect of the research. The following part of the chapter
describes the numerical analysis techniques used to evaluate slope performance,
including the models and simulations applied. The chapter delves into a detailed
discussion of the specific models and simulations used, providing an in-depth
analysis of their applications.

Chapter 4 presents a novel and advanced method for analyzing slope stability in
various scenarios. The method involves utilizing a comprehensive database of
mechanical indicators that are obtained from numerical investigations. To provide a
more convenient way of obtaining accurate simulation results, artificial neural
network (ANN) models are utilized. The ANN models’ performance is validated by
comparing them to various cases simulated in previous chapters. This chapter also
provides a detailed comparison and discussion of the recommendations and
performance of hypothetical cases based on traditional empirical methods, numerical

analysis, and the ANN models.



In Chapter 5, a comprehensive analysis of the research outcomes is presented. The
exploration of geomechanical parameter determination, numerical analysis, and
machine learning interpretation is conducted with a detailed discussion of the
findings. The results obtained from each of these methods are thoroughly examined
and compared to provide a comprehensive understanding of the research topic. This
chapter's aim is to offer an in-depth insight into the research outcomes and provide

a clear understanding of the research's implications.

The concluding chapter serves as a comprehensive summary of the most significant
findings of the study and their potential implications. Additionally, the chapter offers
valuable recommendations for future research directions and practical applications
that can be derived from the study's outcome.






CHAPTER 2

LITERATURE REVIEW

This section presents a comprehensive review of the literature to point out the
research gap. The scope is the slope design practice, rock slope failure modes, and
stability assessments. Previous studies were investigated to outline the current
research. Historical evolution of computational methods was used as a guide in
planning the structure of the proposed method. The following sections cover the
applied and theoretical basis of rock slope stability research.

2.1  Slope Failure Mechanisms

According to Morgenstern & Tchalenko (1967), ‘failure’ in the context of a landslide
refers to the movement that significantly deforms the slope geometry. Experience,
knowledge, and careful observation can provide valuable insights into the possible
failure mechanisms of slopes that have already failed or those that are yet to be
excavated. ldentifying the potential failure mechanism is an important step in
conducting an accurate slope stability analysis, as it enables the use of the most

effective methods and techniques to address the issue (Oge, 2008).

Because slope stability depends on a number of factors and they are difficult to
determine, it is a challenge to accurately estimate the stability of a rock or soil slope
(Sakellariou & Ferentinou, 2005).

Ensuring the stability of a slope involves analyzing the driving and resisting forces
and their interaction. While some factors contribute to the driving forces, others



contribute to the resisting forces. Therefore, it is crucial to consider these factors

when performing a stability assessment for rock slopes (Raghuvanshi, 2019b).

The stability of slopes is commonly evaluated using the Factor of Safety (FOS),
which is computed by dividing the resisting forces by the driving forces acting on
the slope. If the resisting forces are greater than the driving forces, the FOS is greater
than one, indicating that the slope is theoretically stable. On the other hand, if the
driving forces exceed the resisting forces, the FOS is less than one, indicating that

the slope is theoretically unstable (Amirkiyaei & Ghasemi, 2022).

Slope failure mechanisms can be categorized into two primary types as mass-failure
and discontinuity driven failure. Mass failure occurs when a large amount of soil or
rock slides down the slope on a circular surface, while failures driven by
discontinuities happen when the slope mass is disturbed by geological features such
as faults, fractures or joints. Understanding these mechanisms is crucial for

evaluating the stability of slopes and preventing potential hazards.

211 Slope Mass-Failure

Slope stability can be affected by a variety of surface and body forces as well as the
dynamic loadings. However, gravity has the most significant influence that may
dominate the failure. The gravitational force acting on a slope is directly proportional
to its inclination (Raghuvanshi, 2019b). In other words, the steeper the slope, the
stronger the gravitational force that triggers a soil or rock mass slide, leading to a
global slope failure. Therefore, understanding the interaction between gravity and
slope inclination is crucial for predicting and mitigating the risks associated with

slope instability.

There are two modes of rock mass failure; circular and non-circular. Circular failure

occurs when material moves in a circular pattern, while non-circular failure has a
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pattern that is composed of conjunction of linear sections with various inclination.
The Figure 2.1 represents a sample circular failure surface (Amirkiyaei & Ghasemi,
2022).

Failure surface
Slope surface \

Slope geometry:
Slope height (H), Slope angle (B)

Gravity:
Unit weight of soil (UW)

Shear strength of the geomaterial:
Cohesion (C), Friction angle (@)

Water condition:
Pore pressure ratio (r,)

—
e i

Figure 2.1 A sample circular failure surface (Amirkiyaei & Ghasemi, 2022)

Circular failure is not the only possible mode of slope failure for weak or structurally
disturbed rocks. Structural geology may dominate the shape of the slip surface,
resulting in a noncircular configuration (Duncan, 1996). A sample for a typical non-

circular failure surface is shown in Figure 2.2.

Over the years, numerous studies have tackled the noncircular critical slip surface
search in computational solutions. These studies have aimed to transform the search

process into an optimization problem (Mafi et al., 2021).
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Slope Surface

Non-circular Failure Surface

Figure 2.2 A sample non-circular failure surface

2.1.2 Discontinuity Driven Slope Failure

Discontinuities are another reason for rock slope failure. Sliding potential is largely
influenced by the shear strength of the contact surfaces. The failure path can be traced
along a single discontinuity, across two or more discontinuities, or along a

combination of intersecting discontinuities (Sjoberg, 1996).

Slope mass involving structural discontinuities may experience a range of failure
modes. These are the planar failure, where a flat sliding surface forms along a joint
plane; wedge failure, where a wedge-shaped block detaches from the main rock
mass; and toppling failure, where an overhanging block rotates and falls away from
the slope (Mantrala et al., 2021). Those are the common modes of failure in rock
slopes (Lee & Wang, 2011).

A plane failure typically occurs in rock slopes that are excavated in stratified
sedimentary and meta-sedimentary formations. The rock block intersected by a plane
can mobilize when a structural plane dips or daylights towards the free surface at an
angle that is smaller than the slope face angle, but greater than the angle of friction

of the discontinuity surface (Sharma et al., 1995). In other words, it happens when a
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weakness plane in the rock is oriented in such a way that it dips towards the free face
with an angle that can no longer support the weight of the rock above it (Tang et al.,
2017).

The plane failure potential depends on various factors including the inclination of
the slope, the inclination of the upper slope surface, the height of the slope, the dip
of the potential failure plane, the presence of tension cracks, as well as the shear
strength parameters (such as cohesion and angle of friction) of the potential failure
surface. Additionally, the height of water in tension cracks and horizontal earthquake
acceleration are also important factors (Raghuvanshi et al., 2015) (Raghuvanshi et
al., 2014) (Turrini & Visintainer, 1998). The rock block is held in place mainly by
the shear strength and the weight of the sliding mass that works against it. These two
forces are the primary factors that resist and prevent the failure of the plane
(Raghuvanshi, 2019a). A sample view of the plane failure is shown in the Figure 2.3
(Hoek & Bray, 1981).

Figure 2.3 A typical plane failure (Hoek & Bray, 1981)

Plane failure occurs rarely and can be considered as a special type of wedge failure.
There are various geological and geometric conditions that may lead to a wedge
failure. Therefore, the stability of wedge blocks plays a crucial role in rock slope
engineering (Wyllie & Mah, 2004).
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Wedge failure occurs due to intersection of two or more discontinuity planes and the
sliding block may lead to disastrous consequences if not addressed promptly (Bowa,
2020). The stability of a wedge block is influenced by the joint strike and the slope
face strike. Therefore, identification of the structural orientations is crucial for
evaluating and managing theslope stability (Mantrala et al., 2022). A sample wedge
failure is illustrated in Figure 2.4 (Hoek & Bray, 1981).

Figure 2.4 A sample wedge failure (Hoek & Bray, 1981)

Toppling is another discontinuity driven failure mechanism, which was first
introduced by Ashby (1971) for a single rock block. In rock slopes where steeply
dipping structural planes exhibit with a similar strike as the slope, the rock pillar may
bend and lead to the toppling failure (Tao et al., 2019). Toppling is commonly
observed in natural and man-made rock slopes. They have complex mechanisms and
the main modes are flexural, blocky, and block-flexure, where the weight of the rock
columns typically causes them to overturn. Flexural failure occurs when a rock mass
has only one major discontinuity set, which is steeply dipping into the slope face. In
this case, the rock columns may bend. Blocky failure occurs when the rock mass has
an additional discontinuity set, perpendicular to the main set, dividing the rock
columns into several sub-blocks. The movement of these blocks, whether it is sliding

or overturning, can lead to a failure mode characterized by the formation of blocky
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failure. Sometimes, block-flexure failure mode is also observed, which is a
combination of these two failure modes (Ardestani et al., 2021). A typical

presentation of the toppling failure is shown in Figure 2.5 (Hoek & Bray, 1981).

Figure 2.5 A sample view of toppling failure (Hoek & Bray, 1981)

2.2  Slope Stability Assessment

Rock slope stability deals with the influence of forces on the rock mass. Mainly three
methods exist for analyzing the stability of rock slopes: conventional methods,
computational methods, and physical models. Each method has advantages and
limitations due to slope conditions, application, and expert capabilities
(Raghuvanshi, 2019b).

Conventional methods involve the kinematic analysis, limit equilibrium analysis,
probability analysis and empirical systems. These methods make use of observations
or assumptions to assess the stability for simple slope geometry. Numerical
simulation methods, on the other hand, use computational models to simulate the
behavior of rock slopes under different conditions. These methods can be further
divided into continuum modeling with finite-element and finite-difference analysis,
and discontinuum modeling with distinct-element and discrete-element analysis.
Hybrid modeling techniques may also be used to combine the advantages of both

continuum and discontinuum models (Tang et al., 2017).
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In situ measurements and physical model tests involve the measurement and analysis
of the deformation and stress in the rock mass. These tests provide valuable
information about the behavior of rock slopes and can help to validate the numerical
models.

2.2.1 Empirical Methods

Empirical techniques are widely used for the preliminary slope stability analysis.
They are based on experience and observation, enabling quick and efficient decision-
making with a thorough understanding of the slope mass condition (Singh & Goel,
2011; Azarafza et al., 2020; Azarafza et al., 2022).

Mainly for rock mass, various classifications have been developed to quantify the
slope mass condition, and to recommend measures for reducing the risk of instability.
Empirical classification systems for geo-materials were first developed by Ritter
(1879) and Terzaghi (1946).

In 1946, Terzaghi introduced a quantitative classification system for tunnels
supported with steel sets in various host rock types. This system provided a more
comprehensive understanding of the behavior of tunnels under different geologies.
The system was mostly relying on the expert opinion.

Based on Terzaghi's method, Lauffer (1958) developed a classification system to
determine the amount of time a tunnel or underground cavern can remain stable

without supporting.

Deere, Hendron, and Patton (1966) and Deere (1970) proposed a new method for
assessing the quality of a rock mass called the Rock Quality Designation (RQD)
index which was modified later by Deere & Deere (1988) . The RQD index provides
a quantitative measure of the degree of fragmentation of a rock mass and it is based

on the percentage of rock core recovered in lengths greater than 10 cm. The RQD
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index is used to evaluate the quality and suitability of a rock mass for engineering
purposes, such as tunneling, slope stability, and foundation design. The higher the
RQD value, the better the quality of the rock mass and the more suitable it is for
construction. It defines the rock mass quality in a range of 0 to 100 and the score is
classified under five quality classes; excellent, good, fair, poor, very poor (Sanchez
etal., 2021).

The Q-system for rock mass classification was first introduced by Barton et al.
(1974). It is widely used for assessing the quality of rock masses. It is based on a
comprehensive evaluation of geological parameters such as rock strength, joint
conditions, and groundwater conditions. The system assigns a numerical value,
known as the Q-index, to the rock mass. This value is then used to provide design
recommendations and support guidelines. In 2014, modifications were made to

update the rating system (Barton & Grimstad, 2014).

After that, Cecil (1975) made modifications to Terzaghi's approach and used it to
estimate properties of rock masses. In 1976, Bieniawski introduced the Rock Mass
Rating (RMR) system, a quantitative method for assessing the quality of rock
masses. The RMR system is based on five basic parameters that are used to evaluate
the strength, deformability, and other engineering properties of the rock mass. These
parameters are uniaxial compressive strength of intact rock, rock quality designation,

spacing of discontinuities, condition of discontinuities and groundwater conditions.

The RMR system was later updated in 1989 (Bieniawski, 1989) (Figure 2.6), and the
revised version included additional parameters, such as in situ rock stress, seismicity,
and the presence of soft or weathered zones. The updated system also provided new
guidelines for the classification of rock masses into different categories based on
their RMR values.
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A. CLASSIFICATION PARAMETERS AND THEIR RATINGS

Parameter Range of values
Strength Point-load >10 MPa 4-10 MPa 2-4MPa 1-2MPa For this low range - uniaxial
of |strength index compressive test is preferred
1 intactrock | Uneaxial comp 5260 MPa 100 - 250 MPa 50 - 100 MPa 25-50 MPa 52 | 1-5 ] <1
material strength MPa MPa | MPa
Rating 15 12 7 4 2 1 0
Dnil core Quality RQD 90% - 100% 75% - 90% 50% - 75% 2% -50% <25%
2 Rating 20 17 13 8 3
Spacing of >2m 08-2.m 200 - 600 mm 60 - 200 mm <60 mm
3 Rating 20 15 10 8 5

Very rough surfaces

Shghtly rough surfaces

Shightly rough surlaces

Shekensidd surfaces

Soft gouge >5 mm thick

Condition of di Not ¢ <1mm Separation < 1 mm or Gouge 5 mm thick or Separation > 5 mm
(SeeE) No separation Slightly weathered walls Highly weathered walls or Separaton 1-5 mm Continuous
4 Unweathered wall rock Continuou
Rating 30 2 20 10 0
Inflow per 10 m None <10 10-25 26-125 > 125
tunnel length (Vm)
Groundwa | (Joint water press)/ 0 <01 01,-02 02-05 >05
5 ter | (Major principal )
General cond C: dry Damp Wel Dripping Flowing
Rating 15 10 7 4 0
|B. RATING ADJUSTMENT FOR DISCONTINUITY ORIENTATIONS (See F)
Strike and dip onentabions Very favourable Favourable Fair Unfavourable Very Unfavourable
Tunnels & mines 0 2 & 10 12
Ralings Foundations 0 2 7 15 25
Slopes 0 5 -25 50
C. ROCK MASS CLASSES DETERMINED FROM TOTAL RATINGS
Rating 100 « 81 80 « 61 60 « 41 Ve <
Class number I ] 1] '] v
Descripbon Very good rock Good rock Fair rock Poor rock Very poor rock
D. MEANING OF ROCK CLASSES
Class number I I ] v v
Average stand-up time 20 yrs for 15 m span 1 year for 10 m span 1 week for 5 m span 10 bws for 2.5 m span 30 man for 1 m span
Cohesion of rock mass (kPa) > 400 300 - 400 200 - 300 100 - 200 < 100
Fricbon angle of rock mass (deg) >45 35-45 25-35 15-25 <15
|E. GUIDELINES FOR CLASSIFICATION OF DISCONTINUITY conditions
Discontinuity length (persistence) <im 1-3m 3-10m 10-20m >20m
Rating 6 4 2 1 0
Separahon (aperture) None <0.1mm 01-10mm 1-5mm >5mm
Rating 6 5 4 1 0
Roughness Very rough Rough Shghtly rough Smooth Shckensded
Rating 6 5 3 1 0
Infilling (gouge) None Hard filling < 5 mm Hard filling > 5 mm Soft filling < 5 mm Soft filling > 5 mm
Rating 6 4 2 2 0
Weathering Unweathered Shightly d M d Highty Decomposed
RAJIJE 6 5 3 1 0
F. EFFECT OF DISCONTINUITY STRIKE AND DIP ORIENTATION IN TUNNELLING*
Strike perpendicular to tunnel axis Strike parallel to tunnel axis
Drive with dip - Dip 45 - 90° Dnive with dip - Dip 20 - 45° Dip 45 - 90° Dwp 20 - 45°
Very favourable Favourable Very unfavourable Fair

Drve agamnst dip - Dip 45-90°

Dnive against dip - Dip 20-45°

Dap 0-20 - Irrespective of strike®

Fair

Unfavourable

Fair

Figure 2.6 The updated RMR system (Bieniawski, 1989)
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Over the years, many researchers such as Selby (1980), Chen (1995), Singh & Goel
(1999), Hack et al. (2003), Romana et al. (2003), and Marinos et al. (2005) have
proposed different quantification systems for civil and mining engineering purposes.

Marinos and his colleagues, in their 2005 publication, proposed modifications to the
Geological Strength Index (GSI) classification system, which was introduced by
Hoek & Brown in 1997. The revised classification system takes into account
additional factors that were not included in the original classification, such as rock

mass disturbance, alteration, and weathering.

The majority of these classification systems focus on intact material strength (e.g.
uniaxial compressive strength) and geometrical features of slope mass (Nickmann et
al., 2006). The stability of a slope is directly influenced by geological conditions,
which can lead to weathering and reduced durability. However, some classifications
do not properly consider these factors (Miscevi¢ & Vlastelica, 2014).

The geomechanical classification system was initially created with the aim of mainly
providing a standardized approach to assess and classify rock masses in underground
spaces. Over time, the RMR and Q-systems gained prominence and became widely
accepted as they constitute a foundation for developing specialized classification
systems for various rock slope engineering purposes (Azarafza et al., 2020) such as
Slope Rock Mass Rating (Robertson, 1988), which is used to evaluate the stability
of rock slopes; the Chinese Slope Mass Rating (Chen, 1995), which is a rock slope
stability classification system that considers the geological and geotechnical
characteristics of the slope; Slope Mass Rating (Romana et al., 2003), which is a
modification of the Rock Mass Rating system that uses a weighted average of the
Geological Strength Index (GSI) and the Rock Quality Designation (RQD) to
evaluate the stability of rock slopes; Slope Stability Probability Classification (Hack
et al., 2003), which is a probabilistic method that uses the factor of safety and the
probability of failure to evaluate slope stability.
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Other methods include Continuous Slope Mass Rating (Tomas et al., 2007), which
is a modification of the Slope Mass Rating system that considers the continuous
variation of the geological and geotechnical properties of the slope; Fuzzy Slope
Mass Rating (Daftaribesheli et al., 2011), which is a fuzzy logic-based system that
considers the uncertainty and vagueness in the geological and geotechnical data;
Graphical Slope Mass Rating (Tomas et al., 2012), which is a graphical method that
uses a chart to evaluate the stability of slopes; Slope Stability Rating (Taheri, 2013),
which is a classification system that uses slope geometry and soil properties to
evaluate slope stability; Global Slope Performance Index (Sullivan, 2013), which is
a comprehensive approach that considers various factors such as geological,
hydrological, and geotechnical properties of the slope to evaluate its stability; and
Q-slope (Bar & Barton, 2017).

Some of these systems were specifically developed for open pit mine rock slopes.
However, these systems are not always effective for weak rocks, which are typically
composed of clay or other fine-grained materials.

This is due to the fact that weak rocks often exhibit complex behavior that is not
adequately captured by existing classification schemes. As a result, these systems
may not provide an accurate description of the properties and behavior of weak rocks
(Azarafza, Hajialilue Bonab, et al., 2022).

2.2.2 Kinematic Analysis

Kinematics is a branch of physics and it is about the movement of solids. In slope
engineering, kinematics is concerned with describing the motion of rock blocks
without considering the forces. Kinematics is sometimes referred as the "geometry

of motion" because it deals with the spatial relationships between moving objects.
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In the context of geotechnical engineering and slope stability kinematics refers to the
examination of potential failure modes and mechanisms based on the geometry of
slopes. It focuses on understanding the motion of various failure surfaces within a
slope. Displacement of rock blocks, as well as the potential failure mechanism, is
governed by the slope kinematics (Donati et al., 2023). A common method for
analyzing planar intersections is by utilizing the Stereographic projection of
discontinuities (Kheok & Leung, 1986). This technique involves projecting the
discontinuities onto a 2D plane to visualize their orientation and interrelationship. In
particular, planar sliding, toppling, and wedge mechanisms are the three types of
failures that has potential to occur in slopes (Read & Stacey, 2019). Although there
are numerous studies on landslides, there is not much research done on rock slope

kinematics (Kusumayudha et al., 2023).

Kinematic analysis is a valuable tool for preliminary slope stability assessments and
itis often used to guide more detailed and comprehensive analyses. It helps engineers
and geologists understand the geometry of potential failure surfaces and informs the
design of appropriate stabilization measures. However, kinematic analysis does not
consider the mechanical properties of the rock mass. Therefore, kinematic analysis

is often used in conjunction with other methods, such as limit equilibrium analysis.

2.2.3 Physical Models

Physical modeling is one of the techniques used to assess the stability of slopes and
is based on the creation of a scaled physical replica of a rock structure (Khorasani et
al., 2019). Physical modeling experiments are typically conducted in a laboratory
setting, where researchers can control and manipulate various parameters to simulate
the real-world conditions. The intricacy of natural field locations, the challenge of
gathering data in the field, and the absence of control over boundary conditions have

all contributed to the growth of laboratory physical modeling techniques. By
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analyzing the results of physical modeling experiments, geotechnical engineers can
obtain valuable data about the behavior of slopes under different conditions. Physical
modelling strategies offer better control over boundary conditions and material
properties, as well as providing a means for detailed monitoring. Field data collection
can be difficult due to the complexity of natural environments, making laboratory

modelling a valuable tool in research (Harris et al., 2008).

Physical models are often used to study the effects of gravity on the smaller scale.
Base friction or centrifuge model testing are two methods used to achieve this. By
replicating the effects of gravity on the model, engineers can investigate and validate
various numerical approaches related to slope stability analysis. Physical models are
also useful in identifying any potential issues with the design of the structure and can
help to optimize the stability of the slope. Overall, physical models play a crucial
role in ensuring the safety and reliability of structures (Chen, 1995). Physical models

also can be used to study the failure (Huang et al., 2021).

However, when analyzing the behavior of physical models, it is important to consider
the effects of scale.lif the model consists of blocks with perfectly flat contacts, exact
geometries, and frictional strength, the scale effects may not be noticeable. In such
cases, the behavior of the model remains largely consistent regardless of the scale at
which it is observed. This is due to the fact that the interaction between the blocks,
which is primarily influenced by the frictional forces and the geometry of the
contacts, remains unchanged regardless of the size (Alejano et al., 2011). Moreover,
creating physical models requires a considerable amount of effort and resources,
including materials, equipment, and skilled labor. This process can be time-
consuming, as it involves multiple stages of design, prototyping, and testing.
Additionally, the cost of producing physical models can be high, as it requires the
use of expensive machinery and materials. Furthermore, any errors or design changes

during the production cycle can result in additional costs and delays.
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2.2.4 Numerical Methods

Slope stability has been a research focus since the 1920s, and numerous methods
have been proposed for analyzing and predicting it (Arya Babu & Chandrakaran,
2022). One of them is numerical methods, which are critical in assessing slope
stability, providing insight into failure mechanisms and complex interactions.
Various numerical techniques are commonly utilized in geotechnical engineering for
slope stability analysis. These are mainly Finite Element Method (FEM), Finite
Difference Method (FDM), Distinct Element Method (DEM), Boundary Element
Method (BEM) and Limit Equilibrium Method (LEM).

FEM is a numerical technique that is commonly used for modeling complex
geometries and material behaviors. It works by dividing the object or structure being
analyzed into small elements, which makes it possible to analyze local stress and
strain conditions. By utilizing interpolation functions, the FEM assumes that
accurate displacements at any point within the element can be obtained from the
displacements at the nodes (Bobet et al., 2009). FEM is particularly well-suited for
analyzing materials that are heterogeneous or anisotropic and for taking into account
nonlinear soil behavior and various boundary conditions. This method is highly
versatile and can be employed in a variety of scenarios involving complex
geometries, diverse materials, seepage, consolidation, and other coupled
hydrological and mechanical phenomena (Arya Babu & Chandrakaran, 2022). Its
flexibility makes it a valuable tool for tackling complex hydro-mechanical problems

that may arise in various fields of engineering and science.

FDM is a numerical technique that involves dividing the slope into a grid and
approximating the differential equations with finite differences. This method is
particularly useful in modeling dynamic processes that change over time. FDM is
commonly employed for analyzing slope stability and can accurately simulate

variations in slope conditions over time.
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DEM is a technique that involves modeling the movements and interactions of
individual particles or blocks within a slope. It is highly effective in analyzing
materials that are considered discontinuous, such as rock masses and soils containing
cracks, fractures, or voids (Lin et al., 2022). By simulating the behavior of jointed
rock masses, DEM modeling can provide valuable insights into the stability of slopes

and the potential impact of discontinuities on their stability.

BEM is a numerical technique that divides the domain of a slope into two parts: the
interior and the exterior, along the boundary. It is an effective approach for solving
problems with well-defined boundaries and complex geometries, such as
excavations and foundations. By separating the interior and exterior, BEM simplifies
the analysis of the slope's behavior and allows for precise calculations of stresses and

displacements.

LEM is a widely-used technique for assessing the stability of a slope. It works by
analyzing potential failure surfaces and evaluating the equilibrium conditions of the
slope. This approach simplifies complex problems into a set of equilibrium
equations, making it a popular method for routine stability analyses. Its simplicity
and ease of use make it a reliable tool for engineers and geologists.

PFC is a computer modeling software that is based on the principles of DEM. It is
designed to simulate the movement and interactions of individual particles within a
slope. PFC is predominantly used to study the behavior of granular materials, such
as soil and rock, and help understand the underlying micro mechanics that govern
their behavior (Cundall & Strack, 1979). In other words, it provides an in-depth
analysis of how individual particles interact with each other and how these
interactions can affect the overall behavior of a slope.

Additionally, there are hybrid approaches like discrete and finite element
modeling (Havaej et al., 2014). However, the most common slope stability analysis
methods are FEM and LEM (Griffiths et al., 2004). It is important to note that the
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Limit Equilibrium Method (LEM) does not account for the stress-strain relationship
and simplifying assumptions affects their accuracy (Feng et al., 2018). Despite this
limitation, LEM is still the most widely used approach in geotechnical engineering
due to its simplicity and capacity of evaluating the overall stability and finding the
most critical failure surface (Mafi et al., 2021). FEM holds a significant edge over
LEM due to its advanced capability of calculating the stress state before mining
starts. This feature enables FEM to predict the behavior of rocks at much greater
details than LEM. As a result, FEM provides a more comprehensive analysis of the
rock's behavior and is highly preferred in geological engineering (Read & Stacey,
2019).

2.25 Novel Methods

Geomechanics problems often involve complex and dynamic systems, and
traditional methods may not always provide reliable solutions. In recent years,
machine learning algorithms have emerged as a powerful tool to address these
challenges. By analyzing large amounts of data, machine learning can identify
patterns and relationships that traditional methods might miss.

There are several categories of machine learning, each with its own unique approach.
The four main categories are supervised, unsupervised, semi-supervised, and
reinforcement learning (Tehrani et al., 2022). Out of these, supervised and
unsupervised learning methods are the most widely used (Alamri, 2022). The

learning type and algorithms are shown in the Figure 2.7.
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Figure 2.7 Types of machine learning (Alamri, 2022)

Supervised learning algorithms are an essential subset of machine learning, which
involve analyzing and predicting labeled datasets. They are used to train machines
to learn from input and target variables so that they can map inputs to corresponding
outputs. These algorithms are designed to continue learning until they achieve the
desired level of accuracy on the training data. The model's validity is then assessed
through testing on unseen data (Tehrani et al., 2022). In other words, supervised
learning involves the use of raw data to design a function that can make predictions
or decisions based on new input data (Wojtecki et al., 2022). There are various
supervised learning algorithms, including Decision Trees, Tree ensembles, such as
Random Forest and Gradient Boosting algorithms like AdaBoost, XGBoost, and
others, support vector machines, and artificial neural networks including multi-layer

perceptron neural nets and supervised deep learning algorithms.

Unsupervised learning is a type of machine learning where the objective is to analyze
and derive insights from data without the need for a target or label variable. The
focus is on understanding the inherent structure of the data and identifying patterns,

relationships, and similarities that may not be immediately apparent. One common
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application of unsupervised learning is clustering, which involves grouping
populations of data into distinct categories, subgroups, or clusters. This can be useful
for identifying specific interventions or for making predictions about future data.
Hierarchical clustering, K-means, and Density-Based Spatial Clustering of
Applications with Noise (DBSCAN) are examples of unsupervised learning
algorithms that can be used for clustering. Deep learning algorithms can also be
applied to unsupervised learning tasks. Generative deep learning algorithms such as
autoencoders and generative adversarial networks (GANSs) can be used to learn

representations of data without explicit supervision (Tehrani et al., 2022).

The application of Artificial Intelligence (Al) techniques in predicting slope stability
also has gained widespread recognition and acceptance due to their numerous
benefits. Soft computing methods, including Artificial Neural Networks (ANNS),
Support Vector Machines (SVMs), Evolutionary Polynomial Regression (EPR), and
Fuzzy Logic Systems, are used to obtain accurate predictions. ANNs, for instance,
are capable of learning from past data and can model complex non-linear
relationships, while SVMs are known for their ability to handle high-dimensional
data and classify data points into different categories. EPR is a type of regression
analysis that combines polynomial equations and genetic algorithms, while Fuzzy
Logic Systems utilize fuzzy sets to represent uncertain and imprecise information.
One of the primary advantages of these Al techniques is that they do not require any
prior knowledge of specific model forms, making them flexible and adaptable to
different scenarios. They are also capable of modeling non-linear relationships and
can outperform traditional methods in terms of accuracy and efficiency (Arya Babu
& Chandrakaran, 2022).

There are lots of research about using ANN in slope modelling. As an example, in
2003, Lu & Rosenbaum conducted a study on slope stability using artificial neural
networks (ANN) to estimate the factor of safety (FoS) and shear strength against two

failure mechanisms: circular and wedge. They relied on historical data collected by
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Sah et al. in 1994 to train and test the ANN models. The study found that the ANN
models were able to accurately predict the FOS and SS of slopes against these failure

mechanisms.

Das et al. conducted a study in 2011, where they aimed to develop models that can
accurately predict the factor of safety (FoS) and state of slopes that are at risk of
circular failure. To achieve this, they created several artificial neural network (ANN)
models and trained them using three distinct methods: Bayesian regularization
(BRNN), differential evolution algorithm (DENN), and Levenberg-Marquardt
(LMNN). These methods had different approaches towards training the ANN
models. Bayesian regularization aimed to reduce overfitting by incorporating prior
knowledge, while the differential evolution algorithm sought to optimize the model's
parameters. The Levenberg-Marquardt algorithm is a widely used method that

attempts to minimize the difference between the predicted and actual output values.

Rukhaiyar et al. (2018) aimed to predict the factor of safety (FoS) of slopes using a
hybrid model that combined artificial neural networks (ANN) and particle swarm
optimization (PSO). To achieve this, they compiled a database of 83 natural slopes
from various studies and used them to train the model. Another study by Qi & Tang
(2018) was focused on predicting slope stability using six different machine learning
algorithms, namely logistic regression (LR), decision tree (DT), random forest (RF),
gradient boosting machine (GBM), support vector machine (SVM), and artificial
neural network (ANN). They also applied firefly algorithm (FA) for hyper-parameter
tuning. The study database consisted of 148 slope cases collected from five published
research works. By comparing these six integrated artificial intelligence approaches
based on metaheuristic and machine learning algorithms, Qi and Tang aimed to

identify the most effective method for predicting SS and its influencing variables.
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With its ability to analyze vast amounts of data and identify complex relationships,
machine learning has the potential to be useful in geomechanics and provide more

accurate and reliable solutions to complex problems.

2.3 Previous studies

Slope stability analysis is a challenging and complex process that involves evaluating
the soil and rock properties, analyzing the slope geometry, and identifying potential
failure mechanisms. Furthermore, the academic importance of slope studies lies in
advancing our understanding of geological processes and phenomena, which can
lead to the development of new theories and models for predicting slope behavior.
As such, slope studies continue to be an essential and evolving field of research that
contributes to the safety and sustainability. In this manner, some of the studies from
literature about slope stability are presented in this section.

Sonmez et al. (1998) addressed the difficulty of determining shear strength
parameters in closely jointed rock masses, proposing a practical back-analysis
method with a computer solution for failed slopes. It acknowledges the limitations
of conventional approaches in such rock formations, introducing adjustments for
discontinuity orientation. Three practical examples demonstrate the method's
application, showing consistency between back-calculated and predetermined values
of Rock Mass Rating (RMR) with constants. The study concludes that the proposed
method serves as a practical tool for back-analyzing slopes in jointed rock masses,
verifying rock mass ratings obtained from field and laboratory data. It suggests
potential modifications in describing rock mass parameters for slopes. While
expressing confidence in the Hoek-Brown failure criterion, the authors anticipate
that applying the proposed method to additional case histories will enhance its

accuracy and contribute to refining the understanding of jointed rock mass behavior.
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Sonmez & Ulusay (1999) focus on improving the Geological Strength Index (GSI)
classification scheme, especially for poor-quality rock masses in their study. It
introduces quantitative terms like 'structure rating' and 'surface condition rating' to
enhance GSI's precision, incorporating easily measurable parameters. The modified
GSI chart is applied to five slope instability cases, confirming its effectiveness in
geotechnical engineering. The study suggests that spoil pile materials can be
classified as disintegrated rock masses in the GSI system, and the modified Hoek-
Brown equations allow for estimating shear strength parameters for such materials.
The authors acknowledge differing preferences among geologists and engineers
regarding the GSI system's descriptive nature. Emphasizing the need for a better
understanding of jointed rock mass behavior, the authors confidently endorse the
Hoek-Brown failure criterion. They hope that applying the suggested modifications
to various case histories will refine guidelines and validate the equations used by the

non-linear failure criterion.

Hack (2002) highlighted in his article that some inherited properties and parameters
from older systems may better suit for underground excavations than for surface
applications like slopes. Additionally, the repeatability and reliability of
classifications can be challenging due to difficulties in determining certain
parameters. The article suggests that the question of the "best" system is subjective,
with each developer advocating for their own. However, it encourages a more modest
perspective, acknowledging that newer systems are generally an improvement based

on experiences with older ones.

In his study, Cheng (2003) presented a new way of analyzing slope stability. The
technique involves using simulated annealing to locate critical failure surfaces, both
circular and non-circular, under general conditions. This method proves to be
efficient and effective in handling even complex cases. The way to distinguish
between circular and non-circular modes is by the number of control variables and

criteria on kinematically acceptable mechanisms. The users can specify the precision
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of the global minimum, which is not found in other methods. Furthermore, the author
proposes a new method for determining the factor of safety without requiring an
initial trial factor. Although this method requires more computations than classical
iterative analysis, it avoids convergence issues, especially for complex problems like
deep-seated non-circular failure surfaces. When combined, these techniques offer a
simple and automated solution to slope stability problems. This makes it useful for

both research and practical engineering scenarios.

Hammah et al. (2004) conducted a study to determine the factor of safety of slopes
using the "shear strength reduction” method through finite element analysis. The
method involves reducing the shear strength parameters in a step-wise manner until
the slope becomes unstable. The results obtained were compared with those obtained
using the limit equilibrium method. The comparison showed that FEM outputs were

consistent with the LEM analyses.

Cala et al. (2004) conducted a study to see the difference between the Modified
Stress-Strain Reinforcement (MSSR) method and Limit Equilibrium Method (LEM)
for slope stability analysis. Unlike LEM, MSSR does not require assumptions about
the shape and location of the slip surface, allowing it to consider multiple possible
failure surfaces. However, the conclusion acknowledges that MSSR comes with
certain limitations, including the need for a correct interpretation of multiple slip

surfaces, requiring a thorough understanding of the failure mechanism.

Sakellariou & Ferentinou (2005) focused on dynamic slope stability assessment,
aiming to understand the significance of various parameters and estimate the safety
factor (FS) against circular and wedge failure mechanisms. Artificial Neural
Networks (ANNs) were employed to predict the safety factor and stability for each
failure mechanism. These networks, trained on diverse datasets, demonstrated
success in capturing the relationships between input and output parameters. The use

of ANN was highlighted for its advantage in handling multivariate problems, as they
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do not require prior knowledge of the relationships and can accurately assess non-

linear connections between parameters.

Baker (2006) studied the relation between safety factor, height and strength of slopes.
In the study, it is mentioned that safety factors with respect to shear strength are
acknowledged as useful but only hold clear physical significance at failure when they
are equal to 1. The study establishes a simple analytical relation between safety
factors with respect to strength and height through variational analysis. These
alternative safety factors provide measures for slope stability, with the safety factor
with respect to height offering clearer physical interpretation compared to shear

strength-based factors.

Stead et al. (2006) emphasize the diverse range of tools available for analyzing rock
slopes, particularly highlighting the significance of advanced numerical codes for
simulating a realistic rock slope failure. They underscore the importance of
considering brittle behavior and internal deformation in deforming rock slopes,
influenced by a combination of yield and fracturing. The paper discusses the
potential of discrete-element and hybrid finite/discrete-element codes in analyzing
total slope failure, from initiation to deposition. To advance the application of these
techniques, the authors suggest the need for improved rock slope characterization,
encompassing both input properties and deformation instrumentation. They identify
key issues for further research, including time-dependent or progressive rock slope
failure, the role of cumulative internal damage, the influence of groundwater pore
pressures on deformation, and scale effects related to rock mass strength and
groundwater. While advanced numerical models have gained wider acceptance, the
authors stress the importance of balancing their development with an increase in the
quantity and quality of engineering geological field data. Good geological and
geotechnical data are deemed essential for most numerical analyses, and the
collaboration between engineers and geologists is crucial to maximize the use of

current rock slope numerical models.
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Cheng & Lau (2014) examined the results for SRM and LEM and it was found that
the FOS and critical failure surfaces determined by both methods are quite similar
for different combinations of soil parameters in most cases, except when friction
angle is equal to 0. When the friction angle is greater than 0, the majority of FOS
values calculated by SRM differs by less than 7.4% compared to the LEM results.

Liu et al. (2015) compared the Factor of Safety (FOS) and critical slip surfaces
obtained from the Limit Equilibrium Method (LEM) and two finite element methods
(ELSM and SRM) in the analysis of representative two-dimensional slope examples.
Assuming the associated flow rule, the critical slip surfaces from the finite element
methods and LEM generally align well, with the FOS from LEM slightly lower than
the finite element methods. Notably, the SRM is identified as the most time-

consuming solution, requiring multiple separate finite element analyses.

Neves et al. (2016) mention that the comparison of FEM and LEM has revealed
significant differences in the o Factor of Safety values for purely granular materials.
The LEM methods overestimate the slope's FoS by up to approximately 40%.
However, in cohesive materials, the differences are mainly between 5% and 10%.
Among the LEM methods, Janbu's simplified method produced the majority of MoS
with the best correlation with the FEM results, specifically for cohesive soils. The
differences between the MoS obtained from Janbu's method and the FEM results
were mainly below 5%. Moreover, the correlation between this LEM method and the

FEM results improved with a greater applied surcharge and a slacker slope.

In 2019, Raghuvanshi conducted a study on the various factors that affect the
stability of slopes. The study analyzed 17 slope sections across different geological
and geographical environments to identify the factors that influence rock slopes. To
assess the relative importance of eight governing factors on the factor of safety (FoS),
the study conducted statistical analyses, including sensitivity analysis and ANOVA.

The eight factors that were studied include: slope inclination, upper slope surface
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inclination, dip of potential plane failure, tension crack, slope height, cohesion, angle
of friction, and height of water in tension crack. The results of the study indicate that
all eight factors significantly affect the factor of safety, with variations in their
relative importance observed among different slope types. The most statistically
significant factors that emerged were dip of potential failure plane, water in tension
crack, slope inclination, and slope height. Tension crack, angle of friction, upper
slope surface inclination, and cohesion also played significant roles but were

relatively lower in importance.

Gao et al. (2020) developed a hybrid model using artificial neural network and
imperialist competition algorithm to predict the stability of slopes. The results
showed that the hybrid model had a high-performance level, with R? and RMSE
values of (0.9998 and 0.0017) and (0.9998 and 0.0017), respectively, for the training
datasets, and (0.9988 and 0.0018) and (0.9987 and 0.0019) for the testing datasets.

Azarafza et al. (2021) presented a comprehensive systematic review of kinematical
and limit equilibrium-based methods (LEMS) used in the analysis of stability in
discontinuous rock and heavy jointed rock or soil-like lithologies. They indicated
that LEMs, known for their flexibility, can be integrated with newer procedures like
numerical and hybrid methods for efficient and rapid slope stability assessments.
Looking ahead, Block theory, especially with Goodman's theorem, is identified as a
robust approach for quantifying discontinuous rock slopes and evaluating stability

conditions.

Ardestani et al. (2021) developed a computer program called TOPPLE2 that analyzes
complex toppling slope failures which is mentioned in their article. It takes into
account external loads such as groundwater and seismic forces to assess the stability
of slopes. The program uses limit equilibrium equations to identify the possible
toppling failure mechanisms in a defined slope and examine its stability. The

accuracy and performance of TOPPLE2 were tested using case studies, which
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showed good agreement between analytical and numerical solutions and the results
obtained in TOPPLEZ2.

Marrapu et al. (2021) utilized an artificial neural network (ANN) to forecast slope
stability. The findings make it evident that the ANN can accurately predict slope
stability only when it is trained with high-quality and sufficient training data. Arya
Babu and Chandrakaran (2022) compared the novel artificial neural network (ANN)
approach with the conventional slope stability analysis techniques, which are limit
equilibrium and the finite element method. 192 different slopes with six input
parameters (unit weight of soil, cohesion, angle of internal friction, angle of slope,
height of slope and pore water ratio) were used. The study found that all three
methods provide factor of safety values that are very close to the actual FoS. On the
other hand, FEM tends to give a slightly higher FoS value compared to LEM.
Additionally, a slope stability prediction which was carried out using the ANN
model, yielded an R2 value of 0.99473 and 0.99801 for the training and testing sets,

respectively.

Azarafza et al. (2022) have developed a Limit Equilibrium Method (LEM)-based
approach to assess the stability of slopes, specifically those comprised of weak
materials like marls. The method, established through field surveys, geomechanical
recording, and experiments, considers geotechnical and geological characteristics to
accurately estimate instability conditions. The study focused on forty slopes in the
South Pars special zone in southwestern Iran, resulting in the creation of stability
charts. These charts, based on weathering conditions, provide insights into slope
stability, angle of response, and shear strength of marls. The LEM methodology is
applied to estimate the Factor of Safety in these charts, facilitating quick decisions
in early-stage stability assessments based on slope angle, height, weathering degree,

and geo-material type.
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Idris (2022) evaluated the stability of abandoned laterite borrow pits in southwest
Nigerian residential areas. Using a probabilistic method, the intrinsic variability of
laterite soil was taken into consideration. Based on input parameters, the
FLAC/Slope numerical analysis code computed factor of safety and simulated slope
stability. An artificial neural network (ANN) was developed to link FoS with input
parameters. A performance function that enables the prediction of the probability of
slope failure using Monte Carlo simulations was constructed by integrating the ANN
model with a critical FoS.

Jaiswal et al. (2023) studied slope stability through rock mass classification and
kinematic analysis of some major slopes in Himalayas. The study evaluated the
stability of 14 major slopes along NH 1-A in the Ramban district in the North
Western Himalayas, an area prone to sliding. Rock mass classification systems and
kinematic analyses were employed to identify stable zones and their susceptibility to
sliding. The analysis revealed that seven slopes exhibit planar failure, one has
toppling failure, and six have wedge failure. Toppling and wedge failures are
predominant in granitic gneiss, while planar failure occurs in slate, phyllite, and
schist rock types. The stability of slopes is mainly influenced by one or two
discontinuity planes, with RMR values ranging from 37 to 74, indicating varying
rock mass qualities from poor to good. Field investigations incorporated
modification values of the Geological Strength Index (GSI) to assess slopes'
conditions, resulting in SMR and CoSMR values indicating unstable to partially
stable conditions, and SSR values calculated under dynamic and static conditions.
The Q-slope approach categorized eight slopes as stable, four as uncertain, and two
as unstable. An empirical equation establishing a correlation between RMR and SSR
with a high coefficient of determination (R? value of 0.815) was developed. The
overall findings suggest that most slopes in the study area are unstable and highly
susceptible to failure, providing a foundation for further numerical analysis to

identify critical slopes.
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The studies conducted in the past have not comprehensively examined all the
possible failure mechanisms simultaneously that can lead to slope failure. Moreover,
most of the studies neglected upper slope inclination. Furthermore, these studies
have also failed to offer any safety factor values and the failure type at the same time

for any given slope, which is crucial for ensuring the safety of slopes.
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CHAPTER 3

NUMERICAL ANALYSIS OF SLOPE PERFORMANCE

Rock slope stability has been investigated in various scales with monitoring
instrumentations and computational methods. In-situ measurements on field scale
trial excavations can shed light on similar cases with the utmost accuracy in terms of
slope performance. However, investigation of different geomechanical and structural
conditions can be costly and time-consuming. Alternatively, laboratory scale
physical models sacrifice the material similarity but provide an overall insight about
the slope mass behavior. Under these circumstances, computational simulations are
favorable as they can be easily adopted to obtain detailed performance indicators for
various scenarios involving complex geology and excavation sequences. Parametric
studies provide the necessary background for developing a methodology for stable

slope design.

This section presents the design and implementation of numerical simulations that
investigate the slope performance with various specifications.In the pre-processing
stage, the model layouts and the geomechanical parameters for continuous
deformable bodies and discontinuity surfaces were determined. Commonly accepted
rock mass quality classes were considered to be representative for intermediate
conditions. Potential slope failures were evaluated by finite element and limit
equilibrium methods. Characteristics of the mass and discontinuity driven failures
were taken into account for selection of the suitable analysis technique. In this aspect,
limit equilibrium method (LEM) and finite element method (FEM) were used for
continuum models of mass failure. Discontiniuty-driven failures were only

investigated by LEM. The following sections describes the determination of the
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settings for computational model like the material models, geomechanical properties,

model geometry and boundary conditions.

3.1 Determination of Geomechanical Parameters

Mechanical inputs control the material behavior under load in computational models.
A realistic simulation requires a representative and reliable input data set for the
geological materials. Despite in-situ experiments provide the best results they are
both costly and labor-intensive. Hence, empirical approaches are commonly
employed to determine the elastic and plastic properties for the rock mass. This study
preliminarily focuses on representing various geomechanical properties to provide a
basis for a unified slope stability analysis method. Continuum and discontinuum
material models were characterized for hypothetical rock mass and structural
surfaces to cover a wide range of problem domains in mass and discontinuity-driven

slope failures.

311 Model Input Parameters for Continuous Slope Material

In a parametric study, the range and increment of input variables should be
constrained regarding the computational limitations. In this study, five rock mass
classes were identified with different geomechanical characteristics and named as
MP1, MP2, MP3, MP4, and MPs where ‘MP’ stands for the ‘Material Property’. Rock
mass quality was indicated in terms of the RMR system developed by Bieniawski
(1989) (Figure 2.6). Better rock mass quality conditions were associated with higher
strength and stiffness properties. The highest quality class was labeled as MP; and
the following classes indicate the rock mass with degrading mechanical properties.
Table 3.1 presents the rock mass geomechanical parameters for the five distinct

classes used in the current study.
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Table 3.1 Rock mass properties for the mass failure numerical models

Parameters Rock Mass Quality Classes
MP1  MP2 MP3 MPs MPs
Geological Strength Index (GSI) 90 70 50 30 20
Rock Mass Quality Description (\;/2(% Good Fair Poor I\D/Eg
Unit Weight, y (MN/m®) 0.026 0.026 0.026 0.026 0.026
Modulus of Elasticity, E (MPa) @ 9200 3855 3536 2500 670
Poisson’s Ratio, v 025 025 025 025 0.25
Bgig"(iapig’r(ﬂ)presswe Strength 550 104 38 25 08
Cohesion, ¢ (MPa) 114 2.7 1.1 0.8 0.3
é Internal Friction Angle, ¢ (°) © 45 35 30 25 15
* Tensile Strength, T (MPa) @ 5.5 1.0 04 03 0.1
__ Cohesion, ¢ (MPa) © 7.6 1.8 07 05 0.2
é Internal Friction Angle, ¢ (°)® 30 23 20 17 10
§ Tensile Strength, T (MPa) @ 3.7 0.7 0.3 0.2 0.1
Dilation Angle (°) ™ 5 4 3 3 2

Geological Strength Index (GSI) (Hoek & Brown, 1997) system was employed to

associate the mass quality with the modeling parameters. Literature involves various

correlations of rock mass quality and intact rock properties with the modulus of

elasticity, uniaxial compressive strength, tensile strength, cohesion and internal

friction angle. However, each approach has certain limitations regarding the

conditions they cover. Considering the drawbacks of each method this study makes
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adjustments and assumptions on the input parameter set based on expert view. Elastic
and plastic parameters are mainly calculated according to the Hoek & Diederichs
(2006) and the Hoek and Brown criterion (Hoek & Brown, 2019). The following
section highlights the major steps of calculation for the parameters listed in Table
3.1.

First, the RMR scores were determined for each material class and the representative

GSI scores were calculated according to equation (1).
GSI = RMR —5  (for RMR>25) (1)

Based on the RMR System table intact rock strength was determined (Bieniawski,
1989). Next, the modulus of elasticity for the intact rock was calculated from the
modulus ratio, which depends on laboratory tests that propose a certain relationship
between the UCS and E;. Later on, the rock mass modulus of elasticity (a) was
calculated with the Generalised Hoek & Diedrichs method (2006) (equation 2) for
the very good and good rock classes. For the other rock classes, Hoek, Carranza-
Torres and Corkum’s method was used (Corkum et al., 2002) (equation 3) where;
Em= Elastic modulus of rock mass, Ei= Elastic modulus of intact rock, D=

Disturbance factor.

1-D/2

Erm (MPa) =E; (0-02+ 60+15D—GSI (2)
1411 )
Erm(GPa) = (1-2) X /% 10((651-10)/40) for 5,1 100 MPa) 3)

Uniaxial compressive strength of the rock mass (b) was calculated from the equation

4, where ¢ is internal friction angle and c is cohesion.
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UCS = 2ctan (45 + >

Rock mass internal friction angles (¢) were adjusted regarding the recommendations
in RMR table (Bieniawski, 1989). Rock mass tensile strengths (d) were calculated
according to Sheorey (1997) who claims that the UCS is typically up to 10 times
greater for many rock types. For the post failure stage, a softening model was
assumed for all the material classes. The residual values denoted by (e), (f) and (g)
were assumed to be equivalent to two-thirds of the corresponding peak values and
dilation angles were taken as one-tenth of the respective internal friction angles.

3.1.2 Model Input Parameters for Structural Discontinuities

Mechanical characteristics of discontinuities were identified in terms of three joint
classes named as JMP1, JMP2, JMP3 where “JMP” stands for the “Joint Material
Properties”. JMP represents the joint properties for almost smooth or slickensided
surfaces with a high tendency to slide. Slightly rough and very rough surfaces were
included in JMP2 and JMPs classes. The joint material parameters are given in Table
3.2.

Table 3.2 The joint material properties used in the LEM models

Joint Material Joint Roughness

Cohesion (MPa)  Friction Angle (°)

Properties Coefficient (JRC)
JMP; 0.2 35 4
JMP> 0.5 38 9
JMP3 0.8 54 19

The cohesion and friction angle of JMP1 (Agharazi et al., 2012), JMP> (Agharazi et
al., 2012) and JMP3 (Isleyen, 2017) were defined regarding the literature that
establish a correlation between the joint roughness coefficient (JRC) and the
mechanical properties. JRC has a range of 1 to 20 (Barton & Choubey, 1977);
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however, this study associated only three of these values to the determined joint
classes (4 for JMP1, 9 for JMP; and 19 for JMP3). Each class represents a unique
shear strength and provides a basis for the computation of slope safety factor in
plane, wedge, and toppling mechanisms. Finally, expert view was considered to
adjust the joint sliding models and the outputs were used in the analysis of

discontinuity-driven failures.

3.2  The Model Geometry and Boundary Conditions

Computational models were prepared regarding a parameter set that constitute the
representative slope geometry and structural conditions conforming to the failure
mode. For an open pit excavation, the geometrical inputs include the slope height
(Figure 3.1), overall slope angle, upper face inclination and pit bottom width.
Besides, the model extents were designed based on the specifications of the
computational methods. Geological complexities were aimed to be ignored in this
study. Therefore, a homogeneous, isotropic and continuous material was
implemented in the slope mass and host rock. Geomechanical configurations were
arranged to represent only some significant conditions. Structural discontinuities
were also designed only for some significant orientations. The following section

covers the model geometry for mass-driven and discontinuity-driven failures.

/ 4
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P
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Figure 3.1 An example representation of slope height and overall slope angle
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3.2.1 FEM Models for Mass Failure Analysis

A 2D plane strain code was employed for the FEM models. The external dimensions
were determined regarding the excavation induced stress gradient. Considering the
variation in slope height and large number of models in the parametric study, the
model height was set to be 5 times the pit depth and the model width was arranged
to be 10 times the ultimate pit extent. The pit bottom was fixed to 50 m in all models.

A sample model view is given in Figure 3.2.

-

Overall Slope Angle Slope height 300 m
400

Pit bottom 50 m

Model height
1500 m

Model width

3500 m >l

Figure 3.2 A sample FEM model

For the boundary conditions, the left and right bottom corners were fixed in both x
and y directions to stop the body motion. The side walls were restrained only in x
direction and the bottom was fixed only in y direction. The model top representing

the topographical surface was set free in any direction.

The slope models were implemented in Rocscience RS2 software. Considering its
improved performance, the model body was meshed with six noded triangles and a
fine mesh density was allocated around the slope mass. A sample discretized and

meshed model for slope design can be seen in Figure 3.3.
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Figure 3.3 A sample model with FEM mesh and boundary conditions

FEM models were computed using the ‘shear strength reduction (SSR)’ method that
provides a slope safety factor based on the degradation ratio of the strength and

stiffness parameters.

In addition, stress and deformation can be observed to comment on the potential
failure mechanism. The FEM models aim to examine the impact of geometrical and
geomechanical variations on the slope stability. The model outputs with mechanical
indicators were used to create a methodology to assess the slope stability under

different conditions.

A total of 630 models were used to generate a comprehensive dataset of 3150
mechanical outputs, including critical factor of safety, maximum total displacement,
and maximum shear strain. Data gathering steps are explained thoroughly in the

following section.

The models were designed to include all meaningful combinations of input
parameters. The slope height ranged from 50 to 300 meters, and the overall slope

angle was studied between 10° to 80° with a 10° increment.
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Additionally, three upper face inclination angles (0°, 10°, and 20°) and five different
material properties were investigated. The range of model input parameters are

shown in Table 3.3.

Table 3.3 Finite element model input parameters

Model Input Parameters Range
Slope Height, (m) 50 100 150 200 250 300
Overall Slope Angle, (°) 10 20 30 40 50 60 70 80

Upper Face Inclination, (°) 0 10 20
Material Property MP: MP2 MP3 MPs MPs

Three mechanical readings were recorded from each model. The maximum total
displacements (Figure 3.4) and the maximum shear strains (Figure 3.5) were traced

around the slope mass.

Total

Displacement

min (stage): 0.00e+00 m
0.00e+00

1.40e-02

2.80e-02

=1 4.20e-02

8 S5.60e-02

7.00e-02

8.40e-02

9.80e-02

1.12e-01

E L.26e-01
1.40e-01

max (stage): 1.38e-01lm

T @l TH]\SAR 3 (0) N SRF: 3.3 A SaF a2 (il

Figure 3.4 A sample maximum total displacement reading view from model
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Maximum Critical SRF: 1.7
Shear Strain
min (stage): 2.27e-07

0.00e+00
. €.60e-04
) 1.32e-03

1.98e-03

2.¢64e-03

3.30e-03

3.96e-03

4.62e-03

5.28e-03

5.94e-03

max (stage): 6.57e-03

Figure 3.5 A sample maximum shear strain reading view from model

Critical factor of safety was manually determined by investigating the model
interpretations and considering the critical strain for the related material classes. All

the simulations were assumed to be in dry conditions.

3.2.2 LEM Models for Mass Failure Analysis

Another step of slope mass failure investigation was LEM modeling to determine the
factor of safety. This method relies on force and moment equilibrium of the slices
constituting the slope mass. The slices are assumed to be rigid and the output is a
slope factor of safety. Compared to the FEM-SSR simulations, this method lacks in
computation of stress and deformations. The FEM model geometry was used in LEM
models to investigate only circular and non-circular failure modes. Multiple
stochastic failure surfaces were generated using search algorithms and the factor of
safety was calculated for each of them. The failure surface with the least safety factor

was considered in each case. To generate random failure surfaces, slope search
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algorithm was used for circular failure, and path search algorithm was opted for the
non-circular failure analysis. The computational models were implemented in

Rocscience Slide2. Figure 3.6 shows a sample view of the LEM models.

Upper face inclination - 7 )

/
/

Overall slope angle y Slope height

Model height

Model width

Figure 3.6 A sample LEM model

A dataset involving the slope safety factor for circular and non-circular failure modes
were generated from 1260 models. The model settings and material properties were

the ones shown in Table 3.3 that were also used in the FEM models.

Commonly two techniques are used in evaluating the slope safety factor for cohesive
soils: the Bishop method, and the Janbu method. The Bishop method takes into
account the interactions between adjacent slices and is capable of analyzing failures
in cohesive soils. The Simplified Bishop method assumes that the forces between the
slices are horizontal, but it has the drawback of being an iterative process and is less
accurate in stratified soils. The Janbu method disregards the vertical and tangential
components of the slices. However, it is particularly suitable for analyzing non-

circular slip surfaces (Pereira et al., 2016). In this study, safety factors were
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calculated by the Bishop Simplified Method (Bishop & Morgenstern, 1960) for

circular failure and Janbu Simplified Method (Janbu, 1973) for non-circular failure

analysis.

3.2.3 LEM Models for Plane Failure Analysis

Planar slide of discontinuity surfaces was analyzed using LEM based computational
simulations in Rocscience RocPlane software. A sample model view is presented in

Figure 3.7.

Top Perspective *

Figure 3.7 A sample view of planar slide analysis

Slope safety factors were calculated for a total of 342 models. Similar to the
continuum models parametric studies were covered for various input parameters
such as the slope height ranging from 50 to 300 meters, and seven different overall
slope angle (OSA) between 20° to 80°. Additionally, simulations were conducted
with five different discontinuity plane angles between 15° to 75° and three different
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joint strength properties. The intervals of the model input parameters are shown in
Table 3.4.

Table 3.4 Input parameters for plane failure models

Model Input Parameters Range

Slope Height, (m) 50 100 150 200 250 300
Overall Slope Angle, (°) 20 30 40 50 60 70 80
Failure Plane Angles, (°) 15 30 45 60 75

Joint Material Property JMP;  JMP2  JMP3

Model design limitations are decided regarding the characteristics of plane failure

and listed as follows;

e Failure plane angle must be less than overall slope angle
e Failure plane angle must be higher than upper face inclination.

The overall slope angle range started from 20° since the minimum failure plane angle
was set to 15°. The upper face inclinations besides the horizontal surface were also
modelled, but the findings point out that it is not significantly controlling the slope

safety factor.

3.24 LEM Models for Wedge Failure Analysis

Wedge failure mode in rock slopes was analyzed using LEM based computational
simulations in Rocscience RocSwedge software. A sample wedge failure model is

given in Figure 3.8.
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Figure 3.8 A sample wedge failure model

The parametric study explores 3547 models for the slope safety factors under
different discontinuity orientations and shear strength characteristics.

Design parameters include the slope height, slope dip, discontinuity dip, the
difference between slope dip direction and the dip direction of the first discontinuity
plane, the difference between slope dip direction and the dip direction of the second
discontinuity plane, and joint shear strength. The range of input parameters are

shown in Table 3.5.

Table 3.5 Input parameters for wedge failure models

Model Input Range
Parameters

Slope Height, (m) 50 100 150 200 250 300

Slope Dip, (°) 10 20 30 40 50 60 70 80

Dip of the First

Discontinuity, (°)
Dip of the Second
Discontinuity, (°)

15 30 45 60 75

15 30 45 60 75
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Table 3.5 (continued)

The Difference of
Slope Dip Direction
and the First 30 60 90 120 150 180 210 240 270 300 330
Discontinuity Plane,
)

The Difference of
Slope Dip Direction
and the Second 30 60 90 120 150 180 210 240 270 300 330
Discontinuity Plane,
)

Joint Shear
Strength Class

JMP:  JMP2  JMP3

3.25 LEM Models for Toppling Failure Analysis

Finally, toppling failure was also included in the parametric study and implemented
Rocscience RocTopple software using LEM. Two different toppling modes were
investigated, which were block toppling (Figure 3.9) and flexural toppling (Figure
3.10).

[ soabie
I roppiing
[ stiging

Slope Height 100 m

Overall Base Inclination 30 *

Figure 3.9 A sample block toppling view from limit equilibrium model
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- Shear
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Slope Angle 40 ° ' 7

Block Base Angle 30 *

Slope Height 100 m

#\ Overall Base Inclination 30 *

Figure 3.10 A sample block flexure toppling view from limit equilibrium model

Slope safety factor was calculated for different slope geometries and discontinuity
conditions in 4262 models. The model parameters were slope height, overall slope
angle, joint material property, discontinuity spacing, discontinuity dip, and overall
base inclination. The range of input parameters are given in Table 3.6.

Table 3.6 Input parameters for toppling failure models

Model Input Parameters Range

Slope Height, (m) 50 100 150 200 250 300

Overall Slope Angle, (°) 10 20 30 40 50 60 70 80
Toppling Joints Spacing, (m) 1 3 5 7 10

Toppling Joints Dip, (°) 11 20 30 40 50 60 70 80
Overall Base Inclination, (°) 10 20 30 40 50 60 70 79
Joint Material Property JMP:  JMP;  JMPs
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Regarding the toppling mechanism, the models were subject to certain limitations

as listed below:

e Overall base inclination must be less than the overall slope angle. Since
maximum OSA was set to 80°, maximum overall base inclination was limited

by 79° on the upper extreme.

e Overall base inclination must be greater than the (90° - Toppling Joint Dip).
Since maximum overall base inclination was 79°, minimum toppling joints

dip were restricted by 11°.

The joint shear strength characteristics were assigned to the base joints, toppling

joints, and internal rock joints.

3.3 Interpretation of Numerical Simulations

FEM and LEM models were used to assess the slope performance with different
geomechanical, structural and geometrical considerations. While FEM can provide
mechanical outputs in terms of stress, strain and displacements, LEM calculates the
slope safety factor. In this study, the slope performance indicators were traced and
recorded in Excel spreadsheets to create a database, which will serve as a basis for
the proposing an alternative slope stability analysis method. The sample layouts of

the Excel sheets for each analysis type can be seen between Table 3.7 - Table 3.12.

Table 3.7 Layout of the spreadsheet involving FEM outputs for mass failure

Overall Upper Face Max. Total

Material s Factor of .
Slope Angel Inclination Displacement
b Proper o Safet
(0SA) () perty ©) Y (m)

Model Slope
Name Height (m)

Max. Shear
Strain
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Table 3.8 Layout of the spreadsheet involving LEM outputs for mass failure

Overall : Upper Face Factor of Safe
Model Name Heisg:(r)lgim) Slope Angel migi:r'?; Inclination 4
(OSA) () ©) Circular Non-
Circular

Table 3.9 Layout of the spreadsheet involving LEM outputs for plane failure

. . - Failure
Slope Height Overall Slope Joint Material Factor of
Model Name (m) Angel (OSA) (°) Property Plan(zo,)bxngle Safety

Table 3.10 Layout of the spreadsheet involving LEM outputs for wedge failure

. Failure Plane 1 Failure Plane 2
Slope Slope JO'”F
Model Heiaht Dip Material The Difference The Difference Factor
Name 9 o Property Di Between Slope Dip Dip Between Slope Dip of Safety
(m) @) Combination © ) Direc_tion and %) Dire_ction and Sec_ond
First Failure Plane Failure Plane Dip
Dip Direction (°) Direction (°)

Table 3.11 Layout of the spreadsheet involving LEM outputs for block toppling

failure
Overall Base and Toppling Joints
Model :é?pﬁt Slope Bedding ) Overall Base Fag]for
Name (n?) Angle Strength Spacing Dip (°) Inclination (°) Safet
©) Combination (m) Y
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Table 3.12 Layout of the spreadsheet involving LEM outputs for block flexure

toppling failure
Overall Base and Toppling Joints Overall
Model :é?pﬁt Slope Bedding Rlor::tlfl:Jrz)?:]t Base Fag;or
Name 9 Angle Strength Spacing i o Inclination
(m) © Combination  Strength m) Dip (°) ) Safety

Similar to the LEM models for mass failure FEM analyses provided the safety factor
by SSR method. SSR gradually reduces the shear strength properties by a certain
factor until the model becomes unstable. In this study, the SSR factors were searched

with an increment of 0.1. Figure 3.11 shows a sample simulation.

Maximum
Shear Strain
min (stage): 2.27e-07

0.00e+00
. 6.60e-04
1.32e-03

1.98e-03

.64e-03

.30e-03

.96e-03

4.62e-03

5.28e-03

- 5.94e-03
6.60e-03

©
max (stage): €.57e-03

Figure 3.11 A sample FEM model with SSR analysis
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To decide on the critical SSR factor, the maximum shear strain localizations were

traced as shown in the Figure 3.5.

The maximum total displacement values were extracted from data queries as

illustrated in Figure 3.4.

In the LEM models, the safety factor was obtained for each case as shown in the
Figure 3.12 and Figure 3.13.

| Safety Factor

] 0.000 @

| L]

| . g.500 i
&

1.000

1.500 @

2.000

2.500

3.000

103763
800
183763
1268.42
61244
107441

3.500

4.000

22252
22252
3499.04

4.500

v

5.000

& show &n  Hide 1] copy
@  Zoom Filter List.. | |[J] Copy All

5.500

L0004+

Figure 3.12 A sample view of safety factor values obtained from a mass failure
model with LEM
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Figure 3.13 Sample views of safety factor values obtained from a plane (a), wedge

(b), block toppling (c) and block flexure toppling (d) failure model
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CHAPTER 4

MACHINE LEARNING SCHEME FOR THE INTERPRETATION OF
NUMERICAL MODELS

This chapter presents the development of a machine learning model for predicting
slope performance based on the parametric computational simulations. Structure of
the artificial neural network (ANN) model and the training database involving the
mechanical indicators of slope performance under various conditions were explained
in detail. The trained model was proposed to be used as a preliminary tool in
predicting the slope performance. Furthermore, benchmark cases were generated to
test the quality of the proposed ANN model. The predictions were compared with

the numerical simulation outputs to check the model validity.

4.1  Overview of the Machine Learning Assisted Slope Stability Model

Conventional statistics may perform poorly in correlating multiple variables with
nonlinear relationships. Artificial intelligence can discover complex data
relationships without suffering the computational efficiency. Considering slope
stability is dependent on complex geological, geomechanical and structural
variables, novel approaches can be expected to perform better compared to the
classical statistics analysis such as multivariable regression. Recently, Artificial
Neural Networks (ANN) are commonly used in geomechanics for prediction and
forecasting. ANN can identify data patterns and relationships without explicit
instructions. Both experiments and expert opinions can be integrated in the

prediction model involving weighted neurons in multiple layers. ANN mimics the
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structure of a biological brain in terms of processing and analyzing the data to make

predictions and decisions (Agatonovic-Kustrin & Beresford, 2000).

This study makes use of feed-forward backpropagation technique to train a machine
learning model for slope stability. The technique is popular and efficient due to its
capability to improve network predictions over time. The feedback loop helps the
network learn from its mistakes and adjusts its internal parameters to achieve better
results. Back-propagation neural networks are widely used because they have a

simple background and are easy to implement (Shan et al., 2022).

Recent research focuses on the optimization of learning process by generating
computationally efficient algorithms. The Levenberg-Marquardt algorithm is one of
them that works iteratively to solve nonlinear problems (Kelley, 1999).
Computational experiments prove that Levenberg-Marquardt algorithm contributes

to faster convergence and also improves the accuracy (Deshpande et al., 2022).

The network is composed of neurons that adjust the correlation regarding the data
feed. The hyperbolic tangent sigmoid transfer functions were used in The Levenberg-
Marquardt backpropagation training algorithm to obtain an improved predictive

capacity (Javed et al., 2015).

Numerical outputs of the parametric slope simulations were used to train the ANN
model. In each iteration, the internal parameters were adjusted through
backpropagation and the network minimized the difference between the predicted
and provided values. This process makes the network more dependable and precise

in making future predictions.

After establishing the model, its performance was evaluated through regression
analysis. The accuracy of the network's predictions was compared to numerical
simulation outputs. Regression plots were used to check the accuracy of the

predictive model. R value (the Pearson Product Moment correlation coefficient
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(Russo, 2021)) is often considered a measure for the precision of statistical models.
A high value of R is accepted to represent success of the ANN model and the quality
of its training data. In this study, the regression plots were planned to include the

correlation for training, validation, and test stages.

Figure 4.1 shows the network prototype representing the fundamental components
with control parameters such as weight (W) and bias (b) for the plane failure case in
this study. Other ANN model structures were represented in the Appendix E. These
variables are adjusted during the training phase, in order to optimize the network's

SUCCesS.

At the beginning of the training process, random values are assigned to the neuron
weights. Iterations of the training stage evolves the weights based on the input/output
relationships. Once the output meets the desired requirements, the training stops and
the network uses the ideal weights to make decisions (Afram et al., 2017).

The computational cost of model training is directly related to the neuron number.
Therefore, the optimal number of hidden neurons was chosen by trial and errors
(Jahirul et al., 2021).

c 6 Hidden Layers
¢
H Fibtis > m 5 Factor of
OSA 'Sﬁ’ { Output Sately
FPA |

Activation function

Figure 4.1 ANN model structure for plane failure

In this study, the number of hidden layers determined to maximize the R value for
each slope failure mode are represented in Table 4.1. Three different ANN models
were trained for mass failure using the FEM model outputs to predict the maximum

total displacement, maximum shear strain and safety factor.
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Moreover, two models were compiled for mass failure based on LEM models and

safety factors for circular and non-circular failure.

Table 4.1 Number of hidden layers for each slope failure type

: Number of
Failure Type Output )
Hidden Layers
Factor of Safety 6
Maximum Total 9
Mass Failure with FEM Displacement
Maximum Shear
. 11
Strain
Mass Failure (circular) Factor of Safety 6
with LEM (non-circular) | Factor of Safety 7
Plane Failure Factor of Safety 6
Wedge Failure Factor of Safety 12
Block Toppling | Factor of Safety 6
Toppling Failure | Block Flexur
ock Fiexure Factor of Safety 6

Toppling

A total of 10041 computational models and 90658 outputs (Table 4.2) were used to

create a database to train ANN models predicting the slope performance regarding

failure modes.
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Table 4.2 Number of models, number of inputs and input parameters for ANN

models
. Number of  Number of
Failure Type Models Inputs Input Parameters
GSI, E, ¢, 9, T, H, OSA,
Mass Failure with FEM 630 8 UFI
) GSl, E, ¢, 9, T, H, OSA,
(circular) 630 8 UFI
Mass Failure
with LEM GSI, E, ¢, 9, T, H, OSA,
(non-circular) 630 8 UFI
Plane Failure 342 5 ¢, ¢, H, OSA, FPA
C1, C2, @1, ®2, H, OSA,
Wedge Failure 3547 10 FPDy, FPDz,  FPDD,,
FPDD;
Block C1, C2, @1, ¢2, H, OSA,
Toppling Toppling 2815 9 TJS, TID, OBI
Failure Block Flexure C1, Co, P1, @2, Hy OSA,
Toppling 1441 9 TJS, TID, OBI

The ANN models were trained using the neural net fitting tool in MATLAB. The
models were divided into three sets: 70% for training, 15% for validation, and the

remaining 15% for testing.

Following the training stage, a network function and regression plots were obtained
for each slope failure mode. Finally, a total of nine different codes were generated

and respective regression plots were obtained.
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4.2 Interpretation of the ANN Models

This section presents the interpretation of ANN models. An extensive procedure of
training, validating and testing were applied to the ANN model. In model training,
testing and validation stages 90658 input entries were processed. the model inputs

comprised of geometrical, geomechanical and structural parameters.

ANN model revealed the nonlinear relationship between these inputs and the slope
performance indicators like strain, displacement and safety factor.

In order to decide on the optimal hidden layer number, each model was tested on a
range of 1-25 layers and the highest R values were determined. A sample view

showing the implementation and structure of ANN can be seen in Figure 4.2.

The figure involves the hidden layers, training algorithm, number of data used for
each stage (training, validation and testing), R values, mean squared error values and

regression plots of the model.

The trained model is stored in terms of a MATLAB function and regression plots
were checked to see the quality of the model. A good model was defined to have an
R value higher than 90% indicating low error rate in ANN model predictions.
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Validation Checks 0 / s 6 s =
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Output ~= 0.96* Target + 0.093

Target

Output ~= 0.97*Target + 0.077

Train a neural network to map predictors to continuous responses
Data

Predictors:  RS2input - [630x8 double]

Responses: RS2output - [630x1 double]

RS2input: double array of 630 observations with & features
RS2output: double array of 630 observations with 1 features

Algorithm

Data division: Random

Training algorithm: ~ Levenberg-Marquardt
Performance: Mean squared error

Training Results
Training start time: ~ 21-Oct-2023 14:29:00

Layer size: 5

Observations MSE R
Training 440 0.0352 0.9766
Validation 95 0.0259 0.9858
Test 95 0.0409 0.9683

Figure 4.2 Sample ANN model training and validation in MATLAB

The trained model function was used later on to carry out additional quality checks

on benchmarking cases. This methodology was aimed to replace the geomechanical

simulations explained in the previous sections within the range of training parameter
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set and for cases which were not mechanically simulated. Also, the ANN model was
aimed to provide a quick prediction with low error instead of precise solutions with

long numerical run-time

In this thesis, a total of nine ANN models and trained functions were designed to
evaluate the stability of slopes. Out of these nine models, seven of them focused on
determining the safety factors for slope failures. Additionally, one of the model
functions was dedicated to finding the maximum total displacement values in slope
mass failures, while the other one was used to calculate the maximum shear strain in

slope mass failures.
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CHAPTER 5

RESULTS AND DISCUSSION

This section presents the results of the mechanical simulations and evaluates the
performance of the proposed slope design method for different slope failure modes.
The parametric FEM and LEM model outcomes were visualized through

conventional 2D plots.

5.1 FEM Simulation Outputs of Rock Slope Mass Failure

Firstly, the FEM models of slope mass failure providing the maximum total
displacement, the maximum shear strain, and the factor of safety are explained in
detail. A total of 630 simulations were run to obtain 1890 data points. The results for
MP3 are displayed in the following Figures 5.1 and 5.2.

The rest of the graphs are represented in the appendices A and B. All models with
MP1 provide a safety factor greater than 2.0. Therefore, the plots for MP1 were not
presented.

The graphs indicate the correlation between the maximum total displacement and the
corresponding slope safety factor regarding the geomechanical characteristic of the
rock mass. The same approach was followed for the maximum shear strain vs. slope

safety factor plots.
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Figure 5.1 a) The maximum total displacement vs. OSA and b) slope safety factor
vs. OSA plots for MP3 rock mass characteristics obtained from FEM simulation of

slope mass failure
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Figure 5.2 a) The maximum shear strain vs. OSA and b) slope safety factor vs. OSA
plots for MP3 rock mass characteristics obtained from FEM simulation of slope mass

failure

The data trend presents a clear decrease in slope safety factor with increasing overall
slope angle. Additionally, there is a slight decrease in safety factors as the upper face
inclination increases. These findings suggest that there may be increased risk in

slopes with steeper slope angles and upper face inclination.
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Numerical experiments point out that weak rock mass properties in RS2 FEM
simulations may lead to convergence problems as the code is not suitable for large
deformation simulations. RS2 is capable of simulating the early stages of a failure
rather than the covering entire failure involving body motion and progressive plastic
deformations. Particularly in rock quality classes like MP4 and MPs, which are
respectively weaker and tend to lead more displacements, the numerical difficulty in
covering the entire failure is clear. However, non-convergence still provides
insightful information about the slope stability. Table 5.1 presents the model settings

that end up with non-convergence.

Table 5.1 Slope FEM models settings with non-convergence problem

UFI 0°

H (m) MP, MP MP3 MP4 MP5
50 none none none none 80°
100 none none none none 40°
150 none none none 80° 30°
200 none none 80° 60° 20°
250 none none 70° 50° 20°
300 none none 60° 50° 20°

*UFI 10°
50 none none none none 70°
100 none none none none 40°
150 none none none 80° 30°
200 none none 80° 60° 20°
250 none none 70° 50° 20°
300 none none 60° 50° 20°
*Note: Minimum OSA is 20° since UFI is 10°
**UFI 20°

50 none none none none 30°
100 none none none none 30°
150 none none none 70° 30°
200 none none 80° 60° 30°
250 none none 70° 50° 30°
300 none none 60° 50° 30°

**Note: Minimum OSA is 30° since UFI is 20°
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5.2 LEM Simulation Outputs of Rock Slope Mass Failure

Similar to the FEM plots, slope safety factor was also plotted for the LEM models.
The database involves a total of 1260 simulations with equal numbers of models for
circular and non-circular failure. The results for MPs were presented in Figure 5.3.
For other rock mass material properties’ results mentioned in appendices C. Since
all the safety factor are higher than 2.0 for MP1 and MPa, these graphs were not

given.
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Figure 5.3 Slope safety factor vs. overall slope angle plots a) for circular and b) for
non-circular failure surface from LEM simulations for MP3 rock mass material

properties

Based on the graphical representations, it is apparent that the safety factor values in
LEM are considerably higher when compared to those in FEM. That is due to the
assumptions of these modeling techniques. While LEM assumes rigid slices
constituting the slope FEM makes stress and deformation solutions for deformable
bodies. Moreover, when comparing circular surfaces to non-circular surfaces under

the same conditions, circular surfaces exhibit lower safety factors.
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5.3  LEM Simulation Outputs of Discontinuity Driven Rock Slope Failure

This section presents the results of discontinuity-driven rock slope failures. For the
plane failure, a total of 342 models were computed and a safety factor was calculated
for the major discontinuity dominating the slope stability. The slope safety factors
for JIMP1 were given in the Figure 5.4. The other plane orientations were given in the
appendices D, which illustrate the relationships between the overall slope angle, the

joint material property, and slope height.
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Figure 5.4 JMP; safety factor values for planar slope failure

Based on the graphs, it was observed that the factor of safety tends to decrease as the
height of the slope and overall slope angle increases for the same plane angle.
Moreover, different upper face inclinations were also modelled and computed for
planar failures. However, safety factor values did not change with the increase of

upper face inclination until 20°. So, the results for those models are not presented.

After planar failure, wedge failure was also investigated in a total of 3547 models.

The models were computed to get the safety factors where wedges form on the slope
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mass. The simulations outputs were tabulated. However, due to the wide range of
inputs and outputs, the wedge failure simulations could not be visualized using
traditional 2D or 3D graphical tools. Table 5.2 represents only a subset of the entire
dataset.

Table 5.2 A small set of wedge failure data set

Failure Plane 1 Failure Plane 2

Slope  Slope M.]oin'g Factor
Height  Dip Pr?)t;erll?): D The Difference of Slope Dip The Difference of Slope Sa(;tfety
(m) ) Tel o and First Failure Plane o and Second Failure Plane
Combination () Dip Directions (°) ©) Dip Direction (°) (FoS)
200 80 JMP1-1 30 270 30 330 1.9
200 80 JMP1-1 30 300 30 330 19
200 80 JMP1-1 30 330 30 30 1.8
200 80 JMP1-1 45 30 30 330 1.6
200 80 JMP1-1 45 60 30 330 19
200 80 JMP1-1 45 90 30 30 1.6
200 80 JMP1-1 45 120 30 30 17
200 80 JMP1-1 45 60 45 330 15
200 80 JMP1-1 60 30 30 300 1.8
200 80 JMP1-1 60 30 30 330 14
200 80 JMP1-1 60 60 30 330 17
200 80 JMP1-1 60 90 30 30 1.9
200 80 JMP1-1 60 120 30 30 1.6
200 80 JMP1-1 75 30 30 300 1.8
200 80 JMP1-1 75 30 30 330 15
200 80 JMP1-1 75 60 30 330 17
200 80 JMP1-1 75 30 45 270 1.9
200 80 JMP1-1 75 30 45 300 1.3
200 80 JMP1-1 75 30 45 330 0.9
200 80 JMP1-1 75 60 45 300 1.8
200 80 JMP1-1 75 60 45 330 1.2
200 80 JMP1-1 75 90 45 30 14
200 80 JMP1-1 75 90 45 330 17
200 80 JMP1-1 75 300 60 30 1.0
200 80 JMP1-1 75 300 60 60 15
200 80 JMP1-1 75 330 60 30 0.7
200 80 JMP1-1 75 330 60 60 11
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Table 5.2 (continued)

200 80 JMP1-1 75 330 60 90 1.6
200 80 JMP1-1 75 30 75 270 15
200 80 JMP1-1 75 30 75 300 1.3
200 80 JMP1-1 75 30 75 330 13
200 80 JMP1-1 75 60 75 300 14
200 80 JMP1-1 75 60 75 330 13

As the height of a slope increases and the slope angle becomes steeper, the safety
factor of the slope decreases for the same failure plane orientations. In other words,

the higher and steeper the slope, the more likely it is to experience a wedge failure.

Additionally, wedge failures were modeled with varying upper face inclinations.
However, safety factor values remained constant until 20°, so results for those

models were excluded.

Finally, two toppling modes were investigated, which were block toppling and block
flexure toppling. A total of 2815 block toppling models and 1447 block flexure

toppling models were computed.

However, similar to the wedge failure, the safety factors could not be plotted due to
the variety and wide range of inputs. Instead, the entire dataset was presented in a
table.

In Table 5.3, a small subset of the entire database, which covers only the slope height
of 300 m, overall slope angle of 50° and base and bedding joint material parameters

of JMP1 was shown for block toppling failure.
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Table 5.3 A small set of block toppling failure database

Slope Overall Base gnd Toppling Joints Overall Factor
Height Slope Bedding Bfase. of

(m) Angle Stre.ngth Spacing Dip (¢ Inclination  Safety

®) Combination (m) p() ®) (FoS)
300 50 JMP 1-1 1 80 10 0.7
300 50 JMP 1-1 3 80 10 0.8
300 50 JMP 1-1 5 80 10 0.8
300 50 JMP 1-1 7 80 10 0.8
300 50 JMP 1-1 10 80 10 0.9
300 50 JMP 1-1 1 70 20 0.8
300 50 JMP 1-1 3 70 20 0.8
300 50 JMP 1-1 5 70 20 0.8
300 50 JMP 1-1 7 70 20 0.9
300 50 JMP 1-1 10 70 20 0.9
300 50 JMP 1-1 1 60 30 1.0
300 50 JMP 1-1 3 60 30 1.0
300 50 JMP 1-1 5 60 30 1.1
300 50 JMP 1-1 7 60 30 11
300 50 JMP 1-1 10 60 30 11
300 50 JMP 1-1 1 50 40 1.2
300 50 JMP 1-1 3 50 40 1.2
300 50 JMP 1-1 5 50 40 1.2
300 50 JMP 1-1 7 50 40 1.2
300 50 JMP 1-1 10 50 40 1.2
300 50 JMP 1-1 1 41 49 3.6
300 50 JMP 1-1 3 41 49 3.6
300 50 JMP 1-1 5 41 49 3.6
300 50 JMP 1-1 7 41 49 3.6
300 50 JMP 1-1 10 41 49 3.6

It can be observed that the factor of safety increases with an increase in the spacing

between toppling joints. On the other hand, a decrease in the overall base inclination
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and an increase in the dip of toppling joints lead to a decrease in the factor of safety
while other variables remain constant. Similarly, a higher slope height and overall

slope angle result in a lower factor of safety.

When it comes to block flexure toppling, there is an additional variable to consider
known as joint strength. Similar to block toppling failure, safety factors were
computed and small subset of the entire database shown in the Table 5.4.

Table 5.4 A small part of the block flexure toppling failure’s outputs

Slobe Overall Base qnd Internal Toppling Joints Overall Factor
Height Slope Bedding Ro_ck Base_ of

m) Ancgle Stre_ngth Joint ) Dip Incllrlatlon Safety

) Combination  Strength ~ Spacing (m) ©) ) (FoS)
300 50 JMP 1-1 JMP 1 3 80 10 1.4
300 50 JMP 1-1 JMP 1 5 80 10 1.1
300 50 JMP 1-1 JMP 1 7 80 10 1.1
300 50 JMP 1-1 JMP 1 10 80 10 1.1
300 50 JMP 1-1 JMP 1 3 70 20 1.3
300 50 JMP 1-1 JMP 1 5 70 20 1.1
300 50 JMP 1-1 JMP 1 7 70 20 1.0
300 50 JMP 1-1 JMP 1 10 70 20 1.0
300 50 JMP 1-1 JMP 1 1 60 30 14
300 50 JMP 1-1 JMP 1 3 60 30 1.4
300 50 JMP 1-1 JMP 1 5 60 30 14
300 50 JMP 1-1 JMP 1 7 60 30 1.3
300 50 JMP 1-1 JMP 1 10 60 30 1.2
300 50 JMP 1-1 JMP 1 3 50 40 1.2
300 50 JMP 1-1 JMP 1 5 50 40 1.2
300 50 JMP 1-1 JMP 1 7 50 40 1.2
300 50 JMP 1-1 JMP 1 10 50 40 1.2
300 50 JMP 1-1 JMP 1 3 41 49 3.6
300 50 JMP 1-1 JMP 1 5 41 49 3.6
300 50 JMP 1-1 JMP 1 7 41 49 3.6
300 50 JMP 1-1 JMP 1 10 41 49 3.6
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For block flexure toppling, the results of the models indicate that when the spacing
between toppling joints increase, the safety factor decreases. Conversely, if the
overall base inclination decreases and the dip of toppling joints increases, the factor
of safety increases, assuming other variables remain constant. Moreover, a higher

slope height and overall slope angle result in a lower factor of safety.

5.4  Validation of ANN Model for Rock Slope Stability Prediction

Increasing size and complexity of datasets reveals the weaknesses of conventional
2D graphs for representing relationships between multiple variables. These graphs
often too complex to interpret the data trend, and in some cases, they cannot even be
drawn. Moreover, in a crowded dataset it difficult to identify the intermediate

conditions.

The parametric study in this research generated a rich database comprising of slope
performance indicators. Regarding the variety of input and output variables, the
conventional methods of data interpretation would be expected to be useless.
Therefore, alternative techniques are required for developing this new slope stability

analysis method, which is based on reliable computational simulations.

As stated before, ANN is opted for training a statistical predictor for slope stability.
Each slope failure mode was trained using MATLAB-ANN toolbox. This way, non-
linear equations for accurately predicting the safety factors, maximum total
displacement (applicable only for FEM mass failure), and maximum shear strain
(applicable only for FEM mass failure) were generated with an acceptable R value
denoting the correlation in between the model prediction and simulation outputs.

In order to ensure the accuracy and reliability of the models, an additional stage of
testing was established using benchmark cases. This involved generating a series of

test cases to check the quality of the prediction. The benchmark cases were designed
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to cover a broad range of possible. Once the benchmark cases were executed, the
results from the computational models and the ANN predictions were compared.
Regression graphs were created to analyze the correlation between the two models,
and a determination coefficient was calculated to measure the strength of their

relationship.
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Figure 5.5 Regression plots showing the correlation between ANN predictions and
FEM simulations of slope safety factor for mass failure
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The Figure 5.5, Figure 5.6 and Figure 5.7 show the regression plots and R values in
the training, testing, and validation stages obtained from ANN. These plots indicate
that the R values for the factor of safety range from 96% to 98%, while for maximum
total displacement they range from 91% to 95% and for maximum shear strain they
range from 95% to 98%.
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Figure 5.6 Regression plots showing the correlation between ANN predictions and

FEM simulations of maximum total displacement for slope mass failure
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Figure 5.7 Regression plots showing the correlation between ANN predictions and

FEM simulations of maximum shear strains for slope mass failure

Following the ANN, a Matlab script was utilized to evaluate the trained machine’s

prediction capability through 5 different benchmark cases which includes factor of

safety, maximum total displacement and maximum shear strain as outputs. The

benchmark cases are detailed in Table 5.5. Subsequently, the numerical model

outputs were analyzed in conjunction with the ANN predictions through regression



analysis. Comparisons were drawn between these two sets of data, and the results

were illustrated in Figure 5.8 for mass failure.

Table 5.5 Benchmark cases for FEM mass failure

Inputs Outputs
Factor of Max. Total Max. Shear
Case Slope . Safety Disp. (m) Strain
No Height OSA  Material UFI

(m) () Property ) | tem ANN | FEM ANN | FEM ANN

1 300 50 MP2 10 2.1 2.3 1.37 1.39 0.020 0.029

2 150 50 MP3 10 18 19 0.87 0.78 0.019 0.017

3 100 60 MP4 0 15 1.8 0.08 0.08 0.005 0.004

4 150 50 MP4 0 13 15 0.14 0.25 0.008 0.009

5 100 30 MP5 0 1.0 1.2 0.31 0.44 0.023 0.028

a) b)
Factor of Safety Maximum Total Displacement
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Figure 5.8 FEM mass failure benchmark cases’ regression plots for a) factor of

safety, b) maximum total displacement and ¢) maximum shear strain
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The correlations were 97% for factor of safety, 97% for maximum total displacement
and 89% for maximum shear strain which means strong correlations and ANN results

perform well.

For LEM mass failure, the regression plots and R values in training, testing and
validation stages that were from ANN were presented in the Figure 5.9 and Figure
5.10 and the plots show that R values are around 99% for circular failure and around

96% for non-circular failure.
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Figure 5.9 Regression plots showing the correlation between ANN predictions and

LEM simulations of slope safety factor for circular failure
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Figure 5.10 Regression plots showing the correlation between ANN predictions and

LEM simulations of slope safety factor for non-circular failure

Another 5 different benchmark cases were determined for LEM mass failure. The
benchmark cases are detailed in Table 5.6 and regression analysis were shown in

Figure 5.11 for mass failure.
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Table 5.6 Benchmark cases for LEM mass failure

Inputs Outputs
Case Slope ) Factor of Safety Factor of Safety
No Heigpht OSA :;/Iatenill UFI (Circular) (Non-circular)
my O Property () LEM ANN LEM ANN
1 300 50 MP1 20 7.5 7.3 7.0 8.0
2 250 60 MP2 10 3.3 3.8 3.3 2.2
3 250 70 MP3 0 15 1.8 15 15
4 200 40 MP4 10 2.0 2.2 1.8 1.8
5 100 40 MP5 0 13 1.3 12 1.3
a) b)
Factor of Safety Factor of Safety
8.0 %0
7.0 80 °
y=09362x+0.4008 .- y=11461x- 04431
c 60 R?=0.9889 ' 3 0 R*=0.9444
Es0 e £ 90
S0 g e T 50
e Snt® & 40 }
z 30 - Z 30
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e * 10 0.8
0.0 0.0
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Numerical Model Outputs

Figure 5.11 LEM mass failure benchmark cases’ regression plots for a) circular

failure, b) non-circular failure

The correlations between numerical model outputs and ANN predictions were 98%

for circular failure and 94% for non-circular failure.

For plane failure, the regression plots and R values in training, testing and validation

stages that were from ANN were presented in the Figure 5.12 and the plots show that

R values are around 99%.
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Figure 5.12 Regression plots showing the correlation between ANN predictions

and LEM simulations of slope safety factor for planar failure

Another 5 different benchmark cases were determined for plane failure. The
benchmark cases are detailed in Table 5.7 and regression analysis were shown in
Figure 5.13.
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Table 5.7 Benchmark cases for plane failure

Inputs Outputs
Case Slope Joint Failure Factor of Safety
No Height O§A Material Plane
(m) C) Property A?O%Ie LEM ANN
1 250 60 JMP3 45 25 25
2 300 50 JMP2 30 1.9 1.6
3 250 50 JMP1 30 15 15
4 200 60 JMP1 45 11 1.0
5 100 70 JMP1 45 1.2 1.0
Factor of Safety
3.00
o 20 y =0.9981x - 0.1012 2
§ 30 R?=0.9424
;g 1.50 o . °
o
Z 1.00 *®
<
0.50
0.00
0 0.5 1 1.5 2 2.5 3

Numerical Model Outputs

Figure 5.13 Plane failure benchmark cases’ regression plot

The correlation was 94% which means strong correlation between numerical model

outputs and ANN predictions for plane failure.

For wedge failure, the regression plots and R values in training, testing and validation

stages that were from ANN were presented in the Figure 5.14 and the plots show that

R values are between 42-61%.
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Figure 5.14 Regression plots showing the correlation between ANN predictions and

LEM simulations of slope safety factor for wedge failure

In addition, 5 different benchmark cases were determined for wedge failure. The
benchmark cases are detailed in Table 5.8 and regression analysis were shown in
Figure 5.15.
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Table 5.8 Benchmark cases for wedge failure

Inputs Outputs
Failure Plane 1 Failure Plane 2 Factor of Safety
Joint The Difference The Difference
Case Slope Slope Material Between Slope Between Slope
Height Dip Dip Dip Direction Dip Dip Direction
No (m) ©) PFOPe”Y o and First o and Second LEM ANN
Combination | (°) | Failure Plane ) Failure Plane
Dip Direction Dip Direction
) )
1 300 50 JMP 1-2 45 30 45 300 2.0 25
2 200 60 JMP 1-2 45 30 45 330 1.8 1.9
3 200 60 JMP 1-1 45 330 45 30 1.3 0.8
4 150 70 JMP 1-1 60 30 45 330 1.3 15
5 100 80 JMP 1-1 60 30 75 330 1.0 15
Factor of Safety
3.00
2.50 e
& y=1.1505x-0.0073 .-
2 2.00 R?=0.5112 ) e
g 1.50 ® “.’ .......
a
Z 1.00
Z °
0.50
0.00
0 0.5 1 1.5 2 25

Numerical Model Outputs

Figure 5.15 Plane failure benchmark cases’ regression plot

The correlation was 51% which is the lowest correlation among the slope failures in

this study.

For block toppling failure, the regression plots and R values in training, testing and

validation stages that were from ANN were presented in the Figure 5.16 and the plots

show that R values are 99%.
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Figure 5.16 Regression plots showing the correlation between ANN predictions

and LEM simulations of slope safety factor for block toppling failure

Same as other failures, 5 different benchmark cases were determined for block
toppling failure. The benchmark cases are detailed in Table 5.9 and regression

analysis were shown in Figure 5.17.
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Table 5.9 Benchmark cases for block toppling failure

Inputs Outputs
Base and . - Overall
Case Height OSA Bedding Toppling Joints Base Factor of Safety
No (m) °) Strength Spacing o Inclination
Combination (m) Dip (%) ©) LEM ANN
1 300 40 JMP 3-3 1 80 10 25 2.9
2 250 70 JMP 2-2 3 60 30 0.9 1.0
3 200 50 JMP 2-2 5 70 20 1.7 1.8
4 150 50 JMP 1-1 1 80 10 11 13
5 100 80 JMP 1-1 10 30 60 0.9 0.9
Factor of Safety
3.5
3.0 y=1.2421x - 0.1537 e
é 25 R?=0.9881
£ 20
) -9
a 1.5
z 9.
<Z( 1.0 Q'
0.5
0.0
0.0 1.0 1.5 2.0 2.5 3.0

Figure 5.17 Block toppling failure benchmark cases’ regression plot

Numerical Model Outputs

The correlation between numerical model outputs and ANN outputs was 98% for

block toppling failure.

For block flexure toppling failure, the regression plots and R values in training,

testing and validation stages that were from ANN were presented in the Figure 5.18

and the plots show that R values are 98%.
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Figure 5.18 Regression plots showing the correlation between ANN predictions and

LEM simulations of slope safety factor for block flexure toppling failure

For the last slope failure, 5 different benchmark cases were determined for block
flexure toppling failure. The benchmark cases are detailed in Table 5.10 and

regression analysis were shown in Figure 5.19.
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Table 5.10 Benchmark cases for block flexure toppling failure

Inputs Outputs
. . Factor of
Overall Base and Internal | Toppling Joints Overall Safety
Case  Height Slope Bedding Rock Base
No (m) Angle Strength Joint Spacin Dip Inclination
®) Combination  Strength p(m) g ) @) LEM  ANN
1 300 40 JMP 2-2 JMP 1 5 60 30 2.0 2.5
2 250 50 JMP 2-2 JMP 1 5 70 20 1.9 2.2
3 200 60 JMP 1-1 JMP 1 7 60 30 1.0 1.3
4 150 70 JMP 1-1 JMP 1 10 70 20 0.9 0.8
5 100 60 JMP 1-1 JMP 1 3 60 30 1.4 15
Factor of Safety
3.0
" 2 y=1.2996x-0.2111 .
& w5 R? = 0.9553 Lt
T 15 =
a o .
Z 1.0
Z @
0.5
0.0
0 0.5 2 & 135 2 2.5
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Figure 5.19 Block flexure toppling failure benchmark cases’ regression plot

The correlation between numerical model outputs and ANN outputs was 95%.

The ANN models demonstrated strong correlation with the numerical simulations,
as evidenced by the values of R ranged from 0.91 to 0.99. However, the models did
not perform as well in predicting cases of wedge failure. With benchmarking in total,
45 different scenarios were analyzed using 9 different ANN models, each with 5
different scenarios. The results of the analysis indicated that there was a strong

correlation between the predicted outcomes and the numerical simulation outcomes.
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Specifically, the correlation was found to be between 89-98% (except wedge failure
which was same for ANN), which demonstrates a high level of accuracy in predicting
the outcomes. Despite using 3547 models for wedge failure, the prediction of all
cases proved to be a challenging task due to the criterion required to form a wedge.
The wedge formation criterion only applies to certain inputs of dip and dip direction,
which meant that the available input data was limited. Additionally, the program
attempted to make predictions even in cases where the wedge did not occur, which
added to the complexity of the analysis.

In short, slope analysis is a complex process that requires consideration of various
factors and failure modes. ANN provides a basis for quick assessment of slope
instability risks based on lab, field and computational experiments.
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CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS

Continuum and discontinuum behaviors generate completely different rock slope
failure mechanisms and require unique analysis techniques to investigate the slope
safety factor. The dominant failure mode is related to various factors concerning
geology, geomechanics and structural characteristics of the field. Once the active
failure mode can be identified in the early stages of a slope design, the numerical
solutions conforming to the mechanism can be used. Regarding the far-field
loadings, manipulation of the stress field and external loads, conventional or
advanced mechanical simulation techniques may be opted such as 2D or 3D models
with limit equilibrium methods and numerical solutions. Not only the slope
performance can be tested under different circumstances but also proactive measures

can be taken to improve the slope stability.

Computational efficiency concerns require to define the model inputs at least
roughly. Therefore, practical tools for the preliminary slope stability analysis are
always considered useful. The current methods are either locally valid empirical
tools or lacks of mechanical assessment. This researched delved into employing
computational methods like LEM and FEM to test rock slope performance under
various conditions and create a reliable database for robust and efficient predictive

models operated with ANN that no more require exhaustive mechanical simulations.

FEM provided insightful information about the changes in stress and deformation
fields driving through slope mass failure. Slope safety factor could be calculated and

interpreted together with the maximum total displacement and maximum shear
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strain. On the other hand, LEM provided only the safety factors for circular and non-

circular failure surfaces.

ANN was incorporated into the research due to its capacity in capturing non-linear
relationships between multiple input parameters. The outputs of FEM and LEM were
used to train the ANN models for estimating the slope safety factor, maximum total
displacement and maximum shear strain. To create a comprehensive training data
set, 10041 computational mechanical models were run and 90658 entries were
obtained. The range of variables were designed to be representative for a wide range
of cases, which saves the proposed methodology from being locally valid. However,
the proposed model is more suitable to be used form preliminary analysis and
requires to be validated and improved by more comprehensive techniques. The ANN
models were proven to have a high correlation with an R value ranging from 0.91 to
0.99. This indicates that the ANN models were in agreement with the computational
models in terms of predicting the slope stability. Some of the research highlights and

recommendations are as follows:

e Rock mass geomechanical characteristics have a significant influence on the
slope stability

e Slope safety factors obtained from LEM models are higher than FEM
solutions. This is mainly due to rigid body assumption in LEM analysis.

e For planar and wedge failure, upper face inclination does not have a
significant influence on the safety factor up to 20°.

e 2D plots are not sufficient and user-friendly to investigate multi-parameter
relationships in slope stability analysis. ANN proposes an efficient, quick and
reliable alternative.

e The proposed method is only valid for isotropic and homogeneous geology

settings.
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e Groundwater conditions were not included in the computational modeling

study. Therefore, the proposed method can be used only for dry slope mass.

The proposed machine learning model can be further developed with an extensive
numerical simulation database. It has potential to serve as a useful tool in preliminary

analysis of slope stability.
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APPENDICES

A. The Maximum Total Displacement vs. OSA and Slope Safety Factor vs.
OSA Plots of Circular Failure from FEM Results
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Figure A. 1 a) The maximum total displacement vs. OSA and b) slope safety factor
vs. OSA plots for MP> rock mass characteristics obtained from FEM simulation of
circular failure
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Figure A. 2 a) The maximum total displacement vs. OSA and b) slope safety factor
vs. OSA plots for MP4 rock mass characteristics obtained from FEM simulation of
circular failure
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Figure A. 3 a) The maximum total displacement vs. OSA and b) slope safety factor
vs. OSA plots for MPs rock mass characteristics obtained from FEM simulation of
circular failure

B. The Maximum Shear Strain vs. OSA and Slope Safety Factor vs. OSA Plots
of Circular Failure from FEM Results
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Figure B. 1 a) The maximum shear strain vs. OSA and b) slope safety factor vs. OSA
plots for MP2 rock mass characteristics obtained from FEM simulation of circular
failure
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Figure B. 2 a) The maximum shear strain vs. OSA and b) slope safety factor vs. OSA
plots for MP4 rock mass characteristics obtained from FEM simulation of circular

failure
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Figure B. 3 a) The maximum shear strain vs. OSA and b) slope safety factor vs. OSA
plots for MPs rock mass characteristics obtained from FEM simulation of circular

failure
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C. Slope Safety Factor vs. Overall Slope Angle Plots from LEM Simulations
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Figure C. 1 Slope safety factor vs. overall slope angle plots a) for circular and b) for
non-circular failure surface from LEM simulations for MP4 rock mass material
properties
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Figure C. 2 Slope safety factor vs. overall slope angle plots a) for circular and b) for
non-circular failure surface from LEM simulations for MPs rock mass material
properties
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D. Safety Factor Values for Planar Slope Failure
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Figure D. 1 JMP- safety factor values for planar slope failure
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Figure D. 2 JMP3 safety factor values for planar slope failure
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E. ANN Model Structure for Each Slope Failure Type
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Figure E. 1 FEM mass failure ANN model structure for factor of safety
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Figure E. 2 FEM mass failure ANN model structure for maximum total displacement
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Figure E. 3 FEM mass failure ANN model structure for maximum shear strain
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Figure E. 4 LEM mass failure (circular) ANN model structure for factor of safety
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Figure E. 5 LEM mass failure (non-circular) ANN model structure for factor of

safety
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Figure E. 6 Wedge failure ANN model structure for factor of safety
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Figure E. 7 Block toppling failure ANN model structure for factor of safety
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Figure E. 8 Block flexure toppling failure ANN model structure for factor of safety
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