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ABSTRACT 

 

A UNIFIED SLOPE DESIGN FRAMEWORK FOR DIFFERENT ROCK 

SLOPE FAILURE MECHANISMS 

 

 

 

Kahveci, Mustafa Serhan 

Master of Science, Mining Engineering 

Supervisor: Asst. Prof. Dr. Ahmet Güneş YARDIMCI 

 

 

January 2024, 122 pages 

 

 

Slope stability analysis requires an extensive knowledge on geomechanics and 

computational simulations. This research develops a practical approach in the 

preliminary analysis of slope failure modes for rock slopes with different 

specifications in terms of rock mass quality, slope height, overall slope angle, upper 

face inclination and discontinuity orientations. Parametric analyses were conducted 

on computational models using Finite Element Method and Limit Equilibrium 

Method. In total, 10041 different conditions were simulated to generate a reliable 

database for the construction of a new slope design framework. Slope performance 

was evaluated in terms of the mechanical indicators such as the total displacement, 

max shear strain and factor of safety. The model outputs were used to train an 

Artificial Neural Network (ANN) model to overcome the difficulties in 

interpretation of conventional tables and plots. The ANN model was tested using 

benchmark cases. The results provided a high correlation implying the proposed 
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method is successful in predicting the failure mode in rock slopes. The study 

outcomes have potential to provide a reliable tool for slope stability that may be 

useful for inexperienced technical staff. 

 

Keywords:  Rock Slope Stability, Finite Element Method, Limit Equilibrium 

Method, Slope Failure Mode, Machine Learning 
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ÖZ 

 

FARKLI KAYA ŞEVİ YENİLME MEKANİZMALARI İÇİN 

BİRLEŞTİRİLMİŞ BİR ŞEV TASARIM SİSTEMİ   

 

 

 

Kahveci, Mustafa Serhan 

Yüksek Lisans, Maden Mühendisliği 

Tez Yöneticisi: Dr. Öğr. Üyesi Ahmet Güneş YARDIMCI 

 

 

Ocak 2024, 122 sayfa 

 

Şev duraylılık araştırması jeomekanik ve hesaplamalı benzetimler konusunda geniş 

bir bilgi birikimi gerektirmektedir. Bu araştırma, kaya kütle kalitesi, şev yüksekliği, 

genel şev açısı, üst basamak eğimi ve süreksizlik yönleri gibi farklı koşullar altında 

şev yenilme modunun belirlenmesinde kullanılabilecek pratik bir öncül çözümleme 

yöntemi geliştirmektedir. Hesaplamalı modeller üzerinde sonlu elemanlar yöntemi 

ve denge eşitlik yöntemi kullanılarak parametrik çözümlemeler yürütülmüştür. Yeni 

geliştirilen şev tasarım yönteminde kullanılacak güvenilir bir veri tabanı oluşturmak 

üzere toplam 10041 farklı senaryo üretilmiştir. Şev performansı; toplam yer 

değiştirme ve en yüksek kesme gerinimi gibi mekanik faktörler ve güvenlik faktörü 

cinsinden değerlendirilmiştir. Konvansiyonel tablo ve grafiklerin 

değerlendirilmesinde oluşan zorlukları gidermek amacıyla model çıktılarıyla bir 

yapay sinir ağları (YSA) modeli eğitilmiştir. YSA modeli referans modellerle 

karşılaştırılarak test edilmiştir. Sonuçlar, önerilen yöntem ile kaya şevlerinde 

yenilme modunun başarıyla tahmin edilebileceğini gösteren yüksek korelasyon 
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değerleri sağlamıştır. Çalışma çıktıları şev duraylılık değerlendirmelerinde 

tecrübesiz teknik personel için faydalı olabilecek güvenilir bir araç sağlama 

potansiyeline sahiptir. 

 

Anahtar Kelimeler: Kaya Şev Duraylılığı, Sonlu Elemanlar Yöntemi, Denge Eşitlik 

Yöntemi, Şev Yenilme Modu, Makine Öğrenmesi 
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CHAPTER 1  

1 INTRODUCTION  

Slope stability is a concern of mining, geology, and civil engineering disciplines due 

to elevating mining operations, urbanization, and infrastructure constructions. 

Regarding soil and rock bears different geomechanical characteristics and slope mass 

may involve both, slope stability can be considered a multidisciplinary act to protect 

safety. Empirical tools are the common language to handle communication between 

technical staff with different backgrounds. Slope mass classification systems and 

slope performance charts have been widely used as a preliminary stage of stability 

assessment. However, these methods may also be misleading as they are either valid 

under restricted conditions or lacks of mechanical or kinematical considerations. 

Computational simulations of slope stability provide more comprehensive 

information about the slope performance by investigation of stress and deformation 

fields, before, during and after the excavation. However, they require skilled 

operators with a solid background in geomechanics, mathematics and computer 

programming. Even for the numerical simulations, a preliminary design tool would 

be considered useful as the computational expense would be reduced by determining 

a brief scope for modeling. Parametric studies have potential to provide the overall 

slope behavior under various circumstances. However, as the slope performance 

longs to a crowded parameter set with extensive ranges, interpretation of the 

simulation outputs poses difficulties. Conventional two-dimensional data plots 

would involve multiple data series and still all of the variables cannot be represented 

in a single graph. Therefore, alternative methods would be considered to provide a 

user-friendly interface for the interpretation of parametric studies. 
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This study investigates the slope performance with mechanical simulations for 

various conditions and suggests an auxiliary tool for the preliminary slope stability 

analysis. The current literature on the empirical and numerical slope evaluation 

proposes solutions for rock masses of particular quality, slope geometries, structural 

conditions, and depths. The purpose of this study is to cover a wider range of 

geometric, geomechanical and structural conditions with a reliable database 

comprised of mechanical assessments. The proposed method makes use of the 

current empirical methods and expert view to assign the elastic and plastic behavior 

of the rock mass. Initially, the parametric study outputs were presented using 

traditional charts and tables to compare similar conditions and assess suitable slope 

design. Later, a machine learning-based model was developed to provide a user-

friendly tool for interpreting the numerical simulations. The study aims to make 

geomechanical data accessible to inexperienced users by reducing modeling and 

computational difficulties and avoiding potential modeling errors. 

1.1 Problem Statement  

The main focus of this research is the mitigation of accidents caused by slope 

failures. Slope failures can have significant and dire consequences, including 

damage to critical infrastructure, loss of life, disruption of ecosystems, and economic 

hardship. It is crucial to address and mitigate the risks associated with slope 

instability to ensure the safety and well-being of individuals, communities and 

sustainable production in mines.  

Traditional slope design methods are often limited in their applicability and can be 

costly and difficult to update due to their reliance on case histories. As a more 

effective alternative, numerical models are used to simulate slope behavior under 

various conditions. However, these models can be complex and require advanced 

knowledge of geomechanics to prepare, run, and interpret. Additionally, solving 
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complex problems using numerical models can be computationally intensive and 

time-consuming, making them impractical for quick analyses.  

Furthermore, interpreting model results often requires specialized expertise. This 

study introduces an improved methodology that enables users with basic skills to 

effectively utilize numerical model results.  

1.2 Objectives and Scope of the Study 

The objective of this study is to provide a simple and reliable tool for assessing slope 

stability. This will be achieved by computational simulations to monitor the effects 

of different factors such as slope height, overall slope angle, material properties, 

upper face inclinations, and failure plane properties on the slope performance. 

Instead of relying on traditional tables and 2D plots to interpret model outputs, 

advanced statistical models will be used. To summarize, the study aims to achieve 

the following objectives: 

I. To create a user-friendly slope design tool for non-experts in geomechanical 

simulations. 

II. To assess the efficiency of different slope designs featuring diverse 

geomechanical characteristics.  

III. To create a reliable database of mechanical indicators for slope performance 

through numerical simulations with parametric analyses.  

IV. To compare conventional tables and 2D plots with a machine learning-driven 

model. 
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1.3 Research Methodology 

The research methodology is illustrated in the Figure 1.1, depicting the stages 

involved in designing and implementing the study. The following steps were taken 

to achieve the research objectives: 

I. Outlining the modeling scenarios. 

II. Determining geomechanical and geometrical properties for the rock mass and 

structural discontinuities. 

III. Determining the numerical simulation method conforming to the simulated 

case.  

IV. Tracking the mechanical slope performance indicators from the numerical 

simulations. 

V. Examining the relationship between the parameters by interpreting numerical 

modeling data using conventional tables and 2D plots. 

VI. Determining the limitations of the conventional data presentation methods 

and their inability to clearly present numerical model results. 

VII. Using artificial neural networks to train a statistical model from numerical 

data 
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Figure 1.1 The flowchart of the methodology 

1.4 Expected Contributions to Literature 

The proposed method is expected to provide a reliable alternative for the preliminary 

design of rock slopes. Based on the comprehensive mechanical background, it is 

expected to be a complementary solution to the kinematic analysis and slope 

performance charts. Also, the numerical workload can potentially be reduced with 

the quick assessment of slopes. It is expected to induce a new understanding in 

developing slope stability methods by numerical simulations instead of the empirical 

tools based on field observations.  



 

 

6 

1.5 Organization of the Thesis 

This dissertation presents a new approach to the assessment of rock slope stability. 

It places special emphasis on the continuum and discontinuum material behavior. In 

Chapter 1, the research's context, importance, and goals are discussed, along with 

the thesis structure and research questions. 

In Chapter 2, the current state of knowledge on slope stability analysis, machine 

learning applications, and geomechanical parameters is thoroughly examined from 

the literature. The chapter offers a comprehensive review, detailing the key concepts 

and theories within the field, and provides a strong foundation for subsequent 

chapters to build upon. 

In Chapter 3, the approach and procedures utilized to determine the geomechanical 

parameters are covered. It discusses the techniques and data collection methods 

employed in this crucial aspect of the research. The following part of the chapter 

describes the numerical analysis techniques used to evaluate slope performance, 

including the models and simulations applied. The chapter delves into a detailed 

discussion of the specific models and simulations used, providing an in-depth 

analysis of their applications. 

Chapter 4 presents a novel and advanced method for analyzing slope stability in 

various scenarios. The method involves utilizing a comprehensive database of 

mechanical indicators that are obtained from numerical investigations. To provide a 

more convenient way of obtaining accurate simulation results, artificial neural 

network (ANN) models are utilized. The ANN models’ performance is validated by 

comparing them to various cases simulated in previous chapters. This chapter also 

provides a detailed comparison and discussion of the recommendations and 

performance of hypothetical cases based on traditional empirical methods, numerical 

analysis, and the ANN models. 
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In Chapter 5, a comprehensive analysis of the research outcomes is presented. The 

exploration of geomechanical parameter determination, numerical analysis, and 

machine learning interpretation is conducted with a detailed discussion of the 

findings. The results obtained from each of these methods are thoroughly examined 

and compared to provide a comprehensive understanding of the research topic. This 

chapter's aim is to offer an in-depth insight into the research outcomes and provide 

a clear understanding of the research's implications. 

The concluding chapter serves as a comprehensive summary of the most significant 

findings of the study and their potential implications. Additionally, the chapter offers 

valuable recommendations for future research directions and practical applications 

that can be derived from the study's outcome. 
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CHAPTER 2  

2 LITERATURE REVIEW 

This section presents a comprehensive review of the literature to point out the 

research gap. The scope is the slope design practice, rock slope failure modes, and 

stability assessments. Previous studies were investigated to outline the current 

research. Historical evolution of computational methods was used as a guide in 

planning the structure of the proposed method. The following sections cover the 

applied and theoretical basis of rock slope stability research.   

2.1 Slope Failure Mechanisms 

According to Morgenstern & Tchalenko (1967), ‘failure’ in the context of a landslide 

refers to the movement that significantly deforms the slope geometry. Experience, 

knowledge, and careful observation can provide valuable insights into the possible 

failure mechanisms of slopes that have already failed or those that are yet to be 

excavated. Identifying the potential failure mechanism is an important step in 

conducting an accurate slope stability analysis, as it enables the use of the most 

effective methods and techniques to address the issue (Öge, 2008).  

Because slope stability depends on a number of factors and they are difficult to 

determine, it is a challenge to accurately estimate the stability of a rock or soil slope 

(Sakellariou & Ferentinou, 2005). 

Ensuring the stability of a slope involves analyzing the driving and resisting forces 

and their interaction. While some factors contribute to the driving forces, others 
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contribute to the resisting forces. Therefore, it is crucial to consider these factors 

when performing a stability assessment for rock slopes (Raghuvanshi, 2019b). 

The stability of slopes is commonly evaluated using the Factor of Safety (FOS), 

which is computed by dividing the resisting forces by the driving forces acting on 

the slope. If the resisting forces are greater than the driving forces, the FOS is greater 

than one, indicating that the slope is theoretically stable. On the other hand, if the 

driving forces exceed the resisting forces, the FOS is less than one, indicating that 

the slope is theoretically unstable (Amirkiyaei & Ghasemi, 2022). 

Slope failure mechanisms can be categorized into two primary types as mass-failure 

and discontinuity driven failure. Mass failure occurs when a large amount of soil or 

rock slides down the slope on a circular surface, while failures driven by 

discontinuities happen when the slope mass is disturbed by geological features such 

as faults, fractures or joints. Understanding these mechanisms is crucial for 

evaluating the stability of slopes and preventing potential hazards. 

2.1.1 Slope Mass-Failure 

Slope stability can be affected by a variety of surface and body forces as well as the 

dynamic loadings. However, gravity has the most significant influence that may 

dominate the failure. The gravitational force acting on a slope is directly proportional 

to its inclination (Raghuvanshi, 2019b). In other words, the steeper the slope, the 

stronger the gravitational force that triggers a soil or rock mass slide, leading to a 

global slope failure. Therefore, understanding the interaction between gravity and 

slope inclination is crucial for predicting and mitigating the risks associated with 

slope instability. 

There are two modes of rock mass failure; circular and non-circular. Circular failure 

occurs when material moves in a circular pattern, while non-circular failure has a 
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pattern that is composed of conjunction of linear sections with various inclination. 

The Figure 2.1 represents a sample circular failure surface (Amirkiyaei & Ghasemi, 

2022).   

 

Figure 2.1 A sample circular failure surface (Amirkiyaei & Ghasemi, 2022) 

Circular failure is not the only possible mode of slope failure for weak or structurally 

disturbed rocks. Structural geology may dominate the shape of the slip surface, 

resulting in a noncircular configuration (Duncan, 1996). A sample for a typical non-

circular failure surface is shown in Figure 2.2. 

Over the years, numerous studies have tackled the noncircular critical slip surface 

search in computational solutions. These studies have aimed to transform the search 

process into an optimization problem (Mafi et al., 2021). 
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Figure 2.2 A sample non-circular failure surface 

2.1.2 Discontinuity Driven Slope Failure 

Discontinuities are another reason for rock slope failure. Sliding potential is largely 

influenced by the shear strength of the contact surfaces. The failure path can be traced 

along a single discontinuity, across two or more discontinuities, or along a 

combination of intersecting discontinuities (Sjöberg, 1996).  

Slope mass involving structural discontinuities may experience a range of failure 

modes. These are the planar failure, where a flat sliding surface forms along a joint 

plane; wedge failure, where a wedge-shaped block detaches from the main rock 

mass; and toppling failure, where an overhanging block rotates and falls away from 

the slope (Mantrala et al., 2021). Those are the common modes of failure in rock 

slopes (Lee & Wang, 2011). 

A plane failure typically occurs in rock slopes that are excavated in stratified 

sedimentary and meta-sedimentary formations. The rock block intersected by a plane 

can mobilize when a structural plane dips or daylights towards the free surface at an 

angle that is smaller than the slope face angle, but greater than the angle of friction 

of the discontinuity surface (Sharma et al., 1995). In other words, it happens when a 
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weakness plane in the rock is oriented in such a way that it dips towards the free face 

with an angle that can no longer support the weight of the rock above it (Tang et al., 

2017). 

The plane failure potential depends on various factors including the inclination of 

the slope, the inclination of the upper slope surface, the height of the slope, the dip 

of the potential failure plane, the presence of tension cracks, as well as the shear 

strength parameters (such as cohesion and angle of friction) of the potential failure 

surface. Additionally, the height of water in tension cracks and horizontal earthquake 

acceleration are also important factors (Raghuvanshi et al., 2015) (Raghuvanshi et 

al., 2014) (Turrini & Visintainer, 1998). The rock block is held in place mainly by 

the shear strength and the weight of the sliding mass that works against it. These two 

forces are the primary factors that resist and prevent the failure of the plane 

(Raghuvanshi, 2019a). A sample view of the plane failure is shown in the Figure 2.3 

(Hoek & Bray, 1981). 

 

Figure 2.3 A typical plane failure (Hoek & Bray, 1981) 

Plane failure occurs rarely and can be considered as a special type of wedge failure. 

There are various geological and geometric conditions that may lead to a wedge 

failure. Therefore, the stability of wedge blocks plays a crucial role in rock slope 

engineering (Wyllie & Mah, 2004).  
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Wedge failure occurs due to intersection of two or more discontinuity planes and the 

sliding block may lead to disastrous consequences if not addressed promptly (Bowa, 

2020). The stability of a wedge block is influenced by the joint strike and the slope 

face strike. Therefore, identification of the structural orientations is crucial for 

evaluating and managing theslope stability (Mantrala et al., 2022). A sample wedge 

failure is illustrated in Figure 2.4 (Hoek & Bray, 1981). 

 

Figure 2.4 A sample wedge failure (Hoek & Bray, 1981) 

Toppling is another discontinuity driven failure mechanism, which was first 

introduced by Ashby (1971) for a single rock block. In rock slopes where steeply 

dipping structural planes exhibit with a similar strike as the slope, the rock pillar may 

bend and lead to the toppling failure (Tao et al., 2019). Toppling is commonly 

observed in natural and man-made rock slopes. They have complex mechanisms and 

the main modes are flexural, blocky, and block-flexure, where the weight of the rock 

columns typically causes them to overturn. Flexural failure occurs when a rock mass 

has only one major discontinuity set, which is steeply dipping into the slope face. In 

this case, the rock columns may bend. Blocky failure occurs when the rock mass has 

an additional discontinuity set, perpendicular to the main set, dividing the rock 

columns into several sub-blocks. The movement of these blocks, whether it is sliding 

or overturning, can lead to a failure mode characterized by the formation of blocky 
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failure. Sometimes, block-flexure failure mode is also observed, which is a 

combination of these two failure modes (Ardestani et al., 2021). A typical 

presentation of the toppling failure is shown in Figure 2.5 (Hoek & Bray, 1981). 

 

Figure 2.5 A sample view of toppling failure (Hoek & Bray, 1981) 

2.2 Slope Stability Assessment 

Rock slope stability deals with the influence of forces on the rock mass. Mainly three 

methods exist for analyzing the stability of rock slopes: conventional methods, 

computational methods, and physical models. Each method has advantages and 

limitations due to slope conditions, application, and expert capabilities 

(Raghuvanshi, 2019b).   

Conventional methods involve the kinematic analysis, limit equilibrium analysis, 

probability analysis and empirical systems. These methods make use of observations 

or assumptions to assess the stability for simple slope geometry. Numerical 

simulation methods, on the other hand, use computational models to simulate the 

behavior of rock slopes under different conditions. These methods can be further 

divided into continuum modeling with finite-element and finite-difference analysis, 

and discontinuum modeling with distinct-element and discrete-element analysis. 

Hybrid modeling techniques may also be used to combine the advantages of both 

continuum and discontinuum models (Tang et al., 2017).  
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In situ measurements and physical model tests involve the measurement and analysis 

of the deformation and stress in the rock mass. These tests provide valuable 

information about the behavior of rock slopes and can help to validate the numerical 

models. 

2.2.1 Empirical Methods 

Empirical techniques are widely used for the preliminary slope stability analysis. 

They are based on experience and observation, enabling quick and efficient decision-

making with a thorough understanding of the slope mass condition  (Singh & Goel, 

2011; Azarafza et al., 2020; Azarafza et al., 2022). 

Mainly for rock mass, various classifications have been developed to quantify the 

slope mass condition, and to recommend measures for reducing the risk of instability. 

Empirical classification systems for geo-materials were first developed by Ritter 

(1879) and Terzaghi (1946).  

In 1946, Terzaghi introduced a quantitative classification system for tunnels 

supported with steel sets in various host rock types. This system provided a more 

comprehensive understanding of the behavior of tunnels under different geologies. 

The system was mostly relying on the expert opinion.  

Based on Terzaghi's method, Lauffer (1958) developed a classification system to 

determine the amount of time a tunnel or underground cavern can remain stable 

without supporting. 

Deere, Hendron, and Patton (1966) and Deere (1970) proposed a new method for 

assessing the quality of a rock mass called the Rock Quality Designation (RQD) 

index which was modified later by Deere & Deere (1988) . The RQD index provides 

a quantitative measure of the degree of fragmentation of a rock mass and it is based 

on the percentage of rock core recovered in lengths greater than 10 cm. The RQD 



 

 

17 

index is used to evaluate the quality and suitability of a rock mass for engineering 

purposes, such as tunneling, slope stability, and foundation design. The higher the 

RQD value, the better the quality of the rock mass and the more suitable it is for 

construction. It defines the rock mass quality in a range of 0 to 100 and the score is 

classified under five quality classes; excellent, good, fair, poor, very poor (Sánchez 

et al., 2021).  

The Q-system for rock mass classification was first introduced by Barton et al. 

(1974). It is widely used for assessing the quality of rock masses. It is based on a 

comprehensive evaluation of geological parameters such as rock strength, joint 

conditions, and groundwater conditions. The system assigns a numerical value, 

known as the Q-index, to the rock mass. This value is then used to provide design 

recommendations and support guidelines. In 2014, modifications were made to 

update the rating system (Barton & Grimstad, 2014). 

After that, Cecil (1975) made modifications to Terzaghi's approach and used it to 

estimate properties of rock masses. In 1976, Bieniawski introduced the Rock Mass 

Rating (RMR) system, a quantitative method for assessing the quality of rock 

masses. The RMR system is based on five basic parameters that are used to evaluate 

the strength, deformability, and other engineering properties of the rock mass. These 

parameters are uniaxial compressive strength of intact rock, rock quality designation, 

spacing of discontinuities, condition of discontinuities and groundwater conditions. 

The RMR system was later updated in 1989 (Bieniawski, 1989) (Figure 2.6), and the 

revised version included additional parameters, such as in situ rock stress, seismicity, 

and the presence of soft or weathered zones. The updated system also provided new 

guidelines for the classification of rock masses into different categories based on 

their RMR values.  
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Figure 2.6 The updated RMR system (Bieniawski, 1989) 
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Over the years, many researchers such as Selby (1980), Chen (1995), Singh & Goel 

(1999), Hack et al. (2003), Romana et al. (2003), and Marinos et al. (2005) have 

proposed different quantification systems for civil and mining engineering purposes. 

Marinos and his colleagues, in their 2005 publication, proposed modifications to the 

Geological Strength Index (GSI) classification system, which was introduced by 

Hoek & Brown in 1997. The revised classification system takes into account 

additional factors that were not included in the original classification, such as rock 

mass disturbance, alteration, and weathering. 

The majority of these classification systems focus on intact material strength (e.g. 

uniaxial compressive strength) and geometrical features of slope mass (Nickmann et 

al., 2006). The stability of a slope is directly influenced by geological conditions, 

which can lead to weathering and reduced durability. However, some classifications 

do not properly consider these factors (Miščević & Vlastelica, 2014). 

The geomechanical classification system was initially created with the aim of mainly 

providing a standardized approach to assess and classify rock masses in underground 

spaces. Over time, the RMR and Q-systems gained prominence and became widely 

accepted as they constitute a foundation for developing specialized classification 

systems for various rock slope engineering purposes (Azarafza et al., 2020)  such as 

Slope Rock Mass Rating (Robertson, 1988), which is used to evaluate the stability 

of rock slopes; the Chinese Slope Mass Rating (Chen, 1995), which is a rock slope 

stability classification system that considers the geological and geotechnical 

characteristics of the slope; Slope Mass Rating (Romana et al., 2003), which is a 

modification of the Rock Mass Rating system that uses a weighted average of the 

Geological Strength Index (GSI) and the Rock Quality Designation (RQD) to 

evaluate the stability of rock slopes; Slope Stability Probability Classification (Hack 

et al., 2003), which is a probabilistic method that uses the factor of safety and the 

probability of failure to evaluate slope stability.  
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Other methods include Continuous Slope Mass Rating (Tomás et al., 2007), which 

is a modification of the Slope Mass Rating system that considers the continuous 

variation of the geological and geotechnical properties of the slope; Fuzzy Slope 

Mass Rating (Daftaribesheli et al., 2011), which is a fuzzy logic-based system that 

considers the uncertainty and vagueness in the geological and geotechnical data; 

Graphical Slope Mass Rating (Tomás et al., 2012), which is a graphical method that 

uses a chart to evaluate the stability of slopes; Slope Stability Rating (Taheri, 2013), 

which is a classification system that uses slope geometry and soil properties to 

evaluate slope stability; Global Slope Performance Index (Sullivan, 2013), which is 

a comprehensive approach that considers various factors such as geological, 

hydrological, and geotechnical properties of the slope to evaluate its stability; and 

Q-slope (Bar & Barton, 2017). 

Some of these systems were specifically developed for open pit mine rock slopes. 

However, these systems are not always effective for weak rocks, which are typically 

composed of clay or other fine-grained materials.  

This is due to the fact that weak rocks often exhibit complex behavior that is not 

adequately captured by existing classification schemes. As a result, these systems 

may not provide an accurate description of the properties and behavior of weak rocks 

(Azarafza, Hajialilue Bonab, et al., 2022). 

2.2.2 Kinematic Analysis 

Kinematics is a branch of physics and it is about the movement of solids. In slope 

engineering, kinematics is concerned with describing the motion of rock blocks 

without considering the forces. Kinematics is sometimes referred as the "geometry 

of motion" because it deals with the spatial relationships between moving objects.  
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In the context of geotechnical engineering and slope stability kinematics refers to the 

examination of potential failure modes and mechanisms based on the geometry of 

slopes. It focuses on understanding the motion of various failure surfaces within a 

slope. Displacement of rock blocks, as well as the potential failure mechanism, is 

governed by the slope kinematics (Donati et al., 2023). A common method for 

analyzing planar intersections is by utilizing the Stereographic projection of 

discontinuities (Kheok & Leung, 1986). This technique involves projecting the 

discontinuities onto a 2D plane to visualize their orientation and interrelationship. In 

particular, planar sliding, toppling, and wedge mechanisms are the three types of 

failures that has potential to occur in slopes (Read & Stacey, 2019). Although there 

are numerous studies on landslides, there is not much research done on rock slope 

kinematics (Kusumayudha et al., 2023). 

Kinematic analysis is a valuable tool for preliminary slope stability assessments and 

it is often used to guide more detailed and comprehensive analyses. It helps engineers 

and geologists understand the geometry of potential failure surfaces and informs the 

design of appropriate stabilization measures. However, kinematic analysis does not 

consider the mechanical properties of the rock mass. Therefore, kinematic analysis 

is often used in conjunction with other methods, such as limit equilibrium analysis. 

2.2.3 Physical Models 

Physical modeling is one of the techniques used to assess the stability of slopes and 

is based on the creation of a scaled physical replica of a rock structure (Khorasani et 

al., 2019). Physical modeling experiments are typically conducted in a laboratory 

setting, where researchers can control and manipulate various parameters to simulate 

the real-world conditions. The intricacy of natural field locations, the challenge of 

gathering data in the field, and the absence of control over boundary conditions have 

all contributed to the growth of laboratory physical modeling techniques. By 
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analyzing the results of physical modeling experiments, geotechnical engineers can 

obtain valuable data about the behavior of slopes under different conditions. Physical 

modelling strategies offer better control over boundary conditions and material 

properties, as well as providing a means for detailed monitoring. Field data collection 

can be difficult due to the complexity of natural environments, making laboratory 

modelling a valuable tool in research (Harris et al., 2008). 

Physical models are often used to study the effects of gravity on the smaller scale. 

Base friction or centrifuge model testing are two methods used to achieve this. By 

replicating the effects of gravity on the model, engineers can investigate and validate 

various numerical approaches related to slope stability analysis. Physical models are 

also useful in identifying any potential issues with the design of the structure and can 

help to optimize the stability of the slope. Overall, physical models play a crucial 

role in ensuring the safety and reliability of structures (Chen, 1995). Physical models 

also can be used to study the failure (Huang et al., 2021). 

However, when analyzing the behavior of physical models, it is important to consider 

the effects of scale.Iif the model consists of blocks with perfectly flat contacts, exact 

geometries, and frictional strength, the scale effects may not be noticeable. In such 

cases, the behavior of the model remains largely consistent regardless of the scale at 

which it is observed. This is due to the fact that the interaction between the blocks, 

which is primarily influenced by the frictional forces and the geometry of the 

contacts, remains unchanged regardless of the size (Alejano et al., 2011). Moreover, 

creating physical models requires a considerable amount of effort and resources, 

including materials, equipment, and skilled labor. This process can be time-

consuming, as it involves multiple stages of design, prototyping, and testing. 

Additionally, the cost of producing physical models can be high, as it requires the 

use of expensive machinery and materials. Furthermore, any errors or design changes 

during the production cycle can result in additional costs and delays. 
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2.2.4 Numerical Methods 

Slope stability has been a research focus since the 1920s, and numerous methods 

have been proposed for analyzing and predicting it (Arya Babu & Chandrakaran, 

2022). One of them is numerical methods, which are critical in assessing slope 

stability, providing insight into failure mechanisms and complex interactions. 

Various numerical techniques are commonly utilized in geotechnical engineering for 

slope stability analysis. These are mainly Finite Element Method (FEM), Finite 

Difference Method (FDM), Distinct Element Method (DEM), Boundary Element 

Method (BEM) and Limit Equilibrium Method (LEM). 

FEM is a numerical technique that is commonly used for modeling complex 

geometries and material behaviors. It works by dividing the object or structure being 

analyzed into small elements, which makes it possible to analyze local stress and 

strain conditions. By utilizing interpolation functions, the FEM assumes that 

accurate displacements at any point within the element can be obtained from the 

displacements at the nodes (Bobet et al., 2009). FEM is particularly well-suited for 

analyzing materials that are heterogeneous or anisotropic and for taking into account 

nonlinear soil behavior and various boundary conditions. This method is highly 

versatile and can be employed in a variety of scenarios involving complex 

geometries, diverse materials, seepage, consolidation, and other coupled 

hydrological and mechanical phenomena (Arya Babu & Chandrakaran, 2022). Its 

flexibility makes it a valuable tool for tackling complex hydro-mechanical problems 

that may arise in various fields of engineering and science. 

FDM is a numerical technique that involves dividing the slope into a grid and 

approximating the differential equations with finite differences. This method is 

particularly useful in modeling dynamic processes that change over time. FDM is 

commonly employed for analyzing slope stability and can accurately simulate 

variations in slope conditions over time. 
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DEM is a technique that involves modeling the movements and interactions of 

individual particles or blocks within a slope. It is highly effective in analyzing 

materials that are considered discontinuous, such as rock masses and soils containing 

cracks, fractures, or voids (Lin et al., 2022). By simulating the behavior of jointed 

rock masses, DEM modeling can provide valuable insights into the stability of slopes 

and the potential impact of discontinuities on their stability. 

BEM is a numerical technique that divides the domain of a slope into two parts: the 

interior and the exterior, along the boundary. It is an effective approach for solving 

problems with well-defined boundaries and complex geometries, such as 

excavations and foundations. By separating the interior and exterior, BEM simplifies 

the analysis of the slope's behavior and allows for precise calculations of stresses and 

displacements. 

LEM is a widely-used technique for assessing the stability of a slope. It works by 

analyzing potential failure surfaces and evaluating the equilibrium conditions of the 

slope. This approach simplifies complex problems into a set of equilibrium 

equations, making it a popular method for routine stability analyses. Its simplicity 

and ease of use make it a reliable tool for engineers and geologists. 

PFC is a computer modeling software that is based on the principles of DEM. It is 

designed to simulate the movement and interactions of individual particles within a 

slope. PFC is predominantly used to study the behavior of granular materials, such 

as soil and rock, and help understand the underlying micro mechanics that govern 

their behavior (Cundall & Strack, 1979). In other words, it provides an in-depth 

analysis of how individual particles interact with each other and how these 

interactions can affect the overall behavior of a slope. 

Additionally, there are hybrid approaches like discrete and finite element 

modeling (Havaej et al., 2014). However, the most common slope stability analysis 

methods are FEM and LEM (Griffiths et al., 2004). It is important to note that the 
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Limit Equilibrium Method (LEM) does not account for the stress-strain relationship 

and simplifying assumptions affects their accuracy (Feng et al., 2018). Despite this 

limitation, LEM is still the most widely used approach in geotechnical engineering 

due to its simplicity and capacity of evaluating the overall stability and finding the 

most critical failure surface (Mafi et al., 2021). FEM holds a significant edge over 

LEM due to its advanced capability of calculating the stress state before mining 

starts. This feature enables FEM to predict the behavior of rocks at much greater 

details than LEM. As a result, FEM provides a more comprehensive analysis of the 

rock's behavior and is highly preferred in geological engineering (Read & Stacey, 

2019). 

2.2.5 Novel Methods 

Geomechanics problems often involve complex and dynamic systems, and 

traditional methods may not always provide reliable solutions. In recent years, 

machine learning algorithms have emerged as a powerful tool to address these 

challenges. By analyzing large amounts of data, machine learning can identify 

patterns and relationships that traditional methods might miss. 

There are several categories of machine learning, each with its own unique approach. 

The four main categories are supervised, unsupervised, semi-supervised, and 

reinforcement learning (Tehrani et al., 2022). Out of these, supervised and 

unsupervised learning methods are the most widely used (Alamri, 2022). The 

learning type and algorithms are shown in the Figure 2.7.  
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Figure 2.7 Types of machine learning (Alamri, 2022) 

Supervised learning algorithms are an essential subset of machine learning, which 

involve analyzing and predicting labeled datasets. They are used to train machines 

to learn from input and target variables so that they can map inputs to corresponding 

outputs. These algorithms are designed to continue learning until they achieve the 

desired level of accuracy on the training data. The model's validity is then assessed 

through testing on unseen data (Tehrani et al., 2022). In other words, supervised 

learning involves the use of raw data to design a function that can make predictions 

or decisions based on new input data (Wojtecki et al., 2022). There are various 

supervised learning algorithms, including Decision Trees, Tree ensembles, such as 

Random Forest and Gradient Boosting algorithms like AdaBoost, XGBoost, and 

others, support vector machines, and artificial neural networks including multi-layer 

perceptron neural nets and supervised deep learning algorithms. 

Unsupervised learning is a type of machine learning where the objective is to analyze 

and derive insights from data without the need for a target or label variable. The 

focus is on understanding the inherent structure of the data and identifying patterns, 

relationships, and similarities that may not be immediately apparent. One common 



 

 

27 

application of unsupervised learning is clustering, which involves grouping 

populations of data into distinct categories, subgroups, or clusters. This can be useful 

for identifying specific interventions or for making predictions about future data. 

Hierarchical clustering, K-means, and Density-Based Spatial Clustering of 

Applications with Noise (DBSCAN) are examples of unsupervised learning 

algorithms that can be used for clustering. Deep learning algorithms can also be 

applied to unsupervised learning tasks. Generative deep learning algorithms such as 

autoencoders and generative adversarial networks (GANs) can be used to learn 

representations of data without explicit supervision (Tehrani et al., 2022). 

The application of Artificial Intelligence (AI) techniques in predicting slope stability 

also has gained widespread recognition and acceptance due to their numerous 

benefits. Soft computing methods, including Artificial Neural Networks (ANNs), 

Support Vector Machines (SVMs), Evolutionary Polynomial Regression (EPR), and 

Fuzzy Logic Systems, are used to obtain accurate predictions. ANNs, for instance, 

are capable of learning from past data and can model complex non-linear 

relationships, while SVMs are known for their ability to handle high-dimensional 

data and classify data points into different categories. EPR is a type of regression 

analysis that combines polynomial equations and genetic algorithms, while Fuzzy 

Logic Systems utilize fuzzy sets to represent uncertain and imprecise information. 

One of the primary advantages of these AI techniques is that they do not require any 

prior knowledge of specific model forms, making them flexible and adaptable to 

different scenarios. They are also capable of modeling non-linear relationships and 

can outperform traditional methods in terms of accuracy and efficiency (Arya Babu 

& Chandrakaran, 2022). 

There are lots of research about using ANN in slope modelling. As an example, in 

2003,  Lu & Rosenbaum conducted a study on slope stability using artificial neural 

networks (ANN) to estimate the factor of safety (FoS) and shear strength against two 

failure mechanisms: circular and wedge. They relied on historical data collected by 
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Sah et al. in 1994 to train and test the ANN models. The study found that the ANN 

models were able to accurately predict the FOS and SS of slopes against these failure 

mechanisms. 

Das et al. conducted a study in 2011, where they aimed to develop models that can 

accurately predict the factor of safety (FoS) and state of slopes that are at risk of 

circular failure. To achieve this, they created several artificial neural network (ANN) 

models and trained them using three distinct methods: Bayesian regularization 

(BRNN), differential evolution algorithm (DENN), and Levenberg-Marquardt 

(LMNN). These methods had different approaches towards training the ANN 

models. Bayesian regularization aimed to reduce overfitting by incorporating prior 

knowledge, while the differential evolution algorithm sought to optimize the model's 

parameters. The Levenberg-Marquardt algorithm is a widely used method that 

attempts to minimize the difference between the predicted and actual output values. 

Rukhaiyar et al. (2018) aimed to predict the factor of safety (FoS) of slopes using a 

hybrid model that combined artificial neural networks (ANN) and particle swarm 

optimization (PSO). To achieve this, they compiled a database of 83 natural slopes 

from various studies and used them to train the model. Another study by Qi & Tang 

(2018) was focused on predicting slope stability using six different machine learning 

algorithms, namely logistic regression (LR), decision tree (DT), random forest (RF), 

gradient boosting machine (GBM), support vector machine (SVM), and artificial 

neural network (ANN). They also applied firefly algorithm (FA) for hyper-parameter 

tuning. The study database consisted of 148 slope cases collected from five published 

research works. By comparing these six integrated artificial intelligence approaches 

based on metaheuristic and machine learning algorithms, Qi and Tang aimed to 

identify the most effective method for predicting SS and its influencing variables. 
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With its ability to analyze vast amounts of data and identify complex relationships, 

machine learning has the potential to be useful in geomechanics and provide more 

accurate and reliable solutions to complex problems. 

2.3 Previous studies 

Slope stability analysis is a challenging and complex process that involves evaluating 

the soil and rock properties, analyzing the slope geometry, and identifying potential 

failure mechanisms. Furthermore, the academic importance of slope studies lies in 

advancing our understanding of geological processes and phenomena, which can 

lead to the development of new theories and models for predicting slope behavior. 

As such, slope studies continue to be an essential and evolving field of research that 

contributes to the safety and sustainability. In this manner, some of the studies from 

literature about slope stability are presented in this section. 

Sonmez et al. (1998) addressed the difficulty of determining shear strength 

parameters in closely jointed rock masses, proposing a practical back-analysis 

method with a computer solution for failed slopes. It acknowledges the limitations 

of conventional approaches in such rock formations, introducing adjustments for 

discontinuity orientation. Three practical examples demonstrate the method's 

application, showing consistency between back-calculated and predetermined values 

of Rock Mass Rating (RMR) with constants. The study concludes that the proposed 

method serves as a practical tool for back-analyzing slopes in jointed rock masses, 

verifying rock mass ratings obtained from field and laboratory data. It suggests 

potential modifications in describing rock mass parameters for slopes. While 

expressing confidence in the Hoek-Brown failure criterion, the authors anticipate 

that applying the proposed method to additional case histories will enhance its 

accuracy and contribute to refining the understanding of jointed rock mass behavior. 



 

 

30 

Sonmez & Ulusay (1999) focus on improving the Geological Strength Index (GSI) 

classification scheme, especially for poor-quality rock masses in their study. It 

introduces quantitative terms like 'structure rating' and 'surface condition rating' to 

enhance GSI's precision, incorporating easily measurable parameters. The modified 

GSI chart is applied to five slope instability cases, confirming its effectiveness in 

geotechnical engineering. The study suggests that spoil pile materials can be 

classified as disintegrated rock masses in the GSI system, and the modified Hoek-

Brown equations allow for estimating shear strength parameters for such materials. 

The authors acknowledge differing preferences among geologists and engineers 

regarding the GSI system's descriptive nature. Emphasizing the need for a better 

understanding of jointed rock mass behavior, the authors confidently endorse the 

Hoek-Brown failure criterion. They hope that applying the suggested modifications 

to various case histories will refine guidelines and validate the equations used by the 

non-linear failure criterion. 

Hack (2002) highlighted in his article that some inherited properties and parameters 

from older systems may better suit for underground excavations than for surface 

applications like slopes. Additionally, the repeatability and reliability of 

classifications can be challenging due to difficulties in determining certain 

parameters. The article suggests that the question of the "best" system is subjective, 

with each developer advocating for their own. However, it encourages a more modest 

perspective, acknowledging that newer systems are generally an improvement based 

on experiences with older ones. 

In his study, Cheng (2003) presented a new way of analyzing slope stability. The 

technique involves using simulated annealing to locate critical failure surfaces, both 

circular and non-circular, under general conditions. This method proves to be 

efficient and effective in handling even complex cases. The way to distinguish 

between circular and non-circular modes is by the number of control variables and 

criteria on kinematically acceptable mechanisms. The users can specify the precision 
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of the global minimum, which is not found in other methods. Furthermore, the author 

proposes a new method for determining the factor of safety without requiring an 

initial trial factor. Although this method requires more computations than classical 

iterative analysis, it avoids convergence issues, especially for complex problems like 

deep-seated non-circular failure surfaces. When combined, these techniques offer a 

simple and automated solution to slope stability problems. This makes it useful for 

both research and practical engineering scenarios. 

Hammah et al. (2004) conducted a study to determine the factor of safety of slopes 

using the "shear strength reduction" method through finite element analysis. The 

method involves reducing the shear strength parameters in a step-wise manner until 

the slope becomes unstable. The results obtained were compared with those obtained 

using the limit equilibrium method. The comparison showed that FEM outputs were 

consistent with the LEM analyses. 

Cala et al. (2004) conducted a study to see the difference between the Modified 

Stress-Strain Reinforcement (MSSR) method and Limit Equilibrium Method (LEM) 

for slope stability analysis. Unlike LEM, MSSR does not require assumptions about 

the shape and location of the slip surface, allowing it to consider multiple possible 

failure surfaces. However, the conclusion acknowledges that MSSR comes with 

certain limitations, including the need for a correct interpretation of multiple slip 

surfaces, requiring a thorough understanding of the failure mechanism. 

Sakellariou & Ferentinou (2005) focused on dynamic slope stability assessment, 

aiming to understand the significance of various parameters and estimate the safety 

factor (FS) against circular and wedge failure mechanisms. Artificial Neural 

Networks (ANNs) were employed to predict the safety factor and stability for each 

failure mechanism. These networks, trained on diverse datasets, demonstrated 

success in capturing the relationships between input and output parameters. The use 

of ANN was highlighted for its advantage in handling multivariate problems, as they 
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do not require prior knowledge of the relationships and can accurately assess non-

linear connections between parameters. 

Baker (2006) studied the relation between safety factor, height and strength of slopes. 

In the study, it is mentioned that safety factors with respect to shear strength are 

acknowledged as useful but only hold clear physical significance at failure when they 

are equal to 1. The study establishes a simple analytical relation between safety 

factors with respect to strength and height through variational analysis. These 

alternative safety factors provide measures for slope stability, with the safety factor 

with respect to height offering clearer physical interpretation compared to shear 

strength-based factors. 

Stead et al. (2006) emphasize the diverse range of tools available for analyzing rock 

slopes, particularly highlighting the significance of advanced numerical codes for 

simulating a realistic rock slope failure. They underscore the importance of 

considering brittle behavior and internal deformation in deforming rock slopes, 

influenced by a combination of yield and fracturing. The paper discusses the 

potential of discrete-element and hybrid finite/discrete-element codes in analyzing 

total slope failure, from initiation to deposition. To advance the application of these 

techniques, the authors suggest the need for improved rock slope characterization, 

encompassing both input properties and deformation instrumentation. They identify 

key issues for further research, including time-dependent or progressive rock slope 

failure, the role of cumulative internal damage, the influence of groundwater pore 

pressures on deformation, and scale effects related to rock mass strength and 

groundwater. While advanced numerical models have gained wider acceptance, the 

authors stress the importance of balancing their development with an increase in the 

quantity and quality of engineering geological field data. Good geological and 

geotechnical data are deemed essential for most numerical analyses, and the 

collaboration between engineers and geologists is crucial to maximize the use of 

current rock slope numerical models. 
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Cheng & Lau (2014) examined the results for SRM and LEM and it was found that 

the FOS and critical failure surfaces determined by both methods are quite similar 

for different combinations of soil parameters in most cases, except when friction 

angle is equal to 0. When the friction angle is greater than 0, the majority of FOS 

values calculated by SRM differs by less than 7.4% compared to the LEM results. 

Liu et al. (2015) compared the Factor of Safety (FOS) and critical slip surfaces 

obtained from the Limit Equilibrium Method (LEM) and two finite element methods 

(ELSM and SRM) in the analysis of representative two-dimensional slope examples. 

Assuming the associated flow rule, the critical slip surfaces from the finite element 

methods and LEM generally align well, with the FOS from LEM slightly lower than 

the finite element methods. Notably, the SRM is identified as the most time-

consuming solution, requiring multiple separate finite element analyses. 

Neves et al. (2016) mention that the comparison of FEM and LEM has revealed 

significant differences in the o Factor of Safety values for purely granular materials. 

The LEM methods overestimate the slope's FoS by up to approximately 40%. 

However, in cohesive materials, the differences are mainly between 5% and 10%. 

Among the LEM methods, Janbu's simplified method produced the majority of MoS 

with the best correlation with the FEM results, specifically for cohesive soils. The 

differences between the MoS obtained from Janbu's method and the FEM results 

were mainly below 5%. Moreover, the correlation between this LEM method and the 

FEM results improved with a greater applied surcharge and a slacker slope. 

In 2019, Raghuvanshi conducted a study on the various factors that affect the 

stability of slopes. The study analyzed 17 slope sections across different geological 

and geographical environments to identify the factors that influence rock slopes. To 

assess the relative importance of eight governing factors on the factor of safety (FoS), 

the study conducted statistical analyses, including sensitivity analysis and ANOVA. 

The eight factors that were studied include: slope inclination, upper slope surface 
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inclination, dip of potential plane failure, tension crack, slope height, cohesion, angle 

of friction, and height of water in tension crack. The results of the study indicate that 

all eight factors significantly affect the factor of safety, with variations in their 

relative importance observed among different slope types. The most statistically 

significant factors that emerged were dip of potential failure plane, water in tension 

crack, slope inclination, and slope height. Tension crack, angle of friction, upper 

slope surface inclination, and cohesion also played significant roles but were 

relatively lower in importance. 

Gao et al. (2020) developed a hybrid model using artificial neural network and 

imperialist competition algorithm to predict the stability of slopes. The results 

showed that the hybrid model had a high-performance level, with R2 and RMSE 

values of (0.9998 and 0.0017) and (0.9998 and 0.0017), respectively, for the training 

datasets, and (0.9988 and 0.0018) and (0.9987 and 0.0019) for the testing datasets. 

Azarafza et al. (2021) presented a comprehensive systematic review of kinematical 

and limit equilibrium-based methods (LEMs) used in the analysis of stability in 

discontinuous rock and heavy jointed rock or soil-like lithologies. They indicated 

that LEMs, known for their flexibility, can be integrated with newer procedures like 

numerical and hybrid methods for efficient and rapid slope stability assessments. 

Looking ahead, Block theory, especially with Goodman's theorem, is identified as a 

robust approach for quantifying discontinuous rock slopes and evaluating stability 

conditions. 

Ardestani et al. (2021) developed a computer program called TOPPLE2 that analyzes 

complex toppling slope failures which is mentioned in their article. It takes into 

account external loads such as groundwater and seismic forces to assess the stability 

of slopes. The program uses limit equilibrium equations to identify the possible 

toppling failure mechanisms in a defined slope and examine its stability. The 

accuracy and performance of TOPPLE2 were tested using case studies, which 
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showed good agreement between analytical and numerical solutions and the results 

obtained in TOPPLE2.  

Marrapu et al. (2021) utilized an artificial neural network (ANN) to forecast slope 

stability. The findings make it evident that the ANN can accurately predict slope 

stability only when it is trained with high-quality and sufficient training data. Arya 

Babu and Chandrakaran (2022) compared the novel artificial neural network (ANN) 

approach with the conventional slope stability analysis techniques, which are limit 

equilibrium and the finite element method. 192 different slopes with six input 

parameters (unit weight of soil, cohesion, angle of internal friction, angle of slope, 

height of slope and pore water ratio) were used. The study found that all three 

methods provide factor of safety values that are very close to the actual FoS. On the 

other hand, FEM tends to give a slightly higher FoS value compared to LEM. 

Additionally, a slope stability prediction which was carried out using the ANN 

model, yielded an R2 value of 0.99473 and 0.99801 for the training and testing sets, 

respectively. 

Azarafza et al. (2022) have developed a Limit Equilibrium Method (LEM)-based 

approach to assess the stability of slopes, specifically those comprised of weak 

materials like marls. The method, established through field surveys, geomechanical 

recording, and experiments, considers geotechnical and geological characteristics to 

accurately estimate instability conditions. The study focused on forty slopes in the 

South Pars special zone in southwestern Iran, resulting in the creation of stability 

charts. These charts, based on weathering conditions, provide insights into slope 

stability, angle of response, and shear strength of marls. The LEM methodology is 

applied to estimate the Factor of Safety in these charts, facilitating quick decisions 

in early-stage stability assessments based on slope angle, height, weathering degree, 

and geo-material type. 
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Idris (2022) evaluated the stability of abandoned laterite borrow pits in southwest 

Nigerian residential areas. Using a probabilistic method, the intrinsic variability of 

laterite soil was taken into consideration. Based on input parameters, the 

FLAC/Slope numerical analysis code computed factor of safety and simulated slope 

stability. An artificial neural network (ANN) was developed to link FoS with input 

parameters. A performance function that enables the prediction of the probability of 

slope failure using Monte Carlo simulations was constructed by integrating the ANN 

model with a critical FoS. 

Jaiswal et al. (2023) studied slope stability through rock mass classification and 

kinematic analysis of some major slopes in Himalayas. The study evaluated the 

stability of 14 major slopes along NH 1-A in the Ramban district in the North 

Western Himalayas, an area prone to sliding. Rock mass classification systems and 

kinematic analyses were employed to identify stable zones and their susceptibility to 

sliding. The analysis revealed that seven slopes exhibit planar failure, one has 

toppling failure, and six have wedge failure. Toppling and wedge failures are 

predominant in granitic gneiss, while planar failure occurs in slate, phyllite, and 

schist rock types. The stability of slopes is mainly influenced by one or two 

discontinuity planes, with RMR values ranging from 37 to 74, indicating varying 

rock mass qualities from poor to good. Field investigations incorporated 

modification values of the Geological Strength Index (GSI) to assess slopes' 

conditions, resulting in SMR and CoSMR values indicating unstable to partially 

stable conditions, and SSR values calculated under dynamic and static conditions. 

The Q-slope approach categorized eight slopes as stable, four as uncertain, and two 

as unstable. An empirical equation establishing a correlation between RMR and SSR 

with a high coefficient of determination (R2 value of 0.815) was developed. The 

overall findings suggest that most slopes in the study area are unstable and highly 

susceptible to failure, providing a foundation for further numerical analysis to 

identify critical slopes. 
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The studies conducted in the past have not comprehensively examined all the 

possible failure mechanisms simultaneously that can lead to slope failure. Moreover, 

most of the studies neglected upper slope inclination. Furthermore, these studies 

have also failed to offer any safety factor values and the failure type at the same time 

for any given slope, which is crucial for ensuring the safety of slopes. 
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CHAPTER 3  

3 NUMERICAL ANALYSIS OF SLOPE PERFORMANCE 

Rock slope stability has been investigated in various scales with monitoring 

instrumentations and  computational methods. In-situ measurements on field scale 

trial excavations can shed light on similar cases with the utmost accuracy in terms of 

slope performance. However, investigation of different geomechanical and structural 

conditions can be costly and time-consuming. Alternatively, laboratory scale 

physical models sacrifice the material similarity but provide an overall insight about 

the slope mass behavior. Under these circumstances, computational simulations are 

favorable as they can be easily adopted to obtain detailed performance indicators for 

various scenarios involving complex geology and excavation sequences. Parametric 

studies provide the necessary background for developing a methodology for stable 

slope design.  

This section presents the design and implementation of numerical simulations that 

investigate the slope performance with various specifications.In the pre-processing 

stage, the model layouts and the geomechanical parameters for continuous 

deformable bodies and discontinuity surfaces were determined. Commonly accepted 

rock mass quality classes were considered to be representative for intermediate 

conditions. Potential slope failures were evaluated by finite element and limit 

equilibrium methods. Characteristics of the mass and discontinuity driven failures 

were taken into account for selection of the suitable analysis technique. In this aspect, 

limit equilibrium method (LEM) and finite element method (FEM) were used for 

continuum models of mass failure. Discontiniuty-driven failures were only 

investigated by LEM. The following sections describes the determination of the 
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settings for computational model like the material models, geomechanical properties, 

model geometry and boundary conditions. 

3.1 Determination of Geomechanical Parameters 

Mechanical inputs control the material behavior under load in computational models. 

A realistic simulation requires a representative and reliable input data set for the 

geological materials. Despite in-situ experiments provide the best results they are 

both costly and labor-intensive. Hence, empirical approaches are commonly 

employed to determine the elastic and plastic properties for the rock mass. This study 

preliminarily focuses on representing various geomechanical properties to provide a 

basis for a unified slope stability analysis method. Continuum and discontinuum 

material models were characterized for hypothetical rock mass and structural 

surfaces to cover a wide range of problem domains in mass and discontinuity-driven 

slope failures.  

3.1.1 Model Input Parameters for Continuous Slope Material 

In a parametric study, the range and increment of input variables should be 

constrained regarding the computational limitations. In this study, five rock mass 

classes were identified with different geomechanical characteristics and named as 

MP1, MP2, MP3, MP4, and MP5 where ‘MP’ stands for the ‘Material Property’. Rock 

mass quality was indicated in terms of the RMR system developed by Bieniawski 

(1989) (Figure 2.6). Better rock mass quality conditions were associated with higher 

strength and stiffness properties. The highest quality class was labeled as MP1 and 

the following classes indicate the rock mass with degrading mechanical properties. 

Table 3.1 presents the rock mass geomechanical parameters for the five distinct 

classes used in the current study. 
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Table 3.1 Rock mass properties for the mass failure numerical models 

Parameters Rock Mass Quality Classes 

MP1 MP2 MP3 MP4 MP5 

Geological Strength Index (GSI) 90 70 50 30 20 

Rock Mass Quality Description 
Very 

Good 
Good Fair Poor 

Very 

Poor 

Unit Weight, γ (MN/m3) 0.026 0.026 0.026 0.026 0.026 

Modulus of Elasticity, E (MPa) (a) 9200 3855 3536 2500 670 

Poisson’s Ratio, ν 0.25 0.25 0.25 0.25 0.25 

Uniaxial Compressive Strength 

UCS (MPa) (b) 
55.0 10.4 3.8 2.5 0.8 

P
ea

k
 

Cohesion, c (MPa) 11.4 2.7 1.1 0.8 0.3 

Internal Friction Angle, φ (°) (c) 45 35 30 25 15 

Tensile Strength, T (MPa) (d) 5.5 1.0 0.4 0.3 0.1 

R
es

id
u

a
l 

Cohesion, c (MPa) (e) 7.6 1.8 0.7 0.5 0.2 

Internal Friction Angle, φ (°) (f) 30 23 20 17 10 

Tensile Strength, T (MPa) (g) 3.7 0.7 0.3 0.2 0.1 

Dilation Angle (°) (h) 5 4 3 3 2 

 

Geological Strength Index (GSI) (Hoek & Brown, 1997) system was employed to 

associate the mass quality with the modeling parameters. Literature involves various 

correlations of rock mass quality and intact rock properties with the modulus of 

elasticity, uniaxial compressive strength, tensile strength, cohesion and internal 

friction angle. However, each approach has certain limitations regarding the 

conditions they cover. Considering the drawbacks of each method this study makes 
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adjustments and assumptions on the input parameter set based on expert view. Elastic 

and plastic parameters are mainly calculated according to the Hoek & Diederichs 

(2006) and the Hoek and Brown criterion (Hoek & Brown, 2019). The following 

section highlights the major steps of calculation for the parameters listed in Table 

3.1. 

First, the RMR scores were determined for each material class and the representative 

GSI scores were calculated according to equation (1). 

                                𝐺𝑆𝐼 = 𝑅𝑀𝑅 − 5      (for RMR>25) (1) 

Based on the RMR System table intact rock strength was determined (Bieniawski, 

1989). Next, the modulus of elasticity for the intact rock was calculated from the 

modulus ratio, which depends on laboratory tests that propose a certain relationship 

between the UCS and Ei. Later on, the rock mass modulus of elasticity (a) was 

calculated with the Generalised Hoek & Diedrichs method (2006) (equation 2) for 

the very good and good rock classes. For the other rock classes, Hoek, Carranza-

Torres and Corkum’s method was used (Corkum et al., 2002)  (equation 3) where; 

Erm= Elastic modulus of rock mass, Ei= Elastic modulus of intact rock,  D= 

Disturbance factor. 

𝐸𝑟𝑚 (𝑀𝑃𝑎) = 𝐸𝑖 (0.02+
1−D/2

1+𝑒
(
60+15𝐷−𝐺𝑆𝐼

11
)
) (2) 

𝐸𝑟𝑚(𝐺𝑃𝑎) = (1 −
𝐷

2
) × √

𝜎𝑐𝑖

100
10((𝐺𝑆𝐼−10)/40) (for σci<100 MPa)  (3) 

 

Uniaxial compressive strength of the rock mass (b) was calculated from the equation 

4, where φ is internal friction angle and c is cohesion. 
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𝑈𝐶𝑆 =  2𝑐𝑡𝑎𝑛 (45 +
90 − 2𝜙

2
) (4) 

Rock mass internal friction angles (ϕ) were adjusted regarding the recommendations 

in RMR table (Bieniawski, 1989). Rock mass tensile strengths (d) were calculated 

according to Sheorey (1997) who claims that the UCS is typically up to 10 times 

greater for many rock types. For the post failure stage, a softening model was 

assumed for all the material classes. The residual values denoted by (e), (f) and (g) 

were assumed to be equivalent to two-thirds of the corresponding peak values and 

dilation angles were taken as one-tenth of the respective internal friction angles. 

3.1.2 Model Input Parameters for Structural Discontinuities 

Mechanical characteristics of discontinuities were identified in terms of three joint 

classes named as JMP1, JMP2, JMP3 where “JMP” stands for the “Joint Material 

Properties”. JMP1 represents the joint properties for almost smooth or slickensided 

surfaces with a high tendency to slide. Slightly rough and very rough surfaces were 

included in JMP2 and JMP3 classes. The joint material parameters are given in Table 

3.2. 

Table 3.2 The joint material properties used in the LEM models 

Joint Material 

Properties Cohesion (MPa) Friction Angle (°) Joint Roughness 

Coefficient (JRC)  

JMP1
 0.2 35 4 

JMP2
 0.5 38 9 

JMP3
 0.8 54 19 

The cohesion and friction angle of JMP1 (Agharazi et al., 2012), JMP2 (Agharazi et 

al., 2012) and JMP3 (İşleyen, 2017) were defined regarding the literature that 

establish a correlation between the joint roughness coefficient (JRC) and the 

mechanical properties. JRC has a range of  1 to 20 (Barton & Choubey, 1977); 
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however, this study associated only three of these values to the determined joint 

classes (4 for JMP1, 9 for JMP2 and 19 for JMP3). Each class represents a unique 

shear strength and provides a basis for the computation of slope safety factor in 

plane, wedge, and toppling mechanisms. Finally, expert view was considered to 

adjust the joint sliding models and the outputs were used in the analysis of 

discontinuity-driven failures.   

3.2 The Model Geometry and Boundary Conditions 

Computational models were prepared regarding a parameter set that constitute the 

representative slope geometry and structural conditions conforming to the failure 

mode. For an open pit excavation, the geometrical inputs include the slope height 

(Figure 3.1), overall slope angle, upper face inclination and pit bottom width. 

Besides, the model extents were designed based on the specifications of the 

computational methods. Geological complexities were aimed to be ignored in this 

study. Therefore, a homogeneous, isotropic and continuous material was 

implemented in the slope mass and host rock. Geomechanical configurations were 

arranged to represent only some significant conditions. Structural discontinuities 

were also designed only for some significant orientations. The following section 

covers the model geometry for mass-driven and discontinuity-driven failures. 

 

Figure 3.1 An example representation of slope height and overall slope angle 
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3.2.1 FEM Models for Mass Failure Analysis 

A 2D plane strain code was employed for the FEM models. The external dimensions 

were determined regarding the excavation induced stress gradient. Considering the 

variation in slope height and large number of models in the parametric study, the 

model height was set to be 5 times the pit depth and the model width was arranged 

to be 10 times the ultimate pit extent. The pit bottom was fixed to 50 m in all models. 

A sample model view is given in Figure 3.2.  

 

Figure 3.2 A sample FEM model 

For the boundary conditions, the left and right bottom corners were fixed in both x 

and y directions to stop the body motion. The side walls were restrained only in x 

direction and the bottom was fixed only in y direction. The model top representing 

the topographical surface was set free in any direction.  

The slope models were implemented in Rocscience RS2 software. Considering its 

improved performance, the model body was meshed with six noded triangles and a 

fine mesh density was allocated around the slope mass. A sample discretized and 

meshed model for slope design can be seen in Figure 3.3. 
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Figure 3.3 A sample model with FEM mesh and boundary conditions  

FEM models were computed using the ‘shear strength reduction (SSR)’ method that 

provides a slope safety factor based on the degradation ratio of the strength and 

stiffness parameters.  

In addition, stress and deformation can be observed to comment on the potential 

failure mechanism. The FEM models aim to examine the impact of geometrical and 

geomechanical variations on the slope stability. The model outputs with mechanical 

indicators were used to create a methodology to assess the slope stability under 

different conditions. 

A total of 630 models were used to generate a comprehensive dataset of 3150 

mechanical outputs, including critical factor of safety, maximum total displacement, 

and maximum shear strain. Data gathering steps are explained thoroughly in the 

following section. 

The models were designed to include all meaningful combinations of input 

parameters. The slope height ranged from 50 to 300 meters, and the overall slope 

angle was studied between 10° to 80° with a 10° increment.  
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Additionally, three upper face inclination angles (0°, 10°, and 20°) and five different 

material properties were investigated. The range of model input parameters are 

shown in Table 3.3.  

Table 3.3 Finite element model input parameters 

Model Input Parameters Range 

Slope Height, (m) 50 100 150 200 250 300   

Overall Slope Angle, (°) 10 20 30 40 50 60 70 80 

Upper Face Inclination, (°) 0 10 20      

Material Property MP1 MP2 MP3 MP4 MP5    

Three mechanical readings were recorded from each model. The maximum total 

displacements (Figure 3.4) and the maximum shear strains (Figure 3.5) were traced 

around the slope mass.  

 
Figure 3.4 A sample maximum total displacement reading view from model 
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Figure 3.5 A sample maximum shear strain reading view from model 

Critical factor of safety was manually determined by investigating the model 

interpretations and considering the critical strain for the related material classes. All 

the simulations were assumed to be in dry conditions. 

3.2.2 LEM Models for Mass Failure Analysis 

Another step of slope mass failure investigation was LEM modeling to determine the 

factor of safety. This method relies on force and moment equilibrium of the slices 

constituting the slope mass. The slices are assumed to be rigid and the output is a 

slope factor of safety. Compared to the FEM-SSR simulations, this method lacks in 

computation of stress and deformations. The FEM model geometry was used in LEM 

models to investigate only circular and non-circular failure modes. Multiple 

stochastic failure surfaces were generated using search algorithms and the factor of 

safety was calculated for each of them. The failure surface with the least safety factor 

was considered in each case. To generate random failure surfaces, slope search 
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algorithm was used for circular failure, and path search algorithm was opted for the 

non-circular failure analysis. The computational models were implemented in 

Rocscience Slide2. Figure 3.6 shows a sample view of the LEM models. 

 

Figure 3.6 A sample LEM model 

A dataset involving the slope safety factor for circular and non-circular failure modes 

were generated from 1260 models. The model settings and material properties were 

the ones shown in Table 3.3 that were also used in the FEM models.  

Commonly two techniques are used in evaluating the slope safety factor for cohesive 

soils: the Bishop method, and the Janbu method. The Bishop method takes into 

account the interactions between adjacent slices and is capable of analyzing failures 

in cohesive soils. The Simplified Bishop method assumes that the forces between the 

slices are horizontal, but it has the drawback of being an iterative process and is less 

accurate in stratified soils. The Janbu method disregards the vertical and tangential 

components of the slices. However, it is particularly suitable for analyzing non-

circular slip surfaces (Pereira et al., 2016).  In this study, safety factors were 
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calculated by the Bishop Simplified Method (Bishop & Morgenstern, 1960) for 

circular failure and Janbu Simplified Method (Janbu, 1973) for non-circular failure 

analysis. 

3.2.3 LEM Models for Plane Failure Analysis 

Planar slide of discontinuity surfaces was analyzed using LEM based computational 

simulations in Rocscience RocPlane software. A sample model view is presented in 

Figure 3.7. 

 

Figure 3.7 A sample view of planar slide analysis 

Slope safety factors were calculated for a total of 342 models. Similar to the 

continuum models parametric studies were covered for various input parameters 

such as the slope height ranging from 50 to 300 meters, and seven different overall 

slope angle (OSA) between 20° to 80°. Additionally, simulations were conducted 

with five different discontinuity plane angles between 15° to 75° and three different 
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joint strength properties. The intervals of the model input parameters are shown in 

Table 3.4. 

Table 3.4 Input parameters for plane failure models 

Model Input Parameters Range 

Slope Height, (m) 50 100 150 200 250 300  

Overall Slope Angle, (°) 20 30 40 50 60 70 80 

Failure Plane Angles, (°) 15 30 45 60 75   

Joint Material Property JMP1 JMP2 JMP3     

 

Model design limitations are decided regarding the characteristics of plane failure 

and listed as follows; 

• Failure plane angle must be less than overall slope angle 

• Failure plane angle must be higher than upper face inclination. 

The overall slope angle range started from 20° since the minimum failure plane angle 

was set to 15°. The upper face inclinations besides the horizontal surface were also 

modelled, but the findings point out that it is not significantly controlling the slope 

safety factor.  

3.2.4 LEM Models for Wedge Failure Analysis 

Wedge failure mode in rock slopes was analyzed using LEM based computational 

simulations in Rocscience RocSwedge software. A sample wedge failure model is 

given in Figure 3.8. 
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Figure 3.8 A sample wedge failure model 

The parametric study explores 3547 models for the slope safety factors under 

different discontinuity orientations and shear strength characteristics.  

Design parameters include the slope height, slope dip, discontinuity dip, the 

difference between slope dip direction and the dip direction of the first discontinuity 

plane, the difference between slope dip direction and the dip direction of the second 

discontinuity plane, and joint shear strength. The range of input parameters are 

shown in Table 3.5. 

Table 3.5 Input parameters for wedge failure models 

Model Input 

Parameters 
Range 

Slope Height, (m) 50 100 150 200 250 300      

Slope Dip, (°) 10 20 30 40 50 60 70 80    

Dip of the First 

Discontinuity, (°) 
15 30 45 60 75       

Dip of the Second 

Discontinuity, (°) 
15 30 45 60 75       
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Table 3.5 (continued)           

The Difference of 

Slope Dip Direction 

and the First 

Discontinuity Plane, 

(°) 

30 60 90 120 150 180 210 240 270 300 330 

The Difference of 

Slope Dip Direction 

and the Second 

Discontinuity Plane, 

(°) 

30 60 90 120 150 180 210 240 270 300 330 

Joint Shear 

Strength Class 
JMP1 JMP2 JMP3         

 

3.2.5 LEM Models for Toppling Failure Analysis 

Finally, toppling failure was also included in the parametric study and implemented 

Rocscience RocTopple software using LEM. Two different toppling modes were 

investigated, which were block toppling (Figure 3.9) and flexural toppling (Figure 

3.10).  

 

Figure 3.9 A sample block toppling view from limit equilibrium model 
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Figure 3.10 A sample block flexure toppling view from limit equilibrium model 

Slope safety factor was calculated for different slope geometries and discontinuity 

conditions in 4262 models. The model parameters were slope height, overall slope 

angle, joint material property, discontinuity spacing, discontinuity dip, and overall 

base inclination. The range of input parameters are given in Table 3.6. 

Table 3.6 Input parameters for toppling failure models 

Model Input Parameters Range 

Slope Height, (m) 50 100 150 200 250 300   

Overall Slope Angle, (°) 10 20 30 40 50 60 70 80 

Toppling Joints Spacing, (m) 1 3 5 7 10    

Toppling Joints Dip, (°) 11 20 30 40 50 60 70 80 

Overall Base Inclination, (°) 10 20 30 40 50 60 70 79 

Joint Material Property JMP1 JMP2 JMP3      
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Regarding the toppling mechanism, the models were subject to certain limitations 

as listed below:  

• Overall base inclination must be less than the overall slope angle. Since 

maximum OSA was set to 80°, maximum overall base inclination was limited 

by 79° on the upper extreme. 

• Overall base inclination must be greater than the (90° - Toppling Joint Dip). 

Since maximum overall base inclination was 79°, minimum toppling joints 

dip were restricted by 11°. 

The joint shear strength characteristics were assigned to the base joints, toppling 

joints, and internal rock joints. 

3.3 Interpretation of Numerical Simulations 

FEM and LEM models were used to assess the slope performance with different 

geomechanical, structural and geometrical considerations. While FEM can provide 

mechanical outputs in terms of stress, strain and displacements, LEM calculates the 

slope safety factor. In this study, the slope performance indicators were traced and 

recorded in Excel spreadsheets to create a database, which will serve as a basis for 

the proposing an alternative slope stability analysis method. The sample layouts of 

the Excel sheets for each analysis type can be seen between Table 3.7 - Table 3.12. 

Table 3.7 Layout of the spreadsheet involving FEM outputs for mass failure 

Model 

Name 

Slope 

Height (m) 

Overall 

Slope Angel 

(OSA) (°) 

Material 

Property 

Upper Face 

Inclination 

(°) 

Factor of 

Safety 

Max. Total 

Displacement 

(m) 

Max. Shear 

Strain 
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Table 3.8 Layout of the spreadsheet involving LEM outputs for mass failure  

Model Name 
Slope 

Height (m) 

Overall 

Slope Angel 

(OSA) (°) 

Material 

Property 

Upper Face 

Inclination 

(°) 

 

Factor of Safety  

Circular 
Non-

Circular 

       

       

 

Table 3.9 Layout of the spreadsheet involving LEM outputs for plane failure 

Model Name 
Slope Height 

(m) 

Overall Slope 

Angel (OSA) (°) 

Joint Material 

Property 

Failure 

Plane Angle 

(°) 

Factor of 

Safety 

      

      

 

Table 3.10 Layout of the spreadsheet involving LEM outputs for wedge failure  

Model 

Name 

Slope 

Height 

(m) 

Slope 

Dip 

(°) 

Joint 

Material 

Property 

Combination 

Failure Plane 1 Failure Plane 2 

Factor 

of Safety Dip 

(°) 

The Difference 

Between Slope Dip 

Direction and 

First Failure Plane 

Dip Direction (°) 

Dip 

(°) 

The Difference 

Between Slope Dip 

Direction and Second 

Failure Plane Dip 

Direction (°) 

         

         

 

Table 3.11 Layout of the spreadsheet involving LEM outputs for block toppling 

failure  

Model 

Name 

Slope 

Height 

(m) 

Overall 

Slope 

Angle 

(°) 

Base and 

Bedding 

Strength 

Combination 

Toppling Joints 
Overall Base 

Inclination (°) 

Factor 

of 

Safety 
Spacing 

(m) 
Dip (°) 
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Table 3.12 Layout of the spreadsheet involving LEM outputs for block flexure 

toppling failure 

Model 

Name 

Slope 

Height 

(m) 

Overall 

Slope 

Angle 

(°) 

Base and 

Bedding 

Strength 

Combination 

Internal 

Rock Joint 

Strength 

Toppling Joints Overall 

Base 

Inclination 

(°) 

Factor 

of 

Safety 
Spacing 

(m) 
Dip (°) 

         

         

Similar to the LEM models for mass failure FEM analyses provided the safety factor 

by SSR method. SSR gradually reduces the shear strength properties by a certain 

factor until the model becomes unstable. In this study, the SSR factors were searched 

with an increment of 0.1. Figure 3.11 shows a sample simulation. 

 

Figure 3.11 A sample FEM model with SSR analysis 
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To decide on the critical SSR factor, the maximum shear strain localizations were 

traced as shown in the Figure 3.5.  

The maximum total displacement values were extracted from data queries as 

illustrated in Figure 3.4. 

In the LEM models, the safety factor was obtained for each case as shown in the 

Figure 3.12 and Figure 3.13. 

 

Figure 3.12 A sample view of safety factor values obtained from a mass failure 

model with LEM 
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Figure 3.13 Sample views of safety factor values obtained from a plane (a), wedge 

(b), block toppling (c) and block flexure toppling (d) failure model 
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CHAPTER 4  

4 MACHINE LEARNING SCHEME FOR THE INTERPRETATION OF 

NUMERICAL MODELS 

This chapter presents the development of a machine learning model for predicting 

slope performance based on the parametric computational simulations. Structure of 

the artificial neural network (ANN) model and the training database involving the 

mechanical indicators of slope performance under various conditions were explained 

in detail. The trained model was proposed to be used as a preliminary tool in 

predicting the slope performance. Furthermore, benchmark cases were generated to 

test the quality of the proposed ANN model. The predictions were compared with 

the numerical simulation outputs to check the model validity. 

4.1 Overview of the Machine Learning Assisted Slope Stability Model 

Conventional statistics may perform poorly in correlating multiple variables with 

nonlinear relationships. Artificial intelligence can discover complex data 

relationships without suffering the computational efficiency. Considering slope 

stability is dependent on complex geological, geomechanical and structural 

variables, novel approaches can be expected to perform better compared to the 

classical statistics analysis such as multivariable regression. Recently, Artificial 

Neural Networks (ANN) are commonly used in geomechanics for prediction and 

forecasting. ANN can identify data patterns and relationships without explicit 

instructions. Both experiments and expert opinions can be integrated in the 

prediction model involving weighted neurons in multiple layers. ANN mimics the 
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structure of a biological brain in terms of processing and analyzing the data to make 

predictions and decisions (Agatonovic-Kustrin & Beresford, 2000).  

This study makes use of feed-forward backpropagation technique to train a machine 

learning model for slope stability. The technique is popular and efficient due to its 

capability to improve network predictions over time. The feedback loop helps the 

network learn from its mistakes and adjusts its internal parameters to achieve better 

results. Back-propagation neural networks are widely used because they have a 

simple background and are easy to implement (Shan et al., 2022). 

Recent research focuses on the optimization of learning process by generating 

computationally efficient algorithms. The Levenberg-Marquardt algorithm is one of 

them that works iteratively to solve nonlinear problems (Kelley, 1999). 

Computational experiments prove that Levenberg-Marquardt algorithm contributes 

to faster convergence and also improves the accuracy (Deshpande et al., 2022).  

The network is composed of neurons that adjust the correlation regarding the data 

feed. The hyperbolic tangent sigmoid transfer functions were used in The Levenberg-

Marquardt backpropagation training algorithm to obtain an improved predictive 

capacity (Javed et al., 2015). 

Numerical outputs of the parametric slope simulations were used to train the ANN 

model. In each iteration, the internal parameters were adjusted through 

backpropagation and the network minimized the difference between the predicted 

and provided values. This process makes the network more dependable and precise 

in making future predictions. 

After establishing the model, its performance was evaluated through regression 

analysis. The accuracy of the network's predictions was compared to numerical 

simulation outputs. Regression plots were used to check the accuracy of the 

predictive model. R value (the Pearson Product Moment correlation coefficient 
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(Russo, 2021)) is often considered a measure for the precision of statistical models. 

A high value of R is accepted to represent success of the ANN model and the quality 

of its training data. In this study, the regression plots were planned to include the 

correlation for training, validation, and test stages. 

Figure 4.1 shows the network prototype representing the fundamental components 

with control parameters such as weight (W) and bias (b) for the plane failure case in 

this study. Other ANN model structures were represented in the Appendix E. These 

variables are adjusted during the training phase, in order to optimize the network's 

success. 

At the beginning of the training process, random values are assigned to the neuron 

weights. Iterations of the training stage evolves the weights based on the input/output 

relationships. Once the output meets the desired requirements, the training stops and 

the network uses the ideal weights to make decisions (Afram et al., 2017).  

The computational cost of model training is directly related to the neuron number. 

Therefore, the optimal number of hidden neurons was chosen by trial and errors 

(Jahirul et al., 2021). 

 

Figure 4.1 ANN model structure for plane failure 

In this study, the number of hidden layers determined to maximize the R value for 

each slope failure mode are represented in Table 4.1. Three different ANN models 

were trained for mass failure using the FEM model outputs to predict the maximum 

total displacement, maximum shear strain and safety factor.  
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Moreover, two models were compiled for mass failure based on LEM models and 

safety factors for circular and non-circular failure.  

Table 4.1 Number of hidden layers for each slope failure type 

Failure Type Output 
Number of 

Hidden Layers 

Mass Failure with FEM 

Factor of Safety 6 

Maximum Total 

Displacement 
9 

Maximum Shear 

Strain 
11 

Mass Failure 

with LEM 

(circular) Factor of Safety 6 

(non-circular) Factor of Safety 7 

Plane Failure Factor of Safety 6 

Wedge Failure Factor of Safety 12 

Toppling Failure  

Block Toppling Factor of Safety 6 

Block Flexure 

Toppling 
Factor of Safety 6 

A total of 10041 computational models and 90658 outputs (Table 4.2) were used to 

create a database to train ANN models predicting the slope performance regarding 

failure modes. 
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Table 4.2 Number of models, number of inputs and input parameters for ANN 

models 

Failure Type 
Number of 

Models 

Number of 

Inputs 
Input Parameters 

Mass Failure with FEM 630 8 
GSI, E, c, φ, T, H, OSA, 

UFI 

Mass Failure 

with LEM 

(circular) 630 8 
GSI, E, c, φ, T, H, OSA, 

UFI 

(non-circular) 630 8 
GSI, E, c, φ, T, H, OSA, 

UFI 

Plane Failure 342 5 
c, φ, H, OSA, FPA 

Wedge Failure 3547 10 

c1, c2, φ1, φ2, H, OSA, 

FPD1, FPD2, FPDD1, 

FPDD2 

Toppling 

Failure  

Block 

Toppling 
2815 9 

c1, c2, φ1, φ2, H, OSA, 

TJS, TJD, OBI 

Block Flexure 

Toppling 
1447 9 

c1, c2, φ1, φ2, H, OSA, 

TJS, TJD, OBI 

 

The ANN models were trained using the neural net fitting tool in MATLAB. The 

models were divided into three sets: 70% for training, 15% for validation, and the 

remaining 15% for testing.  

Following the training stage, a network function and regression plots were obtained 

for each slope failure mode. Finally, a total of nine different codes were generated 

and respective regression plots were obtained. 
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4.2 Interpretation of the ANN Models 

This section presents the interpretation of ANN models. An extensive procedure of 

training, validating and testing were applied to the ANN model. In model training, 

testing and validation stages 90658 input entries were processed. the model inputs 

comprised of geometrical, geomechanical and structural parameters.  

ANN model revealed the nonlinear relationship between these inputs and the slope 

performance indicators like strain, displacement and safety factor. 

In order to decide on the optimal hidden layer number, each model was tested on a 

range of 1-25 layers and the highest R values were determined. A sample view 

showing the implementation and structure of ANN can be seen in Figure 4.2.  

The figure involves the hidden layers, training algorithm, number of data used for 

each stage (training, validation and testing), R values, mean squared error values and 

regression plots of the model.  

The trained model is stored in terms of a MATLAB function and regression plots 

were checked to see the quality of the model. A good model was defined to have an 

R value higher than 90% indicating low error rate in ANN model predictions. 
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Figure 4.2 Sample ANN model training and validation in MATLAB 

The trained model function was used later on to carry out additional quality checks 

on benchmarking cases. This methodology was aimed to replace the geomechanical 

simulations explained in the previous sections within the range of training parameter 



 

 

68 

set and for cases which were not mechanically simulated. Also, the ANN model was 

aimed to provide a quick prediction with low error instead of precise solutions with 

long numerical run-time  

In this thesis, a total of nine ANN models and trained functions were designed to 

evaluate the stability of slopes. Out of these nine models, seven of them focused on 

determining the safety factors for slope failures. Additionally, one of the model 

functions was dedicated to finding the maximum total displacement values in slope 

mass failures, while the other one was used to calculate the maximum shear strain in 

slope mass failures.  
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CHAPTER 5 

5 RESULTS AND DISCUSSION 

This section presents the results of the mechanical simulations and evaluates the 

performance of the proposed slope design method for different slope failure modes. 

The parametric FEM and LEM model outcomes were visualized through 

conventional 2D plots. 

5.1 FEM Simulation Outputs of Rock Slope Mass Failure  

Firstly, the FEM models of slope mass failure providing the maximum total 

displacement, the maximum shear strain, and the factor of safety are explained in 

detail. A total of 630 simulations were run to obtain 1890 data points. The results for 

MP3 are displayed in the following Figures 5.1 and 5.2.  

The rest of the graphs are represented in the appendices A and B. All models with 

MP1 provide a safety factor greater than 2.0. Therefore, the plots for MP1 were not 

presented.  

The graphs indicate the correlation between the maximum total displacement and the 

corresponding slope safety factor regarding the geomechanical characteristic of the 

rock mass. The same approach was followed for the maximum shear strain vs. slope 

safety factor plots. 
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Figure 5.1 a) The maximum total displacement vs. OSA and b) slope safety factor 

vs. OSA plots for MP3 rock mass characteristics obtained from FEM simulation of 

slope mass failure 

 

Figure 5.2 a) The maximum shear strain vs. OSA and b) slope safety factor vs. OSA 

plots for MP3 rock mass characteristics obtained from FEM simulation of slope mass 

failure 

The data trend presents a clear decrease in slope safety factor with increasing overall 

slope angle. Additionally, there is a slight decrease in safety factors as the upper face 

inclination increases. These findings suggest that there may be increased risk in 

slopes with steeper slope angles and upper face inclination. 
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Numerical experiments point out that weak rock mass properties in RS2 FEM 

simulations may lead to convergence problems as the code is not suitable for large 

deformation simulations. RS2 is capable of simulating the early stages of a failure 

rather than the covering entire failure involving body motion and progressive plastic 

deformations. Particularly in rock quality classes like MP4 and MP5, which are 

respectively weaker and tend to lead more displacements, the numerical difficulty in 

covering the entire failure is clear. However, non-convergence still provides 

insightful information about the slope stability. Table 5.1 presents the model settings 

that end up with non-convergence.   

Table 5.1 Slope FEM models settings with non-convergence problem 

UFI 0° 

H (m) MP1 MP2 MP3 MP4 MP5 

50 none none none none 80° 

100 none none none none 40° 

150 none none none 80° 30° 

200 none none 80° 60° 20° 

250 none none 70° 50° 20° 

300 none none 60° 50° 20° 

*UFI 10° 

50 none none none none 70° 

100 none none none none 40° 

150 none none none 80° 30° 

200 none none 80° 60° 20° 

250 none none 70° 50° 20° 

300 none none 60° 50° 20° 

*Note: Minimum OSA is 20° since UFI is 10° 

**UFI 20° 

50 none none none none 30° 

100 none none none none 30° 

150 none none none 70° 30° 

200 none none 80° 60° 30° 

250 none none 70° 50° 30° 

300 none none 60° 50° 30° 

**Note: Minimum OSA is 30° since UFI is 20° 
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5.2 LEM Simulation Outputs of Rock Slope Mass Failure  

Similar to the FEM plots, slope safety factor was also plotted for the LEM models. 

The database involves a total of 1260 simulations with equal numbers of models for 

circular and non-circular failure. The results for MP3 were presented in Figure 5.3. 

For other rock mass material properties’ results mentioned in appendices C. Since 

all the safety factor are higher than 2.0 for MP1 and MP2, these graphs were not 

given. 

 

Figure 5.3 Slope safety factor vs. overall slope angle plots a) for circular and b) for 

non-circular failure surface from LEM simulations for MP3 rock mass material 

properties 

Based on the graphical representations, it is apparent that the safety factor values in 

LEM are considerably higher when compared to those in FEM. That is due to the 

assumptions of these modeling techniques. While LEM assumes rigid slices 

constituting the slope FEM makes stress and deformation solutions for deformable 

bodies. Moreover, when comparing circular surfaces to non-circular surfaces under 

the same conditions, circular surfaces exhibit lower safety factors. 
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5.3 LEM Simulation Outputs of Discontinuity Driven Rock Slope Failure  

This section presents the results of discontinuity-driven rock slope failures. For the 

plane failure, a total of 342 models were computed and a safety factor was calculated 

for the major discontinuity dominating the slope stability. The slope safety factors 

for JMP1 were given in the Figure 5.4. The other plane orientations were given in the 

appendices D, which illustrate the relationships between the overall slope angle, the 

joint material property, and slope height. 

 

Figure 5.4 JMP1 safety factor values for planar slope failure 

Based on the graphs, it was observed that the factor of safety tends to decrease as the 

height of the slope and overall slope angle increases for the same plane angle. 

Moreover, different upper face inclinations were also modelled and computed for 

planar failures. However, safety factor values did not change with the increase of 

upper face inclination until 20°. So, the results for those models are not presented.   

After planar failure, wedge failure was also investigated in a total of 3547 models. 

The models were computed to get the safety factors where wedges form on the slope 
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mass. The simulations outputs were tabulated. However, due to the wide range of 

inputs and outputs, the wedge failure simulations could not be visualized using 

traditional 2D or 3D graphical tools. Table 5.2 represents only a subset of the entire 

dataset. 

Table 5.2 A small set of wedge failure data set 

Slope 

Height 

(m) 

Slope 

Dip 

(°) 

Joint 

Material 

Property 

Combination 

Failure Plane 1 Failure Plane 2 
Factor 

of 

Safety 

(FoS) 

Dip 

(°) 

The Difference of Slope 

and First Failure Plane 

Dip Directions (°) 

Dip 

(°) 

The Difference of Slope 

and Second Failure Plane 

Dip Direction (°) 

… … … … … … … … 

200 80 JMP1-1 30 270 30 330 1.9 

200 80 JMP1-1 30 300 30 330 1.9 

200 80 JMP1-1 30 330 30 30 1.8 

200 80 JMP1-1 45 30 30 330 1.6 

200 80 JMP1-1 45 60 30 330 1.9 

200 80 JMP1-1 45 90 30 30 1.6 

200 80 JMP1-1 45 120 30 30 1.7 

200 80 JMP1-1 45 60 45 330 1.5 

200 80 JMP1-1 60 30 30 300 1.8 

200 80 JMP1-1 60 30 30 330 1.4 

200 80 JMP1-1 60 60 30 330 1.7 

200 80 JMP1-1 60 90 30 30 1.9 

200 80 JMP1-1 60 120 30 30 1.6 

200 80 JMP1-1 75 30 30 300 1.8 

200 80 JMP1-1 75 30 30 330 1.5 

200 80 JMP1-1 75 60 30 330 1.7 

200 80 JMP1-1 75 30 45 270 1.9 

200 80 JMP1-1 75 30 45 300 1.3 

200 80 JMP1-1 75 30 45 330 0.9 

200 80 JMP1-1 75 60 45 300 1.8 

200 80 JMP1-1 75 60 45 330 1.2 

200 80 JMP1-1 75 90 45 30 1.4 

200 80 JMP1-1 75 90 45 330 1.7 

200 80 JMP1-1 75 300 60 30 1.0 

200 80 JMP1-1 75 300 60 60 1.5 

200 80 JMP1-1 75 330 60 30 0.7 

200 80 JMP1-1 75 330 60 60 1.1 
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Table 5.2 (continued) 

200 80 JMP1-1 75 330 60 90 1.6 

200 80 JMP1-1 75 30 75 270 1.5 

200 80 JMP1-1 75 30 75 300 1.3 

200 80 JMP1-1 75 30 75 330 1.3 

200 80 JMP1-1 75 60 75 300 1.4 

200 80 JMP1-1 75 60 75 330 1.3 

… … … … … … … … 

 

As the height of a slope increases and the slope angle becomes steeper, the safety 

factor of the slope decreases for the same failure plane orientations. In other words, 

the higher and steeper the slope, the more likely it is to experience a wedge failure. 

Additionally, wedge failures were modeled with varying upper face inclinations. 

However, safety factor values remained constant until 20°, so results for those 

models were excluded. 

Finally, two toppling modes were investigated, which were block toppling and block 

flexure toppling. A total of 2815 block toppling models and 1447 block flexure 

toppling models were computed.  

However, similar to the wedge failure, the safety factors could not be plotted due to 

the variety and wide range of inputs. Instead, the entire dataset was presented in a 

table.  

In Table 5.3, a small subset of the entire database, which covers only the slope height 

of 300 m, overall slope angle of 50° and base and bedding joint material parameters 

of JMP1 was shown for block toppling failure.  
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Table 5.3 A small set of block toppling failure database 

Slope 

Height 

(m) 

Overall 

Slope 

Angle 

(°) 

Base and 

Bedding 

Strength 

Combination 

Toppling Joints Overall 

Base 

Inclination 

(°) 

Factor 

of 

Safety 

(FoS) 
Spacing 

(m) 
Dip (°) 

… … … … … … … 

300 50 JMP 1-1 1 80 10 0.7 

300 50 JMP 1-1 3 80 10 0.8 

300 50 JMP 1-1 5 80 10 0.8 

300 50 JMP 1-1 7 80 10 0.8 

300 50 JMP 1-1 10 80 10 0.9 

300 50 JMP 1-1 1 70 20 0.8 

300 50 JMP 1-1 3 70 20 0.8 

300 50 JMP 1-1 5 70 20 0.8 

300 50 JMP 1-1 7 70 20 0.9 

300 50 JMP 1-1 10 70 20 0.9 

300 50 JMP 1-1 1 60 30 1.0 

300 50 JMP 1-1 3 60 30 1.0 

300 50 JMP 1-1 5 60 30 1.1 

300 50 JMP 1-1 7 60 30 1.1 

300 50 JMP 1-1 10 60 30 1.1 

300 50 JMP 1-1 1 50 40 1.2 

300 50 JMP 1-1 3 50 40 1.2 

300 50 JMP 1-1 5 50 40 1.2 

300 50 JMP 1-1 7 50 40 1.2 

300 50 JMP 1-1 10 50 40 1.2 

300 50 JMP 1-1 1 41 49 3.6 

300 50 JMP 1-1 3 41 49 3.6 

300 50 JMP 1-1 5 41 49 3.6 

300 50 JMP 1-1 7 41 49 3.6 

300 50 JMP 1-1 10 41 49 3.6 

… … … … … … … 

 

It can be observed that the factor of safety increases with an increase in the spacing 

between toppling joints. On the other hand, a decrease in the overall base inclination 
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and an increase in the dip of toppling joints lead to a decrease in the factor of safety 

while other variables remain constant. Similarly, a higher slope height and overall 

slope angle result in a lower factor of safety. 

When it comes to block flexure toppling, there is an additional variable to consider 

known as joint strength. Similar to block toppling failure, safety factors were 

computed and small subset of the entire database shown in the Table 5.4.  

Table 5.4 A small part of the block flexure toppling failure’s outputs 

Slope 

Height 

(m) 

Overall 

Slope 

Angle 

(°) 

Base and 

Bedding 

Strength 

Combination 

Internal 

Rock 

Joint 

Strength 

Toppling Joints Overall 

Base 

Inclination 

(°) 

Factor 

of 

Safety 

(FoS) Spacing (m) 
Dip 

(°) 

… … … … … … … … 

300 50 JMP 1-1 JMP 1 3 80 10 1.4 

300 50 JMP 1-1 JMP 1 5 80 10 1.1 

300 50 JMP 1-1 JMP 1 7 80 10 1.1 

300 50 JMP 1-1 JMP 1 10 80 10 1.1 

300 50 JMP 1-1 JMP 1 3 70 20 1.3 

300 50 JMP 1-1 JMP 1 5 70 20 1.1 

300 50 JMP 1-1 JMP 1 7 70 20 1.0 

300 50 JMP 1-1 JMP 1 10 70 20 1.0 

300 50 JMP 1-1 JMP 1 1 60 30 1.4 

300 50 JMP 1-1 JMP 1 3 60 30 1.4 

300 50 JMP 1-1 JMP 1 5 60 30 1.4 

300 50 JMP 1-1 JMP 1 7 60 30 1.3 

300 50 JMP 1-1 JMP 1 10 60 30 1.2 

300 50 JMP 1-1 JMP 1 3 50 40 1.2 

300 50 JMP 1-1 JMP 1 5 50 40 1.2 

300 50 JMP 1-1 JMP 1 7 50 40 1.2 

300 50 JMP 1-1 JMP 1 10 50 40 1.2 

300 50 JMP 1-1 JMP 1 3 41 49 3.6 

300 50 JMP 1-1 JMP 1 5 41 49 3.6 

300 50 JMP 1-1 JMP 1 7 41 49 3.6 

300 50 JMP 1-1 JMP 1 10 41 49 3.6 

… … … … … … … … 
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For block flexure toppling, the results of the models indicate that when the spacing 

between toppling joints increase, the safety factor decreases. Conversely, if the 

overall base inclination decreases and the dip of toppling joints increases, the factor 

of safety increases, assuming other variables remain constant. Moreover, a higher 

slope height and overall slope angle result in a lower factor of safety. 

5.4 Validation of ANN Model for Rock Slope Stability Prediction 

Increasing size and complexity of datasets reveals the weaknesses of conventional 

2D graphs for representing relationships between multiple variables. These graphs 

often too complex to interpret the data trend, and in some cases, they cannot even be 

drawn. Moreover, in a crowded dataset it difficult to identify the intermediate 

conditions.  

The parametric study in this research generated a rich database comprising of slope 

performance indicators. Regarding the variety of input and output variables, the 

conventional methods of data interpretation would be expected to be useless. 

Therefore, alternative techniques are required for developing this new slope stability 

analysis method, which is based on reliable computational simulations.  

As stated before, ANN is opted for training a statistical predictor for slope stability. 

Each slope failure mode was trained using MATLAB-ANN toolbox. This way, non-

linear equations for accurately predicting the safety factors, maximum total 

displacement (applicable only for FEM mass failure), and maximum shear strain 

(applicable only for FEM mass failure) were generated with an acceptable R value 

denoting the correlation in between the model prediction and simulation outputs.  

In order to ensure the accuracy and reliability of the models, an additional stage of 

testing was established using benchmark cases. This involved generating a series of 

test cases to check the quality of the prediction. The benchmark cases were designed 
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to cover a broad range of possible. Once the benchmark cases were executed, the 

results from the computational models and the ANN predictions were compared. 

Regression graphs were created to analyze the correlation between the two models, 

and a determination coefficient was calculated to measure the strength of their 

relationship. 

  

  

Figure 5.5 Regression plots showing the correlation between ANN predictions and 

FEM simulations of slope safety factor for mass failure 
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The Figure 5.5, Figure 5.6 and Figure 5.7 show the regression plots and R values in 

the training, testing, and validation stages obtained from ANN. These plots indicate 

that the R values for the factor of safety range from 96% to 98%, while for maximum 

total displacement they range from 91% to 95% and for maximum shear strain they 

range from 95% to 98%. 

  

  

Figure 5.6 Regression plots showing the correlation between ANN predictions and 

FEM simulations of maximum total displacement for slope mass failure  
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Figure 5.7 Regression plots showing the correlation between ANN predictions and 

FEM simulations of maximum shear strains for slope mass failure  

Following the ANN, a Matlab script was utilized to evaluate the trained machine's 

prediction capability through 5 different benchmark cases which includes factor of 

safety, maximum total displacement and maximum shear strain as outputs. The 

benchmark cases are detailed in Table 5.5. Subsequently, the numerical model 

outputs were analyzed in conjunction with the ANN predictions through regression 
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analysis. Comparisons were drawn between these two sets of data, and the results 

were illustrated in Figure 5.8 for mass failure.  

Table 5.5 Benchmark cases for FEM mass failure 

Case 

No 

Inputs Outputs 

Slope 

Height 

(m) 

OSA 

(°) 

Material 

Property 

UFI 

(°) 

Factor of 

Safety 

Max. Total 

Disp. (m) 

Max. Shear 

Strain 

FEM ANN FEM ANN FEM ANN 

1 300 50 MP2 10 2.1 2.3 1.37 1.39 0.020 0.029 

2 150 50 MP3 10 1.8 1.9 0.87 0.78 0.019 0.017 

3 100 60 MP4 0 1.5 1.8 0.08 0.08 0.005 0.004 

4 150 50 MP4 0 1.3 1.5 0.14 0.25 0.008 0.009 

5 100 30 MP5 0 1.0 1.2 0.31 0.44 0.023 0.028 

 

a)

  

b)

 

c)  

Figure 5.8 FEM mass failure benchmark cases’ regression plots for a) factor of 

safety, b) maximum total displacement and c) maximum shear strain    
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The correlations were 97% for factor of safety, 97% for maximum total displacement 

and 89% for maximum shear strain which means strong correlations and ANN results 

perform well. 

For LEM mass failure, the regression plots and R values in training, testing and 

validation stages that were from ANN were presented in the Figure 5.9 and Figure 

5.10 and the plots show that R values are around 99% for circular failure and around 

96% for non-circular failure. 

  

  

Figure 5.9 Regression plots showing the correlation between ANN predictions and 

LEM simulations of slope safety factor for circular failure 
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Figure 5.10 Regression plots showing the correlation between ANN predictions and 

LEM simulations of slope safety factor for non-circular failure  

Another 5 different benchmark cases were determined for LEM mass failure. The 

benchmark cases are detailed in Table 5.6 and regression analysis were shown in 

Figure 5.11 for mass failure.  
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Table 5.6 Benchmark cases for LEM mass failure 

Case 

No 

Inputs Outputs 

Slope 

Height 

(m) 

OSA 

(°) 

Material 

Property 

UFI 

(°) 

Factor of Safety 

(Circular) 

Factor of Safety 

(Non-circular) 

LEM ANN LEM ANN 

1 300 50 MP1 20 7.5 7.3 7.0 8.0 

2 250 60 MP2 10 3.3 3.8 3.3 2.2 

3 250 70 MP3 0 1.5 1.8 1.5 1.5 

4 200 40 MP4 10 2.0 2.2 1.8 1.8 

5 100 40 MP5 0 1.3 1.3 1.2 1.3 

 

a) 

 

b) 

 

Figure 5.11 LEM mass failure benchmark cases’ regression plots for a) circular 

failure, b) non-circular failure 

The correlations between numerical model outputs and ANN predictions were 98% 

for circular failure and 94% for non-circular failure. 

For plane failure, the regression plots and R values in training, testing and validation 

stages that were from ANN were presented in the Figure 5.12 and the plots show that 

R values are around 99%. 
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Figure 5.12 Regression plots showing the correlation between ANN predictions 

and LEM simulations of slope safety factor for planar failure  

Another 5 different benchmark cases were determined for plane failure. The 

benchmark cases are detailed in Table 5.7 and regression analysis were shown in 

Figure 5.13.  
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Table 5.7 Benchmark cases for plane failure 

Case 

No 

Inputs Outputs 

Slope 

Height 

(m) 

OSA 

(°) 

Joint 

Material 

Property 

Failure 

Plane 

Angle 

(°) 

Factor of Safety 

LEM ANN 

1 250 60 JMP3 45 2.5 2.5 

2 300 50 JMP2 30 1.9 1.6 

3 250 50 JMP1 30 1.5 1.5 

4 200 60 JMP1 45 1.1 1.0 

5 100 70 JMP1 45 1.2 1.0 

 

 

Figure 5.13 Plane failure benchmark cases’ regression plot 

The correlation was 94% which means strong correlation between numerical model 

outputs and ANN predictions for plane failure. 

For wedge failure, the regression plots and R values in training, testing and validation 

stages that were from ANN were presented in the Figure 5.14 and the plots show that 

R values are between 42-61%. 
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Figure 5.14 Regression plots showing the correlation between ANN predictions and 

LEM simulations of slope safety factor for wedge failure  

In addition, 5 different benchmark cases were determined for wedge failure. The 

benchmark cases are detailed in Table 5.8 and regression analysis were shown in 

Figure 5.15.  
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Table 5.8 Benchmark cases for wedge failure 

Inputs Outputs 

Case 

No 

Slope 

Height 

(m) 

Slope 

Dip 

(°) 

Joint 

Material 

Property 

Combination 

Failure Plane 1 Failure Plane 2 Factor of Safety 

Dip 

(°) 

The Difference 

Between Slope 

Dip Direction 

and First 

Failure Plane 

Dip Direction 

(°) 

Dip 

(°) 

The Difference 

Between Slope 

Dip Direction 

and Second 

Failure Plane 

Dip Direction 

(°) 

LEM ANN 

1 300 50 JMP 1-2 45 30 45 300 2.0 2.5 

2 200 60 JMP 1-2 45 30 45 330 1.8 1.9 

3 200 60 JMP 1-1 45 330 45 30 1.3 0.8 

4 150 70 JMP 1-1 60 30 45 330 1.3 1.5 

5 100 80 JMP 1-1 60 30 75 330 1.0 1.5 

 

 

Figure 5.15 Plane failure benchmark cases’ regression plot 

The correlation was 51% which is the lowest correlation among the slope failures in 

this study.  

For block toppling failure, the regression plots and R values in training, testing and 

validation stages that were from ANN were presented in the Figure 5.16 and the plots 

show that R values are 99%. 
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Figure 5.16 Regression plots showing the correlation between ANN predictions 

and LEM simulations of slope safety factor for block toppling failure  

Same as other failures, 5 different benchmark cases were determined for block 

toppling failure. The benchmark cases are detailed in Table 5.9 and regression 

analysis were shown in Figure 5.17.  
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Table 5.9 Benchmark cases for block toppling failure 

Inputs Outputs 

Case 

No 

Height 

(m) 

OSA 

(°) 

Base and 

Bedding 

Strength 

Combination 

Toppling Joints 
Overall 

Base 

Inclination 

(°) 

Factor of Safety 

Spacing 

(m) 
Dip (°) LEM ANN 

1 300 40 JMP 3-3 1 80 10 2.5 2.9 

2 250 70 JMP 2-2 3 60 30 0.9 1.0 

3 200 50 JMP 2-2 5 70 20 1.7 1.8 

4 150 50 JMP 1-1 1 80 10 1.1 1.3 

5 100 80 JMP 1-1 10 30 60 0.9 0.9 

 

 

Figure 5.17 Block toppling failure benchmark cases’ regression plot 

The correlation between numerical model outputs and ANN outputs was 98% for 

block toppling failure. 

For block flexure toppling failure, the regression plots and R values in training, 

testing and validation stages that were from ANN were presented in the Figure 5.18 

and the plots show that R values are 98%. 
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Figure 5.18 Regression plots showing the correlation between ANN predictions and 

LEM simulations of slope safety factor for block flexure toppling failure  

For the last slope failure, 5 different benchmark cases were determined for block 

flexure toppling failure. The benchmark cases are detailed in Table 5.10 and 

regression analysis were shown in Figure 5.19.  
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Table 5.10 Benchmark cases for block flexure toppling failure 

Inputs Outputs 

Case 

No 

Height 

(m) 

Overall 

Slope 

Angle 

(°) 

Base and 

Bedding 

Strength 

Combination 

Internal 

Rock 

Joint 

Strength 

Toppling Joints Overall 

Base 

Inclination 

(°) 

Factor of 

Safety 

Spacing 

(m) 
Dip 

(°) 
LEM ANN 

1 300 40 JMP 2-2 JMP 1 5 60 30 2.0 2.5 

2 250 50 JMP 2-2 JMP 1 5 70 20 1.9 2.2 

3 200 60 JMP 1-1 JMP 1 7 60 30 1.0 1.3 

4 150 70 JMP 1-1 JMP 1 10 70 20 0.9 0.8 

5 100 60 JMP 1-1 JMP 1 3 60 30 1.4 1.5 

 

 

Figure 5.19 Block flexure toppling failure benchmark cases’ regression plot 

The correlation between numerical model outputs and ANN outputs was 95%. 

The ANN models demonstrated strong correlation with the numerical simulations, 

as evidenced by the values of R ranged from 0.91 to 0.99. However, the models did 

not perform as well in predicting cases of wedge failure. With benchmarking in total, 

45 different scenarios were analyzed using 9 different ANN models, each with 5 

different scenarios. The results of the analysis indicated that there was a strong 

correlation between the predicted outcomes and the numerical simulation outcomes. 
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Specifically, the correlation was found to be between 89-98% (except wedge failure 

which was same for ANN), which demonstrates a high level of accuracy in predicting 

the outcomes. Despite using 3547 models for wedge failure, the prediction of all 

cases proved to be a challenging task due to the criterion required to form a wedge. 

The wedge formation criterion only applies to certain inputs of dip and dip direction, 

which meant that the available input data was limited. Additionally, the program 

attempted to make predictions even in cases where the wedge did not occur, which 

added to the complexity of the analysis. 

In short, slope analysis is a complex process that requires consideration of various 

factors and failure modes. ANN provides a basis for quick assessment of slope 

instability risks based on lab, field and computational experiments.  
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CHAPTER 6 

6 CONCLUSIONS AND RECOMMENDATIONS 

Continuum and discontinuum behaviors generate completely different rock slope 

failure mechanisms and require unique analysis techniques to investigate the slope 

safety factor. The dominant failure mode is related to various factors concerning 

geology, geomechanics and structural characteristics of the field. Once the active 

failure mode can be identified in the early stages of a slope design, the numerical 

solutions conforming to the mechanism can be used. Regarding the far-field 

loadings, manipulation of the stress field and external loads, conventional or 

advanced mechanical simulation techniques may be opted such as 2D or 3D models 

with limit equilibrium methods and numerical solutions. Not only the slope 

performance can be tested under different circumstances but also proactive measures 

can be taken to improve the slope stability. 

Computational efficiency concerns require to define the model inputs at least 

roughly. Therefore, practical tools for the preliminary slope stability analysis are 

always considered useful. The current methods are either locally valid empirical 

tools or lacks of mechanical assessment. This researched delved into employing 

computational methods like LEM and FEM to test rock slope performance under 

various conditions and create a reliable database for robust and efficient predictive 

models operated with ANN that no more require exhaustive mechanical simulations.  

FEM provided insightful information about the changes in stress and deformation 

fields driving through slope mass failure. Slope safety factor could be calculated and 

interpreted together with the maximum total displacement and maximum shear 
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strain. On the other hand, LEM provided only the safety factors for circular and non-

circular failure surfaces. 

ANN was incorporated into the research due to its capacity in capturing non-linear 

relationships between multiple input parameters. The outputs of FEM and LEM were 

used to train the ANN models for estimating the slope safety factor, maximum total 

displacement and maximum shear strain. To create a comprehensive training data 

set, 10041 computational mechanical models were run and 90658 entries were 

obtained. The range of variables were designed to be representative for a wide range 

of cases, which saves the proposed methodology from being locally valid. However, 

the proposed model is more suitable to be used form preliminary analysis and 

requires to be validated and improved by more comprehensive techniques. The ANN 

models were proven to have a high correlation with an R value ranging from 0.91 to 

0.99. This indicates that the ANN models were in agreement with the computational 

models in terms of predicting the slope stability. Some of the research highlights and 

recommendations are as follows: 

• Rock mass geomechanical characteristics have a significant influence on the 

slope stability 

• Slope safety factors obtained from LEM models are higher than FEM 

solutions. This is mainly due to rigid body assumption in LEM analysis. 

• For planar and wedge failure, upper face inclination does not have a 

significant influence on the safety factor up to 20°. 

• 2D plots are not sufficient and user-friendly to investigate multi-parameter 

relationships in slope stability analysis. ANN proposes an efficient, quick and 

reliable alternative. 

• The proposed method is only valid for isotropic and homogeneous geology 

settings. 
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• Groundwater conditions were not included in the computational modeling 

study. Therefore, the proposed method can be used only for dry slope mass.  

The proposed machine learning model can be further developed with an extensive 

numerical simulation database. It has potential to serve as a useful tool in preliminary 

analysis of slope stability.
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APPENDICES 

A. The Maximum Total Displacement vs. OSA and Slope Safety Factor vs. 

OSA Plots of Circular Failure from FEM Results 

 

Figure A. 1 a) The maximum total displacement vs. OSA and b) slope safety factor 

vs. OSA plots for MP2 rock mass characteristics obtained from FEM simulation of 

circular failure 

 

Figure A. 2 a) The maximum total displacement vs. OSA and b) slope safety factor 

vs. OSA plots for MP4 rock mass characteristics obtained from FEM simulation of 

circular failure 
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Figure A. 3 a) The maximum total displacement vs. OSA and b) slope safety factor 

vs. OSA plots for MP5 rock mass characteristics obtained from FEM simulation of 

circular failure 

B. The Maximum Shear Strain vs. OSA and Slope Safety Factor vs. OSA Plots 

of Circular Failure from FEM Results 

 

Figure B. 1 a) The maximum shear strain vs. OSA and b) slope safety factor vs. OSA 

plots for MP2 rock mass characteristics obtained from FEM simulation of circular 

failure 
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Figure B. 2 a) The maximum shear strain vs. OSA and b) slope safety factor vs. OSA 

plots for MP4 rock mass characteristics obtained from FEM simulation of circular 

failure 

 

Figure B. 3 a) The maximum shear strain vs. OSA and b) slope safety factor vs. OSA 

plots for MP5 rock mass characteristics obtained from FEM simulation of circular 

failure 
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C. Slope Safety Factor vs. Overall Slope Angle Plots from LEM Simulations 

 

Figure C. 1 Slope safety factor vs. overall slope angle plots a) for circular and b) for 

non-circular failure surface from LEM simulations for MP4 rock mass material 

properties 

 

Figure C. 2 Slope safety factor vs. overall slope angle plots a) for circular and b) for 

non-circular failure surface from LEM simulations for MP5 rock mass material 

properties 
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D. Safety Factor Values for Planar Slope Failure 

 

Figure D. 1 JMP2 safety factor values for planar slope failure 

 

Figure D. 2 JMP3 safety factor values for planar slope failure 
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E. ANN Model Structure for Each Slope Failure Type 

 

Figure E. 1 FEM mass failure ANN model structure for factor of safety  

 

 

Figure E. 2 FEM mass failure ANN model structure for maximum total displacement 

 

 

Figure E. 3 FEM mass failure ANN model structure for maximum shear strain 
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Figure E. 4 LEM mass failure (circular) ANN model structure for factor of safety 

 

 

Figure E. 5 LEM mass failure (non-circular) ANN model structure for factor of  

safety 

 

Figure E. 6 Wedge failure ANN model structure for factor of safety 
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Figure E. 7 Block toppling failure ANN model structure for factor of safety 

 

Figure E. 8 Block flexure toppling failure ANN model structure for factor of safety 


