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ABSTRACT

PREDICTION OF COVID-19 RISK OF A PERSON BY ANALYZING
COMPUTED TOMOGRAPHY IMAGES USING CONVOLUTIONAL

NEURAL NETWORKS

Topçu, Kaan

M.S., Department of Information Systems

Supervisor: Assist. Prof. Aybar Can Acar

January 2024, 56 pages

In this thesis, 4 main research questions are answered to evaluate the performance of

convolutional neural networks (CNN) in predicting Covid-19 risk by using computed

tomography (CT) images. The CT images by Yang et al., 2020[1] are utilized for this

study. It contains 349 CT images labeled as being positive for Covid-19 from 216

patient and 397 CT images that are negative. Different CNNs like VGG-16, ResNet-

18, ResNet-50, DenseNet-121, DenseNet-169, EfficientNet-B0, and EfficientNet-B1

are experimented and evaluated accordingly.

The first research question investigates the performance of the CNNs without pre-

training them. The second one evaluates the effect of transfer learning for each CNN.

The third research question studies the impact of source dataset’s domain used for

transfer learning. Finally, whether the performance of the networks can be main-

tained or improved by training the networks partially is analyzed.
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All four research questions are evaluated by comparing the accuracy, F1-score and

AUC values.

Keywords: convolutional neural network, Covid-19, image classification, computed

tomography
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ÖZ

KİŞİLERİN COVİD-19 RİSKİNİN, BİLGİSAYARLI TOMOGRAFİ
GÖRÜNTÜLERİNİN EVRİŞİMLİ SİNİR AĞLARI KULLANILARAK

TAHMİNLENMESİ

Topçu, Kaan

Yüksek Lisans, Bilişim Sistemleri Bölümü

Tez Yöneticisi: Dr. Öğr. Üyesi. Aybar Can Acar

Ocak 2024 , 56 sayfa

Bu tezde, evrişimsel sinir ağlarının Covid-19 riskini tahmin etmedeki performansını

değerlendirmek için 4 ana araştırma sorusu yanıtlanmaktadır. Bu çalışma için Yang

ve diğerleri[1] tarafından elde edilen bilgisayarlı tomografi görüntüleri kullanılmıştır.

Çalışma, Covid-19 pozitif olarak etiketlenmiş 216 hastadan gelen 349 CT görüntüsü

ve negatif olan 397 CT görüntüsünü içermektedir. Çalışmada VGG-16, ResNet-18,

ResNet-50, DenseNet-121, DenseNet-169, EfficientNet-B0 ve EfficientNet-B1 gibi

farklı ağlar kullanılmış ve bunların performansları değerlendirilmiştir.

İlk araştırma sorusu, evrişimsel sinir ağlarının ön eğitim olmadan performansını in-

celemektedir. İkinci soru, her evrişimsel sinir ağı için öğrenme transferinin etkisini

değerlendirir. Üçüncü araştırma sorusu, öğrenme transferi için kullanılan kaynak veri

kümesinin etkisini incelemektedir. Son olarak, ağların performansının kısmi eğitimle

sürdürülüp sürdürülemediğini veya iyileştirilip iyileştirilemediğini analiz edilmekte-

dir.
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Dört araştırma sorusuna cevap verebilmek için geliştirilen modeller geliştirildikten

sonra doğruluk değeri, F1 değeri ve AUC değerlerini karşılaştırılarak değerlendiril-

miştir.

Anahtar Kelimeler: evrişimsel sinir ağları, Covid-19, görüntü sınıflandırma, bilgisa-

yarlı tomografi
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CHAPTER 1

INTRODUCTION

1.1 Background and Motivation

In late 2019, the the novel coronavirus, SARS-CoV-2, emerged and led to a global

health crisis spreading rapidly across the borders and affecting millions of lives. With

the evolution of the pandemic, the need for accurate and efficient methods for early

detection and risk assessment of Covid-19 remained a paramount issue. As a diagnos-

tic tool in fighting with Covid-19, computed tomography (CT) imaging has emerged

since it provides detailed visualizations of lung abnormalities associated with the dis-

ease. Convolutional Neural Networks (CNNs) have shown great success in medical

image analysis tasks leveraging the power of artificial intelligence and deep learn-

ing. In this context, this masters’ thesis aims to develop and validate a state-of-the-art

CNN-based framework for the prediction of Covid-19 risk in individuals by analyzing

Computed Tomography images.

One of the crucial points of effective disease management and resource allocation

is the rapid and accurate identification of individuals at high risk of Covid-19. Tra-

ditional methods like polymerase chain reaction (PCR) tests played a crucial role

in detecting active infections but they haven’t always provided timely and definite

results. Computed tomography imaging has become a complementary tool to such

PCR tests, enabling visualizations of the abnormalities associated with Covid-19. CT

images have aided in the early detection of the disease and provided valuable insights

into the progression of the Covid-19 in affected individuals thanks to rich information

that they have contained. [3, 4, 5].
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The field of medical imaging analysis has taken a huge step and has been revolution-

ized by Convolutional Neural Networks, which demonstrated exceptional capabilities

in image classification, segmentation, and object detection etc. The nature of CNNs

allows them to learn hierarchical and discriminative features from the input images

and makes them useful tools for complex medical image analysis. This has resulted

in an increase in the use of CNN-based approaches in the automatic diagnosis of var-

ious medical conditions such as lung diseases and infectious diseases. It is possible

to develop a robust and accurate predictive tool for assessing an individual’s risk of

Covid-19 by training a CNN model on a large dataset of CT images from Covid-19

patients.

1.2 Objectives and Research Questions

This masters’ thesis seeks to address the need for reliable COVID-19 risk prediction

by proposing an innovative deep learning-based approach. The primary objectives of

this research are as follows:

• To investigate different Convolutional Neural Network (CNN) architectures op-

timized for COVID-19 risk prediction using Computed Tomography (CT) im-

ages, and compare their performance in terms of accuracy, sensitivity, speci-

ficity, and computational efficiency.

There are different CNN architectures used in the medical image analysis area, and

these will be explained in detail in the following sections. This research question

focuses on the exploration of multiple CNN architectures for Covid-19 risk predic-

tion based on CT images. The study will focus on designing a novel architecture or

modifying the existing ones to enhance their performance in detection of infectious

individuals and identifying the ones at high risk of Covid-19. The CNN models will

be optimized to extract relevant features from CT scans and increase the performance

of predictions of Covid-19 infection and severity of the disease. The research will

evaluate the performance of each CNN architecture using a CT image dataset and

employing different metrics such as accuracy, sensitivity, specificity, and other rele-

vant measures. In addition to those, the computational efficiency and run time of the
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proposed models ensure their applicability in the real-world settings. This research

aims to identify the most effective and efficient model for Covid-19 risk prediction

by developing and comparing different CNN architectures.

• To test whether transfer learning influences the performance of convolutional

neural networks in the context of Covid-19 risk prediction using Computed

Tomography (CT) images.

This research question aims to investigate the impact of transfer learning on the

performance of convolutional neural networks (CNNs) when applied to the task of

Covid-19 risk prediction using CT images. Transfer learning involves the use of

knowledge gained from the pre-trained models on a different dataset to improve the

performance on the target task. The research will explore whether pre-training CNN

models on a large dataset, such as ImageNet, and fine-tuning them on the Covid-

19 CT image dataset leads to a better performance compared to training the CNNs

from scratch. The research will analyze different CNN architectures such as VGG16,

ResNet50, DenseNet121, EfficientNet-B1, and assess the influence of transfer learn-

ing on their ability to predict Covid-19 risk. The findings from the research will

provide insights about the effectiveness of transfer learning as a tool to increase the

performance of CNNs for Covid-19 risk prediction and its possible implications for

other medical imaging tasks.

• To investigate the impact of using a source dataset in the similar domain as the

target dataset (e.g., using LUNA16 (Lung Nodule Analysis 2016) dataset for

Covid-19 CT dataset) for transfer learning in Covid-19 risk prediction using

computed tomography (CT) images and assess whether this approach improves

the performance of the convolutional neural network models.

This research question explores the potential benefits of using a source dataset, such

as LUNA16 (Lung Nodule Analysis 2016) dataset, which is in the same domain as

the target Covid-19 risk prediction dataset (CT images). The effects of transfer learn-

ing on ImageNet dataset are analyzed with the previous research questions. In addi-

tion to that, the study will investigate the transfer learning process, where pre-trained
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CNN models from the source dataset will be fine-tuned and modified accordingly

for Covid-19 risk prediction. The outcomes of CNN models will be compared with

the ones using transfer learning with different domain. This analysis is expected to

provide insights for the potential advantages of having prior knowledge in the medi-

cal domain and its potential implications for practical implementation in the medical

imaging domain.

• Can the performance of deep networks be maintained or improved by partially

training only the last layers, while freezing the first layers, for various convo-

lutional neural network architectures in the context of Covid-19 risk prediction

using Computed Tomography (CT) images?

This research question aims to explore the effects of partial training in deep neural

networks. To eliminate the computation costs from the high parameter counts in

the deep architectures of DenseNet121, DenseNet169, ResNet50, EfficientNet-B0,

and EfficientNet-B1, partial training can be a good alternative. The investigation

will examine whether training only last layers while freezing the earlier layers would

can lead to increased performance at the cost of reduced efficiency in the model.

The selection of layers to be trained in different models will be based on the unique

topology of each network. The research question would evaluate the impact of this

training methodology on the performance of the models and provide insights about

the partial training for the medical imaging task.

1.3 Scope and Significance of the Study

This masters’ thesis focuses on developing and validating a state-of-the-art Convo-

lutional Neural Network (CNN) framework to predict Covid-19 risk in individu-

als by analyzing computed tomography (CT) images. The study will leverage the

power of deep learning and medical imaging to accurately assess the Covid-19 risk

of individuals by using their CT scans. In the research, different CNN architectures

like VGG-16, ResNet-18, ResNet-50, DenseNet-121, DenseNet-169, EfficientNet-

B0, and EfficientNet-B1 will be explored, analyzed, and optimized for Covid-19 risk

prediction. The dataset used for training and evaluation includes a diverse set of
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CT images from Covid-19 patients, as well as non-Covid-19 patients. The Covid-19

dataset has 349 CT images from 216 patients. The utility of the dataset has been con-

firmed by a senior radiologist in Tongji Hospital, Wuhan, China [1, 5]. The study in-

volves data preprocessing, CNN model development, model comparison, fine-tuning,

and evaluation of the models. Performance metrics such as accuracy, sensitivity,

specificity, F1 score, and computational efficiency will be considered to assess the

effectiveness of the developed CNN-based approach in a more comprehensive way.

The development of an accurate and efficient CNN-based approach would contribute

to Covid-19 risk prediction using CT images and it has potential implications:

1. Early Detection and Risk Assessment: The proposed CNN-based approach has

the potential to detect Covid-19 in individuals in early phases of the disease

even before the symptoms appear. By having such an early detection system,

the healthcare professionals can prioritize high-risk patients for further testing,

isolation, early intervention etc. This would help prevent the spread of the virus

and increase patient management capabilities.

2. Resource Allocation: By detecting the high-risk patients, it is possible to direct

the limited medical resources to them. This would help optimize allocation

of hospital beds, medical staff, medical supplies in Covid-19 cases with an

accurate risk prediction using CT images.

3. Complementary Diagnostic Tool: Computed Tomography imaging is known to

provide valuable insight into lung abnormalities related with Covid-19. Integra-

tion of this CNN-based risk prediction approach to existing diagnostic methods

like PCR tests would increase the capability to fight with Covid-19 and enhance

the accuracy of Covid-19 diagnosis.

4. Generalizability: The research will evaluate the performance of different CNN

architectures to assess the generalizability across different datasets and in med-

ical domain. The findings of the research would provide guidance for selecting

the most effective CNN model for Covid-19 risk prediction.
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5. Potential for Future Pandemics: The developed CNN-based approach would

serve as a base point for predicting risk in future pandemics. The transferability

of the approach to other medical imaging problems would help to apply it in

broader domains beyond Covid-19.

Overall, a successful and validated CNN-based approach for Covid-19 risk prediction

using CT images can have significant benefits for public health and clinical practices.

By providing reliable and timely Covid-19 risk assessments, the research would as-

sist better patient management, medical resource allocation, and pandemic strategies.

Moreover, the findings can contribute to advancing the field of medical imaging, deep

learning, and its implications in medical domain, building new approaches by using

artificial intelligence in healthcare for disease diagnosis and risk assessment.

1.4 Overview of the Thesis Structure

The thesis is structured into several chapters, each contributes to the overall under-

standing and accomplishment of the objectives. Chapter 2 presents a comprehensive

literature review on Covid-19 diagnosis, risk assessment, medical imaging modalities,

convolutional neural networks. Chapter 3 dives deep into the methodology, data pre-

processing, evaluation metrics, training process and hyperparameter settings. Chapter

4 presents and gives details about the experimental results and discussions, keynoting

the performance of different CNN models with their limits and strengths. Chapter 5

finalizes the thesis with the summary of the findings, contributions, future research

and improvement points.

In conclusion, the thesis aims to contribute to the literature covering the methods and

studies used to fight with Covid-19 by providing an accurate and efficient CNN-based

tool for risk prediction. By leveraging the power of Convolutional Neural Networks

and medical imaging, the research aims to make accurate and timely predictions for

individuals at high risk of Covid-19.
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CHAPTER 2

LITERATURE REVIEW

2.1 Overview of COVID-19 and Its Impact

The coronavirus disease, Covid-19 has started in the late 2019 and rapidly evolved

into a global pandemic and affected millions of lives and transformed the societies

worldwide[6]. This section provides an overview of Covid-19, its expressions and

effects, transmission, and the impact it created on society in different aspects.

As of 2023, October 12, there have been 771.191.203 confirmed cases of Covid-19,

including 6.961.014 deaths, reported to World Health Organization (WHO)[7].

Covid-19 primarily affects the respiratory system and can cause mild to severe illness

in individuals. Fever, couch, fatigue, breath difficulty, and loss in taste and smell

senses are the common symptoms people experience[8]. Some infected individu-

als may remain asymptomatic or experience non-typical symptoms, which makes it

difficult to detect and diagnosis earlier[9, 10]. The virus mainly spreads through

respiratory droplets when an infectious person coughs, sneezes, or talks[11]. It can

also be transmitted through contaminated surfaces in case of close contact with the

surface[12].

The unpredicted scale and severity of the Covid-19 pandemic affected healthcare sys-

tems globally. Hospitals, healthcare facilities and professionals have suffered from

the huge volume of patient admissions, shortage of medical supplies, equipment

etc[13]. Medical imaging, especially computed tomography (CT) scans, surged as

an important diagnostic tool for detecting Covid-19.
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While CT scans have been valuable tools in Covid-19 diagnosis, they also have some

limitations and challenges. CT scans expose patients to ionizing radiation, and the

availability of CT scanners are limited in some hospitals and even cities.

Covid-19 has had huge consequences on public health and socioeconomic aspects.

Governments and health organizations applied strict precautions such as lockdowns[14],

travel restrictions[15], social distancing to decrease the rate of the spread of the virus.

While these precautions were necessary, they have led to significant disruptions in

economies, education systems, mental health, and overall well-being of society. The

pandemic emphasizes the importance of global collaboration, scientific research, and

rapid development strategies in medical domain like effective vaccine development

and treatment[16].

The world has faced an unpredicted global health crisis and impacted individuals and

nations worldwide. According to (Miller, 6 of the worst pandemics in history)[17]

Covid-19 pandemic is one of the 6 worst pandemics in history. The integration of

medical imaging, particularly CT scans, has played a vital role in fighting the pan-

demic with the detection and management of Covid-19. However, it is essential to

continue developing new methods and optimizing the current imaging techniques

while considering the challenges and limitations to make timely and accurate pre-

dictions. The ongoing effort in research, public health, advancements in medicine

and technology will help for effective strategies to prevent or decrease the effects of

future pandemics.

2.2 Medical Imaging

Medical imaging comprises a range of techniques which are used to visualize the

internal structures of the human body for diagnosis and research purposes. As ex-

plained before, CT scans, which are a measure of medical imaging, were widely used

during Covid-19 pandemic. This section provides an overview of medical imaging,

including its methods, advantages, disadvantages, and practical applications.
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2.2.1 Methods of Medical Imaging

There are different methods used for medical imaging based on their purpose and the

context in which they are used.

1. X-ray Imaging: X-ray imaging uses electromagnetic radiation to create two-

dimensional images of the body. It is commonly used to examine bones and

detect conditions such as fractures, tumors, and lung diseases.

2. Computed Tomography (CT): CT imaging utilizes a series of X-ray images

taken from different angles to generate detailed cross-sectional images of the

body. CT scans are particularly useful for examining the brain, chest, abdomen,

and bones, providing enhanced visualization of anatomical structures.

3. Magnetic Resonance Imaging (MRI): Magnetic Resonance Imaging employs

a powerful magnetic field and radio waves to generate detailed images of the

body’s organs and tissues. It is especially effective for visualizing soft tissues,

such as the brain, spinal cord, muscles, and joints.

4. Ultrasound Imaging: Ultrasound uses high-frequency sound waves to create

real-time images of organs, blood vessels, and developing fetuses. It is safe,

non-invasive, and widely used in obstetrics, cardiology, and various other med-

ical fields.

5. Nuclear Imaging: Nuclear medicine techniques involve the administration of

small amounts of radioactive substances, called radiotracers, which emit gamma

rays. These rays are detected by specialized cameras to create images that pro-

vide functional and metabolic information about organs and tissues.
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2.2.2 Pros and Cons of Medical Imaging

There are some advantages that healthcare professionals apply medical imaging while

they have some limitations and disadvantages.

1. Pros:

- Early Detection and Diagnosis: Medical imaging allows for the early de-

tection and diagnosis of various conditions, enabling timely interventions and

improved patient outcomes. This helped a lot to people who are asymptomatic

or experience non-typical symptoms for Covid-19.

- Non-Invasive or Minimally Invasive: Many imaging techniques are non-invasive,

meaning they do not require surgical procedures, reducing patient discomfort

and risks.

- Visualizing Internal Structures: Medical imaging provides visualizations of

internal structures that may not be accessible through physical examination

alone. For some Covid-19 cases, the exact diagnosis can only be made by

medical imaging modalities.

2. Cons:

- Ionizing Radiation: Techniques like X-ray and CT imaging expose patients

to ionizing radiation, which carries potential health risks, particularly with re-

peated or excessive exposure.

- Limited Accessbility and Cost: Certain imaging modalities, such as MRI and

advanced nuclear medicine techniques, may have limited availability due to

their high cost and specialized requirements. Advanced imaging technologies

can be expensive to acquire, operate, and maintain, limiting their accessibility

in certain healthcare settings. For the times like pandemic, in which the medical

resources are hardly available, the cost of the medical imaging is more than

regular times.
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2.2.3 Applications of Medical Imaging

There are many practical applications of medical imaging used for different purposes.

One of the most used areas is screening and preventive medicine. Certain medical

imaging techniques like mammography for breast cancer screening or CT scans or

lung cancer screening are utilized for early detection and even preventive healthcare.

Medical imaging techniques can be used for diagnostic of a disease. They play cru-

cial roles in diagnosing various conditions, fractures, tumors, cardiovascular diseases,

neurological disorders, and respiratory conditions. They can also be used to help

in planning surgeries, monitoring treatment responses and assessing post-treatment

outcomes. Apart from the cases in which medical imaging techniques are applied

directly to individuals, they are highly valuable for conducting research studies and

investigating the nature of the diseases. By so, new drugs and treatment modalities

are developed and medical knowledge advances in overall.

2.2.4 Conclusion

Medical imaging includes various methods that have transformed healthcare. These

methods allow doctors to see inside the body without surgery, helping with diagnosis,

treatment planning, and research. While each method has strengths and weaknesses,

together, they’ve greatly improved patient care and medical progress. Ongoing re-

search and better technology will keep pushing medical imaging forward, making

patient care and disease management even better.

2.3 What is Computed Tomography (CT)

Computed tomography is one of the medical imaging techniques which uses X-ray

technology and computer processing to generate cross-sectional images of the body.

CT scanning provides three dimensional visualizations of the internal body parts

which allows them to be used for detection, diagnosis, and monitoring of a wide

range of medical conditions. To analyze lungs, CT screening provides more detailed

information than conventional X-rays and offers better care for patients.

11



2.3.1 Principle and Process of CT Imaging

CT scans use X-rays to detect and record the amount of radiation absorbed by dif-

ferent tissues from different angles around the body. The CT scanner takes a series

of X-ray projections from different angles as it moves around the body. This rotation

can be either a 360-degree or partial based on the CT scanning technique. X-rays

pass through the body and the detector records the X-ray during each rotation and

is used to reconstruct detailed cross-sectional images of the body. Creating cross-

sectional images from projection data is called image reconstruction and is one of

the fundamental processes of CT imaging. It commonly uses Radon transform as a

mathematical technique which uses different algorithms like filtered back projection

or iterative reconstruction methods. The resulting images provide a comprehensive

view to allow the detection and diagnosis of the abnormalities in the lungs.

2.3.2 Advantages of CT Imaging for Lung Evaluation

There are numerous reasons why CT imaging is preferred over other medical imaging

methods which can be listed as follows:

- High-resolution Imaging: CT scanners can provide images with high-resolution and

detailed visualizations of lung structures. This is very helpful in cases where lung

abnormalities are subtle.

- Multiplanar Imaging: CT images provide images from multiple angles and planes

which allow professionals to get a more comprehensive view of the internal structure

of the body. It facilitates accurate diagnosis and treatment planning.

- Contrast Enhancement: Contrast enhancing agents can be applied to CT imaging.

This way, highlighting the tissues that otherwise would be difficult to distinguish from

their surroundings is possible.

- Minimally Invasive Procedures: CT scans help professionals apply minimally in-

vasive procedures like lung biopsies and needle aspirations more accurately. This

reduces the chances of problems during the procedure and makes it easier to detect

and diagnose the medical conditions.
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2.3.3 Conclusion

Computed Tomography (CT) is a powerful medical imaging technique that offers

detailed and comprehensive assessment of lungs. The advantages mentioned above

make it an excellent choice for lung imaging. CT plays a vital role in diagnosing and

monitoring lung diseases, guiding interventions and assisting in treatment planning

in many cases. Despite its numerous advantages, it is important to consider other

medical imaging modalities based on the requirement and context of the medial issue.

2.4 Role of Medical Imaging in COVID-19 Diagnosis and Risk Assessment

Medical imaging, particularly chest imaging techniques like X-ray and computed to-

mography (CT) has played a crucial role in fighting with Covid-19. These medical

imaging modalities provide valuable understanding of the pulmonary effect of the

disease by aiding in early detection, monitoring the progression of the disease, evalu-

ating the adverse effects of the disease on the lungs. This section explains the role of

medical imaging in Covid-19 diagnosis and risk assessment.

2.4.1 Early Detection and Diagnosis

Different methods are used to detect and diagnose Covid-19 through pandemic and

medical imaging is one of those modalities. Chest X-ray and CT scans reveal the ab-

normalities associated with Covid-19 like ground-glass opacities (Health.com, n.d.)[18],

consolidations (Bhatt, Ganatra, Kotecha, 2021)[19], and bilateral lung involvement

(Sun et al., 2020)[20]. These imaging findings, combined with the clinical test re-

sults, and stages of exposure to the disease helps accurate and timely diagnosis of

Covid-19. Based on this accurate and timely diagnosis, proper isolation techniques

can be applied, and the spread of the disease can be prevented.
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2.4.2 Differential Diagnosis

It is very vital to differentiate Covid-19 from other respiratory infections with simi-

lar clinical findings. The distinctive radiographic patterns observed in Covid-19 by

applying medical imaging techniques such as peripheral and multifocal ground-glass

opacities, helps healthcare professionals to distinguish it from other viral or bacte-

rial pneumonias. This differentiation between Covid-19 and other ones is critical for

appropriate steps to triage, treatment, and infection control purposes.

2.4.3 Disease Monitoring and Progression

Not only detection of Covid-19 but also monitoring the progression of it is very im-

portant for the sake of individuals’ health. Vital signs, such as temperature, respira-

tory rate, heart rate, blood pressure, hematological and biochemistry parameters, and

signs and symptoms of venous or arterial thromboembolism, should be monitored

(World Health Organization, 2023). Repeating chest CT scans enables clinicians to

evaluate the progress and evolution of the disease, identify complications, and take

precautions based on those. Continuous monitoring provides valuable information

about the success of the therapy applied and guides for escalating or de-escalating of

the interventions.

2.4.4 Assessment of Disease Severity

Medical imaging provides essential information regarding the severity of Covid-19

and its short- and long-term effects on the lungs. CT images allow professionals to

interpret lung abnormalities, such as lung lobes, consolidations, or ground-glass opac-

ities, and evaluate their extent and distribution within the lungs. Additionally, this

imaging plays a crucial role in assessing the progression of the disease over time and

the effectiveness of treatment strategies, enabling healthcare professionals to make

informed decisions about patient care and resource allocation. Furthermore, by mon-

itoring changes in lung conditions through medical imaging, appropriate interventions

and rehabilitation programs can be addressed to Covid-19 patients.
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2.4.5 Prognostic Value and Risk Assessment

Imaging findings obtained through CT scans have demonstrated prognostic value in

Covid-19[21, 22]. After assessing the severity of the disease, it is easier to determine

the level of risk, prescribe appropriate care, and manage resources effectively, includ-

ing decisions regarding the need for intensive care unit admission or hospitalization.

Furthermore, mortality rates can be reduced, and overall patient outcomes can be im-

proved with the ability to predict the course of the disease based on these imaging

findings. This targeted approach in patient management can also help in allocating

limited healthcare resources more efficiently, especially during times of increased

demand or healthcare crises.

2.4.6 Follow-up and Recovery Assessment

Medical imaging plays a crucial role in the follow-up and assessment of patients re-

covering from Covid-19. It enables the tracking of the resolution of lung abnormali-

ties and the assessment of recovery progress. These findings are invaluable in making

decisions about when to discontinue isolation, when it’s safe to return to work, and

monitoring for potential complications. Additionally, the data from these scans con-

tribute to ongoing research efforts aimed at improving our understanding of the virus

and refining treatment protocols.

2.4.7 Conclusion

Medical imaging, particularly chest CT, is valuable in many aspects of the fight

against Covid-19. These images provide valuable insights into the disease, enabling

early detection, diagnosis, and risk evaluation. However, it is still important not to

rely solely on CT scans and to consider traditional clinical methods. All these factors

significantly contribute to increasing humanity’s ability to combat Covid-19.

15



2.5 Existing Approaches and Techniques for COVID-19 Risk Prediction

Considering the advantages and applications of medical imaging, particularly CT

scans, they are widely used during the pandemic to predict Covid-19 risk of the indi-

viduals. Both as an area of research and practical use, predicting the risk of Covid-19

infection and disease severity has been crucial. In addition to medical imaging modal-

ities, different approaches and techniques have been employed to develop models and

algorithms for risk prediction. This section explains the existing approaches and re-

lated works in Covid-19 prediction.

2.5.1 Machine Learning-Based Risk Prediction

Different machine learning techniques have been used for Covid-19 risk prediction.

Those approaches train models on large datasets containing clinical and demographic

information to detect patterns and predict risk. They frequently focused on the re-

course allocation since the demand for all types of medical resources was extremely

high and appropriate management was necessary during the pandemic. Some no-

table projects include: Moulaei et al. (2020) developed different machine learning

algorithms to predict Covid-19 mortality using the patient’s data at the first time of

admission and choose the best algorithm as a predictive tool. In another project, Yan

et al., (2020)[23] developed a machine learning model to support decision making

and logistical planning in healthcare systems. For this study a database of blood sam-

ples from 485 infected patients in the region of Wuhan, China used to identify crucial

predictive biomarkers of disease mortality. In their article they suggest a simple and

operable decision rule to quickly predict patients at the highest risk, allowing them to

be prioritized and potentially reducing the mortality rate. Gupta et al. (2020)[24] ex-

amined the performance of 22 prognostic models for Covid-19 using data of patients

in the intensive care unit. The models were compared by their ability to predict clin-

ical deterioration and mortality using information available at the time of admission.

By this study they showed two different models had the highest prediction perfor-

mance for predicting deterioration over 24 hours and within 14 days from admission.

Kamran et al. (2020) [25] created and validated a simple and transferable machine

learning model for patients with Covid-19 by using their electronic health record data

16



to predict their clinical deterioration. They used a US hospital for model training and

validation and tested their model on patients’ data who are admitted to another 12 US

hospitals. With this study they identified low-risk patients and high-risk patients and

calculated how many bed days hospitals could save per patient if low-risk patients

were discharged early.

2.5.2 Radiomics-Based Risk Prediction

Radiomics-based risk prediction involves extracting a large number of quantitative

features from medical images, such as CT scans, and MRI images, X-rays. These fea-

tures is utilized to achieve details, patterns, and textures within the images which can

not be detected by the human eye. Radiomics-based risk prediction models for Covid-

19 assessment are constructed, combining these features with machine-learning mod-

els and clinical and demographic data. Notable works in this field include:" models

are built for Covid-19 assessment. Notable works include: Li et al. (2020)[4] aimed

to develop an automated system to detect Covid-19 using chest CT scans and assess

its performance. They created a deep learning model which extracts visual features

from chest CT scans to identify Covid-19. They used 3322 patients’ CT scans col-

lected between August 2016 and February 2020. They also measured how well their

model is in distinguishing Covid-19 and other lung conditions. Similar to Li et al.[4],

Zhang et al. (2020)[3] developed an AI system using data from 3777 patients to diag-

nose the complications of Covid-19. With the AI system it is desired to offer accurate

clinical prognosis combining with clinical data. Its purpose is to provide rapid di-

agnosis and assist healthcare professionals in making timely treatment decisions and

allocating resources effectively. The AI system has been made available globally to

support clinicians in their efforts to fight Covid-19.
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2.5.3 Clinical Scoring Systems

Clinical scoring systems are the third method used for Covid-19 predictions. These

are the tools used to assess, quantify, and predict the clinical aspects of patients’

conditions. By evaluating a set of criteria or variables, numerical scores are assigned

based on the results. The total score is then used to determine the severity of the

disease, predict outcome, or identify risk factors. Notable works include:

Knight et al. (2020)[26], created and validated a practical Covid-19 risk assessment

tool, the 4C Mortality Score to predict mortality rate of patients admitted to hospital.

They trained the tool with the data of patients admitted to UK hospitals between

February and May 2020. Then validated it the ones between May and June 2020. The

4C Mortality Score includes eight variables with high scores mean higher mortality

rate. Even if its applicability is ambiguous, it might help patient categorization with

some improvements.

In another paper, Sun et al. (2021) [27], developed an automated scoring system,

known as Covid-19 Acuity Score (CoVA). The score states the likelihood of hospi-

talization, illness level, and likelihood of death within 7 days for patients. The study

included 9381 patients’ data and 30 predictors. The top predictors are age, diastolic

blood pressure, blood oxygen saturation, COVID-19 testing status, and respiratory

rate. This scoring system helps triaging patients and optimizing patient care. All

3 modalities are exemplified with just a few examples from the existing literature of

Covid-19 risk prediction. The field is rapidly evolving with new publications and new

studies.

2.6 Related Studies on CT Image Analysis for COVID-19 Risk Prediction

As mentioned above, radiomics-based risk prediction methods have been highly used

for Covid-19 risk prediction. Since this thesis focuses on the risk prediction of Covid-

19 by using CT images, some research in the literature is mentioned in this section.

Researchers have applied different approaches to extract the features from the CT im-

ages and build predictive models. Some notable studies that used CT image analysis
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for predicting Covid-19 is as follows:

Song et al. (2020)[28] developed a deep learning-based model for Covid-19 risk

prediction using CT images from 88 Covid-19 patients, 100 bacterial pneumonia pa-

tients, and 86 healthy individuals. Their model highlighted key features like ground-

glass opacities which help medical professionals for diagnosis and successfully dis-

tinguished patients with Covid-19 and bacterial pneumonia.

Zheng et al. (2020) [29] focused on rapid and accurate diagnosis of Covid-19 using

chest CT scans. They developed a weakly-supervised deep learning model which

does not need lesion annotations. For each patient the lung region was segmented,

and deep neural network model predicted the Covid-19 infection probability with a

threshold of 0.5. Their model processes a single patient’s CT volume in nearly 2

seconds which provides a fast and accurate way for predicting Covid-19.

Ardakani et al. (2020)[30], studied convolutional neural networks in distinguish-

ing between Covid-19 and other pneumonia cases to increase the level of diagnostic

accuracy. They used 1020 CT slices from 108 Covid-19 patients and 86 patients

with non-Covid pneumonia. They employed 10 CNN models, and ResNet-101 and

Xception had the best performance. ResNet-101 achieved an accuracy over 99.5% in

distinguishing Covid-19 from other non-Covid cases. Similarly, Xception performed

an accuracy around 99%. They also compared these accuracy levels with the perfor-

mance of radiologists in diagnosing Covid-19 via CT scans which have an accuracy

of 86%.

Since considering only CT scans or clinical findings might be misleading especially in

the early phases of the disease, Mei et al. (2020)[31] combined the clinical findings,

laboratory tests, and exposure history with the CT scans to diagnose patients who

are Covid-19 positive. Their proposed AI system has correctly identified 68% of the

Covid-19 positive patients whose T scans are normal and classified as Covid-19 neg-

ative by the radiologists. By having both Y scans and relevant clinical information,

their solution highly aids in diagnosis Covid-19 patients and it increases the accuracy

level even in cases that CT scans might be misleading for medical professionals. By

doing so, higher false negative in detection of Covid-19 can be decreased.
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Cui et al. (2021) studied to create a prognostic tool for predicting poor outcomes in

Covid-19 patients using CT images. They used images from the early days which

are 0 to 6 days of the symptoms and late days which are more than 7 days from 492

patients. They applied LASSO approach to two separate groups and created distinct

scores to evaluate predictions of poor outcomes. By interpreting those created scores,

their findings suggested that using CT images to detect Covid-19 is more effective

for the late-phase Covid-19 patients. For early-phase patients, considering clinical

findings along with CT images resulted better.

These studies highlight the potential of CT imaging in diagnosing Covid-19 and pre-

dicting the severity and risk level of the disease. In some studies, it is shown that

clinical findings would help a lot to CT imaging results. By using radiomics features

and advanced machine learning and deep learning techniques, these studies offer valu-

able insight for resource allocation, clinical decision-making, and risk evaluation as

well as disease diagnosis.

2.7 Convolutional Neural Network Models

As mentioned above, in this thesis different convolutional neural networks are utilized

for answering the related research questions. To have a better understanding of the

convolutional neural networks, in this section an overview of the convolutional neural

networks, the motives to use them in imaging tasks and medical imaging and the

explanations of the architectures of the selected networks is included.

Convolutional neural networks are widely used subsets of deep learning models. They

are one of the various types of neural networks which are used for different purposes

and data types. They are extremely useful for processing and analyzing visual data,

including images and videos. Their ability to automatically learn hierarchical rep-

resentations directly from pixel data helped them to revolutionize image processing

and computer vision. They have been extremely popular in medical imaging tasks in

recent years, due to their performance and ability to extract meaningful features from

complex images like CT images.
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2.7.1 Understanding Convolutional Neural Networks

Convolutional neural networks consist of multiple interconnected layers, each serving

a specific purpose in the process. These layers are the mathematical functions used

to extract features from the input and pass that output to the following layer. There

are mainly two components of the convolutional neural networks. The first one is the

feature extraction, which has the relevant layers for feature extraction. The second

one is the fully connected layer which gives the output, predicting the image class for

this thesis based on the features retrieved in the previous layers.

Convolutional neural networks have three types of layers: convolutional layers, pool-

ing layers, and fully connected layers:

Convolutional layers are the first layers in the network responsible for extracting the

different features of the input image. Most of the computations happen in the con-

volutional layers which can be assumed as the core building blocks of CNNs. The

kernel or filter moves across the image and checks whether a feature is present in the

image. Numerical values are obtained from the image in this layer, and it allows CNN

to interpret the image and obtain relevant patterns from it such as edges, textures, and

shapes.

Pooling layers reduce the dimension and parameters in the input and results in a loss

in the information as well. By so, it reduces the complexity and computational ex-

penses and improves the efficiency of the CNN. They extract the most prominent fea-

tures while reducing the complexity. Different operations can be applied for pooling

purposes depending on the need and mechanism utilized.
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Fully connected layers follow the convolutional and pooling layers and are utilized

to make predictions based on the features learned in the previous layers. As the

name suggests all the inputs or nodes from one layer to node of the next layer. Since

they increase the density of the network, all the layers in the network are not fully

connected layers.

2.7.2 Advantages of CNNs in Image Processing and Medical Imaging

Convolutional neural networks are highly utilized for image processing tasks includ-

ing in medical imaging. They provide several advantages in image processing tasks.

CNNs are capable of automatically learning and extracting hierarchical features from

images. They can easily identify patterns, edges, shapes, textures etc. in the image

and understand complex visual information through convolutional layers.

CNNs have the translation invariance which is the capability of learning translation-

ally invariant properties of the image. This allows them to recognize patterns regard-

less of their location in the image. The translation invariance capability is very crucial

in medical imaging since the position of an anomaly might vary in the image.

One of the key strengths of convolutional neural networks is adaptability and trans-

fer learning. Available CNN models trained on large datasets like ImageNet can be

reused for specific imaging tasks. Using these pre-trained models significantly in-

creases the performance of the networks and reduces the time required to develop

models. This is deeply analyzed to answer one of the research questions of the thesis

and will be explained in detail in the following sections.

CNNs have the capability to automate the image analysis process for medical profes-

sionals in detection and diagnosis of the diseases, identifying hidden patterns which

are hard to detect by the human eye. Automated and objective analysis of medical

images can assist radiologists and clinicians.

Parameter sharing is a fundamental technique in CNNs which utilize the same weights

and biases in the entire image. Sharing parameters allow CNNs to apply the same

learned features across different regions of the image. The reduction in the number
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of parameters serves to a memory and computational cost saving, which makes the

CNNs applicable for real-world problems. Thanks to parameter sharing, the network

learns to recognize the essential features regardless of their location in the image.

CNNs have revolutionized image processing, especially in medical imaging tasks. In

medical imaging tasks, CNNs have demonstrated high performance in disease detec-

tion and diagnosis, risk prediction, etc. which helps a lot to medical professionals.

The use of CNNs would increase the overall capability of medical services and in-

crease patient care by accurate and efficient analysis of medical images, which en-

ables timely interventions and personalized treatments.

2.7.3 Detailed Explanation of the Selected CNN Architectures (e.g., VGG-16,

ResNet-18, ResNet-50, DenseNet-121, DenseNet-169, EfficientNet-B0, and

EfficientNet-B1)

In this thesis, different networks are utilized, applied to CT images, and evaluated. To

have a better understanding of what methodology is followed, which steps are taken,

detailed explanation of the networks and their architecture is explained in this section.

2.7.3.1 VGG-16

The VGG-16 Net was proposed by Karen Simonyan and Andrew Zisserman of the

Visual Geometry Group Lab of Oxford University in 2014 in the paper “Very Deep

Convolutional Networks for Large-Scale Image Recognition”[32]. With this model

Simonyan & Zisserman, 2014 won 1st and 2nd place in object detection and classi-

fication in the 2014 ILSVRC challenge. It is one of the most popular networks for

image classification and is easy to use with transfer learning.

The architecture of the network can be seen in Figure 2.1:

The VGG-16 Net consists of 16 layers, mostly convolutional layers. The network

uses relatively small 3x3 filters in the convolutional layers compared to 11x11 filters

in AlexNet or 7x7 filters ZFNet. The network architecture can be divided into five

groups based on the number of layers and the specific configurations of convolutional
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Figure 2.1: VGG-16 Architecture

and fully connected layers.

The input to the VGG-16 Net is typically a 224x224 RGB image. The network con-

sists of thirteen convolution layers denoted as Conv1-1 to Conv5-3. These layers

execute spatial convolution to the input image and extract relevant features and pat-

terns in different scales. After each set of convolutional layers in the five groups in,

max pooling is applied as Pool1 to Pool5. These layers reduce the dimensionality of

the features and retain the most prominent features. The last three layers of the VGG-

16 Net are the fully connected layers which are denoted as FC6 to FC8. These layers

help to make predictions using the features learned in the previous layers. While FC6

and FC7 have 4096 neurons, the last fully connected layer’s neuron number depends

on the number of target classes.

Throughout the network, Rectified Linear Unit (ReLU) is used as activation function

after each convolutional layer and fully connected layer. By this way, non-linearity

is obtained which enables the network to learn complex representations from the im-

ages. Moreover, the network introduces dropout regularization in two of the fully

connected layers.

With the 16 layers, the network has approximately 138 million trainable parameters,

which makes it a relatively large model. Among the networks used for this thesis, it

has the highest number of parameters.

2.7.3.2 ResNet-18

ResNet18 is a convolutional neural network introduced in the paper “Deep Residual

Learning for Image Recognition” by He et al. in 2016[33]. An ensemble of the
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residual nets won the 1st place in the ILSVRC 2015 classification task which achieves

3.57% error on ImageNet. Deeper than VGG nets but they have lower complexity,

and they are effective in especially in image classification tasks. One of the main

problems that the ResNet models solve is the vanishing gradient. With the increase

in the depth of the network, gradients diminish to very small values by the chain rule

and fail to make significant progress or improvement in the learning process. Thanks

to residual connections introduced in the network, training of very deep networks is

enabled and learning more complex representations is allowed.

Figure 2.2: ResNet-18 Architecture

The architecture can be seen in Figure 3.1. The input to ResNet18 is typically a

224x224 RGB image. Compared to other residual nets, the other variants in the

ResNet family, ResNet18 is relatively shallow and consists mostly convolutional lay-

ers. The network contains a series of convolutional layers divided into residual blocks

followed by batch normalization and ReLU activation functions. Each residual block

contains two convolutional layers with 3x3 kernels. The network applies average

pooling and global average pooling for downsampling the dimensions. In the end of

the network, there is a fully connected layer which is followed by a softmax function

and used for classification purposes.

2.7.3.3 ResNet-50

ResNet50 is a convolutional neural network architecture from the ResNet (Residual

Network) family like ResNet-18. Similar to ResNet-18, ResNet-50 is highly used in

image classification since its effectiveness.

The network consists of 50 layers, most of them are convolutional layers. Thanks to

the residual connections explained above, vanishing gradient problem is eliminated
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by He et al, 2016, ResnNet-50[33]. So, training such a deep network is enabled and

complex representation learning is allowed.

Figure 2.3: ResNet-50 Architecture

The input to ResNet50 is typically a 224x224 RGB image as in ResNet18. The archi-

tecture comprises various elements in its nature and starts with a 7x7 kernel convo-

lutional layer along with 64 kernels with a stride of 2 which is followed by a 2-sized

stride max pooling. After the max pooling, there are a series of convolutional lay-

ers which are made of a sequence of three layers. The sequence patterns include a

3x3 convolution with 64 kernels, 1x1 convolution with 64 kernel and 1x1 convolution

with 256 kernels. After these 9 layers, another sequence of 12 convolutional layers

follows the previous layers. 1x1 convolution with 128 kernels, 3x3 convolutions with

128 kernels and 1x1 convolutions with 512 kernels are iterated 4 times. Following

that, there are 18 layers which are iterated 6 times. The iterated sequence contains 1x1

convolutions with 256 kernels, 3x3 convolutions with 256 kernels, and 1x1 convolu-

tions with 1024 kernels. The network’s last convolutional layer sequence includes 9

more convolutional layers which contains a sequence of 3 layers which are 1x1 con-

volutions with 512 kernels, 3x3 convolutions with 512 kernels, and 1x1 convolutions

with 2048 kernels repeated 3 times. In the end, average pooling and a fully connected

layer concludes the network in which the fully connected layer utilizes the softmax

activation function.

2.7.3.4 DenseNet-121

DenseNet-121 is a convolutional neural network architecture introduced in the pa-

per "Densely Connected Convolutional Networks" by Huang et al. in 2017[34]. It
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is part of the DenseNet family of models. These models are known for their dense

connectivity patterns and efficient use of parameters. DenseNet models are popular

for image classification and object detection tasks. Different than traditional convo-

lutional neural networks, in a DenseNet architecture, each layer is connected directly

with every other layer rather than passing feature maps sequentially.

Figure 2.4: DenseNet-121 Architecture

Similar to the previously mentioned networks above the input to DenseNet-121 is

typically a 224x224 RGB image. The overall architecture can be seen in Figure 2.4.

The network starts with a convolutional layer utilizes 64 filters of size 7x7 with a

stride of 2. This layer is followed by a basic pooling layer which applies 3x3 max

pooling with a stride of 2.

Following the initial layers, Dense Block 1 exists which consists of 2 consecutive

convolutional layers repeated 6 times. Transition Layer 1 contains one convolutional

layer and applies average pooling follows Dense Block 1.

After those layers, Dense Block 2 contains two convolutional layers and repeats 12

times and Transition Layer 2 contains one convolutional layer along with average
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pooling.

Afterwards, Dense Block 3 which employs 2 two convolutions iterated 24 times.

Transition Layer 3 follows, composed of one convolutional layer and average pooling.

The network continues with Dense Block 4 incorporates two convolutions repeated

16 times. Finally, the Global Average Pooling layer accepts all the feature maps of

the network for the classification process, leading to the output layer.

DenseNet-121 utilizes batch normalization after every convolution layer and uses rec-

tified linear unit (ReLU) activation function applied after the bath normalization.

2.7.3.5 DenseNet-169

Similar to DenseNet-121, DenseNet-169 is part of the DenseNet family of models. It

follows the same principles as DenseNet-121 but has a deeper architecture by Huang

et al., 2017[34].

Figure 2.5: DenseNet-169 Architecture

DenseNet-169 architecture can be seen in Figure 2.5. The input to DenseNet-169

is typically a 224x224 RGB image. As in DenseNet-121, DenseNet-169 consists of

four dense blocks, each having multiple convolutional layers. Each dense block starts

with a convolutional layer and contains a series of convolutional layers in which batch

normalization is applied and ReLU activation function is used. Each dense block is

followed by a transition layer which contains a 1x1 convolution layer and pooling to

reduce the number of channels to handle the model’s complexity.

The network starts with a 7x7 convolutional layer with a stride of 2 and utilizes 64
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filters. To downsample the feature maps, max pooling follows the convolutional layer.

Following the initial convolutional layer, the four dense blocks and transition blocks

are repeated. The first dense block comprises 6 layers, the second dense block is made

up of 12 layers, the third and fourth dense blocks consist of 32 layers. Each layer in

all four dense blocks comprises 4 units. Except the fourth dense block, each dense

block is followed by a transition block which involves a 1x1 convolution and 2x2

average pooling. In the end of the network, for classification purposes, the network

employs a global average pooling and uses a fully connected layer containing 1000

nodes and softmax activation function.

2.7.3.6 EfficientNet-B0

EfficientNet-B0 is a convolutional neural network architecture introduced in the paper

"EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks" by Tan

et al. in 2019[35]. It is one of the networks of EfficientNet family. These networks

are more compact compared to the previous ones explained above yet powerful. The

paper emphasizes balancing accuracy and computational resources. The paper by Tan

& Le, 2019[35] showed a better scaling of all the dimensions of the network which

are width, depth, and resolution scaling. They are trying to find the best coefficients

for width, depth and resolution that maximizes the accuracy of the network consid-

ering the available resources. The model was inspired by the Mnas-Net by Tan et al

(2019)[35].

Typically, a 224x224 RGB image is given as an input to the model. The building block

of this network is the mobile inverted bottleneck MBConv called inverted residual

block with an additional squeeze and excitation block. The residual blocks used in

the flow of deep neural networks follow the pattern of starting wide in the beginning

of the convolution block and get narrower along the depth of the network till the end.

In the end they become wide again with the added information. Thus, mostly a wide-

narrow-wide pattern is followed. In the inverted residual block, the story changes and

narrow-wide-narrow sequence is followed to use computational resources efficiently

and increase non-linearity and learning capacity. The explained architecture of the

network can be found in Figure 2.6.
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Figure 2.6: Architecture for EfficientNet-B0 (x2 means that modules inside the

bracket are repeated twice)

2.7.3.7 EfficientNet-B1

Similar to EfficientNet-B0, EfficientNet-B1 is a convolutional neural network archi-

tecture introduced in the paper "EfficientNet: Rethinking Model Scaling for Convo-

lutional Neural Networks" by Tan et al. in 2019[35] and is one of the networks of

EfficientNet family. The network architecture can be seen in Figure 2.7.

The flow in the network is very similar to EfficientNet-B0 to use computational re-

sources efficiently and increase non-linearity and learning capacity. The only differ-

ence is the EfficientNet-B1 has more sub blocks than EfficientNet-B0.

Figure 2.7: Architecture for EfficientNet-B1 (x2 and x3 means that modules inside

the bracket are repeated twice and third times)
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CHAPTER 3

METHODOLOGY

3.1 Description of the CT Image Dataset Used

The Covid-19 CT dataset used in this study which is collected by Yang et al., 2020[1]

contains 349 CT images labeled as being positive for Covid-19 from 216 patient and

397 CT images that are negative. Examples of CT images from patients diagnosed

with Covid-19 can be seen in Figure 3.1.

Figure 3.1: Examples of Positively Labeled CT-Scans for Covid-19
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Table 3.1: Sizes of CT Images

Height Width

Minimum Pixel Value 153 124

Average Pixel Value 491 383

Maximum Pixel Value 1853 1485

These CT images have different sizes and the minimum, average, and maximum val-

ues can be seen in Table 3.1.

For the positively labeled patients 169 of them have age information and 137 of them

have gender information and their distribution can be seen in Figure 3.2 and Figure

3.3. Gender and age features are not included to evaluate the model performance in

this study.

Figure 3.2: Age distribution of Covid-19 patients

Figure 3.3: The gender ratio of Covid-19 patients
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3.2 Data Preprocessing

In medical imaging, like in many other data problems, data preprocessing is one of

the most crucial steps to ensure the quality and the reliability of the analysis. This

section explains the data preprocessing steps taken on the Covid-19 T image dataset

before utilizing it for training and evaluation.

The required Python packages which are essential for handling medical images and

utilizing the networks explained in Section X. Since GPUs are preferred over CPUs

for image processing tasks as mentioned by Woodward et al.[36], 2012 GPU acceler-

ation is leveraged for this thesis.

The Covid-19 CT image dataset utilized in this study consists of two classes based on

their Covid-19 status: CT images from the patients diagnosed with Covid-19 and CT

images from non-Covid-19 patients.

The relevant data transformation steps are taken for both datasets. To prepare for

training the deep learning model, the following transformations are applied. Images

are resized to 256x256 to make the input images in the same size for neural networks.

This standardization is crucial for compatibility with the model architecture that de-

mands fixed-size inputs. Randomized cropping is made during training to augment

the dataset and to increase model robustness. Normalization of the pixels reduces the

impact of the variations across images and helps the model to learn features more ef-

fectively. To achieve this, image pixel values are normalized by using the values seen

in Table 3.2 for each channel. These values are widely used for normalization and

found to work well in practice as Krizhevsky et al. (2012)[37] explained in their pa-

per. The normalization is done by subtracting the mean and dividing by the standard

deviation for each channel.
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Table 3.2: Mean and Standard Deviation Values for Each Channel

Channel Mean Standard Deviation

Red 0.485 0.229

Green 0.456 0.224

Blue 0.406 0.225

The dataset is split into three subsets as training set, validation set and test set. In

order to ensure a balanced representation of both classes in the training, validation,

and testing phases of the study, the dataset was split into three subsets following a

60-20-20 ratio. This maintains the overall distribution of data and guarantees that

both classes are proportionally present in each subset. Each subset is loaded by using

custom data loaders to facilitate efficient processing of batches during training and

evaluation.

All these preprocessing operations serve essential purposes in the deep learning mod-

els. These steps ensure data quality, model compatibility and robustness which in-

crease the effectiveness and overall capability of the trained neural networks.

3.3 Performance Metrics for Risk Prediction

The evaluation of the models is vital to assess their performance in predicting Covid-

19 risk from CT images. Various metrics are used to comprehensively evaluate mod-

els’ performance and provide insights about their capabilities and limitations.

Confusion matrix is used to derive several performance metrics. The mainly contains

four components. True positive (TP), true negative (TN), false positive (FP), and false

negative (FN). These metrics are the tools to assess models’ ability. As their name

suggests, true positive and true negative are straightforward. True positive is the num-

ber of Covid-19 positive cases where the model classified as positive. True negative

is the number of Covid-19 negative patients that model predicts as negative. False

positive on the other hand, is the number of instances that the model falsely indicates

Covid-19 positive when the patient is Covid-19 negative. Lastly, false negative is the

number of instances where the model incorrectly predicts Covid-19 negative while
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the patient is Covid-19 positive. By using these values, different interpretations can

be made, and other metrics can be derived.

Precision which measures the accuracy of the positive predictions made by the model.

It is computed as the ratio of true positive to the sum of true positive and false positive.

Precision =
TP

TP + FP
(3.1)

Recall, which is also named as sensitivity, measures the model’s ability to evaluate

all positive instances. It is calculated as the ratio of TP to the sum of TP and FN.

Recall =
TP

TP + FN
(3.2)

F1 score is another metric which combines precision and recall which provides a

balanced metric between two. It is especially useful when there is an imbalance

between the classes.

F1Score =
2× Precision×Recall

Precision+Recall
(3.3)

F1 Score=(2 x Precision x Recall)/(Precision+Recall )

Accuracy is a fundamental metric that quantifies the overall model predictions’ cor-

rectness. It is computed as the ratio of the sum of total correctly predictions to the

total number of cases. It is defined as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(3.4)

The Receiver operating characteristic (ROC) curve is a graphical representation of

the trade-off between true positive rate and false positive rate at various thresholds. It

plots the True Positive Rate against the False Positive Rate. The Aera under the curve

(AUC) is the area under the ROC curve and serve as a comprehensive metric for the

models’ ability.
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A higher AUC indicates better model performance. For example, when AUC equals

to 1, it means that the model makes perfect predictions. When it is 0.5, it is equivalent

to random guessing which makes the model without any discriminatory power. The

illustrations can be seen below3.4[2].

Figure 3.4: The ROC Curve[2]

3.4 Training Process and Hyperparameters Settings

Throughout this study, Adam optimizers are applied and different results for them

are compared that will be quantified in the following section. There are some advan-

tages of it compared to the other optimizers. It is straightforward to implement, it

requires low memory, and less tuning than any other optimization algorithm. Kingma

et al. (2014) [38], and He et al. (2016) [33] utilized the Adam optimizer in image

classification tasks and evaluated the performance of it. The default values of Adam

optimizer are 0.001, 0.9, 0.999 and 1e-8 for learning rate, Beta1, Beta2, and epsilon,

respectively.

As a loss function, cross-entropy loss was utilized for this study, since it is a com-

monly used loss metric in image classification tasks especially in convolutional neu-

ral networks. Simonyan et al. (2014)[32] and Krizhevsky et al. (2012)[37] utilized
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the cross-entropy loss function and discussed the network performance in image clas-

sification tasks. It measures the performance of a classification task when the output

is a value between 0 and 1. It measures the distance between the predicted and true

probability distribution and the formula is as follows:

L(y, ŷ) = ylog(ŷ) + (1− y)log(1− ŷ) (3.5)

The number of epochs selected for all the runs in this study was 70. While deciding

the number of epochs that the model would run, it is important to observe the training

loss and validation loss over epochs. As it can be seen in Figure 3.5, the training loss

stabilizes before the 70th epoch, while the validation loss starts to increase around the

70th epoch. To prevent overfitting, stopping the model training at the 70th epoch is a

good choice.

Figure 3.5: Training and Validation Loss Over 70 Epochs

Every model was run 30 times with different seeds. After obtaining the values for

each model, the standard deviation and mean values are calculated for the 30 runs.

After that, the upper confidence level is calculated by adding one standard deviation

to the mean. Similarly, the lower confidence level is calculated by subtracting one

standard deviation from the mean. While answering the effect of partial training of the

networks, there are more than one upper-level values. These are obtained by running

the network five times with the same seed, resulting in slightly different values for

the same seed. It means that the models are run 150 times to answer that research

questions.
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CHAPTER 4

RESULTS AND DISCUSSION

4.1 Presentation and Analysis of the Results

To answer the first research question that the thesis focuses, which is to develop dif-

ferent convolutional neural network architectures optimized for COVID-19 risk pre-

diction using computed tomography (CT) images, and to compare their performance

in terms of accuracy, sensitivity, specificity, and computational efficiency; different

networks are trained from scratch by using the parameters explained above and the

results shown in Table 4.1 were obtained.

Table 4.1: Performance of Randomly Initialized Networks

Accuracy F1 Score ROC - AUC

Network mean±std mean±std mean±std

VGG-16 0.60±0.06 0.61±0.07 0.64±0.06

ResNet-18 0.66±0.05 0.69±0.06 0.76±0.02

ResNet-50 0.59±0.05 0.63±0.09 0.66±0.05

DenseNet-121 0.69±0.05 0.68±0.06 0.79±0.05

DenseNet-169 0.71±0.05 0.71±0.06 0.81±0.05

EfficientNet-B0 0.63±0.05 0.67±0.05 0.70±0.03

EfficientNet-B1 0.71±0.05 0.70±0.05 0.81±0.05

The mean of accuracy for VGG-16, ResNet-50, and EfficientNet-B0 networks are

below 0.65. Moreover, ResNet-18 and DenseNet-121 have the upper level of accu-

racy below 0.70. DenseNet-169 and EfficientNet-B0 have values above 0.70. It is

seen that DenseNet-169 and EfficientNet-B1 gives the best results. A similar trend is

also valid for F1 score and AUC between the networks in which DenseNet-169 and
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EfficientNet-B1 have the highest values among all.

Even if these two networks seem the best performing ones, a statistical comparison

should be made. Hypothesis testing is applied to compare the models and whether

a statistically significant difference between the performance of the models. The

following hypothesis is constructed and tested accordingly:

H0 : There is no significant difference between the two models

H1 : There is a significant difference between the two models

To evaluate the hypothesis tests, Wilcoxon Signed-Rank Test is constructed and the

p-values comparing different models performance are obtained. A lower p-value in-

dicates that there is strong evidence to reject the null hypothesis in favor of the al-

ternative hypothesis. Lower p-value concludes the observed difference between the

two groups is unlikely to have occurred by random chance there is a statistically

significant difference between the models. The related p-values while comparing

the randomly initialized networks performance are obtained and can be seen in 4.1.

DenseNet-169 and EfficientNet-B1 has lower p-values than 0.05 for every network

comparison. By examining these values, it can be asserted that there is strong evi-

dence suggesting a significant difference in the performance of these two models com-

pared to other models. Therefore, the null hypothesis is rejected, concluding that there

is a statistically significant difference between DenseNet-169 and other networks in

favor of DenseNet-169. Similarly, there is a statistically significant difference be-

tween EfficientNet-B1 and other networks in favor of EfficientNet-B1. Only two

comparisons have p-values higher than 0.05: VGG-16 vs. ResNet-50 and DenseNet-

169 vs. EfficientNet-B1, making it difficult to determine which one is statistically

better than the other.

For the sake of simplicity, these two networks were selected to answer the remaining

research questions in this thesis.

After understanding that different networks perform differently in predicting Covid-

19 risk by using computed tomography images, models are run with parameters pre-

trained on ImageNet to understand whether applying transfer learning influences the

performance of convolutional neural networks in the context of Covid-19 risk predic-
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Figure 4.1: Wilcoxon Signed-Rank Test for Randomly Initialized Networks Perfor-

mances

tion using computed tomography images. The following results in Table 4.2 are ob-

tained. By comparing the values in Table 4.1 to Table 4.2, it is seen that every network

investigated in this thesis uses the advantage of transfer learning. For each network,

transfer learning improves network performance by around 15%. This improvement

was observed by many in literature: Kandel et al. (2020)[39] experiences similar

improvement by applying transfer learning to detect diabetic retinopathy (DR) using

VGG-16 and VGG-19 networks. With their paper, they explore the use of pre-trained

CNN models for feature extraction and fine-tuning on a specific medical imaging task,

showcasing the potential of transfer learning in healthcare applications. At this point,

it is important to emphasize that even if the target dataset’s domain, which is medical

domain for this thesis, is different from the one which the pretraining is done, e.g.

ImageNet, a daily object dataset, transfer learning has a positive impact on improving

the performance of models. This can be interpreted as the learned features in Ima-

geNet dataset are transferable and effectively reused for CT image classification task.

It means that capturing general features such as edges, textures and shapes from the
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ImageNet dataset would help the network to learn better. By already having useful

information after pretraining, to adapt weights to the medical domain would be faster

compared to the model start from random initialization. Thanks to these, the model

focuses on learning specific details for Covid-19 prediction rather than starting from

scratch.

Even if there are improvements in every network, similar to the results obtained with

random initialized networks, DenseNet-169 and EfficientNet-B1 have the best per-

formance compared to others. In terms of accuracy, these networks’ mean values are

above 0.80 while the others have less than 0.80 values. Similarly, these two networks

have the highest AUC, and F1 score values compared to other networks. However,

it is also necessary to compare them by using Wilcoxon Signed-Rank Test. After

comparing these models performance the p-values are obtained in 4.2.

Figure 4.2: Wilcoxon Signed-Rank Test for ImageNet Pretrained Networks Perfor-

mances
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Table 4.2: Performance of ImageNet Pretrained Networks

Accuracy F1 Score ROC - AUC

Network mean±std mean±std mean±std

VGG-16 0.73±0.04 0.75±0.04 0.84±0.02

ResNet-18 0.77±0.03 0.78±0.04 0.86±0.02

ResNet-50 0.77±0.03 0.79±0.05 0.87±0.02

DenseNet-121 0.77±0.03 0.78±0.04 0.86±0.02

DenseNet-169 0.81±0.04 0.82±0.03 0.90±0.02

EfficientNet-B0 0.72±0.03 0.71±0.05 0.81±0.02

EfficientNet-B1 0.80±0.03 0.80±0.03 0.88±0.02

By examining the p-values, it is evident that DenseNet-169 and EfficientNet-B1 have

p-values lower than 0.05 for every network comparison. Based on these values, it

can be asserted that there is strong evidence suggesting a significant difference in

the performance of these two models compared to other models. Therefore, the null

hypothesis is rejected, and it is concluded that there is a statistically significant differ-

ence between DenseNet-169 and other networks in favor of DenseNet-169. Similarly,

there is a statistically significant difference between EfficientNet-B1 and other net-

works in favor of EfficientNet-B1. The comparisons with p-values higher than 0.05

are the outcomes of other network comparisons.

After seeing that applying transfer learning even with a dataset that is in the different

domain has a positive impact on the performance of predicting Covid-19 risk by us-

ing CT images it is also inquired to investigate the impact of using a source dataset in

the similar domain for the target dataset (e.g., using LUNA16 (Lung Nodule Analysis

2016) dataset for Covid-19 CT dataset) for transfer learning in Covid-19 risk pre-

diction using computed tomography (CT) images and assess whether this approach

improves the performance of the convolutional neural network models. The motive

behind this is to understand how different pretraining methodologies affect the per-

formance of convolutional neural networks in predicting Covid-19 risk. The choice

of initialization and pretraining method can considerably influence a model’s ability

to capture features and provide information from them.
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Table 4.3: Performance of DenseNet-169 and EfficientNet-B1 with Different Weights

Initialization Mechanisms

Network Initilization Method Accuracy F1 Score ROC - AUC

mean±std mean±std mean±std

DenseNet-169 Random Initialization 0.71±0.05 0.71±0.07 0.81±0.06

Pretrained on ImageNet 0.82±0.03 0.82±0.03 0.90±0.02

Pretrained on LUNA16 0.81±0.03 0.82±0.03 0.88±0.02

Pretrained on ImageNet, Finetuning on LUNA16 0.82±0.03 0.81±0.03 0.89±0.02

EfficientNet-B1 Random Initialization 0.70±0.05 0.69±0.05 0.80±0.05

Pretrained on ImageNet 0.81±0.03 0.80±0.03 0.89±0.02

Pretrained on LUNA16 0.79±0.03 0.80±0.03 0.88±0.02

Pretrained on ImageNet, Finetuning on LUNA16 0.78±0.03 0.80±0.03 0.87±0.02

At this point, it is important to explain the LUNA16 (Lung Nodule Analysis 2016)

dataset in more detail. The LUNA16 dataset is a widely used dataset in the field of

medical imaging, especially for detection of lung nodules in CT scans. It was created

for the LUNA16 Grand Challenge. The dataset is annotated, including details such as

the nodule’s coordinates, diameter, and whether it is benign or malignant. The data

consists of 6,691 patients in which 2,526 ones are diagnosed with positive 4,165 cases

are diagnosed with negative.

To compare the effects of initialization and pretraining methods, DenseNet-169 and

EfficientNet-B1 were utilized since they have the highest performance in random ini-

tialization and pretrained on ImageNet data. They both are pretrained on LUNA16

(Lung Nodule Analysis 2016) dataset and firstly pretrained on ImageNet and fine-

tuned on LUNA16 dataset and the following performance metrics are obtained in

Table 4.3. Intuitively, it is expected that pretraining on LUNA16 dataset would per-

form better than pretraining on ImageNet. However, as seen in the table domain

specific pretraining can be as beneficial as pretraining on ImageNet but do not bet-

ter perform. As mentioned in the preprocessing steps, normalization is applied to all

images. This might caused a possible information loss in the images. The images

might have converged to daily images and the complexity required from the model

might have decreased and pretraining on LUNA16 dataset does not improve more

than pretraining on ImageNet dataset.
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Tschandl et al. (2019)[40] applied the same approach in skin lesion segmentation and

compared the results of random initialized network performance, networks pretrained

on ImageNet dataset, and pretrained on skin lesion dataset. They have similar results

with this thesis’ findings such that while random initialized network had the poorest

performance, the other methods have better but similar performances with each other.

After observing that even using ImageNet for pretraining can increase the perfor-

mance of the networks as much as using a medical-domain-dataset, it is further in-

quired whether the performance of deep networks can be maintained or improved

by partially training only the last layers, while freezing the first layers, for various

convolutional neural network architectures in the context of COVID-19 risk pre-

diction using CT images. To answer this for the two networks, DenseNet-169 and

EfficientNet-b1 perform better than the others are selected, and models are run and

evaluated accordingly.

DenseNet-169 and EfficientNet-b1 have 14,149,480 and 7,794,184 trainable parame-

ters consecutively. To investigate the partial training performance, the layers starting

from the end of the network which have the 12%, 25%, 50%, and 75% of the total

trainable parameters that network has are determined.

As seen in Figure 4.3, for the randomly initialized network, the performance does not

show a significant trend with different layer share percentages. On the other hand,

the model achieved a higher accuracy when pretrained on ImageNet compared to ran-

dom initialization which ranges 77% to 86%. It is seen that it is possible to obtain

higher performance when less layers are frozen, and more layers are trained. With

an increase in the number of trained parameters there is a noticeable improvement

in accuracy. The difference between the two initialization methods is getting smaller

when less layers are trained. It makes sense since as the number of layers pretrained

on ImageNet is getting smaller, the model converges to random initialization. This

convergence occurs around the first 25% of the network. Thus, even with the Ima-

geNet dataset, the first quarter of the layers have the same performance as the random

initialization. Thus, there is no need to pretrain the whole network, it is enough to pre-

train only the last 75% of the network and freeze the first quarter to improve runtime

performance.
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Figure 4.3: Randomly Initialized and Pretrained on ImageNet DenseNet-169 Accu-

racy for Training Different Percentages of the Network’s Layers

By looking at Figure 4.3, it is seen that there is an increase in the performance of

the model with an increase in the number of layers trained in case of pretraining

on ImageNet. It means that the learning process is going on throughout the whole

network. There are features throughout the whole network, and in all layers that the

model learns.

By looking at Figure 4.3, it is seen that the performance of the model does not change

with the change in the number of parameters trained in randomly initialized network.

The performance of a case where the last 25% of the network is trained and a case

where the last 75% of the network is trained is very similar. This can be interpreted in

a way that parameters not trained but frozen are not critical for Covid-19 prediction.

These parameters can be considered redundant or less influential others since they

don’t significantly impact model’s ability to learn. The task of Covid-19 risk predic-

tion by using CT images might be comparatively simple and does not contain com-

plexity captured by all the parameters. (Goodfellow, Bengio, Courville, 2017)[41]

discusses how simpler tasks may not require full complexity of the network to per-

form better. Similarly, it can be interpreted as the network has more capacity than the

requirement of the task, but it has enough flexibility to adapt and learn the relevant
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features for the task by using the unfrozen parameters.

4.2 Strengths and limitations of the proposed approach

This study has some limitations that can be eliminated and investigated further in fu-

ture research. One of the main limitations is the limited dataset of CT images for

training and evaluation. Since the performance of deep learning models directly re-

lies on the properties of the dataset, the Covid-19 CT dataset contains 349 CT images

labeled as being positive for Covid-19 from 216 patient and 397 CT images that are

negative might limit the performance of the study. The CT images may represent a

specific population which might negatively affect the generalizability of the study to

different populations with different characteristics. In this study, the images are re-

sized to 256x256 to make the input images in the same size for neural networks as it is

crucial for compatibility with the model architecture used. However, when the images

are resized to a smaller size, it can result in some loss of detail since it involves aver-

aging or subsampling pixel values. While splitting the dataset into training, validation

and test subsets presence of the same individuals’ CT images in multiple subsets are

not eliminated. This is also a limitation of the study. Certain individuals’ CT images

may be present in both the training and validation sets, and possibly in the test set as

well. This overlap introduces the risk of data leakage, potentially leading to an over-

estimation of the model’s performance due to its exposure to familiar cases during

training and validation.

The study provides a comprehensive analysis of different popular convolutional neu-

ral networks like VGG-16, ResNet-18, ResNet-50, DenseNet-121, DenseNet-169,

EfficientNet-B0, and EfficientNet-B1 and allows an understanding of the performance

of different architectures. Evaluation of both randomly initialized and ImageNet pre-

trained versions of the networks provides insights about the effect of transfer learning

in prediction of Covid-19. Moreover, applying different datasets for pretraining helps

to understand the dataset domain influence in the performance of the model. Finally,

the effects of partial training are well evaluated to have a comprehensive understand-

ing of different layers of the networks and their impact on the learning process.
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CHAPTER 5

CONCLUSION

As explained in the previous chapters this thesis mainly focuses on answering four

research questions about the performance and behaviors of convolutional neural net-

works in predicting Covid-19 risk by using CT images. We seek to answer these

through comparison of different networks’ performance, investigating the effects of

transfer learning on the performance, the influence of the dataset domain which is

used in transfer learning, and performance changes in case of partial training of the

networks.

After analyzing all these results obtained from the model runs by using different

convolutional neural networks, it can be said that for this study, DenseNet-169 and

EfficientNet-B1 had the best performance metrics among all networks when the net-

works are randomly initialized. Only these two networks accuracy upper level are

above 0.76 while the others have even below 0.70.

After comparing the networks performance when they are randomly initialized, the

networks are pretrained with ImageNet to see the effects of transfer learning. With

the pretrained weights, all networks increased their performance around 10%-15%

which results an accuracy upper level of 85% for EfficientNet-b1 and DenseNet-169.

To inquire the effects of the domain of the pretraining dataset, rather than using just

ImageNet, the LUNA16 dataset which is in the same domain with the target dataset,

CT images is utilized. It is seen that there is no such an improvement in the case

where LUNA16 dataset is used meaning that even with the ImageNet dataset, same

performance can be obtained with the LUNA16 dataset.
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And finally, both randomly initialized networks and networks that are pretrained with

ImageNet are partially run to evaluate their performance and to understand their com-

plexity. By freezing the first layers and only training the last layers, it is seen that there

is no improvement with the increase in number of trained parameters in the randomly

initialized network. This can be interpreted as the task this study focuses on which is

Covid-19 risk prediction using CT images might be comparatively simple and does

not contain complexity captured by all the parameters of the network. On the other

hand, in the case of pretrained on ImageNet the performance of the network increases

with the increase in the number of trained parameters. This can be concluded as, to

have the highest performance, the whole network pretrained on ImageNet should be

trained.

There are some points that are not included in this study but can be further improved

in the future. As mentioned in the limitations part, different datasets with different

characteristics might be included for both training and evaluation. In this way, an

increase in the number of CT images ss obtained and generalizability of the model is

improved.

The dataset used in this study contains CT images from the early pandemic. Through-

out the pandemic, the virus has evolved, and different variants of the Covid-19 have

emerged. To include all these variants, it is necessary to use different CT images

taken from patients which are diagnosed with different Covid-19 variants. With this

improvement, this study might be applicable in the practical fields for the fight against

Covid-19 in 2024, as well as other possible novel viruses affecting the respiratory sys-

tem.

In the context of this, only CT images of the patients are utilized, and related eval-

uation methods are applied to the results. As an improvement point in the future,

the categorical parameters of the patients like age, weight, height, blood test results,

medical records, patient habits, etc. can be included in the model in addition to use

of CT images.
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