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ABSTRACT 

 

UNCOVERING HIDDEN CONNECTIONS AND FUNCTIONAL MODULES 

VIA pyPARAGON: A HYBRID APPROACH FOR NETWORK 

CONTEXTUALIZATION 

 

Arici, Müslüm Kaan 

Ph.D., Department of Department of Health Informatics 

Supervisor: Asst. Prof. Dr. Aybar Can Acar 

Co-Supervisor: Assoc. Prof. Dr. Nurcan Tunçbağ 

 

January 2024, 115 pages 

 

State-of-the-art omics technologies provide molecular insights into various biological 

contexts, such as disease states, patients, and drug perturbations. Network inference 

and reconstruction methods utilize several omics datasets to create context-based 

networks that reveal the interactions of biomolecules and the functioning of cells. We 

compared the coverage of reference networks in several categories of prior knowledge, 

such as pathways, three-dimensional structures of interactions, and publication counts 

of genes/proteins to detect constraints in reference networks. Additionally, we 

examined the limitations of reconstruction algorithms by inferring signaling pathways. 

Contextualized network inference has several challenging issues: i) Hits from omics 

datasets are sparse in reference networks. ii) Interpretation methods can miss hidden 

knowledge that connects significant hits in omics datasets while evaluating multi-

omics datasets. iii) Well-studied proteins in reference networks come along with bias 

in contextualization. iv) Highly connected nodes, or hubs, cause unspecific and noisy 

interactions in inferred networks. To overcome these challenges, we developed 

pyPARAGON (PAgeRAnk-flux on Graphlet-guided network for multi-Omics data 

integratioN). Combining network propagation with graphlets, pyPARAGON also 

improves precision and reduces the presence of non-specific interactions in 

contextualized networks. We tested the performance of pyPARAGON by 

reconstructing cancer-associated signaling pathways and setting contextual models of 

different cancer types. Moreover, pyPARAGON has promising performance in case 

studies such as tumor-specific networks with significant biological processes and 

contextualized neurodevelopmental disorders and cancer models, including signal 

strength on their shared pathways.  

Keywords: Network reconstruction, graphlets, data integration, interactome, disease 

modeling  
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ÖZ 

 

GİZLİ ETKİLEŞİMLER VE FONKSİYONEL MODÜLLERİN HİBRİT BİR AĞ 

BAĞLAMSALLAŞTIRMA ARACI pyPARAGON İLE AÇIĞA ÇIKARILMASI 

 

Arıcı, Müslüm Kaan 

Doktora, Sağlık Bilişimi Bölümü 

Tez Yöneticisi: Dr. Öğr. Üyesi Aybar Can Acar 

Eş-Danışman: Doç. Dr. Nurcan Tunçbağ 

 

OCAK 2024, 115 sayfa 

 

En son omiks teknolojileri, hastalık durumları, hastalar ve ilaç bozuklukları gibi çeşitli 

biyolojik bağlamlarda moleküler bilgi sağlamaktadır. Ağ varsayım ve yeniden 

yapılandırma yöntemleri, belirli biyomoleküler etkileşimler ve hücresel süreçlerle 

bağlamlı ağlar oluşturmak için birkaç omiks veri kümesi kullanır. Referans ağlarının 

kapsamını, referans ağlarında kısıtlamaları tespit etmek için önceki bilginin yolları, üç 

boyutlu etkileşim yapısı ve gen/protein yayın sayımları gibi çeşitli kategorilerde 

karşılaştırdık. Yeniden yapılandırma algoritmalarının sınırlamalarını sinyal yolaklarını 

inceledik. Bağlamsallaştırılmış ağ oluşturmak birkaç zorlu meseleye sahiptir: (i) 

Omiks çıktılar referans ağlara göre çok küçük kalırlar. (ii) Değerlendirme yöntemleri, 

multi-omiks verisetlerini değerlendirirken omiks veri kümelerinde önemli çıktıları 

bağlayan gizli bilgiyi kaçırabilirler. iii) Referans ağlardaki çok çalışılan proteinler 

bağlamsallaştırmada yanlılığı beraberinde getirir. (iv) Yüksek sayıda bağlantıya sahip 

düğümler, ya da hublar, oluşturulan ağlarda özel olmayan veya yanlış etkileşimlerin 

olmasına yol açar. Bu zorluklarla başa çıkmak için pyPARAGON (PAgeRAnk-flux 

on Graphlet-guided network for multi-Omics data integratioN)'u geliştirdik. 

PyPARAGON, ağ yayılmasını graphlets ile birleştirerek aynı zamanda hassasiyetini 

artırırken ve bağlam dışı ağlarda spesifik olmayan etkileşimlerin varlığını 

azaltmaktadır. pyPARAGON'un performansını, kanserle ilişkili sinyal yollarını 

yeniden yapılandırarak ve farklı kanser türlerinin bağlamsal modelleri ile test ettik. 

Ayrıca, pyPARAGON, önemli biyolojik süreçlerle tümör spesifik ağları ve ortak 

yollarındaki sinyal gücü de dahil olmak üzere bağlamlı nörolojik gelişim bozuklukları 

ve kanser modelleri gibi durum çalışmalarında umut verici bir performans sergiledi. 

Anahtar Sözcükler: Ağların yeniden inşası, gaflet, veri entegrasyonu, interaktom, 

hastalık modelleme  
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CHAPTER 1 

 

INTRODUCTION 
 

1.1. Background 

The central dogma of molecular biology governs biological processes such as the cell 

cycle, DNA, replication, chromosome packing, epigenetic alterations, transcription, 

posttranscriptional alterations, translation, and posttranslational modifications1,2. 

Signal transductions, including transcription factors, protein complexes, and enzymes, 

tightly regulate the transmission of genetic information from DNA to the phenotype. 

In order to understand how biological processes work in cell machines, high-

throughput methods are generative to measure changes at different molecular levels of 

the central dogma, such as gene, transcription, protein, and metabolite levels3,4. 

 

High-throughput methods identify all detectable biomolecules at their molecular level 

and produce omics datasets named by their molecular classes, such as genomics for 

the genome, epigenomics for the epigenome, transcriptomics for the transcriptome, 

proteomics for the proteome, and metabolomics for the metabolome. With a high 

number of entries, omics datasets need computational methods to clarify unanswered 

problems by propagating experimental information. However, a single level of data 

could not efficiently explain biological issues such as biological processes, disease 

onsets, and drug perturbations. Rather than just looking at one type of omics data, 

integrative approaches to multi-omics datasets help us understand how different 

molecules interact and how biological systems work. Multi-omics data integration 

methods are a holistic approach that covers the central dogma and systematically 

uncovers the relationships between omics entities5,6. 

 

Integration methods also recruit prior information from various databases, such as 

reference interactomes, annotated biological processes, cellular pathways, and disease 

associations4,7. Integrated databases provide explanatory annotations by checking their 
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reliability against various data sources. Several sources of prior information include 

protein-protein interactions (PPIs)8,9, genetic variants10,11, and protein/gene expression 

profiles12,13. For example, pathways comprise cataloged and sequential PPIs 

explaining signal transduction or other cellular processes. The regulatomes, composed 

of regulator elements and their interactions, and the interactomes, which consist of 

PPIs, hold the pathway information through molecular interactions14,15. Looking at 

prior knowledge in omics datasets, overrepresentation and enrichment analysis, causal 

inference, and network reconstruction can give a deep understanding of biological 

problems7,16–18. 

 

Recent studies have utilized omics datasets to identify drug-response patterns and 

perturbation signatures in diseases, predict biomarkers, and develop therapeutics or 

patient stratification. For example,  the integration of multi-omics data provides 

biological insights for drug repurposing19 transcriptional dysregulation of pathways in 

Alzheimer’s disease20, comprehensive molecular profiles of SARS-CoV-2 infection to 

propose drug candidates21, pathway modulation by drugs in breast cancer cell lines, 

and novel alcoholism-related genes22. Furthermore, several efforts have been made to 

investigate complex diseases in the same set of tumors, patients, and perturbations. 

Because of their multifactorial nature, complex diseases are mainly modeled with 

context-specific solutions using omics datasets. The development of high-throughput 

methods has come with the accumulation of data on various disease types, mainly 

cancer. Just some examples of contextual databases are the Cancer Genome Atlas 

(TCGA)23, the International Cancer Genome Consortium (ICGC)24, Clinical 

Proteomic Tumor Analysis Consortium (CPTAC)25, TARGET26 for pediatric 

malignancies, Cancer Cell Line Encyclopedia (CCLE)27 and denovo-db for germline 

de novo variants28.  

  

The integrative methods include machine learning strategies, network-based 

applications, statistical methods, or a mix of multiple approaches. Ultimately, multi-

omics datasets are transformed into interpretable knowledge, including significant 

variants, pathways, biological processes, drug targets, and stratified patients. However, 

large-scale datasets at different molecular levels require a cost-efficient solution. Thus, 

these methods specifically focus on dimensionality reduction and data exploration by 
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recruiting omics data sequentially and simultaneously29,30. Formerly, omics datasets 

were separately optimized and improved by the previous omics dataset based on the 

information flow in the central dogma31–33. However, this process may bring about a 

loss of sensitivity for weak signals. In the latter, integration methods optimize all omics 

datasets simultaneously, causing overfitting problems and information loss.  

 

Network-based algorithms, such as Steiner tree/forest34, random walk35,36, or heat 

diffusion17,37, transform the list of genes/proteins from omics datasets into context-

specific networks using the topological properties of the reference network. These 

approaches cover disease-associated subnetworks, signature modules, or biomarkers. 

The coverage of reference interactomes is another challenging issue due to false 

positives and negatives in network inference38. Thus, interactions in these databases 

have been scored with various calculations, considering experimental detection 

methods, the number of publications, interologs, and many other gold-standard 

properties8,39,40. However, the well-studied genes/proteins in cancer research cause a 

bias in the interactomes41. Therefore, some hub proteins—proteins that have a high 

number of interactions—have highly scored interactions. Several network-based 

algorithms penalize these hub proteins and identify their context-specific interactions 

to overcome the biased interactions in the interactomes34,42,43. Beyond network 

inference, meaningful communities in contextualized networks illuminate the detailed 

functionalities of genes/proteins and predict the rewired regions of biological 

processes. The state of art solutions in network-based algorithms may provide not only 

a precise context-specific network but also interpretable outputs. 

1.2. Motivation 

Omics technologies are the most advanced ways to find dysregulated and changed 

signaling parts in various biological contexts, such as disease onsets, proceedings, 

patients, and drug classes. Network-based methods can propagate signals from omics 

datasets, infer context-specific networks, and identify their functional communities 

when integrating multi-omics datasets. These methods mainly utilize the global and 

local properties of networks and annotations in reference networks. Recruited 

algorithms, pipelines, and prior knowledge affect their results and interpretations. 

Their performances alter on different datasets due to a wide variety of limitations. 
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Thus, our ultimate aim was to release a novel, open-source tool that processed omics 

hits and delivered interpretable molecular associations by working in balance under 

the limitations.  

 

The first motivation for this Ph.D. study was to apprehend the constraints of input 

datasets, covering omics datasets and reference networks. A straightforward analysis 

of a list of genes from omics or previous studies may predict all direct neighbors as 

associated genes. However, such a naive analysis could predict noisy genes and miss 

associated genes due to incomplete data in the reference networks. Omics datasets 

reflect temporal hits in samples due to being snapshots of cell insights or patients. 

Intrinsically, a given list of genes from omics does not cover all associated genes. 

Moreover, insignificant but critical genes mediating biological processes and linking 

omics hits would not be specified due to the lack of alteration in cell metabolism. The 

identification of these essential genes, and downstream analyses of network-based 

methods strongly rely on the coverage of reference networks. Thus, my initial study 

focuses on the performance of network inference algorithms across different reference 

networks. 

  

The reference networks are mainly composed of integrated databases. Due to high-

throughput methods, the accelerated accumulation of knowledge enhances the 

complexity of references. Still, a simple network approach like this might guess the 

wrong genes and miss interactions that are specific to the situation because there aren't 

many omics hits in these complicated interactomes. Over-research on cancer comes 

with high annotations and a bias in prior databases. Thus, well-studied proteins prevent 

network-based methods from accurately identifying altered signaling networks and 

context-specific interactions due to the high number of interactions. The second 

motivation was to reduce the complexity of reference networks before network 

inference by avoiding biased information. 

1.3. Contributions of the study  

Beyond the list of molecules, it is essential to comprehend the molecular interaction 

with the collective consideration of multi-omics, elucidating rewiring and 

perturbations in cellular signaling cascades. The main question is how to accurately 

integrate multi-omics datasets with precise molecular interactions in the reference 
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networks. Thus, as an initial point of this thesis, we compared the outstanding human 

interactomes composed of experimentally known PPIs based on confidence scores, 

pathways, cancer driver proteins, structural information of protein interactions, and the 

bias toward well-studied proteins. The coverage affects the performance of network 

inference methods and influences downstream analyses and their interpretations. Thus, 

this thesis can guide researchers in choosing a reference interactome with their 

consideration of follow-up analyses, including structural evaluations of interactions 

and signaling alterations on pathways. 

 

In this thesis, we developed pyPARAGON (PAgeRAnk-flux on Graphlet-guided 

network for multi-Omics data integratioN), a novel tool that merges network 

propagation with graphlets. pyPARAGON is available at 

https://github.com/metunetlab/pyPARAGON. Due to the sparse data, network 

features (e.g., degree distribution, clustering coefficients) have limited usage in 

propagation or inference. Committing knowledge of graphlets and their statistics, such 

as graphlet degree distribution, graphlet degree vector, and probabilistic approaches to 

graphlets, requires high computational force in complex networks due to the multiple 

interactions of nodes. Pioneeringly, we systematically recruited graphlets composed 

of known inputs and intermediate genes/proteins that link known molecules, which 

allows a computational advantage by targeting only associated regions. pyPARAGON 

identifies a core region composed of more functionally associated molecules and their 

interactions by trimming many interactions and decreasing the number of highly 

connected proteins in reference networks. Additionally, interactions are scored by 

normalizing with the total interaction count of connecting molecules, which penalizes 

highly connected proteins. Thus, pyPARAGON significantly overcame irrelevant 

interactions and proteins and outperformed other prominent network reconstruction 

tools. 

 

In clinical applications, pyPARAGON effectively inferred various context-specific 

networks, including disease network models for complex diseases and patient-specific 

networks for 105 breast cancer patients. Recent epidemiological research on large 

cohorts of patients with autism spectrum disorder (ASD) revealed a higher cancer risk 

than in the general population. In the network models of cancer and ASD, we identified 

https://github.com/metunetlab/pyPARAGON
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their signal alteration on common pathways through different transcription factors by 

comparing the transcription profiles of pathway components. These outcomes reflect 

cell cycle effects—proliferation and differentiation—in distinct fates. A stronger 

signal level in their shared pathways promotes proliferation in cancer than 

differentiation, while mild signal levels enhance differentiation. This analysis critically 

examines the signaling strength of pathways in cancer and ASD, mentioning their 

differences and commonalities. The other case study with pyPARAGON identified 

meaningful network modules in patient-specific networks. The survival of patient 

clusters significantly differs based on functional modules, demonstrating altered 

pathways in their disease models. We frequently saw modules associated with the Ras 

signaling pathway as dominant in the patient cluster with the lowest survival 

probability. Beyond network inference, pyPARAGON provides additional meaningful 

downstream analysis for disease models, easing biological interpretation for 

researchers. The modular usage allows researchers to integrate pyPARAGON with 

various kinds of outputs.  

1.4. Organization of the dissertation 

The thesis has been published with six main chapters, titled “Introduction,” “Literature 

Review,” “Performance Assessment of the Network Reconstruction Approaches on 

Various Interactomes,” “pyPARAGON: Combining Network Propagation with 

Graphlets to Integrate Multi-Omics Data,” “Implementation of pyPARAGON” and 

“Discussion.” In Chapter 1, this thesis briefly describes the main concept explanations, 

motivation, and contributions of this study. 

 

Chapter 2 explains the theoretical background of contextualization, covering recent 

approaches, such as learning- and network-based methods. After discussing generic 

biological networks, the review focuses on multi-omics data integration methods 

within the contextualization concept. Next, we detail network-based contextualization 

and its biological interpretations using community detection methods, 

overrepresentation, and enrichment analyses. At the end of Chapter 2, graphlets are 

described with graphlet-based metrics. 
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Chapter 3 comparatively assesses network reconstruction approaches such as all-pair 

shortest path, heat diffusion, personalized PageRank, flux calculations, and prize-

collecting Steiner forests using various interactome as a reference network. 

Furthermore, biases, degree distribution, and coverage of prior knowledge, such as 

pathways and structural information, are used to evaluate reference interactomes. In 

this way, the thesis addresses challenging issues in network reconstruction algorithms 

and reference networks.  

 

Chapter 4 introduces our novel tool, pyPARAGON, and its algorithm. The 

performance of pyPARAGON is compared with other tools by reconstructing cancer-

associated signaling pathways and modeling different cancer types.  

 

Chapter 5 exemplifies the use of pyPARAGON. Phosphoproteomics datasets are 

contextualized in a supervised manner to infer tumor-specific networks in the first case 

study. In the second case study, contextualized network-based disease models are the 

unsupervised usage for the comparison of two distinct but associated diseases, autism 

spectrum disorder and breast cancer. 

 

Chapter 6 discusses the challenging issues in network-based approaches and how 

pyPARAGON solves these issues. The strengths and weaknesses of pyPARAGON are 

clarified by mentioning how to trim a reference network and reconstruct signaling 

pathways successfully. In addition, this chapter also discusses case studies and their 

outcomes. 
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CHAPTER 2 

 

LITERATURE REVIEW 

 

This chapter briefly overviews the background literature and relevant studies about 

biological networks and their interpretations. The literature review is discussed in three 

primary sections, namely: (1) biological networks, (2) contextualization of biological 

networks, and (3) graphlets. 

2.1. Biological networks 

The system biology approach employs biological networks to ascertain the 

interconnections among various data types, such as genomic, transcriptomic, 

proteomic, and metabolic44. Beyond the list of molecules, these networks illustrate 

molecular traffic in context, which models the time-dependent evolution of cells and 

other biological systems5,6. In biological networks, edges/links represent various 

interactions, such as protein-protein interactions (PPIs), transcription factors (TFs)-

gene interactions, and small molecules, proteins, or gene interactions. The components 

of interaction are named nodes/vertices. By interpreting heterogeneous "omics" 

datasets, network approaches enhance our comprehension of perturbation 

mechanisms, therapeutic impacts, and gene functionalities within particular biological 

systems45,46. 

 

When examining how interactions occur, biological networks are classified into two 

distinct categories: directed networks and undirected networks. The former possesses 

edges that transmit sequential information, while the latter lacks such information on 

edges. Sequential database interactions, including pathways and signaling cascades, 

facilitate the anticipation of the corresponding segment of the information flow.  

Incomplete data in these databases, however, is one of the obstacles to inferring 

directed networks47,48. Networks can also be categorized as weighted or unweighted. 

Weighted networks allocate numerical values to the edges of the nodes, which 
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correspond to a range of characteristics, including experimental dependability, 

strength, cost, flow, and probability49,50. Unweighted networks, conversely, indicate 

the existence or non-existence of interactions between node pairs without assigning 

any score.  

 

During topological characterization, interactions are examined across the entire 

network and in specific local regions to discover global and local characteristics, 

respectively. The characteristics of a network comprise clustering coefficients, degree 

distribution, and shortest path lengths51. The degree of a node indicates the number of 

interactions with other nodes. The minimum number of edges that must be traversed 

to travel from one node to another determines the shortest path between two nodes. 

Numerous network centrality metrics include, but are not limited to degree centrality, 

betweenness centrality, proximity centrality, and eigenvector centrality. These 

methods consider the significance of each node based on distinct criteria52.  

 

The nature of the multi-omics datasets between biological information establishes 

various biological networks, such as gene regulator networks, PPI networks, and 

cellular signaling networks. Gene regulatory networks (GRNs) include all of these 

interactions in specific contexts , e.g., tissues53,54, drug treatment46,55,56, mutations57, 

gene knockouts58,59, and disease conditions60. Since regulation occurs at each 

molecular level in cellular information flow, GRNs may include all other categories of 

biological networks in different contexts. Reference databases like JASPAR61, 

iRegulon62, BioGRID63, TRRUST64 and RegulonDB65 integrate regulatory 

information. GRNs are directed networks since regulatory elements target specific 

genes/proteins at different levels18. Biological phenomena, such as catalysis, 

transportation, signal transduction, and growth control, occur with PPIs and are 

demonstrated with PPI networks. Proteins may have multiple functions due to various 

kinds of possible interactions. The functions of proteins depend on the time, location, 

and condition of PPIs66,67. On the other hand, the reference networks (e.g., STRING50, 

HIPPIE8, and iRefWeb39) just tabulate PPIs considering different criteria such as 

probability,  the number of publications, or experimental evidence9,50. Thus, context-

specific networks are essential to determine the associated functions of proteins. 

Cellular signaling networks integrate biochemical and physiological processes that 

https://paperpile.com/c/bb0Z4b/i8aCR
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take place within the cell environment and occur sequentially to maintain cellular 

mechanisms necessary for the current situation of the cell, to activate or inhibit 

signaling cascades, or for the response of different internal and/or external signals68,69. 

Although reference databases (KEGG70 and Reactome71) provide separate information 

on individual biological processes, each of which crosstalks via common proteins and 

PPIs inside the cell. Therefore, the inference of cell signaling networks can elucidate 

the specific interactions between various entities by simplifying complex crosstalking 

among signaling cascades72. 

2.2. Contextualization of biological networks 

The contextualization of networks, using different databases, reveals the association 

between shared interactions and symptoms, during the analysis of interactions in 

diseases73,74. However, concerning complex cellular processes, analogies or 

correlations can be inadequate in comprehending causal relationships due to rewiring 

in networks75,76. However, context-specific solutions simplify a vast database into a 

small system, focusing on specific biological contexts such as rare diseases77, specific 

tissues, or localized perturbations78. For example, the Parkinson’s disease (PD)-

specific network identified the associated genes and pathways and revealed a distinct 

expression pattern in differentially expressed drug-target genes79. Another study 

contextualized single-cell RNA sequencing (scRNA-seq) at multiple time points to 

understand reprogramming mechanisms in cellular conversion and transcriptomics 

states during lineage differentiation from embryonic fibroblasts to neuronal cells80.  

 

Many ontology databases exist for annotations, such as the Gene Ontology (GO)81, 

ENCODE82, Human Disease Ontology (DO)83, and DisGeNET84. These databases are 

often valuable for adding details about biological processes, molecular activities, and 

cellular components to gene sets and diseases. They include single or multiple 

functions of genes, independent of biological contexts. The annotations from Gene Set 

Enrichment Analysis (GSEA) allow for identifying biologically significant processes 

enriched in specific contexts85–87. Beyond the gene sets, gene networks provide 

functional interactions, including activation, repression, or phosphorylation88. 

Genes/proteins exhibit varying roles contingent upon contextual factors, such as the 

specific cell type89, drug introduction75, or stress response90. Particular genes can 
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encode moonlighting proteins, which exhibit diverse functionalities due to the 

different isoforms and interactions91. For instance, EGFR impacts transcription, signal 

transduction, cell division, survival, motility, and other biological processes92. The 

challenging part is picking these genes to study further and figuring out what those 

roles are in specific biological settings. Therefore, researchers often rely on their 

experience and comprehensive literature searches to determine the relevant gene 

activities. Although acquiring their specific knowledge is valuable, it may be time-

consuming and not always feasible in uncharted biological environments. Thus, 

network-based approaches enhance biological insights by integrating omics datasets 

and recruiting graph theory.  

2.2.1. Data integration  

The advancement of high-throughput omics technologies has facilitated the rapid 

accumulation of "big data" in biological and health sciences93,94. Using an integrative 

approach enables the elucidation of how various omics components are connected and 

how they affect each other95. The conceptual overview of multi-omics data integration 

is demonstrated in Figure 1. Significant biomolecules in omics can interact intimately 

and tightly regulate each other both inside and across various kinds of data. Improper 

interactions can potentially change cellular networks, eventually leading to aberrant 

signaling output. Thus, multi-omics data integration plays a pivotal role in 

comprehensively understanding the onset and development of diseases96.  

 

Prior knowledge in reference networks enables selecting related information and 

figuring out connections among omics entities during data integration. Several 

databases, including the Human Proteome Atlas12, GTEx97, and ENCODE82, have 

annotated genetic variations and protein/gene expression patterns in different tissues. 

Additionally, multi-omics data for the same tumors, patients, or perturbations are 

combined in databases to investigate disease etiology. Multiple layers of omics data 

from thousands of tumor tissues in human cancers have been compiled by the Cancer 

Genome Atlas (TCGA)23, the International Cancer Genome Consortium (ICGC)24, 

Clinical Proteomic Tumor Analysis Consortium (CPTAC)25, and TARGET26 for 

pediatric cancers. The Cancer Cell Line Encyclopedia27  and Cancer Dependency Map 

(DepMap)98 store genomic and transcriptomic information, genetic dependency, and 
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slight chemical sensitivities of cancer cell lines for therapeutic response. Recently, 

patient- or condition-specific multi-omics data storage and their integrative analysis-

based therapy techniques are moving quickly. 

 

 
Figure 1: The conceptual overview of multi-omics data integration approaches and their applications. 

From the outer layer to the inner, the input omics data types, the integration methods, and their 

applications, respectively. High-throughput multi-omics data includes genomic, epigenomic, 

proteomic, post-translational modifications, metabolomic, and transcriptomic datasets. Depending on 

the method, these data may be integrated with or without a reference interactome. The inner cell 

interaction network carries information on different levels. A reference interactome may contain 

protein–protein interactions, regulatory interactions, metabolite-protein interactions, or others. As 

shown in the middle, network-based machine learning and statistical methods or their combinations can 

be employed for data integration. The innermost circle illustrates the final aim of integration tools, such 

as subnetwork construction, biomarker identification, patient stratification, and drug repurposing. 
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The fundamental problem in multi-omics data integration is creating effective and 

practical tools for reverse engineering big data to explain the molecular basis of a 

disease or a disturbance99,100. Integration methods can be categorized into two ways, 

namely horizontal and vertical, depending on the kind of datasets101,102. Horizontal 

integration involves using identical data types obtained from numerous samples, such 

as the aggregation of transcriptome data derived from various patients. In contrast, 

integrating several layers of omics data is used vertically, e.g., the connection between 

gene expression and mutation profiles. An instance of horizontal integration may be 

seen in the use of hierarchical HotNet to analyze pan-cancer somatic mutation patterns, 

leading to the identification of cancer-driver subnetworks43. In contrast, iCell employs 

a vertical integration approach that leverages tissue-specific protein-protein 

interaction, gene co-expression, and gene interaction networks to identify rewired 

genes inside the network. These rewired genes are promising cancer biomarkers103. 

 

Integration techniques can also be categorized according to the sequence of data usage, 

namely sequential and simultaneous integration procedures (Figure 2)29. The 

evaluation and optimization of omics datasets are conducted individually using 

sequential approaches33,104. In network-based analysis, each improved data 

independently is mapped into networks. Each succeeding phase refines the results of 

the preceding data by narrowing the search area and increasing the data size. However, 

this approach reduces sensitivity since weak or missing signals might contain valuable 

information42. Missing signals in multi-omics integration can arise due to either 

experimental factors such as instrument sensitivity, sampling factors, or insignificant 

critical points. TieDIE, for instance, combines mutations and differential gene 

expression profiles with the PPI-proximity test to locate the final subnetworks by using 

two heat diffusion processes in succession17. Initially, the heat is transferred to other 

genes in the directed reference interactome through diffusion from the significantly 

mutated genes. Next, a similar application is carried out by the reference interactome 

received in the opposite direction. Finally, TieDIE aggregates results from both 

directions to construct the ultimate subnetwork. The curse of dimensionality arises in 

multi-omics studies when the dimensionality of the data grows, leading to an increase 

in data sparsity. In addition, integration approaches are susceptible to overfitting in 

learning-based methods, particularly when fitting supervised models, due to the high-
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dimensional data structure105,106. Overfitting is a challenge for both sequential and 

simultaneous processes. Sequential approaches independently reduce dimensionality 

on each omics dataset to address this issue4 (Figure 2A). Simultaneous integration 

approaches, on the other hand, handle all features at the same time (Figure 2B). For 

dimension reduction, they frequently employ learning-based methodologies such as 

component analyses (MOSClip)107, non-negative matrix factorization108, multi-variate 

analysis (mixOmics)109, and Bayesian framework  (iClusterBayes)110. These strategies 

can address biases in multi-omics data, mitigating the risk of information loss111,112.  

 

 
Figure 2: Integrative network-based approaches. A) In the sequential integration approaches, some 

integration methods separately map an initial node-set (red and blue) from each omics data on the 

reference networks. However, the lack of direct connections of initial node sets causes incomplete 

subnetworks in integrated omics data. Network propagation methods such as random walks, heat 

diffusion, and the prize-collecting Steiner tree identify the hidden nodes (green) and construct 

subnetworks. B) In the simultaneous integration approaches, some tools directly integrate multi-omics 

data using statistical- or learning-based methods such as principal component analysis, joint multivariate 

regression, nearest shrunken centroid, or joint similarity matrix regardless of reference networks and 

primarily for identification of essential nodes (orange). Then, these nodes are leveraged to identify a 

subnetwork. 
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2.2.2. Contextualization approaches  

Contextualization of biological networks recruits learning-based and network-based 

approaches to uncover biological relationships among omics entities.  

2.2.2.1. Learning-based approaches 

Depending on context awareness, learning-based methods are mainly intended to 

extract biological insights from large multi-omics datasets for classification113, 

clustering114, and ranking115. Their applications provide automated models from large 

multi-omics datasets to leverage interactions across omics layers. Fundamentally, 

learning-based methods are classified into supervised and unsupervised learning 

methods.  

 

Supervised learning approaches prioritize predictions in context by determining 

distinctive rules from the data. They train models using labeled datasets to get the 

desired labels, such as cancer driver genes, disease-associated pathways, or drug 

responses95. Model training with large multi-omics datasets can be time-consuming116. 

Moreover, complex diseases and biological problems do not have specific boundaries 

in datasets. One example is CapsNetMMD, a supervised deep learning method that 

uses multi-omics data as input to a two-layer convolutional neural network to sort 

genes that are linked to breast cancer117. Another tool is DeepDRK, which utilizes 

multi-omics datasets derived from various drug-treated cell lines and drug 

characteristics to make predictions on cell line drug sensitivity19. Another recent deep 

learning tool using convolutional neural networks, MOGONET, enables the 

classification of patients and the identification of biomarkers113. In the reverse 

engineering approach, using single-cell RNA-sequencing (scRNA-seq) and single-cell 

assays for transposase-accessible chromatin using sequencing (scATAC-seq) data, 

linear regression models identified expressed genes and the regulatory mechanism by 

simulating biological insights of a single-cell118. In the other case, training linear 

regression models with large reference panels like GTEx lack gene expression weights, 

estimated in specific contexts119,120. To achieve optimal regression and identify 

significant variables, the model requires ample sample space and the implementation 

of grid search. Hence, the use of direct regression for statistical inference comes with 

computing challenges due to the high dimensionality of the data95. 
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Unsupervised learning approaches attempt to discover latent structures or patterns in 

unlabeled datasets. Due to the lack of ground truth datasets, heuristic methods like 

clustering quality metrics are mainly used for method assessments, which might allow 

for biased evaluations121. Various multi-omics integration technologies use similarity 

metrics, kernels, and statistical methods to construct unsupervised learning techniques. 

Similarity-based integration is a prevalent approach in addressing patient stratification, 

considering the distances in the multi-omics data across individuals. Similarity 

Network Fusion122 and Perturbation Clustering for Data Integration and Disease 

Subtyping123 are mainly recruited for similarity-based integration in biological 

contexts. For versatile integration of multi-omics datasets, rMKL-LPP124 and 

MixKernel125 use different kernel learning methods. The rMKL-LPP method 

implements the Locality Preserving Projections (LPP) algorithm to reduce the 

dimensionality of the data while maintaining the similarities and closest neighbors.  

 

Statistical methods can establish models that capture the associations between 

characteristics exhibiting the most significant biological variability. These models 

recruit various methods, such as correlation techniques, regression formulas, and 

assumptions about probability distributions. Most of the contemporary tools can 

incorporate diverse data types, including binary (representing somatic mutation), 

categorical (representing copy number gain, regular, or loss), and continuous 

(representing gene expression) data, each of which follows distinct probabilistic 

distributions95. However, specific tools, like iCluster104 and JIVE126, cannot 

simultaneously handle discrete and continuous data. Various statistical techniques, 

such as generalized principal component analysis, e.g., MOFA127 and mixOmics109, or 

low-rank approximation approaches, e.g., iClusterBayes110 and LRAcluster128, are 

used to deconstruct datasets to elucidate the underlying shared variation, individual 

variation, and noise. 

2.2.2.2. Network-based approaches  

Network-based approaches leverage graph theory to reveal the dependencies among 

omics entities in a given context. Usually, a reference interactome is mainly employed 

during contextualization, covering protein-protein interactions, gene co-expression, 

metabolite interactions, and regulatory interactions129–131. Network-based algorithms 
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depend on network features such as degree distribution and clustering coefficients. 

These approaches, including neighborhood-based and shortest-path algorithms, take 

into account the localized interactions of context-specific seeds/initial nodes that may 

be derived from omics datasets or other databases individually. In contrast, diffusion-

based algorithms use the global characteristics of reference networks and 

systematically assess initial nodes (Figure 3)132.  

 

Neighborhood-based methods involve establishing connections between all pairs of 

seeds/ initial nodes—context-specific information that can come from omics datasets 

or other databases—based on reported interactions in a database. Many tools are 

available for expanding seed nodes using k-step interactors. Notable examples are 

STRING50 and BIANA133, which can be accessed via the Galaxy and InteractoMIX 

platform134. The outputs of these methods may include either a compact, unified 

network or several disjointed components, depending upon the initial nodes and their 

related interactions. In this approach, network inference is based on guilt by 

association, whereby entities interacting with each other are likely to be part of 

comparable functional modules and contribute to the same biological processes135. 

Each component of a given protein complex is always connected to at least one other 

component, establishing an intimate proximity relationship. Nevertheless, highly 

connected reference networks might produce false interactions using neighborhood-

based approaches in contextualized networks136.  

 

https://paperpile.com/c/bb0Z4b/ojY7Z
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Figure 3: The conceptual representation of reconstruction algorithms. Shortest paths, personalized 

PageRank, heat diffusion, and the prize-collecting Steiner Forest. The shortest paths reconstruct the 

subnetwork by combining all or highly scored shortest paths between seed nodes. Heat diffusion splits 

heat that belongs to initial nodes. Heat diffusion splits heat that belongs to the initial nodes. After limited 

steps of transfer, the heat of the nodes can be used for edge scoring. PageRank uses the probabilities of 

nodes randomly walking in the reference interactome. The prize-collecting Steiner Forest application 

finds the optimum forest to link seed nodes directly or through intermediate nodes. The union of 

optimum forests reconstructs subnetworks.  

 

Shortest path algorithms connect initial nodes by identifying the shortest paths for each 

initial node pair in generic reference networks and appending related nodes and 

interactions along the shortest path. PathLinker connected initial nodes by scoring the 

k-shortest paths and ordering nodes from receptors to transcriptional regulators137. 

Lists2Networks, a web-based system,  integrates co-expression or background 

knowledge co-annotation correlation by applying gene-list enrichment analyses 

against prior biological knowledge, such as pathways and gene ontology terms138. 

POINeT simplified the subnetwork construction process by combining PPIs and 

tissue-specific expression data from multiple resources, filtering peripheral nodes, and 

assessing the confidence scores of interactions. However, including all possible paths 

would result in an expansion of the network size, longer computation time, and an 

increase in false positive results. Using approximation approaches can save 

computational time; nonetheless, optimizing large networks might be demanding 

regarding resources139.  
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Network diffusion methods are commonly used in modeling molecular data because 

they are flexible, easy to represent, and can find complex patterns and clusters by 

propagating initial nodes in reference networks. After a certain number of iterations, 

or until convergence, prior information from seed nodes disperses neighbor nodes 

through edges. In each iteration, all nodes inside a network are impacted by their 

adjacent nodes, and so on in the following iterations132. Ultimately, new nodes, not 

among initial nodes but associated with the given context, are combined with prior 

knowledge by constructing their interactions. Random walks, PageRank, heat 

diffusion, and belief propagation algorithms are examples of network diffusion 

algorithms38. By applying the random walk algorithm to the TCGA dataset, 

MEXCOwalk finds modules comprising known and probable cancer genes based on 

somatic mutations35. Implementing the random walk algorithm, uKIN merged known 

disease genes and new putative disease genes to find functionally relevant genes for 

several complex disorder36. As an example of heat diffusion algorithms, HotNet2 

revealed cancer-associated signaling pathways and subnetworks with rare somatic 

mutations across multiple cancers using TCGA data37. Another application of heat 

diffusion, TieDIE, utilized a compilation of frequently mutated breast cancer genes 

from the Catalogue of Somatic Mutations in Cancer and collections from The Cancer 

Genome Atlas (TCGA) to provide a mechanistic understanding of tumor 

characteristics and propose subtype-specific drug targets17. Several methods in 

network reconstruction address the Steiner tree issue by creating a tree with the lowest 

possible cost involving seed nodes. Omics Integrator 2 employed the prize-collecting 

Steiner Forest approach to construct network models of complex diseases, intending 

to determine shared and distinct pathways140. Furthermore, Omics Integrator 2 

identified potential drugs specific to each disease by stratifying patients141 and 

attainable combinations of drugs142. 

 

Both the neighborhood and shortest-path strategies are local methods, which means 

they focus on analyzing and making predictions based on immediate connections or 

relationships. However, it is essential to note that these methods may not effectively 

capture or account for perturbations that arise from peripheral connections or 

relationships. This phenomenon may be illustrated when initial nodes establish 

connections with more significant components via a limited number of linkages132. 
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The presence of various, equal, or multiple shortest paths between seed nodes may 

lead to subjective methods137. Network diffusion-based algorithms might overcome 

these constraints. Each node is impacted by the entire topology of the reference 

network through an iterative process that involves information exchange between 

neighboring nodes. Also, each node is allocated a quantitative value, determined by its 

proximity to multiple seed nodes and the global topology of the network95. When 

establishing reference networks that include integrated interactions or relationships, 

disregarding the context, there might be false positive and negative interactions in 

context-specific networks. One of the critical reasons, well-studied proteins with 

hundreds of high-confidence interactions, also known as hub proteins, like TP53 and 

EGFR, lead to a bias in the reference networks143. Some network-based methods, like 

Omics Integrator34, TieDIE17, and Hierarchical HotNet43, use context-specific 

interactions and punish the hub nodes to overcome this bias.  

2.2.3. Interpretations of context-specific networks 

Context-specific networks may be annotated by examining the intersecting members, 

including nodes and edges, obtained from various databases such as pathways, 

biological processes, regulatory elements-targets, disease databases, etc. Despite being 

a reduced form of complex large networks, the assessments of all nodes in the context-

specific networks provide extensive and unspecific annotations due to over-

crosstalking among annotations. Thus, small interacting communities or clusters in 

networks can be more informative than overall inferred networks144. 

Overrepresentation and enrichment analysis are standard methods for interpretations 

to reveal significant communities associated with a given serial process, such as a 

reaction, a pathway, or a biological process. Overrepresentation analysis determines 

whether a previously isolated specific community significantly associates with 

pathways or cascades. On the other hand, enrichment analysis examines differential 

data from all measured nodes and identifies processes demonstrating significantly 

coordinated shifts, such as activated or inhibited145. As well as biological annotations, 

the use of prior knowledge in databases can refine the inferred networks by pruning 

insignificant members or expanding the skipped members within a particular context. 

For example, if a cluster of proteins in the network forms a part of a known protein 

complex, the remaining members of the complex could be added (both nodes and 
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edges). Also, insignificantly identified clusters in context-specific networks may be 

subjected to additional filtration using permutations on datasets or reference databases 

to eliminate noisy nodes and interactions132.  

2.2.3.1. Community detections 

Community detection has arisen within network research to identify clusters inside 

complex networks. Conventional decomposition techniques aim to identify a rigid 

block diagonal or block triangular structure. On the other hand, community detection 

approaches focus on identifying subnetworks with statistically more connections 

between nodes within the same group than those across various groups146. A benefit 

of employing community detection to find decompositions is that the subproblems, 

established in context, will have statistically minimum interactions via complicating 

variables or restrictions and demand little balance through the decomposition solution 

approach. Thus, community detection methods provide evidence for dynamic views 

of modules in context-specific networks where different groups of nodes perform 

distinct functions147,148.  

 

Communities can be regarded as state variables that exhibit densely interconnected 

interactions among their components while demonstrating relatively weaker 

interactions with other communities. The identification of communities requires the 

optimization of the quality function known as modularity, which is a measure of 

connections within a community149. Agglomerative and divisive techniques are the 

two primary categories that may be used to classify different community identification 

methods considerably150. Agglomerative techniques include adding edges to a graph 

that initially consists only of nodes. Edges are appended in a unidirectional manner, 

from the more robust edge to the more vulnerable one. Divisive approaches follow the 

opposite of agglomerative procedures. In this scenario, the process involves gradually 

removing edges from a complete graph. In a particular network, there are a variable 

number of communities, each characterized by its own size. The qualities of context-

specific networks provide significant challenges to community detection. Followingly, 

the most commonly used community detection strategies are explained below.  

 

The Louvain algorithm was introduced in 2008 as a heuristic approach for efficiently 

identifying communities in large networks151. Based on modularity, this method seeks 
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to maximize the deviation between the observed and predicted edge counts in each 

community. The Louvain method is structured as a repetitive process consisting of two 

distinct phases: the local movement of nodes and network aggregation. During the 

former stage, the algorithm assigns a specific community to every node inside the 

network. Here, the algorithm aims to reach a local maximum of modularity. In the 

latter, the algorithm constructs a new network by treating the communities identified 

in the previous phase as individual nodes. The neighbors of each node are examined 

by calculating the change in modularity that would result from removing the node from 

its present community and putting it in one of its neighboring communities. The node 

will be positioned inside the neighboring community if the gain is positive and 

maximized. The node will continue to reside within the same community if no positive 

benefit exists. This iterative process is implemented for all nodes until no more 

enhancements exist. The popularity of the algorithm stems from its effortless 

implementation and impressive computational efficiency. Nevertheless, a prominent 

constraint of the algorithm resides in its reliance on the storage of the network within 

the primary memory152. 

 

Recent research in 2019 by Traag et al. demonstrated that Louvain community 

detection has the propensity to identify internally disconnected communities, also 

known as weakly connected communities153. However, strong connections between 

other nodes in the community enable it to maintain its status as a distinct community.  

In the Louvain algorithm, changing a node that connects two parts of a community to 

a different community might break the connection between the two parts of the old 

community152,153. Therefore, crosstalking between biological processes may be 

disrupted in context-specific networks. To enhance the quality of the identified 

partitions, the Leiden algorithm ensures robust interconnectivity across communities 

through an additional step between two phases of the Louvain algorithm. Here, the 

communities in the first step can be further divided into many divisions in the second 

phase. As part of the refining process, a node may join a randomly picked community 

to make the quality function higher. This randomization allows for a broader discovery 

of the partition space.  
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The recent approach, Surprise, a statistical measure of interest based on classical 

probabilities, assesses the quality of a network partition into communities due to 

modularity constraints. The assumption of random interaction between nodes in a 

network underlies the idea of Surprise. Based on the hypergeometric distribution, the 

method finds a possible division different from how the community nodes and 

connections should be spread out154. The use of Surprise can be effective in detecting 

a large number of small communities. In contrast, the implementation of modularity is 

advantageous in the identification of a limited number of communities.  

2.2.3.2. Overrepresentation and enrichment analysis 

The identification of communities inside context-specific networks allows for the 

analysis of topological interactions among nodes and communities. 

Overrepresentation analysis (ORA) can annotate communities with biological 

processes, pathways, signaling cascades, and other relevant elements to understand the 

biological functions and underlying pathological phenotypes. ORA facilitates the 

identification of motifs within communities, thereby enabling the successful 

elucidation of molecular machines within context-specific networks. The statistical 

test most often used in ORA relies on the hypergeometric distribution or binomial 

approximation when evaluating communities or genes/protein sets155. Conventional 

techniques for ORA use the most significant hits from datasets, considering several 

factors, such as fold changes and the significance of changes. During evaluations, 

ORA tools examine each component in a community independently, without 

considering the given weights for seed nodes. Consequently, certain relevant 

information may get obscured or omitted. Conventional iterative approaches append 

one or a few genes at a time to extend a set of genes156,157. However, network-based 

approaches to contextualization can propagate the initial information and score 

components of communities for ORA158.  

 

Enrichment analysis (EA) tools, unlike ORA, utilize the weights of initial nodes from 

omics datasets or the scores of components in context-specific networks. EA Tools 

provide directional representation such as up- and down-regulations on pathways or 

enriched and depleted components, evaluating the impact of communities by 

statistically comparing functional information such as pathways and biological 
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processes155. Most EA tools utilize univariate and multivariate methods. After 

calculating gene scores, univariate methods utilize straightforward statistics or 

distributions, such as calculating the mean of the squared t-statistics of genes inside 

the gene set, using either sample or gene randomization. Here, gene randomization 

might assess the statistical significance of the results159. Multivariate methods go 

straight to the computation of gene set scores using the expression matrix without the 

intermediate step of computing gene scores. Multivariate tests may provide statistical 

power due to their ability to include interdependencies across genes by evaluating the 

joint distribution of gene expression levels160.  

2.3. Graphlets 

Incorporating subgraph information in network interpretations leverages the 

comprehension of complex cellular networks. Graphlets, small connected and non-

isomorphic subgraphs, provide valuable insights into biological processes through 

neighborhood-oriented assessments of several nodes47,161.  

2.3.1. Graphlet-based metrics 

Graphlet statistics systematically evaluate node placement within graphlets instead of 

interactions between pairs of nodes by generalizing notions of network features.  

 

The degree distribution quantifies the count of nodes with a particular degree value 

(k), ‘touching’ k edges. In fact, in the degree distribution, an edge, G0, is only 

considered (Figure 4). Therefore, the degree distribution measures how many nodes 

interact with a single G0. As an extended version, graphlet distribution quantifies how 

many nodes are in contact with a given graphlet. However, it is crucial to consider the 

position of nodes, called orbits, inside graphlets. For instance, the positioning of nodes 

inside G1 might occur at either the endpoints or in the center of the graphlet. The 

concept of automorphic orbits refers to the isomorphic representation of orbits inside 

an individual graphlet. Hence, it is possible to see multiple automorphic orbits 

exhibiting identical topological features. The graphlet degree distribution (GDD) 

demonstrates the distribution of distinct nodes residing inside a certain graphlet. 

Figure 4 displays 14 orbits belonging to 8 graphlets composed of 2, 3, and 4 nodes. 

The degree distribution, widely recognized as a global network attribute, belongs to a 
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set of 14 GDD that quantify the local structural characteristics of a network. It is 

essential to acknowledge that the GDD metric primarily focuses on assessing the local 

structure of a network since it is derived by analyzing tiny local network 

neighborhoods162.  

 

 
Figure 4: 14 Automorphism orbits for nine graphlets. 2, 3, and 4-node graphlets G0, G1, ..., G8.  

 

The Laplacian matrices, derived from the interactions between pairs of nodes, are 

utilized in spectral clustering, spectral embedding, and network diffusion to handle 

network issues in a computationally feasible manner. Generalized by defining a pair 

of nodes as 'adjacent' in pre-specified graphlets if they both interact with a certain 

graphlet, the Graphlet Laplacian Matrix includes graphlet-based topological 

information and node membership inside the same network neighborhood103. Graphlet 

degree vector (GDV) of a specific node demonstrates the number of a particular 

graphlet where nodes reside inside a particular automorphism orbit161. Node A in the 

dummy network is considered in Figure 5 to show how graphlets may quantify the 

local topology surrounding a node.  There are two instances of a graphlet G1 where 
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nodes participate in three-node paths, A-B-C and A-B-E. The local network topology 

for a specific node may be quantified by generating a vector and calculating counts for 

that node over all graphlets for node a. Two nodes, u and v, in graph G are said to be 

graphlet-adjacent with regard to a particular graphlet in a given graphlet if they both 

reside in the graphlet. In the illustrated dummy network seen in Figure 5, nodes A and 

B exhibit graphlet-adjacency twice inside the network G1. The graph-let-based 

adjacency matrix is defined in the following Formula 2.1: 

 

𝐴𝑘(𝑢, 𝑣)  =  {𝑎𝑢𝑣
𝑘   𝑖𝑓 𝑢 ≠  𝑣

0   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
}   (2.1) 

 

where 𝑎𝑢𝑣
𝑘  equals to the number of times nodes u and v are graphlet-adjacent in Gk. 

The concept of graphlet degree extends the notion of node degree by quantifying the 

number of times node u interacts with a certain graphlet Gk. The Graphlet Degree 

Matrix is derived from the degree matrix for a certain graphlet Gk, Formula 2.2: 

 

𝐷𝑘(𝑢, 𝑣)  =  {𝑑𝑢𝑣
𝑘   𝑖𝑓 𝑢 =  𝑣

0   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
}    (2.2) 

 

where 𝑑𝑢𝑣
𝑘  the number of times node u resides in graphlet Gk. Ultimately, the Graphlet 

Laplacian Matrix is defined in Formula 2.3: 

 

 𝐿𝑘
𝐺  = 𝐷𝑘 −  ( 𝐴𝑘 / 𝜃)    (2.3) 

 

Where 𝛳 = size (Gk) - 1.  Going beyond the Laplacian Matrix only considering the 

neighbors, the Graphlet Laplacian Matrix, 𝐿𝑘
𝐺 , quantifies the strength of interactions 

between each node and all other nodes in the particular graphlet, Gk.  

 

 
Figure 5: An example of a 5-node dummy graphlet. 
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2.3.2. Graphlet motifs 

During network analysis, graphlets provide rich topological metrics by decomposing 

networks into small graphlet motifs that can be informative for functional subgraph 

patterns. For example,  motif analysis identified the feed-forward loops in biological 

cascades, such as gene regulation and metabolic networks163–165. The graphlet motifs 

can be searched in static and temporal networks166.  

 

In static approaches, graphlet motifs can be defined as overrepresented graphlets in a 

given network through statistical methods. The number of graphlets in a given network 

is compared with randomized networks167. Several network models have randomized 

a large network, ranging from the initial Erdös–Rényi random graphs and geometric 

random graph models to more recent models such as small-world, scale-free, and 

hierarchical approaches. However, randomization of a network may disrupt local or 

global features that are informative for context-specific analysis.  On the other hand, a 

geometric random graph model pertains to both features thanks to fitting a model to 

the similar degree distribution of a given network168 In context-specific networks; 

permutation methods are also used as an additional method to enhance the robustness 

of interpretations. These approaches cover renaming nodes or modifying their weights, 

sustaining the distribution of node attributes. Furthermore, the initial nodes and their 

weights may be swapped during network reconstruction169,170. 

 

In temporal approaches, graphlet motifs are considered at a particular time to 

characterize networks. Temporal approaches do not directly capture situations where 

several events coincide171. Instead, they immediately add and remove edges within 

loosely connected subgraph edges, allowing for the analysis of networks3,167. Thus, 

these analyses depend on dynamic loss or gain in edges from one state to the next. This 

active transition knowledge inside a snapshot network offers the probability of a 

particular transition. For instance, graphlet patterns may be seen in various stages of 

gene network development across distinct locations, regardless of the roles of the 

individual genes172. 

 

  

https://paperpile.com/c/bb0Z4b/dRIQN
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CHAPTER 3 

 

PERFORMANCE ASSESSMENT OF THE NETWORK RECONSTRUCTION 

APPROACHES ON VARIOUS INTERACTOMES 

 

Beyond compiling molecular entities, it is essential to collectively analyze omics 

datasets and reconstruct molecular interactions to understand cellular mechanisms. 

Pathway reconstruction methods are important in comprehending disease biology, 

primarily due to the potential clinical consequences of aberrant cellular signaling. The 

primary obstacle lies in effectively combining the data in a precise manner. The 

objective of this section is to do a comparative examination of different network 

reconstruction approaches on many reference interactomes. Initially, various human 

interactomes were examined based on the coverage of each interactome concerning 

cancer driver proteins, the availability of structural information on protein interactions, 

and the potential bias towards well-researched proteins. Subsequently, the 

interactomes were used for the effectiveness of four outstanding network 

reconstruction approaches: all-pair shortest path137, heat diffusion with flux, 

personalized PageRank with flux173, and the prize-collecting Steiner Forest (PCSF)34. 

Each approach carries its own merits and limitations. We reconstructed curated cancer 

signaling pathways from NetPath, recruiting selected interactomes and reconstruction 

approaches. PCSF had the most balanced performance in terms of precision and recall 

scores. The successful implementation of each network reconstruction methodology is 

heavily contingent upon the quality and accuracy of the reference interactomes38. 

3.1. Methods 

3.1.1. Reference interactomes 

We utilized interactomes, including PathwayCommons v12174, iRefWeb v1340, 

HIPPIE v2.2 and v2.38, ConsensusPathDB v34175, STRING v11176, and OmniPath177. 

These interactomes integrate different and various types of protein-protein interactions 

(PPIs) databases covering pathways, biological processes, and experimentally 
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identified PPIs. The node and edge information of interactomes is detailed in Table 1 

after removing self-interactions and repeated interactions. PathwayCommons and 

OmniPath do not provide confidence scores to demonstrate the reliability of their 

interactions, while the other interactomes employ different confidence score schemes. 

The MI-scoring scheme utilized by iRefWeb considers several parameters, including 

experimental detection methods and scales of studies (low- or high-throughput). 

HIPPIE and ConsensusPathDB have confidence scores on edges calculated based on 

their own schemes. We strengthened STRING by only allowing experimentally 

validated PPIs to participate in the interactome. 

 

Table 1: Statistics of interactomes 

Interactome 
Number of 

proteins 

Number of 

interactions 

Confidence 

score 

iRefWeb v13 11,295 80,351 Yes 

PathwayCommons v12 18,536 1,126,072 No 

HIPPIE v2.2 15,984 369,584 Yes 

ConsensusPathDB v34 17,269 359,201 Yes 

STRING v11 8,922 229,306 Yes 

OmniPath 6,549 35,684 No 

3.1.2. Interactome comparison metrics 

At both the node and edge levels, the reference interactomes were compared using the 

overlap coefficients for different metrics like the overlap coefficient, the correlation of 

edge confidence scores, the presence of proteins linked to diseases, and the coverage 

of pathway edges.  

 

The overlap coefficient is a similarity metric comparing two datasets, S1 and S2. These 

datasets can represent node sets or edge sets derived from a database. The calculation 

of the overlap coefficient was performed using Formula 3.1 to compare interactomes 

in pairs and assess the extent of knowledge coverage178.  

 

𝑜𝑣𝑒𝑟𝑙𝑎𝑝(𝑆1, 𝑆2)  =
|𝑆1∩𝑆2|

𝑚𝑖𝑛(|𝑆1|,|𝑆2|)
   (3.1) 

 

We defined each pair of interactomes as G (VG, EG, c(eG)) and H (VH, EH, c(eH)), where 

V is the node set. E is the edge set, and 0 ≤ c(e) ≤ 1, where c(e) is the confidence score 

of an edge. If the reference interactome does not have confidence scores, c(e) = 1 is 

uniformly defined for algorithms. The node-level similarities of the respective 

interactomes were determined by using the overlap coefficient, as described in 
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Formula 3.1; VG and VH are recruited as S1 and S1 in the given interactomes, G and 

H. Similarly, EG and EH are utilized as S1 and S1 in the calculation of edge-level 

similarities. 

 

This thesis examined structurally known PPIs already established in reference 

networks. We retrieved structural knowledge from INSIDER179, composed of 4,150 

experimentally known interactions from the PDB180 as well as 2,901 predicted 

interactions from Interactome3D181. We calculated the edge-level overlap coefficient 

between each reference interactome (G) and each part of INSIDER (H) through 

Formula 3.1. 

 

Interactomes and network reconstruction approaches are often used to identify cancer 

driver modules. We retrieved the 568 cancer driver genes (CDGs) from intOGen182. 

Based on nodes, we calculated the overlap coefficient between CDGs (S1) and proteins 

in each reference interactome (S2). Moreover, we examined a bias towards cancer-

associated proteins in reference networks with the number of publications about each 

CDG and the degree centrality of the CDGs, after retrieving PubMed IDs of 20,413 

proteins from UniProtKB. 

 

Pathway enrichment and overrepresentation analysis mainly explain the functionality 

of networks or subnetworks. The overlapping regions of a reference network (G) with 

171 pathways established in KEGG (H) were assessed with the overlap coefficient 

calculation183. As a challenging issue, a small group of molecular interactions restrict 

the overall activity of signaling cascades in modeling small-sized networks184–186. 

Thus, we only evaluated pathways with more than 30 edges. 

 

In the pool of interactomes, iRefWeb, HIPPIE, ConsensusPathDB, and STRING have 

edge confidence ratings using various scoring methodologies. We performed an all-

pair comparison of the supplied interactomes (G, H) and a pearson correlation analysis 

on the confidence ratings in the intersection of edge sets (EG∩EH). 

 

Biological networks have a scale-free power law distribution, Formula 3.2, where k 

is a node's degree and 𝛾 is the power coefficient187,188. To obtain a linear representation 

of both the degree distribution and the publication distribution, the logarithm of the 
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distribution was recruited in Formula 3.3. The number of publications belonging to 

protein was retrieved from UniProt. A pearson correlation test on a logarithmic scale 

assessed the relationship considering the degree of nodes and the number of 

publications belonging to nodes. 

 

𝑃(𝑘) = 𝑘−ɣ 𝑃(𝑘) =  𝑘−ɣ      (3.2) 

 

𝑙𝑜𝑔(𝑃(𝑘))  =  −ɣ𝑙𝑜𝑔(𝑘)   (3.3) 

 

3.1.3. Network reconstruction methods 

This thesis evaluated four reconstruction approaches: the shortest path, heat diffusion, 

PageRank, and PCSF. The reference network, or a given interactome (G), was 

individually employed with node (VG) and edge (EG) sets and the weight of edges 

(c(e)). Network reconstruction methods aim to identify the subnetwork, defined as 

R(VR, ER), where VR ⊆ V and ER ⊆ E, by establishing connections between the seed 

nodes, VI⊆V. The provided seed nodes were assigned uniform weights (1/|VI|), where 

|VI| represents the number of seed nodes.  The remaining nodes are assigned a weight 

of 0, allowing for the definition of w(v) in reconstruction methods. 

3.1.3.1. All-pairs shortest paths  

We determined all the most straightforward paths between each pair of nodes, u and v 

∈ VI and u≠v. In instances with several shortest paths connecting nodes u and v, we 

considered all such pathways. Ultimately, the integration of all paths created the final 

subnetwork. We did not apply any edge weight-based filtration or route length cutoff. 

3.1.3.2. Personalized PageRank  

The PageRank method was initially devised for propagation in directed graphs. 

Adapting personalized PageRank (PPR) to undirected graphs involves the conversion 

of each edge into two directed edges. The PageRank score, denoted as p(v), for each 

node in the reference interactome G measures the likelihood of being present at a 

particular node at a given time step (t). This probability is computed using the iterative 

Formula 3.4. 

 

𝑝𝑡+1(𝑦)  =  
1 − 𝜆

𝑁
 +  𝜆 ∑

𝑝𝑖(𝑥𝑖)

𝑑𝑒𝑔(𝑥𝑖)𝑥𝑖_→𝑦     (3.4) 
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where the probability of node y ∈ V is calculated using the damping factor (λ) that 

defines the probability of moving from neighboring nodes (xi) to y, the total number 

of nodes in the interactome is referred to as N189,190. Initial probabilities of nodes were 

obtained from w(v). Formula 3.4 was iterated 100 times as the default setting to get 

the probability distribution function p(v). 

3.1.3.3. Heat diffusion  

In the heat diffusion (HD) context, seed nodes with uniform heat distribution prioritize 

their associated nodes via heat transfer. This prioritization is mathematically defined 

in Formula 3.5. 

 

𝑝(𝑣)  =  𝑝0 (𝐼 +  
−𝛼

𝑁
𝐿)

𝑁

 (3.5) 

 

In Formula 3.5, L = I –W, where I denotes an identity matrix, and W= D−1A, in which 

D and A represent the diagonal degree matrix and the adjacency matrix, respectively.  

The vector p represents the initial heat distribution in a system, where the nodes are 

assigned, weights based on the function w(v). The variables N and α represent the 

number of iterations and the heat diffusion rate, respectively. N is set to 3 as default 

191. After the heat diffusion process is completed, nodes have the diffused heat vector, 

p(v), as the weight. 

3.1.3.4. Edge selection over flux scores 

Personalized PageRank with flux (PRF) and heat diffusion with flux (HDF) is 

computed on the deg(v), p(v), and c(e), which represent the number of interactions, 

the probabilistic score obtained from PPR or HD, and the confidence score of a 

provided node in the interactome, respectively. In this thesis, unlike TieDie and 

HotNet, the threshold value was implemented to exclude uncritical nodes173,192,193. 

Also, during the subnetwork reconstruction, we considered the nodes in the 

interactome with p(vi)≥1/N, where N is the number of nodes in the interactome.  The 

directional flux scores (fu→t and ft→u) were computed using Formula 3.6 and 3.7. The 

minimum of both directional flux scores (Formula 3.8) specified the final flux of the 

edge. 
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𝑓𝑢→𝑡(𝑢, 𝑡)  =  
𝑝(𝑢) .𝑐(𝑒)

𝑑𝑒𝑔(𝑢)
   (3.6) 

 

𝑓𝑡→𝑢(𝑡, 𝑢)  =  
𝑝(𝑡) .𝑐(𝑒)

𝑑𝑒𝑔(𝑡)
   (3.7) 

 

𝑓(𝑒)  = 𝑚𝑖𝑛( 𝑓𝑢→𝑡(𝑢, 𝑡) , 𝑓𝑡→𝑢(𝑡, 𝑢))    (3.8) 

 

The ranking of edges is determined by arranging them in descending order based on 

their flux scores, which are obtained by calculating the negative logarithm of the flux 

values. The calculation of the total flow (F) is performed by considering the 

interconnected nodes in Formula 3.9: 

 

𝐹 = ∑ 𝑓(𝑒)    (3.9) 

 

τ (0≤τ ≤ 1) is the scaling factor that is the threshold percentage of F. We selected the 

edges, from 1 to j, by summing flux scores up to τxF (Formula 3.10). The edges with 

low flux scores were eliminated from the reconstructed subnetworks173. 

 

𝜏𝑥𝐹  >  ∑ 𝑓(𝑒𝑖),
𝑗
𝑖=1      1 ≤ 𝑗 ≤ 𝑛               (3.10) 

3.1.3.5. Prize-Collecting Steiner Forest 

We utilized Omics Integrator 2, implementing the PCSF approach as a state-of-the-art 

network reconstruction method. The costs of the edges are determined using the cost 

function provided in Omics Integrator 2 by combining the confidence score of the 

edge, c(e), with a penalty generated from the scaled node degrees using the parameter 

𝛾34. The updated version, Omics Integrator 2, applies a penalty to the edges according 

to the degrees of the node pair. The subsequent function aims to identify an optimal 

forest, denoted as F(V, E), by minimizing the objective function as described in 

Formula 3.11194  

 

𝑓′(𝐹)  =  ∑ 𝛽. 𝑝(𝑣)  +  ∑ 𝑐𝑜𝑠𝑡(𝑒)  +  𝜔 . 𝜅      (3.11) 

 

where κ represents the number of connected components; β is responsible for 

determining the relative weight of the node prizes; and ω influences the cost of adding 

a tree to the solution network. The PCSF algorithm yields an ideal forest for a given 

parameter set and an augmented forest that contains all edges connecting nodes inside 
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the optimal forest. The final networks were reconstructed by intersecting augmented 

forests using multiple parameter sets defined under parameter tuning. 

3.1.4. Performance analysis 

NetPath is a delicately curated collection of human signaling pathways, including 

immune and cancer signaling pathways. We used 32 pathways from NetPath as the 

benchmark dataset195. The numbers of nodes and edges are listed in Appendix A. 

Given the high computational cost associated with reconstructing all pathways using 

all parameter settings, it was necessary to first identify the optimal parameter sets 

before doing a performance comparison. 

3.1.4.1. The Calculation of performance metrics 

After adjusting parameter settings on four pathways, the remaining 28 NetPath 

pathways were implemented for the performance assessment with five-fold cross-

validation. We tested each reconstruction method on its own on each reference 

interactome by calculating the F1 score, Matthew's correlation coefficient (MCC), 

recall and precision scores, and false positive rate (FPR) using Formula 3.12 to 3.16, 

as shown below38.  

 

𝑟𝑒𝑐𝑎𝑙𝑙(𝑇𝑃, 𝑇𝑁) =
|𝑇𝑃|

|𝑇𝑃| + |𝐹𝑁|
  (3.12) 

 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑇𝑃, 𝐹𝑁) =
|𝑇𝑃|

|𝑇𝑃| + |𝐹𝑃|
  (3.12) 

 

𝐹𝑃𝑅(𝑇𝑃, 𝑇𝑁) =
|𝐹𝑃|

|𝐹𝑃| + |𝑇𝑁|
  (3.14) 

 

𝐹1 =
2 .  𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 .𝑟𝑒𝑐𝑎𝑙𝑙|

|𝑇𝑃| + |𝑇𝐹|
  (3.15) 

 

𝑀𝐶𝐶(𝑇𝑃, 𝑇𝑁, 𝐹𝑃, 𝐹𝑁) =
(|𝑇𝑃| .|𝑇𝑁|) − (|𝐹𝑃| .|𝐹𝑁|)

√(|𝑇𝑃|+|𝐹𝑃|) .(|𝑇𝑃|+|𝐹𝑁|) .(|𝑇𝑁|+|𝐹𝑃|) .(|𝑇𝑁|+|𝐹𝑁|)
  (3.16) 

 

The performance assessment excluded seed nodes from consideration. Nevertheless, 

the performance assessment included all edges in the reconstructed pathways since we 

did not utilize interactions as an input. For a given interactome G(V, E) and a seed 

node-set (VI), we reconstructed a pathway, R(VR,ER) to estimate a ground truth 

pathway T(VT,ET) where VT, VR, and VI⊆V, and ET and ER⊆E. Node-level true 

positives (TPV) and edge-level true positives (TPE) are derived from |VR ∩ VT | and 
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|ER ∩ ET|, respectively. |V\(VR ⋃ VT)| and |E\(ER ⋃ ET)| provide node-level true 

negatives (TNV) and edge-level true negatives (TNE). False positives, FPV and FPE, 

are equal to |VR \VT| and |ER \ET| respectively, while false negatives, FNV and FNE, 

are |VT \VR| and |ET \ER|. 

 

We executed principal component analysis (PCA) to determine the major scores for 

the highest variation across all paths196. The whole set of performance data, including 

both edge- and node-based scores, was statistically evaluated by independently 

grouping the reference interactomes and reconstruction methods. 

3.1.4.2. Parameter tuning 

Reconstruction methods were optimized separately for each reference interactome. 

The selection of parameters was based on the use of the Wnt, TCR, TNFα, and TGFβ 

pathways available on NetPath. The nodes belonging to each pathway were 

randomized and divided into five-fold separately. We removed each fold from the 

complete pathway node list and then executed network reconstruction methods with 

the remaining folds. The parameters of the reconstruction methods were individually 

adjusted for each reference interactome to optimize the F1 score, as described in 

Formula 3.15. In the context of the all-pairs shortest path (APSP) algorithm, the 

determined shortest pathways among initial node sets were directly included in a 

reconstructed pathway without any parameter tuning. Considering each reference 

interactome, the parameters were adjusted within the specified range, as shown in 

Table 2, for the PRF, HDF, and PCSF algorithms. PRF and HDF parameter sets were 

changed in a two-dimensional grid by averaging the parameter settings for the 10 

highest F1 scores. A union of parameter sets achieving the highest coverage of the seed 

nodes, VI, for each pathway was the basis for determining the PCSF's optimal 

parameter sets. 
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Table 2: Tunning ranges of parameter sets in PageRank flux (PRF), heat diffusion flux 

(HDF), and prize-collecting Steiner Forest. 

Reconstruction 

algorithm 

Parameter Range Increment 

 PRF Damping factor (λ) 

Flux threshold (τ) 

0–1 

0–1 

0.05 

0.05 

HDF Heat diffusion rate(α) 

Flux threshold (τ) 

0–1 

0–1 

0.05 

0.05 

PCSF Dummy edge weight (ω) 

Edge reliability (β) 

Degree penalty (γ) 

0–5 

0–5 

0–10 

0.5 

0.5 

0.5 

3.2. Results 

3.2.1. Systematic evaluation of reference human interactomes 

The quality and coverage of the reference interactome heavily influence the 

effectiveness and accuracy of network reconstruction techniques. Consequently, a 

comprehensive investigation displayed the characteristics of iRefWeb, 

PathwayCommons, HIPPIE, ConsensusPathDB, OmniPath, and STRING databases. 

Several databases, like iRefWeb, HIPPIE, ConsensusPathDB, and STRING, provide 

scores to quantify confidence levels in interactions. Initially, a comparison was 

conducted between the pairs of interactomes to assess their similarity concerning their 

node and edge sets. PathwayCommons has the largest network size, resulting in a 

comparatively higher proportion of node and edge overlap with other interactomes. 

iRefWeb, PathwayCommons, HIPPIE, and ConsensusPathDB exhibit the highest 

similarity across interactomes, as determined by the overlaps in their nodes and edges 

(Figure 6A). In contrast, STRING and OmniPath interactomes have fewer numbers of 

shared nodes and edges. It is essential to acknowledge that we selected only 

experimentally known interactions of STRING that comprises more than one million 

interactions in the home ground.  

 

For the comparative analysis, only experimental interactions were considered, 

resulting in an interactome of comparatively smaller size with edges of medium or 

high confidence. Before using network reconstruction methods, acquiring more 

reliable interactions in a reference interactome is fundamental, based on confidence 

scores or experimental methods. This step is essential in mitigating the influence of 

false positives. Network reconstruction methods mainly leverage the edge confidence 

scores and the topology of the reference interactomes during the propagation or 
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optimization, affecting the accuracy of the resulting network. Figure 6B displays the 

number of edges in each reference interactome by classifying edges into three 

categories: low, medium, and high confidence, determined by the interaction scores. 

Most interactions in ConsensusPathDB are characterized by increased confidence, 

while ones in HIPPIE and iRefWeb are distributed in medium and low confidence 

ranges. HIPPIE and iRefWeb use the MINT-inspired (MI) confidence score 

computation197, while ConsensusPathDB employs the IntScore tool49. We recomputed 

the confidence scores in STRING based only on the experiment and database scores198. 

Both PathwayCommons and OmniPath lack the provision of confidence scores. The 

use of diverse scoring strategies results in variations in the distribution of confidence 

scores across the interactomes. The correlation coefficient between scores obtained 

from the HIPPIE and iRefWeb databases is very high (r = 0.67, p < 0.05). Conversely, 

the correlation between confidence ratings in iRefWeb and ConsensusPathDB is 

considerably low (r = 0.25, p < 0.01). This discrepancy may result from the distinct 

scoring method. (Figure 6C). The MI-Score metric takes into account homologous 

interactions, the technique of detection, and the number of publications about the 

interactions. On the other hand, IntScore combines topological features, evidence from 

the literature, and similarity in protein annotation. 
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Figure 6: A comparative analysis of the reference interactomes A) Commonalities at the node and edge 

levels between given interactomes:  A light-to-dark blue color scale displays the node overlap score, 

while the circle size depicts the edge similarity scores; the more significant the circle, the more 

prominent the similarity. B) The Confidence scores for each interactome are classified into three 

categories based on their confidence levels: low confidence (ranging from 0.1 to 0.4), medium 

confidence (ranging from 0.4 to 0.7), and high confidence (ranging from 0.7 to 1.0). PathwayCommons 

and OmniPath are not demonstrated here due to the lack of a confidence score for their edges. Edges 

with low confidence ratings are mostly seen inside the iRefWeb database, with only some segments of 

edges within the ConsensusPathDB database displaying low confidence scores. Conversely, the filtered 

STRING and HIPPIE databases do not include any instances of edges with low confidence scores. C) 

Various approaches for calculating confidence scores are used in interactomes As a result of evaluating 

their shared edges, the heatmap visually represents the correlation coefficients between confidence 

ratings across interactomes. The darkest blue represents the highest correlation between the HIPPIE and 

iRefWeb databases. Both interactomes use the same approach, MI scoring, for calculating confidence 

scores. 
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Despite helping filter out false positives, confidence scores alone are insufficient to 

mitigate bias within interactions. Consequently, we conducted further analysis on the 

interactomes, considering the inclination towards extensively researched proteins and 

using several indicators such as the number of publications about the proteins, 

including cancer driver genes, and the availability of structural information for the 

interactions. Well-studied proteins like TP53 and EGFR in the interactomes have 

hundreds of high-confidence interactions199,200.  Indeed, a trade-off exists between the 

confidence scores of specific proteins and systematic research bias. We examined the 

number of publications and the degree centrality of proteins within each reference 

interactome to investigate the potential correlation between protein centrality and 

research attention using log-based values to find out their correlation (Figure 7A). The 

strongest correlation in PathwayCommons implies a bias toward well-studied proteins 

among these interactomes. iRefWeb, STRING, and OmniPath have a moderate 

correlation between the degree and the number of publications, which implies 

relatively less biased interactions. 

 

The use of network reconstruction methods includes the identification of disease-

associated pathways, particularly in cancer, by predicting markers, associated 

genes/proteins, and action mechanism of drugs and clustering or specifying patients 

clusters19,110,201,202. Therefore, we explored the cancer-driver genes (CDGs) in each 

interactome. CDGs provide a growth advantage to the tumor cells and induce 

alterations in signaling cascades and cell pathways. Identifying CDGs plays a crucial 

role in categorizing, characterizing, and advancing therapeutic interventions for 

tumors203–205. Figure 7B illustrates that CDGs have considerably more publications 

than the other proteomes (p<0.01). The identification and characterization of driver 

genes and their associated interactions play a crucial role in the precise reconstruction 

of driver pathways in cancer. The degree of CDGs is the introductory knowledge about 

their function in cancer progression since interactions of proteins determine their 

affecting mechanisms. CDGs in PathwayCommons have a higher number of 

connections compared to other interactomes (Figure 7C).  

 

The structural identification of PPIs can be the most reliable and precise source and 

informative, uncovering the binding sites, domain contacts, and many more206–208. 
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However, experimentally known PPIs are the only drawback in datasets. The number 

of protein complexes can only account for around 16% of the whole interactome, 

despite the exponential growth in PDB enabled by X-ray, CryoEM, and NMR 

methods181,209,210. We further examined each interactome in light of the representation 

of structurally annotated interactions. We used the PDB and Interactome3D complexes 

for this objective. Our research (Figure 8A) shows that HIPPIE has the most 

outstanding coverage of structurally known protein-protein interactions. 

PathwayCommons and ConsensusPathDB come after HIPPIE. The lowest coverages 

are in iRefWeb, OmniPath, and the filtered STRING interactome.  

 

Generated subnetworks should be biologically meaningful so that their downstream 

analysis can identify proper biological functions, signaling cascades, and 

pathways211,212. Therefore, we investigated the coverage of interactomes by using 

curated pathways extracted from KEGG, one of the most widely used databases for 

pathway annotations. We discovered that PathwayCommons covers KEGG pathways 

much more and filtered STRING than ones by iRefWeb (Figure 8B).  
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Figure 7: Correlation between publication counts and degrees in the context of interactomes A) Graphs 

depict the distribution of publications and degrees for each interactome on a log-log scale, exhibiting a 

power-law pattern. All interactomes have a positive association between degree and publication 

number. Notably, PathwayCommons, HIPPIE, ConsensusPath, and iREF have hubs extensively 

researched in the literature. In contrast, the hubs identified in iRefWeb and OmniPath exhibit a lack of 

well-studied proteins, as shown by their respective p-values (<0.001) and correlation coefficients with 

other databases (rPathwayCommons = 0.622, rConsensusPathDB = 0.556, rHIPPIE = 0.614, riRefWeb = 0.508, rSTRING = 

0.250, and rOmniPath = 0.400). B) The distributions of the number of publications and cancer driver genes 

in the intOGen database are shown in blue and orange, respectively. The probability of cancer-driver 

genes (CDGs) is greater than the probability of well-studied proteins. C) The boxplot illustrates the 

distribution of driver gene degrees among interactomes; CDGs in PathwayCommons have more 

connections than other interactomes have. OmniPath and iRefWeb have a comparatively lower 

abundance of interactions belonging to CDGs compared to ConsensusPath, HIPPIE, STRING, and 

PathwayCommons. 
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Figure 8: Coverages of known structurally known and curated interactions. A) Structural information 

is demonstrated in two groups: known interactions in PDB in blue and predicted interactions in 

Interactome3D in orange. B) The violin plot illustrates the distribution of overlaps between the 

interactions in KEGG pathways and each interactome. 

3.2.2. Performance of network reconstruction algorithms 

Each interactome has particular strengths and shortcomings, detailed under the title of 

the Systematic Evaluation of Reference Human Interactomes. To understand their 

performance, we've employed each interactome for each network reconstruction 

algorithm to assess the variation in their individual performance. The performance of 

four well-known network reconstruction algorithms, namely the all-pair shortest paths 

(APSP), personalized PageRank with flux (PRF), heat diffusion with flux (HDF), and 
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the prize-collecting Steiner Forest (PCSF) algorithms, were evaluated with the 

benchmark dataset of 32 curated pathways obtained from NetPath. Four pathways are 

used for parameter adjustment, while the remaining 28 are used for performance 

assessment. 

 

We collected performance measurements at both the node and edge levels for each 

combination of interactomes and reconstruction techniques across all pathways. The 

performance of node-level analysis is more resilient to variations in interactomes, or 

pathways compared to edge-level analysis in each method. The most significant 

variation is in the F1 scores at the edge level, where the trade-off between recall and 

accuracy values exhibits considerable variability among routes and interactomes 

(Figure 9). The F1 scores (p < 0.001) and precision (p < 0.001) scores of the 

reconstructed pathways using PathwayCommons exhibit mainly lower values 

compared to the scores obtained from the other interactome (Figure 10A). The edge-

level MCC, used for binary classification tasks using unbalanced data, has the second 

largest variation213,214. The outcome suggests that the algorithms exhibit suboptimal 

performance when applied to a reference interactome of considerable size, primarily 

due to the prevalence of false positive interactions overshadowing the actual positive 

interactions. Based on the F1 scores and precision values, our analysis did not provide 

any statistically significant differences in performance when using the HIPPIE, 

ConsensusPathDB, OmniPath, or iRefWeb interactomes. Consequently, we used 

HIPPIE as a reference interactome for further evaluations due to its well-balanced 

characteristics, including coverage of structurally known interactions, as determined 

in the reference network comparison. 

 

The analysis of edge-based performance ratings revealed that APSP exhibits 

considerably lower accuracy values (p <0.001) and higher recall values than other 

reconstruction techniques when evaluating performance across all paths. There is a 

lack of statistically significant variation in precision values observed across HDF, 

PRF, and PCSF, as seen in Figure 10B. There is no significant difference in the recall 

values of the reconstructed pathways between HDF and PRF. However, PCSF exhibits 

considerably greater recall scores compared to HDF and PRF (p < 0.001) (Figure 

10C). Including all shortest routes between the seed nodes in APSP causes a decrease 
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in accuracy values and an increase in recall values. The boosted FPR seen in APSP 

suggests that the number of false positive edges surpasses the number of accurate 

positive edges. Hence, the F1 scores of the APSP-reconstructed pathways exhibit a 

statistically significant decrease compared to those of other methods (p < 0.001) 

(Figure 10D). In contrast, pathways reconstructed by PCSF have reasonably high 

recall and precision scores and the greatest F1 score, optimizing the precision and 

recall values. Notably, the range of recall scores seen in the reconstructed pathways 

with the PCSF approach is not as diverse as in other methods because of the 

intersection of multiple solutions derived from various parameters. The Omics 

Integrator 2, using the PCSF algorithm, assembles an ideal forest as its primary output. 

Additionally, it generates an augmented forest that encompasses all the edges that 

connect the nodes included in the optimal forest. The final network of PCSF was 

formed by intersecting the augmented forests generated from multiple parameters. 

Thus, incorporating an additional edge into the final network was executed with a high 

level of strictness. We computed the Jaccard similarity matrix among HDF, PRF, and 

PCSF to demonstrate the variation in the edge-level performance across the 

reconstructed pathways (Figure 10E)215. The PCSF algorithm penalizes the nodes 

with strong connectivity, diminishing the influence of well-studied or hub nodes in the 

reconstructed networks.  

 

Figure 9: Principal Component Analysis (PCA) over edge-based and node-based scores reveals that 

edge-based scores explain more than 90% of the variance. 
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Figure 10: Performance assessment of each interactome and method in pathway reconstruction. A) The 

Boxplot of edge-based precision and F1 scores across different interactomes reveals that 

PathwayCommons and STRING exhibit considerably lower scores than the other interactomes. At the 

same time, there is not any distinct difference among HIPPIE, ConsensusPathDB, OmniPath, and 

iRefWeb. The performance score of each reconstructed network is illustrated with red points in the 

boxplots. Brown lines connect the performance scores of the same pathway across the interactomes. B) 

Edge-based precision, C) edge-based recall, and D) edge-based F1 scores are demonstrated for an 

individual reconstruction algorithm. E) The reconstructed pathways were assessed considering HDF, 

PRF, and PCSF. The heatmap displays that the reconstructed pathways by PCSF are different, having 

%44 and %39 different edges, respectively, than the ones reconstructed by PRF and HDF. 
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3.2.3. Reconstruction of the notch pathway  

The first case study, the Notch signaling pathway, is crucial to cell fate determination, 

regulating differentiation, apoptosis, proliferation, and morphogenesis. Cancer studies 

cover this signaling cascade and its crosstalking pathways216–218. We did not consider 

the APSP method due to many false positives, while PRF, HDF, and PCSF results for 

the Notch pathway are demonstrated in Figure 11. Notch receptors, single-pass 

transmembrane proteins, initiate a signaling cascade by receiving signals from 

transmembrane ligands such as JAG1, JAG2, DLL1, and DLL4. Our seed nodes 

covered Notch receptors and CNTN1, JAG2, and DLL4. During propagation, each 

reconstruction algorithm determined JAG1 and interaction between Notch receptors 

and ligands apart from DLL. PCSF proved superior performance in recovering low-

degree nodes, such as CNTN1, WDR12, LEF1, RBX1, SIN3A, and other true 

positives. However, it could not include several additional nodes, such as AKT1, 

SKP1, SPEN, and TCF3. Furin–Notch receptors, successfully identified by PCSF, 

regulate the Notch pathway in cancer progression219. HDF and PRF mostly identified 

the interaction between highly connected nodes, such as MAML1 and Notch receptors, 

while fainting to construct interactions between nodes with low degrees, such as JAK2 

and WDR12. 

 

The Notch signaling pathway interacts with other critical pathways in cancer, such as 

PI3K-AKT-mTOR and JAK-STAT signaling pathways. These interactions, providing 

crosstalk, are mainly mediated by the nodes with low-degree and high betweenness 

centrality in reference networks220. PCSF identified intermediate or hidden nodes 

mediating crosstalk while being insufficient to add their interactions. In the 

reconstructed Notch signaling pathway, we correctly identified the PIK3R1-Notch1-

LCK interactions, but we could not find the PIK3R2-AKT interaction. Similarly, in 

the JAK-STAT and Notch pathway crosstalk221,222, we accurately found intermediate 

nodes such as JAK2, HES1, and HES5, but we failed in recovering their interactions 

with STAT3 in the PCSF-reconstructed pathway.  
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Figure 11: Reconstructed Notch pathway. Nodes that are present in the pathway but are not found by 

any algorithms are colored light blue. Nodes that PCSF, PRF, and HDF find are colored red, yellow, 

and cyan, respectively. Green edges are present in the Notch pathway in NetPath, while incorrectly 

included edges by any algorithm are shown in brown. 
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CHAPTER 4  

 

pyPARAGON: COMBINING NETWORK PROPAGATION WITH 

GRAPHLETS TO INTEGRATE MULTI-OMICS DATA 

 

Properly integrating and translating multi-omics datasets into interpretable 

information is challenging owing to data sparsity223, missing data points42,224, and 

computational complexity29, as discussed in the literature review. Network-based 

algorithms enable addressing these issues and deciphering causal relationships 

between omics components7,95,225. These approaches ultimately acquire a network 

model that may depict changes in disease models or pharmacological treatments using 

topological and statistical characteristics. The merit of using global and local network 

characteristics (such as degree distribution and clustering coefficients) for propagation 

or inference is constrained when dealing with this kind of sparse data. Therefore, the 

frequencies of motifs (recurring subgraphs) might provide a more elucidating approach 

to unveiling complex cellular networks167. 

 

Graphlets, non-isomorphic small connected subgraphs, are found in higher proportions 

in the reference interactome and are linked to particular functions162,163. Another 

obstacle arises from highly interconnected and multifunctional proteins, namely hub 

proteins dominating the final network and obscure context-specific networks226. These 

proteins can potentially introduce non-specific interactions into the network models 

due to the small-world nature of reference interactomes. Therefore, the use of network 

motifs, graphlets, or module identification may enhance the context-specific elements 

of models7,132,225. 

 

This thesis proposes that utilizing network motifs instead of individual protein 

connections provides a more accurate representation of signaling networks and 

minimizes the incorporation of irrelevant interactions. We have proved that graphlets 

effectively decrease the complexity of reference interactomes by eliminating non-
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specific and highly interconnected proteins and their interactions. pyPARAGON 

(PAgeRAnk-flux on Graphlet-guided network for multi-Omics data integratioN) 

outperformed chosen state-of-the-art methods, such as Omics Integrator 234 and 

PathLinker137, regarding node propagation and edge inference on the benchmark set 

of cancer signaling pathways. 

4.1. Methods 

4.1.1. Overview of pyPARAGON as a hybrid network inference framework  

Combining more than one approach can be more successful in multi-omics integration 

than depending on a single method alone169,227. pyPARAGON is an innovative method 

integrating graphlets with network propagation using the personalized PageRank 

algorithm. It then selects interactions based on edge flux calculation to tackle the issues 

in network modeling effectively. pyPARAGON runs in three steps (Figure 12A): i) 

the construction of Graphlet-guided network (GGN), ii) propagation and edge scoring, 

and iii) selecting highly scored edges on GGN.  

 

Cutting-edge techniques consider an immediate connection between two nodes in the 

reference network and features of nodes (such as degree, betweenness, proximity, and 

eigenvector centralities). The GGN creation stage of pyPARAGON utilizes an 

unsupervised strategy to find a core area in the reference interactome by merging 

considerable frequent graphlets with 2-4 nodes (Figure 12B). it is expected to find few 

direct interactions between the genes/proteins of interest. Intermediate nodes are 

necessary to connect them and construct a coherent network structure. Therefore, we 

restricted graphlets with more than two nodes that may have an intermediary node. 

Intermediate nodes are defined as the nodes with the most connections to the seed 

nodes in a graphlet.  

 

Aside from constructing GGNs, the personalized PageRank algorithm also spreads 

signals from seed nodes across the reference interactome. The node weights and their 

degrees, and edge confidence ratings are integrated into a unified function to compute 

edge fluxes173. Within this function, the degree component punishes proteins with a 

high level of connectivity that can be arbitrarily inserted in a final subnetwork. 

Ultimately, we establish connections between edges with significant flux scores in 
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GGN (Figure 12C). For interpretation, using the Louvain community detection 

method151, pyPARAGON also reveals communities operating in distinct biological 

processes or pathways (Figure 12D). Subsequently, the hypergeometric test in 

pyPARAGON identifies context-specific annotations228. In this way, we reveal not 

only hidden connections between initial nodes but also significant context-specific 

pathways. 

  

 
Figure 12:  The overview of pyPARAGON A) pyPARAGON runs in three steps:  i. GGN construction 

(light red boxes); ii. Propagation and edge scoring (yellow boxes); iii. Selecting highly scored edges in 

GGN (green boxes). B) We investigated nine non-isomorphic graphlets (G0-G8) composed of 2, 3, and 

4 nodes for GGN. Except for G0, each graphlet covers at least two seed nodes (red circles) and one 

intermediate node (white circles) that connects the seeds in the center of the orbit. C) By random 

walking from weighted initial nodes in the reference network, the Personalized PageRank algorithm 

assigns a weight to each node. Computed edge fluxes were used as the edge scores in the reference 

interactome. High-scoring edges in GGN formed the final subnetwork. D) pyPARAGON employs the 

Louvain community detection method, based on network topology, to divide the inferred network into 

functional units. Significant biological processes and pathways in each community were found by a 

hypergeometric test. 

4.1.2. Network inference tools 

4.1.2.1. pyPARAGON  

During the construction of GGN, we parsed 2-, 3-, and 4-node-graphlets (G0, G1, G2, 

…, G8, as seen in Figure 12B), which are small non-isomorphic subgraphs. An 
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isomorphism of graphlets between two subgraphs, X(VX, EX) and Y(VY, EY), is 

established with bijections, a one-to-one equality, between VX and VY
162. While 

searching graphlets, we looked through the graphlets to find an intermediate node in 

one of the orbits with the highest degree and seed nodes in the remaining orbits. The 

reference network is defined as R(VR, ER, c(e)), where VR, ER, and c(e) are nodes, 

undirected edges, and the confidence score of an edge, respectively. Furthermore, we 

computed the frequencies of graphlets in 100 permuted networks using the same seed 

node set169,170. We implemented the z-test to compare the frequencies of targeted 

graphlets in the reference and permuted networks (p<0.05, z-score>1.65). The 

graphlet-guided network (GGN), denoted as G(VG, EG), where G⊆R, is formed by the 

union of graphlet motifs, which represents notably frequent graphlets. 

 

In the propagation and edge scoring steps, we implemented the personalized PageRank 

(PPR) algorithm and flux calculation detailed in the previous chapter, network 

reconstruction part. The final edge score (f(e)) is defined with Formula 3.8. After 

mapping edge scores into GGN and applying Formula 3.9, we select the most 

weighted edges to infer the context-specific network C(VC, EC), where EC⊆(EG ,>) and 

VC⊆VG. 

 

We use the Louvain method to detect communities or modules in context-specific 

networks, a fast and heuristic method composed of two iterative steps. (1) Assigning 

each node to its community; (2) Interchanging neighbor nodes to find the maximum 

modularity until no positive gain is achieved151. 

 

We parse the functional communities using the hypergeometric distribution. The 

probabilities of communities are examined with the prior knowledge using Formula 

4.1 as follows: 

 

𝑝 =  1 − ∑
(

𝑀

𝑖
)(

𝑀−𝑁

𝑛−𝑖
)

(
𝑁

𝑛
)

𝑘−1
𝑖=0             (4.1) 

 

where M is defined as the population size, the number of genes in the given reference 

network; N is the number of genes/proteins in the prior knowledge; n is the number 
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of genes/proteins in the community; and k is the number of successfully identified 

genes.  

4.1.3. Interactomes and datasets 

We used different interactomes as references: HIPPIE v2.2 (15,861 nodes, 345,770 

edges), HIPPIE v2.3 (19,437 nodes, 774,449 edges)8, and ConsensusPathDB v35 

(18,178 nodes, 516,211 edges)175. 18 cancer signaling pathways with more than 50 

proteins were retrieved from NetPath as a benchmark195. We established the seed node 

set for 8 cancer types, namely bladder urothelial carcinoma (BLCA), breast invasive 

carcinoma (BRCA), esophageal carcinoma (ESCA), head and neck squamous cell 

carcinoma (HNSC), lung squamous cell carcinoma (LUSC), pancreatic 

adenocarcinoma (PAAD), prostate adenocarcinoma (PRAD), and uterine corpus 

endometrial carcinoma (UCEC). Out of the 1,289,655 mutations in 3,759 individuals, 

we identified the 300 genes with the highest mutation occurrence. The mutant dataset 

encompasses a range of cancer genomics initiatives, including TCGA and GENIE229. 

We obtained ground-truth node sets for cancer types from IntOGen, composed of the 

3333 driver mutations on 568 genes182.  

4.1.4. Performance assessment of network inference tools 

We assessed pyPARAGON by performing pathway reconstruction in NetPath, 

inferring specific cancer networks, and comparing its performance with Omics 

Integrator 2 and PathLinker 1.4.3. The network inference tool requires a list of seed 

genes/proteins (initial nodes) as input, which should be tailored to the relevant 

biological context. Seeds may be acquired by several methods, including but not 

limited to omics research, pharmacological perturbation analysis, or disease-

associated proteins. Firstly, we reconstructed cancer signaling pathways in NetPath 

and disease network models of 8 cancer types. Each pathway in NetPath was shuffled 

separately, dividing their nodes into two equal portions, repeated five times. One 

portion was utilized for seed node sets, while the remaining portion was attempted to 

be in a final reconstructed pathway by covering their edges. During modeling cancer 

types, the driver genes were randomly partitioned into five equal segments for each 

type of cancer. Each segment was extracted from the genes with the highest frequency 

of mutations. Next, we used the remaining frequently mutated genes as initial nodes 
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to model each cancer type. We attempted to predict extracted driver genes using 

different inference tools during assessments.  

4.1.4.1. Network inference tools  

Omics Integrator 2 utilizes the prize-collecting Steiner Forest algorithm integrating the 

objective function (Formula 3.11), detailed in the previous chapter. 

 

PathLinker computes the k-highest scored short pathways between seed nodes without 

a loop in the reference network.  The path score, denoted as W, is calculated by 

multiplying the edge weights along the path137. The cost of a path is calculated with 

Formula 4.2. 

 

𝐶𝑢𝑣 = {−𝑙𝑜𝑔(𝑊_𝑢𝑣) 𝑖𝑓 𝑢, 𝑣 𝜖 𝑉 \ {𝑠, 𝑡}, 0 𝑖𝑓 𝑢 =  𝑠 𝑜𝑟 𝑣 = 𝑡 }            (4.2) 

 

where s and t are, respectively, a source and a target for each node, x ∈ S. The cost of 

a path is the sum of the costs of the edges in the path.  

4.1.4.2. Assessment metrics 

We performed a comparative analysis of GGN and reference networks based on 

topological features and network metrics, such as node and edge counts, highly 

connected nodes with more than 200 interactions, average node degrees, and 

diameters. 

 

We computed precision, recall, F1 scores, and area under the precision-recall curve 

(AUPRC) for each pathway and cancer-specific network38. We generated a series of 

parameter sets for tools using grid search. In Omics Integrator 2, the parameter sets 

were defined as follows: the dummy edge weight (ω) was varied, the edge 

dependability (β) ranged from 0 to 5 with increments of 0.5, and the degree penalty (ɣ) 

ranged from 0 to 10 with increments of 1. Similarly, we assessed the efficiency of PL 

by varying the value of k, which represents the number of shortest pathways, from 50 

to 1000 in increments of 50. In contrast, we evaluated the performance of 

pyPARAGON by adjusting the damping factor (λ) and flux threshold (τ) within the 

range of 0.05 to 1, with increments of 0.05. 

 



 
55 
 

 

We measured the changes in the connectivity of proteins that are strongly 

interconnected between the provided reference network and GGN to assess the 

performance of GGN. In our study, we identified a set of proteins, denoted as HR, that 

have more than 200 interactions in a reference network (h1, h2, ..., hn) ∈ HR for a 

reference network, the highly connected proteins (h1, h2, ..., hm) ∈ HG in GNN, and the 

highly connected proteins (h1, h2, ..., hp) ∈ HP in the given pathway, HP⊆HG⊆HR⊆VR 

The reduction ratio (RR) of the remaining highly connected proteins in GGN was 

separately calculated using Formula 4.3: 

 

𝑅𝑅 =  
𝑙𝑜𝑔10 ∑

𝑑𝑒𝑔𝑅(ℎ𝑖)

𝑑𝑒𝑔𝐺(ℎ𝑖)
𝑚
𝑖=1   

𝑚
   (4.3) 

 

deg(h) is the number of interactions of h, and m is the number of highly connected 

nodes in GGN. We computed RR of highly interconnected proteins for each signaling 

pathway. 

4.1.5. Running time analysis of pyPARAGON 

The running time analysis was conducted on a computer running Windows 11 and 

equipped with an Intel (R) CoreTM i7-10510U CPU, 1.80GHz, 2304 Mhz, 4 cores, 

and 16GB of DDR4 RAM. We separately measured running durations by altering two 

variables: the number of initial nodes and the size of the reference network. In the first 

case, we constructed a random geometric network composed of 15 000 nodes230. We 

used default parameter sets of pyPARAGON where graphlets (G1, G2, G3, G4, G5, G6, 

G7, and G8), λ = 0.8, and τ = 0.8. The number of initial nodes was adjusted between 25 

and 750, with 25 incremental. We randomly selected each initial node set 30 times. In 

the second case, we constructed random geometric networks composed of 1,000 to 

20,000 nodes with an incremental increase of 1,000, repeated 30 times. During 

network inference, we appointed 100 random initial nodes from each own reference 

network and kept its running time.  

4.2. Results 

4.2.1. Network trimming via graphlets improves the reference networks  

We recruited the NetPath dataset195 as the ground dataset to build precise cancer 

signaling pathways and evaluate the effectiveness of pyPARAGON. Similarities in 
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topological features, predicted nodes, and edges in targeted networks and functional 

units are mainly assessed in the performance of methods169,231. After examining all 

graphlets in the reference interactomes, we determined that the most often occurring 

graphlets were G2, G5, G6, G7, and G8 (Figure 13A). Direct interactions between input 

nodes are not significantly frequent in the given reference networks. On the other hand, 

these direct interactions get more significant in the presence of intermediate nodes 

interacting with G0 and constructing G2. Our observation shows that graphlets with at 

least one intermediary node connecting the seeds provide more precision than adding 

direct interactions between two seeds (i.e., G0) in the GGN.  

 

Each interactome has a distinct assessment and scoring system to integrate protein-

protein interactions (PPIs) from various databases38. We measured different 

topological features in ConsensusPathDB, HIPPIE v2.2 and HIPPIE v2.3 (Table 3). 

GGN is a contextualized subset of the given reference interactome. The independent 

comparison of reference networks demonstrated that GGN, a trimmed interactome, 

significantly enhanced the similarities among reference networks (Figure 14B). The 

final GGN retains features of a scale-free network that follows a power law (Figure 

14C). Although scale-free networks are still controversial in modeling approaches, 

various research found that functional biological networks are scale-free 

structure232,233. Scale-free networks are robust to the random loss of nodes, defined as 

error tolerance, and fragile to targeted worst-case attacks234. 
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Table 3: Topological features of reference networks 

 
ConsensusPathDB HIPPIE v2.2 HIPPIE v2.3 

Reference 

Network 

GGNs 

(Average) 

Reference 

Network 

GGNs 

(Average) 

Reference 

Network 

GGNs 

(Average) 

The number 

of nodes 18 178 2240.22 15 861 1823.52 19 437 2805.78 

The number 

of edges 516 211 8916.36 345 770 7137.52 774 449 11579 

The number 

of highly 

connected 

nodes 

1015 15.86 543 11.59 1812 21.11 

Average 

node degree 56.8 7.26 43.6 7.27 79.6 7.52 

Diameter 8 4.45 8 4.44 7 4.35 

 

Crosstalk between cancer signaling pathways forepoints a variety of cellular functions 

such as cell survival, metastasis, or apoptosis235,236. Highly connected nodes, or hub 

proteins, with various functions in different pathways, provide crosstalks between 

pathways237. However, the specific functionality of these nodes in reference networks 

is another challenging issue. Thus, reducing the power of highly connected nodes is 

another benefit of GGN. Within HIPPIE version 2.3, we discovered 1812 highly 

connected nodes that had more than 200 interactions. The GGN construction in 

pyPARAGON effectively reduced the number of highly connected nodes while 

hosting associated ones (Figure 14). Moreover, highly connected nodes and their 

specific functionality are also critical false negatives. Reduction Ratios in GGN 

demonstrate that the remaining highly connected nodes in GGN mainly lost their 

interactions, while reduction ratios of highly connected nodes in true pathway sets 

remained low. Thus, GGN maintained the associated functional interactions in GGN 

while trimming irrelevant interactions in reference networks. 
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Figure 13: Graphlet-guided networks (GGN) optimize reference networks. A) Graphlets composed of 

2, 3, and 4 nodes are constructed with initial nodes (red circles) coming from the given input and 

intermediate nodes (white circles). Intermediate nodes are the ones that have the highest connections to 

the seed nodes in the corresponding graphlet. We compared the frequencies of graphlets on different 

reference interactomes with their 100 permuted networks. Despite having different network sizes and 

properties, ConsensusPathDB (green), HIPPIE v2.2 (blue), and HIPPIE v2.3 (red) have similar graphlet 

motifs, such as Graphlets 2, 5, 6, 7, and 8 for signaling pathways in NetPath (p<0.05). B) The heatmap 

with the gradual color change highlighted the network similarities between reference networks (red) 

and GGNs (blue). The Jaccard Similarity Index was determined by dividing the number of common 

interactions by the number of merged interactions. The top-right section depicts network similarities, 

whereas the bottom-left section depicts average GGN similarities retrieved with the same initial nodes 

from NetPath. The construction of GGN results in more comparable and optimized networks. C) The 

pink and green distributions depict the degree probabilities of HIPPIE v2.3 and, GGN.  A power law 

governs HIPPIE v2.3, a scale-free network. GGN was constructed with nodes at various degrees to 

avoid the noise of highly connected nodes by reducing their irrelevant interactions. GGN retains scale-

free network features, as seen in biological networks. 
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Figure 14:  Graphlet-guided network trims reference interactome by removing some highly connected 

nodes and their non-specific interactions. Highly connected proteins are defined as the ones having more 

than 200 interactions in HIPPIE interactome (blue dots). The presence of these nodes in GNNs and 

NetPath pathways are shown for each signaling pathway (red and green dots, respectively). In the 

reference interactome, 1812 highly connected nodes are present. GGN selects a subset of these nodes 

that are highly specific to the pathways.  The change in node degrees of remaining highly connected 

proteins in GGN was calculated as the reduction ratio and shown with a blue color scale. Highly 

connected nodes in the reference interactome that are present in pathways are included during 

reconstruction with a low reduction ratio in GGN, while the rest have a higher reduction ratio. 

4.2.2. Performance of pyPARAGON on the reconstruction of cancer 

signaling pathways  

Pathways are a particular course of serial actions among biomolecules in a cell, leading 

to a particular product (metabolomics) by triggering the assembly or disassociation of 

biomolecules, and a change in the cell by turning on or off genes. During the 

performance assessments of pyPARAGON, PathLinker, and Omics Integrator 2, we 

compared reconstructed pathways in node propagation and edge inference aspects. We 

evaluated the predicted nodes in the prior aspects, considering how to complete the 

missing piece of knowledge via propagation. In the latter, we look at how interactions 

are functionally true in edge inference. To assess performance, we used the area under 

the precision-recall (AUPRC) curve, which allowed us to evaluate how well each 

pathway's nodes and edges were recovered in the predicted networks. Our analysis 
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demonstrated that pyPARAGON had superior performance compared to PathLinker 

and Omics Integrator 2 in inferring signaling pathways throughout all pathways of 

NetPath, both at the node and edge levels (Figure 15A). As an additional metric, we 

recruited F1 scores, representing both precision and recall scores in balance. Indeed, 

there is a trade-off between precision and recall scores. While achieving a better recall 

score, we saw decreased accuracy in the inferred networks. Analysis of F1 scores 

showed that pyPARAGON and PathLinker have a higher efficiency in propagation, 

while pyPARAGON and Omics Integrator 2 outperform in network inference (Figure 

15B). On the one hand, highly connected reference networks weakened the 

propagation ability of Omics Integrator 2. On the other hand, the high number of 

interactions provided more robust interactions in Omics Integrator 2 that were resilient 

to hub nodes. Considering PathLinker, we saw that propagation of the seed nodes was 

more robust due to the use of multiple short paths but introduced many false positive 

interactions. As a result of biological networks being scale-free, many seed nodes have 

a propensity to be linked by hub nodes as shortcuts. For this reason, the random walk-

based and shortest pathway techniques have the potential to result in the inclusion of 

false positive interactions238,239. However, applying penalties to highly connected 

nodes, such as using degree-dependent negative prizing in Omics Integrator 2 or 

penalizing nodes regarding the number of interactions, like calculating the PageRank 

flow to normalize the score in pyPARAGON, may decrease the number of false 

positive edges and enhance the F1-score in edge prediction. 
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Figure 15: Outperformance of pyPARAGON over Omics Integrator2 and PathLinker. A) AUPRC of 

each tool (blue=Omics Integrator 2, orange=PathLinker, and green=pyPARAGON) in each pathway 

reconstruction is shown in bar-plot for the following tools: In all signaling pathways, pyPARAGON 

performed better than others in both node and edge predictions. B) Distribution of F1-scores for each 

tool across 18 pathways is shown for node (blue) and edge (orange) predictions. 

4.2.3. Network-based modeling of cancer types 

We constructed network models of 8 cancer types to assess the effectiveness of 

pyPARAGON with other selected tools. Initially, we appointed 300 most common 

mutations as seed nodes in eight cancer types. Known driver genes, retrieved from 

IntOGen, were utilized as an independent test set where we checked their presence in 

contextualized network models. Utilizing 5-fold cross-validation, we excluded the 
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shared proteins between the seed list and known drivers for each fold. Subsequently, 

we reconstructed cancer-type-specific networks using pyPARAGON, PathLinker, and 

Omics Integrator 2. Our findings demonstrated that contextualized networks, inferred 

by pyPARAGON, encompass more known driver genes than other tools in all cancer 

types. pyPARAGON achieved higher recall and precision scores (Figure 16). In the 

highly condensed reference networks, early termination of propagation between seed 

nodes is the cause of recovering fewer driver genes in cancer-type-specific networks 

inferred by Omics Integrator 2. Nodes with a high degree of connectivity provide 

network shortcuts rather than relying on signal cascades or motifs in these reference 

networks. In the PathLinker-contextualized networks, as a result of recruiting the 

multiple-shortest paths, intermediate nodes were mostly associated with highly 

connected nodes rather than particular driver genes. pyPARAGON employs the 

PageRank algorithm to propagate seed nodes beyond their surrounding reference 

interactome. Furthermore, by using graphlets, GGN creation eliminates potential 

"frequent flyers," allowing for more accurate prediction of driver genes. In general, 

pyPARAGON outperforms competing cancer driver networks in terms of precise 

prediction and may be fine-tuned for use in building tumor-or patient-specific 

networks and conducting network comparisons based on network similarity. 
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Figure 16: Performance of contextualized cancer-specific networks for eight distinct cancer types. 

Marker size represents precision, while recall and network sizes are shown on the x-axis and y-axis. 

The recall score represents the ratio of correctly predicted cancer driver genes in cancer-specific 

networks to total number of drivers. pyPARAGON achieved better recall scores for each cancer type 

without having a decrease in precision scores.  

4.2.4. Running time analysis of pyPARAGON 

During running-time analysis, we infer context-specific networks by randomly 

selecting initial networks and creating reference networks. We figured out context-

specific networks by using random starting node sets with 25 to 750 nodes spread out 

over a network with 15,000 nodes and 544,249 interactions. Figure X demonstrates 

the duration of the inference series. We used 100 random initial nodes to infer context-

specific networks over random reference networks, which are composed of 1,000 to 

20,000 nodes, in the second running time measurement. Their duration is drawn in 

Figure x. We have nested functions to determine graphlets. Initially, pyPARAGON 

identifies directly interacting nodes among node pairs. Then, 3-node graphlets are 

specified based on the interaction knowledge of 2 nodes. Similarly, looking at 

neighbors of known 3-node graphlets, pyPARAGON determined 4-node graphlets. 

Therefore, due to these two nesting processes in graphlet determination, quadric 

running time was observed in Figures X and Y with O(n2). 
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Figure 17: Running time graph based on the initial node size. The randomly selected node sets 

composed of between 25 and 750 nodes are recruited for the construction of context-specific networks 

over the random network with 15 000 nodes. Running time exponentially increases depending on the 

number of initial nodes. 

 

Figure 18: Running time graph based on the network size. Using 100 randomly 

selected initial nodes, we constructed context-specific networks on different size of 

reference networks between 1000 and 20000. Running time exponentially increases 

depending on the number of nodes in the reference networks.  
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CHAPTER 5  

 

IMPLEMENTATION OF pyPARAGON 

 

The manifestation of a disease phenotype often represents the complex interactions of 

many pathobiological processes within a complex network240. The high number of 

interactions within the human protein interaction network (interactome) suggests that 

complex diseases cannot be regarded as independent of each other at the molecular 

level due to the presence of many genetic and environmental factors143. Recently, 

advancements in high-throughput methods, data mining, and bioinformatics 

methodologies have enabled the exploration of human disorders at different molecular 

levels. Tools integrating multi-omics datasets may provide valuable insights into the 

molecular structure of diseases, leading to better knowledge of disease correlation. 

However, these tools have inherent challenges in identifying their significant genetic 

factors95. Network-based models provide contextualized solutions covering different 

data types for various tasks, such as the identification of novel disease proteins, drug 

targets, patient stratification, and functional modules in diseases132,241. Small 

communities in networks can be more robust and reliable compared to individual 

biomarker genes based on patterns in omics and may attain superior precision in 

categorizing diseases242. Thus, we contextualized cancer and neurodevelopmental 

disorders using various omics datasets. In the first case study, we implemented 

pyPARAGON to construct tumor-specific networks. In the downstream analysis, we 

utilized these contextualized networks to stratify patients and identify their functional 

modules and specific drugs. In the second case study, we compared cancer and 

neurodevelopmental disorders by modeling breast cancer and autism spectrum 

disorder (ASD) to reveal their common pathways and differences in signal strength.  



 
66 
 

 

5.1. Methods: 

5.1.1. Case Study 1: Contextualization of breast cancer samples 

5.1.1.1. Data preparation 

We obtained phosphoproteomics datasets for 105 breast cancer patients and three 

healthy samples243. We considered only phosphosites observed in at least half of the 

samples to eliminate noisy signals and had a standard deviation larger than 0.5 in 

normalized data. Followingly, the remaining phosphosites were classified into two 

criteria: i) A log-2-fold-change (LFC) greater than 2; ii) highly or less phosphorylated 

in the Gaussian Mixture Model  (GMM)244. Within the framework of GMM, we 

divided phosphoproteomics into three divisions: highly, less, or normally 

phosphorylated. We randomly conducted 100 iterations of GMM for each patient. 

Subsequently, we selected proteins with high or low phosphorylation levels in 95% of 

models. We weighed differential phosphoproteins ranging from 0.5 to 1.    

5.1.1.2. Construction of tumor-specific networks 

During the contextualization with the tumor-specific network, we implemented 

pyPARAGON, detailed in Chapter 4, by assigning the selected, significant 

phosphoproteins as a scored seed node set for each sample (Figure 17). As a reference 

interactome, we recruited HIPPIE v2.38 after removing self-interactions. We kept 

confidence scores of interactions without filtration. Additionally, we selected the 

highest scores for repeated interactions. As an example of supervised usage of 

pyPARAGON, we assigned significantly frequent graphlets G2, G5, G6, G7, and G8, 

which had been identified for pathway reconstruction in Chapter 4. We used the 

following parameter sets: damping factor (λ) and flux threshold (τ) are set to 0.5, and 

the maximum number of interactions is 2000. 

 

  

https://paperpile.com/c/bb0Z4b/hpKhe
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Figure 19: Contextualization and downstream analysis of tumor-specific networks. pyPARAGON used 

seed node sets from phosphoproteomics datasets of 105 breast cancer patients to construct tumor-

specific networks. We extracted significant communities associated with gene ontology annotations. 

Then, we transformed network knowledge into the similarity matrix via significant communities to 

stratify patients. Also, specific pathways and drugs are determined using significant communities.  

5.1.1.3. Identification of functional communities and downstream analysis 

To identify functional communities, we divided tumor-specific networks into 

communities through the Louvain community detection methods151. We tested 

communities with the hypergeometric text155 described in Chapter 4. As prior 

knowledge, we obtained biological processes from Gene Ontology (GO) annotations81.  

 

To transfer information within the contextualized network to the vector space, we 

scored “1” for annotations represented with functional communities and “0” for 

unrepresented annotations. Then, t-distributed stochastic neighbor embedding (t-SNE) 

algorithm was implemented to reduce the vector space matrix to two components245. 

Then, we clustered the patients with agglomerative clustering through the Euclidean 

distance. Also, we calculated the similarity matrix through the pairwise cosine 

similarities between the enriched biological processes of all paired patients by 

applying Formula 5.1. Followingly, we construct the patient-patient similarity 

network by adding an edge between patients with similarity scores greater than 0.5. 

 

𝑆𝑖𝑚𝐶𝑜𝑠  =  
𝐴.𝐵

||𝐴|| |||𝐵||
  (5.1) 

 

For biological interpretation, we analyzed the survival probabilities of patients after 

identifying functional communities associated with the specific biological processes 

from GO annotations81. Then, we detected specific pathways in cellular processing and 
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signal transduction from KEGG70, and therapeutic drugs from the therapeutic target 

database246  

5.1.2. Case study 2: Contextualization of neurodevelopmental disorders 

and cancers 

5.1.2.1. Data preparation 

We constructed a network model of ASD as an example of neurodevelopmental 

disorders (NDD), while breast cancer is an example of cancer (Figure 18). mutations 

were retrieved from denovo-db28, NDD composed of human germlines de novo 

variants of 20 phenotypes. ASD dataset in denovo-db has been composed of targeted 

sequencing of 3203 patients, coming from either whole exome or whole genome 

studies. We only considered the point mutations affecting the canonical protein 

structures. Therefore, we initially mapped the genomic coordinates of mutations into 

protein structures using VarMap247. In this way, we identified 4881 unique mutations 

on 3839 genes. We assigned 190 genes to the seed node set by selecting genes seen in 

at least 3 patients. We retrieved cancer driver mutation, tabulated in the Catalog of 

Validated Oncogenic Mutations on the Cancer Genome Interpreter (CGI)248. We only 

considered 3688 driver mutations on 237 including missense or nonsense mutations. 

168 genes associated with breast cancer were recruited to the seed nodes.  

5.1.1.1. Construction of disease-specific networks  

We implemented pyPARAGON by using HIPPIE v2.3 as a reference interactome8. To 

use our novel tool in an unsupervised manner, the union of all graphlets constructs 

GGN without texting the significance of any graphlets. In the following steps, we set 

the damping factor (λ) as 0.5 for propagation and the flux threshold (τ) as 0.8 to select 

the interaction with the highest scores.  

 



 
69 
 

 

  
Figure 20: A conceptual representation of network comparison analysis between NDDs and cancer. 

Two distinct networks (left panel) were reconstructed for breast cancer (large pink circle) and ASD 

(large purple circle). These two networks have both shared (shaded green) and separated regions. These 

networks contain oncogenes (red circle), tumor suppressors (yellow circle), and TFs (green V-shapes). 

The transcriptome analysis (upper-right panel) associates the expression levels of the nodes with the 

pathway activity. Each enriched pathway in the network can be quantified with the average expression 

level of its nodes, which is called “pathway scoring.” The score of each shared pathway (1, 2, ..., n) for 

each disease (ASD, purple; cancer, red) is calculated (shown as a Wi-fi icon where the higher score is 

the stronger signal). 

5.1.1.2. Identification of the common pathways  

By examining transcription factors (TFs), target genes, and the pathways connecting 

both diseases, we were able to deduce the shared functions of disease networks in 

overlapping network areas. TFs and their targets, obtained from TRRUST v264, were 

mapped into disease-specific networks.  TFs in these networks were referred to 

specific transcription factors (STFs). Genes targeted by STFs were determined as 

regulated genes by disease-specific networks. We conducted the overrepresentation 

analysis for the commonly regulated genes among ASD and breast cancer to identify 

their shared pathways. The overrepresentation tool, WebGestalt249 was recruited with  

KEGG70, and Reactome250 databases (p < 0.05 and FDR < 0.05)  
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5.1.1.3. Assessments of pathways  

We used processed RNA expression data from samples of ASD, breast, kidney, and 

brain cancer, which are reported in Table 4251. The ASD dataset included combined 

data from three investigations, namely from frontal brain samples. It encompassed a 

total of 34 samples from individuals with ASD and 130 samples from control subjects. 

We used comprehensive datasets for breast, kidney, and brain tumors, consisting of 7, 

10, and 8 trials, respectively. 3579 genes were identified as differentially expressed in 

ASD populations, whereas 11,629 genes were identified as differentially expressed in 

cancer cohorts, using z-scores. 

 

Table 4: Expression profiles of diseases 

Phenotype Cases Control Datasets 

ASD 34 130 
GSE28475, GSE28521,  

(Gupta et al. 2014). 

Brain cancer 942 104 

GSE4290, GSE9385, GSE74195, 

GSE68848, GSE15824, GSE42656, 

GSE44971, GSE50161 

Breast cancer 1494 249 

GSE10810, GSE31448, GSE42568, 

GSE54002, GSE65216, GSE45827, 

GSE29431 

Kidney cancer 400 266 

GSE11151, GSE77199, GSE47032, 

GSE53757, GSE53000, GSE66272, 

GSE68417, GSE71963, GSE40435, 

GSE7635 

 

The signal strength and mutation vulnerability of the common pathways were used as 

pathway assessment metrics. The signal deviation is measured considering the 

expression level of each gene in the given pathway.  To determine the expression score 

(ES) of a particular pathway (P), we computed the mean absolute signal differences of 

pathway252–254 using Formula 5.2. The given pathway, P=(G, E, U), consisting of 

genes/proteins (g1, g2, …, gn, ∋ G), expression of genes (|e1|, |e2|, …, |en| ∋ E), and the 

number of unique mutations belonging to genes (u1, u2, …, un ∋ U). We assessed the 

mutation vulnerability of a pathway by determining the propensity score (PS) of the 

pathway based on the number of unique mutations by using Formula 5.3.  

 

𝐸𝑆𝑝  =  
∑ |𝑒𝑘|𝑛

𝑘=1

𝑛
     (5.2) 

 

𝑃𝑆𝑝  =  
∑ 𝑢𝑘

𝑛
𝑘=1

𝑛
     (5.3) 

https://paperpile.com/c/bb0Z4b/v5lz
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5.2. Results: 

5.2.1. Case Study 1: Tumor-specific network inference reveals hidden 

commonalities across tumors  

We constructed tumor-specific networks of 105 breast cancer patients243 by assigning 

significant phosphoproteins as seed nodes to pyPARAGON. Constructed networks are 

divided into functional subunits of networks regarded as modules or communities. 

These communities were annotated with associated biological processes and KEGG 

pathways. pyPARAGON applies hypergeometric tests to detect active modules with a 

statistically significant overrepresentation in various biological processes. The tumor-

specific network shown in Figure 19 is an example of an active module network with 

strong KEGG pathway associations. 

 

 
Figure 21: Example of active modules in a tumor-specific network constructed by pyPARAGON 

(TCGA-A8-A079). Significantly phosphorylated proteins were used as the initial (seed) node-set 

(colored pink), and intermediate nodes predicted by pyPARAGON are in green circles.  Active modules 

are associated with at least one significantly overrepresented KEGG pathway bordered with dashed red 

lines and numbered within red boxes. The pathways belonging to cellular processes and signal 

transduction are listed in the top left chart. 

We converted tumor-specific networks into a vector space by tagging community 

knowledge with biological processes in GOA. The patients were eventually 

categorized into four categories by using t-distributed stochastic neighbor embedding 

(t-SNE) reducing the matrix of biological processes. (Figure 20A). The 20 most 
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frequently identified biological functions for each cluster were listed in Appendix B. 

Critical biological processes observed in at least two clusters have been used for 

biological interpretations (Figure 20B). The ubiquitin-dependent protein catabolic 

process is the most often linked biological process in patient Cluster-1, characterized 

by the presence of many transcription factors and enzymes. Ubiquitination, a post-

translational modification, is a complex enzymatic process that plays a role in 

regulating cancer metabolism255. Cluster-2 patients often have a shared occurrence of 

the mitotic cytokinesis process. Cytokinesis abnormalities lead to a rise in 

chromosomal instability, vast genomic alterations, and point mutations, promoting 

intra-tumoral heterogeneity256,257. The patient similarity network (Figure 20C) reveals 

that, as a result of heterogeneity, only five patients exhibit similarity scores over 0.5. 

Remarkably, we discovered that the process of nervous system development (NSD) 

was the most prevalent biological process in Cluster-3. Lung cancer is the primary 

cause of central nervous system metastases, followed by breast cancer258. Within our 

datasets, only two patients exhibited metastases. We could identify two cases 

exhibiting the NSD process inside Cluster-3. Cluster-4 had regulatory processes 

involving the structure of the actin cytoskeleton that were relevant to the onset, 

progression, and treatment of cancer. Rho GTPases, which belong to the Ras GTPase 

superfamily, have a crucial function in this regulation259. Our analysis revealed that 

patients belonging to Cluster-4 have a significantly lower likelihood of survival 

compared to those in Cluster-1 (Figure 21A).  
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Figure 22: Stratification of tumors and associated biological processes with patient clusters. A) 105 

breast cancer tumors are stratified into four clusters based on significant biological processes in their 

network modules: Cluster-1 (32 patients), Cluster-2 (22 patients), Cluster-3 (19 patients), and Cluster-

4 (32 patients). B) Heatmap of patient coverage ratio for each cluster and significant process pairs. A 

biological process is included in the heatmap if it is enriched in at least two clusters. The patient 

coverage ratio represents patients with the enriched biological process in the corresponding clusters. C) 

The similarities of 105 patients were calculated through a cosine similarity score of meaningful 

biological processes between patient pairs. In the similarity network, we illustrated interactions between 

patients with similarity scores greater than 0.5 (82 patients, 262 interactions). In the similarity network, 

we displayed interactions between patients with similarity scores greater than 0.5. (82 patients, 262 

interactions). Using the t-SNE algorithm and agglomerative clustering, we divided the patients into four 

groups based on biological processes. Cluster-1 was represented by red ellipses, Cluster-2 by green 

triangles, Cluster-3 by blue diamonds, and Cluster-4 by purple rectangles. Most patients in Cluster-2 do 

not have obvious similarities in patient pairs, while most in Cluster-3 and Cluster-4 do have higher 

similarities and more interactions in the patient similarity network.   



 
74 
 

 

We also utilized KEGG pathway information to identify their associated modules and 

overrepresented pathways in these clusters (Figure 21B). The cell cycle and PI3K/Akt 

signaling pathways are prevalent and often seen in clusters, except for Cluster-2. These 

pathways are more frequently observed in Cluster-1 compared to Cluster-4. The Ras 

signaling pathway plays a crucial role in drug resistance owing to the bypassing of 

drug action mechanisms in the signaling network260,261. The module related to the Ras-

signaling pathway is illustrated in Figure 21C. In this module, pyPARAGON 

connected phosphoproteins with intermediate nodes such as KRAS, NRAS, HRAS, 

RHOA, and RHOD.  

 

 
Figure 23: Survival analysis and cluster-specific KEGG pathways A) Kaplan-Meier analysis shows the 

survival probabilities of Cluster-1 (red) and Cluster-4 (purple). B) Heatmap shows significantly 

enriched KEGG pathways in active modules. C. The example module of A2-A0YD network 

corresponding to the Ras signaling pathway is shown where seed nodes are red and intermediate nodes 

are green. 

For 105 breast cancer patients, we regained 8297 drugs and 330 therapeutic targets 

from the Therapeutic Target Database246. Additionally, we identified active modules 

related to 161 pathways. Figure 22 illustrates an example of context-specific drugs for 

the active modules of patient A2-A0YD. Adagrasib (MRTX849) and Sotorasib 

particularly inhibit the Ras signaling-associated module. Both drugs are newly 

developed inhibitors of the KRASG12C protein the FDA autherized260,262.  
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Figure 24: Drug-module interaction network of a patient (TCGA-A2-A9YD). Drugs are shown in three 

colors corresponding to three categories: drugs in phase 3, 4, or preclinical stage, and authorized drugs 

in green; drugs in phase 2 or 3 in purple and patented and investigational drugs in pink. 

5.2.2. Case Study 2: Disease-specific networks identifies shared pathways  

5.2.2.1. Different TFs regulate the shared pathways in ASD and breast 

cancer 

In order to unravel the genetic associations and distinctions between 

neurodevelopmental disorders (NDDs) and cancer; we first used accessible mutation 

databases  such as denovo-db28 and CGI248. Denovo-db contains de novo mutation 

profiles, including neurodevelopmental disorders (NDDs) and other illnesses, for 

9,736 samples. On the other hand, CGI covers the catalog of validated oncogenic 

mutations, including oncogenes and tumor suppressors. We constructed ASD- and 

breast cancer-specific networks using frequently mutated genes, driver genes, and 

HIPPIE interactome. The ASD-specific network contains 350 proteins and 1291 

interactions, while the breast cancer-specific network has 284 proteins and 1878 

interactions. Some crucial transcription factors (TFs) harboring cancer driver 

mutations, such as Myc, p53, and Jun, are not frequently mutated in ASD. On the other 
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hand, rewiring the signaling network allows mutated genes to control these TFs in the 

ASD-specific network indirectly. 23 transcription factors were common in both the 

ASD-specific and breast cancer-specific networks (Figure 23A). TF complexes such 

as Myc/Max or Jun/Fos (also known as AP-1, activator protein 1) regulate the 

expression of multiple genes that are part of the MAPK phosphorylation cascade in 

signal transduction263,264. Complexes composed of common TFs primarily play key 

roles in cell cycle regulation through their targets, such as E2F mediating cyclin-

dependent kinases (CDKs) in cell proliferation265,266. The transcription factors (TFs) 

present in both ASD- and breast cancer-specific networks together control the 

expression of 752 genes that these TFs target. The disease models in both networks 

can follow distinct wiring strategies to regulate common pathways since various 

transcription factors govern the transcription of the same genes. Overrepresentation 

analysis revealed that many transcription factors control similar pathways, such as p53, 

FOXO, PI3K/AKT, MAPK, and JAK/STAT signaling pathways (Figure 23B).  

5.2.2.2. Gene expression and signaling strength of the shared pathways 

After constructing the networks and identifying the TFs and their targets, our analysis 

focused on the signal levels in these networks by comparing the differential gene 

expressions between healthy and disease samples. Due to the presence of multiple 

molecular functionalities, it is difficult to ascertain the impact of this signal 

modification on these shared pathways. Therefore, we calculated the mean absolute 

values of the differential expression of the participants of the given pathway, which is 

the expression score for the pathway. This score serves as a measure of the signal 

strength within these pathways. The expression scores of the overrepresented 

pathways revealed that ASD exhibited considerably reduced signal intensity compared 

to breast, brain, and kidney malignancies (Figure 23C), affecting the cell cycle during 

the G1 phase. Stimulus and feedback loops are responsible for regulating the strength 

and duration of signaling267. Excessive expression and various combinations of 

mutations in these pathways impair cellular functions and may control the 

development and onset of diseases. 

 

The expression pattern of ASD in common biological pathways highlights 

differentiation. Cell differentiation rapidly decreases the multiplication ability of cells 
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and enhances their ability to withstand cancer-causing mutations268. ASD mutations 

mostly occur during embryonic development and do not progressively accumulate like 

cancer mutations. The propensity score of pathways, which represents the likelihood 

of mutations occurring on a gene in a specific pathway, indicates that cancer mutations 

tend to accumulate within specific pathways. Shared pathways in ASD have low 

propensity scores (Figure 23C). ASD individuals, due to their preexisting mutational 

load, are more prone to developing multifactorial and/or polygenic disorders such as 

cancer269,270. Simultaneously, their weak/moderate effect might induce cell cycle arrest 

and affect cellular differentiation capacities. 

5.2.2.3. TFs highlight patterns of differentiation in NDDs and proliferation in 

cancer. 

We compared the expression patterns of ASD and breast cancer patients using 71 

transcription factors that regulate similar pathways. Our observation reveals that 57 

individuals exhibit the expression score in ASD, whereas 21 transcription factors (TFs) 

have unique expression patterns in both ASD and breast cancer. These TFs are 

categorized into three separate categories. Cluster-1 and Cluster-2 exhibited a 

significant distinction, but Cluster-3 included genes that did not exhibit a discernible 

variation in the heatmap of gene expressions (Figure 24A). MCM2, STAT1, BRCA1, 

and MCM5 in Cluster-1 exhibit overexpression in the cancer samples. These genes 

primarily contribute to cell proliferation, and their overexpression profiles in cancer 

stimulate cell division and growth271,272. In contrast, ASD samples have comparatively 

lower expression levels of transcription factors regulating cell growth. STAT1, serving 

as a tumor suppressor and an oncogene in cancer, has a dual function in both cellular 

differentiation and proliferation. JUN, SMAD3, SMAD4, and KLF2, which are part 

of Cluster-2, are involved in the process of cell differentiation273–276. Their moderate 

levels of expression in ASD indicate that they are able to sustain the cellular 

differentiation stage. In order to elucidate the signal flow originating from these TFs, 

we established regulatory interaction within shared pathways by identifying the target 

genes controlled by these TFs. We expanded the analysis to include the regulatory 

interactions between targeted TFs and their corresponding target genes since TF may 

also regulate other TFs within the same pathway (Figure 24B). The expression 

patterns of differentiation and proliferation in individuals with ASD show a modest 
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level, indicating a mild activation of cell proliferation signals277. Nevertheless, the 

inhibition of cell differentiation and the overexpression of proliferation suggest a 

robust stimulation of the cell division process in cancer.  

 

 
Figure 25: ASD- and breast cancer-specific networks regulating common pathways. A) Disease-

specific network reconstruction for ASD and breast cancer is performed by using pyPARAGON tool, 

where the frequently mutated genes are used as seeds. The nodes in reconstructed networks involve wild 

type (green circle), mutated genes (red circle), TFs (chevron), and TF-targets (diamond). The complete 

ASD-specific network (left side) features the mutated proteins (SRCAP, BRG1, PTEN, etc.) in ASD 

cases and reveals disease-associated proteins (Jun, p53, and Myc). The breast cancer-specific network 

(right side) illustrates driver genes, although some driver genes, such as TP53 and MYC, are not 

frequently mutated in ASD. Both ASD- and breast cancer-specific networks involve 23 common TFs 

targeting 752 common genes. These common targets are employed to identify shared pathways.  

B) Overrepresentation analysis determines significant shared pathways (FDR ≤ 0.05) related to cell 

differentiation and proliferation among KEGG pathways. The pathways include MAPK, PI3K/AKT, 

and JAK/STAT. These shared TF-target genes play a significant role in cell fate by altering the signal 

strength and flow, as well as cell cycle and cellular senescence. HIF-1 hypoxia-inducible factor 1, TNF 

tumor necrosis factor. C) Signal changes in shared pathways are illustrated with the expression scores 

of pathways, the mean of the absolute z-scores of proteins in a given pathway. We define expression 
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scores as a mean of the absolute z-scores of proteins in a given pathway to indicate the magnitude of 

the deviation from the average expression values of the normal samples, regardless of the direction of 

the change. The vulnerability of common pathways to mutation is measured with a propensity score, 

the average unique mutation in the pathway. The darker red represents a higher change in expression 

scores of genes in the pathway, and the larger circle shows a higher mutation propensity for the 

corresponding pathway. ASD has the most minor signal differences and mutation propensities compared 

to all cancer types in shared pathways, where kidney cancer has the highest signal difference. However, 

there is an insignificant difference in mutation propensities among cancer types. The higher expression 

scores in cancer types point to stronger signal changes in pathways critical for cell fate, such as 

proliferation and differentiation. The higher propensity scores in cancer reveal that cancer mutations 

tend to group in shared pathways. Thus, shared pathways are more vulnerable to cancer than ones in 

ASD. However, mutation loads and signal deviations on the shared pathways might make ASD patients 

more fragile to cancer onset. 

 



 
80 
 

 

 
Figure 26: Differential TFs drive to proliferation in cancer and differentiation in ASD A) 21 TFs were 

identified to be at least one time differentially expressed more (less) in ASD than in other cancer types. 

On the left hand, the heatmap of these differentially expressed genes (high in red, low in blue) clustered 

expression z-scores into three groups. On the right hand, the pathways TFs belong to, and related cell 

states (proliferation, green; differentiation, blue) are demonstrated. Genes more expressed in cancer 

types than in ASD mainly belong to the proliferation state, while genes related to differentiation are 

predominantly more expressed in ASD than in cancer types. B) Differences between proliferation and 

differentiation on shared pathways. The signal flows from TFs (chevron) to targets (diamond) in 

common parts of ASD- and breast cancer-specific networks and in shared pathways were demonstrated 

with z-scores. The low and high expression levels were illustrated with blue to red, respectively. The 

relationship between cell state and proteins is represented with arrows whose color also demonstrates 

the level of expressions, low or high. Differentiation-related proteins, such as Jun, SMAD3, and 

SMAD4, mainly have low expression profiles in breast cancer, while most are highly expressed in ASD. 

PTEN, EGFR, and STAT1, related to proliferation and differentiation, have similar expression profiles.  
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CHAPTER 6 

 

DISCUSSION 

 

Advancements in high-throughput omics technologies have driven complex data 

issues and integration challenges. A wide range of interactions has been systematically 

characterized in contextualized networks, including protein-protein interactions 

(PPIs), interactions between transcription factors and genes, and the effects of 

medicines and small molecules on gene expression. However, during the 

contextualization of omics datasets, network-based tools encounter several 

challenging issues: i) Sparse outputs of omics datasets in reference networks or prior 

knowledge are a source of missing essential points in networks. ii) Interpretation 

methods can miss hidden knowledge that connects significant hits in omics datasets 

while evaluating multi-omics datasets. iii) Well-studied proteins in reference networks 

come along with bias in contextualization. iv) Highly connected nodes, or hubs, bring 

about unspecific and noisy interactions in inferred networks. Firstly, we clarified these 

challenging issues by assessing reference networks and network reconstruction 

algorithms. Then, we developed and launched pyPARAGON (PAgeRAnk-flux on 

Graphlet-guided network for multi-Omics data integratioN), which combines network 

propagation with graphlets to integrate multi-omics data. pyPARAGON improves 

precision and reduces the presence of non-specific interactions in signaling networks 

by using network motifs278. 

6.1. Evaluation of the network reconstruction approaches on various 

interactomes 

We comprehensively analyzed the characteristics of interactomes from various sources 

and evaluated the effectiveness of four network reconstruction strategies on 

established routes. PathwayCommons has the most extensive coverage of nodes and 

edges across all interactomes, including cancer driver genes and known pathways, 

since it has the maximum number of nodes and edges. However, the reconstruction 
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approaches using PathwayCommons exhibit notably lower accuracy values than the 

others. PathwayCommons shows a bias toward well-studied proteins due to the 

significant correlation between the degree and the number of publications of the nodes. 

Notably, HIPPIE and ConsensusPathDB have a similar bias, although their algorithms 

provide higher accuracy on these interactomes than PathwayCommons. The findings 

suggest that HIPPIE and ConsensusPathDB effectively reduce the impact of false 

positives while maintaining high confidence in the identified connections. 

 

The all-pairs shortest path (APSP) algorithm yields the highest recall scores when 

accompanied by the highest false positive rate (FPR) score due to the inclusion of 

several false-positive edges and the true positives. Certain studies, like PathLinker137, 

employ a distance threshold in calculating the shortest path, a restricted number of 

shortest paths between the source and target, or supplementary data that includes the 

orientation of the signal from the receptors to the transcription factors to control the 

rate of false positives. It is crucial to mention that we did not include any distance-

based cutoff, supplementary data, or optimization in the APSP method. Consequently, 

the F1 and precision scores have an extremely low value in APSP. However, 

personalized PageRank with flux (PRF), heat diffusion with flux (HDF), and the prize-

collecting Steiner Forest (PCSF) have comparable performance in terms of false 

positive and true positive edges. However, PRF, HDF, and PCSF have similar 

performance in terms of false positive and true positive edges. PCSF has the highest 

F1 score in comparison to PRF and HDF.  Interactomes are an unbalanced dataset in 

which true-negative edges are much more than true-positive edges considering 

contextualization.  

 

The Notch pathway reconstruction demonstrates that PCSF performs superiorly in 

identifying nodes with weak connections. However, PCSF should have been more 

comprehensive in uncovering the hidden nodes and their connections that facilitate 

communication between the Notch pathway and the PI3K-AKT-mTOR and JAK-

STAT signaling pathways. Furthermore, the hidden nodes that connect signaling 

pathways are unable to form entirely true connections. While our study focuses on 

proteins as nodes, it is worth noting that pathways may also include small molecules 

and non-peptide nodes. Thus, the reconstruction algorithms are likely to introduce 
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false edges to include proper terminals. The lack of some nodes in the reference 

interactomes might contribute to the poor precision ratings.   

 

The topological features and edge weights of the reference interactomes significantly 

impact network reconstruction strategies279,280. The presence of sparse data, where the 

number of edges in the target pathway is much lower than in the rest of the interactome, 

leads to high recall and poor precision scores281. Reconstruction algorithms of human 

signaling networks often exhibit a combination of poor precision and intermediate 

recall scores137,282,283. A further issue is that the node-based performance of 

reconstruction algorithms is superior to their edge-based performance. We have also 

seen the same trend in the results of our assessment. 

 

Various tools use the topological characteristics of reference interactomes to predict 

new connections and eliminate false positive interactions284–287. Moreover, missing 

protein associations were identified using functional annotations, protein structures, 

and domain-domain interactions241,288–290. It is crucial to mention that we did not apply 

any additional method to filter out or modify interactomes291 and the techniques to 

predict regulatory networks292,293, during our assessment. The performance of the 

APSP, HDF, PRF, and PCSF algorithms may be affected by any modification or 

improvement made to the reference interactomes. The reference interactomes are 

undirected graphs, whereas signaling pathways are inherently directed ones. The 

directionality of the edges can be integrated using either the known or expected ones. 

Moreover, using the previously guided network may be an effective approach to 

disease modeling, especially in dealing with the complex structure of reference 

networks36. Thus, in the following part of the thesis, we aimed to reduce reference 

interactomes by trimming unassociated nodes and edges to enhance the performance 

of algorithms. Ultimately, biomolecular interactions exhibit a wide range of variations 

in both time and space. Thus, network reconstruction algorithms may be improved to 

include biological annotations and temporal and spatial interactions of proteins. 

6.2. pyPARAGON unveiled hidden knowledge by contextualizing 

networks 

This thesis introduces pyPARAGON as a network-based multi-omics data integration 

tool that combines the most common graphlets covering omics hits and the 
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Personalized PageRank algorithm to construct context-specific networks. Problems 

with sparse data and the increasing complexity of reference network connections are a 

source of difficulty for network inference algorithms. pyPARAGON reduced the effect 

of noise caused by highly connected nodes in the reference networks.  The construction 

of graphlet-guided networks (GGN) especially maintains the scale-free characteristics 

of biological networks while minimizing noise. Additionally, the PageRank flux 

computation prioritized edges and was effectively combined with GGNs to infer 

context-specific networks. By identifying driver genes, we have expanded the scope 

of the missing value issue in building cancer-specific networks. pyPARAGON 

constructed the network-based models of various cancer types that covered a more 

precise and higher number of cancer drivers. Moreover, pyPARAGON can include 

modules and different kinds of annotations, such as biological processes, pathways, 

and pharmacological information, by inferring context-specific networks using 

phosphoproteomics. The results suggest that pyPARAGON can predict cancer 

biomarkers, drivers, drugs, and therapeutic targets. 

 

Recent network inference tools, such as belief propagation294, random walks35, the 

prize-collecting Steiner Forest34, heat diffusion43, and shortest path algorithms137, are 

encountering a significant challenge due to the presence of missing interactions and 

highly connected nodes, or hubs, resulting from extended integrations in reference 

networks95. Here, graphlets were used in our methods for trimming networks in our 

approaches. During the performance assessment, we compared pyPARAGON with 

two widely used tools such as PathLinker137 and Omics Integrator 234 by reconstructing 

pathways and contextualizing various cancer types. Hub proteins may cause noises in 

the inferred network with unrelated interactions143. The prize-collecting Steiner Forest 

algorithm penalizes nodes according to their interaction number. Similarly, the flux 

calculation in pyPARAGON serves as a countermeasure against the negative impact 

of hubs on scoring interactions. Thus, Omics Integrator 2 and pyPARAGON have 

superior performance in predicting interactions. On the other hand, highly connected 

nodes reduce the length of the shortest pathways between seed nodes so that 

PathLinker can prioritize hubs. Omics Integrator 2 instantly halts the propagation of 

the seed nodes in a large reference network. However, the pyPARAGON tool 

implements the PageRank algorithm propagating the seed nodes, regardless of the 
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GGN. Therefore, pyPARAGON enhances the inference of interactions and the 

propagation of seed nodes in the network. 

 

Even though integrative methods like pyPARAGON have worked well, long-term 

problems with network-based omics data merging still need to be fixed. It is worth 

mentioning that the characteristics and coverage of reference networks295 are crucial 

to network-based approaches, while reference interactomes still need to be 

completed296. Due to incomplete knowledge of large reference interactomes, protein 

complexes have a higher tendency to construct a more significant number of 

topological modules than metabolic pathways297. Generic biological processes, like 

transcription and replication, can be found more often in contextualized networks. 

Therefore, due to the causal relationships, modular structures, and biological processes 

that are part of networks, it can also be challenging to interpret their meanings in a 

biological context. In addition, network-based approaches fail to evaluate the 

alternative copies of individual hits, such as diverse protein isoforms and post-

translational modifications existing within the proteome. Although it provides more 

specialized functionalities, this information might be generic and obscured inside the 

network.  

 

pyPARAGON only used graphlets consisting of interactions between 3 and 4 nodes 

rather than direct interactions of 2 nodes. Graphlet information, including graphlet 

degree distribution, graphlet frequencies, and probabilistic graphlets, may be included 

in network inference algorithms or used for biological interpretations231,298–300. 

However, the use of graphlet characteristics will entail a high computational expense. 

Permutation-based approaches may be further used in further research, where only 

hypergeometric tests on communities enhance context specificity more precisely. 

These communities may be detailed with mechanistic and causal relations for 

downstream analysis. 

 

Various molecular abnormalities, especially in complex diseases like cancer and 

neurodevelopmental disorders (NDDs), may lead to indistinguishable clinical 

symptoms301,302. We utilized omics data from breast cancer tumors in CPTAC243 as a 

case study to infer tumor-specific networks in which interacting protein modules 

regulate different biological processes and pathways. Patients could be clustered 
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together based on the overrepresented biological processes that were shown to be more 

prevalent and functional communities. Our case studies show that functional 

communities that share common driver genes, which recruit specific proteins, facilitate 

interpretation and various biological processes. Thus, pyPARAGON is an influential 

tool for detecting disease-associated molecular alterations and driver networks.  

 

For further analysis of the complex relationship between genotype and phenotype, we 

contextualized disease-specific networks for autism spectrum disorder (ASD) and 

breast cancer. We identified distinct protein-protein interactions (PPIs) inside common 

pathways that regulate the cell cycle. The rewired networks may account for the 

varying signal levels in common pathways between ASD and breast cancer. Under 

physiological conditions, the MAPK and PI3K/AKT/mTOR pathways have crosstalk 

to regulate the cell cycle through feedback loops to maintain several cell processes 

such as growth, division, differentiation, and apoptosis. In the cancer context, these 

pathways are frequently hyperactivated303–305. The PI3K/AKT pathway plays a crucial 

role in the first stages of embryonic development and in preserving the ability of stem 

cells to differentiate into various cell types by suppressing the MAPK proliferation 

pathway306–309. The mutations induce signaling perturbations that may be categorized 

as weak/moderate and significant signaling alterations, represented by ASD and breast 

cancer, respectively. Strong signals promote cell growth, whereas weak or moderate 

signals might cause cells to exit the cell cycle for differentiation310. 

 

We have developed a new tool called pyPARAGON using graphlets and network 

propagation to infer context-specific networks. It reduces the impact of noise caused 

by nodes with many connections, maintains the characteristics of a scale-free network, 

and incorporates network modules and biological annotations. We can use its 

contextualized networks to predict biomarkers, medications, and therapeutic targets 

particular to the given situation. The communities inside the network have the potential 

to be used in downstream analysis to find mechanistic molecular relationships in 

complicated and rare diseases. pyPARAGON can integrate large-scale omics data into 

static network models for patients or diseases. The next version of pyPARAGON will 

be an extension to integrate omics data at the single-cell level to elucidate cell-type 

specific interactions. 
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APPENDICES 

 

APPENDIX A 

 

Cancer signaling pathways in NetPath  

 Pathway Name Node Size Edge Size 

1 Alpha6Beta4Integrin 66 116 

2 Androgen Receptor 165 251 

3 BCR 137 261 

4 BDNF 72 76 

5 CRH 24 27 

6 EGFR1 231 756 

7 FSH 19 18 

8 Hedgehog 36 64 

9 ID 27 51 

10 IL1 43 93 

11 IL11 16 22 

12 IL2 67 139 

13 IL3 70 97 

14 IL4 57 91 
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 Pathway Name Node Size Edge Size 

15 IL5 30 36 

16 IL6 53 83 

17 IL7 18 28 

18 IL9 13 15 

19 KitReceptor 76 109 

20 Leptin 55 74 

21 Notch 74 154 

22 OncostatinM 37 42 

23 Prolactin 68 103 

24 RAGE 23 25 

25 RANKL 57 76 

26 TSH 48 47 

27 TSLP 7 7 

28 TWEAK 17 15 

29 TCR 154 271 

30 TGFbetaReceptor 209 452 

31 TNFalpha 239 473 

32 Wnt 106 220 
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APPENDIX B 

 

Frequently seen biological processes in clusters 

GO ID 
The number 

of patients 
Name Cluster 

GO:0006511 21 
ubiquitin-dependent 

protein catabolic process 
Cluster1 

GO:0006605 20 protein targeting Cluster1 

GO:0051056 16 

regulation of small 

GTPase mediated signal 

transduction 

Cluster1 

GO:0031146 16 

SCF-dependent 

proteasomal ubiquitin-

dependent protein 

catabolic process 

Cluster1 

GO:0015031 15 protein transport Cluster1 

GO:0010628 15 
positive regulation of gene 

expression 
Cluster1 

GO:0008150 13 biological_process Cluster1 

GO:0042659 13 
regulation of cell fate 

specification 
Cluster1 

GO:0000281 13 mitotic cytokinesis Cluster1 

GO:2000736 13 
regulation of stem cell 

differentiation 
Cluster1 

GO:0030154 12 cell differentiation Cluster1 

GO:0045087 12 innate immune response Cluster1 

GO:0007399 12 
nervous system 

development 
Cluster1 

GO:0070936 12 
protein K48-linked 

ubiquitination 
Cluster1 

GO:0000165 12 MAPK cascade Cluster1 

GO:0007155 12 cell adhesion Cluster1 

GO:0032956 11 
regulation of actin 

cytoskeleton organization 
Cluster1 

GO:0009410 11 
response to xenobiotic 

stimulus 
Cluster1 

GO:0006886 10 
intracellular protein 

transport 
Cluster1 
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GO ID 
The number 

of patients 
Name Cluster 

GO:0007010 10 cytoskeleton organization Cluster1 

GO:0000281 13 mitotic cytokinesis Cluster2 

GO:0015031 12 protein transport Cluster2 

GO:0030154 12 cell differentiation Cluster2 

GO:0051123 11 

RNA polymerase II pre-

initiation complex 

assembly 

Cluster2 

GO:0060261 11 

positive regulation of 

transcription initiation by 

RNA polymerase II 

Cluster2 

GO:0043123 11 

positive regulation of I-

kappaB kinase/NF-kappaB 

signaling 

Cluster2 

GO:0018105 11 
peptidyl-serine 

phosphorylation 
Cluster2 

GO:0000165 10 MAPK cascade Cluster2 

GO:0007010 10 cytoskeleton organization Cluster2 

GO:0008150 10 biological_process Cluster2 

GO:0043065 10 
positive regulation of 

apoptotic process 
Cluster2 

GO:0008285 9 
negative regulation of cell 

population proliferation 
Cluster2 

GO:0050821 9 protein stabilization Cluster2 

GO:0006511 8 
ubiquitin-dependent 

protein catabolic process 
Cluster2 

GO:0032968 8 

positive regulation of 

transcription elongation by 

RNA polymerase II 

Cluster2 

GO:0032922 8 
circadian regulation of 

gene expression 
Cluster2 

GO:0007266 7 
Rho protein signal 

transduction 
Cluster2 

GO:0016055 7 Wnt signaling pathway Cluster2 

GO:0006897 7 endocytosis Cluster2 

GO:0007155 7 cell adhesion Cluster2 

GO:2000045 19 

regulation of G1/S 

transition of mitotic cell 

cycle 

Cluster3 
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GO ID 
The number 

of patients 
Name Cluster 

GO:2000819 19 
regulation of nucleotide-

excision repair 
Cluster3 

GO:0030071 19 

regulation of mitotic 

metaphase/anaphase 

transition 

Cluster3 

GO:2000781 19 
positive regulation of 

double-strand break repair 
Cluster3 

GO:0070316 19 
regulation of G0 to G1 

transition 
Cluster3 

GO:1902459 14 

positive regulation of stem 

cell population 

maintenance 

Cluster3 

GO:0007399 14 
nervous system 

development 
Cluster3 

GO:0045663 13 
positive regulation of 

myoblast differentiation 
Cluster3 

GO:0045597 13 
positive regulation of cell 

differentiation 
Cluster3 

GO:0045582 12 
positive regulation of T 

cell differentiation 
Cluster3 

GO:0006897 11 endocytosis Cluster3 

GO:0006605 10 protein targeting Cluster3 

GO:0045596 10 
negative regulation of cell 

differentiation 
Cluster3 

GO:0016055 9 Wnt signaling pathway Cluster3 

GO:0006913 9 
nucleocytoplasmic 

transport 
Cluster3 

GO:0000165 9 MAPK cascade Cluster3 

GO:0006337 8 nucleosome disassembly Cluster3 

GO:0015031 8 protein transport Cluster3 

GO:0006511 8 
ubiquitin-dependent 

protein catabolic process 
Cluster3 

GO:0030154 8 cell differentiation Cluster3 

GO:0032956 23 
regulation of actin 

cytoskeleton organization 
Cluster4 

GO:0007155 19 cell adhesion Cluster4 

GO:0008150 18 biological_process Cluster4 

GO:0030154 18 cell differentiation Cluster4 
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GO ID 
The number 

of patients 
Name Cluster 

GO:0030865 17 
cortical cytoskeleton 

organization 
Cluster4 

GO:0000165 16 MAPK cascade Cluster4 

GO:0034063 16 stress granule assembly Cluster4 

GO:0006605 16 protein targeting Cluster4 

GO:0006897 14 endocytosis Cluster4 

GO:0015031 14 protein transport Cluster4 

GO:0006417 13 regulation of translation Cluster4 

GO:0007266 13 
Rho protein signal 

transduction 
Cluster4 

GO:0043065 12 
positive regulation of 

apoptotic process 
Cluster4 

GO:0051496 12 
positive regulation of 

stress fiber assembly 
Cluster4 

GO:0018107 12 
peptidyl-threonine 

phosphorylation 
Cluster4 

GO:0046777 12 
protein 

autophosphorylation 
Cluster4 

GO:0007010 12 cytoskeleton organization Cluster4 

GO:0032968 11 

positive regulation of 

transcription elongation by 

RNA polymerase II 

Cluster4 

GO:0051056 11 

regulation of small 

GTPase mediated signal 

transduction 

Cluster4 

GO:0008285 11 
negative regulation of cell 

population proliferation 
Cluster4 
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