
PROBA: PRIVACY-PRESERVING, ROBUST AND ACCESSIBLE
BLOCKCHAIN-POWERED HELIOS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF APPLIED MATHEMATICS

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

SERMİN KOCAMAN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF DOCTOR OF PHILOSOPHY
IN

CRYPTOGRAPHY

JANUARY 2024

Approval of the thesis:

PROBA: PRIVACY-PRESERVING, ROBUST AND ACCESSIBLE
BLOCKCHAIN-POWERED HELIOS

submitted by SERMİN KOCAMAN in partial fulfillment of the requirements for the
degree of Doctor of Philosophy in Cryptography Department, Middle East Tech-
nical University by,

Prof. Dr. Ayşe Sevtap Selçuk Kestel
Dean, Graduate School of Applied Mathematics

Assoc. Prof. Dr. Oğuz Yayla
Head of Department, Cryptography

Assoc. Prof. Dr. Ali Doğanaksoy
Supervisor, Mathematics, METU

Assoc. Prof. Dr. Fatih Sulak
Co-supervisor, Mathematics, Atılım University

Examining Committee Members:

Prof. Dr. Zülfükar Saygı
Department of Mathematics, TOBB ETU

Assoc. Prof. Dr. Ali Doğanaksoy
Department of Mathematics, METU

Assoc. Prof. Dr. Oğuz Yayla
Department of Cryptography, METU

Assist. Prof. Dr. Buket Özkaya
Department of Cryptography, METU

Assist. Prof. Dr. Köksal Muş
Electrical and Computer Engineering, WPI

Date:

iv

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Last Name: SERMİN KOCAMAN

Signature :

v

vi

ABSTRACT

PROBA: PRIVACY-PRESERVING, ROBUST AND ACCESSIBLE
BLOCKCHAIN-POWERED HELIOS

KOCAMAN, SERMİN
Ph.D., Department of Cryptography

Supervisor : Assoc. Prof. Dr. Ali Doğanaksoy

Co-Supervisor : Assoc. Prof. Dr. Fatih Sulak

January 2024, 133 pages

Helios is the first web-based and open-audit voting system. The open-audit feature al-
lows anyone to track the voting process, thus providing easy verifiability in all stages
of the elections. Despite many advantages, Helios has a few weaknesses due to its
reliance on a centralized server, such as modifying data through unauthorized access
or making the server inaccessible. A subsequent work called blockchain-powered
Helios is proposed to overcome these weaknesses. This system replaced the cen-
tralized server with decentralized servers using the blockchain and a decentralized
storage protocol. Although this novelty eliminates Helios’ centralized weaknesses,
it creates some new problems, thereby causing security weaknesses. These are the
misbehavior in the wallet authorization procedure, the linkability in the wallet au-
thorization procedure, and the high cost of transactions. In this thesis, an improved
version of the blockchain-powered Helios system, named Proba, is presented. The
system is redesigned to provide privacy, robustness, and accessibility in the election.
Proba utilizes a novel threshold issuance-anonymous credentials that break the link
between the voters and their wallets. Also, the threshold version mitigates the mis-
behavior of election authorities in wallet authorization. Additionally, Proba leverages
a consortium blockchain that provides cost-effective election solutions. In terms of
security, the system’s formal security concerning specific election requirements is
demonstrated through game-based reduction proofs. The performance analysis of

vii

Proba shows that the usage of threshold-issuance anonymous credentials does not
have a critical cost for the election phase; on the contrary, it mitigates the smart con-
tract storage cost.

As an additional work on the design of Proba, this thesis proposes enhanced wallet
key protection protocols for general blockchain-based I-voting systems. Within the
blockchain, transactions must be signed using the wallet secret (signing) key. Thus,
the voter’s right to send transactions on the blockchain will depend on the security of
this single key. In most of these systems, voters can register one wallet address, but
in the case of a stolen key, voters are unable to send their votes as a transaction to the
blockchain. Although offering voters the opportunity to register their new address is
considered a solution in such cases, this creates an avenue for the attacker by forc-
ing them to unregister their existing address. Hence, to prevent such circumstances,
rather than permitting the enrollment of new addresses, it is necessary to use enhanced
cryptographic measures that can be implemented to protect the existing wallet secret
key. The logical precaution is to split the secret key into the different devices of the
voter, but in this case, efficient threshold signing protocols must be developed. In this
thesis, efficient threshold signing protocols are proposed, specifically focusing on a
two-party elliptic curve digital signature algorithm (ECDSA), and a flexible hierar-
chical threshold signature scheme (FlexHi). In the former, voters split their wallet
secret keys across two distinct devices, such as a laptop and a tablet, and then em-
ploy two keys to execute a signature on a transaction with our proposed two-party
ECDSA protocol. This protocol provides the most optimal offline phase for a two-
party ECDSA protocol with such an efficient online phase. In the latter, voters split
their wallet secret keys among their various devices, granting different levels of per-
mission to each. During the verification stage of most applications, the transmission
of a code to the user’s smartphone indicates that the smartphone is deemed a highly
significant device, belonging only to the individual. Considering this, voters have
the choice to divide their secret keys between their smartphones and other devices.
In this scenario, the use of the smartphone, which holds the highest position in the
hierarchy, is obligatory during the signing phase. However, secret keys shared with
other devices can be used according to the specified threshold value in the system.
Current hierarchical threshold schemes incorporate certain ordering criteria and con-
straints at each level of the hierarchy, which restrict their adaptability. Nevertheless,
the proposed FlexHi scheme presents a novel architecture that liberates itself from
these limitations and provides flexibility.

Keywords: Helios, Internet Voting, Blockchain, Threshold-issuance Anonymous Cre-
dentials, Elliptic Curve Digital Signature Algorithm, Hierarchical Threshold Signa-
ture Scheme

viii

ÖZ

PROBA: MAHREMİYETİ KORUYAN, SAĞLAM VE ERİŞİLEBİLİR
BLOKZİNCİR DESTEKLİ HELİOS

KOCAMAN, SERMİN
Doktora, Kriptografi Bölümü

Tez Yöneticisi : Doç. Dr. Ali Doğanaksoy

Ortak Tez Yöneticisi : Doç. Dr. Fatih Sulak

Ocak 2024, 133 sayfa

Helios, ilk web tabanlı ve açık denetimli oylama sistemidir. Açık denetim özelliği,
herkesin oylama sürecini takip etmesine olanak tanımaktadır ve böylece seçimlerin
tüm aşamalarında kolay doğrulama sağlamaktadır. Helios’un birçok avantajına rağ-
men, merkezi bir sunucuya bağımlı olması nedeniyle yetkisiz erişim yoluyla verileri
değiştirmek veya sunucuyu erişilemez kılmak gibi birkaç zayıflığı mevcuttur. Bu za-
yıflıkların üstesinden gelmek için blokzincir destekli Helios adlı sonraki bir çalışma
önerilmiştir. Bu sistem, merkezileştirilmiş sunucuyu, blokzincir ve merkezi olmayan
bir depolama protokolü kullanarak merkezi olmayan sunucularla değiştirmiştir. Bu
yenilik Helios’un merkezileştirilmiş zayıflıklarını ortadan kaldırsa da, bazı yeni so-
runlar oluşturmakta ve bu nedenle güvenlik zayıflıklarına neden olmaktadır. Bunlar,
cüzdan yetkilendirme prosedüründeki hatalı davranış, cüzdan yetkilendirme prosedü-
ründeki bağlantı ve işlem maliyetinin yüksek olmasıdır. Bu tezde, blokzincir destekli
Helios’un geliştirilmiş bir versiyonu, Proba, sunulmaktadır. Sistem, seçimde gizli-
lik, sağlamlık ve erişilebilirlik sağlayacak şekilde yeniden tasarlanmıştır. Proba, seç-
menler ve cüzdanları arasındaki bağlantıyı kesen yeni bir eşik verme-anonim kimlik
bilgisi kullanmaktadır. Ayrıca eşik sürümü, seçim yetkililerinin cüzdan yetkilendir-
mesindeki hatalı davranışlarını da azaltmaktadır. Ek olarak Proba, uygun maliyetli
seçim çözümleri sağlayan bir konsorsiyum blok zincirinden yararlanmaktadır. Gü-
venlik açısından, sistemin belirli seçim gereksinimlerine ilişkin biçimsel güvenliği,

ix

oyun tabanlı indirgeme kanıtları aracılığıyla gösterilmektedir. Proba’nın performans
analizi, eşik veren anonim kimlik bilgilerinin kullanımının seçim aşaması için kritik
bir maliyeti olmadığını göstermektedir; aksine, akıllı sözleşme depolama maliyetini
azalttığı görülmektedir.

Proba’nın tasarımına ek bir çalışma olarak bu tez, genel blokzincir tabanlı internet
oylama sistemleri için geliştirilmiş cüzdan anahtarı koruma protokolleri önermekte-
dir. Blokzincir içerisinde işlemler, cüzdanın gizli (imzalama) anahtarı kullanılarak
imzalanmaktadır. Dolayısıyla seçmenin blokzincir üzerinde işlem gönderme hakkı
bu tek anahtarın güvenliğine bağlı olmaktadır. Bu sistemlerin çoğunda seçmenler bir
cüzdan adresini kaydedebilmekte ancak anahtarın çalınması durumunda seçmenler
oylarını bir işlem olarak blok zincirine gönderememektedir. Her ne kadar seçmenlere
yeni adreslerini kaydettirme imkanı sunmak bu gibi durumlarda bir çözüm olarak
görülse de, bu durum saldırganı mevcut adresinin kaydını silmeye zorlayarak, kendi-
sine bir yol açmaktadır. Bu nedenle, bu gibi durumları önlemek için yeni adreslerin
kaydedilmesine izin vermek yerine mevcut cüzdan gizli anahtarını korumak için uy-
gulanabilecek gelişmiş kriptografik önlemlerin kullanılması gerekmektedir. Uygun
olan önlem, gizli anahtarı seçmenin farklı cihazlarına bölmektir ancak bu durumda
etkili eşik imzalama protokollerinin geliştirilmesi gerekmektedir. Bu tezde, özellikle
iki taraflı eliptik eğri dijital imza algoritmasına (ECDSA) ve esnek bir hiyerarşik eşik
imza şemasına (FlexHi) odaklanan verimli eşik imzalama protokolleri önerilmekte-
dir. İlkinde, seçmenler cüzdan gizli anahtarlarını dizüstü bilgisayar ve tablet gibi iki
farklı cihaza bölmekte ve ardından önerdiğimiz iki taraflı ECDSA protokolüyle işlem
üzerinde imzayı yürütmek için iki anahtarı kullanmaktadır. Bu protokol, böylesine
verimli bir çevrimiçi aşamaya sahip iki taraflı bir ECDSA protokolü için en optimum
çevrimdışı aşamayı sunmaktadır. İkincisinde, seçmenler cüzdan gizli anahtarlarını çe-
şitli cihazları arasında paylaştırarak her birine farklı düzeylerde izinler vermektedir.
Çoğu uygulamanın doğrulama aşamasında kullanıcının akıllı telefonuna bir kod ilet-
mesi, akıllı telefonun yalnızca kişiye ait, son derece önemli bir cihaz olarak görül-
düğünü göstermektedir. Bunu göz önünde bulundurarak seçmenler gizli anahtarlarını
akıllı telefonları ve diğer cihazları arasında paylaşma seçeneğine sahiptir. Bu senar-
yoda hiyerarşide en üst sırada yer alan akıllı telefonun imza aşamasında kullanılması
zorunlu hale gelmektedir. Ancak diğer cihazlarla paylaşılan gizli anahtarlar sistemde
belirlenen eşik değerine göre kullanılabilmektedir. Mevcut hiyerarşik eşik şemaları,
hiyerarşinin her seviyesinde uyarlanabilirliği kısıtlayan belirli sıralama kriterlerini ve
kısıtlamaları içermektedir. Fakat önerilen FlexHi şeması, kendisini bu sınırlamalardan
kurtaran ve esneklik sağlayan yeni bir mimari sunmaktadır.

Anahtar Kelimeler: Helios, Internet Oylama, Blokzincir, Eşik Verme Anonim Kim-
lik Bilgileri, Eliptik Eğri Dijital İmzalama Algoritması, Hiyerarşik Eşik İmzalama
Şeması

x

To my family

xi

xii

ACKNOWLEDGMENTS

Firstly, I would like to express my immense gratitude to my thesis advisor Assoc.
Prof. Dr. Ali Doğanaksoy who introduced me to this magical world of cryptography
and without whom all this could never have happened. He guided me through work
in this field and always encouraged me whenever necessary.

I would like to give special thanks to my thesis co-advisor Assoc. Prof. Dr. Fatih
Sulak for the time he devoted to me and his enthusiastic encouragement.

I would like to deliver my appreciation to Assoc. Prof. Dr. Oğuz Yayla for the
significant amount of time he devoted to me for formal security-proof concepts.

I would also like to convey my respects and thanks to Assist. Prof. Dr. Köksal
Muş and Assist. Prof. Dr. Yarkın Doröz for our endless study discussions and the
questions they answered sensitively.

I would also like to thank to Dr. Younes Talibi Alaoui for his valuable advice in my
studies.

I would like to thank The Scientific and Technological Research Council of Turkey
(TÜBİTAK) for supporting my TÜBİTAK 2244 doctoral program for this research.

Lastly, and most importantly, I would like to thank my family for their support
throughout this study and my entire life. I greatly appreciate my husband for his
endless encouragement during my journey on my studies and for being the light of
my life. Also, I would like to express my gratitude to my mother, my father, and my
brother for their support and unconditional love.

xiii

xiv

TABLE OF CONTENTS

ABSTRACT . vii

ÖZ . ix

ACKNOWLEDGMENTS . xiii

TABLE OF CONTENTS . xv

LIST OF TABLES . xxi

LIST OF FIGURES . xxiii

LIST OF ALGORITHMS . xxvii

LIST OF ABBREVIATIONS . xxix

CHAPTERS

1 INTRODUCTION . 1

1.1 Motivation . 3

1.2 Contributions . 7

1.3 Organization . 11

2 PRELIMINARIES . 13

2.1 Overview of Blockchain Technology 13

2.1.1 Blockchain Structures 14

xv

2.1.1.1 Wallet 14

2.1.1.2 Hash Reference 15

2.1.1.3 Miner 15

2.1.1.4 Consensus 16

2.1.1.5 Smart Contract 16

2.1.2 Blockchain Types 16

2.1.2.1 Public Blockchain 17

2.1.2.2 Private Blockchain 17

2.1.2.3 Consortium Blockchain 17

2.2 Overview of I-voting Systems 17

2.2.1 Classification of Internet Voting Systems and Cryp-
tographic Primitives Behind 18

2.2.1.1 Blind Signature-Based System 19

2.2.1.2 Mix-Net-Based System 19

2.2.1.3 Homomorphic Encryption-Based Sys-
tem 20

2.2.1.4 Post-Quantum-Based System 21

2.2.1.5 Blockchain-Based System 22

2.3 Helios I-voting System and Its Security Analysis 23

2.3.1 Helios System Architecture 24

2.3.1.1 Entities 24

2.3.1.2 Helios System Construction 24

xvi

2.3.2 Security Analysis 26

2.4 Noteworthy Helios-Inspired Systems 28

2.5 Blockchain-Powered Helios I-voting System and Its Security
Analysis . 30

2.5.1 Blockchain-powered Helios System Architecture . 31

2.5.1.1 IPFS 31

2.5.1.2 Entities 31

2.5.1.3 Blockchain-powered Helios System Con-
struction 32

2.5.2 Security Analysis 33

3 PROBA: PRIVACY-PRESERVING, ROBUST AND ACCESSIBLE
BLOCKCHAIN-POWERED HELIOS 37

3.1 Building Blocks . 37

3.1.1 Digital Signatures 39

3.1.2 Homomorphic Encryptions 40

3.1.3 Zero Knowledge Proofs 41

3.1.4 Threshold-Issuance Anonymous Credentials 43

3.1.5 Consortium Blockchain 48

3.2 The Proposed System Architecture 48

3.2.1 Entities . 48

3.2.2 Proba System Construction 49

3.2.2.1 Pre-election 52

3.2.2.2 Election 53

xvii

3.2.2.3 Post-Election 54

3.2.3 An Efficient System Instantiation of Proba 55

3.3 System Analysis . 59

3.3.1 Security Analysis 59

3.3.1.1 Eligibility 59

3.3.1.2 Privacy 61

3.3.1.3 Verifiability 66

3.3.1.4 Robustness 68

3.3.2 Performance Analysis 70

4 WALLET KEY PROTECTION PROTOCOLS 75

4.1 EFFICIENT SECURE TWO-PARTY ECDSA FOR KEY PRO-
TECTION . 75

4.1.1 Building Blocks 76

4.1.1.1 ECDSA Scheme 76

4.1.1.2 Threshold ECDSA Schemes 78

4.1.2 Ideal Functionality for Two-Party ECDSA 80

4.1.2.1 F2ECDSA Functionality 80

4.1.2.2 FZKP Functionality 80

4.1.2.3 FCommit−ZK Functionality 81

4.1.2.4 FMtA Functionality 81

4.1.3 The Proposed Efficient Two-party ECDSA Protocol 82

4.1.4 System Analysis 84

xviii

4.1.4.1 Security Analysis 84

4.1.4.2 Performance Analysis 89

4.1.5 Summary . 92

4.2 FlexHi: A Flexible Hierarchical Threshold Signature Scheme
For Key Protection . 94

4.2.1 Building Blocks 94

4.2.1.1 Access Structure 95

4.2.1.2 Hierarchical Schemes 97

4.2.2 The Proposed Flexible Hierarchical Threshold Sig-
nature Scheme: FlexHi 100

4.2.3 FlexHi FROST Scheme Application 105

4.2.4 System Analysis 108

4.2.4.1 Security Analysis 110

4.2.4.2 Performance Analysis 113

4.2.5 Summary . 115

5 CONCLUSION . 117

REFERENCES . 119

CURRICULUM VITAE . 133

xix

xx

LIST OF TABLES

Table 3.1 Time consumption of used cryptographic primitives 71

Table 4.1 Cost Analysis of Signing . 91

Table 4.2 Runtimes in milliseconds of the proposed protocol 91

Table 4.3 Key-Related Cost Analysis of Algorithms in FROST Applications . 114

Table 4.4 Signature-Related Cost Analysis of Algorithms in FROST Applica-
tions . 114

Table 4.5 The calculated times for different threshold values, and the number
of participants . 115

xxi

xxii

LIST OF FIGURES

Figure 1.1 Summary of the Thesis Contribution 8

Figure 1.2 Two-Party ECDSA Scenario . 10

Figure 1.3 Hierarchical Threshold Signature Scheme Scenario 11

Figure 2.1 Block Components [103] . 14

Figure 2.2 Hash Reference [130] . 15

Figure 2.3 Comparison of Blockchain Types [135] 17

Figure 2.4 Stages of Elections . 18

Figure 2.5 Helios Voting Procedure . 26

Figure 2.6 Blockchain-powered Helios Voting Procedure 33

Figure 3.1 General architecture of Proba . 49

Figure 3.2 Sequence diagram of Proba . 50

Figure 3.3 Formulation of pre-election phase in Proba 57

Figure 3.4 Formulation of election phase in Proba 58

Figure 3.5 Formulation of post-election phase in Proba 58

Figure 3.6 Eligibility experiment for Proba 60

Figure 3.7 Eligibility proof construction for Proba 61

Figure 3.8 Experiment for Vote Privacy in Proba 62

Figure 3.9 Vote privacy proof construction for Proba 63

Figure 3.10 Experiment for Voter Privacy in Proba 64

Figure 3.11 Voter privacy proof construction for Proba 65

xxiii

Figure 3.12 Verifiability game for Proba . 66

Figure 3.13 Verifiability proof construction for Proba 67

Figure 3.14 Robustness game for Proba . 68

Figure 3.15 Time cost (s) comparison of election stage when t = 3, nc = 5 . . . 72

Figure 3.16 Smart contract storage cost where n is the number of the voter . . . 73

Figure 4.1 2-party ECDSA functionality F2ECDSA 80

Figure 4.2 FZKP . 81

Figure 4.3 FCommit−ZK . 81

Figure 4.4 FMtA . 82

Figure 4.5 2-party ECDSA Protocol . 83

Figure 4.6 The 2-Party ECDSA Key Distribution Protocol 83

Figure 4.7 The 2-Party ECDSA Signing Protocol 84

Figure 4.8 2-party ECDSA Simulator . 86

Figure 4.9 Flex Hierarchical Threshold Signature Scheme Functionality FFlexHi103

Figure 4.10 KeyGen of FFlexHi . 104

Figure 4.11 ProofGen of FFlexHi . 104

Figure 4.12 ProofVerify of FFlexHi . 104

Figure 4.13 KeyAgg of FFlexHi . 105

Figure 4.14 FlexHi KeyGen Procedure for FROST Scheme 106

Figure 4.15 FlexHi ProofGen Procedure for FROST Scheme 106

Figure 4.16 FlexHi ProofVerify Procedure for FROST Scheme 107

Figure 4.17 FlexHi KeyAgg Procedure for FROST Scheme 107

Figure 4.18 FlexHi Preprocessing Procedure for FROST Scheme 108

Figure 4.19 FlexHi SignGen Procedure for FROST Scheme 109

Figure 4.20 FlexHi SignAgg Procedure for FROST Scheme 109

Figure 4.21 Secret Indistinguishability Experiment of FlexHi Scheme 110

xxiv

Figure 4.22 Unforgeability Experiment of FlexHi Scheme 111

Figure 4.23 Modular Multiplication Cost of Key Generation and Key Aggrega-
tion Phases of FROST and its variants where the first bar chart represents
m = 7 and the second bar chart represents t = 4 114

xxv

xxvi

LIST OF ALGORITHMS

Algorithm 1 Proba: Generic Construction 51

xxvii

xxviii

LIST OF ABBREVIATIONS

I-voting Internet Voting

E2E-V End-To-End Verifiability

PBB Public Bulletin Board

IPFS InterPlatenary File System

ECDSA Elliptic Curve Digital Signature Algorithm

ZKP Zero-Knowledge Proof

NIZKP Non-interactive Zero-Knowledge Proof

EA Election Administrator

BPS Ballot Preparation System

u-ID Unique Voter ID

LWE Learning With Errors

DoS Denial-of-Service

P2P Peer-To-Peer

TTP Third Trusted Party

DS Digital Signature

PPT Probabilistic Polynomial Time

EUF-CMA Existential Unforgeability Under Chosen Message Attack

HE Homomorphic Encryption

IND-CPA Indistinguishability Against Chosen Plaintext Attack

TIAC Threshold-Issuance Anonymous Credential

SC Smart Contract

PoK Proof of Knowledge

VV Vote Validity Proof

VS Vote Sum Proof

Tx Transaction

CD Correct Decryption Proof

PoA Proof of Authority

IBFT Istanbul Byzantine Fault Tolerance

xxix

MtA Multiplicative-to-Additive

MPC Multi-party computation

OT Oblivious Transfer

HTSS Hierarchical Threshold Signature Scheme

LHR Linear Homogeneous Recurrence

FROST Flexible Round-Optimized Schnorr Threshold

SA Signature Aggregator

xxx

CHAPTER 1

INTRODUCTION

An electronic voting system is a method of voting that uses electronic technology

to process election data as digital information [6]. In general, electronic voting sys-

tems can be divided into two categories: Polling Place Voting and Internet Voting

(I-voting). In the former category, voters physically attend a designated polling place

and utilize electronic devices to enter their voting choices by pressing buttons. In con-

trast, the latter option involves voters remotely casting their ballot utilizing computers

connected to the internet. I-voting systems provide great accessibility for voters re-

gardless of their locations and allow for a quick evaluation of elections through the

implementation of robust algorithms. Also, they reduce the risk of invalid votes en-

suring the correctly casted votes. Due to these notable advantages, I-voting is widely

preferred in many elections.

I-voting systems should provide the same level of security and confidence as tradi-

tional voting [85]. Thus, some basic requirements must be satisfied to gain the trust of

the voter. Within the I-voting literature, various voting requirements are established

based on potential threats. These requirements have many definitions, as addressed

in [147], and can be itemized as follows:

- Eligibility Eligibility means voting only by those who are legally allowed to

[49]. This means all voters must undergo a secure authorization process before

being granted access to participate in the election, and any unauthorized voters

will be denied to cast their vote.

- Privacy. Privacy is the removal of the link between the voter and the vote

1

[49]. Since the election systems conceal the vote and the voter’s relationship

for privacy, this requirement ensures that the voter’s choice is anonymous.

- Uniqueness. Uniqueness is counting only one vote per voter during the vote-

counting phase [31]. Thus, regardless of whether a voter submits multiple

votes, each voter possesses equal voting privileges, with the condition that only

one vote is considered valid according to the predetermined counting regula-

tions.

- Fairness. Fairness means no intermediate result before the election is over [49].

Due to this circumstance, voters who have not yet cast their ballots will vote

independently, without being influenced by the result.

- Robustness. Robustness refers to the system’s ability to resist disruption by

any malicious entities [31]. Thus, the system should be designed to withstand

various scenarios in which some voters or authorities misbehave in the election.

To ensure its resilience, the system must be capable of addressing both external

attacks that exploit vulnerabilities in the protocol, such as targeting the oper-

ating system or network, as well as internal attacks that involve the misuse of

authority or manipulation of voters by malicious entities [87].

- Integrity It means the votes cannot be altered, forged, or deleted without de-

tection [142]. Protecting election integrity ensures election result accuracy.

- Transparency It means all election phases must be transparent and publicized

to the voters [31]. The bulletin board concept can be used to grant access to

monitor the election.

- Receipt-freeness. Receipt-freeness is the fact that the voters cannot prove to a

third party what their vote is, neither during the election nor after the election is

over [19]. This desired requirement ensures that an attacker cannot determine

the voter’s vote, and it prevents vote-selling or buying due to the lack of proof.

However, it is important to note that providing receipt-freeness does not nec-

essarily guarantee coercion-resistance, as attackers may still coerce voters into

obtaining their private keys and voting on their behalf [66].

2

- Coercion-resistance. Coercion-resistance is the inability of anyone to com-

pel the voter to cast a particular vote or to deter them from voting [66]. This

requirement empowers voters to cast their ballots freely, deceiving potential

adversaries into complying with their demands.

- End-to-End Verifiability. End-to-End Verifiability (E2E-V) allows each voter

to check the election phases without requiring trust in election software, hard-

ware, or officials [18]. Being E2E-V encompasses cast-as-intended, recorded-

as-cast, and tallied-as-recorded features. In the cast-as-intended feature, voters

can verify that their encrypted vote correctly reflects their vote before casting

it. In the recorded-as-cast feature, voters can check whether their encrypted

votes are accurately captured. In the tallied-as-recorded feature, anyone can

verify that all the published encrypted votes are correctly included in the tally.

While cast-as-intended and recorded-as-cast links with individual verifiability

that allows voters to verify their votes, tallied-as-recorded links with universal

verifiability that allows anyone to verify that all valid votes are included in the

election result [9].

Some of these requirements may seem contradictory in I-voting systems due to con-

flicting interests among entities and the absence of physical premises [98]. For exam-

ple, while individual verifiability allows voters to check their vote, the receipts, such

as vote encryption keys, and randomness selected by voters may allow a malicious

party to force voters to disclose their votes [35]. Another controversial example is

the need to protect a voter’s privacy while checking their identity in I-voting systems

[98]. Given these conflicting characteristics, the prioritization of system-specific re-

quirements is crucial in the design of I-voting systems.

1.1 Motivation

If I-voting systems are analyzed, it can be seen that the web-based and open-audit

Helios voting system [2] is the most popular and promising system. Distinguishing

from other voting systems with its transparent and easy verifiability feature, Helios

has been used for different real-world elections. University president elections at the

3

University Catholique de Louvain [3], board member elections at the International

Cryptographic Research Association [58], general elections at the Computer Machin-

ery Association [131], and council elections at the Princeton University [144] are

some examples of it. Thus, this system needs to be examined when creating an online

trustworthy election. Helios system has several strengths that make it one of the best

electronic voting systems, some of which can be mentioned as follows:

- Helios provides E2E-V that satisfies the strong transparency of the voting phases

[105]. While the voter can audit cast-as-intended and recorded-as-cast condi-

tions, any observer can audit tallied-as-recorded conditions.

- In Helios, as in other voting systems, there is a vote tracking number given in

return for the votes sent to the server after they are encrypted in the browser.

However, in contrast to previous voting systems, this tracker is not a randomly

generated value, but rather the hash of the encrypted vote. The smart ballot

tracker utilizes encryption to ensure that the software remains unaltered [67].

- Helios ensures the confidentiality of the votes (since version 2.0) using a dis-

tributed encryption scheme. Therefore, no single entity can decrypt individual

votes, even in the case of a manipulated entity/server [105].

- Any observer can control the ballot preparation mechanism in Helios because

ballot preparation/encryption and ballot casting are designated as two separate

steps. Thus, ballot encryption can be viewed before authentication for ballot

casting [67].

- Helios proves its security to top experts with open-source codes. By examining

the codes, the security of Helios can be easily analyzed [67].

- Helios doesn’t compel the voter to use any dedicated hardware or install any

specific program because of the web-based feature [105].

- Helios ballot encryption is done using JavaScript and thus, after downloading

the necessary information, the voter can disconnect the computer from the In-

ternet and reconnect to the Internet to cast the ballot. So, internet connectivity

attacks are useless [119].

4

- Helios achieves ballot secrecy even during the counting phase; the votes remain

encrypted [112].

While Helios has many practical benefits, Helios users need to trust a centralized

election server for their stored data. The essential component to publicly verify the

cryptographic proofs in Helios is the Public Bulletin Board (PBB) which is used to

make the election information public in an append-only, consistent, and verifiable way

[65]. However, PBB reads the data from the central PostgreSQL database in Helios.

Fortunately, blockchain technology can come to the rescue of trust assumption in

Helios with its decentralized structure and removes the need for a secure, centralized

server to store election data [70]. Thus, distributed technology is a perfectly suitable

alternative to a PBB.

The overall structure of the blockchain enhances the I-voting systems [135]. Firstly,

the presence of independent blockchain nodes avoids single points of failure, thereby

availability which is the aspect of robustness [125] in the election phase is satis-

fied. Secondly, the utilization of immutable transactions with hash functions guaran-

tees the integrity of recorded election data. Thirdly, blockchain observability fosters

transparency in the election process. Furthermore, the openness of the blockchain

enables universal verification of the election [4]. Considering these characteristics,

numerous I-voting systems have begun to leverage blockchain technology, as an-

alyzed in [146, 7, 1]. Moreover, various companies have developed fundamental

I-voting projects, such as Bitcoin-based Follow My Vote 1 and Agora 2, Ethereum-

based Horizon State 3, Hyperledger Fabric-based Luxoft 4, and private blockchain-

based Polyas 5. More information about these projects and their comparisons can be

found in [62, 104].

The benefits of incorporating blockchain technology into the I-voting system were

also assessed in the Helios system. As a result of this evaluation, the blockchain-

powered Helios system was proposed in 2018 [106]. The Blockchain-powered He-

lios system uses homomorphic encryption like the traditional Helios system, but un-

1 https://followmyvote.com/
2 https://www.agora.vote/
3 https://horizonstate.com/
4 https://www.luxoft.com/
5 https://www.polyas.com/

5

like the Helios system, it integrates blockchain technology. The Blockchain-powered

Helios system replaces the centralized broadcast channel, known as PBB, with the

decentralized storage protocol called the Interplatenary file system (IPFS), and em-

ploys an Ethereum-based smart contract to store and make Helios’ audit data public.

These modifications enable the decentralized servers to host the open-audit function-

ality rather than relying on a centralized server in the PBB. Thus immutable data

and replicated storage on multiple servers eliminate data modification through unau-

thorized access, known as data tampering, and inaccessible server status, known as

denial of service (DoS) attacks.

Although the advantages of blockchain improve the integrity of Helios, Blockchain-

powered Helios introduces new weaknesses related to integrating blockchain struc-

tures into the voting system. These weaknesses can be examined as follows:

1. Misbehavior in wallet authorization. In the system, the contract owner uploads

each voter’s wallet address to the smart contract for authorization. As stated in

the discussion section of the system, since trust is based on the contract owner,

there can be a single point of failure. In this case, if the contract owner doesn’t

behave as required in wallet authorization, he corrupts the system; thereby, the

system fails to satisfy the robustness requirement in pre-election.

2. Linkability in wallet authorization. In the system, giving eligibility to the wal-

let while maintaining privacy is an explicit problem. In the details of the pre-

election, the contract owner collects voters’ wallet addresses with their authen-

tication information. Once the authentication information is confirmed, the

wallet address is inserted into the smart contract, thereby granting authoriza-

tion. Due to the authentication step in wallet authorization, the contract owner

is aware of the connection between the vote and the voter who cast it.

3. High-cost in transaction. As stated in the system, Blockchain-powered Helios

expects every voter to pay a transaction fee to cast their vote on the blockchain.

However, this high transaction fee on the Ethereum blockchain acts as a barrier

to voters’ participation in the election system and, therefore, to the accessibility

of the system.

6

Apart from these weaknesses, in blockchain-powered Helios, each voter is allowed

to register a single wallet address, but if the secret key of that wallet is stolen, the

voter cannot participate to the election. Thus, the system lacks advanced measures

to counteract the theft of the wallet secret key. However, this is a common problem

among most blockchain-based I-voting systems, thus we will analyze it in the context

of general blockchain-based I-voting systems. In such scenarios, giving the voter the

right to change their address creates an avenue for attackers by forcing the voter to

unregister their address. Hence, rather than providing an opportunity to re-register

the wallet address, it is imperative to incorporate certain cryptographic techniques to

ensure the safeguarding of keys.

In sum, for these weaknesses, we analyzed the security flaws of Blockchain-powered

Helios and redesigned it to satisfy privacy, robustness, and accessibility. We also

introduced improvements to protocols concerning efficient threshold signatures that

can be applied in potential scenarios to ensure the security of wallet keys.

1.2 Contributions

This thesis centers its attention on the development of a novel I-voting system con-

struction. A brief description regarding the contributions of the thesis is presented in

Figure 1.1. In system construction, we focused on system design and enhanced wallet

key protection measures.

System Design. In the I-voting system design, systems can be collected under five

main categories based on the employed cryptographic primitive, namely: homomor-

phic encryption-based, blockchain-based, blind signature-based, mix-net-based, and

post-quantum-based. The advantages and disadvantages of each primitive necessitate

the consideration of these factors in the design of the system.

As an initial step, we analyzed the homomorphic encryption-based Helios voting sys-

tem due to its widespread usage and easy verifiability property. Since the reliance

of Helios’ users’ trust is established on a centralized server, we continued with the

decentralized version of Helios, known as Blockchain-powered Helios. While the in-

corporation of blockchain technology in this version of Helios successfully resolves

7

I-Voting System
Construction

System Design Key Protection

Threshold
Signing

Hierarchical
Threshold
Signing

Two-party
Elliptic Curve
Digital
Signature
Scheme

A Flexible
Hierarchical
Threshold
Signature
Scheme

Proba:Privacy-Preserving,
Robust and Accessible
Blockchain-powered
Helios

Blockchain
Homomorphic

Encryption

Blind

Signature
Mixnet

Post

Quantum

Helios

Blockchain-
Powered
Helios

Figure 1.1: Summary of the Thesis Contribution

the issue of a single point of failure that stems from centralized servers, it introduces

certain new weaknesses. These primary weaknesses encompass inherent weaknesses

that necessitate consideration in the design of the I-voting system. These weaknesses

motivated this thesis work. In this thesis, the previously mentioned weaknesses of

Blockchain-powered Helios are eliminated, and thus redesigned the system, named

Proba, meets privacy-preserving, robustness, and accessibility properties. The meth-

ods of Proba voting system to eliminate the weaknesses of Blockchain-powered He-

lios can be itemized as follows:

1. Proba eliminates misbehavior in wallet authorization. To achieve this, Proba

distributes the power of wallet authorization to different entities. Within the

pre-election process of wallet authorization in Proba, multiple election adminis-

trators use a threshold issuance-anonymous credential scheme to sign the wallet

public key of an eligible voter. This signed value, in a randomized way, declares

that the corresponding wallet address is eligible without the need for the con-

tract owner to upload eligible addresses to smart contracts. In this case, the trust

is not based on one authority, thereby robust the election system. Furthermore,

by preserving the anonymous credential within the IPFS system, any individual

can verify that each casted vote is indeed attributable to an eligible voter.

8

2. Proba prevents linkability in wallet authorization. Proba employs blindness in

threshold signature on the wallet public key to prevent linkability between the

authentication step and the wallet authorization step. Thus, it helps to preserve

the voter’s privacy, and nobody knows the link between voters and their wallet,

thereby their votes anymore.

3. Proba reduces the cost of transactions. Proba uses a consortium blockchain

to make the system cost-effective. Thus, the fees imposed on voters for elec-

tion participation are eliminated. In this case, to prevent excessive transaction

requests within the context of the cost-effective transaction fee, a timeout re-

quirement on the public key is set. This indicates that upon casting their votes,

voters are unable to immediately submit a second vote, thereby necessitating a

waiting period for the update of their vote through their same wallet public key.

Enhanced Key Protection Measure. In addition to the system design, this thesis

presents enhanced security measures for the protection of wallet secret (signing) keys

in general blockchain-based I-voting systems and thus in the Proba voting system.

Generally, the wallet addresses are perceived as electronic mail addresses, while their

secret keys are seen as passwords. However, unlike passwords, secret keys cannot be

changed in the event of a stolen key, and voters in most blockchain-based I-voting

systems are granted the ability to register a single wallet address to avoid double

voting. In this case, the most logical way is to split the wallet secret key into multiple

devices of the same voter and then use them to sign a transaction. In this scenario, the

attacker is required to compromise each wallet secret key, which is impractical in the

real world. However, to implement this measure, there is a need to improve efficient

threshold signature protocols.

In this thesis, we propose two efficient threshold signature protocols, aiming to protect

wallet secret keys against theft in blockchain-based I-voting systems. Specifically, we

present an efficient secure two-party protocol on the Elliptic Curve Digital Signature

Algorithm (ECDSA) that necessitates the collaboration of two devices of the voter

to sign a transaction, and also a flexible hierarchical threshold signature protocol that

allows distinct levels of permission for the devices of the voter. The utilization of

these novel protocols suggested in this thesis within the blockchain-based I-voting

9

system and their distinctions from existing threshold protocols in the literature can be

analyzed as follows:

- Two-party ECDSA Protocol. Voters can distribute their secret key in two places,

like a laptop and a tablet, as in Figure 1.2. In such a scenario, the transaction

necessitates the utilization of both key shares for signing, rendering it impracti-

cal for an attacker to compromise both. To achieve this via an efficient signing

procedure, voters can use our proposed protocol, the bandwidth-reduced two-

party ECDSA, to securely employ and protect wallet keys. In the two-party

ECDSA protocol literature, each protocol relies on heavy homomorphic en-

cryption computations or several executions of multiplicative to additive (MtA)

function that convert multiplicative secret shares to additive versions. Unlike

these protocols, our protocol introduces an efficient protocol by using only a

single MtA function. Also, it reduces communication and computation costs

for the offline phase of signing, which is the message-independent phase of

signing.

Secret
Key

Public
Key

Split secret key

in two devices

Use two of them
to sign a transaction

Figure 1.2: Two-Party ECDSA Scenario

- A Flexible Hierarchical Threshold Signature Protocol. During the verification

phase of some important applications, the transmission of a code to the user’s

smartphone signifies that the smartphone is regarded as a tool of utmost impor-

tance, belonging only to the individual. Considering this, voters can distribute

their secret keys between their smartphone, which holds the highest position

in the hierarchy, and their laptop and tablet, which hold equal positions in the

hierarchy as in Figure 1.3. In this case, it is obligatory to use the secret key

share on the smartphone. To achieve this via an efficient signing procedure,

voters can use our proposed protocol, a flexible hierarchical threshold signa-

10

ture scheme (FlexHi). In the literature, many protocols are described on the

notion of hierarchical secret sharing, however, existing hierarchical protocols

often impose constraints on a threshold value, limiting their flexibility. In con-

trast to these protocols, our protocol introduces a flexible hierarchical scheme

on threshold signatures that employs independent polynomials at each level,

thereby eliminating restrictions on threshold values.

Secret
Key

Public
Key

in three devices
based on hierarchy

Split secret key

(Highest Level)

Use some of them
to sign a transaction
depending on hierarchy

Figure 1.3: Hierarchical Threshold Signature Scheme Scenario

1.3 Organization

The structure of this thesis is as follows: In Chapter 2, an overview is provided on

various fundamental aspects, including blockchain technology, I-voting systems, He-

lios, and the systems inspired by Helios. Chapter 3 presents the architecture of the

proposed system, Proba, along with its analysis. Additionally, Chapter 4 introduces

two practical threshold signature protocols for protecting the wallet secret key: a two-

party protocol for elliptic curve digital signatures and a flexible hierarchical threshold

signature scheme. Lastly, Chapter 5 concludes the thesis work.

11

12

CHAPTER 2

PRELIMINARIES

2.1 Overview of Blockchain Technology

Blockchain at its core is a peer-to-peer distributed ledger that is cryptographically

secure, append-only, immutable (extremely hard to change), and updateable only via

consensus or agreement among peers [11]. In order to gain a clear understanding of

what blockchain truly entails, it is necessary to analyze the key terms associated with

it:

- Distributed ledgers. Distributed ledgers allow for the replication of recorded

data and ensure transparency. These ledgers eliminate the possibility of data

loss or tampering.

- Immutability. The blockchain components like timestamps and hash values

oppose changing data and, in turn, provide immutability property.

- Consensus. To append the recorded data to the chain, some consensus proto-

cols are applied. Within these protocol rules, the order is maintained easily.

All of these key terms give rise to decentralized technology, namely peer-to-peer

technology. Removing trust to a third party, any application can be made still secure

with the help of blockchain technology.

To fully comprehend the functioning of blockchain technology, it is essential to delve

into its underlying block structures. The blocks consist of the block header and the

13

block body. The 80-byte block header contains the 32-byte Merkle root, the 32-

byte hash of the previous block header, the 4-byte Bitcoin version number, the 4-byte

timestamp, and the 4-byte difficulty target. The components of the blocks are shown

in Figure 2.1. The Merkle root value of the Merkle tree is a single hash value created

by hashing each copy of the transaction. The hash value of the previous block is used

to calculate the hash value (fingerprint) of each block. Thus, the blocks are chained

with the previous block and the integrity of the blocks is strengthened. In addition,

the flow in the chain is controlled by controlling the timestamps. On the other hand,

the block body consists of transactions, and their transactions are stored in the Merkle

tree.

Figure 2.1: Block Components [103]

The subsequent section will elucidate the underlying architecture of the blockchain,

thereby facilitating comprehension of the transaction process. Additionally, the metic-

ulous analysis of the transactional stages in Bitcoin allows for a more thorough un-

derstanding of the aforementioned process [116].

2.1.1 Blockchain Structures

2.1.1.1 Wallet

Cryptocurrency wallets are digital storage devices used to send or hold any cryptocur-

rencies. Wallets have two unique components:

- Wallet keys. Wallet keys consist of two keys, the signing and verification keys.

14

While the signing key is used to sign a transaction, the verification key is used

to verify the signature on the transaction.

- Wallet address. Wallet addresses are the encoded part of the hash of the public

verification key and are known to everyone. In the Bitcoin system [94] which

is the first application of blockchain, these addresses are produced from public

verification keys with SHA-256, RIPEMD160, and base58 encoding [79].

Technically, while the wallet address can be seen as an e-mail address, the private

signing key can be seen as the password of the e-mail address. There are two types

of wallets: software and hardware [133]. While software wallets are downloadable

software programs for computers or phones, hardware wallets are physical vaults that

store values on a specially designed hard drive.

2.1.1.2 Hash Reference

A blockchain consists of an ordered list of blocks, and these blocks consist of a set

of transactions. Each transaction in the block is identified by its cryptographic hash

value, called the hash reference [8].

Figure 2.2: Hash Reference [130]

In the blockchain system, each block contains the hash value of the previous block.

With this hash reference value, the transactions in the block cannot be changed.

2.1.1.3 Miner

Miners are special nodes that verify the transactions by checking the content of the

transaction and the sender [8]. Thus, miners are very important for keeping track

of the blockchain. In the mining process, miners add the transaction records to a

blockchain’s public ledger [130]

15

2.1.1.4 Consensus

Consensus is a decision-making process that is used to reach an agreement among

a group of people [22]. The consensus algorithm ensures trust between the nodes

because it bases each block’s addition to the chain on it.

Generally, consensus protocols are divided into two categories: probabilistic-finality

consensus protocols that are based on voting and absolute-finality consensus proto-

cols that are based on proof [155]. Each consensus model looks at the problems in the

blockchain from different perspectives and offers different solutions. Proof-of-Work,

Proof-of-Stake, Practical Byzantine Fault Tolerance, Delegated Proof-of-Stake, and

Ripple are examples of the main consensus protocols. Their working principles and

comparisons can be found in [156, 91].

2.1.1.5 Smart Contract

Smart contracts are executable codes that were first proposed in the 1990s by Nick

Szabo [134]. A smart contract triggers the relevant function automatically when its

pre-determined requirements written in a computer program are fulfilled.

Many electronic voting applications often require a web server to run the program,

but this creates centralization problems. These applications can be executed with

smart contracts without using a server so that a single problem on the server does not

disrupt the entire system [10]. Therefore, smart contracts are an important technology

in voting systems.

2.1.2 Blockchain Types

There are three types of blockchain: public, private, and consortium [96]. Each type

has different application scenarios. The comparison of these types of blockchain can

be as in Figure 2.3.

16

Figure 2.3: Comparison of Blockchain Types [135]

2.1.2.1 Public Blockchain

In a public blockchain, everyone can check the transactions and verify them. Also,

everyone can participate in the consensus protocol. Bitcoin and Ethereum can be

taken as examples of that type of blockchain [96].

2.1.2.2 Private Blockchain

A private blockchain which is also known as permission-based is privately owned

by an individual or organization. Also, only authorized nodes can participate in the

blockchain network [96].

2.1.2.3 Consortium Blockchain

A consortium blockchain is a hybrid form of public and private blockchains. Con-

sortium blockchain usually has partnerships like business to business and there are

predetermined nodes in the blockchain network [96].

2.2 Overview of I-voting Systems

The general I-voting system is composed of four stages: announcement, registration,

ballot casting, and tallying [118]. These can be collected under three headings: pre-

election, election, and post-election, as in Figure 2.4. The pre-election phase consists

of announcements and registration steps. The system parameters, the eligible voters,

17

and the candidate list are determined in the announcement step. In the registration

step, the voters receive or authorize their digital credentials after proving their iden-

tity to the authorized administrator. The election phase consists of the ballot-casting

step, in which the voter casts a vote with the credential information obtained in the

registration. On the other hand, the post-election stage of tallying counts the votes. It

should be noted that there is also a verification stage, which serves to control the in-

formation by the voter and other participants. Since it can be used in each stage except

the announcement, this stage has been excluded from the stages of the election.

Figure 2.4: Stages of Elections

Although the stages and requirements of I-voting systems are the same, many I-voting

systems proposed in the literature have used different primitives. In the next subsec-

tions, firstly, the categories of I-voting systems, which are divided according to the

used primitives, will be examined, and then the Helios and Helios-inspired notewor-

thy systems will be analyzed.

2.2.1 Classification of Internet Voting Systems and Cryptographic Primitives

Behind

According to the used primitive, I-voting systems can be divided into five main cate-

gories: blind signature-based system, mix-net-based system, homomorphic encryption-

based system, post-quantum-based system, and blockchain-based system [69]. Using

these protocols together or alone at different stages of the election has its advantages

18

and disadvantages.

2.2.1.1 Blind Signature-Based System

The idea of blind signature was first introduced by [32], and the first blind signature-

based e-voting system was created by [49] using this idea. The difference between a

blind signature and an electronic signature is that the information in the blind signa-

ture is not known by the signer.

In Blind Signature-Based systems, the original data is masked with a randomly cho-

sen value, and then this masked value is signed. By removing the random number,

which is used in the masking operation, from the signed masked value, the signature

of the original data is obtained. Thus, a blind signature can be seen as a method that

provides blindness and untraceability [75]. While blindness ensures that the content

of the data is not known by the signer, untraceability ensures that the signer cannot

trace those signatures. Also, blind signatures don’t require high communication costs

to ensure anonymity but require an anonymous channel [98].

2.2.1.2 Mix-Net-Based System

In Mix-net-Based systems, the main idea is to shuffle and encrypt/decrypt the data.

This method was first used in Chaum’s diagram [34]. Mix nodes, which are the basis

of the mix network model, are anonymous servers connected in the network. In the

shuffle process, each mix node shuffles the votes from the previous node and sends

them to the next node. Since the permutation value here is hidden, the storage order

of the votes cannot be predicted over the mix network.

In addition to this mixing process, mix servers apply a re-encryption or decryption

process to prevent access to the votes from input and output values comparisons.

With this method, the link between the voters and their votes is removed. Also, since

each vote is decrypted individually, corrupted votes can be detected in tallying phase

without requiring vote validity proofs [23].

Decryption Mix-Net. In these mix-nets, votes are encrypted by the voters as much

19

as the nodes in Mix-net, using the public key of each mix node in the encryption

layer. Each node in the network, after the shuffling process, takes the encrypted vote

collection, decrypts one of the encryption layers with its own private key, and transfers

the votes to the next node. The main disadvantage of this method is that the voter has

to encrypt the vote as much as the nodes in mix-net [110].

Re-Encryption Mix-Net. In these mix-networks, random public-key encryption

schemes such as Elgamal and Paillier are used, which allow the votes to be re-

encrypted with a random number. Thus, with the shuffling, the votes are re-encrypted

and transferred to the next server, and a single decryption step takes place in the

decryption of the votes. In this method, the voter only needs to encrypt the vote

once. Also, contrary to the decryption mix-nets, the failure of a single server in re-

encryption mix-nets will not disrupt the entire voting process [114].

While each mix-net type breaks the link between the voters and their votes, the mix

nodes must ensure that mixing was correctly constructed; otherwise, a corrupt mix

node deletes or adds fake votes. But proving the correctness of the shuffle in verifiable

mix-nets requires complex protocols [98]. Also, due to its complexity, mix-net-based

voting systems aren’t suitable for large-scale elections [69]. Moreover, linked mix

nodes are vulnerable to DDOS attacks [69].

2.2.1.3 Homomorphic Encryption-Based System

In the homomorphic encryption-based systems, which were first used in [40], com-

putations on encrypted votes are done without the need for decrypting any single

vote thanks to an algebraic homomorphic property. For partially homomorphic en-

cryption, elections can use additively or multiplicatively homomorphic schemes. The

only difference is in tallying phase.

If the election uses one of the additively homomorphic schemes like Paillier [99], and

Goldwasser-Micali [56], then decryption on aggregated ciphertexts will result in the

sum of the votes.

DEC(Enc(m1) · Enc(m2)) = DEC(Enc(m1 +m2))

20

If the election uses one of the multiplicatively homomorphic schemes like RSA [115]

and ElGamal [46], then decryption on aggregated ciphertexts will result in the product

of the votes, and the product is then factorized to obtain votes.

DEC(Enc(m1) · Enc(m2)) = DEC(Enc(m1 ·m2))

In general, homomorphic encryption has two important benefits for the election [40].

Firstly, they serve to remove the link between the voters and their vote because vote

counting doesn’t require the decryption of votes individually. Secondly, they serve to

satisfy the universal verification for elections because anyone can obtain the sum of

all votes to compare the results.

The disadvantage of this method is the intensive zero-knowledge proof (ZKP) for

the validity of votes [139]. Thus, if an efficient zero-knowledge proof is not used, it

will not be suitable in elections. In addition, as the number of candidates increases,

the data size increases and the speed of the system slows down, so it is much more

efficient for yes/no elections [139].

2.2.1.4 Post-Quantum-Based System

The security of most existing algorithms relies on three complex mathematical prob-

lems: the integer factorization problem, the discrete logarithm problem, and the

elliptic-curve discrete logarithm problem. Shor [126] discovered in 1994 that inte-

ger factorization and discrete logarithm problems can be solved in polynomial time

on quantum computers. Some voting systems are designed to use post-quantum algo-

rithms for the threat of quantum computing.

In Post-Quantum I-voting systems, the systems defend themselves against quantum

adversaries by choosing quantum-resistant algorithms in election phases [50]. Thus,

the systems protect themselves for a long span against the threat of solving mathe-

matically complex problems in polynomial time with quantum computers. However,

they require more storage space due to the larger key size [69]. Also, the large size of

21

the data limits the speed of the transmission [69].

2.2.1.5 Blockchain-Based System

Blockchain technology, whose core idea was first proposed in Bitcoin white paper

[95], can be seen as a decentralized digital ledger in a peer-to-peer network. In

Blockchain-Based systems, decentralized, immutable, and transparent features pro-

vided by the blockchain are utilized. A vote is represented as a transaction that in-

cludes the transaction index, timestamp, and hash of the current transaction. When

the voter chooses the candidate, this transaction is queued, and the nodes in the net-

work validate the transaction through a consensus algorithm. When the required time

and transactions are satisfied, a block is created.

In general, blockchain can be designed in three different ways, a public, private, or

consortium blockchain, depending on the requirements [135]. The ownership of the

blockchain and participant permission on the blockchain will determine the type of

blockchain. Briefly, blockchain technology provides immutable vote records with

linked hash values and offers transparency. However, it faces authentication, anony-

mity, and scalability problems. The authentication problem is related to the fact that

eligible voters’ real-life identities must be bound to wallet addresses to have the right

to vote [61]. However, this link which is required to be able to vote, must also not

ruin anonymity during the election. In addition, blockchain with large-scale elections

causes scalability problems due to the higher cost and time-consuming transactions

[1].

In conclusion, many I-voting systems have been proposed based on the company and

academic studies using these basic methods. More information on them and their

comparisons can be found in [69], [62]. In general, each method possesses its own

set of benefits and drawbacks. Considering the pros and cons of various methods, it is

evident that hybrid schemes, which combine two or more methods, are more practical

and efficient compared to other systems [69]. The inheritance of advantages from the

combined voting approach effectively mitigates the majority of disadvantages present

in each separate voting method.

22

2.3 Helios I-voting System and Its Security Analysis

Helios system has been used in many real-world elections due to its E2E-V property.

Being E2E-V encompasses [18]:

1. Cast-as-intended: Voters can verify that their encrypted vote correctly reflects

their vote before casting the encrypted vote.

2. Recorded-as-cast: Voters can check that their encrypted votes, which are dis-

played on the public list, are accurately captured.

3. Tallied-as-recorded: Anyone can verify that all the published encrypted votes

are correctly included in the tally.

Helios satisfies E2E-V as follows: 1⃝ In Helios, the cast-as-intended phase is achieved

by a cast-or-audit technique which is known as Benaloh challenge [16]. In this tech-

nique, each voter can choose to either audit her encrypted ballot or submit it. In the

case of an audit, voters get proof that the encrypted vote was correctly constituted. In

fact, voters get the random value used in encryption, and then, by recomputing the en-

cryption, they can check whether the same encrypted vote is obtained. A party or tool

that is independent of the voting server should carry out this recomputation. Once en-

cryption is under control, an audited vote will act as a ’challenge’, and the encrypted

vote must be generated again to maintain vote confidentiality before submission. The

key to the success of this technique is that it is not known which encryptions will be

challenged. 2⃝ In Helios, the recorded-as-cast phase is achieved by giving receipts

to the voters about their encrypted vote. Voters take the hash of their encrypted vote

as a receipt and can then check whether the encrypted vote is published correctly in

the public list. 3⃝ In Helios, tallied-as-recorded phase is achieved by cryptographic

mathematical proofs. With homomorphic encryption used in Helios, the tally of the

encrypted votes can be done without decrypting them. Thus, it is possible to compare

the announced voting results to match the published encrypted cast votes.

The first version of Helios emerged with a mix-net-based technique [2]. In this ver-

sion, the voter’s device encrypts the candidate option and sends this ciphertext to the

server with the voter’s authentication information. After the voting is finished, Tal-

23

liers anonymizes the cast ballots using a re-encryption mix-net with verifiable proofs.

However, Helios’s mix-net-based version is inefficient due to proofs of shuffles. Ac-

cording to their performance measurement for 500 voters with a two-question elec-

tion, while the shuffle proofs take 3 hours, the verification steps take 4 hours. Thus,

to anonymize the ballots without an intensive computation process, Helios migrated

from mix-net to homomorphic encryption [3]. Unless the first version of mix-net is

specified in the rest of the paper, the Helios system will be taken as homomorphic

encryption-based.

2.3.1 Helios System Architecture

2.3.1.1 Entities

Helios consists of three types of participants:

- Election Administrator (EA) manages the decisions related to the election.

- Voter connects to the election through the link and casts his vote with the given

credential.

- Trustee is responsible for generating the election encryption key and perform-

ing the decryption at the end of the election.

In addition to these participants, Helios has the Helios election server and Ballot

Preparation System (BPS). While the Helios election server runs the election with

commands, BPS serves as a service on the voter’s browser and sends it with its proof

of correctness.

2.3.1.2 Helios System Construction

The steps of the Helios voting procedure can be explained in detail below:

1. EA defines the start/end time of the election, election questions, and the email

addresses of the Trustees and allowed voters.

24

2. Trustees generate election key pairs via the link in their email and send the

public one to the Helios server.

3. Helios server generates the election public key in a distributed way through

Trustees. At this point, hashing public election parameters produces the elec-

tion fingerprint.

4. When the election is open, vote invitation mail is sent to the voter’s e-mail

containing a unique voter ID (u-ID), 10-character password, alias, election fin-

gerprint, and election link.

5. The voter selects a candidate and reviews the ballot, then casts an encrypted

vote and related ZKP with u-ID & password as a credential. In fact, in the

review, the voter’s ballot tracker (hash of the encrypted vote) is shown to the

voter.

6. After the credential control, cast votes and ZKP from the server’s PostgreSQL

database published on a publicly available system component called PBB. Also,

all voters can see the alias and corresponding ballot tracker to compare the

votes.

7. After the election, the server takes encrypted votes and ZKPs then aggregates

the encrypted votes whose ZKPs are valid.

8. Each Trustee takes this aggregated encrypted tally and decrypts it with their

private key partially. Also, they ensure the correct partial decryption by another

ZKP.

9. As a result of these operations, the decryption process is performed due to the

use of the homomorphic encryption algorithm, and the results are displayed in

the PBB.

The steps of voting followed in the Helios system can be seen in Figure 2.5. In this

figure, the steps on the pre-election, election, and post-election, are numbered 1,2,3,

respectively, and divided into sub-numbers.

25

Figure 2.5: Helios Voting Procedure

2.3.2 Security Analysis

According to the following security analysis, it is seen that Helios doesn’t satisfy

robustness, receipt-freeness, and coercion-resistance.

- Eligibility. Helios gives each eligible voter to unique voter id and password,

then PBB only accepts the votes that come from the eligible voter’s identity.

Thus, only eligible voters can vote in the Helios.

- Privacy. While the votes are encrypted with homomorphic encryptions, each

voter casts this encrypted vote with the given alias in Helios. Since nobody

knows the relation between the voters and their aliases, privacy is satisfied.

26

- Uniqueness. PBB in Helios allows a maximum of one vote per identity, thus

satisfying the uniqueness.

- Fairness. Helios uses distributed key generation to generate an election encryp-

tion key, and after the election, each Trustee partially decrypts the value with

their secret key. Since nobody knows the master decryption key, anyone cannot

decrypt the values alone.

- Robustness. When the voter makes his selection, the browser encrypts the

voter’s choice in the background, and then creates zero-knowledge proof. These

are vote range proof to prove that the ciphertext encrypts the allowed candidate

values and vote sum proof to prove that only one of the allowed candidates is

chosen in the ciphertext. This ensures that malicious voters cannot disrupt the

system. However, since the data on PBB is read from a central PostgreSQL

database, malicious election authority can cause a single point of failure.

- Integrity: Since Helios provides its users to a hash of encrypted votes as a

receipt, there cannot be an unauthorized change in the votes. Thus, it satisfies

the integrity.

- Transparency: Since Helios uses a PBB structure to provide its users to monitor

the election, it satisfies transparency.

- Receipt-freeness. Since the random number used in vote encryption is chosen

by the voter’s client, remembering randomness proves how the voter voted;

thus, helios is not receipt-free [89].

- Coercion-resistance. Helios offers a coerce me button, and as stated in the

article, it does not protect against coercion.

- Verifiability. Helios offers E2E-V. Giving voters receipts for their encrypted

votes achieves the recorded-as-cast feature, whereas the cast-as-intended fea-

ture uses the cast-or-audit technique known as the Benaloh challenge. Addi-

tionally, homomorphic encryption and cryptographic proofs enable the tallied-

as-recorded feature in Helios.

27

2.4 Noteworthy Helios-Inspired Systems

Several I-voting protocols have been proposed in the literature due to the prominent

Helios voting system. However, every Helios-inspired system has its non-trivial prob-

lems. In this section, we will give a brief summary of the most noteworthy Helios-

inspired systems.

Apollo. Apollo system prevents vote manipulation in homomorphic Helios, introduc-

ing two-step vote-casting [51]. Once the voter confirms the vote on PBB, then enters

the lock-in code; otherwise, the casting code changes the vote. Thus manipulated

votes are determined before tallying, but delivering the codes to the voter through a

channel securely poses usability problems.

Zeus. Zeus [143] is based on mix-net-based Helios and uses El Gamal with the re-

encryption mix-net technique to anonymize the ballots. To support several different

types of ballots, such as multiple choice questions, Zeus adopted a homomorphic

encryption implementation of Helios for tallying the ballots partially but not for pro-

ducing the election result. In that case, a verifiable ballot count can be fed to the

election result calculator of any type of election. In the election, the votes are shuf-

fled by Zeus and Trustees’ respectively, and each mixer submits proof that they have

performed the mixing correctly. Once the election has been closed, the mixed set of

re-encrypted ballots is exported to Trustees for partial decryption. Then the result is

sent to the Zeus server for final decryption and final election results. A limiting factor

in this scheme is that mix-net implementation is not efficient; in an hour, only a few

thousand votes can be handled.

Learning With Errors-Based Helios. The other system inspired by Helios is the

learning with errors (LWE) based system proposed by Chillotti et al. [36]. Instead of

using partially homomorphic encryption, they use an LWE-based fully homomorphic

scheme. In that case, they removed the need for vote validity proof on the voter’s

side. Also, on the authority side, they used publicly verifiable ciphertext trapdoors.

However, using fully homomorphic encryption causes efficiency problems for the

system. For that reason, there is no implementation of this system.

Voatz. Voatz [123] used private blockchain technology in the system and used face

28

recognition for authentication. In the system, each voter logs into the system with the

face identification application and sends the vote through the application. Meanwhile,

a unique anonymous voter ID is generated and kept in this ID along with the vote in

the blockchain. A signed receipt is sent to the voter. After the election, two election

officials assembled the votes on the blockchain with a pdf file on a USB flash drive

and explained the results. In this system, since the authentication phase depends on

the face recognition system, it is open to many attacks.

Belenios. Belenios [38], which is built upon Helios, provides eligibility verifiability

as an additional feature to prevent ballot stuffing in case of malicious servers. Thus,

through a signature mechanism and additional credentials, anyone can check the bal-

lot on the bulletin board. To achieve this, Belenios split the authentication phase into

login and password authentication. Each part is managed by a different authority,

named the registrar and voting Server. After the registrar sends different signing keys

to each voter, he/she transmits the corresponding list of verification keys to the voting

server in random order. Also, the voting server sends different passwords to each

voter and publishes all verification keys. In the election, each vote is encrypted us-

ing an exponential El Gamal algorithm and then signed with a Schnorr signature to

prevent any ballot stuffing. The server takes encrypted votes, proofs, signatures, and

passwords, thus controlling the values before decryption. In brief, any unauthorized

ballot cannot be added to the bulletin board unless both the registrar and the voting

server are corrupted to share the secret key of the voter and password. However, the

secure distribution of voters’ private signing keys to voters is an important problem.

Ordinos. Ordinos [76] also utilize the general structures of the Helios, but unlike

Helios, it doesn’t reveal the full tally because it is a low privacy situation for very

small elections. Thus, Ordinos extends the Helios to support tally-hiding elections

in a verifiable way. In a nutshell, voters in Ordinos send homomorphically encrypted

votes to the bulletin board. After aggregation on ciphertexts, Trustees run the "greater-

than" Multi-part computation protocol [84] to secretly evaluate and publish the result

function with its correct evaluation proof. In that case, even Trustees learn nothing

beyond the winner of the election. While it is a desirable property for very small

elections, Ordinos does not fit well in scenarios where transparency of the election

results is a prerequisite, like political elections.

29

Blockchain-Powered Helios. All centralized Helios-inspired systems suffer from

single points of failure. However, the blockchain-powered version of Helios over-

comes this weakness [106] by taking advantage of the decentralized structure of

blockchains.

Since blockchain technology provides immutable vote records with linked hash val-

ues and offers transparency, we analyze the blockchain versions of Helios-inspired

systems in detail. Voatz is not clear enough to analyze since many details of the elec-

tion stages in Voatz are not specified precisely, and these uncertainties are indicated

in [63]. Thus we analyze the Blockchain-powered Helios in detail in the next section.

2.5 Blockchain-Powered Helios I-voting System and Its Security Analysis

Despite the strengths of Helios, Helios has a few weaknesses that arise from cen-

tralization. However, Blockchain-powered Helios [106] overcome these problems in

Helios. Since the PBB in Helios reads the data directly from a central storage system,

there can be data tampering [106]. Also, since the access is provided over the inter-

net, the attacker can send unlimited requests and cause to Denial-of-Service (DoS)

attack, and thus the server cannot work correctly [119]. Blockchain-powered Helios

has changed the centralized PBB structure, in which the vote tracking information is

published publicly, and changed the centralized storage system where this informa-

tion is read. In that system:

- The centralized PBB structure has been replaced with the blockchain.

- The centralized storage system has been replaced with a decentralized peer-to-

peer (P2P) storage solution called IPFS.

With that solution, data tampering and DoS attacks are eliminated [78]. Due to IPFS

system integration, the hash value in the blockchain is used as an IPFS link that

contains encrypted votes and ZKPs; thus, accessing encrypted votes from the hash

value becomes easy in the blockchain.

30

2.5.1 Blockchain-powered Helios System Architecture

2.5.1.1 IPFS

Peer-to-peer (P2P) data networks have emerged to reduce the trust assumption in

data storage [41]. These P2P data network generations have gained popularity over

a centralized network. Specifically, the most popular P2P system, the InterPlanetary

File System (IPFS) [20], is preferred as a storage layer for blockchains.

IPFS offers a content-based distributed file-sharing protocol to increase the web’s

efficiency and resistance to centralization attacks. Data in IPFS is split into partitions

among the peers. From these partitions, a hash graph similar to the Merkle tree is

constructed, and the root of this graph gives the original file. To ensure the availability

of the files, IPFS also has its incentive layer as Filecoin [77].

IPFS is also used in Blockchain-powered Helios as a distributed storage protocol that

complements blockchain. While the election data is kept on the IPFS protocol, their

hash value, an IPFS link, is kept on the blockchain. Thus through the IPFS link, any-

one can access the original data storage. Thanks to IPFS, two significant advantages

are obtained over the blockchain. First, it reduces the blockchain scalability issues

caused by big data storage. Second, transaction fees are also reduced due to less data

stored on the blockchain.

2.5.1.2 Entities

Blockchain-powered Helios consists of four types of participants:

- Election Administrator (EA) creates the smart contract for the election and

uploads voter-chosen wallet address to the smart contract via the helios election

server.

- Voter generates his wallet address and casts his vote as a transaction through

his authorized wallet address.

- Blockchain is responsible for the publication of the IPFS address of the voter’s

31

vote.

- IPFS stores election audit data on its decentralized network.

2.5.1.3 Blockchain-powered Helios System Construction

The steps of the Blockchain-powered Helios voting procedure can be explained in

detail below:

1. Before the election, each voter generates their wallet address and sends it to EA

with authentication information.

2. EA uploads the Ethereum wallet address of successfully authenticated voters to

a smart contract.

3. When the election starts, the voter authenticates with the Helios election server

after accessing the link for the election.

4. Voter selects a candidate. Then the voter’s encrypted vote is stored in IPFS, and

the hash of the file, the IPFS link, is given to the voter as a receipt.

5. After checking, the voter signs this link and send it as a signed transaction to

the blockchain.

6. When the data is added to the blockchain, the voter gets the transaction Id, and

the blockchain publishes the IPFS links of the encrypted vote that is stored in

IPFS.

7. After the election, encrypted votes are read from the IPFS address in the block-

chain, and vote results are counted in the same manner as Helios.

The steps of voting followed in the Helios system can be seen in Figure 2.6. In this

figure, the steps on the pre-election, election, and post-election, are numbered the

1,2,3, respectively, and divided into sub-numbers.

32

Figure 2.6: Blockchain-powered Helios Voting Procedure

2.5.2 Security Analysis

According to the following security analysis, it is clear that Blockchain-powered He-

lios does not meet the privacy and robustness features. Also, it doesn’t satisfy receipt-

freeness and coercion-resistance features, as in Helios.

33

- Eligibility. Since smart contracts accept only votes from eligible wallet ad-

dresses, the system satisfies the eligibility.

- Privacy. Since EA takes the voter-chosen wallet address with the voter ID,

the correlation between the voters and their wallets is known by EA; thus, the

system doesn’t satisfy privacy.

- Uniqueness. In the system, each voter has the right to have a wallet address

defined in the system, so only one of the votes coming from this special address

is counted during the counting phase.

- Fairness. Although the generation of the election key is not clear in the Block-

chain-powered Helios, the distributed key generation algorithm can also be

used in this system, which is built based on the Helios system, and thus the

system also provides the fairness feature.

- Robustness. In the system, since EA takes the voter-chosen wallet address and

uploads it to the smart contract, he can corrupt the system by not acting prop-

erly; thus, robustness is not satisfied.

- Integrity: Since Blockchain-powered Helios is based on blockchain technol-

ogy, encrypted votes are seen as block transactions. Each transaction has a

transaction hash/Id, thus there cannot be an unauthorized change in the votes.

Thus it satisfies the integrity.

- Transparency: Since Blockchain-powered Helios use a public blockchain, ev-

eryone has direct access to data and transaction submissions Thus, it satisfies

the transparency.

- Receipt-freeness. Since each voter takes transaction ID as a blockchain trans-

action receipt, the system doesn’t satisfy receipt-freeness.

- Coercion-resistance. The system is based on Helios, and as in Helios, no extra

measures have been taken for resistance to coercion.

- Verifiability. Blockchain-powered Helios offers E2E-V as in Helios. For a cast-

as-intended property, the voter takes the hash of this IPFS file which specifies a

link. After controlling this property, the voter signs this hash value and sends it

34

as a signed transaction in a block. In this system, encrypted votes are stored in

IPFS, and their IPFS links are published on the blockchain. Thus, the recorded-

as-cast property is satisfied. As with each blockchain transaction, each voter

must obtain a transaction ID value to display which block the vote information

is in. This also assures tallied-as-recorded property.

To sum up, apart from the advantages provided by the use of blockchain and decen-

tralized storage, some new weaknesses can also be observed in Blockchain-powered

Helios. These weaknesses focus on blockchain integration:

1. Misbehavior in wallet authorization. EA in Blockchain-powered Helios up-

loads voter-chosen wallet addresses to the smart contract. As stated in the dis-

cussion section of the system, since trust is based on the contract owner, there

can be a single point of failure. Thus, the malicious administrator can corrupt

the system, and system robustness cannot be met.

2. Linkability in wallet authorization. In the system, associating wallets with vot-

ers is an explicit challenge. To associate wallets with voters could violate the

voters’ privacy since the contract owner knows the link between the voter and

the vote comes from a specific wallet address. Thus the system doesn’t satisfy

privacy.

3. High-cost in transaction. As stated in the system, Blockchain-powered He-

lios requires every voter to pay a transaction fee to publish their vote on the

blockchain. However, this minimum transaction fee can be a burden for the

accessibility of the system.

Also, wallet secret key protection is an important issue for Blockchain-powered He-

lios, and also for most of blockchain-based I-voting systems. Thus, we will evalu-

ate this issue separately. In the next chapter, mentioned above three weaknesses in

Blockchain-powered Helios are eliminated, and a new election system named Proba

is proposed. Following that, efficient threshold signing protocols are proposed to

mitigate wallet secret key theft scenarios.

35

36

CHAPTER 3

PROBA: PRIVACY-PRESERVING, ROBUST AND

ACCESSIBLE BLOCKCHAIN-POWERED HELIOS

This chapter presents a novel I-voting system called Proba, which effectively fulfills

the requirements of privacy, robustness, and accessibility. After giving the necessary

cryptographic blocks to build this system, system construction of the Proba will be

given. Additionally, this chapter encompasses the security and performance analysis

of the Proba.

3.1 Building Blocks

This section first presents the notion of type III bilinear pairing for the threshold

issuance anonymous credential scheme used in Proba. Subsequently, it presents three

distinct security assumptions and two indispensable concepts utilized in Proba.

Syntax. For the syntax of algorithms, we use standard notations. If A is an algorithm,

then A(x) is the result of this algorithm on input x. While A(x)→ y denotes that y is

an output of the algorithm A on input x, x← y denotes the simple assignment process.

Also, Kgen, Sign,Enc,ParDec,Dec,Pr,Vr stand for key generation, signing, encryp-

tion, partial decryption, decryption, proof, and verification, respectively. In addition,

DS, HE , ZKP , and T IAC represent digital signature, homomorphic encryption,

zero-knowledge proof, and threshold-issuance anonymous credential, respectively.

Definition 1 (Bilinear Pairings [45]). Let G1 (additive), G2 (additive), and Gt (mul-

tiplicative) cyclic groups of prime order p, g1 be an arbitrary generator of G1, g2 be

37

an arbitrary generator of G2. A bilinear pairing e :G1 × G2 → Gt (type III where

G1 ̸= G2 and there is no efficiently computable homomorphic function) is a mapping

having the following properties:

- Bilinearity: For all a, b ∈ Zp, g1 ∈ G1, and g2 ∈ G2, e(ga1 , g
b
2) = e(g1, g2)

ab

- Non-degeneracy: e(g1, g2) ̸= 1 for some g1 ∈ G1, g2 ∈ G2

Definition 2. (Discrete Logarithm (DL) Assumption [26]) Let G be a cyclic group of

prime order p, with generator g. DL assumption is that given gx where x is chosen

randomly in G, finding such an x is difficult to find in the underlying group G.

Definition 3. (Decisional Diffie Hellman (DDH) Assumption [26]) Let G be a cyclic

group of prime order p, with generator g. DDH assumption is that given the tuple

(gx, gy, gz), finding whether x·y = z mod p is computationally hard in the underlying

group G.

Definition 4. (eXternal Diffie-Hellman (XDH) Assumption [25]) Let (G1,G2,Gt) be

bilinear map with order p with generators g1 ∈ G1 and g2 ∈ G2. XDH assumption

states that the DDH assumption is intractable in G1.

Definition 5. (Semantic Security (SS) [127]) It ensures that an adversary cannot

practically distinguish the encryption of his two messages of choice. Formally, it

means any efficient adversary’s SS-advantage (|Pr[b = b′] − 1
2
|) in the following

game is negligible:

- The challenger C generates the public/secret key pair (pk, sk), then gives pk to

A

- The adversaryA chooses two distinct but the same length messages m0 and m1,

then sends them to the challenger C.

- The challenger C selects uniformly random bit b $← {0, 1}, then sends chal-

lenge ciphertext ctb = Enc(mb, pk) to A

- The adversary A outputs a guess bit b′ ∈ {0, 1}

Definition 6. (One-more unforgeability (OMU) [108]) It is a special type of unforge-

ability notion for blind signatures. OMU ensures that an adversary cannot forge at

38

least one valid signature for a message of its choosing. Formally, it means any effi-

cient adversary’s advantage in the following game is negligible:

- The challenger C generates the public/secret key pair (pk, sk), then sends public

key pk to adversary A.

- The adversaryA queries l-many times the signing oracleOSign(pk) on input mi

(1 ≤ i ≤ l), then takes signatures on them as {σ(mi)}li=1

- Finally, A outputs (l+ 1)-many message-signature pair as {(mi, σ(mi))}l+1
i=1

If Verify({mi, σ(mi)}l+1
i=1) = 1 and all mi are distinct, then adversary breaks one-more

unforgeability of the signature.

The next subsections give the specific cryptographic building blocks employed in

Proba. To begin, since Proba is a blockchain-based voting system, digital signa-

tures are required for all transactions. Second, since Proba is also built on the He-

lios system, it employs homomorphic encryption and zero-knowledge proofs. Third,

Proba leverages the threshold-issuance anonymous credential system to address pri-

vacy and robustness problems. Finally, Proba manages transaction fees via a consor-

tium blockchain. In general, λ represents the chosen scheme’s security parameter,

whereas negl(λ) denotes a function with insignificant value.

3.1.1 Digital Signatures

Digital signatures prove the message’s origin, thereby providing authentication for

schemes. They depend on the message and the signer; thus, later modifications in the

message or attaching the same signature to any message become meaningless.

Definition 7 (Digital Signature schemes). For a given global public parameter pp,

a digital signature (DS) scheme contains three probabilistic polynomial time (PPT)

algorithms as follows:

- (vk, sk)← DS.KGen(pp): This key generation algorithm takes the global pub-

lic parameters pp and returns the pair of signing (secret) - verification (public)

keys (sk, vk) associated with a message spaceM.

39

- (σ)← DS.Sign(sk,m): On input of the signing key sk and a message m ∈M,

Sign algorithm outputs a signature σ.

- (0, 1)← DS.Verify(vk, σ,m): This deterministic algorithm takes as inputs the

verification key vk, a signature σ and m and outputs either 1 (accept) or 0

(reject).

The primary security requirements for a signature scheme are correctness and un-

forgeability against chosen message attack (EUF-CMA), which are defined as fol-

lows:

Definition 8 (Correctness). A digital signature is called correct if we have:

Pr

∀ (sk, vk)← DS.KGen(pp),m ∈M :

DS.Verify (vk,m,DS.Sign(sk,m)) = 1

 ≥ 1− negl(λ)

Definition 9 (EUF− CMA). A signature scheme is EUF− CMA secure if for all PPT

adversaries A with some oracle we have the following advantage, AdvEUF−CMA
DS (A):

Pr


∀ (sgk, vk)← DS.KGen(pp),

(σ∗,m∗)← AOSign(pp, vk) :

m∗ ̸∈ QS ∧ Verify(vk, σ∗,m∗) = 1

 ≤ negl(λ)

The signature oracleOSign takes a message m ∈M, and runs Sign(sgk,m) then adds

the message to a query set QS.

3.1.2 Homomorphic Encryptions

Generally, Homomorphic Encryption (HE) is an encryption algorithm capable of per-

forming certain computations over ciphertexts. The Partial HE schemes allow only

an unlimited number of operations of only one type: either addition or multiplication.

Definition 10 (Homomorphic Encryptions). HE scheme contains the following PPT

algorithms:

- (pk, sk) ← HE .KGen(pp): Key generation is a randomized algorithm that

40

takes public parameter pp as input and returns a pair of public/secret keys

(pk, sk) as outputs.

- (ct) ← HE .Enc(pp, pk,m): The encryption algorithm is a randomized al-

gorithm which takes the public parameters pp, public key pk, and a message

m ∈M as inputs. It outputs a ciphertext ct ∈ C, ciphertext space.

- (⊥,m) ← HE .Dec(pp, sk, ct): The decryption algorithm takes the public pa-

rameters pp, secret key sk, and ciphertext ct, then returns message m as a valid

output, otherwise ⊥

The primary security requirements for a HE scheme are correctness and indistin-

guishability against chosen plaintext attack (IND-CPA), which are defined as follows:

Definition 11 (Correctness). A homomorphic encryption scheme is called correct if

we have:

Pr

∀ (pk, sk)← HE .KGen(pp),m ∈M :

HE .Dec (pp, sk,HE .Enc(pp, pk,m)) = m

 ≥ 1− negl(λ)

Definition 12 (IND− CPA). A homomorphic encryption scheme is IND− CPA se-

cure if for all PPT adversaries A with an oracle we have the following advantage,

AdvIND−CPAHE (A):

Pr


∀ (pk, sk)← HE .KGen(pp),

ct∗ ← AOEnc(m∗, pk) : m∗ ̸∈ QHE ∧

HE .Dec(sk, ct∗) ̸=⊥

 ≤ negl(λ)

The homomorphic encryption oracle OEnc takes a message m ∈ M, runs HE .Enc
(pk, pp,m) and adds the message to a query set QHE .

3.1.3 Zero Knowledge Proofs

Zero Knowledge Proofs (ZKPs) are useful two-party protocols between the prover

and the verifier. The prover proves the knowledge of the statement to the verifier

41

without disclosing anything more than true or false. The interaction between the ver-

ifier and the prover in ZKPs can be eliminated with non-interactive zero-knowledge

proofs like the well-known Fiat-Shamir transformation [48].

Definition 13 (Zero Knowledge Proofs). ZKP comprises the following two algo-

rithms:

- π ← ZKP .P r(x): Prove algorithm takes as input statement x, then output

a proof π that consists of witness commitment com, challenge c, and response

resp.

- (0, 1) ← ZKP .V r(x, π): Verify algorithm takes a proof π and statement x,

then output 1 as an accept status, otherwise 0.

Three properties of ZKP, that is completeness, soundness and zero-knowledge, are

defined as follows:

Definition 14 (Completeness). Completeness ensures that if two parties follow the

protocol, the verifier accepts the proof. A ZKP scheme satisfies completeness if we

have the following:

Pr

π ← ZKP .P r(x),

ZKP .V r (x, π) = 1

 ≥ 1− negl(λ)

Definition 15 (Soundness). Soundness prevents the verifier from accepting false proof

of the statement. A ZKP scheme satisfies soundness if for all PPT adversaries A we

have the following advantage, AdvsoundZKP (A):

Pr

π∗ ← AOZKP(x∗), x∗ ̸∈ QZKP,

ZKP.V r (x∗, π∗) = 1

 ≤ negl(λ)

The ZKP oracleOZKP takes a statement x and witness w, runs ZKP .Pr and adds the

statement x to a query set QZKP .

Definition 16 (Zero-knowledge). The zero-knowledge property states that proof does

not leak any information except for the truth of the statement. A ZKP scheme satisfies

42

zero-knowledge if we have:

Pr


π ← ZKP.P r(x)

π∗ ← SOSim(x∗)

ZKP .V r (x, π) = 1

ZKP .V r (x∗, π∗) = 1

 ≤ negl(λ)

In this property, Simulator SOSim algorithm is used to generate a proof that is indis-

tinguishable from the real proof without using prover’s secret information. Thus, no

extra information is obtained.

3.1.4 Threshold-Issuance Anonymous Credentials

Anonymous credentials make the authentication process possible while preserving

the user’s privacy. Thus, they are useful for many privacy-preserving applications.

However, since they rely on a single issuer to generate the credentials, there is a risk of

a single point of failure. To eliminate this weakness, Sonnino et al. proposed Coconut

[129] called Threshold-Issuance Anonymous Credentials (TIAC). TIAC expands the

Pointcheval and Sanders signatures [107] in a threshold form by taking advantage

of hash functions, thus making it possible for some set of credential issuers to issue

credentials jointly.

TIAC is an optional declaration credential construction supporting distributed thresh-

old issuance. Unlinkable optional attribute disclosures and public and private at-

tributes are supported by this protocol even when a part of issuing authorities is ma-

licious or offline. Recently, Rial et al. [113] have analyzed the security properties of

TIAC by introducing an ideal functionality that captures all the security properties of

a threshold blind signature. They introduced a new construction that follows TIAC

with a few modifications to realize ideal functionality. They have some changes for

issuing blind signatures and for signature shows.

In T IAC public signature parameter is taken as params = (G1,G2,Gt, p, e, g1, h1, g2),

where (G1,G2,Gt) refers to bilinear map with order p, g1, h1 be generators of G1,

43

and g2 be generators of G2. The improved T IAC scheme [113] encompasses the

following probabilistic polynomial-time (PPT) functions:

- T IAC.KGen(params) → (msgk,mvk): In a simple key generation function

with a Third Trusted Party (TTP), TTP takes params, picks two polynomial

f1, f2 of degree t− 1 then set the master signing key as msgk = (x, y) = (f1(0),

f2(0)) and master verification key as mvk = (g2
x, g2

y, g1
y) = (α2, β2, β1). Then,

TTP issues to each authority a signing key sgki = (xi, yi) = (f1(i), f2(i)) and

publish its verification key vki = (gxi2 , g
yi
2 , g

yi
1) = (α2,i, β2,i, β1,i). The key gener-

ation function can be also executed without TTP as in [54].

- T IAC.IsCred(m, ϕ) → σi(m): The issue credential function consists of three

sub-functions:

- T IAC.PrepBSign(m, ϕ, rv) → (m′, ϕ): Prepare blind signature function

converts the private attribute m to blinded form m′ using a blind factor r.

Firstly, the user generates the Pedersen commitment [101] comv = gov1 · hm1
where ov is the randomly chosen value, and set Hash(comv) = hv to build

common basis. Then the user produces com = grv1 · hmv on the same m

where rv is random blind factor. Later, the user proceeds to generate the

ZKP on it labeled as πv using knowledge of representation check as in

[145]. This ZKP proves that the committed values are well-formed and m

committed in comv is the same as the message committed in com. Thus,

algorithm outputs m′ = (hv, comv, com, πv) and the application-specific

statement ϕ.

- T IAC.BSign(sgki,m′, ϕ)→ σi(m
′): This function blindly sign the output

of T IAC.PrepBSign with signing key sgki, and outputs partial blind sig-

nature σi(m
′). In detail, each authority checks Hash(comv) and the proof

πv, then builds partial signature as σi(m
′) = (hv, ci = (hxiv · comyi)).

- T IAC.UnBlind(σi(m
′), rv)→ σi(m): UnBlind function is used to remove

blinding factor rv and get an original partial signature/credential σi(m).

To remove blinding factor, the user computes (hv, ci · β−rv1,i) = (hv, si) as

σi(m).

- T IAC.AggCred(σ1(m), . . . , σt(m)) → σ(m): Any subset of t partial creden-

44

tial aggregated into single credential σ(m). In this function, the user first ver-

ifies the validity of the acquired signature σi(m) by checking bilinear pair-

ing e(hv, α2,i · βm
2,i) = e(si, g2), then computes σ(m) = (hv,

∏t
i=1 s

li
i) = (hv, sv)

where li is the Lagrange coefficient, li = (
∏t

j=1,j̸=i(0− j))(
∏t

j=1,j ̸=i(i− j))−1

mod p.

- T IAC.PrCred(σ(m),mvk,m, ϕ′) → (σ′′(m), ϕ′): The prove credential func-

tion takes σ(m), mvk, m, and application-specific new statement ϕ′, then out-

puts randomized signature σ′′(m) and the statement ϕ′ that shows some proofs

of possession of the credential. In the detail, the user selects two random el-

ements r′, r′′ and randomize the signature as σ′′ = (hr
′
v , s

r′
v · (h′′v)r

′′
) = (h′′v , s

′′
v).

Then the user also generates the value k = α2 · βm
2 · gr

′′
2 and the proof π′v to

prove k is well-formed and the message fulfills the application-specific state-

ment ϕ′. At the end, randomized signature σ′′(m) consists of the tuple (σ′′, k, π′v).

- T IAC.VrCred(mvk, σ′′(m), ϕ′) → (0, 1): The credential verification function

takes mvk, a randomized credential σ′′(m), application-specific statement ϕ′,

and outputs 1 as an verified credential, otherwise 0. In this function, the verifier

checks the randomized signature by e(h′′v , k) = e(s′′v , g2), and checks the proof

π′v using mvk and ϕ′. Based on these verifications, the verifier outputs 1 or 0.

The TIAC scheme ensures three important security requirements including unforge-

ability, unlinkability, and blindness [129]. While unforgeability means the adversarial

user’s inability to convince an honest verifier of the possession of the fake credential,

blindness prevents an adversarial authority from learning any information on attribute

m during BSign phase of IsCred. Also, unlinkability means the adversarial verifier’s

inability to link the execution of PrCred with another execution of PrCred, or with the

execution of IsCred. These requirements can be defined as follows:

Definition 17 (Unforgeability). A TIAC scheme satisfies unforgeability (as long as

45

less than threshold t authorities collude) if we have negligible probability:

Pr



(msgk,mvk)← T IAC.KGen(params),

σ(m)
$← AOIsCred(m, ϕ) for some m ∈ QCred

Output a new pair (m∗, σ(m∗)),

(σ′′(m∗), ϕ∗)← T IAC.PrCred(σ(m∗),mvk,m∗, ϕ∗) :

T IAC.VrCred (mvk, σ′′(m∗), ϕ∗) = 1,

m∗ ̸∈ QCred



AOIsCred is an oracle that executes T IAC.IssueCred protocol. Also, a query set QCred

represents valid private attributes m. According to this definition:

- The challenger C runs key generation algorithm, then sends master verification

key mvk to adversary A.

- A queries the oracleOIsCred with different m and ϕ, then gets signature on them

as σ(m).

- Finally,A outputs a candidate forgery message/signature pair (m∗, σ(m∗)), and

generates the randomized signature with related information (σ′′(m∗), ϕ∗) on it.

If T IAC.VrCred(mvk, σ′′(m∗), ϕ∗) = 1, and m∗ is a new message that is not queried

before, then adversary forges the signature.

Definition 18 (Blindness). A TIAC scheme satisfies blindness if we have the proba-

bility that is negligibly close to 1
2

where

Pr



For a given params,

(m
′

0,m
′

1)← AOchoose(params),

σi(m
′

0)← T IAC.BSign(sgki,m
′

0, ϕ),

σi(m
′

1)← T IAC.BSign(sgki,m
′

1, ϕ),

Given (σi(m
′

r), σi(m
′

1−r)) , r ∈ {0, 1} :

r′
$← AOguess(σi(m

′

r), σi(m
′

1−r)), r
′ = r


46

According to this definition:

- For a given params, Adversary A chooses two blind messages m′
0 and m

′
1 with

the same length, then sends them to challenger C

- The challenger C signs the two messages blindly as σ(m′
0) and σ(m

′
1), then send

them in uncertain order.

If A guesses who signed the first, then he can distinguish the order of these two

signatures, thus A breaks blindness.

Definition 19 (Unlinkability). A TIAC scheme satisfies unlinkability if we have a

probability that is negligibly close to 1
2

where:

Pr



For a given params,

m← AOchoose(params),

For b $← {0, 1},

σ0 = σ(m)← T IAC.IsCred(m, ϕ),

σ1 = (σ′′(m), ϕ′1)← T IAC.PrCred(σ(m),mvk,m, ϕ′1) :

b′
$← AOguess(σ′′b) ∧ b′ = b



According to this definition:

- For a given params, A chooses a message m, then sends it to challenger.

- C computes the signature as follows:

- if b = 0, σ0 will be σ(m)← T IAC.IsCred(m, ϕ).

- if b = 1, σ1 will be (σ′′(m), ϕ′1)← T IAC.PrCred(σ(m),mvk,m, ϕ′1)

then sends it to A

- A outputs a guess bit b′ ∈ {0, 1}.

If A guesses correctly two signatures, one randomized by PrCred algorithm and the

other normal by IsCred algorithm, then A breaks the unlinkability of the signatures.

47

3.1.5 Consortium Blockchain

In Blockchain-powered Helios, Ethereum public blockchain is used as a platform. It

has no centralized management, and anyone can join the network. However, transac-

tion duration in the public blockchain is long, and some transaction fees are required

for successful transactions. These flaws have a substantial impact on the quality of the

elections. To enhance scalability and reduce transaction fees, it is imperative to re-

place public blockchains with private or consortium blockchains. These blockchains

exclusively permit authorized individuals to join their networks. Nevertheless, the

main difference is that a single authority manages private blockchain, whereas multi-

ple authorities manage consortium blockchain. Since the centralization in the private

blockchain is an undesirable property in the election systems, the proposed system

infrastructure is based on a consortium blockchain. Thus, traffic in the network and

costs for the transaction are solved by a semi-decentralized blockchain type.

3.2 The Proposed System Architecture

3.2.1 Entities

The entities of Proba are as follows:

- Election Administrators (EAs) authenticate the voters and authorize the voter’s

public wallet keys, thereby, their wallet addresses. Also, they generate the elec-

tion key in a distributed manner and are in charge of decrypting the aggregated

votes partially and computing the final tally function.

- Voters are responsible for generating their wallet key/address to participate in

the election, where each candidate is represented by their unique number.

- Blockchain serves as PBB in a decentralized way and checks the well-formed-

ness of the received ballots prior to casting them.

For the systems, the attacker/threat model needs to be defined to specify the attacker’s

capabilities. There are various attacker models for different election levels [60].

48

These levels are determined by political importance [74]. Since Proba is not de-

signed for a large-scale political election, we assume the attacker is a basic honest but

curious model.

3.2.2 Proba System Construction

The general architecture of Proba in Figure 3.1 can be described as follows:

1. Each voter needs to generate their wallet address without interacting with EA.

2. After the generation of the wallet, voters send their real ID in plain and their

wallet’s public key in blind form to EA.

3. Receiving these values, EA checks the voter’s real ID for authentication, then

signs the voter’s blind public key for authorization to be used as a credential in

the election.

4. When the election begins, voters initiate a transaction that contains their en-

crypted votes and related proofs, as well as their randomized credentials.

5. Once the transaction is received, blockchain sends the transaction ID to voter.

6. After each voter takes the transaction ID and the election closes, EA comes to

decrypt the votes partially. In addition to partially decrypted votes, the proof of

correct decryption is published by EA.

7. Upon receiving proofs and partial decryptions, the smart contract checks the

proofs, then uses homomorphic encryption property to get the tallying result.

Finally, the result is published by the smart contract.

Voter

Wallet

1.Generate
Election
Administrators

3.Credential for Election

4.Transaction Containing Vote, Proofs, Randomized Credential

5.Transaction ID

2.Real­ID, Blind Public Key

Blockchain

6.Partial Decryption, Proof

7.Publish
Result

Figure 3.1: General architecture of Proba

In Proba, voters have the right to re-vote through their addresses, and the last vote

will be counted. However, a timeout requirement on the public key is set to prevent

49

excessive transaction requests. After sending the transaction, the voter needs to wait

enough time to re-vote again.

The sequence diagram of Proba is provided in Figure 3.2 with comprehensive details.

The diagram shows the pre-election process through the steps marked with number

1, while the subsequent steps marked with number 2 represent the election period. In

addition, the steps starting with number 3 show the processes after the election.

Figure 3.2: Sequence diagram of Proba

Also, the formal construction of the used functionalities in Algorithm 1 can be clas-

sified as pre-election, election, and post-election. It is worth noting that to simplify

50

the notation, we will not include the application-specific statement ϕ and the proof πv

specified in T IAC for the generic construction of Proba in Algorithm 1.

Algorithm 1: Proba: Generic Construction

Proba: Generic Construction

Function EncKGen(pp):
mpk← 1
for i← 1 to ne do
HE .KGen(pp)→ (pki, ski)
PoKi ← ZKP.Pr(ski)
if ZKP.Vr(PoKi) = 1 then

mpk← mpk · pki
return mpk

Function SignKGen(params):
for i← 1 to ne do
T IAC.KGen(params)→ (msgk,mvk)

return mvk

Function CredSet(pkv, rv):
T IAC.PrepBSign(pkv, rv)→ pk′v
return pk′v

Function RegCred(IDv, pk
′
v):

if IDv is valid then
for i← 1 to t do
T IAC.BSign(pk′v, sgki) →
σi(pk

′
v)

return σv(pk
′
v) = {σi(pk

′
v)}ti=1

Function CredGen(σv(pk
′
v), rv, pkv,mvk):

for i← 1 to t do
T IAC.UnBSign(σi(pk

′
v), rv)→ σi(pkv)

T IAC.AggCred({σi(pkv)}ti=1)→ σv(pkv)
T IAC.PrCred(σv(pkv),mvk, pkv)→ σ′′

v (pkv)

return σ′′
v (pkv)

Function IPFS(Votev,mpk, σ′′
v (pkv)):

HE .Enc(mpk,Votev)→ ctv
ZKP.PrVV(ctv)→ VVv

ZKP.PrVS(ctv)→ VSv

StoredIPFSv ← Hash(ctv,VVv,VSv, σ
′′
v (pkv))

return StoredIPFSv

Function TransVote(StoredIPFSv, skv, pkv, σv(pkv)
StoredIPFS∗

v ← IPFS(Votev,mpk, σ′′
v (pkv))

if StoredIPFS∗
v = StoredIPFSv then

t1v ← DS.Sign(skv, StoredIPFSv)
t2v ← T IAC.PrCred(σv(pkv),mvk, pkv

return Txv = (t1v, t2v)

Function BlockVote(Txv,mvk):
if T IAC.VrCred(mvk, t2v) = 1 then

Write transaction to the blockchain
return TxID = Hash(t1v)

Function AggVote(t1v, StoredIPFS, pkv):
if DS.Vr(pkv, t1v, StoredIPFS) = 1 then

if ZKP.Vr(VVv) = 1 ∧
ZKP.Vr(VSv) = 1 then

AVote← 1
for v← 1 to nv do

AVote = AVote · ctv
return AVote

Function ParDecVote(AVote, pp, ski):
for i← 1 to ne do

pdi ← HE .ParDec(ski,AVote)
CDi ← ZKP.P r(pdi)

return (pdi,CDi)

Function TallyVote(pdi,CDi):
for i← 1 to t do

if ZKP.Vr(CDi) = 1 then
Result← HE .Dec(pdi,AVote)

return Result

51

3.2.2.1 Pre-election

In the pre-election stage, the functions EncKGen and SignKGen are responsible for

producing the master public key for the encryption scheme and the master verifica-

tion key for threshold anonymous credentials, respectively. Additionally, CredSet

is responsible for generating the blind form of the voter’s wallet public key, while

RegCred signs this key blindly. Subsequently, the voter obtains the original signature

on the wallet public key to employ it as a credential through the use of the CredGen

function.

- EncKGen(pp) → mpk: It is distributed function run by {EAi}ne
i=1 for the gen-

eration of master public (encryption) key mpk on global public encryption pa-

rameter (pp) input. As in distributed key generation [54], each EAi generates its

public key pki and secret key ski (viaHE .KGen), then publish pki with proof of

knowledge of secret key PoKi. Once the proofs are verified, mpk is generated

by multiplying all published valid public keys, and this value will be used to

encrypt the vote.

- SignKGen(params) → mvk: In a simple key generation function, TTP gener-

ates the master signing key msgk and master verification keys mvk, as well as

the shares of EA’s signing keys sgki with T IAC.KGen. Nonetheless, it is worth

noting that this function can also be executed without the involvement of the

TTP, as previously mentioned.

- CredSet(pkv, rv)→ pk′v: Credential setup function is run by the voter {Vv}nv
v=1.

Taking wallet’s public key pkv and random blinding factor rv, voter generates

blind wallet public key pk′v using T IAC.PrepBSign.

- RegCred(IDv, pk
′
v) → σv(pk

′
v): Registration credential function is run by any

quorum subset t of EA. A quorum of EA checks the voter’s ID information IDv

and related proofs πv. If ok, EA signs blind wallet public key pk′v partially as

σi(pk
′
v) using T IAC.BSign, then outpus {σi(pk

′
v)}ti=1 = σv(pk

′
v).

- CredGen(σv(pk
′
v), rv, pkv,mvk) → σ′′v (pkv): Credential generation function is

run by the voter {Vv}nv
v=1. Taking t partial signature on blind wallet public key

52

as σv(pk
′
v) = {σi(pk

′
v)}ti=1, each voter removes the blinding factor rv and get

the original partial signatures {σi(pkv)}ti=1 using T IAC.UnBSign. Then, the

voter uses these partial quorum signatures to generate the main aggregated sig-

nature σv(pkv) via T IAC.AggCred. Finally, each voter uses original wallet

public key pkv and mvk to randomize the signature σv(pkv) as σ′′v (pkv) through

T IAC.PrCred. σ′′v (pkv) will be used as an anonymous credential in the elec-

tion.

3.2.2.2 Election

During the election stage, the IPFS function serves the purpose of storing encrypted

votes and its corresponding information in the form of an IPFS file. Once the voter

confirms the correct storage of the file, the TransVote function transacts the ad-

dress/digest of that file with the randomized credential to the blockchain. Subse-

quently, the smart contract executes the BlockVote function to validate the random-

ized credential of the voter, thereby enabling the inclusion of the signed valid trans-

action into the blockchain upon this validation.

- IPFS(Votev,mpk, σ′′v (pkv)) → StoredIPFSv: It is executed between the voters

and IPFS providers. In the voter’s part, each voter encrypts his vote Votev

with mpk and outputs the ciphertext as ctv = (C1,C2) through HE .Enc. In this

scenario, encryption requires two ZKP: vote validity proof (VVv) to prove the

message is in a certain range, and vote sum proof (VSv) to prove no more than

one candidate selected. In the IPFS part, IPFS takes (ctv,VVv, VSv, σ′′v (pkv)),

then generates digest of the file stored in IPFS as StoredIPFSv to ensure correct

storage.

- TransVote(StoredIPFSv, skv,mvk, pkv, σv(pkv))→ Txv: It is run by the voter’s

device to transact the vote. If the stored data in IPFS (StoredIPFSv) is correct,

then the voter digitally signs this IPFS address with his signing key skv as t1v

via DS.Sign. Also, the voter generates new randomized credential as t2v us-

ing mvk, pkv, σv(pkv) via T IAC.PrCred. In total, blockchain transaction Txv

consists of a digitally signed IPFS address (t1v) and voter’s randomized creden-

tial t2v. This additional randomized credential in the IPFS address will enable

53

anyone to verify that tallying results contain only the votes coming from the

eligible voters.

- BlockVote(Txv,mvk)→ TxID: The block generation of vote function is run by

Smart Contract (SC). It checks the proof πv in randomized credential and the

signature on credential t2v using mvk, then writes the signed transaction t1v to

the blockchain and sends blockchain transaction ID (TxID) to the voter.

3.2.2.3 Post-Election

In the post-election stage, the AggVote function performs the aggregation of the

encrypted votes. Subsequently, any set of t EA decrypts the aggregated vote par-

tially employing the ParDecVote function. Finally, the smart contract executes the

TallyVote function to obtain the complete result.

- AggVote(t1v, StoredIPFSv, pkv) → AVote: The aggregation of the vote func-

tion is run by SC that takes all signed transactions t1v in the blockchain. If the

digital signature t1v on StoredIPFSv, and ZKP of ctv (VVv,VSv) are verified,

ciphertexts are multiplied to generate aggregated votes AVote = (C′1,C
′
2).

- ParDecVote(AVote, ski) → (pdi,CDi): The partial decryption vote function is

run by any set of threshold (t) EA authority. Taking AVote from the AggVote

function, and ski from EAi, it returns partial decryption share on these votes

as pdi = (C′1)
ski . In addition to this, {EAi}ti=1 publishes the correct decryption

proof CDi that proves the secret value ski in previously published pki is the same

as the secret value used in pdi to assure correct partial decryption.

- TallyVote(pdi,CDi) → Result: TallyVote function is run by the SC after the

execution of ParDecVote function. SC first verifies the correctness of decryp-

tion proof on CDi, then homomorphically decrypts the aggregated votes tak-

ing {pdi}ti=1 and AVote(= C′1,C
′
2). In the detail of this homomorphic decryp-

tion, SC first computes C′2 ·
∏t

i=1 pd
li
i = C′2 ·

∏t
i=1(C

′
1)

sk
li
i = C′2 · (C′1)sk where li

is the Lagrange coefficient, then employs a brute force method on this value,

that is restricted to the number of voters, to publish Result of the election.

54

3.2.3 An Efficient System Instantiation of Proba

Distributed Key Generation. In the pre-election stage, the vote encryption key is

generated by a fully distributed threshold non-interactive Pedersen Key Generation

[53] as in a fully distributed variant of Helios [37]. Thus, the key generation setup

of the election is done without a dealer and ensures that the election key is uniformly

distributed. In that scheme, each EA builds their secret keys, and then the public

key of the election is constituted with these secret keys. The verification keys of the

EAs will later enable non-interactive partial decryption of the encrypted votes under

the election public key. In that case, any set of administrators less than the threshold

cannot learn any information on the encrypted votes.

Homomorphic Encryption. For the encryption, the El Gamal algorithm is chosen

since election schemes based on homomorphic encryption, except for El Gamal,

fail when there are more candidates for election [80]. Also, plaintext multiplication

in multiplicative homomorphic algorithms induces overflow in plaintext range [88].

Thus, Proba continued to use the additive El Gamal called exponential El Gamal. The

traditional El Gamal algorithm is made additively with Cramer transformation by en-

crypting gm instead of message m for some generator g [40]. Also, at the end of the

decryption, it additionally requires solving discrete logarithm problems. However,

this additional step will not pose a problem because this number will be limited to the

number of voters in a voting system.

Zero-Knowledge Proof. In Helios, there are three types of zero-knowledge proofs.

These proofs are disjunctive Chaum-Pederson proofs [33], and they made noninterac-

tive with Fiat-Shamir transformations [48]. For the intended ZKPs, Proba continued

to utilize these proofs. 1⃝ The first zero-knowledge proof is required to prove that the

corresponding encrypted vote encodes an integer between 0 and the candidate num-

ber (max). In a simple election with two candidates, this can be thought of as the

encrypted vote encoded 0 or 1. In that case, in addition to the encrypted vote, the

voter sends proof that the encrypted vote is within a certain allowed range. Thus, the

voter can only cast up to one vote for a candidate. 2⃝ The second zero-knowledge

proof is required to prove that the sum encrypted vote is 1. This means voters need

to prove that the sum of their plaintexts corresponding to their ciphertexts is 1. Thus,

55

voters can choose up to one candidate. 3⃝ The third proof is required to prove correct

decryption. Contrary to the first two proofs, the last proof is produced by the authority

that will decrypt the encrypted votes. Thus, it is proved that the decryption process is

done correctly.

Anonymous Credential. In Proba, TIAC scheme is used to authorize the anonymous

credential by signing it. Eligibility of the voter’s wallet addresses is proved with

the knowledge of signature on an anonymous wallet public key using Coconut/TIAC

construction [129]. For the anonymous credential in threshold issuance, the improved

Coconut structure [113] is chosen. In this case, while TIAC provides blindness, un-

forgeability, and unlinkability, the improved TIAC provides additional unconditional

privacy that ensures the security of the system despite the adversary’s unlimited com-

putational power. It should be noted that all of the ZKPs necessary for the Coconut

system are founded upon standard Sigma protocols that rely on the DH assumption.

These proofs demonstrate knowledge of the discrete logarithm’s representation.

Consortium Blockchain. The consortium blockchain type is used in Proba since it

is managed by more than one authority; transactions are fast and have no cost. As

a consortium platform, Java-based Hyperledger Besu 1 that is compatible with the

most popular wallets like Metamask and suitable for business projects due to multi-

ple authority management is chosen. Also, Besu allows using of various consensus

protocols such as Proof of Stake, Proof of Work, and Proof of Authority (IBFT 2.0,

QBFT, and Clique).

Consensus Algorithm. Another important issue to consider is the consensus algo-

rithm that determines which blocks are added to the blockchain. As opposed to the

computational effort in public consensus algorithm as Proof of work in Bitcoin, de-

terministic immutability is a more desirable requirement for consortium blockchain

[117]. Since the nodes in the consortium blockchain know each other, contrary to the

public blockchain with no level of trust between each other, Proof of Authority (PoA)

can be used as a consensus. However, instead of using naive PoA, to provide balance

in security and performance, leader-based Istanbul Byzantine Fault Tolerance (IBFT)

which was developed by AMIS Technologies [93] can be chosen.

1 https://www.hyperledger.org/use/besu

56

The formulation of all election phases in Proba can be seen in Figure 3.3, 3.4, and 3.5.

In these figures, the ZKP formulas are not provided because of their large size. How-

ever, further details on proof of knowledge of discrete logarithm PoK in pre-election,

vote validity VV proof (called disjunctive proof of plaintext equality) - vote sum VS

proof (called proof of inequality of two discrete logarithms) in the election, and cor-

rect decryption CD proof (called proof of the equality of two discrete logarithms) in

post-election can be found on [64]. Also, since the signature algorithm depends on

the underlying blockchain platform, elliptic curve digital signatures can be used as a

default.

Functions Voter , ({1,n }) EA , ({1,n })

EncKGen
(pp={ with order , generator)

Generate , mod ,

Generate (, If all

=1, mpk= mod

SignKGen
(params={ , , , , ,

(TTP generate msgk=(x,y),

mvk=(, ,)=())

Each EA takes the shares of msgk

as , and also

, ,)=)

CredSet
(,)

Select , = . , = Hash() , G .

Select , = . and set

= {(): }

, , ,)

If , , hash() valid,

compute =
RegCred
(,)

=(,)

repeat
t-times

CredGen
(, , ,mvk)

=(,)=(, .)=(,),

Check (, .)= (,), then set =(h ,s)

where .Set randomized signature as follows:

Select and , set = , = .() ,and =(,)

Generate . . and

= {() : . . }

(, ,)

HE.KGen

TIAC.KGen

TIAC.

PrepBSign

TIAC.BSign

TIAC.UnBSign

TIAC.

AggCred

TIAC.

PrCred

ZKP

Figure 3.3: Formulation of pre-election phase in Proba

57

Functions Voter , ({1,n }) IPFS Blockchain

IPFS
(Vote ,mpk,)

HE.Enc
Choose , compute = ,

=(mod , mpk mod)

Generate (ZKP

, ,

StoredIPFS

=Hash(ct ,StoredIPFS

TransVote
(StoredIPFS , , ,

mvk,)

If Hash(, =StoredIPFS ,

Sign transaction as t1 = (,StoredIPFS)

generate randomized signature t2 as follows:

Select and , set = , = .() ,

and =(,). Generate . . and

= {() : . . }

Set (, ,)= t2

DS.Sign

TIAC.PrCred

Tx =(t1 ,t2)

BlockVote
(Tx ,mvk)

If mvk,t2)

is valid (e(,)=(,))

and is valid, then write

t1 to the blockchain

TIAC.VrCred

Hash(t1 =Tx

Figure 3.4: Formulation of election phase in Proba

Functions EA , ({1,n }) Blockchain

AggVote
(t1 ,StoredIPFS ,)

SC check signature t1 on StoredIPFS using , then

check and set aggregated

votes: AVote =

=(, mpk .)

ParDecVote
(AVote,pp,)

DS.Vr

ZKP

HE.Dec Each generate partial decryption = (

and (for correct decryption
,

TallyVote

(,

If all is valid, set =) ,

Compute) = (),publish result =

) with corresponding candidate list

ZKP

ZKP

Figure 3.5: Formulation of post-election phase in Proba

58

3.3 System Analysis

3.3.1 Security Analysis

The initial analysis of any voting system requires an evaluation of the basic require-

ments of the voting system. Since the modifications in Blockchain-powered Helios

strengthen the Proba system in terms of robustness, and privacy we start with these

formal security definitions. To achieve robustness and privacy, Proba used a T IAC
scheme, thereby the modified stages also require a formal definition of eligibility and

verifiability. This is because the modified stages affect the voter’s ability to access the

election through credentials and verify their vote.

Oracles. Our formal security definition relies on some oracles that Probabilistic Poly-

nomial Time (PPT) adversary A has access to them through challenger C.

- ORegCred(pk
′
v, IDv): IfA queriesORegCred, valid partial signature on blind wallet

public key σi(pk
′
v) is given to A and it is also added to the registered credential

list Lcred.

- OStoredVote(ctv, auxinfo): If A queries OStoredVote, the hash of encrypted vote

ctv and the related auxiliary information auxinfo (t2v = σ′′v (pkv),VVv,VSv) are

given to A as StoredIPFSv and it is also saved in the blockchain as valid the

ballot list Lbal.

3.3.1.1 Eligibility

Eligibility is defined as the authorization to vote, and this authorization is provided

by anonymous credentials on blind signatures in the Proba system. The concept of

the blindness property entails the situation where the attacker is given two signatures

on two blind messages in uncertain order, and then he tries to guess the correct order.

Following this definition, eligibility is satisfied if for all adversaries A, the advantage

on winning the eligibility experiment defined in Figure 4.22 is negligible, i.e.,

59

AdveligA (λ) = Pr[Expelig,bA (λ) = 1] ≤ negl(λ)

Expelig,bA (λ)

params← Setup(1λ):
(pk′0, pk

′
1)← AOChoose(params):

For b $← {0, 1}
σi(pk

′
0) = RegCred(pk′0, ID0),

σi(pk
′
1)

$← S

if b=0:
return b′ such that σi(pk

′
b) ∈ Lcred

if b=1:
return b′ such that σi(pk

′
b) ̸∈ Lcred

Figure 3.6: Eligibility experiment for Proba

Let the registered credential output be defined over the signature space S. An eligibil-

ity experiment (Expelig,bA) between the challenger C and adversary A runs as follows:

- C generates the public paramaters params for signature scheme, then publish it

to adversary A.

- A chooses two blind wallet public keys pk′0, pk
′
1 and sends them to C.

- C computes the signature for the credential as follows:

- if b = 0; σi(pk
′
0) ← RegCred(ID, pk′0), then σi(pk

′
0) is added to the regis-

tered credential list Lcred

- if b = 1; σi(pk
′
1)

$← S

then sends it to A

A wins the game if he distinguishes the real blind signature σv(pk
′
0) from a random

blind signature σv(pk
′
1), thus outputs the corresponding blind public key declaring the

signature on it is in the eligible credential set or not.

Theorem 1. Proba provides eligibility if the TIAC signature on the voter’s credential

is blind.

60

Proof. In particular, for every eligibility adversary A that attacks the Proba system

as in Figure 4.22, there exists a T IAC adversary B that attacks blindness property of

anonymous T IAC credential. According to Figure 4.22, A who gains a nonnegligi-

ble advantage for eligibility, can distinguish an eligible blind signature from a random

blind signature. We will construct another adversary B that usesA as a subroutine for

some appropriate input and plays the role of challenger toA. According to blindness,

B, who gains a nonnegligible advantage for blindness, can distinguish the order of

the blind signatures.

Challenger B

A
Generate two wallet

public keys: pk ,pk

1.params,
2.params,vk , Select random o and , set

com =g , Hash(com)=h

com' =g ,

pk ={h , com , com' }, (b=0,1)3.pk' ,pk'4.pk' ,pk'
Compute

c =h (com)

=h .g , set

=(h ,c

5.
Taking uncertain ordered

choose one of them
6.

Distinguish blind signatures

(Set (pk)=(h ,c .(g))

=(h ,h) and check

e(h ,g .(g)=e(h ,g))
Taking informorfation on one

of the tuple, guess the order
8.b'

7.

Choose params=

(p,G ,G ,G ,g ,g ,h),

and sgk =(x ,y), set

vk =(g ,g ,g),

vk
pk ,pk

Figure 3.7: Eligibility proof construction for Proba

In Figure 3.7, B’s challenger C chooses params then set signing key sgki = (x, y) and

its corresponding verification key vki = (gxi2 , g
yi
2 , g

yi
1). C sends vki to B. B generates

his wallet public keys pk0, pk1 based on the underlying blockchain platform and sends

them to A together with params and vki. A makes the public wallet keys blind as

pk′0, pk
′
1 and B forwards them to C. C runs the T IAC.BSign in RegCred function to

sign them blindly as σi(pk
′
0), σi(pk

′
1). Taking σi(pk

′
0), σi(pk

′
1) in uncertain order from

C, B sends one of the signature σi(pk
′
b) to A. Since A has a nonnegligible advantage

over eligibility, he can distinguish blind signatures and outputs its corresponding b′ to

B. Taking this information fromA, B can distinguish the order of the signature taken

from C with nonnegligible advantage.

3.3.1.2 Privacy

Privacy is the removal of the link between the voter and the vote. This is achieved in

Proba through the utilization of the exponential El-Gamal algorithm that preserves the

61

vote privacy and the T IAC scheme which protects the privacy of voters by introduc-

ing randomness to the anonymous credential. Privacy is satisfied if for all adversaries

A the advantage on winning the security experiment defined in Figure 3.8 and Fig-

ure 3.10 are negligible, i.e.:

Advpriv1A (λ) =
∣∣∣Pr[Exppriv1,1A (λ) = 1]− Pr[Exppriv1,0A (λ) = 1]

∣∣∣

Advpriv2A (λ) =
∣∣∣Pr[Exppriv2,1A (λ) = 1]− Pr[Exppriv2,0A (λ) = 1]

∣∣∣
Exppriv1,bA (λ)

pp← Setup(1λ),
← EncKGen(pp):
(Vote0,Vote1)← AOChoose(pp)

For b $← {0, 1} and
ctb ← HE .Enc(mpk,Voteb) :
b′ ← AOGuess(ctb)

if b′ = b

return 1

else return 0
Figure 3.8: Experiment for Vote Privacy in Proba

Vote privacy attack game. This game between the challenger C and adversary A
runs as follows:

- C generates the master public key mpk = gx for encryption scheme based on

public parameters pp, and publish it to adversary A.

- A choose two distinct but the same length messages Vote0 and Vote1, then

sends them to the challenger C.

- C selects uniformly random bit b $← {0, 1}, then sends challenge ciphertext

ctb ← HE .Enc(mpk,Voteb) to A where ctb = (gy, gx.y+Voteb) = (c1, c2)

- A outputs a guess bit b′ ∈ {0, 1}

A wins the game if b′ = b.

62

Remark 1. Instead of a bit-guessing experiment of this attack game, the game can

also be designed with two ciphertexts, one of which is a random element in ciphertext

space and the other of which is a real encrypted vote. However, this game is weaker

in terms of Challenger C.

Remark 2. Vote privacy game ensures vote indistinguishability which means it is

infeasible to distinguish pairs of ciphertexts based on plaintexts better than 1
2

proba-

bility [57]. Thus, it is the same as the semantic security (SS) game in Definition 5 for

El-Gamal algorithm. However, to be more clear, we present its proof here.

Theorem 2. Proba preserves vote privacy if the DDH assumption holds in G.

Proof. Assuming there exists an adversary A that breaks the vote privacy game, we

can construct an adversary B who tries to break the DDH assumption in G. Since the

encryption algorithm in Proba uses Exponential El-Gamal, we can take the ciphertext

ctb on message Voteb as (gy, (gx)y.gVoteb) where g is a generator of G, gx is the public

key, and y is uniformly chosen random value.

Challenger B

A2.pp

3.Vote ,Vote

1.(pp),

(g ,g ,g)

4.ct

Choose two Votes

from message

space of pp

Guess b'

5.b'

Choose pp =(Group

G with generator g),

and random x, y, then

set (g ,g ,g)

where g is mpk

if r=0 ; z =x.y

if r=1 ; z is random

If b'=b, it means r=0 case, otherwise

r=1.Thus knowing if ct is an encryption

of Vote is equal to knowing z =x.y,

thereby decide DDH(g ,g ,)))

Encrypt one of them by taking

inputs from its Challenger

ct =(c ,c) = Enc(Vote)=

.))

6.DDH
output

Figure 3.9: Vote privacy proof construction for Proba

In Figure 3.9, C sets up public parameters pp then choose random x and y. Subse-

quently, C generates DDH inputs as (mpk = gx, gy, gzr), then sends them to B. In

these inputs, if r = 0, gzr = gx·y; if r = 1, gzr is randomly chosen value. B forwards

pp to A so that A can choose two votes from the message space of the encryption al-

gorithm. Taking two votes from A, B encrypts one of them by using the inputs taken

from C as ctb = (gy, gzr .gVoteb). According to the nonnegligible advantage of the vote

privacy game, we assume that A can distinguish which encrypted vote ctb belongs to

which message Voteb or if ctb doesn’t belong to any encryption (the case of random

zr). Based on the response of A, B can decide the DDH tuple. In the event that A

63

produces the output b′, which is equivalent to b, B is aware that this corresponds to

the scenario where r is equal to zero. Using this information, B can decide whether

the input (gx, gy, gzr) is a DDH tuple or random tuple with half the advantage that A
has.

Exppriv2,bA (λ)

params← Setup(1λ):
(pk0, pk1)← AOChoose(params)

For b $← {0, 1} and
pk′b ← CredSet(pkb, rb),
σv(pk

′
b)← RegCred(IDv, pk

′
b),

σ′′v (pkb)← CredGen(σv(pk
′
b), rb, pkb,mvk):

b′ ← AOGuess(σ′′v (pkb))

if b′ = b

return 1

else return 0
Figure 3.10: Experiment for Voter Privacy in Proba

Voter Privacy Attack Game. This game between the challenger C and adversary A
runs as follows:

- C generates the public parameters params for signature scheme and publish it

to adversary A.

- A chooses two distinct but the same length messages pk0 and pk1, then sends

them to C.

- C uses CredSet, RegCred, and CredGen functions to get the randomized signa-

ture σ′′v (pkb) on one of the messages, then sends it to A.

- A outputs a guess bit b′ ∈ {0, 1}

A wins the game if he guesses correctly b′ s.t. b = b′

Remark 3. Instead of a bit-guessing experiment of this attack game, the game can also

be designed with an indistinguishability approach where one credential is a random

64

element and the other is a real randomized signature. However, this game is weaker

in terms of Challenger C.

Theorem 3. Proba preserves voter privacy under XDH assumption.

Proof. Let adversaryA breaks the voter privacy game with nonnegligible probability,

then we can construct an adversary B who breaks the XDH assumption.

Challenger B

A1.params,mvk

2.pk pk

Generate wallet

public keys

(pk , pk) from

corresponding

wallet's secret

keys

3. (h h)For b

choose one of

them and take

random r' , r'': Set

() where

=h , =(h) ,

=(h)

if r=0, z =r'.r''

if r=1, z is random

value

5.

Guess b'

6.If b'=b, it means r=0 case, otherwise r=1.

Thus knowing if is a randomized

signature on is equal to knowing z =r'.r'',

thereby decide XDH

Compute a =x+pk y, then forward

(, . as a randomized signature

7.XDH
output

Choose params = (p,G ,G ,G ,g ,g ,h)

and msgk=(x,y), then set mvk=(g ,g ,g),

Select random o and o , set

com =g , Hash(com)=h ,

com =g , Hash(com)=h

=(, .

Figure 3.11: Voter privacy proof construction for Proba

In Figure 3.11, B chooses public parameters params and master signing key msgk,

then set master verification key mvk. A takes params and mvk from its C, then derives

the public key of two wallets by utilizing the secret key of each wallet, which is

determined by the underlying blockchain platform. Taking two wallet’s public keys

fromA, B generates the commitment on both of the public keys and sends the hash of

their commitments h0, h1 to C as generated in T IAC.PrepBSign. C chooses one of the

hb value (b ∈ {0, 1}), and chooses random r′, r′′. Then C computes the value α = hr
′

b ,

β = hr
′′

b , γ = hzrb and sends (α, β, γ) to B. In these inputs, if r = 0, zr = r′ · r′′; if

r = 1, zr is randomly chosen different value. B computes ab = x + pkb · y and

forwards (α, αab .γ) to A as a randomized signature on one of the public keys. Since

A wins the game, he can correctly guess b. If A outputs b′ where b′ = b, then B
knows that this is equal to r = 0 case (zr = r′.r′′). Thus, B can decide whether the

input tuple is an XDH tuple or a random tuple with 1
4

probability.

65

3.3.1.3 Verifiability

According to the election verifiability definition, voters should trust the election re-

sults without relying on some authority. Proba achieves this since the voter can trace

his vote in the blockchain with collision-resistant hash functions and can detect such

malicious behavior. Verifiability for the election is satisfied if for all adversaries A
the advantage on winning the security game defined in Figure 3.12 is negligible, i.e.:

AdvverA (λ) = Pr[ExpverA (λ) = 1] ≤ negl(λ)

ExpverA (λ)

mpk← EncKGen(pp):
ctv ← HE .Enc(mpk,Votev)

StoredIPFSv ← AOStoredVote(ctv, auxinfo)

Output a new ciphertext ct∗v ← HE .Enc(mpk,Vote∗v)

StoredIPFS∗v ← AOStoredVote(ct∗v, auxinfo) :
return StoredIPFS∗v = StoredIPFSv

Figure 3.12: Verifiability game for Proba

Verifiability game between the challenger C and adversary A runs as follows:

- C generates master public key mpk for encryption, then publish it to adversary

A.

- Taking mpk from C, A generates an encrypted vote as ctv on plain vote Votev.

- A queries the oracle OStoredV ote on input ciphertext ctv, as well as auxiliary

information auxinfo which encompasses the randomized credential t2v and the

ZKP of ctv. This oracle saves the hash of the given input to the blockchain as

StoredIPFSv ∈ Lbal.

- After some query, A produces a new ballot StoredIPFS∗v that is not produced

by the oracle.

A wins the game if StoredIPFS∗v = StoredIPFSv. According to this game, even if the

voter has an eligible credential, the adversary can forge StoredIPFSv that stores the

66

hashes of encrypted votes and other related auxiliary information, thus changing vote

choice.

Theorem 4. Proba satisfies verifiability under the DL assumption.

Proof. The verifiability game in Figure 3.12 is based on the collision resistance prop-

erty of hash functions. Collision resistance means that it is difficult to find two dif-

ferent inputs that hash to the same output such that H(a) = H(b) and a ̸= b, thus

means for all efficient adversary A, its advantage on collision-finding is negligible.

In Proba, when the credential t2v = σ′′v (pkv) is valid, an encrypted vote ctv is added

to the blockchain. In fact, instead of the encrypted vote and its auxiliary information

together, the Secure Hash Algorithm Standard-based IPFS address (StoredIPFSv) is

recorded on the blockchain.

Challenger B

A

Set generator g G,

choose random a,

then set h=g G

2.(g,h=g) 3.G,(g,h),
Choose hash function's

input as (

Compute

Hash(=g .h ,

Output a new pair

((,

and Hash(=

Hash(

4.

Set h=g since g .h =g .h

Thus decide DL output as a=
5.DL
output

()

Generate group G of order q1.G

Figure 3.13: Verifiability proof construction for Proba

In Figure 3.13, B generates a cyclic group G of prime order q and send it to C. C
computes a generator g ∈G, and also set h = ga as an arbitrary group element in G

by choosing random a. Taking g, h from C, B chooses an input of hash function as

α, β and sends these together toA. A computes the hash value according to the taken

input. Let collision-resistant hash function (CRHF) be constructed as Hash(α, β) =

gα · hβ mod q. A finds a collision Hash(α, β) = Hash(α∗, β∗), (α, β) ̸= (α∗, β∗)

with nonnegligible advantage and sends it to B. In this case, B constructs h = g
α−α∗
β∗−β

since gα · hβ = gα
∗ · hβ∗ . Thus, B breaks the DL assumption by outputting a = α−α∗

β∗−β .

67

3.3.1.4 Robustness

Robustness means resistance to malicious behavior. While the blockchain ensures

robustness in the election phase of Proba, the absence of any interaction with the

blockchain in the pre-election phase necessitates an additional precaution to ensure

the robustness of the system. Proba system takes this precaution by using T IAC
scheme, thus allowing for the issuing credential procedure to be distributed in pre-

election. Robustness in Proba is satisfied if for all adversaries A the advantage on

winning the security game defined in Figure 3.14 is negligible, i.e.:

AdvrobA (λ) =
∣∣∣Pr[Exprob,rA (λ) = 1]

∣∣∣ ≤ negl(λ)

Exprob,rA (λ)

mvk← SignKGen(params):
For i = 1 to t′ < t:
σi(pk

′
v)← AORegCred(IDv, pk

′
v)

σi(pkv)← T IAC.UnBSign(σi(pk
′
v), r)

Then generate new {σj(pkv)
t
j=t′+1} ← S′

σv(pkv)← T IAC.AggCred({σi(pkv)}t
′
i=1 ∧ {σj(pkv)

t

j=t′+1})
σ′′v (pkv)← T IAC.PrCred(σv(pkv),mvk, pkv) :

return σ′′v (pkv) s.t. T IAC.VrCred(σ′′v (pkv),mvk) = 1

Figure 3.14: Robustness game for Proba

Let the partial credential output σi(pkv) be defined over the signature space S′. Ro-

bustness game between the challenger C and adversary A runs as follows:

- C generates master verification key mvk for signature, then publish it to adver-

sary A.

- Amakes t′ < t many queriesORegCred and gets blinded signatures as {σi(pk
′
v)}t

′
i=1.

- A removes the blind factor in each {σi(pk
′
v)}t

′
i=1 using T IAC.UnBSign and gets

the original partial signatures {σi(pkv)}t
′
i=1.

- Then A generates the remaining new signatures on pkv by choosing random

partial signatures {σj(pkv)}tj=t′+1 from signature space S′.

68

- Subsequently,A uses T IAC.AggCred to generate single credential σv(pkv) and

T IAC.PrCred to generate randomized credential σ′′v (pkv).

A wins the game if the generated credential σ′′v (pkv) is valid in T IAC.VrCred.

Theorem 5. Proba satisfies robustness if the TIAC signature on the voter’s credential

captures one-more unforgeability

Proof. Considering one-more unforgeability in TIAC, an adversary queries l-many

times TIAC signing oracle for different blind messages (pk′v
(1), pk′v

(2), . . . , pk′v
(l)) on

the same wallet public key pkv through the Pedersen commitment, then takes blind

signature on them. The adversary is then cannot forge at least one valid signature on

another blind message pk′v
(l+1) on the same wallet public key pkv.

Assuming there exists an adversary A who breaks the robustness game in Figure

3.14, we can construct an adversary B who tries to break one-more unforgeability as

defined in Definition 6. Breaking the robustness game means that an adversaryA has

collected t′ < t signatures through signing oracle, and he has the ability to produce

the remaining signatures required in T IAC.AggCred without interacting with signing

oracle. In this case, B directly breaks one-more unforgeability. This is because B
is also capable of generating a number of valid signatures greater than t′ through

engaging in the signing protocol t′ times.

The rest of the security requirements will be given informally. The discussed security

requirements prove that the generic construction for Proba in Algorithm 1 is secure.

- Uniqueness. Since Proba allows one voter to register one public wallet key,

thus satisfies uniqueness. Even if more than one vote is sent to the system

through the same public wallet key, only the last vote for each voter is counted

during the counting phase.

- Fairness. In Proba, the encryption key is created in a distributed manner be-

tween the EAs. Even if EA holds a part of the secret encryption key for election,

the main secret encryption key will not be compromised due to the threshold

value. Thus intermediate results are not revealed before the election is closed,

and the system satisfies fairness.

69

- Integrity: Since Proba is based on blockchain technology, encrypted votes

are seen as block transactions. Also, since each blockchain transaction has

transaction hash/ID, there cannot be an unauthorized change in the votes. Thus

integrity is satisfied in this blockchain-based system.

- Transparency: In the consortium blockchain that is used in Proba, direct ac-

cess to data and transaction submissions are restricted to its specific partici-

pants. However, voters can access all transaction and see all phases. Thus,

Proba is transparent for its voters.

- Coercion-resistance. Proba is suitable for low coercion elections as in the He-

lios system. In Proba, even if the voters are under pressure, they have the right

to vote again, but since voters choose their blinding factor in T IAC.PrepBSign
and randomization factor in T IAC.PrCred, the system is not coercion-resistant

if the voter reveals this value.

- Receipt-freeness. After the encrypted vote is written to the blockchain, the

transaction ID is given to the voter. With this receipt, encrypted votes kept in

the IPFS system, proofs showing the validity of the votes, and proofs proving

the eligibility of the randomized signature on credential can be viewed. In this

case, while transaction ID provides verifiability, it does not provide receipt-

freeness.

3.3.2 Performance Analysis

Since efficiency is also an important criterion for the systems, this section analyzes the

efficiency of Proba. The implementations have been done in Python, using the hash-

lib library for the non-interactive zero-knowledge proofs. Also, it has been run into

Intel(R) Core(TM) i7-8700 CPU @ 3.20GHz. In the implementation, a 4096-bits se-

curity for Exponential El Gamal encryption and 256-bits security for T IAC are used.

After the key generation setup, all critical computational time of used cryptographic

primitives is given in Table 3.1 in the unit of milliseconds (ms), encompassing the

average, maximum, and minimum runtimes. Since the given times are based on one

voter and one election authority scenario, we exclude the cost of aggregate credentials

in TIAC which does not affect the overall efficiency of the system. Using this table,

70

Table 3.1: Time consumption of used cryptographic primitives
Primitive Algorithms Notation Average Time Max Time Min Time
Exponential El-Gamal Encryption TEnc 39.40 40.07 39.22

Partial Decryption TParDec 59.97 60.08 59.24
Chaum-Pedersen Prove Vote Validity TPrVV 129.85 130.26 127.91

Verify Vote Validity TVrVV 179.81 181.30 158.17
Prove Vote Sum TPrVS 39.92 40.81 38.30
Verify Vote Sum TVrVS 99.74 103.72 85.64
Prove Correct Decryption TPrCD 60.18 61.19 59.07
Verify Correct Decryption TVrCD 80.07 83.27 78.48

TIAC Prepare Blind Signature TPrepBSign 3.57 4.69 3.12
Blind Signature TBSign 4.12 4.89 3.13
Unblind Signature TUnBlind 26.89 28.57 25.41
Prove Credential TPrCred 3.69 4.07 3.16
Verify Credential TVrCred 24.74 26.64 23.18

we can analyze each stage of an election, and compare the performance of Proba with

Blockchain-powered Helios.

In the pre-election stage, while Helios sends an email to its voters with their assigned

credentials to be used in the election, Blockchain-powered Helios authorizes voters’

chosen wallet addresses as credentials by uploading them to the smart contract. On

the contrary, Proba authorizes voters’ chosen wallet public keys that are bound to

wallet addresses through a cryptographic primitive known as T IAC. Thus, we can

just give the computational time cost of the used cryptographic primitive in the pre-

election stage of Proba as Tpre. Let nv denote the number of voters, and t is the

threshold of election authorities. Based on Table 3.1, pre-election time cost can be

computed as follows:

Tpre = nv · (t · (TPrepBSign + TBSign + TUnblind) + TPrCred)

= nv · (t · 34.58 + 3.69)ms

In the election stage, voters in Helios send their encrypted votes and ZKPs with their

credentials to the server, then take the hash of the encrypted vote as the ballot tracker.

Voters in Blockchain-powered Helios send their encrypted votes and ZKPs to IPFS,

and take its IPFS address (digest of the file) to initiate a transaction, then take the hash

of the signed transaction which includes the IPFS address. In this case, the cost of

IPFS (TIPFS) is added to the system. In the election phase of Proba, voters send their

encrypted votes, ZKPs, and proof of randomized anonymous credentials to IPFS. This

stored credential in IPFS will allow voters to check whether each voter is eligible or

not. After taking the IPFS address, voters initiate a transaction that includes the IPFS

71

link and the proof of their randomized anonymous credentials, then take the hash of

the signed transaction. Let nc denote the number of candidates, the time spent during

the election phase Telec without IPFS cost TIPFS in Proba can be given as:

Telec = nv · (nc · (TEnc + TPrVV) + TPrVS + TPrCred + TVrCred)

= nv · (nc · 169.25 + 68.35)ms

In the post-election stage, each system uses the same additively homomorphic en-

cryption and ZKPs as a cryptographic primitive, thus this stage doesn’t affect the

efficiency of Proba. The time spent of post-election Tpost in Proba can be defined as:

Tpost = nv · (nc · TVrVV + TVrVS) + t · (TParDec + TPrCD + TVrCD)

= nv · (nc · 179.81 + 99.74) + t · 161.53ms

In conclusion, Proba has two key stages that affect its efficiency, including authoriz-

ing the voter’s wallet public key as a credential (pre-election) and sending vote trans-

actions with the voter’s credential proof (election). Since the original Blockchain-

powered Helios do not solve the credential authorization problem with a crypto-

graphic primitive during pre-election, we focus on the efficiency comparison of the

election stage. It should be noted that Blockchain-powered Helios doesn’t have the

cost of TPrCred and TVrCred in the election stage since it authorizes the credential by

storing. Figure 3.15 shows time spent in the election stages of Proba and Blockchain-

powered Helios in terms of second (s).

nv=10 nv=30 nv=50
0

2

4

6

·104

8,861

26,585

44,308

9,146

27,438

45,730

E
le

ct
io

n
Ti

m
e

Sp
en

ti
n

s Blockchain Powered Helios Proba

Figure 3.15: Time cost (s) comparison of election stage when t = 3, nc = 5

72

On the other hand, we can also compare the efficiency in terms of smart contract stor-

age cost. It can be seen that the usage of T IAC has a positive impact on the smart

contract cost. The storage operation in a smart contract (20.000 Gas unit per 256

bit) is the most consuming operation after creating and calling an account operation

[149], thus this operation needs to be as little as possible. While Blockchain-powered

Helios stores each voter’s wallet addresses in smart contracts, Proba doesn’t require

to store wallet address beforehand due to T IAC. Thus, the storage execution cost in

Blockchain-powered Helios is saved in Proba. Considering the Ethereum wallet ad-

dress is 160 bit, Figure 3.16 shows the storage cost of Proba and Blockchain-powered

Helios in the Gas unit. The lower storage cost of the smart contract makes the Proba

system more accessible and cost-effective. Also, it helps to improve the scalability of

a blockchain by limiting the amount of data in on-chain storage.

n=10 n=30 n=50
0

0.2

0.4

0.6

0.8

1
·106

1.25 · 105

3.75 · 105

6.25 · 105

0 0 0St
or

ag
e

C
os

ti
n

G
as

U
ni

t Blockchain Powered Helios Proba

Figure 3.16: Smart contract storage cost where n is the number of the voter

Remark 4. Since Proba utilizes the Hyperledger Fabric as its consortium blockchain,

it does not incur any gas costs, in contrast to Ethereum where each transaction necessi-

tates a certain amount of gas. However, if the Proba system were to be executed on the

Ethereum blockchain, each individual transaction would incur a gas cost amounting

to 21.000 gas units. Furthermore, the storage of n-aggregated votes would necessitate

a gas cost of 20.000+(n−1) ·5.000 units. Moreover, the verification of the vote’s va-

lidity and the voter’s credential necessitates the execution of implemented Ethereum

Precompiled contracts on the AltBN128 curve [29]. These contracts are designed to

define the necessary operations, such as elliptic curve addition (150 gas unit), elliptic

curve multiplication (6.000 gas unit), and pairing checks (34.000 ·k+45.000 gas unit

where k is the number of pairing).

73

74

CHAPTER 4

WALLET KEY PROTECTION PROTOCOLS

This chapter presents efficient threshold signature protocols to protect the wallet se-

cret key by splitting it across different devices of the same voter in general blockchain-

based I-voting systems. These protocols can be analyzed in two different sections.

The first section introduces an online-friendly (single-signature verification cost) two-

party ECDSA protocol against malicious adversaries with reduced computation and

communication costs for the offline phase. The second section presents a flexible

hierarchical threshold signature scheme, referred to as FlexHi, which is constructed

based on Shamir’s method but incorporates independent polynomials at each hierar-

chical level.

4.1 EFFICIENT SECURE TWO-PARTY ECDSA FOR KEY PROTECTION

This section introduces a new two-party signing protocol on the Elliptic Curve Digital

Signature Algorithm (ECDSA) for the protection of a voter’s signing key. ECDSA

[90] is the elliptic curve variant of the digital signature algorithm [73]. In the two-

party version of ECDSA, two parties execute the key generation phase and signing

phase as an interactive protocol, while the verification phase remains the same as in

the classical signature [140].

In blockchain content, an efficient two-party ECDSA scheme is golden for protection

against cryptocurrency theft. Protecting signing keys in ECDSA has the same mean-

ing as protecting cryptocurrency. Thus, it is not logical to store the signing key in one

place to protect it. Instead, the signing key must be shared with at least two places

75

in a blockchain-based I-voting system. The study in this thesis enhances the two-

party ECDSA protocol by reducing the bandwidth, unlike the ECDSA techniques

described in the existing literature. By utilizing this protocol, voters can securely use

their signing key with their shared devices.

4.1.1 Building Blocks

Multi-party computation (MPC) is a technique from cryptography that enables mul-

tiple parties to conduct computation on their secrets while preserving them private.

MPC was formally introduced with Yao’s 2-party protocol for the Millionaires’ prob-

lem [152]. Today, it became a pioneering solution for a wide variety of real-world

problems, such as cryptographic key protection, privacy-preserving data analytics,

and so forth [82].

With the rise of the blockchain technology and cryptocurrencies, multi-party signing

[42] and, in particular, threshold signing has gained significant attention in the past

decade. Namely, a (t, n) signature scheme enables n parties to distribute the signing

power in such a way that signing a message m requires the collaboration of at least

t + 1 of them. This is accomplished by having the n parties participate in the key

generation phase to produce a private key unknown to them. At the end of this phase,

each party will hold a share of the private key, together with the public key. Then

the signing phase is executed as an interactive protocol as well, where at least t + 1

parties participate with their shares so as to produce the signature, which is then

checked with the verification algorithm of the signature scheme being distributed.

This benefits cryptocurrencies as transactions are sent by producing a signature using

the sender’s private key. Thus to prevent a single point of failure while maintaining

the key, one can share it among different parties placed in different locations, who

need to collaborate to sign.

4.1.1.1 ECDSA Scheme

The ECDSA scheme [90] is a signature algorithm that involves key generation, sign-

ing and verification. Let G be an elliptic curve group of order q with base point P. The

76

ECDSA scheme works as follows:

- KeyGen(1λ)→ (x,Q): sets a random private key x← Zq and compute public

key Q = x · P

- Sign(x,m) → (r, s): generate the signature (r,s) using private key x and mes-

sage m with hash function H

- Set a random nonce k ← Zq, compute R = (rx, ry) = k · P , r = rx

mod q

- Compute s = k−1(H(m) + r · x) mod q and output (r, s)

- Verification(m; (r, s))→ (0, 1): gives 1 if the signature valid; 0 otherwise.

- Compute (rx, ry) = R = s−1 ·H(m) · P + s−1 · r ·Q

- If r = rx mod q, output 1; otherwise output 0.

Remark 1. In Elliptic curve mathematics if (r, s) is a valid signature, then its com-

plement signature (r, −s mod n) is also valid signature. Thus, it gives rise to the

malleability problem of the ECDSA scheme. The best solution to overcome the mal-

leability problem is the low-s rule where the low-s is the value between 0 and q−1
2

.

Therefore, we also accept the lower s value in the signature to be consistent.

Remark 2. In ECDSA, when the same random nonce k is employed in two signatures,

then the private key can be recovered. This attack is referred to as a bad randomness

attack [39] that was first reported in 2013 [120]. In detail, when k1 = k2 = k,

then r value will be equal. In this case, s1 = k−1 · (H(m1) + r · x) and s2 =

k−1 · (H(m2) + r · x), then attacker can find private key as follows:

x =
H(m1) · s2 −H(m2) · s1

r · (s1 − s2)
(4.1)

Thus for each signature, a new random nonce needs to be produced. To avoid this

attack, Bitcoin Core has already implemented a novel function following RFC 6979

[109] that offers a deterministic nonce generation procedure depending on a message

m and a private key x.

77

4.1.1.2 Threshold ECDSA Schemes

Thresholdizing the ECDSA algorithm has drawn most of the attention, as it is the

signing algorithm used in Bitcoin. It can be found in the literature many works that

addressed this [81, 52, 43, 151, 28, 44]. Those schemes differ particularly in the way

of sharing values, namely additively or multiplicatively. That is, at the heart of the

ECDSA algorithm, one needs to calculate s = k−1(H(m) + x · r) mod q. In a

threshold version of ECDSA, both the private key x and the random nonce k used

for signing the message m are secretly shared among parties. In fact, to provide a

threshold version of ECDSA, the main challenge consists of choosing an adequate

way to secretly share k and x so that s can be computed efficiently. Note that this

calculation contains inverting a secret, and multiplying it with another value obtained

by evaluating linear operations over another secret (addition and multiplication with

opened values).

For instance, for the 2-party case, additively secret sharing k is problematic for inver-

sion, as in this case, party P1 holds k1 and party P2 holds k2 subject to k1 + k2 = k

mod q, and from this, the two parties need to calculate k−1. One can alternatively

secretly share k in a multiplicative way to overcome this obstacle, as in this case,

inverting becomes a local operation; however, the resulting value still needs to be

multiplied by H(m) + x · r, which still induces obstacles either x was additively or

multiplicatively secret shared.

As a solution to these challenges, several authors in the field proposed using homo-

morphic encryption. This approach allows one party to transmit a secret the other

party in encrypted form so that they can execute the challenging computation and

decrypt it afterward. The homomorphic encryption schemes that were used are par-

tially homomorphic, as performing one type of operations over the ciphertexts was

sufficient for the computation needed.

For the most part, homomorphic encryption was introduced to realize a Multiplicative-

to-Additive (MtA) functionality which enables parties to obtain an additive version

of the shares of a secret from a multiplicative one, adopting ideas from [86]. There-

fore, parties can query this functionality when an additive sharing is preferable than

78

a multiplicative one from a performance point of view. Of course, this function-

ality does not come for free, and it induces a cost to the protocol whenever it is

called; however, there exist many instantiations of it, such as Paillier-based MtA [52],

ElGamal-based MtA [83], and CL-based MtA [30]. Besides, one can also construct

MtA based on Oblivious transfer (OT) [43], which has the advantage of decreasing

the computational complexity by eliminating the need for homomorphic encryption

at the expense of incurring a relatively high bandwidth. As a result, one has multiple

options for MtA instantiations, each of which offers a different tradeoff between the

computation and communication costs, thanks to which one can select the one that

best fits the constraints faced.

For the 2-party case of threshold ECDSA, two works are most related to the work in

this thesis, namely, the one of Lindell [81] and Xue et al. [151]. Lindell has proposed

a simple and efficient 2-party protocol against malicious adversaries. To briefly go

over this protocol, both x and k are secretly shared in a multiplicative way, where each

party Pi generates xi in the key generation phase so that the private key x is equal to

x = x1 ·x2. Party P1 also encrypts x1 so as to send it to P2, then in the signing phase,

the two parties generate their share of the nonce k, then P2 computes its share of s and

sends it to P1, which involves encrypting and performing homomorphic encryption

operations. Finally, P1 calculates the signature s, which involves decryption before

the verification step.

On the other hand, Xue et al. proposed an online-friendly algorithm against malicious

adversaries. That is, this protocol has a nearly optimal online phase, in the sense

that the heaviest part of it consists of the verification step of the signature, which in

turn consists of calculating two scalar multiplications of elliptic curve points (scalar

multiplications will be denoted as M from now on). The communication cost is also

efficient, as only a single field element needs to be sent. This is opposed to [81]

as one needs to send and operate over ciphertexts during the online phase. However,

providing such an efficient online phase came with the cost of offloading all the heavy

computation in the offline phase of the signing step. That is, while the key generation

does not involve any encryption, an MtA is being executed for every signature during

the signing phase, which is still a good compromise as it reduces the number of calls

to the MtA functionality compared to other schemes. Thus the resulting protocol

79

offers an efficient online phase with a good overall cost. However, this scheme can

be further optimized, as we will see in the next sections.

4.1.2 Ideal Functionality for Two-Party ECDSA

It is aimed to describe below the ideal F2ECDSA functionality that the protocol in this

thesis realizes, as well as the ideal functionalities queried by the protocol in this the-

sis, namely, an ideal zero-knowledge proof functionality FZKP and an ideal commit-

ted non-interactive zero-knowledge functionality FCommit−ZK which are similar to the

ones used in [81], as well as an ideal Multiplicative-to-Additive (MtA) functionality

FMtA.

4.1.2.1 F2ECDSA Functionality

TheF2ECDSA functionality is composed of a key generation phase and a signing phase.

In the key generation phase, the key pair (x,Q) is generated, where x is stored inter-

nally, and Q is given to the parties. In the signing phase, the signature on the given

message is constructed and given to P1. The functionality is introduced in Figure 4.1.

2-party ECDSA functionality F2ECDSA

Given an elliptic curve group G of order q, a generator P of G, and a hash function H with a codomain of size λ bits. The
functionality works as follows:

KeyGen: On input init from both parties P1 and P2:

- Run KeyGen as defined in ECDSA scheme, so as to generate a key pair (x,Q).

- Store (x,Q) and send Q to both parties.

- Set an internal flag ready to 1 and ignore further calls.

Sign: On input Sign(sid,m) from both parties P1 and P2. If ready = 1 and sid has not been used previously:

- Run Sign as defined in ECDSA scheme, so as to generate the signature (r, s).

- Send (r, s) to P1.

- Store internally (sid, delivered).

Figure 4.1: 2-party ECDSA functionality F2ECDSA

4.1.2.2 FZKP Functionality

The FZKP functionality is depicted in Figure 4.2. With this functionality, one party

can prove the knowledge of a witness w for an element x, such that the pair (x,w)

80

satisfies the relation R. For the proposed protocol in this thesis, this relation is

R ← {(Q, x) ∈ G × Zq|Q = [x] · P} for public parameters G and its generator

P , which allows to prove knowledge of the discrete log of an elliptic curve point.

Sigma protocol of Schnorr [121] can be used to instantiate this functionality, which

can be made non-interactive using the Fiat-Shamir paradigm in the random-oracle

model [48].

FZKP

FZKP functionality between P1 and P2 works as follows:

Prove: On input (prove, sid, x, w) from Pi for i ∈ {1, 2}, send (proof, sid, x) to P3−i if (x,w) ∈ R and sid has not
been previously used, otherwise ignore the message.

Figure 4.2: FZKP

4.1.2.3 FCommit−ZK Functionality

The FCommit−ZK functionality is depicted in Figure 4.3. Through this functionality, a

party will be able to commit to its Non-interactive ZKP (NIZKP) and open it after-

ward. As mentioned in [81], this functionality can be realized in the random oracle

model by having the parties hash their NIZKP concatenated with a randomness r,

which will be both opened in the decommitment phase.

FCommit−ZK

FCommit−ZK functionality between P1 and P2 works as follows:

Commit: On input (com− prove, sid, x, w) from Pi for i ∈ {1, 2}, record (sid, i, x, w) if sid has not been used previ-
ously and (x,w) ∈ R, then send (proof − receipt, sid) to P3−i, otherwise ignore the message.

Decommit: On input (decom− proof, sid) to Pi, send (decom− proof, sid, x, 1) to P3−i if (sid, i, x, w) is recorded
and (x,w) ∈ R, otherwise send (decom− proof, sid, x, 0) to P3−i

Figure 4.3: FCommit−ZK

4.1.2.4 FMtA Functionality

The FMtA functionality is depicted in Figure 4.4. This functionality takes as an input

the two values α and β coming from P1 and P2 respectively, and forwards to them

respectively two random values a and b, subject to the relation a+ b = α · β mod q,

i.e., it transforms a multiplicative sharing of a secret to an additive sharing. As stated

earlier, one can instantiate MtA from many constructions, such as the Paillier encryp-

tion scheme [99] or El Gamal [46], class groups or OT.

81

FMtA

FMtA functionality between P1 and P2 works as follows:

Reshare: On input (sid, α ∈ Zq) from P1 and (sid, β ∈ Zq) from P2. If sid has been used before ignore this message.
Otherwise:

- Sample a← Zq and calculate b← α · β − a mod q

- Send (sid, a) to P1 and (sid, a) to P2.

Figure 4.4: FMtA

4.1.3 The Proposed Efficient Two-party ECDSA Protocol

The proposed two party ECDSA protocol is composed of two phases; one phase for a

distributed key generation that runs once, at the end of which the parties will hold an

additive sharing of the secret x as x = x1 + x2, then the second phase is for signing,

which consists of:

- Generating the nonce k, which will be multiplicatively shared between the par-

ties as k = k1 · k2.

- Querying the MtA functionality, so as to convert the product of P1’s secret key

x1 and P2’s nonce k−12 to an additive sharing a + b, namely, P1 and P2 receive

a and b respectively such that a + b = x1.k
−1
2 mod q. After the query, P1

computes Z ← [a] · P and sends it to P2, who computes (Z + [b] · P) · k2 and

checks if it is equal to Q1, so as to control the correctness of the MtA input

against a malicious P1.

- Online signing, that starts by P2 generating locally its share of the signature

after the MtA invocation, namely s2 = k−12 (H(m) + r.x2) + b · r mod q,

then sends it to P1 who will generate the signature by calculating locally s =

k−11 (s2 + a · r) mod q and verifying whether this signature is valid. Note that

the nonce generation and the MtA invocation are message-independent, thus

we can refer to these two steps as the offline signing.

The complete process is illustrated in Figure 4.5. Also the graphical representation

of the key distribution and signing phase are given in Figure 4.6 and Figure 4.7,

respectively.

82

2-party ECDSA Protocol

Given an elliptic curve group G of order q and a generator P of G:

Key Generation: To generate a pair of keys for the ECDSA algorithm, the parties do as follows:

1. P1 generates x1 ← Zq and calculates Q1 = [x1] · P .

2. P1 sends (com− prove, 1, Q1, x1) to FCommit−ZK.

3. P2 receives (proof − receipt, 1)

4. P2 generates x2 ← Zq and calculates Q2 = [x2] · P .

5. P2 sends (prove, 2, Q2, x2) to FZKP.

6. P1 receives (proof,2, Q2) from FZKP. If not, P1 aborts.

7. P1 sends (decom− prove, 1) to FCommit−ZK.

8. P2 receives (decom− proof, 1, Q1, z) from FCommit−ZK. If z = 0, P2 aborts.

Both parties set Q← Q1 +Q2 to be the public key. The private key is x← x1 + x2 mod q (note that no party holds x,
but only an additive share of it).

Signing: To sign a message m, the parties do as follows:

1. Generating the nonce k:

(a) P1 generates k1 ← Zq and calculates R1 = [k1] · P .
(b) P1 sends (com− prove, sid||1 R1, k1) to FCommit−ZK.
(c) P2 receives (proof − receipt, sid||1, 1)
(d) P2 generates k2 ← Zq and calculates R2 = [k2] · P .
(e) P2 sends (prove, sid||2, R2, k2) to FZKP

(f) P1 receives (proof, sid||2, R2) from FZKP. If not, P1 aborts.
(g) P1 sends (decom− prove, sid||1) to FCommit−ZK.
(h) P2 receives (decom− proof, sid||1, Q1, z) from FCommit−ZK. If z = 0, P2 aborts.

Both parties set R ← [k1 · k2] · P = (r, y), corresponding to the nonce k ← k1 · k2 (note that no party holds k,
but only a multiplicative share of it).

2. Querying the MtA functionality:

(a) P1 and P2 query FMtA with the respective inputs x1 and k−1
2 . FMtA forwards a to P1 and b to P2.

(b) P1 calculates Z ← [a] · P and sends it to P2.
(c) P2 verifies if k2 · (Z + [b] · P) = Q1. If it is not the case P2 aborts.

3. Online signing:

- P2 calculates s2 ← k−1
2 · (H(m) + x2 · r) + b · r mod q and sends it to P1.

- P1 calculates s← k−1
1 · (s2 + a · r) mod q.

- P1 verifies if s is a valid signature of m, if so P1 outputs (r, s) as the signature.

Figure 4.5: 2-party ECDSA Protocol

P1 P2

Choose random x1

Compute Q1← [x1] · P
Compute DLOG proof π1
Compute commit to Q1,x1 Commit Choose random x2

Compute Q2 ← [x2] · P
Compute DLOG proof π2

(Q2, π2)
Verify proof π2

Compute Q = Q1 +Q2

Decommit to Q1,π1 Verify proof π1

Compute Q = Q1 +Q2

Figure 4.6: The 2-Party ECDSA Key Distribution Protocol

83

P1 P2

m,x1, Q m, x2, Q

Choose random k1
Compute R1 ← [k1] · P
Compute DLOG proof π1

Compute commit to R1, π1 Commit Choose random k2
Compute R2 ← [k2] · P
Compute DLOG proof π2

R2, π2

Verify proof π2

Compute R← [k1] ·R2

Compute r from R

Send k−1
2 as MtA input

Verify proof π1

Compute R← [k2] ·R1

Compute r from R

Decommit to R1, π1

MtA
a b

Send x1 as MtA input

Compute Z ← [a] · P
Z

Verify if k2 · (Z + [b] · P) = Q1

Compute
s← k−11 · (s2 + a · r) mod q
Verify signature

s2
Compute
s2 ← k−1

2 · (H(m) + x2 · r) + b · r mod q

Figure 4.7: The 2-Party ECDSA Signing Protocol

Remark 3. The underlying concept of the protocol is to utilize the secret key x1

belonging to party P1 and the secret nonce k2 belonging to the other party P2 in the

context of the MtA functionality. At the end of this process, P2 generates its partial

signature, and then P1 adds its secrets to generate the full signature. It is important

to note that, due to the absence of symmetry, this protocol cannot be directly applied

to scenarios involving multiple parties. To address this constraint, an n-party system

needs to be redesigned with different inputs of the MtA.

4.1.4 System Analysis

4.1.4.1 Security Analysis

Security of the proposed protocol is simulation-based, following the real / ideal para-

digm [148]. The type of adversary we considered is a malicious one with static cor-

ruption. This implies that the adversary A can deviate from the protocol, but the

party he corrupts (either P1 or P2) is set prior to the protocol execution. The proof of

security is given in the following section.

Theorem. The protocol of Figure 4.5 securely implements the functionality of Fig-

84

ure 4.1 in the (FZKP,FCommit−ZK,FMtA)-hybrid model in the presence of a malicious

static adversary under the idea/real definition of [148], assuming the Computational

Diffie-Hellman problem is hard.

In Figure 4.8, a simulator S is built to simulate P1 when P2 is corrupt, and to simulate

P2 when P1 is corrupt. Below, a sketch of proof demonstrates why the views in a real

and a simulated execution will be indistinguishable for an adversary A.

a.Corrupted P1 Case

Key generation phase.The difference between the real execution and the simulated

execution is the generation of Q2. In the case of a real execution, Q2 is computed

as [x2] · P where x2 is randomly generated, while in the case of a simulated run, Q2

is computed by calculating Q2 ← Q − Q1. Since Q is randomly generated by the

F2ECDSA functionality of Figure 4.1 (Q ← [x] · P for a randomly generated x), then

the distributions from which Q2 is generated in the real and simulated executions are

indistinguishable.

Signing phase. In the nonce generation, a similar argument can be given to show

that the views are indistinguishable. That is in a real execution, R2 is computed as

[k2] · P where k2 is randomly generated, while in the case of a simulated run, R2 is

computed by calculating R2 ← [k−11] ·R. Since R is randomly generated by F2ECDSA

(R ← [k] · P for a randomly generated k), then the distributions from which R2 is

generated in the real and simulated executions are indistinguishable.

In the MtA call, both in real and simulated executions, P1 is intended to receive a

randomly generated a, thus the views are indistinguishable. Afterwards, P1 sends Z

to P2. In a simulated execution, P2 aborts if P1 has provided to the MtA functionality

a different input than x1, or if he sends a different value than [a] · P . This behavior is

equivalent to what happens in a real execution, where P2 checks whether k2 ·(Z+[b] ·
P) = Q1. That is, let us denote by ϵ1, the additive error that P1 can introduce to x,

namely, P1 sends to MtA the value x′ ← x+ ϵ1 mod q, and by [ϵ2] · P , the additive

error that P1 can introduce to Z, namely, P1 sends P2 the value Z ′ ← Z + [ϵ2] · P .

To pass the check of P2, the following equation needs to be satisfied:

85

2-party ECDSA Simulator

The simulator S does as follows:

Corrupt P1 (i.e. simulating P2):

1. Key Generation:

- S queries F2ECDSA to obtain the public key Q.
- S receives (com− prove, 1, Q1, x1) fromA intended to be sent to FCommit−ZK.
- S checks whether Q1 = [x1] · P , if it is the case, S calculates Q2 = Q − Q1, and sends (proof,2 Q2) to
A, as if FZKP sent it. If Q1 is different than [x1] · P , S does the same with a randomly generated Q2.

- S receives (decom− proof, 1, Q1, z) from FCommit−ZK. If z = 1, the simulator stores (x1, Q) for further
use, otherwise, S simulates P2 aborting.

2. Signing:

(a) Nonce generation:
- S queriesF2ECDSA to obtain the signature (r, s), then calculates R← [s−1 ·H(m)] ·P +[s−1 ·r] ·Q

as in the verification procedure.
- S receives (com− prove, sid||1, R1, k1) fromA intended to be sent to FCommit−ZK.

- S checks whether R1 = [k1] · P , if it is the case, S calculates R2 = k−1
1 · R, and sends (proof,

sid||2, R2) toA, as if FZKP sent it. If R1 is different than [k1] · P , S does the same with a randomly
generated R2.

- S receives (decom− proof, 1, R1, z) from FCommit−ZK. If z = 1, the simulator stores (k1, R) for
further use, otherwise, S simulates P2 aborting.

(b) MtA:
- The simulator here receives x1 from A intended to be sent to FMtA, then forwards a randomly gener-

ated number a to P1. If the x1 received here is different from the share of the secret key of P1, the
simulator sets an internal flag cheatsid||1 to be one.

(c) Online signing:
- If cheatsid||1 is equal to 1, S generates a random s2 ← Zq and sends it to P1. If not, S calculates

s2 ← s · k1 − a · r and sends it to P1.

Corrupt P2 (i.e. simulating P1):

1. Key Generation:

- S queries F2ECDSA to obtain the public key Q.
- S sends (receipt, 1) toA as if it was sent by FCommit−ZK.
- S receives (prove, 2, Q2 , x2) from P2 intended to be sent to FZKP.
- S checks if Q2 = [x2] · P . If it is not the case, S simulates P1 aborting.
- S calculates Q1 = Q − Q2, and sends (decom− proof, 1, Q1, 1) as if FCommit−ZK sent it. S stores

(x2, Q) for further use.

2. Signing:

(a) Nonce generation:
- S queriesF2ECDSA to obtain the signature (r, s), then calculates R← [s−1 ·H(m)] ·P +[s−1 ·r] ·Q

as in the verification procedure.
- S sends (receipt, sid||1, 1) toA as if it was sent by FCommit−ZK.
- S receives (prove, sid||2, R2 , k2) from P2 intended to be sent to FZKP.
- S checks if R2 = [k2] · P . If it is not the case S simulates P1 aborting.
- S calculates R1 = k−1

2 ·R, and sends (decom− proof, 1, R1, 1) as if FCommit−ZK sent it. S stores
(k2, R) for further use.

(b) MtA:
- The simulator here receives k−1

2 from A intended to be sent to FMtA, then forwards a randomly
generated number b to P2. If the k−1

2 received here is different from the one stored in the nonce
generation, the simulator sets an internal flag cheatsid||2 to be one.

(c) Online signing:
- S receives s2 from A. If s2 is different from k−1

2 · (H(m) + x2 · r) + b · r or cheatsid||2 = 1, S
simulates P1 aborting. Otherwise, S outputs (r, s) as the signature.

Figure 4.8: 2-party ECDSA Simulator

86

Q1 = k2 · (Z ′ + [b] · P)

= k2 · (Z + [ϵ2] · P + [b] · P)

= k2 · ([ϵ2] · P + [a] · P + [b] · P)

= k2 · ([ϵ2] · P + (x1 + ϵ1) · k−12 · P)

= k2 · ([ϵ2] · P + x1 · k−12 · P + ϵ1 · k−12 · P)

= Q1 + k2 · ([ϵ2] · P + ϵ1 · k−12 · P)

(4.2)

which implies that k2 · ϵ2 + ϵ1 = 0 mod q. If ϵ2 = 0, then ϵ1 = 0 mod q. Also

if ϵ1 = 0 mod q , then ϵ2 = 0 as k2 ̸= 0 mod q. Thus ϵ2 = 0 or ϵ1 = 0 mod q

implies that the adversary has not cheated, as we end up with a case where he does

not modify the values he is supposed to send. Let us look at the case where ϵ2 ̸= 0

and ϵ1 ̸= 0 mod q. The equation holds if the adversary chooses ϵ1 in such a way that

ϵ2 = ϵ1 · [k−12] · P = 0. While R2 = [k2] · P is known to the adversary, obtaining

[k−12] · P from it would mean breaking the 1-Weak Diffie-Hellman problem, which is

equivalent to the computational Diffie-Hellman problem as stated in [92].

Thus, to summarize, the adversary will not be able to make the check pass if he cheats,

either in the MtA call or the step afterward.

In the online signing: If the parties reach this stage, P1 will be receiving in the simu-

lated execution s2 = s · k1 − a · r mod q, which is equal to

s2 = s · k1 − a · r

= k−1 · (H(m) + r · x) · k1 − a · r

= k−12 · (H(m) + r · x)− a · r)

= k−12 · (H(m) + r · x1 + r · x2)− a · r

= k−12 · (H(m) + r · x2) + k−12 · r · x1 − a · r

= k−12 · (H(m) + r · x2) + r · (a+ b)− a · r

= k−12 · (H(m) + r · x2) + r · b

(4.3)

which is what P1 receives in a real execution.

b.Corrupted P2 Case

87

Key generation phase. Similarly to the case of a corrupted P1, the difference be-

tween the real execution and the simulated execution is the generation of Q1. In the

case of a real execution, Q1 is computed as [x1] · P where x1 is randomly generated,

while in the case of a simulated run, Q1 is computed by calculating Q1 ← Q − Q2.

Since Q is randomly generated by theF2ECDSA functionality of Figure 4.1 (Q← [x]·P
for a randomly generated x), then the distributions from which Q1 is generated in the

real and simulated executions are indistinguishable.

Signing phase. Similarly to the case of a corrupted P1, in the nonce generation, a

similar argument can be given to show that the views are indistinguishable. That is

in a real execution, R1 is computed as [k1] · P where k1 is randomly generated, while

in the case of a simulated run, R1 is computed by calculating R1 ← [k−12] · R. Since

R is randomly generated by F2ECDSA (R← [k] · P for a randomly generated k), then

the distributions from which R1 is generated in the real and simulated executions are

indistinguishable.

In the MtA call, both in real and simulated executions, P2 is intended to receive a

randomly generated b (in the simulated execution b = x1 · k−12 − a mod q for a

randomly generated a), thus the views are indistinguishable. In the step afterward, in

the simulated execution, P1 receives [k−12] ·Q1− [b] ·P , which is the same as what he

receives in a real execution, as [k−12] ·Q1 − [b] · P = [k−12 · x1] · P − [b] · P = [a] · P .

Thus the views are indistinguishable.

In the online signing:

- if P2 does not cheat at all during the protocol, he will be able to calculate

s2 = k−12 · (H(m) + x2 · r) + b · r mod q. and send it to P1. In the real

execution P1 will add it to its share s1, and the sum will yield a valid signature

which will be published by P1. In the simulated execution, s2 will pass the

check of the simulator and therefore he will publish the signature.

- if P2 cheated at the MtA call, or does not send the correct s2, in the real exe-

cution, P1 will not find a valid signature after summing up its share with the

one of P2, thus P1 will send the abort signal. In the simulated execution, either

88

cheat flag will be equal to 1 at this stage, or s2 will not pass the check of the

simulator. In both cases, the simulator will abort. That is, the only case where

the views will be distinguishable, is when the adversary cheats on the MtA call,

and yet manages to send the correct s2. Let us denote by ϵ, the additive error

that the adversary introduces to his input to MtA, namely he sends k−12 + ϵ in-

stead of k−12 . In this case a+ b = x1 · (k−12 + ϵ). In order to pass the check, P2

needs to send s2 such that s · k1 = s2 + a · r mod q. This implies that:

s2 = s · k1 − a · r

= k−1 · (H(m) + r · x) · k1 − a · r

= k−12 · (H(m) + r · x1 + r · x2)− a · r

= k−12 · (H(m) + r · x2) + k−12 · r · x1 − a · r

= k−12 · (H(m) + r · x2) + r · b− x1 · r · ϵ

(4.4)

As x1 is unknown to the adversary, he can satisfy this equation only if ϵ = 0,

i.e., the case where he does not cheat in the MtA call. Thus the behaviour of the

simulator will make the real execution and the simulated one indistinguishable.

4.1.4.2 Performance Analysis

The theoretical complexity of the proposed two-party ECDSA protocol is analyzed

below and compared with the one of [151] and [81].

Theoretical complexity - key distribution. The distributed key generation consists

of generating keys and zero-knowledge proofs. The computation cost can be exam-

ined in terms of EC multiplications as this is the heaviest operation performed. For

the keys, each party carries out 1M to produce its share of the public key. On the other

hand, two zero-knowledge proofs of knowledge of discrete log need to be produced.

Using the standard Schnorr proofs in non-interactive from, each party carries out 1M

as a prover and 2M as a verifier. Thus the key distribution requires 8M in total. For

the communication cost, each party needs to send its share of the public key and the

corresponding nizkp, and P1, needs to send as well a commitment to its share at the

beginning of the protocol, which consists of an output of the hash function H being

89

used (of size λ bits). Assuming one EC point can be represented in λ bits, and a nizkp

consists of two field elements and one EC point, the size of data communicated be-

tween the parties is 9 ·λ. Note that the cost of the proposed protocol’s key distribution

is the same as [151], which is a negligible cost compared to the one of Lindell [81],

as the latter is dominated by the usage of homomorphic encryption.

Theoretical complexity - signing. T The computation cost of the signing protocol

can be examined in terms of EC multiplications and MtA invocations. That is, the

first step of the offline phase is similar to the key generation, except that the nonce is

multiplicatively shared, thus each party needs to perform an extra EC multiplication

so as to obtain R. Also, the calculation needed to check P1’s input to MtA requires 3

EC multiplications. Thus, it results in a computation cost of 13M, and a communica-

tion cost of 10 · λ. To obtain the total cost of the offline phase, one needs to add these

costs to the execution of 1 MtA. The cost of this depends on the instantiation used.

On the other hand, the online phase consists of performing operations over a field by

both parties and a verification phase of the signature, which requires from the verifier

(in our case P1) to carry out 2M. Thus neglecting the cost of operations over a field,

the computation cost of the online phase if 2M. As for the communication cost, P2

needs to send one field element to P1, thus λ bits of data need to be communicated

between the parties.

Table 4.1 compares these costs with the ones of [151] and [81]. For [81], the cost of

the homomorphic operations is dominated by exponentiations modulo N2 by numbers

from ZN . It is referred to these exponentiations as E. The value N refers to the

public key of Paillier, which determines the size of a Paillier encryption, which is a

number from ZN2 . MtA refers to the cost of invoking an instantiation of the MtA

functionality. As one can notice, the computation and communication cost of the

proposed protocol’s online phase is the same as [151], which outperforms the one of

[81], for which the online phase requires performing extra exponentiation and sending

an encryption of Paillier (N is typically of size 2048 bits) instead of a field element.

However, the proposed protocol’s offline phase outperforms the one of [151], as in

our case the computation and communication required are reduced respectively by

1M, and 2 · λ.

90

Table 4.1: Cost Analysis of Signing

Protocol Computation Communication
Offline Online Offline Online

Lindell [81] 10M+2E 2M+1E 9 · λ 2 · log2(N)
Xue et al. [151] 14M+1MtA 2M 12 · λ+1MtA λ
Ours 13M+1MtA 2M 10 · λ+1MtA λ

Table 4.2: Runtimes in milliseconds of the proposed protocol
Key generation Offline signing Online signing
1.05 1.26 + MtA 0.10

Implementation. The proposed protocol is implemented in C++, over the secp256k1

curve standardized by NIST, which is the one used by Bitcoin. The used hash function

is Sha256, and for the curve operation Secp256k11 C library is used. The implemen-

tation can be found in https://github.com/YounesTal1/2ecdsa

We took runtimes with an Amazon instance of "t2.xlarge" (16 GiB of memory and 4

vCPU), running with "Ubuntu 18.04.6 LTS", this instance was located in "us-east-1"

(Virginia). Table 4.2 gives the obtained runtimes. These runtimes correspond to the

time needed for one key generation, one execution of the offline phase, and one ex-

ecution of the online phase. Note that this implementation uses a single thread and

that the runtimes reflect only the computation cost of the proposed protocol. These

runtimes were obtained by calculating the average time needed for a 1000-key gen-

eration, where each key was used to sign 100 messages. As can be observed, the

proposed protocol is efficient in terms of the computation cost, for both key gener-

ation and signing. That is, the key generation only requires 1.05ms and the offline

phase (excluding the MtA call) requires 1.26ms. The difference in runtimes is mainly

due to the five extra EC multiplications, namely two extra EC multiplications that

need to be performed for calculating R, as the nonce is shared multiplicatively, and

three extra EC multiplications that need to be performed for checking the correctness

of P1’s input to MtA. The online phase only requires 0.1ms, as this is dominated by

two EC multiplications for signature verification.

1 https://github.com/bitcoin-core/secp256k1

91

https://github.com/YounesTal1/2ecdsa

4.1.5 Summary

In this work, a protocol against malicious adversaries with a nearly optimal online

phase as in [151] is proposed, but with reduced computation and communication

costs for the offline phase. That is, the proposed protocol’s key generation is the

same as in [151], where additive secret sharings of x are produced, and the proposed

protocol’s online phase requires two M as in [151]. However, the proposed protocol’s

offline phase reduces the number of EC multiplications by one and the size of data

communicated by two field elements.

The cost reduction is achieved by eliminating the additional step of re-sharing the

secret x in [151] without compromising security. That is, at the heart of the signing

phase of the protocol of [151], x was re-shared between the two parties (following

obvious notation) as x = x′1 · (k2 + r1) + x′2, where the nonce k is shared as k = k1 ·
(r1+k2), then the shares x′1 and k2 are the values forwarded to the MtA functionality.

Instead, the work in this thesis simplified the protocol by adopting a multiplicative

sharing of k where it is unnecessary to perform a re-sharing step. This protocol query

the MtA only once on the most convenient inputs for the choices. Namely, querying

the MtA on x1 as the input of P1, and k−12 as the input of P2. This was a logical

choice as holding an additive sharing as

x1 · k−12 = a+ b mod q (4.5)

by the players allows them to do the online phase in only one pass, as the signature s

can be written as

s = k−11 · (k−12 · (H(m) + x2 · r) + x1 · k−12 · r) mod q (4.6)

In this case, P2 computes locally its signature share as

s2 ← k−12 · (H(m) + x2 · r) + b · r mod q (4.7)

92

and sends it to P1 to construct the signature

s← k−11 · (s2 + a · r) mod q (4.8)

However, it is crucial to note that the protocol requiresP1 to input x1 for MtA. If there

are no checks on this input to MtA, a malicious P1 can corrupt the system since P1

takes the partial signature s2 and then generates the full signature s. For example, a

malicious P1 can forge a signature on a different message m′ of his choice by crafting

the value to be sent to MtA as x′1 ← −r−1 · (H(m′) −H(m) + x1 · r), then P1 will

compute the full signature s as k−11 ·(s2+a·r) = k−11 ·(k−12 ·(H(m)+x2.r)+(a+b)·r) =
k−1 · (H(m′) + x · r) which is a valid signature on m′ that is chosen by P1. In brief,

in order to prevent P1 from mounting such attacks and manipulating the distribution

of s2, we add a check operation on the correctness of the MtA input of P1. Namely

after calling MtA and receiving its outputs, P1 computes [a] · P and sends it to P2,

who computes ([a] · P + [b] · P) · k2 and checks whether it is equal to Q1 or not. The

correctness of this equality ensures that P1 used the correct x1 value as MtA input.

In sum, the proposed protocol utilized an additive sharing of x and a multiplicative

sharing of k, which is a similar setting of [43] for the (2, n)-ECDSA case (i.e., any two

parties among the n parties can construct a valid signature). However, the proposed

protocol only call the MtA functionality once while it is being called three times in

[43]. Besides, this protocol only perform 13M, while 16M are needed for [43].

This improvement has an impact depending on the instantiation of MtA. For instance,

in the case of an OT-based MTA, where such a choice is usually made to have a low

computation cost, reducing the number of EC multiplications by one will decrease the

computation cost of the offline phase of [151] by 5.4 percent, assuming EC multipli-

cation is the heaviest part of the protocol. On the other hand, in the case of a CL-based

MtA, which induces a low communication cost, reducing the size of transmitted data

by two field elements decreases the communication cost of the offline phase of [151]

for the case of the secp256k1 curve by 3.7 percent.

93

4.2 FlexHi: A Flexible Hierarchical Threshold Signature Scheme For Key Pro-

tection

This section presents a flexible hierarchical threshold signature scheme (FlexHi) de-

signed to protect the voter’s wallet signing key by giving different levels of autho-

rization to different devices. While threshold signatures have many applications, all

participants have been assigned the same weight, but in real-life applications, hier-

archy is necessary for many situations. Hierarchical threshold signatures extend the

concept of threshold signatures.

In the e-voting system content, the hierarchy can be used on different signing devices

of the same voter. The voter divides his signing key into multiple components while

granting greater rights to specific components. During the account verification proce-

dure of any application, smartphones become more important tool than other devices

in confirming the identity of the person. Thus, the smartphone occupies the topmost

position in the hierarchy. Considering this, the voter can split his wallet’s signing key

over his smartphone at the highest hierarchical level and his laptop and tablet at an

equal hierarchical level. In the (2,3) scenario, the voter has the option to utilize one

of his tablet or laptop throughout the signing process. Nevertheless, it is obligatory to

utilize your phone for this process of signing.

The proposed FlexHi is a simple and efficient hierarchical threshold system based

on Shamir’s secret sharing [124]. However, it utilizes independent polynomials at

each hierarchical level, enabling us to accommodate any number of participants and

define threshold values without limitation. This adaptability enables us to adjust the

system to different specifications, such as determining whether signing is limited to

high-level nodes or includes lower-level participants as well.

4.2.1 Building Blocks

Cryptographic primitives are crucial in guaranteeing the integrity, validity, and se-

crecy of data in the rapidly evolving landscape of secure digital communication and

decentralized networks. Digital signatures, a fundamental cryptographic mechanism,

94

allow for the authentication of the origin and integrity of digital messages, thus build-

ing confidence in electronic transactions and communications.

Threshold signature schemes have become prominent due to their ability to enhance

the security and flexibility of digital signatures. These schemes enable a group of

participants to collectively generate signatures while ensuring that a predetermined

threshold of participants is required for the signatures to be considered valid. Con-

ventional threshold signatures cannot handle hierarchical patterns commonly found

in real-world applications, as they treat all participants equally. One example is bank

systems. Consider the management of high-value transactions by either two directors

or a director and a president, but not by two presidents. Since the threshold signature

scheme is not suitable for this particular scenario, hierarchical threshold signature

schemes (HTSS) expand upon the concept of basic threshold signatures, providing

a solution that is compatible with hierarchical organizational systems. This section

introduces the core concept of access structure and the hierarchical systems that have

been proposed in the literature.

4.2.1.1 Access Structure

Access structure is a group of authorized people allowed to reconstruct the secret in

secret sharing schemes. Hierarchical access structure consists of two classes: dis-

junctive and conjunctive access structures. In a hierarchical structure, participants

are divided into separate levels based on their significance. These levels maintain a

strict hierarchy, with parties in higher levels holding greater importance compared to

those in lower levels. In a typical scenario involving a bank’s workforce, the higher

level might be composed of the board of directors. Simmons [128] introduced the

initial hierarchical secret sharing scheme known as disjunctive multilevel secret shar-

ing. Later, Tassa [136] modified this scheme into the conjunctive multilevel secret

sharing approach. In both of these schemes, a secret is distributed among participants

occupying different authority tiers. The terms "disjunctive" and "conjunctive" were

jointly introduced in [14]. To understand the distinction between these two types of

access structures, we provide these definitions.

Definition 20 (Access structure [14]). Let U be a set of users. An access structure

95

Γ ⊆ P (U) must satisfy these two conditions:

- monotonicity: if A ∈ Γ and A ⊆ B then B ∈ Γ

- non-triviality: if A ∈ Γ then |A| > 0.

If every set A is in Γ, A is authorized and if every set B is not in Γ, B is unauthorized.

Definition 21 (Threshold access structure [14]). We say that Γ is a threshold access

structure corresponding to threshold t if Γ = {A ⊆ U : |A| ≥ t}.

Each level L has a threshold tL such that t0 < t1 < · · · < tn. For the conjunctive

multi-level access structure, if there exists a minimum of tL users at levels 0, 1, . . . , L

for every level L, the secret can only be recovered. For a disjunctive multi-level access

structure, if for some level L, there are at least tL users at level 0, . . . , L, the secret

can be recovered.

In a hierarchical secret sharing scheme, a secret α is shared among the players with

monotonically increasing thresholds t1 < t2 < · · · < tn. Let P be a set of n players

and assume P is composed of l disjoint levels:

P =
l⋃

i=1

Pi

where Pi ∩ Pj = ∅ for all 1 ≤ i < j ≤ l and |Pi| ≥ ti for all i.

Definition 22 (Disjunctive hierarchical access structure [97]). secret α can be recov-

ered by a set of players A, i.e., an authorized subset, only if

|A ∩ (

j⋃
i=1

Pi)| ≥ tj for at least one j where 1 ≤ j ≤ l,

i.e., at least one threshold must be satisfied at level 1 to j.

Definition 23 (Conjunctive hierarchical access structure [97]). Secret α can be re-

96

covered by a set of players only if

|A ∩ (

j⋃
i=1

Pi)| ≥ tj for all j where 1 ≤ j ≤ l,

4.2.1.2 Hierarchical Schemes

Starting with the concept of hierarchical secret sharing scheme, several constructions

of these schemes for different authorized subsets of participants (access structure)

have been proposed in the literature [124, 128, 55, 136, 137, 14, 68, 138, 97, 47, 154].

This section analyze the proposed works in the literature.

In 1979, Shamir [124] pointed out a weighted threshold system as a version of a

hierarchical threshold scheme in which participants take the number of shares, which

are points on a polynomial, proportional to their level. In this scheme, the ratio of the

size of the participant’s share to the size of the secret equals the participant’s assigned

weight, which may be exponential in number of participants [13]. Thus, it can be

seen that this construction is not ideal [138].

Simmons [128] introduced the idea of a disjunctive multilevel threshold scheme and

compartmented threshold scheme in 1988, both of which were based on a geometric

construction Blakley [24] had presented. As in the Blakley threshold scheme, the

concept of intersecting hyperplanes is used. To keep the unqualified set from finding

the secret, the proposed scheme is not good at reconstructing the secret because it

requires the dealer to check the nonsingularity of an exponentially large number of

matrices. Further, the scheme is not ideal [68].

In 1989, Brickell [27] introduced an ideal multi-threshold secret-sharing scheme.

Nonetheless, this scheme is inefficient, as it necessitates the dealer to compute an

exponential number of matrices to guarantee the non-singularity of matrices. After-

ward, in 1998, Ghodosi [55] presented a scheme designed for compartmented access

structures by applying the Shamir secret sharing scheme. Each level in this scheme

has its own polynomial; however, the degrees of these polynomials are recursively

defined. Since new participants cannot be added to any level except the last without

resharing the secret, the scheme is not dynamic [153]. Also, the proposed scheme

97

only works for a small number of shareholders [14].

In 2007, Tassa [136] proposed a conjunctive hierarchical scheme based on Birkhoff

interpolation. In Tassa’s scheme, polynomial derivatives are used to generate shares

for participants of lower levels in the hierarchy. To generate the additional shares,

the scheme uses the vector of coefficients of the polynomial, which is denoted by

a = (a0, a1, . . . , at−1). The dealer then takes a derivative of it to generate a new vector

of coefficients for the distribution according to participant indexes, which is denoted

by a′ = (a1, 2 · a2, . . . , (t − 1) · at−2). The derivative operator can be applied t − 1

times to generate different hierarchy levels. The distributed key generation, which

is based on Tassa’s protocol and does not require a dealer, is also available [100].

Later, in 2009, Tassa and Dyn [137] proposed an ideal hierarchical secret-sharing

scheme based on a bivariate interpolation technique. However, the proposed schemes

([136, 137]) necessitate a large finite field with some limitations in the assigned iden-

tities of the users [14]. In the rest of the paper, Tassa’s scheme will refer to the first

construction [136]. It is important to note that Tassa’s technique, whose matrix needs

to satisfy necessary Polya’s condition, does not necessarily exist in all scenarios and

requires exponential complexity due to the matrices’ nonsingularity check [154]. Af-

ter selecting the polynomial at the first level, it is not possible to increase the number

of levels in sub-hierarchies, thus this technique might not be appropriate for all kinds

of secrets or access hierarchies.

In 2008, Belenkiy [14] proposed disjunctive multi-level secret sharing in which the

users learn a point on a polynomial or in its derivative as in Tassa. But instead of

classically choosing a constant number as the secret, the secret is chosen as at−1

when the polynomial coefficients are a = (a0, a1, . . . , at−1). She showed that this

technique can be used directly to construct disjunctive secret sharing, without the

need for an intermediary conjunctive scheme. However, the scheme is not suitable

for all scenarios and is not very efficient.

In 2009, Käsper et al. [68] proposed strongly multiplicative hierarchical threshold se-

cret sharing in which players who have a share of the secret take the multiplication of

these secret shares without knowing the original secrets, even if the active adversary

is present. They gave an efficient linear secret sharing construction for a hierarchi-

98

cal scheme contrary to the exponential construction in general linear secret sharing

scheme. However, their scheme requires stronger conditions on the access structure

[141].

In 2013, Tentu et al. [138] introduced a computationally perfect, conjunctive hi-

erarchical scheme based on the maximum distance separable (MDS) codes. In the

scheme, the dealer selects MDS codes, its codewords, and a distinct one-way func-

tion, then each participant takes exactly one share. The codewords are chosen in a

way that they contain shared secrets in its first component, next contain images of

shares of relative level participants under distinct one-way functions, and the rest are

chosen arbitrarily. This scheme doesn’t require the ground field to be extremely large,

or any restrictions on the assigned identities of the users. While they pointed out that

the idea is also applicable to the disjunctive scheme, they just present a conjunctive

scheme in their work.

In 2015, Nojoumian and Stinson [97] introduced sequential secret sharing in which a

group of players with varying levels share different yet related secrets with increasing

thresholds. Multiple secrets are derived in this protocol by a linear combination of

previous secrets. During the reconstruction phase, each subgroup of players can only

recover secrets at their designated level. Consequently, the master secret can only be

revealed if all the secrets in the higher levels are sequentially recovered. Considering

FROST, since the secret needs to be disclosed for signature verification, it cannot be

used for threshold signatures.

In 2016, Ersoy et al.[47] presented a new disjunctive and conjunctive multilevel

secret-sharing scheme (SSS) built around the anchor sequence, a unique primary se-

quence. The literature’s CRT-based multilevel threshold SSS of Harn-Fuyou [59] is

not applicable to all threshold configurations. Ersoy et al. presented their work and

revealed that these new schemes can be integrated into function-sharing schemes.

However, the scheme employs sequences of primes that could be widely spaced. Pro-

ducing sequences of prime numbers that satisfy these conditions is resource-intensive.

The scheme relies on hash functions that must be treated as random oracles for secu-

rity purposes, and the information rate is notably high.

In 2022, Yuan et al. [154] presented a new hierarchical scheme based on linear ho-

99

mogeneous recurrence (LHR) relations. In this scheme, linearly independent homo-

geneous recurrence relations are chosen by the distributor, and then pseudo shares of

the participants from related levels are used to construct the related LHR relation. In

the reconstruction, a qualified subset of participants solve relations to get the required

values, and then obtain shared secrets. The complexity of hierarchical schemes is re-

duced from exponential to polynomial in this scheme. However, the participants are

assumed to be semi-honest, and there is no verification check in their scheme.

In 2023, Ağırtaş and Yayla [5] proposed compartment-based and hierarchically del-

egated signing authority within the verifiable accountable subgroup multi-signature

(vASM) framework. In this framework, the authorized user delegates the signing

power of his membership key in vASM to a certain number of unauthorized users

with different constructions in recursive vASM, Shamir’s secret sharing (direct and

nested way), and Käsper’s hierarchical threshold secret sharing. Then the message

is signed by the sum of the unauthorized user’s secret key and the authorized user’s

compartment-based membership key. These constructions give a general delegation

that doesn’t have a warrant to provide more comprehensive details about the delega-

tion.

4.2.2 The Proposed Flexible Hierarchical Threshold Signature Scheme: FlexHi

This section presents a novel hierarchical threshold signature scheme called a flex-

ible hierarchical threshold signature (FlexHi) scheme. FlexHi utilizes independent

polynomials at each level, offering the flexibility to allow any number of participants

and set threshold values without limitations as opposed to the monotone threshold

requirement in conjunctive or disjunctive hierarchical-based schemes. This flexibil-

ity ensures that the scheme can adapt to various hierarchical structures and security

requirements, making it a versatile and robust solution for a hierarchical threshold

signature.

Definition 24 (Flexible hierarchical secret sharing). LetL denote a hierarchical struc-

ture comprising multiple levels such that

100

L =
n⋃

j=1

Lj

where Lj ∩ Lk = Lj for all 1 ≤ j < k ≤ n. These levels are listed from the

highest (L1) to the lowest (Ln) hierarchy level where each lower level includes all

the nodes from the upper levels. Each level Lj(tj,mj) consists of
⋃j

s=1Ns,i nodes

where 1 ≤ i ≤ mj and tj is the threshold value.

In FlexHi scheme, a private key share skj can be constructed when at least tj nodes

Nj,i ∈ Lj(tj,mj) are engaged in a key construction algorithm (see Figure 4.10). Then

public key shares are generated from the corresponding private key shares depending

on the underlying signature scheme. These independent level-based public keys are

aggregated to generate the main public key. The hierarchical node has the advantage

of extra secrets over lower-level nodes, and the scheme requires the use of this secret.

Example 1. Suppose the aim is to create a three-level flex hierarchical threshold sig-

nature scheme with thresholds2 t1 = 2, t2 = 2, and t3 = 6 where L1(2, 3), L2(2, 6),

and L3(6, 9). Let the set of nodes be:

L1 = {N1,1,N1,2,N1,3}

L2 = {N1,1,N1,2,N1,3,N2,1,N2,2,N2,3}

L3 = {N1,1,N1,2,N1,3,N2,1,N2,2,N2,3,N3,1,N3,2,N3,3}

KeyGen:

1. (L1(2, 3)). Each node N1,i ∈ L1, where 1 ≤ i ≤ 3:

(a) Uses secret sampling in Figure 4.10 to create his secret s11,i for L1.

(b) Adds the related subshares obtained in L1 to construct his private key

share sk11,i using key construction in Figure 4.10. In this construction,

2 In our scheme, there is no requirement for threshold values to be in a specific order, whether monotonous
increasing or decreasing. Without loss of generality, these values can be chosen arbitrarily depending on the
application e.g. t1 = 2, t2 = 4, and t3 = 3.

101

public key share pk11,i is also created from the underlying signature scheme,

and it is made public.

(c) Generates the first level public key pk1 from all published public key

shares.

2. (L2(2, 6)). Each node N1,i,N2,i ∈ L2, where 1 ≤ i ≤ 3:

(a) Uses secret sampling in Figure 4.10 to create his secret s21,i ,s22,i, respec-

tively, for L2.

(b) Adds the related subshares received inL2 to construct his private key share

sk21,i, sk22,i, respectively, using key construction in Figure 4.10. In this

construction, public key share pk21,i, pk22,i, respectively, is also created

from the underlying signature scheme, and they are made public.

(c) Generates the second level public key pk2 from all published public sign-

ing key shares

3. (L3(6, 9)). Each participant N1,i,N2,i,N3,i ∈ L3, where 1 ≤ i ≤ 3:

(a) Uses secret sampling in Figure 4.10 to create his secret s31,i, s32,i, s33,i,

respectively, for L3.

(b) Adds the related subshares received inL3 to construct his private key share

sk31,i, sk32,i, sk33,i, respectively, using key construction in Figure 4.10. In

this construction, public key share pk31,i, pk32,i, pk33,i respectively, is also

created from the underlying signature scheme, and they are made public.

(c) Generates the third level public key pk3 from all published public signing

key shares

KeyAgg All level-based public keys pk1, pk2, pk3 are combined to generate the main

public key pk

SignGen

1. (L1(2, 3)). Any two of N1,i use his private key share sk11,i to sign the message

partially as σ11,i, where 1 ≤ i ≤ 3

102

2. (L2(2, 6)). Any two of N1,i,N2,i use his private key share sk21,i, sk22,i, respec-

tively, to sign the message partially as σ21,i, σ22,i, where 1 ≤ i ≤ 3.

3. (L3(6, 9)). Any six of N1,i,N2,i,N3,i use his private key share sk31,i, sk32,i,

sk33,i, respectively, to sign the message partially σ31,i, σ32,i, σ33,i, where 1 ≤
i ≤ 3.

SignAgg The quorum partial signatures generate the main signature σ :

{σ11,i ∈ L1}t1=2 ∧ {σ21,i ∈ L2 ∨ σ22,i ∈ L2}t2=2

∧{σ31,i ∈ L3 ∨ σ32,i ∈ L3 ∨ σ33,i ∈ L3}t3=6

where 1 ≤ i ≤ 3, ∧ represents “and", ∨ represents “or" notation

The formalized notion of FlexHi scheme uses the FFlexHi function. FlexHi scheme

consists of a tuple of six polynomial time algorithms,FFlexHi = (Setup, KeyGen,

KeyAgg, SignGen, SignAgg,Verif) as introduced in Figure 4.9.

Flex Hierarchical Threshold Signature Scheme Functionality FFlexHi

Setup: On the input of the security parameter 1λ, public parameters pp are generated according to the underlying signa-
ture scheme.

KeyGen: Taking public parameters pp, each nodeNs,i in the same level Ls, where 1 ≤ s ≤ n:

- Runs the KeyGen as defined in Figure 4.10 to generate a public/private key shares (pks,i, sks,i).

- Stores (pks,i, sks,i) and send pks,i to the other nodes in that level.

- Computes level’s public key pks by combining all received public key shares.

- Sets an internal flag ready to 1 and ignore further calls.

KeyAgg: Taking different level’s public keys pks from each level, do:

- Run the key aggregation algorithm in Figure 4.13, and construct the main public key pk.

SignGen: Taking (sid,m) from each node Ns,l in the same level Ls, sid = (Ns,l, sid
′) for some sid′, if ready = 1

and the session identifier sid has not been used previously, then each nodeNs,i in the same level Ls:

- Generates partial signature σs,i on message m using the corresponding private key share sks,i, then sends it to each
nodeNs,l in the same level Ls.

- Stores internally (sid, delivered)

- Computes level’s signature σs after receiving all partial signatures in that level Ls.

SignAgg: Taking different level’s partial signatures σs from each level, construct the main signature σ.

Verif: If Verify(σ,m) = 1, then the verification is done.

Figure 4.9: Flex Hierarchical Threshold Signature Scheme Functionality FFlexHi

The KeyGen procedure in the Figure 4.10 algorithm consists of two rounds. In

Round 1, nodes select secrets, create secret polynomials, generate knowledge proofs,

103

and verify these proofs to ensure the validity of the secrets. After secret polynomials

are constructed, in Round 2, nodes compute subshares and use them to calculate pri-

vate key shares. They also generate public key shares using the underlying signature

scheme. This process establishes the keys for the algorithm.

KeyGen of FFlexHi

Round 1. (Secret Sampling) On input security parameter 1λ, each Ns,i in the same level Ls does the followings (1 ≤
i ≤ ms):

- Takes a secret ss,i ∈ Fq

- Creates a polynomial fs,i(x) = ss,i +
∑t−1

i=1 ai.xi where ai ∈ Fq is the randomly chosen coefficients of the
polynomial

- Runs ProofGen(1λ, ids,i, gss,i) algorithm in Figure 4.11 to prove knowledge of secret by outputting PoK(ss,i),
then broadcast it to allNs,l node in the same level Ls (1 ≤ l ≤ ms, l ̸= i)

- Runs ProofVerify(1λ, ids,i, PoK(ss,i)) algorithm in Figure 4.12 to verify the knowledge of secret ss,i

Round 2. (Key Construction)

After constructing secret polynomial fs,i(x) from Round 1, each Ns,i in the same level Ls does the followings (1 ≤ i ≤
ms):

- Computes subshares ssi,l for Ns,l by evaluating a point on polynomial fs,i(l), then sends these computed values
toNs,l

- When receiving (ms − 1) subshares, computes its private key share sks,i by adding related subshares ssl,i where
1 ≤ l ≤ ms. Public key share pks,i is also generated from sks,i using the underlying signature scheme.

Figure 4.10: KeyGen of FFlexHi

The ProofGen procedure in Figure 4.11 algorithm is responsible for generating a

proof of knowledge PoK(ss,i) for a specific secret ss,i ∈ Fq. This process is carried

out by each nodeNs,i within the same level Ls. The output ensures that the node pos-

sesses the knowledge of the secret ss,i without revealing it. This proof is verified by

the ProofVerify procedure in Figure 4.12. The KeyAgg procedure in Figure 4.13

combines level-based public keys to generate the main public key.

ProofGen of FFlexHi

On input security parameter 1λ, secret in commitment gss,i , and id ids,i, eachNs,i in the same level Ls (1 ≤ i ≤ ms)
calculates a proof of knowledge PoK(ss,i) to corresponding secret ss,i ∈ Fq

Figure 4.11: ProofGen of FFlexHi

ProofVerify of FFlexHi

On input security parameter 1λ, a proof of knowledge PoK(ss,i), and id ids,i, eachNs,i in the same level Ls (1 ≤ i ≤
ms) verifies a proof of knowledge of secret

Figure 4.12: ProofVerify of FFlexHi

104

KeyAgg of FFlexHi

The level-based public keys pks (1 ≤ s ≤ n) are combined to generate the main public key pk = pk1 ∗ pk2 ∗ · · · ∗ pkn
where ∗ denotes the combination operator.

Figure 4.13: KeyAgg of FFlexHi

4.2.3 FlexHi FROST Scheme Application

This section presents the proposed FlexHi scheme application to the FROST (Flexi-

ble Round-Optimized Schnorr Threshold) signature scheme. FROST [72] is a round-

optimized threshold signature scheme based on the Schnorr signature [122], which

enhances robustness by allowing a quorum of honest participants to identify instances

of misbehavior. FROST includes a semi-trusted role in the final stage of the signature,

which is referred to as the signature aggregator SA. The purpose of SA is to mini-

mize communication between participants, thus it can be also implemented without

the need for a SA. Adhering to the algorithm in FROST and the proposed hierarchi-

cal model is applied to FROST. The applied scenario consists of two levels L1(1, 1)

and L2(t,m). The first level is hierarchically strong and has one hierarchical node,

the other is the level with m nodes and t threshold value.

Key Generation Stage. The key generation phase of FlexHi FROST application is

given in Figure 4.14. The key generation of FROST is based on Pedersen’s Dis-

tributed Key Generation [102]. In addition to Pedersen key generation, participants

must prove the constant term of the polynomials (secret) they produce with zero-

knowledge proofs to prevent rogue key attacks [15] in which attackers are allowed to

arbitrarily choose their public keys. Since L1(1, 1) consists of a single node N1,1 in

our scenario, it does not need key generation rounds at his level. It will be enough

for him to generate the private key himself and publish its public key. However, as

stated in the previous section, N1,1 needs to join the key generation of L2(t,m). In

this case, N1,1 has an extra secret. On the other hand, the nodes in L2(t,m) should

run the protocol as is, adhering to the KeyGen phase in FROST. Each nodeN2,i ran-

domly selects a polynomial of degree t and creates a Schnorr Proof for its constant

term by running ProofGen. They then broadcast the proof values and the com-

mitment of the coefficients of the polynomial. Nodes verify proof values from other

105

FlexHi KeyGen Procedure for FROST Scheme

For L1(1, 1):

1. N1,1 samples a random private key sk1
$← Zq

2. N1,1 computes level public key pk1 = gsk1

For L2(t,m):

Round 1 For 1 ≤ i ≤ m,

1. Every node N2,i chooses t random values
(
a2i,0, . . . , a2i,(t−1))

) $← Zq , and uses them as coefficients to define
a degree t− 1 polynomial f2i(x) = a2i,0 +

∑t−1
j=1 a2i,jx

j where a2i,0 is chosen secret.

2. NodeN2,i runs ProofGen(1λ, id2i,Φ, ga2i,0) in Figure 4.15 for L2(t,m) to demonstrate PoK(a2i,0) by out-
putting κ2i and commitment C⃗2i.

3. Upon receiving C⃗2ℓ, κ2ℓ from other participants 1 ≤ ℓ ≤ n, ℓ ̸= i, Node N2,i runs
ProofVerify(1λ, id2ℓ,Φ, κ2ℓ, C⃗2ℓ) in Figure 4.16 for L2(t,m) to verify proof of their corresponding secret.

Round 2 For 1 ≤ i ≤ m,

1. Each node N2,i securely sends to each other level 2 node N2ℓ a secret share (subshare) (2ℓ, f2i(id2ℓ)), deleting
f2i and each share afterward except for (id2i, f2i(id2i)) which they keep for themselves.

2. Each nodeN2,i verifies their shares by calculating: gf2ℓ(id2i) ?
=

∏t−1
k=0 ϕ

id2i
k

2ℓ,k mod q, aborting if the check fails.

3. Each node N2,i calculates their long-lived private key share by computing sk2i =
∑n

ℓ=1 f2ℓ(id2i), stores sk2i
securely, and deletes each f2ℓ(i).

4. Each node N2,i calculates their public verification share pk2i = gsk2i , and the level’s public key pk2 =∏m
j=1 ϕ2,j,0. Any participant can compute the public verification share of any other participant by calculating

pk2i =

n∏
j=1

t−1∏
k=0

ϕ
idk2i mod q

2,j,k .

Figure 4.14: FlexHi KeyGen Procedure for FROST Scheme

FlexHi ProofGen Procedure for FROST Scheme

For L1(1, 1):

1. N1,1 calculates a proof of knowledge to the corresponding private key sk1 by calculating κ1 = (R1, µ1), such

that r1
$← Zq , R1 = gr1 , c1 = H

(
id1,1,Φ, gsk1 , R1

)
, µ1 = r1 + sk1 · c1 with Φ being a context string to

prevent replay attacks. Note thatN1,1 has already computed commitment gsk1 as Pk1 value.

For L2(t,m):

1. Every node N2,i calculates a proof of knowledge to the corresponding secret a2i,0 by calculating κ2i =

(R2i, µ2i), such that r $← Zq , R2i = gr , c2i = H (id2i,Φ, ga2i,0 , R2i), µ2i = r + a2i,0 · c2i with Φ
being a context string to prevent replay attacks.

2. Also, every node N2,i calculates a commitment C⃗2i =
〈
ϕ2i,0, . . . , ϕ2i,(t−1)

〉
such that ϕ2i,j = ga2i,j , where

0 ≤ j ≤ t− 1.

Figure 4.15: FlexHi ProofGen Procedure for FROST Scheme

106

FlexHi ProofVerify Procedure for FROST Scheme

For L1(1, 1):

1. Upon receiving pk1, κ1 from N1,1, each level 2 nodes 1 ≤ i ≤ m, N2,i verifies κ1 = (R1, µ1), aborting on

failure, by checking R1
?
= gµ1 · pk−c1

1 , where c1 = H
(
id1,1,Φ, gsk1 , R1

)
.

For L2(t,m):

1. Upon receiving C⃗2ℓ, κ2ℓ from level 2 nodes 1 ≤ ℓ ≤ m, ℓ ̸= i, nodeN2,i verifies κ2ℓ = (R2ℓ, µ2ℓ), aborting on

failure, by checking R2ℓ
?
= gµ2ℓ · ϕ−c2ℓ

2ℓ,0 , where c2ℓ = H
(
id2ℓ,Φ, ϕ2ℓ,0, R2ℓ

)
.

Figure 4.16: FlexHi ProofVerify Procedure for FROST Scheme

nodes by running ProofVerify. If there is no error during verification, each node

sends a subshare of secret values to other nodes. After that, each nodeN2,i creates its

private key share using incoming subshares. After these steps, public key share, and

level-based public key is calculated.

FlexHi KeyAgg Procedure for FROST Scheme

1. NodeN1,1 runs ProofGen(1λ, id1,1,Φ, gsk1) forL1(1, 1) that outputs κ1 to demonstrate zero knowledge proof
of corresponding private key sk1, then broadcasts κ1 and pk1 to all other level 2 nodes.

2. Node N2,i runs ProofVerify(1λ, id1,1,Φ, κ1, pk1) for L1(1, 1) to verify zero knowledge proof of corre-
sponding private key sk1.

3. After the proof verification, each level 2 nodes 1 ≤ i ≤ m,N2,i sends pk2i toN1,1.

4. For 1 ≤ i ≤ m, each level 2 nodesN2,i andN1,1 compute main public key

pk = pk1 ∗ pk2

Figure 4.17: FlexHi KeyAgg Procedure for FROST Scheme

Key Aggregation Stage. In the key aggregation algorithm of FlexHi FROST ap-

plication that is given in Figure 4.17, the main public key pk is generated with a

multiplication operator taken as a combination operator.

Preprocessing Stage. The preprocessing stage of FlexHi FROST application in Fig-

ure 4.18 is performed before the signing operation. In this stage, every node at every

level generates a set of π random number pairs, which are one-time use private nonces

and their corresponding commitment shares. Each node calculates its own commit-

ment shares using these number pairs and shares them with the other participants.

The value of π determines how many signing operations can be performed before the

next preprocess stage.

Signing Stage. In the signing phase of our FROST application, N1,1 and each level

107

FlexHi Preprocessing Procedure for FROST Scheme

For L1(1, 1):

1. N1,1 creates an empty list L11. Then, for 1 ≤ j ≤ π where j be a counter for a specific commitment share pair,
and π be the number of pairs generated at a time perform the following:

(a) Sample single-use nonces (d11,j , e11,j)
$← Z∗

q × Z∗
q

(b) Derive commitment shares (D11,j , E11,j) =
(
gd11,j , ge11,j

)
.

(c) Append (D11,j , E11,j) to L11.
(d) Store ((d11,j , D11,j) , (e11,j , E11,j)) for later use in signing operations.

2. Publish (id1,1, L11) to a predetermined location.

For L2(t,m):

1. For 1 ≤ i ≤ m, every node N2,i creates an empty list L2i. Then, for 1 ≤ j ≤ π where j be a counter for a
specific commitment share pair, and π be the number of pairs generated at a time perform the following:

(a) Sample single-use nonces (d2i,j , e2i,j)
$← Z∗

q × Z∗
q

(b) Derive commitment shares (D2i,j , E2i,j) =
(
gd2i,j , ge2i,j

)
.

(c) Append (D2i,j , E2i,j) to L2i.

(d) Store ((d2i,j , D2i,j) , (e2i,j , E2i,j)) for later use in signing operations.

2. Publish (id2i,L2i) to a predetermined location.

Figure 4.18: FlexHi Preprocessing Procedure for FROST Scheme

2 node N2,i perform similar operations as defined in Figure 4.19. Each node creates

same group commitment by using the nonces they choose during the preprocessing

phase and creates a partial signature by processing them with their private keys. Fi-

nally, they send these signatures to SA.

Signature Aggregation Stage. In the signature aggregation phase defined in Fig-

ure 4.20, SA verifies each signature and creates the signature of the level. Finally,SA
creates the signature by combining these two signatures.

Signature Verification Stage. As in the standard Schnorr’s verification [122] opera-

tion, the main signature σ = (R, z) on message m is verifiable with main public key

pk.

4.2.4 System Analysis

System analysis comprises two essential components: security and performance anal-

ysis of FlexHi scheme. The security analysis focuses on evaluating the indistinguisha-

108

FlexHi SignGen Procedure for FROST Scheme

Let S2 be set of α : t ≤ α ≤ n participants that are selected for signing in second level threshold scheme. Let B =
⟨(id2i, id1,1, D2i, E2i, D11, E11)⟩i∈S2

denote the ordered list of node indices corresponding to each node Ns,i. Let
H1, H2 be hash functions whose outputs are in Z∗

q

- For each i ∈ S, SA sendsN2,i andN1,1 the tuple (m,B)

For L1(1, 1):

1. After receiving (m,B), N1,1 first validates the message m, and then checks D11, E11 ∈ G∗ in B, aborting if
either check fails.

2. N1,1 computes the set of binding values ρ2ℓ = H1(id2ℓ,m,B), and ρ11 = H1(id1,1,m,B), ℓ ∈ S2. N1,1

then derives the group commitment R =
∏

ℓ∈S2
D2ℓ · D11 · (E2ℓ)

ρ2ℓ · (E11)ρ11 , and the challenge c =

H2(R, pk,m).

3. Using the first level private key sk1,N1,1 computes z1 = d11 + (e11 · ρ11) + sk1 · c,

4. N1,1 securely deletes ((d11, D11) , (e11, E11)) from the local storage, and returns z1 to SA.

For L2(t,m):

1. After receiving (m,B), each N2,i first validates the message m, and then checks D2ℓ, E2ℓ ∈ G∗ for each com-
mitment in B, aborting if either check fails.

2. EachN2,i then computes the set of binding values ρ2ℓ = H1(id2ℓ,m,B), and ρ11 = H1(id1,1,m,B), ℓ ∈ S2.
Each N2,i then derives the group commitment R =

∏
ℓ∈S2

D2ℓ ·D1,1 · (E2ℓ)
ρ2ℓ · (E11)ρ11 and the challenge

c = H2(R, pk,m).

3. Each N2,i computes their response using their long-lived private key share sk2i by computing z2i = d2i +
(e2i · ρ2i) + λ2i · sk2i · c, using S2 to determine the ith Lagrange coefficient λ2i.

4. EachN2,i securely deletes ((d2i, D2i) , (e2i, E2i)) from their local storage, and then returns z2i to SA.

Figure 4.19: FlexHi SignGen Procedure for FROST Scheme

FlexHi SignAgg Procedure for FROST Scheme

1. SA derives ρ2i = H1(id2i,m,B), ρ11 = H1(id1,1,m,B), R2i = D2i,j · (E2i,j)
ρ2i , and R11 = D11,j ·

(E11,j)
ρ11 for i ∈ S. Subsequently, SA derives R =

∏
i∈S R2i ·R11 and c = H2(R, pk,m) .

2. SA verifies the validity of each response by checking gz2i
?
= R2i · pkc·λ2i

2i for each signing share z2i, i ∈ S.

Also, gz1 ?
= R11 · pkc11 is checked. If the equality does not hold, identify and report the misbehaving node and

then abort. Otherwise, continue.

3. SA computes the level’s response z2 =
∑

z2i

4. SA computes z = z1 + z2, then broadcasts the main signature as σ = (R, z) along with m.

Figure 4.20: FlexHi SignAgg Procedure for FROST Scheme

109

bility and unforgeability aspects of the scheme using game-based security. Addi-

tionally, the analysis addresses the ideality, perfectness, and resistance to collusion

attacks. The performance analysis evaluates the efficiency of the FlexHi scheme in

comparison to the basic FROST protocol and Tassa’s hierarchical threshold signature

in the FROST application.

4.2.4.1 Security Analysis

Definition 25 (Lagrange interpolation [12]). For every field F, and a given t different

points (xi, yi), 1 ≤ i ≤ t, there exits a unique polynomial P of degree at most t − 1

over F such that P (xi) = yi, 1 ≤ i ≤ t.

The Lagrange interpolating polynomial is calculated as follows:

P (x) =
t∑

i=1

Pi(x) , Pi(x) = yi.
t∏

j=1,j ̸=i

x− xj

xi − xj

.

The indistinguishability and unforgeability properties of the FlexHi scheme are demon-

strated by employing game-based security, where the adversary is represented as a

polynomial time algorithm. Let λ represent the security parameter, and negl(λ) de-

note the negligible success probability of an adversary, indicating that it is extremely

small and effectively zero [26].

Secret Indistinguishability. Based on the game-based security proofs for secret shar-

ing schemes in [150], the secret indistinguishability of the proposed FlexHi scheme

is defined by the following experiment ExpSecInd,bA (λ) between the challenger C and

the adversary A:

ExpSecInd,bA (λ)

For a given field F
(s0, s1)← AOChoose(F)
For a given b

$← {0, 1} and
ssbi,j ← Share(sb) :
b′ ← Guess(ssbi,j) ∧ b = b′

Figure 4.21: Secret Indistinguishability Experiment of FlexHi Scheme

110

- The challenger C generates the field F as public parameter.

- Adversary A chooses two distinct but the same length secret s0 and s1 in that

field, then sends them to the challenger C.

- The challenger C selects uniformly random bit b $← {0, 1}, then sends chal-

lenge subshare (ssbi,j)j∈A′ ← Share(sb) to A using oracle (A′ represents an

unauthorized subset)

- Adversary A outputs a guess bit b′ ∈ {0, 1}

The output of the experiment is defined to be 1 if b′ = b.

Theorem 6. FlexHi scheme satisfies secret indistinguishability property given that∣∣∣∣Pr[ExpSecInd,bA (λ) = 1]− 1

2

∣∣∣∣ ≤ negl(λ)

Proof. FlexHi scheme uses the key generation of Shamir’s secret-sharing scheme

without a trusted dealer version [102]. Based on this, in our scheme (see Figure 4.10)

each node chooses uniformly random secret si, then creates their private key share

ski by taking all related subshares ssi. Thus, each node contributes one piece of that

private key share. Since the secrets are chosen uniformly randomly, the distribution

of subshares is indistinguishable from uniform distribution.

Unforgeability. Unforgeability is another important security property in signature

schemes, demonstrating an adversary’s inability to create a valid signature for a mes-

sage that hasn’t been previously signed. In the context of threshold unforgeability,

the assumption is that the adversary has compromised t − 1 servers. This notion is

captured by the following game GameUnf
A (λ):

GameUnf
A (λ)

For a given public key pk
σ ← AOSign(m) for some m
Output a new pair (σ∗,m∗) :
Verify(σ∗, pk) = 1, m∗ ̸= m

Figure 4.22: Unforgeability Experiment of FlexHi Scheme

111

- The challenger C generates the public key of the scheme, and provides access

to signing oracle OSign.

- When adversary A requests a signature σ for some messages m, the challenger

C outputs their signatures.

- Eventually A generates a new signature σ∗ for message m∗

The adversary succeeds in the game if the verification of the signature σ∗ for message

m∗ is correct, but m∗ is not the same as any of the queried inputs to the oracle.

Theorem 7. FlexHi scheme satisfies unforgeability property if the adversary’s ad-

vantage is negligible

∣∣Pr[GameUnfA (λ) = 1]
∣∣ ≤ negl(λ)

Proof. In FlexHi scheme, the message is signed partially by the eligible node’s private

key share. These shares are constructed from the subshares of the chosen secret in

Shamir. Thus, the security of FlexHi scheme is based on Lagrange’s interpolation as

in Definition 25. According to this, the private key share can be generated by only

an authorized subset of participants who hold t points (subshare) of the polynomial

P . On the other hand, an authorized subset t − 1 of participants who hold t − 1

points (subshare) of the polynomial P cannot generate the secret polynomial, and

thus cannot forge private key share.

Ideality and Perfectness. The most important parameter for the secret-sharing sys-

tem is the perfectness of the system that is required to protect the secret. Perfect

schemes are referred to as unconditionally secure schemes [132]. The other desirable

property is the ideality of the scheme. However, it should be noted that for every

access structure, we cannot find an ideal scheme [17].

Definition 26 (Perfectness [132]). A secret sharing scheme is a perfect realization of

access structure Γ if

- An authorized subset of participants A ∈ Γ can always reconstruct the secret,

112

- An unauthorized subset t−1 of participants A′ ∈ Γ cannot obtain any informa-

tion about the secret.

Definition 27 (Ideality [132]). A secret sharing scheme is ideal if the length of the

share of all participants is less than or equal to the size of the secret.

Lemma 8. The proposed scheme is not ideal but it is perfect.

Proof. In FlexHi scheme, the secret is divided into shares for each level, and the

shares in each level generate the polynomial of that level. Each level’s polynomial is

based on Shamir secret sharing which is perfect since its coefficient matrix is a square

Vandermonde matrix and it is always nonsingular [153]. This makes the proposed

FlexHi scheme is also perfect. On the other hand, FlexHi scheme uses a general

flexible access structure that allows us to choose which subset of participants can

reconstruct the secret. However, since each participant takes a certain number of

shares in proportion to their levels, the length of the shares at a higher level becomes

larger than the secret. For this reason, the general flexible access structure of FlexHi

scheme cannot be expected to reach the ideal.

Collusion attack resistance. In FlexHi scheme, the shares of secret signing keys

are maintained by level-based polynomials. However, there is no correlation between

each of the level-based polynomials. Considering a collusion attack, the attackers

need to get all level’s polynomials carrying the secret key shares but this is not prac-

tical in a real-world scenario. Thus, FlexHi scheme provides resistance against collu-

sion attacks.

4.2.4.2 Performance Analysis

The efficiency of the FlexHi scheme is compared to the basic threshold FROST

scheme [72], and the overhead imposed by the hierarchical structure is analyzed.

Furthermore, the FlexHi scheme is compared to Tassa’s hierarchical threshold signa-

ture scheme [136] when applied to the FROST scheme. Tassa’s pioneering work is

rooted in the construction of a polynomial based on an unstructured set of point and

derivative values, offering a novel approach. This comparison provides a practical

benchmark and highlights the strengths of the FlexHi scheme.

113

Figure 4.23: Modular Multiplication Cost of Key Generation and Key Aggregation
Phases of FROST and its variants where the first bar chart represents m = 7 and the
second bar chart represents t = 4

Theoretical Complexity Analysis. Table 4.3 and 4.4 analyzes the theoretical com-

plexities of FROST protocol applications. The symbols E, M , and I in the analysis

stand for modular exponentiation, modular multiplication, and modular inverse oper-

ation, respectively.

Table 4.3: Key-Related Cost Analysis of Algorithms in FROST Applications
Scheme KeyGen KeyAgg
Basic FROST
without hierarchy
(t+ 1, m+ 1)

(2(m+ 1)(t+ 1)− 2(m+ 1) + 2)(m+ 1) E
(2(m+ 1)(t+ 1)− (t+ 1))(m+ 1) M
m(m+ 1) I

—

Tassa’s HTSS
on FROST
(L1(1, 1) + L2(t,m))

(2mt+ 2t−m+ 2)(m+ 1) E
(3mt+ 2t−m− 1)(m+ 1) M —

FlexHi on FROST
(L1(1, 1) + L2(t,m))

(2mt− 2m+ 2)m+ 1 E
(2mt− t)m M
(m− 1)m I

(m+ 1) E
(2m+ 2) M
m I

Table 4.4: Signature-Related Cost Analysis of Algorithms in FROST Applications
Scheme SignGen SignAgg
Basic FROST
without hierarchy
(t+ 1, m+ 1)

(t+ 1)2 + 3(t+ 1) E
(2(t+ 1) + 2)(t+ 1) + 4(t+ 1)− 1 M —

Tassa’s HTSS
on FROST
(L1(1, 1) + L2(t,m))

(t+ 1)2 + 3(t+ 1) E
(2(t+ 1) + 2)(t+ 1) + 4(t+ 1)− 1 M —

FlexHi on FROST
(L1(1, 1) + L2(t,m))

(t+ 1)2 E
(2(t+ 1) + 2)(t+ 1) M

3t+ 3 E
3t+ 2 M

Since modular exponentiation and modular inverse operations can be written in terms

of modular multiplication, the computation cost of these schemes can finally be exam-

ined in terms of modular multiplications. As stated in [71], modular exponentiation

E takes 240 times longer than modular multiplication M , and modular inverse I re-

quires 3 modular multiplication M . Using this information, Figure 4.23 shows the

total modular multiplication cost for key generation and aggregation algorithms.

According to Figure 4.23, the first bar chart shows the proposed FlexHi FROST ap-

plication runs 29 percent faster than Tassa’s FROST application in the (t,m) = (6, 7)

case, and 36 percent faster in the (t,m) = (3, 7) case. Also, the second bar chart

114

Table 4.5: The calculated times for different threshold values, and the number of
participants

Scheme (Curve) Threshold (t) Time (ms) Threshold (t) Time (ms)
Basic FROST (ed25519) L(4, 5) 10.104 L(3, 7) 13.453

Tassa’s FROST (ed25519) L1(1, 1) + L2(3, 4) 8.996 L1(1, 1) + L2(2, 6) 12.213
FlexHi FROST (ed25519) L1(1, 1) + L2(3, 4) 6.498 L1(1, 1) + L2(2, 6) 10.781
Basic FROST (ed25519) L(4, 7) 17.139 L(5, 7) 19.147

Tassa’s FROST (ed25519) L1(1, 1) + L2(3, 6) 15.952 L1(1, 1) + L2(4, 6) 17.829
FlexHi (ed25519) L1(1, 1) + L2(3, 6) 13.280 L1(1, 1) + L2(4, 6) 15.127

Basic FROST (ed25519) L(4, 10) 32.196 L(6, 7) 22.288
Tassa’s FROST (ed25519) L1(1, 1) + L2(3, 9) 29.006 L1(1, 1) + L2(5, 6) 20.624
FlexHi FROST (ed25519) L1(1, 1) + L2(3, 9) 25.768 L1(1, 1) + L2(5, 6) 17.584

shows that the proposed FlexHi FROST application runs 28 percent faster than Tassa’s

FROST application in the (t,m) = (4, 10) case, and 38 percent faster in the (t,m) =

(4, 5) case. It is clear from this that the proposed scheme works faster than Tassa’s

scheme.

Implementation. To confirm the aforementioned claim about theoretical efficiency,

one can found the FlexHi scheme as an open source code of FROST in https:

//github.com/midmotor/hierarchical-threshold-signature.

The study specifically focused on doing a thorough comparative investigation of three

distinct variations of FROST. The primary objective was to evaluate the computa-

tional efficiency and applicability for a range of threshold values and participant num-

bers based on the theoretical framework.

Table 4.5 displays the calculated times for different parameters. In this table basic

FROST corresponds to the original FROST [72] Scheme, Tassa’s FROST refers to its

application on FROST scheme, and FlexHi FROST refers to its application on FROST

scheme. The results of the tests are performed on a computer with an i7-1165g7 @

2.80 GHz and 16 GB RAM. The test environment incorporated two distinct elliptic

curves, P256 [111] and ed25519 [21]. In Table 4.5, only results with the ed25519

curve are available; tests with the P256 curve are available in the given GitHub codes.

4.2.5 Summary

The proposed FlexHi scheme represents a significant step forward in the realm of

secure digital communication and decentralized systems. Traditional threshold sig-

nature schemes, while essential, have limitations when applied to hierarchical struc-

115

https://github.com/midmotor/hierarchical-threshold-signature
https://github.com/midmotor/hierarchical-threshold-signature

tures, where varying levels of authority and access control are required. The pro-

posed FlexHi scheme, built upon Shamir’s construction but enhanced with inde-

pendent polynomials at each hierarchical level, offers a novel and adaptable solu-

tion. It eliminates rigid constraints on threshold values, enabling the scheme to con-

form to a variety of real-world scenarios. Therefore, the FlexHi scheme is capable

of seamlessly adapting to a wide range of real-world scenarios and organizational

structures. We demonstrated its applicability by implementing it on the state-of-the-

art, round-optimized FROST scheme. Considering the conducted experiments, our

FROST-based FlexHi application significantly outperforms Tassa’s FROST applica-

tion. Based on this analysis, FlexHi scheme runs about 30% - 40% faster depending

on the number of participants and the threshold values. FlexHi scheme not only intro-

duces a more adaptable approach to hierarchical threshold signature but also demon-

strates its practical advantages through faster execution.

116

CHAPTER 5

CONCLUSION

With the advent of the internet, voting systems transitioned to I-voting systems. In

light of these systems, Helios is a pioneer for verifiable elections. While Helios offers

numerous advantages to its users, it necessitates placing trust in a single server for

data storage. To overcome data loss/change problems in centralized Helios server,

the blockchain-powered Helios suggested using decentralized, transparent, and im-

mutable building blocks of blockchain technology. Nevertheless, blockchain-powered

Helios introduces new weaknesses related to the integration of blockchain into the

voting system, such as misbehavior in wallet authorization that affects robustness,

linkability in wallet authorization that affects privacy, and high cost in the transaction

that affects accessibility. In this thesis, these weaknesses are successfully addressed,

and the system is redesigned as Proba. In Proba, voters access the system without sac-

rificing privacy and robustness using the secure and efficient cryptographic threshold-

issuance anonymous credential protocol. Also, a consortium blockchain made the

system accessible. Briefly, Proba introduces robustness, privacy, and accessibility to

blockchain-powered Helios. The critical security requirements of Proba are formally

proven secure through game-based proofs. The initial considerations revolve around

privacy and robustness, and the integration of the threshold-issuance anonymous cre-

dential scheme extends to include eligibility and verifiability requirements. Over-

all, the performance evaluation indicates that implementing the threshold-issuance

anonymous credential protocol doesn’t impose significant costs on the system; in-

stead, it reduces the storage cost of smart contracts.

In addition to the design of Proba, this thesis introduces two efficient signature pro-

117

tocols on blockchain transactions for safeguarding the secret key of a wallet: the

two-party ECDSA protocol and a flexible hierarchical threshold signature protocol.

Firstly, the two-party ECDSA protocol, which has a wide range of applications in

blockchain, has been improved. Many schemes have been proposed in the literature

to improve the efficiency of multiparty ECDSA. Most of these schemes either require

heavy homomorphic encryption computation or multiple executions of functionality

that transform Multiplicative shares into Additive shares (MtA). Xue et al. [151]

(CCS 2021) proposed a 2-party ECDSA protocol that is secure against malicious ad-

versaries and only calls for one execution of MtA. The online phase only entails one

party sending one field element to the other party, with the verification step of the

signature scheme accounting for the majority of the computational overhead. This

thesis proposes a new protocol that has the same security guarantees and the same

performance in the online phase as [151]. However, it has better performance in the

offline phase by lowering the computational cost by one elliptic curve multiplication

and the communication cost by two field elements. The proposed protocol offers the

most efficient offline phase for a two-party ECDSA protocol with such an efficient

online phase. This improved protocol can be used for wallet key protection in general

blockchain-based I-voting systems, thereby in Proba. Secondly, a novel, efficient,

and flexible hierarchical threshold signature scheme (FlexHi) is proposed to protect

the wallet secret key. This scheme is based on Shamir’s architecture but enhanced

with independent polynomials at each hierarchical level. Utilizing independent poly-

nomials at each level allows for adaptability to accommodate any number of users

and set threshold values without limitations. This adaptability enables us to tailor

the scheme to diverse requirements, whether signing requires only top-level nodes or

also lower-level participants’ involvement. According to the analysis, FlexHi FROST

scheme outperforms Tassa’s hierarchical scheme on FROST and operates approxi-

mately 30% to 40% faster, depending on the number of participants and the chosen

threshold values. This demonstrates that the FlexHi scheme has practical advantages

by enhancing performance in addition to its flexibility. This novel scheme can be used

to protect voters’ wallet signing keys in the Proba voting system, as in the two-party

ECDSA protocol, but in a hierarchical structure.

118

REFERENCES

[1] Y. Abuidris, R. Kumar, and W. Wenyong, A survey of blockchain based on
e-voting systems, in Proceedings of the 2019 2nd International Conference on
Blockchain Technology and Applications, pp. 99–104, 2019.

[2] B. Adida, Helios: Web-based open-audit voting., in USENIX security sympo-
sium, volume 17, pp. 335–348, 2008.

[3] B. Adida, O. De Marneffe, O. Pereira, J.-J. Quisquater, et al., Electing a uni-
versity president using open-audit voting: Analysis of real-world use of helios,
EVT/WOTE, 9(10), 2009.

[4] C. K. Adiputra, R. Hjort, and H. Sato, A proposal of blockchain-based elec-
tronic voting system, in 2018 second world conference on smart trends in sys-
tems, security and sustainability (WorldS4), pp. 22–27, IEEE, 2018.

[5] A. R. Ağırtaş and O. Yayla, Compartment-based and hierarchical threshold
delegated verifiable accountable subgroup multi-signatures, Cryptology ePrint
Archive, 2023.

[6] A. Al-Ameen and S. A. Talab, The technical feasibility and security of e-
voting., Int. Arab J. Inf. Technol., 10(4), pp. 397–404, 2013.

[7] S. Al-Maaitah, M. Qatawneh, and A. Quzmar, E-voting system based on
blockchain technology: A survey, in 2021 International Conference on Infor-
mation Technology (ICIT), pp. 200–205, IEEE, 2021.

[8] M. Alharby and A. Van Moorsel, Blockchain-based smart contracts: A sys-
tematic mapping study, arXiv preprint arXiv:1710.06372, 2017.

[9] S. T. Ali and J. Murray, An overview of end-to-end verifiable voting systems,
Real-World Electronic Voting, pp. 189–234, 2016.

[10] S. T. Alvi, L. Islam, T. Y. Rashme, and M. N. Uddin, Bsevoting: A conceptual
framework to develop electronic voting system using sidechain, in 2021 8th
International Conference on Electrical Engineering, Computer Science and
Informatics (EECSI), pp. 10–15, IEEE, 2021.

[11] I. Bashir, Mastering blockchain, pp.56, Packt Publishing Ltd, 2017.

[12] A. Beimel, Secret-sharing schemes: A survey, in International conference on
coding and cryptology, pp. 11–46, Springer, 2011.

119

[13] A. Beimel, T. Tassa, and E. Weinreb, Characterizing ideal weighted threshold
secret sharing, in Theory of Cryptography: Second Theory of Cryptography
Conference, TCC 2005, Cambridge, MA, USA, February 10-12, 2005. Pro-
ceedings 2, pp. 600–619, Springer, 2005.

[14] M. Belenkiy, Disjunctive multi-level secret sharing, Cryptology ePrint
Archive, 2008.

[15] M. Bellare, A. Boldyreva, and J. Staddon, Randomness re-use in multi-
recipient encryption schemeas, in Public Key Cryptography—PKC 2003: 6th
International Workshop on Practice and Theory in Public Key Cryptography
Miami, FL, USA, January 6–8, 2003 Proceedings 6, pp. 85–99, Springer, 2002.

[16] J. Benaloh, Simple verifiable elections., EVT, 6, pp. 5–5, 2006.

[17] J. Benaloh and J. Leichter, Generalized secret sharing and monotone functions,
Springer, 1990.

[18] J. Benaloh, R. Rivest, P. Y. Ryan, P. Stark, V. Teague, and P. Vora, End-to-end
verifiability, arXiv preprint arXiv:1504.03778, 2015.

[19] J. Benaloh and D. Tuinstra, Receipt-free secret-ballot elections, in Proceedings
of the twenty-sixth annual ACM symposium on Theory of computing, pp. 544–
553, 1994.

[20] J. Benet, Ipfs-content addressed, versioned, p2p file system (draft 3), arXiv
preprint arXiv:1407.3561, 2014.

[21] D. J. Bernstein, N. Duif, T. Lange, P. Schwabe, and B.-Y. Yang, High-speed
high-security signatures, Journal of cryptographic engineering, 2(2), pp. 77–
89, 2012.

[22] R. Bhardwaj and D. Datta, Consensus Algorithm, pp. 91–107, Springer Inter-
national Publishing, Cham, 2020, ISBN 978-3-030-38677-1.

[23] P. Bibiloni, A. Escala, and P. Morillo, Vote validatability in mix-net-based
evoting, in International Conference on E-Voting and Identity, pp. 92–109,
Springer, 2015.

[24] G. R. Blakley, Safeguarding cryptographic keys, in Managing Requirements
Knowledge, International Workshop on, pp. 313–313, IEEE Computer Society,
1979.

[25] D. Boneh, B. Lynn, and H. Shacham, Short signatures from the Weil pairing,
in International conference on the theory and application of cryptology and
information security, pp. 514–532, Springer, 2001.

[26] D. Boneh and V. Shoup, A graduate course in applied cryptography, Stanford
University (Version 0.5), 2020.

120

[27] E. F. Brickell, Some ideal secret sharing schemes, in Workshop on the Theory
and Application of of Cryptographic Techniques, pp. 468–475, Springer, 1989.

[28] R. Canetti, R. Gennaro, S. Goldfeder, N. Makriyannis, and U. Peled, UC non-
interactive, proactive, threshold ECDSA with identifiable aborts, IACR Cryp-
tol. ePrint Arch., p. 60, 2021.

[29] A. S. Cardozo and Z. Williamson, Eip 1108: Reduce alt_bn128 precompile gas
costs, Ethereum Improvement Proposals, (1108), 2018.

[30] G. Castagnos, D. Catalano, F. Laguillaumie, F. Savasta, and I. Tucker,
Two-party ecdsa from hash proof systems and efficient instantiations, in
A. Boldyreva and D. Micciancio, editors, Advances in Cryptology – CRYPTO
2019, pp. 191–221, Springer International Publishing, Cham, 2019, ISBN 978-
3-030-26954-8.

[31] O. Cetinkaya and D. Cetinkaya, Towards secure e-elections in turkey: require-
ments and principles, in The Second International Conference on Availability,
Reliability and Security (ARES’07), pp. 903–907, IEEE, 2007.

[32] D. Chaum, Blind signatures for untraceable payments, in Advances in cryptol-
ogy, pp. 199–203, Springer, 1983.

[33] D. Chaum and T. P. Pedersen, Wallet databases with observers, in Annual in-
ternational cryptology conference, pp. 89–105, Springer, 1992.

[34] D. L. Chaum, Untraceable electronic mail, return addresses, and digital
pseudonyms, Communications of the ACM, 24(2), pp. 84–90, 1981.

[35] B. Chevallier-Mames, P.-A. Fouque, D. Pointcheval, J. Stern, and J. Traoré,
On some incompatible properties of voting schemes, in Towards Trustworthy
Elections, pp. 191–199, Springer, 2010.

[36] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène, A homomorphic
lwe based e-voting scheme, in Post-Quantum Cryptography, pp. 245–265,
Springer, 2016.

[37] V. Cortier, D. Galindo, S. Glondu, and M. Izabachene, Distributed elgamal á la
pedersen: application to helios, in Proceedings of the 12th ACM Workshop on
Workshop on Privacy in the Electronic Society, pp. 131–142, 2013.

[38] V. Cortier, P. Gaudry, and S. Glondu, Belenios: a simple private and verifi-
able electronic voting system, in Foundations of Security, Protocols, and Equa-
tional Reasoning, pp. 214–238, Springer, 2019.

[39] N. T. Courtois, P. Emirdag, and F. Valsorda, Private key recovery combina-
tion attacks: On extreme fragility of popular bitcoin key management, wallet
and cold storage solutions in presence of poor rng events, Cryptology ePrint
Archive, 2014.

121

[40] R. Cramer, R. Gennaro, and B. Schoenmakers, A secure and optimally effi-
cient multi-authority election scheme, European transactions on Telecommu-
nications, 8(5), pp. 481–490, 1997.

[41] E. Daniel and F. Tschorsch, Ipfs and friends: A qualitative comparison of next
generation peer-to-peer data networks, IEEE Communications Surveys & Tu-
torials, 24(1), pp. 31–52, 2022.

[42] Y. Desmedt, Society and group oriented cryptography: a new concept, in
C. Pomerance, editor, Advances in Cryptology — CRYPTO ’87, pp. 120–
127, Springer Berlin Heidelberg, Berlin, Heidelberg, 1988, ISBN 978-3-540-
48184-3.

[43] J. Doerner, Y. Kondi, E. Lee, and A. Shelat, Secure two-party threshold ecdsa
from ecdsa assumptions, in 2018 IEEE Symposium on Security and Privacy
(SP), pp. 980–997, IEEE, 2018.

[44] J. Doerner, Y. Kondi, E. Lee, and A. Shelat, Threshold ECDSA from ECDSA
assumptions: The multiparty case, 2019 IEEE Symposium on Security and
Privacy (SP), pp. 1051–1066, 2019.

[45] R. Dutta, R. Barua, and P. Sarkar, Pairing-based cryptographic protocols: A
survey, Cryptology ePrint Archive, 2004.

[46] T. ElGamal, A public key cryptosystem and a signature scheme based on dis-
crete logarithms, IEEE transactions on information theory, 31(4), pp. 469–472,
1985.

[47] O. Ersoy, K. Kaya, and K. Kaskaloglu, Multilevel threshold secret and function
sharing based on the chinese remainder theorem, Preprint arXiv:1605.07988,
2016.

[48] A. Fiat and A. Shamir, How to prove yourself: Practical solutions to identifi-
cation and signature problems, in Conference on the theory and application of
cryptographic techniques, pp. 186–194, Springer, 1986.

[49] A. Fujioka, T. Okamoto, and K. Ohta, A practical secret voting scheme for
large scale elections, in International Workshop on the Theory and Application
of Cryptographic Techniques, pp. 244–251, Springer, 1992.

[50] A. J. Gabriel, B. K. Alese, A. O. Adetunmbi, O. S. Adewale, and O. A. Sarumi,
Post-quantum crystography system for secure electronic voting, Open Com-
puter Science, 9(1), pp. 292–298, 2019.

[51] D. Gaweł, M. Kosarzecki, P. L. Vora, H. Wu, and F. Zagórski, Apollo–end-to-
end verifiable internet voting with recovery from vote manipulation, in Inter-
national Joint Conference on Electronic Voting, pp. 125–143, Springer, 2017.

122

[52] R. Gennaro and S. Goldfeder, Fast multiparty threshold ecdsa with fast trustless
setup, in Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, pp. 1179–1194, 2018.

[53] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin, Secure distributed key
generation for discrete-log based cryptosystems, in International Conference
on the Theory and Applications of Cryptographic Techniques, pp. 295–310,
Springer, 1999.

[54] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin, Secure distributed key
generation for discrete-log based cryptosystems, Journal of Cryptology, 20,
pp. 51–83, 2007.

[55] H. Ghodosi, J. Pieprzyk, and R. Safavi-Naini, Secret sharing in multilevel and
compartmented groups, in Information Security and Privacy: ACISP’98 Bris-
bane, Australia, pp. 367–378, Springer, 1998.

[56] S. Goldwasser and S. Micali, Probabilistic encryption & how to play mental
poker keeping secret all partial information, in Proceedings of the Fourteenth
Annual ACM Symposium on Theory of Computing, STOC ’82, p. 365–377,
Association for Computing Machinery, New York, NY, USA, 1982, ISBN
0897910702.

[57] S. Goldwasser and S. Micali, Probabilistic encryption & how to play mental
poker keeping secret all partial information, in Proceedings of the fourteenth
annual ACM symposium on Theory of computing, pp. 365–377, 1982.

[58] S. Haber, J. Benaloh, and S. Halevi, The helios e-voting demo for the iacr,
International association for cryptologic research, 2010.

[59] L. Harn and M. Fuyou, Multilevel threshold secret sharing based on the chinese
remainder theorem, Information processing letters, 114(9), pp. 504–509, 2014.

[60] M. P. Heinl, S. Gölz, and C. Bösch, Remote electronic voting in uncontrolled
environments: A classifying survey, ACM Computing Surveys, 55(8), pp. 1–
44, 2022.

[61] J. Huang, D. He, M. S. Obaidat, P. Vijayakumar, M. Luo, and K.-K. R. Choo,
The application of the blockchain technology in voting systems: A review,
ACM Computing Surveys (CSUR), 54(3), pp. 1–28, 2021.

[62] U. Jafar, M. J. A. Aziz, and Z. Shukur, Blockchain for electronic voting system-
review and open research challenges, Aug 2021.

[63] D. Jefferson, D. Buell, K. Skoglund, J. Kiniry, and J. Greenbaum, What we
don’t know about the voatz “blockchain” internet voting system, University of
South Carolina, South Carolina, 2019.

123

[64] R. Joaquim, How to prove the validity of a complex ballot encryption to the
voter and the public, Journal of information security and applications, 19(2),
pp. 130–142, 2014.

[65] H. Jonker and J. Pang, Bulletin boards in voting systems: Modelling and mea-
suring privacy, in 2011 Sixth International Conference on Availability, Relia-
bility and Security, pp. 294–300, IEEE, 2011.

[66] A. Juels, D. Catalano, and M. Jakobsson, Coercion-resistant electronic elec-
tions, in Proceedings of the 2005 ACM Workshop on Privacy in the Electronic
Society, WPES ’05, p. 61–70, Association for Computing Machinery, New
York, NY, USA, 2005, ISBN 1595932283.

[67] F. Karayumak, M. M. Olembo, M. Kauer, and M. Volkamer, Usability analysis
of helios—an open source verifiable remote electronic voting system, in 2011
Electronic Voting Technology Workshop/Workshop on Trustworthy Elections
(EVT/WOTE 11), 2011.

[68] E. Käsper, V. Nikov, and S. Nikova, Strongly multiplicative hierarchical thresh-
old secret sharing, in Information Theoretic Security: Second International
Conference, ICITS 2007, Madrid, Spain, May 25-29, 2007, Revised Selected
Papers 2, pp. 148–168, Springer, 2009.

[69] Y.-X. Kho, S.-H. Heng, and J.-J. Chin, A review of cryptographic electronic
voting, Symmetry, 14(5), p. 858, 2022.

[70] C. Killer, B. Rodrigues, R. Matile, E. Scheid, and B. Stiller, Design and imple-
mentation of cast-as-intended verifiability for a blockchain-based voting sys-
tem, in Proceedings of the 35th Annual ACM Symposium on Applied Comput-
ing, pp. 286–293, 2020.

[71] N. Koblitz, A. Menezes, and S. Vanstone, The state of elliptic curve cryptog-
raphy, Designs, codes and cryptography, 19, pp. 173–193, 2000.

[72] C. Komlo and I. Goldberg, FROST: flexible round-optimized schnorr threshold
signatures, in Selected Areas in Cryptography: 27th International Conference,
Halifax, NS, Canada (Virtual Event), October 21-23, 2020, Revised Selected
Papers 27, pp. 34–65, Springer, 2021.

[73] D. W. Kravitz, Digital signature algorithm, July 27 1993, uS Patent 5,231,668.

[74] R. Krimmer, S. Triessnig, and M. Volkamer, The development of remote e-
voting around the world: A review of roads and directions, in E-Voting and
Identity: First International Conference, VOTE-ID 2007, Bochum, Germany,
October 4-5, 2007, Revised Selected Papers 1, pp. 1–15, Springer, 2007.

[75] M. Kumar, C. P. Katti, and P. C. Saxena, A secure anonymous e-voting system
using identity-based blind signature scheme, in International conference on
information systems security, pp. 29–49, Springer, 2017.

124

[76] R. Küsters, J. Liedtke, J. Müller, D. Rausch, and A. Vogt, Ordinos: A verifiable
tally-hiding e-voting system, in 2020 IEEE European Symposium on Security
and Privacy (EuroS&P), pp. 216–235, IEEE, 2020.

[77] P. Labs, Filecoin: A decentralized storage network,
https://research.protocol.ai/publications/filecoin-a-decentralized-storage-
network/protocollabs2017a.pdf, (Accessed:10/10/2022).

[78] P. Lam, From helios to voatz: Blockchain vot-
ing and the vulnerabilities it opens for the future,
https://www.cs.tufts.edu/comp/116/archive/fall2019/plam.pdf, (Accessed:
13/11/2022).

[79] K. Lee, J. I. James, T. G. Ejeta, and H. J. Kim, Electronic voting service using
block-chain, Journal of Digital Forensics, Security and Law, 11(2), p. 8, 2016.

[80] L. Li, An electronic voting scheme based on elgamal homomorphic encryption
for privacy protection, in Journal of Physics: Conference Series, volume 1544,
p. 012036, IOP Publishing, 2020.

[81] Y. Lindell, Fast secure two-party ECDSA signing, in J. Katz and H. Shacham,
editors, Advances in Cryptology - CRYPTO 2017 - 37th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August 20-24, 2017, Pro-
ceedings, Part II, volume 10402 of Lecture Notes in Computer Science, pp.
613–644, Springer, 2017.

[82] Y. Lindell, Secure multiparty computation, Communications of the ACM,
64(1), pp. 86–96, 2020.

[83] Y. Lindell and A. Nof, Fast secure multiparty ecdsa with practical distributed
key generation and applications to cryptocurrency custody, in Proceedings of
the 2018 ACM SIGSAC Conference on Computer and Communications Secu-
rity, pp. 1837–1854, 2018.

[84] H. Lipmaa and T. Toft, Secure equality and greater-than tests with sublinear
online complexity, in International Colloquium on Automata, Languages, and
Programming, pp. 645–656, Springer, 2013.

[85] E. Maaten, Towards remote e-voting: Estonian case, in Electronic voting in
Europe-Technology, law, politics and society, workshop of the ESF TED pro-
gramme together with GI and OCG, Gesellschaft für Informatik eV, 2004.

[86] P. MacKenzie and M. K. Reiter, Two-party generation of dsa signatures, in
Annual International Cryptology Conference, pp. 137–154, Springer, 2001.

[87] E. Magkos, P. Kotzanikolaou, and C. Douligeris, Towards secure online elec-
tions: models, primitives and open issues, Electronic Government, 4(3), pp.
249–268, 2007.

125

[88] V. Mateu, S. Martínez, J. M. Miret, F. Sebé, et al., Elliptic curve array ballots
for homomorphic tallying elections, in International Conference on Electronic
Government and the Information Systems Perspective, pp. 334–347, Springer,
2015.

[89] E. McMurtry, X. Boyen, C. Culnane, K. Gjøsteen, T. Haines, and V. Teague,
Towards verifiable remote voting with paper assurance, arXiv preprint
arXiv:2111.04210, 2021.

[90] A. Menezes, U. of Waterloo. Dept. of Combinatorics, Optimization, and
U. of Waterloo. Faculty of Mathematics, The Elliptic Curve Digital Signature
Algorithm (ECDSA), Faculty of Mathematics, University of Waterloo, 1999.

[91] D. Mingxiao, M. Xiaofeng, Z. Zhe, W. Xiangwei, and C. Qijun, A review on
consensus algorithm of blockchain, in 2017 IEEE international conference on
systems, man, and cybernetics (SMC), pp. 2567–2572, IEEE, 2017.

[92] S. Mitsunari, R. Sakai, and M. Kasahara, A new traitor tracing, IEICE transac-
tions on fundamentals of electronics, communications and computer sciences,
85(2), pp. 481–484, 2002.

[93] H. Moniz, The istanbul bft consensus algorithm, arXiv preprint
arXiv:2002.03613, 2020.

[94] S. Nakamoto, Bitcoin: A peer-to-peer electronic cash system, Decentralized
Business Review, p. 21260, 2008.

[95] S. Nakamoto and A. Bitcoin, A peer-to-peer electronic cash system, Bitcoin.–
URL: https://bitcoin. org/bitcoin. pdf, 4, p. 2, 2008.

[96] M. Niranjanamurthy, B. Nithya, and S. Jagannatha, Analysis of blockchain
technology: pros, cons and swot, Cluster Computing, 22, pp. 14743–14757,
2019.

[97] M. Nojoumian and D. R. Stinson, Sequential secret sharing as a new hierarchi-
cal access structure, Cryptology ePrint Archive, 2015.

[98] O. Okediran, E. Omidiora, S. Olabiyisi, and R. Ganiyu, A comparative study
of generic cryptographic models for secure electronic voting, British Journals
of Science, 1(2), pp. 135–142, 2011.

[99] P. Paillier, Public-key cryptosystems based on composite degree residuosity
classes, in International conference on the theory and applications of crypto-
graphic techniques, pp. 223–238, Springer, 1999.

[100] N. Pakniat, M. Noroozi, and Z. Eslami, Distributed key generation protocol
with hierarchical threshold access structure, IET Information Security, 9(4),
pp. 248–255, 2015.

126

[101] T. P. Pedersen, Non-interactive and information-theoretic secure verifiable se-
cret sharing, in Annual international cryptology conference, pp. 129–140,
Springer, 1991.

[102] T. P. Pedersen, A threshold cryptosystem without a trusted party, in Advances
in Cryptology—EUROCRYPT’91: Workshop on the Theory and Application
of Cryptographic Techniques Brighton, UK, April 8–11, 1991 Proceedings 10,
pp. 522–526, Springer, 1991.

[103] L. Peng, W. Feng, Z. Yan, Y. Li, X. Zhou, and S. Shimizu, Privacy preser-
vation in permissionless blockchain: A survey, Digital Communications and
Networks, 7(3), pp. 295–307, 2021.

[104] B. M. B. Pereira, J. M. Torres, P. M. Sobral, R. S. Moreira, C. P. d. A. Soares,
and I. Pereira, Blockchain-based electronic voting: A secure and transparent
solution, Cryptography, 7(2), p. 27, 2023.

[105] O. Pereira, Internet voting with helios, Real-World Electronic Voting: Design,
Analysis and Deployment, 8604, 2016.

[106] A. J. Perez and E. N. Ceesay, Improving end-to-end verifiable voting systems
with blockchain technologies, in 2018 IEEE International Conference on In-
ternet of Things (iThings) and IEEE Green Computing and Communications
(GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and
IEEE Smart Data (SmartData), pp. 1108–1115, IEEE, 2018.

[107] D. Pointcheval and O. Sanders, Short randomizable signatures, in Cryptogra-
phers’ Track at the RSA Conference, pp. 111–126, Springer, 2016.

[108] D. Pointcheval and J. Stern, Security arguments for digital signatures and blind
signatures, Journal of cryptology, 13, pp. 361–396, 2000.

[109] T. Pornin, Deterministic usage of the digital signature algorithm (dsa) and el-
liptic curve digital signature algorithm (ecdsa), Technical report, 2013.

[110] J. Puiggalí-Allepuz and S. Guasch-Castelló, Privacy and anonymity manage-
ment in electronic voting, Serbian Publication InfoReview joins UPENET, the
Network of CEPIS Societies Journals and Magazines, p. 59, 2010.

[111] M. Qu, Sec 2: Recommended elliptic curve domain parameters, Certicom Res.,
Mississauga, ON, Canada, Tech. Rep. SEC2-Ver-0.6, 1999.

[112] E. A. Quaglia and B. Smyth, A short introduction to secrecy and verifiability
for elections, arXiv preprint arXiv:1702.03168, 2017.

[113] A. Rial and A. M. Piotrowska, Security analysis of coconut, an attribute-based
credential scheme with threshold issuance, Cryptology ePrint Archive, 2022.

127

[114] P. Ribarski and L. Antovski, Introduction to secure electronic voting require-
ments, in The 7th International Conference for Informatics and Information
Technology, Institute of Informatics, Faculty of Natural Sciences and Mathe-
matics, 2010.

[115] R. L. Rivest, A. Shamir, and L. Adleman, A method for obtaining digital signa-
tures and public-key cryptosystems, Communications of the ACM, 21(2), pp.
120–126, 1978.

[116] S. S. Sabry, N. M. Kaittan, and I. Majeed, The road to the blockchain tech-
nology: Concept and types, Periodicals of Engineering and Natural Sciences,
7(4), pp. 1821–1832, 2019.

[117] R. Saltini and D. Hyland-Wood, Correctness analysis of ibft, arXiv preprint
arXiv:1901.07160, 2019.

[118] K. Sampigethaya and R. Poovendran, A framework and taxonomy for compar-
ison of electronic voting schemes, computers & security, 25(2), pp. 137–153,
2006.

[119] A. Schneider, C. Meter, and P. Hagemeister, Survey on remote electronic vot-
ing, arXiv preprint arXiv:1702.02798, 2017.

[120] N. Schneider, Recovering bitcoin private keys using weak signatures from the
blockchain, https://web.archive.org/web/20160308014317
/http://www.nilsschneider.net/2013/01/28/recoverin
g-bitcoin-private-keys.html, Accessed: (27.01.2024).

[121] C. Schnorr, Efficient signature generation by smart cards, in Advances in Cryp-
tology — CRYPTO ’87, pp. 161–174, 1991.

[122] C. P. Schnorr, Efficient identification and signatures for smart cards, in G. Bras-
sard, editor, Advances in Cryptology — CRYPTO’ 89 Proceedings, pp. 239–
252, Springer New York, New York, NY, 1990.

[123] T. C. U. Senate, Voatz,2017, https://voatz.com/, (Accessed: 01/11/2022).

[124] A. Shamir, How to share a secret, Commun. ACM, 22(11), p. 612–613, nov
1979, ISSN 0001-0782.

[125] F. Shirazi, S. Neumann, I. Ciolacu, and M. Volkamer, Robust electronic voting:
Introducing robustness in civitas, in 2011 International Workshop on Require-
ments Engineering for Electronic Voting Systems, pp. 47–55, IEEE, 2011.

[126] P. W. Shor, Algorithms for quantum computation: discrete logarithms and fac-
toring, in Proceedings 35th annual symposium on foundations of computer
science, pp. 124–134, Ieee, 1994.

128

https://web.archive.org/web/20160308014317/http://www.nilsschneider.net/2013/01/28/recovering-bitcoin-private-keys.html
https://web.archive.org/web/20160308014317/http://www.nilsschneider.net/2013/01/28/recovering-bitcoin-private-keys.html
https://web.archive.org/web/20160308014317/http://www.nilsschneider.net/2013/01/28/recovering-bitcoin-private-keys.html

[127] V. Shoup, Sequences of games: a tool for taming complexity in security proofs,
cryptology eprint archive, 2004.

[128] G. J. Simmons, How to (really) share a secret, in Conference on the Theory
and Application of Cryptography, pp. 390–448, Springer, 1988.

[129] A. Sonnino, Coconut: Threshold issuance selective disclosure credentials with
applications to distributed ledgers, 2019.

[130] G. Srivastava, S. Dhar, A. D. Dwivedi, and J. Crichigno, Blockchain education,
in 2019 IEEE Canadian Conference of Electrical and Computer Engineering
(CCECE), pp. 1–5, IEEE, 2019.

[131] C. Staff, Acm’s 2014 general election: please take this opportunity to vote,
Communications of the ACM, 57(5), pp. 9–17, 2014.

[132] D. R. Stinson, An explication of secret sharing schemes, Designs, Codes and
Cryptography, 2(4), pp. 357–390, 1992.

[133] S. Suratkar, M. Shirole, and S. Bhirud, Cryptocurrency wallet: A review, in
2020 4th international conference on computer, communication and signal
processing (ICCCSP), pp. 1–7, IEEE, 2020.

[134] N. Szabo, The idea of smart contracts, Nick Szabo’s papers and concise tutori-
als, 6(1), p. 199, 1997.

[135] R. Taş and Ö. Ö. Tanrıöver, A systematic review of challenges and opportuni-
ties of blockchain for e-voting, Symmetry, 12(8), p. 1328, 2020.

[136] T. Tassa, Hierarchical threshold secret sharing, in Theory of Cryptography
Conference, pp. 473–490, Springer, 2004.

[137] T. Tassa and N. Dyn, Multipartite secret sharing by bivariate interpolation,
Journal of Cryptology, 22, pp. 227–258, 2009.

[138] A. N. Tentu, P. Paul, and V. C. Venkaiah, Ideal and perfect hierarchical secret
sharing schemes based on mds codes, Cryptology ePrint Archive, 2013.

[139] A. T. N. Thi and T. K. Dang, Privacy preserving in electronic voting, Electrical
and Electronics Engineering Computer and Information Engineering, p. 28,
2014.

[140] G. Tillem, O. Burundukov, and I. Team, Threshold signatures using secure
multiparty computation, https://www.ingwb.com/binaries/con
tent/assets/insights/themes/distributed-ledger-tec
hnology/ing-releases-multiparty-threshold-signing
-library-to-improve-customer-security/threshold-s
ignatures-using-secure-multiparty-computation.pdf,
Accessed: (25.05.2021).

129

https://www.ingwb.com/binaries/content/assets/insights/themes/distributed-ledger-technology/ing-releases-multiparty-threshold-signing-library-to-improve-customer-security/threshold-signatures-using-secure-multiparty-computation.pdf
https://www.ingwb.com/binaries/content/assets/insights/themes/distributed-ledger-technology/ing-releases-multiparty-threshold-signing-library-to-improve-customer-security/threshold-signatures-using-secure-multiparty-computation.pdf
https://www.ingwb.com/binaries/content/assets/insights/themes/distributed-ledger-technology/ing-releases-multiparty-threshold-signing-library-to-improve-customer-security/threshold-signatures-using-secure-multiparty-computation.pdf
https://www.ingwb.com/binaries/content/assets/insights/themes/distributed-ledger-technology/ing-releases-multiparty-threshold-signing-library-to-improve-customer-security/threshold-signatures-using-secure-multiparty-computation.pdf
https://www.ingwb.com/binaries/content/assets/insights/themes/distributed-ledger-technology/ing-releases-multiparty-threshold-signing-library-to-improve-customer-security/threshold-signatures-using-secure-multiparty-computation.pdf

[141] G. Traverso, D. Demirel, and J. Buchmann, Performing computations on hi-
erarchically shared secrets, in Progress in Cryptology–AFRICACRYPT 2018:
10th International Conference on Cryptology in Africa, Marrakesh, Morocco,
May 7–9, 2018, Proceedings 10, pp. 141–161, Springer, 2018.

[142] E. Tsekmezoglou and J. Iliadis, A critical view on internet voting technology,
The Electronic Journal for E-Commerce Tools and Applications. Disponibile
su http://minbar. cs. dartmouth. edu/greecom/ejeta/fourth, (2005), 2005.

[143] G. Tsoukalas, K. Papadimitriou, and P. Louridas, From helios to zeus,
USENIX Journal of Election Technology and Systems (JETS), 1(1), pp. 1–17,
2013.

[144] P. University, Helios princeton undergraduate elections,
https://princeton.heliosvoting.org/, (Accessed: 01/05/2022).

[145] J. L. Villar, Zero-knowledge proofs notes, https://web.mat.upc.ed
u/jorge.villar/doc/notes/DataProt/zk.html#section2.2
.3, Accessed: (15.01.2021).

[146] M.-V. Vladucu, Z. Dong, J. Medina, and R. Rojas-Cessa, E-voting meets
blockchain: A survey, IEEE Access, 11, pp. 23293–23308, 2023.

[147] K.-H. Wang, S. K. Mondal, K. Chan, and X. Xie, A review of contemporary
e-voting: Requirements, technology, systems and usability, Data Science and
Pattern Recognition, 1(1), pp. 31–47, 2017.

[148] A. Wigderson, O. Goldreich, and S. Micali, How to play any mental game [c],
in Procedings the 19th Annual ACM Symposium on the Theory of Computing,
pp. 218–229, 1987.

[149] G. Wood et al., Ethereum: A secure decentralised generalised transaction
ledger, Ethereum project yellow paper, 151(2014), pp. 1–32, 2014.

[150] Z. Xia, Z. Yang, S. Xiong, and C.-F. Hsu, Game-based security proofs for
secret sharing schemes, in Second International Conference on Security with
Intelligent Computing and Big Data Services (SICBS-2018), pp. 650–660,
Springer, 2020.

[151] H. Xue, M. H. Au, X. Xie, T. H. Yuen, and H. Cui, Efficient online-friendly
two-party ecdsa signature, in Proceedings of the 2021 ACM SIGSAC Confer-
ence on Computer and Communications Security, pp. 558–573, 2021.

[152] A. C. Yao, Protocols for secure computations, in 23rd annual symposium on
foundations of computer science (sfcs 1982), pp. 160–164, IEEE, 1982.

[153] R. Yılmaz, Some ideal secret sharing schemes, Ph.D. thesis, Bilkent Univer-
sitesi (Turkey), 2010.

130

https://web.mat.upc.edu/jorge.villar/doc/notes/DataProt/zk.html#section2.2.3
https://web.mat.upc.edu/jorge.villar/doc/notes/DataProt/zk.html#section2.2.3
https://web.mat.upc.edu/jorge.villar/doc/notes/DataProt/zk.html#section2.2.3

[154] J. Yuan, J. Yang, C. Wang, X. Jia, F.-W. Fu, and G. Xu, A new efficient hier-
archical multi-secret sharing scheme based on linear homogeneous recurrence
relations, Information Sciences, 592, pp. 36–49, 2022.

[155] S. Zhang and J.-H. Lee, Analysis of the main consensus protocols of
blockchain, ICT express, 6(2), pp. 93–97, 2020.

[156] Z. Zheng, S. Xie, H. Dai, X. Chen, and H. Wang, An overview of blockchain
technology: Architecture, consensus, and future trends, 2017 IEEE Interna-
tional Congress on Big Data (BigData Congress), pp. 557–564, 2017.

131

132

CURRICULUM VITAE

PERSONAL INFORMATION

Surname, Name: Kocaman, Sermin

Nationality: Turkish (TC)

EDUCATION

Degree Institution Year of Graduation

B.S. Department Of Mathematics, METU 2019

PUBLICATIONS

- Kocaman, S., & Talibi Alaoui, Y. (2023, December). Efficient Secure Two

Party ECDSA. In IMA International Conference on Cryptography and Coding

(pp. 161-180). Cham: Springer Nature Switzerland.

- Bingol, M.A., Kocaman, S., Dogan, A., & Kurt Toplu, S. FlexHi: A Flexible

Hierarchical Threshold Signature Scheme. In Computing Conference 2024.

https://eprint.iacr.org/2024/024

- Doröz, Y., Kocaman, S., Muş, K., Sulak, F., & Yayla, O. Proba: Privacy-

preserving, Robust and Accessible Blockchain-powered Helios. Journal of In-

formation Security and Applications (Submitted)

133

https://eprint.iacr.org/2024/024

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ALGORITHMS
	LIST OF ABBREVIATIONS
	INTRODUCTION
	Motivation
	Contributions
	Organization

	PRELIMINARIES
	Overview of Blockchain Technology
	Blockchain Structures
	Wallet
	Hash Reference
	Miner
	Consensus
	Smart Contract

	Blockchain Types
	Public Blockchain
	Private Blockchain
	Consortium Blockchain

	Overview of I-voting Systems
	Classification of Internet Voting Systems and Cryptographic Primitives Behind
	Blind Signature-Based System
	Mix-Net-Based System
	Homomorphic Encryption-Based System
	Post-Quantum-Based System
	Blockchain-Based System

	Helios I-voting System and Its Security Analysis
	Helios System Architecture
	Entities
	Helios System Construction

	Security Analysis

	Noteworthy Helios-Inspired Systems
	Blockchain-Powered Helios I-voting System and Its Security Analysis
	Blockchain-powered Helios System Architecture
	IPFS
	Entities
	Blockchain-powered Helios System Construction

	Security Analysis

	PROBA: PRIVACY-PRESERVING, ROBUST AND ACCESSIBLE BLOCKCHAIN-POWERED HELIOS
	Building Blocks
	Digital Signatures
	Homomorphic Encryptions
	Zero Knowledge Proofs
	Threshold-Issuance Anonymous Credentials
	Consortium Blockchain

	The Proposed System Architecture
	Entities
	Proba System Construction
	Pre-election
	Election
	Post-Election

	An Efficient System Instantiation of Proba

	System Analysis
	Security Analysis
	Eligibility
	Privacy
	Verifiability
	Robustness

	Performance Analysis

	WALLET KEY PROTECTION PROTOCOLS
	EFFICIENT SECURE TWO-PARTY ECDSA FOR KEY PROTECTION
	Building Blocks
	ECDSA Scheme
	Threshold ECDSA Schemes

	Ideal Functionality for Two-Party ECDSA
	F2ECDSA Functionality
	FZKP Functionality
	FCommit-ZK Functionality
	FMtA Functionality

	The Proposed Efficient Two-party ECDSA Protocol
	System Analysis
	Security Analysis
	Performance Analysis

	Summary

	FlexHi: A Flexible Hierarchical Threshold Signature Scheme For Key Protection
	Building Blocks
	Access Structure
	Hierarchical Schemes

	The Proposed Flexible Hierarchical Threshold Signature Scheme: FlexHi
	FlexHi FROST Scheme Application
	System Analysis
	Security Analysis
	Performance Analysis

	Summary

	CONCLUSION
	REFERENCES
	CURRICULUM VITAE

