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Abstract: For developing high-fidelity flight simulations, an accurate and complete representation of
the aerodynamic characteristics of the aircraft is necessary. To obtain a realistic aerodynamic database,
system identification methods can be used to describe the applied forces and moments acting on
the aircraft. This study is based on simulated flight test data from a nonlinear simulation of the F-16
aircraft. It is demonstrated that the complete set of aerodynamic coefficients can be reconstructed
from the flight test data. Thrust forces and moments are obtained from ground tests. A practical
system identification methodology based on the iterative equation error method to determine the
nonlinear aerodynamic and engine thrust models in the absence of engine manufacturer data is
developed. The estimated values obtained using the method are compared with the actual parameter
values. A mathematical engine model that can be used to estimate the thrust force for any flight
condition is also developed. The findings demonstrate that the proposed method yields accurate
results. The developed methodology is well-suited for the identification of isolated aerodynamic
drag and lift coefficients and the thrust model.

Keywords: flight modelling; parameter identification; flight simulation; system identification;
iterative equation error method

1. Introduction

Aircraft flight simulation is an essential element of modern aircraft design, flight
control system design, certification process, and aircraft pilot training. The aerodynamic
model forms the core of a flight simulator [1]. The flight simulator needs a high-fidelity
aerodynamic database to replicate the actual aircraft behaviour for the pilots. There are sev-
eral methods for developing an aerodynamic database: semiempirical datasheet methods,
linear flow solvers, nonlinear flow solvers, wind tunnel tests, and flight tests, in increasing
order of fidelity [2–4]. Semiempirical methods and linear flow approaches yield lower
fidelity databases, and the accuracy notably decreases as the nonlinearity of the flow in-
creases [5]. Therefore, these approaches are commonly used in the early design or concept
study phases [6]. Nonlinear flow solvers are considered to be accurate within the low angle
of attack sweeps (linear region) in subsonic–supersonic regions. On the other hand, the
results in the transonic region, including shock-induced separations or at high angle of
attack sweeps (nonlinear region), differ from the actual aerodynamic data due to highly
unsteady flow characteristics. Additionally, it is difficult to analyse dynamic effects such as
forced oscillations and spin conditions [4]. In wind tunnels, there are problems such as scal-
ing issues associated with the Reynolds number, aeroelastic characteristics, experimental
system errors, the influence of the wind tunnel airflow quality, and interference of tunnel
walls/supports [3,5]. Consequently, a flight test is the best alternative to correct errors in
wind tunnel tests [7]. A comprehensive system identification methodology using flight
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tests can be developed to generate the aerodynamic coefficients. This study explains the
development of such a methodology.

There are four key features of system identification: manoeuvres, measurements,
methods, and models [8]. Other features are discussed in [9–12]. Jategaonkar [8] focuses
on time-domain applications, while Tischler and Remple [10], and Morelli, Grauer, and
Cooper [11,12] present frequency-domain approaches. An outline and theoretical founda-
tions for both approaches are provided in Morelli and Klein [9]. System identification in
time and frequency domains are considered as competing methods. Both have advantages
and disadvantages that generally complement each other [13]. Time-domain methods tend
to be more intuitive, and the parameters of the mathematical model have a clearer physical
meaning [13].

System identification in the time-domain can be implemented using several methods
such as the equation error method (EEM) [3,8,9,14–17], the output error method [8,9,14], the
filter error method [8,18], and artificial neural networks [3,19,20]. Computational software
tools such as FVSysID [8] and SIDPAC [9], running under MATLAB, are available for
system identification [21]. The EEM calculates the aerodynamic parameter estimates that
minimize the sum of squared differences between the values of the nondimensional force
and moment coefficients obtained from measured flight data and those obtained from
estimated model values [22] and is the least computationally expensive technique since no
state integration is necessary.

A modification of the EEM in the time domain is implemented in this study. First,
the thrust body-axis forces and moments were determined from the propulsion model.
To achieve this, the propulsion model was run independently with all relevant inputs
from flight-test data [14,17]. After applying the thrust body-axis forces and moments, i.e.,
subtracting from the total forces and moments acting on the aircraft, the nondimensional
aerodynamic force and moment coefficients were obtained. Then, the EEM was employed
to determine all the aerodynamic forces and moment coefficients as linear/nonlinear
combinations of the parameters (aircraft motion and control variables). If no propulsion
model or thrust data are available, then it is not possible to isolate the nondimensional
aerodynamic force and moment coefficients. To overcome this, the thrust was calculated
using assumptions based on steady-state flight tests and a preliminary simplified turbofan
engine thrust model was developed. Afterward, an iterative EEM (IEEM) was employed to
determine the nonlinear aerodynamic and engine thrust models.

The objective of this study was to develop a novel application of nonlinear isolated
aerodynamic identification for fixed aircraft in the absence of engine manufacturer data.
Previous studies in this field used propulsion models from the manufacturer which were
run independently with all relevant inputs from flight-test data and were assumed to be
correct. In this study, no manufacturer propulsion model was available. Furthermore,
lift, drag, and thrust values were calculated, i.e., approximated using assumptions from
steady-state flight tests.

Moreover, a preliminary simplified turbofan thrust model was developed for any
flight condition using the approximated thrust values. Based on this model, the EEM was
used to find the aerodynamic force and moment coefficients. Finally, the application of the
IEEM was introduced, which is a sequential process in which each coefficient is estimated
at each iteration to solve the collinearity problem. It also proved to be insensitive to the
propulsion model uncertainty.

Thus, the main contribution of this study is the estimation of the nonlinear aerody-
namic coefficients using the IEEM when there is no engine database. The motivation
for using the IEEM is as follows. Since drag and thrust coefficient parameters are nearly
collinear or linearly dependent, classical methods cannot distinguish between the parame-
ters. Therefore, the resulting parameter estimates are biased with large uncertainties and
subsequent poor regression results. With the IEEM, the unknown parameter vector is
divided into estimated and fixed vectors, thus solving the collinearity problem between
thrust and drag coefficient parameters. In this study, simulated flight test data were used
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rather than actual flight test data because using the known aerodynamic coefficients within
the flight simulator provided a reliable benchmark for the evaluation of the developed
methodology effectiveness. This approach allowed us to use the aerodynamic database
as a test bed to assess the efficiency of the developed method. Furthermore, as part of the
study, a mathematical model of the F-16 fighter aircraft was also developed based on [21].

The paper is organized as follows. Section 2 presents the air vehicle flight simulation
and data acquisition. Section 3 explains the developed methodology. The results and
discussions are presented in Section 4, followed by the conclusions in Section 5. There is a
nomenclature at the end of the paper that lists abbreviations and well-known aeronautics
parameters that are not explicitly defined in the text.

2. Flight Simulation Model and Data Acquisition
2.1. Flight Simulation Model

The flight data were acquired from a flight simulation of the air vehicle. The model
included several subsystem models, including the atmosphere, aerodynamics, propulsion,
weight, balance properties, landing gear (ground handling), equations of motion (flight
dynamics and kinematics), flight control system (FCS) algorithms, actuators, and sensor
models. The purpose of the equation of motion for flight dynamics is to provide sufficient
knowledge about the motion of the air vehicle. The purpose of the other subsystem models
is to produce air-vehicle data for the equation of motion model [23,24].

The sum of all applied forces and moments on the air vehicle arises from aerodynamics,
gravity, and propulsion. Since gravity acts through the centre of mass (CM) and the gravity
field is uniform, there is no gravity moment acting on the air vehicle. The resultant force
and moment are thus expressed as

f⃗ = f⃗a + f⃗g + f⃗p, m⃗B = m⃗B,a + m⃗B,p, (1)

where f⃗a, f⃗p and f⃗g are the resultant forces and m⃗B,a + m⃗B,p are the resultant moments due
to aerodynamics (a), propulsion (p), and gravity (g), respectively.

Aerodynamic force and moment components acting on the aircraft can be expressed
in terms of the nondimensional coefficients. For further details, the reader is referred
to [25,26]. Gravitational forces resolved into body coordinates can also be found in the
same references. Assuming that thrust from the propulsion systems acts along the x-body
axis and through the CM, the applied force and moment from the propulsion are:

f⃗p =

 T cos ϕT
0

−T sin ϕT

 =

T
0
0

, (2)

m⃗B,p = f⃗p × r⃗EN/B =

 T cos ϕT
0

−T sin ϕT

×

xEN/B
yEN/B
zEN/B

 =

T
0
0

×

0
0
0

 =

0
0
0

, (3)

where r⃗EN/B (xEN/B, yEN/B, zEN/B) is the engine position with respect to the CM along the
body-fixed coordinate axes.

Engine Model

Numerous researchers have developed generic engine models. Yadav, Kapadi, and
Pashilkar [27] developed an aero-thermodynamic model for a turbofan engine digital
simulation. Roberts and Eastbourn [28] used thermodynamics equations to develop a
dynamic turbofan engine model, and NASA Glenn Research Center produced a generic
high-bypass ratio twin-spool commercial turbofan engine model [29]. One of the objectives
of this paper was to provide a mathematical engine model that could be used to estimate
the thrust force for any flight condition. Since the proposed engine models by [27–29] are
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considered to be too complex, in this study, the engine model to estimate the thrust force of
a turbofan engine was divided into two submodels.

The first submodel related to the static engine state, while the second referred to
the engine dynamics (i.e., transient state). There are several existing static models in
the literature [21,26,30,31], which are very similar in nature; however, the model in [30]
has been proven to outperform the others. In this study, for aerodynamic identification
purposes and to not increase the number of unknown parameters, the transient engine
dynamics were neglected.

Three external variables and one internal variable affect the thrust variation. The
external variables are air density, Mach number, and altitude; and the internal variable is
the throttle position. The static model is defined by:

T(h, M, δth)

T0
= σ̄(h, M) CT(h, M, δth), (4)

where T(h, M, δTLA) is the engine static thrust force at altitude h, Mach number M, throttle
position δth, T0 is the maximum thrust value, σ̄ is the relative air density ratio given by:

σ̄(h, M) =
ρ(h)
ρ0

[
1 +

(γ − 1)
2

M2
] 1

γ−1
, (5)

and CT(h, M, δTLA) is the nondimensional thrust coefficient defined by the polynomial:

CT(h, M, δth) =
n

∑
i=0

m

∑
j=0

CTij(h)Miδ
j
th, (6)

where CTij(h) are the polynomial coefficients that depend on altitude h, and the variables n
and m represent the order of CT for Mach number and throttle position. The order of the
polynomial, Mach number (n), and throttle position (m) are chosen to give small errors
and are generally set at 4 and 2, respectively.

2.2. Data Acquisition

Models developed for data acquisition from the simulation included the sensor models,
conducted flight manoeuvres, and the flight scope. Data preprocessing performed to avoid
parameter estimation errors from the flight data is also explained below.

2.2.1. Sensor Models

Sensor models used in simulation are composed of an accelerometer and a rate-
gyroscope model. The sensor errors can be classified as deterministic and stochastic. Bias
error, scale factor error, and misalignment are all examples of deterministic errors. When
highly accurate mounting of the sensors is achievable, misalignments are quite minor.
Stochastic errors are the random errors caused by random variations in bias or scale factor
drift over time, as well as random sensor noise. The characterization of bias and scale
factor instability requires a long-term dynamical rate test, and the impact of these terms is
minimal. A significant portion of the stochastic errors is attributed to sensor noise [32]. In
the sensor error models, the random sensor noise is represented by zero-mean white noise.
The characteristics of the sensor models are given in Table 1.

Table 1. Characteristics of the sensor models.

Symbol Accelerometer Gyroscopes

Bias 0.005 g 10 deg/h
Scale factor error 1000 ppm or 0.1% 500 ppm or 0.05%

Random sensor noise 0.005 g/h/
√

Hz 0.004 deg/h/
√

Hz
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2.2.2. Flight Manoeuvres

A high-fidelity F-16 simulator based on [21] was used to produce the flight test
data. The stability and control derivatives were estimated by the dynamic motion of
the aircraft to specific control inputs. There are many manoeuvres to excite dynamic
motion around separate axes utilizing individual inputs on each control. The procedures
described by Jategaonkar [8] were used as guidelines. It is usually recommended to begin
each manoeuvre from a trimmed level flight, to allow about 5 to 10 s of steady flight
before applying specific control inputs, and to allow sufficient time after these inputs for
the aircraft to oscillate according to the aircraft mode [8]. Trim data for discrete flight
conditions expressed in Mach numbers (M = 0.2 to 0.6), altitudes (h = 0 ft to 40,000 ft), and
different flight path angles (γ = −5◦ to 5◦) were collected to develop a preliminary engine
thrust model. The system identification manoeuvres were executed at two altitudes and
six speed configurations. Note that the F-16 model of [21] is limited to the Mach number
range between 0.2 and 0.6. All manoeuvres were started at a level flight trim condition and
were not performed at idle or maximum power settings since the aerodynamic coefficients
are not affected by the thrust coefficient. The control inputs were configured to execute
short-period, phugoid, Dutch roll, and bank-to-bank manoeuvres.

For the aerodynamic model extraction from the test data, control surface deflections,
linear accelerations, angular rates, altitude angles, air data, static pressure, engine parame-
ters, and pilot forces were recorded. A sampling frequency of 20–25 Hz was used which
usually suffices for a rigid-body aerodynamic model estimation [8,9]. The angle of attack
range spanned by the longitudinal manoeuvres was 0◦ to 18◦. Similarly, the angle of attack
and angle of sideslip ranges spanned by the lateral manoeuvres were 4◦ to 13◦ and −8◦ to
8◦, respectively. The flight test scope is shown in Figure 1.

Figure 1. Flight test scope.

2.2.3. Data Preprocessing

Because flight data measurement errors can severely degrade the estimation
results [8,33,34], before the model identification, two data preprocessing operations were
performed. First, to avoid the parameter estimation errors caused by data noise, a low-pass
digital filter, developed by Spencer [8] and based on 15 points, was applied. Second, a flight
path reconstruction, also known as a data compatibility check, was performed [8,9]. The
goal of the flight path reconstruction is to ensure that flight measurements are kinematically
consistent and error-free. Flight data are kinematically consistent if the integrated state
variables (e.g., the air data obtained from linear accelerations or the altitude angles obtained
from rotational kinematics) agree with direct measurements [35].

There were two main parts to the flight path reconstruction. The first was a state
integration (integrating translational dynamics, rotational kinematics, and navigational
kinematics), and the second was to apply observer equations for a comparison of estimated
(reconstructed) and measured outputs. Some drifts in the estimated and measured outputs
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suggested introducing time lags, biases, and/or scale factors in the measurement signals
(e.g., linear accelerations, angular rates, angle of attack, and angle of sideslip) as well as
time-invariant atmospheric wind speeds [8,9,36]. The introduced time lags, biases, and/or
scale factors in the measurement signals and time-invariant atmospheric wind speeds
were estimated using the output error method. Since the body-fixed axes system was
defined with respect to the CM, the measured accelerations and velocity components were
transferred from the sensor locations to the CM.

3. Methodology

The methodology developed for the preliminary thrust model from steady-state flight
tests and for the parameter estimation using the IEEM are described below.

3.1. Development of the Preliminary Thrust Model from Steady-State Flight Tests

The flight geometry and the applied forces on the air vehicle are shown in Figure 2.
The flight path angle γ is the angle between the horizontal XN and the x-wind axis, Xw,
and θ is the pitch angle. Summing forces in the Xw and Zw directions yields:

∑ Fx = T cos(α + ϕT)− D − W sin γ, (7)

∑ Fz = −T sin(α + ϕT)− L + W cos γ, (8)

where T is the thrust force, D is the drag force, L is the lift force, W is the weight, α is the
angle of attack, and ϕT is the thrust incidence angle. It is assumed that the thrust axis is
parallel to the wind axis, i.e., ϕT = 0, and that T sin α is small compared to the weight.
Hence, if the aircraft is flying at trim, the sum of the forces must be equal to zero, which
leads to the translational equations of motion:

∑ Fx = T cos α − D − W sin γ, (9)

∑ Fz = −L + W cos γ, (10)

where the drag force, D, and lift force, L, are:

D = q̄SCD, (11)

L = q̄SCL, (12)

where q̄ is the dynamic pressure and S is the reference area.

Xb

Zb

Xw

Zw

VTAS

TD

L

horizontal XN

ZN

W

ϕT

θ γ

α

Figure 2. Flight geometry for the air vehicle.
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The relationship between the drag and lift coefficients CD and CL is given by [6,21,23]:

CD = CD0 +
1

πeÆR
C2

L = CD0 + KC2
L, (13)

where CD0 is the drag coefficient at a zero angle of attack, e is the Oswald efficiency factor,
and ÆR is the aspect ratio. For swept-wing aircraft, e is assumed to be [37]

e = 4.61
(

1 − 0.045 × ÆR0.68
)
(cos ΛLE)

0.15 − 3.1(ΛLE > 30◦), (14)

where ΛLE is the leading-edge sweep angle. For an F-16 aircraft, ÆR = 3 and ΛLE = 40◦,
which yields e = 0.9086. Note that a clean configuration is assumed even though the
F16 will often have added equipment. However, this expression is adequate for the
preliminary estimation.

During flight, the aircraft weight is known, the angle of attack α, flight path angle γ,
and true airspeed VTAS are measured, and the air density ρ is calculated using the standard
atmosphere model.

In gliding flight, T ≈ 0 and the sum of forces must be equal to zero, so ∑ Fx = ∑ Fz = 0,
which leads to:

0 = D − W sin γ, (15)

0 = L − W cos γ. (16)

From Equations (11), (12), (15), and (16), we obtain

CD =
W sin γ

q̄S
, (17)

CL =
W cos γ

q̄S
. (18)

Using Equation (13), CD0 is calculated as:

CD0 = CD − 1
πeÆR

C2
L =

W sin γ

q̄S
− 1

πeÆR
.
(

W cos γ

q̄S

)2
. (19)

Trim data in gliding flight for different altitudes and speeds were collected, and the results
are presented in Figure 3. The averaged CD0 value for the flight is CD0 = 0.0208, which is
very close to the actual value of 0.0202.

0 1 2 3 4

 [deg]

0.02

0.0205

0.021

0.0215

0.022

C
D

0

 [
-]

Figure 3. CD0 values for different gliding flights.
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Approximate thrust values for each trim point were calculated using the following
formulas. The vector-valued function F⃗ was constructed using the Newton–Raphson
algorithm [23]. Using Equations (9), (10) and (13), the following system equations with two
unknowns were obtained:

F1 = 0 = T cos α −
(

CD0 + KC2
L

)
qSRe f − W sin γ, (20)

F2 = 0 = CLqSRe f − W cos γ, (21)

where F⃗ =
[
F1, F2

]T and Θ⃗ =
[
T, CL

]T . After calculating the approximate thrust values
for different altitudes, airspeeds, and throttle levers using Equation (15), a preliminary
engine propulsion (thrust) model was obtained using Equation (6). The order of the
polynomials for throttle position (m) and Mach number (n) were set as 2 and 3, respectively.

3.2. Parameter Estimation

The mathematical model of the dynamic system (process) in a nonlinear state space
form is given by the system:

˙⃗x(t) = f
[

x⃗(t), u⃗(t), Θ⃗
]
, x(t0) = x0, (22)

y⃗(t) = g
[

x⃗(t), u⃗(t), Θ⃗
]
, (23)

where x⃗ ∈ Rnx is the vector of state variables, u⃗ ∈ Rnu is the control input vector, y⃗ ∈ Rny the
system output vector, Θ⃗ ∈ Rnq is the unknown parameter vector, nu, nx, nq, and ny are the
system dimensions, and f : Rnx+nu+nq → Rnx , g : Rnx+nu+nq → Rny are general nonlinear
functions. Furthermore, the output y is measured periodically and so the measured output
is given by

z⃗(tk) = y⃗(tk) + Gv⃗(tk), k = 1, . . . , N, (24)

where z⃗ ∈ Rny is the system measurement vector, v⃗ ∈ Rnv is the measurement noise vector,
G ∈ Rny×nv is the additive measurement noise distribution matrix, nv is the measurement
noise dimension, and k is the discrete-time index.

The objective (cost) function J can be calculated from the difference between the
measured and estimated responses:

J
(

Θ⃗
)
=

1
2

N

∑
k=1

(⃗z(tk)− y⃗(tk))
T (⃗z(tk)− y⃗(tk)). (25)

The unknown coefficient values can be determined using any minimization method.
The Gauss–Newton method is one of the most widely used minimization algorithms and
was selected for this study. The parameter estimation process is frequently unstable, i.e., a
small change in measurement might result in a significant change in the estimated model.
Inverse problems that develop because of this scenario are referred to as ill-conditioned
problems. Regularization is the process of enhancing the stability of the inversion process
by introducing extra constraints that bias the result. The Tikhonov regularization is the
most often used approach for regularization. Another possibility is to employ the bounds’
constraint technique. There are lower and upper bounds for the model parameters [38]. To
account for simple lower and upper limits on the estimated parameters, the unconstrained
optimization problem may be modified to include them. This leads to a linearly constrained
optimization problem, formulated as [39]:

min
Θ⃗

J
(

Θ⃗
)

subject to Θ⃗min ≤ Θ⃗ ≤ Θ⃗max, (26)
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which, in standard form, is

min
Θ⃗

J
(

Θ⃗
)

subject to c1 : Θ⃗ − Θ⃗min ≥ 0, c2 : Θ⃗max − Θ⃗ ≥ 0. (27)

Barrier methods [40] offer an elegant approach to this constrained optimization prob-
lem. The constrained optimization problem is recast as an unconstrained problem in
which the objective function is extended with logarithmic barrier terms. The unconstrained
problem (combined objective/barrier function) is given by

min
Θ⃗

P
(

Θ⃗; µ
)
= min

Θ⃗
J
(

Θ⃗
)
− µ

[
log

(
Θ⃗ − Θ⃗min

)
+ log

(
Θ⃗max − Θ⃗

)]
. (28)

3.3. Equation Error Method (EEM)

The EEM is used to determine nonstate parameters such as force and moment coef-
ficients, which are not integrated during simulation. By using the equation error form,
there is no need to integrate the equations of motion to achieve model outputs since the
matching is performed in the equations of motion (hence the term “equation error” [14]).
Furthermore, by minimizing the differences in the least-square sense between measured
and model (estimated) responses, the equation error approach estimates the unknown
parameter vector (aerodynamic stability and control derivatives).

A wide range of information is needed to derive total aerodynamic force and moment
coefficients from flight data, such as the angular rates and accelerations, linear accelerations,
thrust-induced forces and moments on the body axis, dynamic pressure, and aircraft mass
and inertia data. The location of the accelerometer and air data system is often used to
transfer air data and accelerations to the CM. In addition, for each manoeuvre, the centre of
gravity location must be determined to transfer total moments to the aerodynamic moment
centre (MC) around which an aerodynamic model can be constructed. The coefficients of
the nondimensional force and moment are obtained by substituting measured and known
quantities. The EEM is used to model the functional dependence of aerodynamic forces and
moments on aircraft motion and control variables since propulsive forces and moments are
generally obtained from ground tests. The process is illustrated in Figure 4.

ṗ, q̇, ṙ

aCG
x , aCG

y , aCG
z

Cx, Cy, Cz, C
CG
l , CCG

m , CCG
n

Cx, Cy, Cz, C
MC
l , CMC

m , CMC
n

aAS
x , aAS

y , aAS
z

p, q, r

q̄

F⃗prop, M⃗prop

Sensor location

CG and MC location

Cx, Cy, Cz

CMC
l , CMC

m , CMC
n

FPR Corrected

Flight Derived

Figure 4. Schematics of data preprocessing to compute the aerodynamic force and moment coeffi-
cients from flight-measured data (modified from [8]).

The engine model was based on static thrust look-up tables derived from data provided
by the engine manufacturer. Engine dynamics were modelled by applying lag filters to
the static engine model. Throughout each manoeuvre, the throttles were held in the
trim position.

A preprocessing step was required for the aerodynamic forces and moments since they
were not directly measured but could be obtained from the measurements of the related
variables, linear accelerations, angular rates, mass properties, and other external forces and
moments, as shown in Figure 4.

The computation of the nondimensional force and moment coefficients were
performed using the following equations. The body-fixed specific accelerations at the CM
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were computed from measured accelerations at the accelerometer sensor position using the
following transformation:

asx = aAS
sx + (q2 + r2)xAS/B − (pq − ṙ)yAS/B − (pr + q̇)zAS/B, (29)

asy = aAS
sy − (pq + ṙ)xAS/B + (p2 + r2)yAS/B − (qr − ṗ)zAS/B, (30)

asz = aAS
sz − (pr − q̇)xAS/B − (qr + ṗ)yAS/B + (p2 + q2)zAS/B. (31)

Having obtained the specific linear accelerations at the CM, the body-axes aerodynamic
force coefficients were obtained asCX

CY
CZ

 =
1

q̄S
m

asx

asy

asz

−

T
0
0

. (32)

The nondimensional force components resolved in the wind axis can be obtained
using the transformation matrix and written as:−CD

−CC
−CL

 =
1

q̄S

 cos α cos β sin β sin α cos β
− cos α sin β cos β − sin α sin β

− sin α 0 cos α

masx − T
masy

masz

. (33)

The aerodynamic body-axes’ moments at the CM were computed as la
ma
na

 =

 p
q
r

×

 IXX −IXY −IXZ
−IXY IYY −IYZ
−IXZ −IYZ IZZ

 p
q
r

+

 IXX −IXY −IXZ
−IXY IYY −IYZ
−IXZ −IYZ IZZ

 ṗ
q̇
ṙ

. (34)

The body-axes’ rolling, pitching, and yawing coefficients referred to CM were obtained from: Cl
Cm
Cn

 =
1

q̄S

1/b 0 0
0 1/c̄ 0
0 0 1/b

 la
ma
na

. (35)

The moment coefficients referred to MC on the vehicle were obtained from:

CMC
l = Cl − CZ

xMC/B
b

+ CY
zMC/B

b
, (36)

CMC
m = Cm − CX

zMC/B
c̄

+ CZ
xMC/B

c̄
, (37)

CMC
n = Cn − CY

xMC/B
b

+ CX
yMC/B

b
. (38)

For the EEM estimation, the control input, state variables, observation variables, and
unknown (estimated) variables are listed in Table 2.

Table 2. Control input, state variables, and output vectors and unknown variables for the EEM.

Symbol Description Variables

u⃗ Control input vector [V, α, β, p, q, r, δlef, δe, δa, δr δsb, M]
x⃗ State variable vector [ ]
y⃗ Observation vector [CD] or [CL]

Θ⃗ Unknown variables [CD] or [CL] model parameters

Determination and Validation of the Aerodynamic Model Structure

In the process of evaluating the identified model’s correctness, accuracy, and applicabil-
ity, each coefficient was assigned a unique model structure, which represents a multi-input,
single-output subspace. This approach allowed for a greater flexibility and simplified
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the training task. The initial goal of aerodynamic model development is to determine a
good model structure. The model should be as simple as possible while being sufficiently
complex to capture the necessary dynamics. Although restricting the number of terms
used simplifies computing, it is essential to use the correct terms to ensure a high degree of
accuracy. Choosing which terms to include in each coefficient model is a tedious process
and is known as “feature selection”.

There are numerous well-known methods for feature selection, including stepwise
regression, multivariate orthogonal functions, and generalized additive models. The aero-
dynamic model structure used in this study was based on that developed by Grauer and
Morelli [41]. They developed a generic, precise, and simple nonlinear aerodynamics model
using multivariate orthogonal function modelling to investigate measured wind tunnel
aerodynamic databases for eight aircraft over a wide range of flight regimes. The most
critical modelling terms (the number of selected instances was high) for each coefficient
were selected as frozen model terms. The remaining model terms for longitudinal coeffi-
cients were selected using a correlation-based stepwise regression method. The algorithm
started by generating a set of candidate model terms based on a set of base regressors and
a maximum term order. Then, the pairwise correlation among model terms was compared,
and some terms were removed. Finally, a binary particle swarm optimization was utilized
to generate the best subset of the remaining terms. Certain additions and rejections to the
structure of the underlying aerodynamic model were made using the statistical and quali-
tative graphical findings analysed by Jategaonkar and Thielecke [33] and the resampling
methods analysed by Millidere et al. [19].

To evaluate the statistical accuracy of the results, first a check was performed to
find out whether the expected value was reasonable. The magnitude should be close to
the real value. Next, values of standard deviation, coefficient of variation (COV), and
correlation matrix were checked. The COV of any term should not exceed 50% since a
significant uncertainty level indicates low information in the derivative estimate. None of
the correlations among the two independent terms should exceed 0.95 because the existence
of data collinearity compromises the parameter estimation results.

Comparing the time histories of flight-measured and model-estimated responses is
a widespread method for the qualitative evaluation of the model’s fidelity. Some incon-
sistencies in matching the two responses often offer critical information for improving
the model fidelity. The residuals test (the difference between the predicted and measured
response), also known as cross-plots of residuals, is a good indicator of the reliability
of the assumptions made about measurement noise on the system. Ideally, the residual
distribution should be flat and centred near zero.

Rather than evaluating the model on the training data, the trained model was eval-
uated for the data in the testing dataset not used in the training model. The k-fold cross-
validation method was used as the resampling method.

3.4. Iterative Equation Error Method (IEEM)

When the thrust force is known, the EEM is used to find the aerodynamic force and
moment coefficients. However, when thrust data are not available, thrust is calculated
using the assumptions from steady-state flight tests, and a preliminary simplified turbofan
engine thrust model is developed. A good preliminary design is needed as a starting point
for all optimization-based design methods. Otherwise, there is no guarantee that the search
engine will find a satisfactory solution. The preliminary design is usually accomplished by
applying classical methods and employing the IEEM. Since the thrust force does not pro-
duce any moment and the angle of sideslip is relatively small in longitudinal manoeuvres,
the problem is reduced to identifying aerodynamic drag and lift force coefficients.

The IEEM consists of a starting point and then using a systematic method to obtain
a refined estimate of the solution. In the end, it is expected to obtain a solution that
simultaneously satisfies the given output vector. The process starts by choosing a reasonable
starting point for an unknown parameter vector Θ⃗(0). If the starting point is far from the
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optimum, estimations may not lead to a converged solution. The unknown parameter
vector is split into two sub-vectors, Θ⃗F and Θ⃗E. Vector Θ⃗F contains the fixed coefficients,
and Θ⃗E contains the parameters to be estimated. The starting point can be substituted
into the cost function, which can be used to calculate a new estimate for CD coefficient
parameters. The fixed parameters, the new estimates of the CD coefficient parameters along
with the previous estimates for CT are then substituted into the cost function to compute
a new estimate for the CL coefficient parameters. This process is repeated to calculate a
new estimate for the CT coefficient. Then, the entire procedure is repeated until the relative
error, εa falls below a prespecified stopping criterion, εs, or until the maximum number of
iterations is reached.

For the IEEM estimation, the control input, state variables, measured/model output
vectors, and unknown (estimated) variables are listed in Table 3.

Table 3. Control input, state variables, and output vectors and unknown variables for the IEEM.

Symbol Description Variables

u⃗ Control input vector
[
V, α, β, p, q, r, δle f , δe, δa, δr, δsb, M

]
x⃗ State variable vector [ ]
y⃗ Observer vector [asX , asZ ]

Θ⃗ Unknown variables [CD, CL, CT ] Model parameters

The equations that describe the IEEM can be expressed as:

1
m q̄S

 cos α cos β sin β sin α cos β
− cos α sin β cos β − sin α sin β

− sin α 0 cos α

T−CD
−CC
−CL

+ 1
m

T
0
0

 =

asx

asy

asz

. (39)

By inserting Equation (4) into Equation (39), we obtain

1
m q̄S

 cos α cos β sin β sin α cos β
− cos α sin β cos β − sin α sin β

− sin α 0 cos α

T−CD
−CC
−CL

+ 1
m

T0σ̄CT
0
0

 =

asx

asy

asz

. (40)

To eliminate the sideslip dependency, only longitudinal manoeuvres are employed, where
it is assumed that β ≈ CC ≈ 0, so that Equation (40) becomes:

1
m q̄S

[
cos α − sin α
sin α cos α

][
−CD
−CL

]
+ 1

m

[
T0σ̄CT

0

]
=

[
asx

asz

]
. (41)

4. Application and Results
4.1. Developed Simplified Turbofan Thrust Model

Numerous flight tests were conducted for different flight conditions expressed in Mach
numbers (M = 0.2 to M = 0.6), altitudes (h = 0 ft. to h = 40,000 ft.), and different flight
path angles (γ = −5◦ to γ = 5◦). A simplified turbofan thrust model was obtained using:

CT(h, M, δTLA) =
T(h, M, δTLA)

ρ(h)
ρ0

T0

[
1 + 1

2 (γ − 1)M2
]1/(γ−1)

=
n

∑
i=0

m

∑
j=0

CTij(h)Miδ
j
TLA. (42)

To determine which m and n values generate the best fit, the mean square errors were
compared using a k-fold cross validation [27] for different n and m values. For n = 3 and
m = 2, the best overall result was obtained.

The comparisons of trim-constructed and estimated nondimensional thrust coefficients
for different altitudes are shown in Figure 5. It is observed that the estimated results are
compatible with the constructed results from trim values.
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Figure 5. Comparison of trim-constructed and estimated nondimensional thrust coefficients.

4.2. Application of the IEEM

After the engine thrust model was developed, the IEEM was used to obtain a reason-
able starting point for longitudinal aerodynamic coefficients. For the IEEM, the developed
model structures for the drag and lift coefficients, CD and CL, were:
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CD = CD0 +
[
CDα

· α + CDα2 · α2 + CDα3 · α3
]
+

[
CDδe

· δe + CDδe α
· δe · α + CDδeα2 · δe · α2

]
+

[
CDq ·

qc
2V + CDqα

· qc
2V · α

]
+

[
CDδle f

· δle f + CDδle f α
· δle f · α + CD

δle f α1
10
· δle f · (α − α10◦ )+CD

δle f α1
15
· δle f · (α − α15◦ )+

]
, (43)

CL =

[
CL0 + CLα

· α + CL
α1

5
· (α − α5◦ )+ + CL

α1
10
· (α − α10◦ )+ + CL

α1
15
· (α − α15◦ )+

]
+

[
CLδe

· δe + CLδeα
· δe · α + CLδe α2 · δe · α2

]
+

[
CLq ·

qc
2V + CLqα

· qc
2V · α

]
+

[
CLδle f

· δle f + CLδle f α
· δle f · α

+CL
δle f α1

5
· δle f · (α − α5◦ )+ + CL

δle f α1
10
· δle f · (α − α10◦ )+CL

δle f α1
15
· δle f · (α − α15◦ )+ + CLδle f qα

· δle f · q · α

]
. (44)

The parameter estimates of CD and CL are tabulated in Tables 4 and 5, respectively. The
COV for each coefficient was below 50% indicating a very low estimate uncertainty.

Table 4. The estimates, standard deviations, and COVs of the parameters of coefficient CD.

Index Parameter Estimate Std. Dev. COV

1 CD0 0.0202 7.11 × 10−05 0.35
2 CDα

−0.0860 3.72 × 10−03 4.33
3 CDα2 4.26 2.67 × 10−02 0.63
4 CDα3 −0.383 2.49 × 10−02 6.50
5 CDδe

−0.0640 2.53 × 10−03 3.95
6 CDδeα

0.357 6.73 × 10−03 1.88
7 CDδeα2 1.87 8.23 × 10−03 0.44
8 CDq −0.366 2.51 × 10−02 6.86
9 CDqα

20.2 2.73 × 10−01 1.35
10 CDδle f

0.0440 1.91 × 10−03 4.34

11 CDδle f α
−1.00 1.57 × 10−02 1.57

12 CD
δle f α1

10
−0.164 2.49 × 10−03 1.52

13 CD
δle f α1

15
0.639 3.38 × 10−03 0.52

Table 5. The estimates, standard deviations, and COVs of the parameters of coefficient CL.

Index Parameter Estimate Std. Dev. COV

1 CL0 0.0999 9.54 × 10−05 0.09
2 CLα

3.74 2.25 × 10−03 0.06
3 CL

α1
5

0.149 2.12 × 10−03 1.42

4 CL
α1

10
0.137 6.17 × 10−03 4.50

5 CL
α1

15
−1.93 4.15 × 10−02 2.15

6 CLδe
0.510 3.15 × 10−03 0.62

7 CLδeα
−0.0840 1.75 × 10−02 20.53

8 CLδeα2 6.62 1.05 × 10−01 1.58
9 CLq 29.1 2.20 × 10−02 0.08
10 CLqα

20.9 3.80 × 10−02 0.18
11 CLδle f

−0.178 1.15 × 10−03 0.64

12 CLδle f α
0.505 2.05 × 10−02 4.06

13 CL
δle f α1

5
0.516 1.72 × 10−02 3.33

14 CL
δle f α1

10
−0.893 1.15 × 10−02 1.28

15 CL
δle f α1

15
3.46 1.25 × 10−01 3.61

16 CLδle f qα
−54.5 2.01 × 10−02 0.04
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Figure 6 shows the cost function’s convergence during the application of the IEEM. The
cost function decreases dramatically in the first 5 iterations and converges to a small steady-
state value approximately at the 40th iteration. Hence, the maximum number of iterations
was set to 40 to obtain good results. Tables 6–9 list the calculated parameter estimates and
the associated estimation errors for the drag and lift coefficients. The estimation error was
calculated from δ = ∥Θ⃗k − Θ⃗actual∥/∥Θ⃗actual∥.

Figure 6. Convergence of the cost function during the application of the IEEM.

Table 6. CD coefficient parameter estimates and errors.

k CD0 CDα
CDα2 CDα3 CDδe

CDδeα
CDδe α2

1 0.0206 0.057 2.458 0.027 −0.010 −0.675 5.277
2 0.0206 0.049 2.581 0.168 −0.038 −0.373 4.673
3 0.0201 0.032 3.180 −0.764 −0.053 0.218 1.957
4 0.0200 0.009 3.558 −1.086 −0.059 0.353 1.315
5 0.0200 −0.011 3.780 −1.074 −0.060 0.347 1.370
10 0.0202 −0.061 4.173 −0.675 −0.061 0.320 1.702
15 0.0202 −0.074 4.237 −0.531 −0.062 0.332 1.780
20 0.0202 −0.079 4.250 −0.466 −0.063 0.343 1.818
30 0.0202 −0.083 4.256 −0.413 −0.063 0.353 1.849
40 0.0202 −0.085 4.256 −0.395 −0.064 0.357 1.859
50 0.0202 −0.085 4.254 −0.389 −0.064 0.357 1.863
80 0.0202 −0.086 4.258 −0.383 −0.064 0.357 1.868
Actual 0.0209 −0.1411 4.311 −0.273 −0.057 0.205 2.442

Table 7. CD coefficient parameter estimates and estimation error—continued.

k CDq CDqα
CDδle f

CDδle f α
CD

δle f α1
10

CD
δle f α1

15
δ (%)

1 0.534 22.497 −0.088 0.357 −0.337 0.700 74.242
2 0.564 21.120 −0.080 0.259 −0.368 0.674 62.844
3 0.122 18.320 −0.057 −0.097 −0.243 0.635 32.398
4 −0.030 16.393 −0.037 −0.353 −0.159 0.625 34.181
5 −0.097 15.841 −0.020 −0.530 −0.121 0.627 30.293
10 −0.205 17.114 0.022 −0.897 −0.114 0.620 17.260
15 −0.267 18.354 0.033 −0.969 −0.134 0.625 14.387
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Table 7. Cont.

k CDq CDqα
CDδle f

CDδle f α
CD

δle f α1
10

CD
δle f α1

15
δ (%)

20 −0.309 19.142 0.038 −0.989 −0.147 0.631 13.246
30 −0.348 19.870 0.042 −1.002 −0.159 0.637 12.432
40 −0.360 20.107 0.043 −1.005 −0.163 0.639 12.191
50 −0.364 20.184 0.044 −1.005 −0.164 0.640 12.097
80 −0.366 20.217 0.044 −1.002 −0.164 0.639 11.987
Actual −0.234 19.579 0.0833 −1.067 −0.146 0.636

Table 8. CL coefficient parameter estimates and errors.

k CL0 CLα
CL

α1
5

CL
α1

10
CL

α1
15

CLδe
CLδeα

CLδeα2 CLq

1 0.0992 3.747 0.175 0.114 −1.834 0.477 −0.084 3.788 28.742
2 0.0998 3.740 0.162 0.145 −1.984 0.505 −0.706 6.144 28.985
3 0.0998 3.737 0.156 0.137 −1.982 0.508 −0.804 6.615 29.016
4 0.0999 3.736 0.152 0.135 −1.981 0.509 −0.833 6.750 29.043
5 0.0999 3.735 0.151 0.136 −1.976 0.510 −0.838 6.758 29.064
10 0.0999 3.735 0.149 0.140 −1.953 0.510 −0.844 6.722 29.110
15 0.0999 3.736 0.149 0.139 −1.942 0.510 −0.843 6.687 29.115
20 0.0999 3.736 0.149 0.139 −1.936 0.510 −0.840 6.660 29.114
30 0.0999 3.736 0.149 0.138 −1.932 0.510 −0.838 6.635 29.112
40 0.0999 3.736 0.149 0.137 −1.931 0.510 −0.837 6.627 29.110
50 0.0999 3.736 0.149 0.137 −1.931 0.510 −0.836 6.624 29.109
80 0.0999 3.737 0.149 0.137 −1.931 0.510 −0.835 6.620 29.107
Actual 0.0995 3.737 0.156 0.135 −1.907 0.489 −0.612 4.808 29.136

Table 9. CL coefficient parameter estimates and errors—continued.

k CLqα
CLδle f

CLδle f α
CL

δle f α1
5

CL
δle f α1

10
CL

δle f α1
15

CLδle f qα
δ(%)

1 28.348 −0.175 0.511 0.345 −0.804 3.150 −74.932 23.474
2 21.385 −0.178 0.507 0.430 −0.862 3.620 −54.764 12.770
3 21.424 −0.178 0.508 0.473 −0.860 3.625 −52.506 12.316
4 21.258 −0.178 0.508 0.494 −0.870 3.624 −51.168 11.905
5 21.087 −0.178 0.508 0.504 −0.882 3.609 −50.866 10.577
10 20.619 −0.178 0.508 0.515 −0.903 3.550 −51.594 10.412
15 20.640 −0.178 0.507 0.516 −0.902 3.519 −52.577 9.521
20 20.736 −0.178 0.506 0.516 −0.899 3.501 −53.345 8.487
30 20.852 −0.178 0.505 0.516 −0.895 3.489 −54.101 8.134
40 20.899 −0.178 0.505 0.516 −0.894 3.486 −54.359 8.004
50 20.921 −0.178 0.505 0.516 −0.893 3.485 −54.452 7.892
80 20.954 −0.178 0.505 0.516 −0.893 3.485 −54.528 7.812
Actual 22.597 −0.178 0.511 0.454 −0.912 3.361 −59.489

Figure 7 shows the variation in the estimated parameters for the drag coefficient CD
versus the iteration number. The parameters showing a variation larger than 50% from
the converged solution were removed from the model. It is observed that the converged
solution obtained using the IEEM is very close to that obtained from the actual thrust value.

Figure 8 shows the variation in estimated parameters for lift coefficient CL versus the
iteration number. None of the parameters in the proposed model show a variation larger
than 50% from the converged solution. As expected, the converged solution is very close to
that obtained from the actual thrust value.
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Figure 7. Convergence of parameter estimates for the coefficient CD.
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Figure 8. Convergence of parameter estimates for the CL coefficient.

Figure 9 shows a comparison of the estimated parameter values obtained using the
IEEM with the true values obtained from the wind tunnel database for coefficient CD. The
IEEM initially yielded poor results far from the actual values. However, as the number of
iterations increased, the results became closer. The difference in Figure 9b arises from the
fact that the leading-edge flap is adjusted according to the angle of attack, where a high
angle of attack corresponds to a high leading-edge flap. When the leading-edge flap is
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zero, the corresponding angle of attack is between −5◦ and 5◦. A larger leading-edge flap
corresponds to a larger angle of attack (greater than 10◦).
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Figure 9. Comparison of wind tunnel data with the IEEM prediction for CD (40th iteration).

Figure 10 shows a comparison of the estimated parameter values of coefficient CL
using the IEEM with the actual values obtained from the wind tunnel database. It is easier
to estimate the CL since it has a lower correlation with the engine thrust. A good agreement
between estimates and actual values is observed since CL displays a more linear trend
compared to coefficient CD.
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5. Conclusions

A methodology was developed based on the iterative equation error method (IEEM)
to determine nonlinear aerodynamic and engine thrust models in the absence of engine
manufacturer data. The study was based on simulated flight test data from a nonlinear
simulation of the F-16 aircraft with realistic noise included. With two different altitudes
and six different speed configurations, manoeuvres were carried out for twelve different
trim points. Control inputs of the pilot were configured for short-period, phugoid, Dutch
roll, and bank-to-bank manoeuvres. Trim data for a set of discrete flight conditions with
Mach number ranging from M = 0.2 to M = 0.6, altitude from h = 0 ft to h = 40,000 ft, and
flight path angle from γ = −5◦ to γ = 5◦ were collected to develop a generic engine thrust
model. Ideally the method should have been tested for a larger range of Mach numbers,
but the F-16 model of [21] is limited to a maximum Mach number of 0.6.

The IEEM is a sequential process in which the flight data remain the same and only an
estimated variable is modified at each iterative step. The simulation results indicated that
the proposed algorithm was effective and could produce a satisfactory estimation accuracy.
Furthermore, the parameter separation technique introduced herein can be applied to
identify large-scale systems by reducing the number of parameters to be identified, thereby
greatly simplifying the system identification process.

The engine model is assumed to be true for the EEM application. Clearly, the more
accurate the engine model, the more accurate the drag coefficient estimation. Any error
in the engine propulsion model propagates into errors in the measured (constructed)
aerodynamic force and moment coefficients and thus leads to changes in the identified
model parameters. Therefore, to improve the accuracy of the engine model, the IEEM can
be utilized.
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Abbreviations and Nomenclature
CM Centre of mass
COV Coefficient of variation
EEM Equation error method
IEEM Iterative equation error method
MC Aerodynamic moment centre
α Angle of attack
β Angle of sideslip
CX , CY , CZ Nondimensional force coefficients in the body-fixed frame
D, C, L Drag, crosswind, and lift forces in the wind frame
l, m, n Roll, pitch, and yaw moments in the body-fixed frame
T Thrust force
CT Nondimensional thrust coefficient
CD Drag coefficient
CC Crosswind coefficient
CL Lift coefficient
Cl Roll moment coefficient
Cm Pitch moment coefficient
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Cn Yaw moment coefficient
m Mass of the air vehicle
g Acceleration due to gravity
q̄ Dynamic pressure
ϕ, θ, ψ Euler roll, pitch, and yaw angles
p, q, r Roll, pitch, and yaw rates
ṗ, q̇, ṙ Roll, pitch, and yaw accelerations
h Altitude
γ Velocity-vector flight path angle, atmospheric constant
δe Elevator deflection
δa Aileron deflection
δr Rudder deflection
δth Throttle setting
f⃗ Vector sum of all external forces
m⃗B Vector sum of all external moments referred to the vehicle CM (point B)
m⃗P Vector sum of all external moments referred to the arbitrary point P
a⃗s Specific acceleration vector
ρ0 Air density at sea level
b Wing span
c̄ Wing mean aerodynamic chord
S, SRe f Wing area, reference wing area
I(·) Inertia constant in each direction
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