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ABSTRACT

SOME CONSTRUCTIONS OF MUTUALLY UNBIASED BASES OVER
FINITE FIELDS

ELMAS, Gökhan
M.S., Department of Cryptography

Supervisor : Assist. Prof. Dr. Buket Özkaya

Co-Supervisor : Prof. Dr. Ferruh Özbudak

February 2024, 86 pages

Mutually unbiased bases, as a mathematical concept, has important implications in
quantum information theory where the information is encoded as linear combinations
of vectors in Hilbert spaces instead of as arrays of digits. Offering a designation
on the preparation and measurement of the quantum states, mutually unbiased bases
provide mathematics based security to many quantum computation protocols includ-
ing the famous quantum key distribution protocol named BB84. The construction of
mutually unbiased bases, however, is not straighforward and it requires an extensive
mathematical approach based on the properties of the finite fields.

Keywords: mutually unbiased bases, quantum computation, Hilbert spaces, bent
functions
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ÖZ

KARŞILIKLI TARAFSIZ BAZLARIN SONLU CİSİMLER ÜZERİNDEKİ BAZI
İNŞALARI

ELMAS, Gökhan
Yüksek Lisans, Kriptografi Bölümü

Tez Yöneticisi : Yrd. Doç. Dr. Buket Özkaya

Ortak Tez Yöneticisi : Prof. Dr. Ferruh Özbudak

Şubat 2024, 86 sayfa

Karşılıklı tarafsız bazlar, matematiksel bir kavram olarak, bilginin basamak dizileri
yerine Hilbert uzaylarındaki vektörlerin lineer birleşimleri üzerine kodlandığı kuan-
tum enformasyon teorisinde önemli çıkarımlara sahiptir. Kuantum hallerin hazırlan-
ması ve ölçülmesi aşamalarına bir tasvir sağlamasına bağlı olarak, karşılıklı tarafsız
bazlar, yaygın bilinen kuantum anahtar dağıtım protokolü BB84 de dahil olmak üzere
bir çok kuantum hesaplama protokolüne matematik tabanlı güvenlik sağlamaktadır.
Karşılıksız tarafsız bazların inşa edilmesi doğrudan gerçekleştirilememekte ve sonlu
cisimlerin özellikleri üzerinde kapsamlı bir matematiksel yaklaşımı gerektirmektedir.

Anahtar Kelimeler: karşılıklı tarafsız bazlar, kuantum hesaplama, Hilbert uzayları,
bent fonksiyonlar
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CHAPTER 1

INTRODUCTION

One of the most frequent problems in mathematics, physics and engineering sciences

is to provide equations with coordinate systems in which better analyses and solu-

tions are possible.Therefore, as a coordinate transformation, Fourier Transformation

is the one of the most crucial transformations with many modern applications in to-

day’s technology. For instance, a more computationally efficient version of Fourier

Transform, called Fast Fourier Transform, is employed in global communication net-

works enabling transfer of knowledge all around the globe. Apart from the techno-

logical and applied side, Fourier transform also enables a comprehensable framework

for quantum computation by directly producing bases vectors for Hilbert spaces in

which qubits are described. Its quantum version, so-called Quantum Fourier Trans-

form (QFT) is the backbone of many quantum algorithms which surpass existing

classical algorithms in terms of computational complexity.

In this chapter, we introduce Hilbert functions and investigate the basic structures on

Hilbert spaces by introducing the Fourier transforms and describe how it acts on the

basis of Hilbert spaces.

1.1 Hilbert Spaces

We introduce the Hilbert spaces since we will investigate various forms of Fourier

transforms via Hilbert spaces.

Definition 1.1.1. Given a complex vector space H, a map ⟨ , ⟩ : H × H −→ C is

called a Hermitian inner product on H if

1



• ⟨ax+ by, z⟩ = a⟨x, z⟩+ b⟨y, z⟩

• ⟨x, y⟩ = ⟨y, x⟩

• ⟨x, x⟩ ≥ 0

• ⟨x, x⟩ = 0 ⇐⇒ x = 0

for all x, y, z ∈ H and for all a, b ∈ C.

As usual, one can define a norm on H via the formula

|x| =
√

⟨x, x⟩ (1.1)

for all x ∈ H.

Definition 1.1.2. A complex vector space H with a Hermitian inner product is called

Hilbert space if H is complete with respect to the norm induced by the inner product.

Here, completeness means that every Cauchy sequence in the vector space H con-

verges to a point in H.

Example 1.1.3. Let H1 be the most obvious complex vector space, namely Cn. For

any u = (u1, ..., un), v = (v1, ..., vn) ∈ Cn, set

⟨u, v⟩1 =
n∑

i=1

uivi (1.2)

is an inner product on H1 with the induced norm

∥u∥1 =
√

⟨u, u⟩ =

√√√√ n∑
i=1

uiui =

√√√√ n∑
i=1

|ui|2 (1.3)

H1 is a Hilbert space with the inner product ⟨ , ⟩1 and its induced norm.

Here we note that if take u, v ∈ H1 as column matrices, like

u =


u1
...

un

 , v =


v1
...

vn


2



the statement

⟨u, v⟩1 =
n∑

i=1

uivi

can be translated to the language of matrices as

⟨u, v⟩1 = u†v (1.4)

where u† indicates conjugate transpose matrix of u. More explicitly,

u† =
[
u1, . . . , un.

]
(1.5)

Example 1.1.4. Take H2 = C([a, b]), the vector space of complex-valued continuous

functions on the closed interval [a, b]. An inner product on H2 can be defined as

⟨f, g⟩2 =
∫ b

a

fg (1.6)

with the induced norm

||f ||2 =
∫ b

a

ff. (1.7)

However, H2 is not a Hilbert space with this setting considering the fact that the norm

(1.7) can diverge.

Although H1 is a Hilbert space and H2 is not, it is still possible to note a correspon-

dence between ⟨ , ⟩1 and ⟨ , ⟩2. For this correspondence, we need to introduce vector

representation of functions.

Given two functions f, g ∈ C([a, b]), assume we generate an equi-spaced partition of

the interval [a, b] as

τ = {x0 = a, x1 = a+∆, . . . , xk = a+ k∆, . . . , xn = b}

where

∆ =
b− a

n
.

3



For all 1 ≤ i ≤ i, let fi = f(xi). Then the column vector

fτ =


f1

f2
...

fn


is the vector representation of f with respect to the partition τ. With this setting, we

can consider the inner product ⟨fτ , gτ ⟩1 as

⟨fτ , gτ ⟩1 = f †
τ gτ =

n∑
i=0

figi. (1.8)

Set

Sτ = ⟨fτ , gτ ⟩1∆.

As n → ∞, we get the finest partition of [a, b] and we have ∆ → 0. Moreover, Sτ

would be the Riemannian sum which can be restated as

Sτ = lim
∆→0

⟨fτ , gτ ⟩1∆ =

∫ b

a

fg = ⟨f, g⟩2.

A useful utilization of inner products in vector spaces is the determination of the or-

thonormal base vectors for the vector space. Note that two vectors u, v in a vector

space V are called orthonormal if they are of unit length (||u|| = ||v|| = 1) and their

inner product vanishes. (⟨u, v⟩ = 0).

Let V be a complex vector space of dimension n with an inner product ⟨ , ⟩ and

assume V has an orthonormal basis {e1, e2, ..., en}. Then we have ⟨ei, ej⟩ = 0 for

i ̸= j and ⟨ei, ei⟩ = 1 for all 1 ≤ i ≤ n. Any vector v ∈ V can be uniquely written

as a linear combination of basis vectors with

v = v1e1 + ...+ vnen =
n∑

i=1

viei (1.9)

where vi ∈ C. Since the expression in (1.9) is unique with respect to the choice of

basis vectors, each of the values vi are well-defined.
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Moreover, for each i ∈ {1, ..., n},

⟨ei, v⟩ = ⟨ei,
n∑

j=1

vjej⟩ =
n∑

j=1

vj⟨ei, ej⟩ =
n∑

j=1,j ̸=i

vj⟨ei, ej⟩+ vi⟨ei, ei⟩ = vi. (1.10)

Therefore, given a linear combination of orthonormal basis vectors v =
n∑

i=0

viei, the

coefficients vi can be determined using the inner product ⟨ , ⟩ as

vi = ⟨ei, v⟩. (1.11)

Inner products are still useful when we have an orthogonal basis but not an orthonor-

mal one. Let {f1, ..., fn} be an orthogonal but not orthonormal basis for a complex

vector space V. Therefore ⟨fi, fj⟩ = 0 when i ̸= j but ⟨fi, fi⟩ ̸= 1 for at least one i.

Since {f1, ..., fn} is still a basis, any vector v ∈ V can be uniquely stated as

v = v1f1 + ...+ vnfn =
n∑

i=1

vifi. (1.12)

Then for each i, we calculate

⟨fi, v⟩ = ⟨fi,
n∑

j=1

vjfj⟩ =
n∑

j=1

vj⟨fi, fj⟩ = vi⟨fi, fi⟩. (1.13)

From (1.13), one can conclude

vi =
⟨fi, v⟩
⟨fi, fi⟩

. (1.14)

Plugging (1.14) into (1.12), for any v ∈ V, we have,

v =
n∑

i=1

vifi =
n∑

i=1

⟨fi, v⟩
⟨fi, fi⟩

fi. (1.15)

1.2 Function Bases

In this section, we move our concentration from generic vector spaces to specific

vector spaces that will be used through out the study. Since Fourier transform takes

functions to functions, we work on vector spaces where the points are not n-tuples but

continuous functions. Since each bases element is already an element of the vector

space, we will construct a base consisting of functions.

5



As we introduced in Example 1.1.4, the set of complex-valued continuous functions

on the closed real interval [a, b], denoted by C([a, b]), is a vector space with the inner

product

⟨f, g⟩ =
∫ b

a

fg.

Although C[a, b] is not a Hilbert space, it is a separable topological space and by

separability we mean the condition that the space contains a countable dense subset.

By Weierstrass approximation theorem, the polynomials in C[a, b] with rational co-

efficients forms a countable dense subset in C[a, b] and therefore, C[a, b] is separable.

Taking a = −π and b = π, for now we fix V = C([−π, π]). Let E = {φn}n∈Z ⊂ V

be an infinite family of functions where

φk : [−π,π] → C

x→ eikx = cos(kx) + i sin(kx).

We now observe that the set E is actually a basis for V. In order to see this, we first

assume k ̸= j and calculate

⟨φk, φj⟩ =
∫ π

−π

φk(x)φj(x)dx =

∫ π

−π

e−ikxeijxdx =

∫ π

−π

ei(j−k)xdx

=

∫ π

−π

cos((j − k)x) + i sin((j − k)x)dx

=

∫ π

−π

cos((j − k)x)dx+ i

∫ π

−π

sin((j − k)x)dx.

(1.16)

For the first part of the integral,∫ π

−π

cos((j − k)x)dx =
sin((j − k)x)

i(j − k)
|−ππ

=
1

i(j − k)
(sin((j − k)π) + sin((j − k)π))

= 0 + 0 = 0.

(1.17)

Similarly, for the second part of the integral (we omit i for the ease of calculation),

6



∫ π

−π

sin((j − k)x)dx =
− cos((j − k)x)

i(j − k)
|π−π

=
1

i(k − j)
(cos((j − k)π)− cos((j − k)(−π)))

=
1

i(k − j)
(cos((j − k)π)− cos((j − k)π))

= 0.

(1.18)

Combining (1.17) and (1.18) we conclude that when j ̸= k

⟨φk, φj⟩ = 0. (1.19)

For the remaining case, when k = j,

⟨φk, φk⟩ =
∫ π

−π

φk(x)φk(x)dx

=

∫ π

−π

e−ikxeikxdx

=

∫ π

−π

1dx

= 2π.

(1.20)

From the equations (1.19) and (1.20), we obtain E = {φn}n∈Z ⊂ V as a set of

orthogonal functions with respect to the inner product ⟨, ⟩ of V. Actually, the set E

is a basis for C[a, b] and for any f ∈ C[a, b], we can write

f(x) =
∞∑

k=−∞

ckφk =
∞∑

k=−∞

cke
ikx (1.21)

where ck ∈ C.

We note a remark that stating a countable basis for C[−π, π] does not violate the fact

a Hilbert space is separable if and only if it has a countable basis, since we already

explained that C[−π, π] is not a Hilbert space.

7



1.3 Fourier Series

In this section we investigate Equation (1.21) and determine the coefficients ck ∈ C.

However, before that we introduce an equivalent representation of functions in V =

C([a, b]). Equation (1.21) is stated as a infinite sum in both ends (from −∞ to ∞).

Actually, using some trigonometric identities, we can convert it into an infinite sum

in one end (from 0 to ∞). Our main reference in this section is [7]

First of all, we write ck = ak + ibk with a, b ∈ R for all k. When k = 0, the term

cke
ikx is only c0 = a0 + ib0 since e0 = 1. Therefore the k = 0 term can be separated

from the infinite sum. Each summand in the sum can be stated as

cke
ikx = (ak + ibk)(cos kx+ i sin kx)

= ak cos kx+ iak sin kx+ ibk cos kx+ i2bk sin kx

= ak cos kx+ iak sin kx+ ibk cos kx− bk sin kx.

(1.22)

Since cos(x) is even and sin(x) is odd (cos(−x) = cos(x), sin(−x) = − sin(x)),

for each positive integer k, the sum cke
ikx + c−ke

−ikx can be formulated as (using

Equation (1.22))

cke
ikx + c−ke

−ikx = ak cos kx+ iak sin kx+ ibk sin kx− bk sin kx

+ a−k cos(−kx) + ia−k sin(−kx) + ib−k cos(−kx) + b−k sin(−kx)

=
(
(ak + a−k) cos kx+ (−bk + b−k) sin kx

)
+ i
(
(bk + b−k) cos kx+ (ak − a−k) sin kx

)
.

(1.23)

Therefore, Equation (1.21) can be restated as

f(x) =
∞∑

k=−∞

cke
ikx

= (a0 + ib0) +
∞∑
k=1

(ak + a−k) cos kx+ (−bk + b−k) sin kx

+ i

∞∑
k=1

(bk + b−k) cos kx+ (ak − a−k) sin kx.

(1.24)

From Equation 1.24, we observe that f is a real-valued function on [−π, π] if and

8



only if bk = −b−k and ak = a−k for all k.

We now move back to Equation (1.21) and determine the coefficients ck by employing

the equations we have derived in Section 1.1 and Section 1.2. From Equation (1.15)

we get,

ck =
⟨φk, f⟩
⟨φk, φk⟩

=

∫ π

−π
f(x)e−ikxdx

2π
. (1.25)

Once more Equation (1.21) can be restated as

f(x) =
∞∑

k=−∞

cke
ikx

=
∞∑

k=−∞

⟨φk, f⟩
⟨φk, φk⟩

eikx

=
∞∑

k=−∞

∫ π

−π
f(x)e−ikxdx

2π
eikx.

(1.26)

Definition 1.3.1. For any f ∈ C[−π, π], the statement in Equation (1.26) is called

the Fourier series representation of f .

1.4 Fourier Transform

By carefully employing parameter change transformations, the Fourier series presen-

tations for vector spaces rather than C([−π, π]) can actually be obtained. For any

L ∈ R, we start with the vector space V = C([−L,L)). By applying a linear change

of parameters, this time we take the base set E = {φk}k∈Z as a set of functions where

φk :[−L,L] −→ C

x→ e
ikπx
L = cos(

kπx

L
) + i sin(

kπx

L
).

(1.27)

Then, when j ̸= k

⟨φj, φk⟩ =
∫ L

−L

e
i(k−j)πx

L dx = 0 (1.28)

9



and when j = k,

⟨φk, φk⟩ =
∫ L

−L

1dx = 2L. (1.29)

Under this setting, the Fourier series of any f ∈ C[−L,L] can be stated as

f(x) =
∞∑

k=−∞

cke
ikπx
L . (1.30)

As we did before, the coefficients ck can be determined using Equation (1.14):

ck =
⟨φk, f⟩
⟨φk, φk⟩

=

∫ L

−L
f(x)e−

ikπx
L dx

2L
. (1.31)

By substiting Equation (1.31) into the Equation (1.30), the Fourier series representa-

tion of a function f in C([−L,L]) can be formulated as

f(x) =
∞∑

k=−∞

1

2L
e

ikπx
L

∫ L

−L

f(x)e−
ikπx
L dx. (1.32)

We note that the Fourier series representations we have introduced so far works for

functions which are defined on closed intervals with boundaries symmetric to 0. A

direct way of extending the descriptions to the whole real line R is to let L −→ ∞.

When this is the case, we would also have ∆α = π
L
−→ 0. We set ∆αk = k∆α = kπ

L
.

We already have

f(x) =
∞∑

k=−∞

cke
ikπx
L =

∞∑
k=−∞

1

2L

(∫ L

−L

f(x)e
−ikπx

L dx

)
e

ikπx
L . (1.33)

Since ∆α =
π

L
, we have

1

2L
=

∆α

2π
and

kπx

L
= k∆αx. Letting L −→ ∞

f(x) = lim
∆α−→0

∞∑
k=−∞

∆α

2π
(

∫ π
∆α

−π
∆α

f(y)e−ik∆αydy) eik∆αx

=

∫ ∞

−∞

1

2π
(

∫ ∞

−∞
f(y)e−iαydy)eiαxdα.

(1.34)

In (1.34), the part of the equation written is parenthesis is called the Fourier transform

of the function f and it is denoted by F(f(x)). More explicitly,
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F(f(x)) =

∫ ∞

−∞
f(x)e−iαxdx = f̂(y)

with an inverse

F−1(f̂(y)) =
1

2π

∫ ∞

−∞
f̂(y)eiαydy = f(x).

We conclude this section by showing that the Fourier Transform is a linear operator

since,

F((f + g)(x)) =

∫ ∞

−∞
(f(x) + g(x))e−iαxdx

=

∫ ∞

−∞
f(x)e−iαxdx+

∫ ∞

−∞
g(x)e−iαxdx

= F(f(x)) + F(g(x))

(1.35)

and

F(cf(x)) =

∫ ∞

−∞
cf(x)e−iαxdx

= c

∫ ∞

−∞
f(x)e−iαxdx

= cF(f(x)).

(1.36)

1.5 Fourier Transforms in Real World: Discrete Fourier Transform (DFT) and

Fast Fourier Transform(FFT)

As we noted with Equations (1.35) and (1.36), the Fourier Transform is linear but we

do not have matrix representation for it since it acts on the vector space of continu-

ous functions but not discrete valued vector spaces. Moreover, in application, data

are represented as vectors and the machinery built for processing the data employs

mathematical techniques which are in accordance with the representation of the data.

In digital signal processing for example, an analog signal which is continuous in the

time domain is digitalized by listing its values in discrete times as a vector. As signal

turns into a finite length vector, Fourier analysis actually provides a change of basis

which makes it easier to analyse and manipulate the data.
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In order to introduce the discrete version of Fourier Transform, called Discrete Fourier

Transform, we take V = Cn. Given a vector F = (f1, ..., fn) ∈ V, the output of the

discrete Fourier transform is another vector F̂ = (f̂1, ..., f̂n) such that

f̂k =
n−1∑
j=0

fjξ
−i2πjk
n (1.37)

with inverse

fk =
1

n

n−1∑
j=0

f̂jξ
i2πjk
n (1.38)

where ξn = e
2πi
n is the n-th root of unity. As a linear map between vectors, the discrete

Fourier transform (DFT) has a matrix formulation as

F =



1 1 1 . . . 1

1 ξn ξ2n . . . ξn−1
n

1 ξ2n ξ4n . . . ξ
2(n−1)
n

...
...

... . . . ...

1 ξn−1
n ξ

2(n−1)
n . . . ξ

(n−1)(n−1)
n .


(1.39)

The matrix representation of DFT given in Equation (1.39) has n2 entries which im-

plies a computational complexity of O(n2) at each DFT calculation needed. However,

there is an efficient method introduced in [9]which can replace the complexity with

O(nlogn). The method is called Fast-Fourier Transform (FFT) and it actually is a

divide-and-conquer algorithm applied on the big matrix given in Equation (1.39).

In order to describe the Fast Fourier Transform as an divide-and-conquer algorithm,

we first let N = 2m and take a polynomial p(x) as

p(x) =
N−1∑
i=0

aixi

= a0 + a1x+ · · ·+ aix
i + · · ·+ aN−1x

N−1.

(1.40)

P (x) can be written as a sum of an even polynomial pe(x) = a0+a2x
2+. . . aN−2x

N−2

and an odd polynomial po(x) = a1x+ a3x
3 + · · ·+ aN−1x

N−1. Therefore, we restate
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Equation (1.38) as

p(x) = a0 + a1x+ · · ·+ aix
i + . . . aN−1x

= (a0 + a2x
2 + · · ·+ aN−2x

N−2) + (a1x+ a3x
3 + · · ·+ aN−1x

N−1)

= (a0 + a2x
2 + · · ·+ aN−2x

N−2) + x(a1 + a3x
2 + · · ·+ aN−1x

N−2).

(1.41)

Setting p1(t) = a0 + a2t + · · · + aN−2t
N
2
−1 and a1 + a3t + · · · + aN−1t

N
2
−1, we

compose p(x) as

p(x) = p1(x
2) + xp2(x

2). (1.42)

Taking α = e−
2πi
N , which is again an n-th root of unity, we recall Equation (1.37)

f̂k =
n−1∑
j=0

fjξ
−i2πjk
n

=
n−1∑
j=0

fj(ξ
−i2πk
n )j.

(1.43)

By using the technique as in Equation (1.37), for each 0 ≤ j ≤ N
2
− 1, we write

f̂k = p1(α
2k) + αkp2(α

2k)

f̂N
2
+k = p1(α

N+2k) + α
N
2
+kp2(α

N+2k).
(1.44)

Since α2 is an N
2

-th root of unity, Equation (1.44) actually consists of seperation of

a Discrete Fourier Transform of n-tuple vectors into two Discrete Fourier Transform

of two n
2

tuples. By iteration of the same steps, the length of DFT will decrease

and the transformation can be completed with a cost of computational complexity of

O(n logn). This method is called Fast Fourier Transform (FFT) and it is ubiquitously

employed in modern communication and information processing systems.

The quantum version of Fourier Transform also exists and it is one of the most ef-

ficient tools of quantum information theory. In order to set the basics for Quantum

Fourier Transform(QFT), we will introduce fundamentals of the quantum theory in

the next chapter. But for now, at least we can list the most well-known quantum

algorithms in which Quantum Fourier Transform is performed:
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• Grover’s Algorithm: Grover’s algorithm is a search algorithm developed by

Lov Grover in 1996. It is actually a probalistic algorithm but still can output

the correct value with very high probability when the correct implementation

of the iterations are provided.

Given a binary function

f : Σn → Σ

where Σ = {0, 1} with at most one x ∈ Σn such that f(x) = 1, Grover’s

algorithm outputs the correct x value if it exists. If such an x does not exist,

Grover’s algorithm returns no solution. Classically, one can try all possible in-

puts in Σn and find x with a complexity of O(2n). However, the complexity

of Grover’s algorithm is O(
√
n). As an application of being able to solving

binary equations, query searchs on unstructed databases can be performed by

using Grover’s algorithm. [11]

• Shor’s Algorithm: Shor’s algorithm is the most crucial quantum algorithm

with a promising capability of breaking the most of current cryptographic pro-

tocols. Shor’s algorithm was introduced by Peter Shor in 1994 and it can be

generalized to a solution of "Hidden Subgroup Problem for Abelian Groups".

On the other hand, integer factorization problem can be reduced to finding the

order of element modulo N = pq which can be solved by Shor’s algorithm. It

has a computational complexity of O((log(N))2 log(log(N)) it is much more

efficient than its classical counterparts. [25]
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CHAPTER 2

QUANTUM THEORY

In this chapter, we will introduce quantum mechanical facts and statements needed to

comprehend quantum information tasks. Due to the advantages based upon quantum

theory, quantum information processing promises classically unreachable capabilities

in two distinct but closely related fields, secure communication and computing.

Comparing to the quantum computing’s current achievement, quantum communica-

tion is already on the field with products available on the market. Using the quantum

mechanical facts like no-cloning and measurement collapse, quantum communica-

tion protocols offer more secure channels where the information is encoded in the

polarization of the photons. For the computing side, there are various quantum me-

chanical models employed to encode and process qubits. The quantum error correc-

tion methods are of great importance both for communication and computing, since

the implementation of qubits on physical systems require very sensitive particles and

they are always prone to errors due to the effects of the environment.

2.1 Introduction

Quantum mechanics as a fundamental but indeterministic theory which provides the

framework for quantum information theory was not developed in order to replace

classical mechanical explanations of nature for no reason. The existence of some

physical phomenia which could not be explained with the principals of classical me-
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chanics then could be understood thanks to peculiar aspects of quantum mechanics.

For example, blackbody radiation is one of the quantum mechanical terms which ex-

plains the correspondence between an object’s temperature and the wavelength of the

radiation emitted by the object. Before the quantum mechanical approach, classi-

cally it was explained by Rayleigh-Jeans model[26]. Based on the estimations of the

Rayleigh-Jeans model, at short wavelengths, the amount of the radiation being emit-

ted due to black-body radiation would keep increasing with to finite limit amount of

radiation. However, the experimental data did not agree with the model, by showing

a sharp drop around shorter wavelengths. Actually, in the Rayleigh-Jeans model the

emitted radiation was formulated as

B(λ, T ) =
2ckbT

λ4
(2.1)

where λ is the wavelength, T is the temperature, kB is the Boltzmann constant and

c is the speed of light. What really matters in Equation (2.1) is the denominator λ4,

causing the amount of emitted radiation to diverge in short wavelengths and it has

been disclassified by a quantum mechanical approach.

In 1900, Max Planck made a key assumption that light could be emitted in discrete

chunks with a constant energy proportional to the frequency [21] . Introducing a

constant h ≈ 6.62× 10−34Js, Planck formulated the energy of light as

E = hν (2.2)

where ν denotes the frequency of the light in terms of Hertz. Based on Planck’s

quantum mechanical principles, the behavior of black-body radiation is formulated

with Planck’s Law as,

B(λ, T ) =
2hc

λ5
1

e
hc

kBT − 1
(2.3)

which is coherent with experimental data.

Another observation that could not be totally understood with the framework of clas-

sical mechanics was the photoelectric effect. In 1887, Heinrich Hertz realized that ap-
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plying ultraviolet light on a metal object causes an electric flow of negative charge[15].

In 1902, Philipp Lenard observed that the voltage needed to stop the flow generated by

shining light on metal depends not on the amplitude of light but on its frequency[19].

Therefore, shining brighter light did not cause electrons to have more kinetic en-

ergy, and the electrons were being emitted owing the same kinetic energy. Moreover,

the kinetic energy of the electrons were determined by the wavelength of the light.

On this peculiar observation, Einstein’s proposal and Planck’s earlier proposal were

based on exactly the same idea, stating that electrons have energy of E = hν. But

Einstein went further and he also claimed that light itself was made of particles and

called them photons. Einstein also declared that for the emission, the energy of the

photon must exceed a work function [10]. Einstein was awarded the 1922 Nobel Prize

in Physics for his ideas on the photoelectric effect.

Since light was proven to be a wave by electromagnetic theory, it was an inevitable

choice to consider light in wave-particle duality. In 1924, Louis de Broglie stated a

hypothesis about wave-like behaviors of particles with mass[6]. Based on his pro-

posal, the wavelength of a particle with mass could be determined by the formula

λ =
h

ρ
(2.4)

where ρ is the momentum of the particle and classically formulated as

ρ = mv =
√

2mEK (2.5)

where m, v and EK denote mass, velocity and kinetic energy respectively.

2.2 Schrödinger’s Wave Equation

In 1925, Werner Heisenberg constructed a formulation of quantum mechanics based

on matrices and linear operators[13]. Also, in 1926 Schrödinger proposed a differ-

ential equation which does not rely on matrices but still correspond to linearity and

eigenstates [23]. In order to introduce Schrödinger’s wave equation, we start with a
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classical Helmholtz wave equation of the form

d2ψ

dz2
= −k2ψ (2.6)

where

k =
2π

λ
. (2.7)

Classical Helmholtz equations can be obtained from the behaviors of classical oscilla-

tions and it is used to describe classical monochromatic waves. Some of its solutions

are

ψ1(z) = eikz (2.8)

ψ2(z) = e−ikz (2.9)

ψ3(z) = cos(kz) (2.10)

ψ4(z) = sin(kz) (2.11)

Using de Broglie’s hypothesis ,we restate Equation (2.7) as

k =
2π

λ
=

2π
λ
ρ

=
2πρ

h
=
ρ

ℏ (2.12)

where ℏ =
h

2π
.

Substituting Equation (2.12) into the Equation (2.6), we have

∇2ψ = −ρ
2

ℏ2
ψ (2.13)

which can be written as

−ℏ2∇ψ = ρ2ψ. (2.14)

Dividing both sides by 2m, m being mass, we pass to

−ℏ2

2m
∇2ψ =

ρ2

2m
ψ

= (EK)ψ

(2.15)

since the kinetic energy, EK , equals
ρ2

2m
. For any mechanical system, the total energy

E can be written as a sum of kinetic energy, EK and the potential energy V (r).
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Since the potential energy depends on the location vector, we represent it by V (r).

Therefore,

E = EK + V (r) (2.16)

which implies

EK = E − V (r). (2.17)

Plugging Equation(2.17) into (2.15), we get

−ℏ2

2m
∇2ψ = (EK)ψ

= (E − V (r))ψ.

(2.18)

Or, equivalently, (
−ℏ2

2m
∇2 + V (r)

)
ψ = Eψ. (2.19)

Equation (2.19) is called time-independent Schrödinger’s equation and its solutions

correspond to quantum states. Although we stated time-independent Schrödinger’s

equation, actually there is no way to derive it without starting with making first prin-

cipal assumptions. Therefore, it can only be postulated and our calculation began

with assuming the classical wave equation somehow could be transferred into quan-

tum theory.

Although we have already stated that quantum theory is probabilistic, our descrip-

tions so far did not emphasize its probabilistic nature. The probabilistic interpretation

of quantum mechanics dates back to 1926, when Max Born proposed the idea that

the modulus square of a wave function at some point equals the probability that the

particle would be observed at that point after the measurement [4]. Therefore, the

values ||ψ(r)||2 can be considered as probability densities relating to the quantum

mechanical amplitudes. Here, we intentionally use the word "relating" since it is not

directly equal to quantum mechanical amplitudes.

Probabilistic spaces need normalization, as the total proability equals 1. Therefore, in

order to directly get the quantum mechanical amplitudes as probabilistic values, we

need to normalize vawe functions. For this purpose, we first note that Schrödinger’s

Equation is linear since
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(
−ℏ2

2m
∇2 + V (r)

)
(ψ1 + ψ2) = E(ψ1 + ψ2) (2.20)

implies

(
−ℏ2

2m
∇2 + V (r)

)
ψ1 +

(
−ℏ2

2m
∇2 + V (r)

)
ψ2 = Eψ1 + Eψ2 (2.21)

and

(
−ℏ2

2m
∇2 + V (r)

)
(cψ) = E(cψ) (2.22)

implies

c

(
−ℏ2

2m
∇2 + V (r)

)
(ψ) = c(E(ψ)) (2.23)

Now, let P (r) be the probability that a particle is found at location r after the mea-

surement. Therefore, around a small neighborhood d3r of r in R3, we must have

∫
P (r)d3r = 1 (2.24)

since all the possibilities must sum up to 1. If a solution ψ were to be a probability

density directly, then our expectation would be

∫
||ψ(r)||2d3r = 1. (2.25)

However, this is not true in general, and a solution to Schrödinger’s equation does not

have to be a probability density. Therefore, there exists an additional constraint that

the solutions have to be normalized by a factor.

Now assume that ψ is normalized wavefunction. ψ can be written as a linear combi-

nation of orthonormal functions {φk} as

ψ(r, t) =
∞∑
k=0

ck(t)φk(r) (2.26)

where the coefficients ck are the coefficients depending on time .
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Since ψ(r, t) is normalized, we must have
∫∞
−∞|ψ(r, t)|2d3r = 1. Therefore,

1 =

∫ ∞

−∞
|ψ(r, t)|2d3r

=

∫ ∞

−∞
ψ(r, t)ψ(r, t)d3r

=

∫ ∞

−∞

(∑
n

cn(t)φn(r)

)(∑
m

cm(t)φm(r)

)
d3r.

(2.27)

By the orthonogality of the spatial functions φk(r), all the terms with m ̸= n vanish

in Equation (2.27). By using orthonormality as well, we restate Equation (2.27) as

1 =

∫ ∞

−∞

(∑
n

cn(t)φn(r)

)(∑
m

cm(t)φm(r)

)
d3r

=

∫ ∞

−∞

∑
n

cn(t)cn(t)φn(r)φn(r)d
3r

=
∑
n

cn(t)cn(t)

∫ ∞

−∞
φn(r)φn(r)d

3r

=
∑
n

|cn|2

(2.28)

Therefore, we conclude that modulus squares of the quantum amplitudes sum up to 1.

2.3 Matrix Formulation for Quantum Theory

The quantum theory we have introduced in this chapter so far is mostly based on

Schrödinger’s wave equation. In quantum computing however, Heisenberg’s matrix

formulation is dominantly used. Therefore, we do not dive deeper into Schrödinger’s

equation based approach and move our motivation through matrix formulation.

We start introducing the formulation of quantum theory in terms matrices by making

a comparison between classical mechanical experiments and quantum mechanical ex-

periments. The comparison is based on a very fundamental distinction between clas-

sical mechanics and quantum mechanics which leads to some advantages of quantum

computing in terms of efficiency and speed-up. In a classical experiment, if the ini-

tial conditions and the dynamics of the system are perfectly known, then the outputs
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of the measurement can be calculated in a deterministic manner using mathematical

tools and models. Even in the flipping a coin experiment, if all the conditions that

the coin will be exposed to are known, the output can be calculated. What makes a

coin-flip is actually lack of information about the forces that will be in effect during

the experiment.

On the other hand, in quantum mechanics, an experiment is analyzed in terms of

4 axioms of quantum theory as state, dynamics, measurement and observables. An

experiment can be realized as a flow of 3 terms as

state −→ dynamics −→ measurement.

The terms observables is not included in the flow, since it actually corresponds to the

interpretation of the experiment.

In a quantum experiment, even if the initial conditions and dynamics are perfectly

known, the outputs can not be precisely determined since quantum theory is intrinsi-

cally probabilistic. Therefore, repeating an experiment in perfectly same conditions

will yield the different outputs. However, an expectation value can be proposed, pre-

sented by the formula

⟨f⟩p =
∑

fipi (2.29)

where fi, pi denote the distinct possible outputs and the probability of distinct possi-

ble outputs respectively.

Equation (2.29) is obviously is not very self-contained, but we will have a better

explanation of it once we introduce the terms state, dynamics and measurement as

components in Hilbert spaces. But for now we just state that the expected value of the

experiment results are obtained by interpretation on the experiment and it corresponds

to observables.

Implementations of the axioms states, dynamics, measurement and observables are

performed via a calculation framework called "bra-ket notation" or "Dirac’s nota-
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tion". Within this notation, the inner product we have introduced via the symbol ⟨ ⟩
is substituted by ⟨ | ⟩.

Instead of considering quantum states as wave functions as we did before, we consider

them as a vector |ψ⟩ in a Hilbert Space H. We also require |ψ⟩ to be a unit vector,

such that

||ψ⟩| = 1 =⇒ ⟨ψ|ψ⟩ = 1 (2.30)

For the dynamics axiom, during an experiment, an initial state |ψ0⟩ is expected to

change as it progresses through the dynamical components of the system. Therefore,

in most basic terms , what happens in an experiment is the change of the initial state

|ψ0⟩ to another state |ψt⟩ via an operator Ut. We state this transition as

|ψt⟩ = Ut |ψ0⟩ (2.31)

We emphasize the condition that, the final state |ψt⟩ is still a quantum state. Therefore

it must have unit norm as well:

||ψt⟩| = 1 (2.32)

Transition of quantum states requires norm to be preserved and a geometrical ap-

proach would suggest that this could be done bu using rotations. For this reason, we

place a condition on the Ut by stating that it has to be unitary. Therefore, Ut satisfies:

U †
t Ut = UtU

†
t = I (2.33)

where I is the identity matrix of convenient size.

For the measurement axiom, we consider a collection of operators Mi called POVM

(Positive Operator-Valued Measure) where
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• Mi ≥ 0

•
∑
i

Mi = I.

Here, the condition is called the positivity condition and it actually means the proba-

bility value defined as

pi = ⟨ψ|Mi|ψ⟩ ≥ 0.

Physically, eachMi in POVM corresponds to a detector being implemented in a quan-

tum mechanical experiment with a probability of clicking pi.

Under this setting of POVM, the general probabilistic condition
∑
pi = 1 is satisfied

since

∑
i

pi =
∑
i

⟨ψ|Mi|ψ⟩

= ⟨ψ|
∑
i

Mi|ψ⟩

= ⟨ψ|I|ψ⟩

= ⟨ψ|ψ⟩

= 1.

(2.34)

For single qubits, we set

M0 = |0⟩ ⟨0| (2.35)

and

M1 = |1⟩ ⟨1| . (2.36)

Observables are represented as Hermitian operators A satisfying A = A†. Since they

are self-adjoint, they can be stated as a linear combination of Mi’ss with real coeffi-

cients as

A =
∑
i

aiMi (2.37)

where ai ∈ R and Mi are the different projection operators corresponding to the

different eigenvalues of A. Moreover, the expectation value of an observable A is
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calculated as ⟨ψ|A |ψ⟩.

1-qubit states are stated as linear combinations of computational basis (Bc) states

where Bc = {|0⟩ , |1⟩}. For a 1-qubit state |ψ⟩, we write

|ψ⟩ = α |0⟩+ β |1⟩ (2.38)

where α, β ∈ R with |α|2 + |β|2 = 1.

Equation (2.38) relies on superposition principle of quantum mechanics due to which

a state can be a linear combination of basis states. Superposition principle is one of

the main advantages of quantum computing comparing to the classical information

processing systems. Another major advantage of quantum computing is entangle-

ment and we will discuss it with many-qubit systems.

Using the matrix notation, Equation (2.38) can be restated as

α
β

 = α

1
0

+ β

0
1

 (2.39)

where

|0⟩ =

1
0


and

|1⟩ =

0
1


Since α, β ∈ S3 ⊂ C2, where S3 is the unit sphere of topological dimension 3, they

can be formulated as

α = eia cos
θ

2
(2.40)
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and

β = eib sin
θ

2
(2.41)

for a, b ∈ R and 0 ≤ θ ≤ 2π.

More explicitly, for 1-qubit state |ψ⟩, we write

|ψ⟩ = α |0⟩+ β |1⟩

= eia cos
θ

2
|0⟩+ eib sin

θ

2
|1⟩

= eia
(
cos

θ

2
|0⟩+ ei(b−a) sin

θ

2
|1⟩
)

= eia |ψ1⟩

(2.42)

where

|ψ1⟩ = cos
θ

2
|0⟩+ ei(b−a) sin

θ

2
|1⟩ .

Here, we note that it is imposible to distinguish between |ψ⟩ and |ψ1⟩ since the only

difference between them is a phase shift:

⟨ψ1|M |ψ1⟩ = ⟨eiaψ|M |eiaψ⟩

= e−iaeia⟨ψ|M |ψ⟩

= ⟨ψ|M |ψ⟩.

(2.43)

2.3.1 Pauli Matrices and Some Other Quantum Gates

In this section we introduce Pauli matrices, which are unitary matrices corresponding

to the dynamics changing the qubit states. They are also matrix representations of

fundamental quantum computing gates, and one of the main problems in quantum

computing is the realization of quantum mechanical circuits and systems through

which quantum gates act on the qubits.

The Pauli matrices I, X, Y and Z have matrix representations,
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I =

1 0

0 1

 (2.44)

X =

0 1

1 0

 (2.45)

Y =

0 −i
i 0

 (2.46)

Z =

1 0

0 −1

 . (2.47)

As quantum computing gates, their actions on the computational basis states |0⟩ =1
0

 and |1⟩ =

0
1

 are as stated in the following.

I |0⟩ =

1 0

0 1

1
0

 =

1
0

 = |0⟩ (2.48)

I |1⟩ =

1 0

0 1

0
1

 =

0
1

 = |1⟩ . (2.49)

Obviously, I is the identity gate.

X |0⟩ =

0 1

1 0

1
0

 =

0
1

 = |1⟩ (2.50)

X |1⟩ =

0 1

1 0

0
1

 =

1
0

 = |0⟩ . (2.51)

Since X interchanges the computational basis states, it is also called quantum NOT-

gate.

Y |0⟩ =

0 −i
i 0

1
0

 =

0
i

 = i |1⟩ (2.52)
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Y |1⟩ =

0 −i
i 0

0
1

 =

−i
0

 = −i |0⟩ (2.53)

Z |0⟩ =

1 0

0 −1

1
0

 =

1
0

 = |0⟩ (2.54)

Z |1⟩ =

1 0

0 −1

0
1

 =

 0

−1

 = − |1⟩ . (2.55)

Pauli gates are especially important for quantum error correction schemes since they

are used as basis functions both in representation and correction of the errors.

Another widely used quantum gate is the Hadamard gate. Hadamard gate provides

a change of basis from computational basis to another basis called Hadamard basis

which we denote as B± = {|+⟩ , |−⟩}. Also, the Hadamard gate is the Quantum

Fourier Transform (QFT) for one-qubit systems.

The matrix formulation of the Hadamard gate is given as

H =
1√
2

1 1

1 −1

 (2.56)

The action of the Hadamard gate on the computational basis states |0⟩ and |1⟩ are

given as

H |0⟩ =

 1√
2

1√
2

1√
2

− 1√
2

1
0

 =

 1√
2

1√
2

 = |+⟩ (2.57)

H |1⟩ =

 1√
2

1√
2

1√
2

− 1√
2

0
1

 =

 1√
2

− 1√
2

 = |−⟩ (2.58)

There is also a parametric gate, called phase gate,which only changes the phase of the

qubit state. The matrix presentation of the phase gate is
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P (α) =

1 0

0 eiα

 (2.59)

with

P (α) |0⟩ =

1 0

0 eiα

1
0

 =

1
0

 = |0⟩ (2.60)

P (α) |1⟩ =

1 0

0 eiα

0
1

 =

 0

eiα

 = eiα |1⟩ . (2.61)

As we introduced the phase gate P (α), it is now a good time to underline a strange

behavior of phase gates in order to prevent a misunderstanding on the effect of phases

on the measurement outputs. As we already noted, two states are indistinguishable

by measurement if they differ with phases only. However, due to interference, phase

changes applied before some other gates has effects on the measurement results. Con-

sider the following quantum algorithm desribed as in the following steps.

• Step1: Initialize the qubit state as |0⟩.

• Step 2: Apply Hadamard gate.

• Step 3: Apply phase gate P (α).

• Step 4: Apply Hadamard gate again.

• Step 5: Do the measurement.

We know that if the phase gate is ignored, since H2 = I, we know that the the fi-

nal state would expected to be |0⟩ resulting in the probabilities p0 = 1 and p1 = 0.

However, we would have different probability distributions for the circuit we have

described above.

After Step 2, we will have 1√
2
|0⟩ + 1√

2
|1⟩. Applying the phase gate in Step 3 would

take this state to 1√
2
|0⟩+ eiα 1√

2
|1⟩.
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After Step 4, we obtain,  1√
2

1√
2

1√
2

− 1√
2

 1√
2

eiα 1√
2

 =

1+eiα

2

1−eiα

2

 (2.62)

Therefore, we would have

p0 =

(
1 + e−iα

2
⟨0|+ 1− e−iα

2
⟨1|
)
|0⟩ ⟨0|

(
1 + eiα

2
|0⟩+ 1− eiα

2
|1⟩
)

=

(
1 + e−iα

2

)
⟨0| |0⟩ ⟨0| |0⟩

(
1 + eiα

2

)
=

(
1 + e−iα

2

)(
1 + eiα

2

)
=

1 + cosα

2

(2.63)

With a similar calculation (or even using p0 + p1 = 1), one can conclude

p1 =
1− cosα

2

p2 =
1 + cosα

2

which are not the same probabilities with the former probabilities.

2.4 Many-qubit Systems and Entanglement

Many qubit systems in which information is encoded in a sequence of quantum sin-

gle states is provided using tensor products. In classical information theory, actually,

cartesian products are used to describe many-bit sytems. For example, a 2-bit se-

quence like 01 is just an information theoretic presentation of the cartesian product

0 × 1. an important thing to note about classical systems is when a new bit is added

to the n-bit, then the number of different bit strings doubles since 2n+1 = 2n × 2.

On the quantum computing scenario, tensor products are used to extend the systems.
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In 2-qubit systems for example, we have

|00⟩ = |0⟩ ⊗ |0⟩ =

1
0

⊗

1
0

 =


1

0

0

0



|01⟩ = |0⟩ ⊗ |1⟩ =

1
0

⊗

0
1

 =


0

1

0

0



|10⟩ = |1⟩ ⊗ |0⟩ =

0
1

⊗

1
0

 =


0

0

1

0



|11⟩ = |1⟩ ⊗ |1⟩ =

0
1

⊗

0
1

 =


0

0

0

1


Therefore, for two 1-qubit states |ψ1⟩ = α1 |0⟩ + β1 |1⟩ and |ψ2⟩ = α2 |1⟩ + β2 |1⟩,
we have

|ψ1⟩ ⊗ |ψ2⟩ = (α1 |0⟩+ β1 |1⟩)⊗ (α2 |0⟩+ β2 |1⟩)

= α1α2 |00⟩+ α1β2 |01⟩+ β1α2 |10⟩+ β1β2 |11⟩

Using the matrix notation, the same tensor product of the single qubits, |ψ1⟩ ⊗ |ψ2⟩,
can be formulated as:

|ψ1⟩ ⊗ |ψ2⟩ =

α1

β1

⊗

α2

β2

 =


α1α2

α2β2

β1α2

β1β2


The idea of using tensor products for extending the systems are also applicable in the

presentations of the quantum operators. For example, consider a 2-qubit state and
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assume Hadamard gate and X gate are to be applied on the first and second qubits,

respectively. Then, as a whole, this operation can be represented as

H ⊗X =

 1√
2

1√
2

1√
2

− 1√
2

⊗

0 1

1 0

 =


0 1√

2
0 1√

2

1√
2

0 1√
2

0

0 1√
2

0 − 1√
2

1√
2

0 − 1√
2

0

 .

Although the tensor product of two 1-qubit states results in a new 2-qubit state, in

general, it is not true that all 2-states can be restated as tensor product of single prod-

ucts. This mathematical fact actually has a very important consequence in quantum

mechanics, which could be explained in terms of entanglement. For example, con-

sider the state |Ψ⟩ = 1√
2
|00⟩ + 1√

2
|11⟩ and assume it can be written as |φ1⟩ ⊗ |φ2⟩

where |φ1⟩ = α1 |0⟩+ β1 |1⟩ and |φ2⟩ = α2 |0⟩+ β2 |1⟩ .

The assumption |Ψ⟩ = |φ1⟩ ⊗ |φ2⟩ would imply

1√
2
= α1α2

0 = α1β2

0 = β1α2

1√
2
= β1β2

which is impossible.

There exists an interesting 2-qubit gate whose action on one specific qubit depends

on the other qubit. It is called CNOT gate and its actions on the basis states are as in

the following.

CNOT |00⟩ = |00⟩

CNOT |01⟩ = |01⟩

CNOT |10⟩ = |11⟩

CNOT |11⟩ = |10⟩
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According to the setting in the equations above for the 2-qubit states in the computa-

tional basis, the first qubit is the control qubit and the CNOT gate acts as an identity

operator on it. However, this is not the case for the second qubit which is called as

the target qubit. If the first qubit is |0⟩, then the CNOT gate behaves like an identity

operator on the second qubit as well. Otherwise, if the second qubit is |1⟩, then it acts

on the second qubit as X operator and changes its value.

A very important note about the CNOT gate is the fact that it does not involve a

measurement on the first qubit. Any physical implementation of CNOT gate on a

quantum computing device must handle the challenging process of interconnecting

qubits in a way that the action needed to be taken on the target qubit is determined

without a measurement on the first qubit. This is due to the quantum mechanical

assumption that the quantum state collapses once it is measured. For example, assume

we have a superposition qubit stated as

|ψ⟩ = α |00⟩+ β |10⟩ .

If we attempt to perform a CNOT gate on|ψ⟩, then as the the output state we would

expect to have:

CNOT |ψ⟩ = CNOT (α |00⟩+ β |10⟩)

= CNOT (α |00⟩) + CNOT (β |10⟩)

= αCNOT (|00⟩) + βCNOT (|10⟩)

= α |00⟩+ β |11⟩

which is again a superposition state. However, if we would perform a measurement

on the first qubit of |ψ⟩ = α |00⟩+β |10⟩ and then decide on the action on the second

then, with probability |α|2 we would have the output state |00⟩ and with probability

|β|2 we would have |11⟩, but not a superposition of those basis states.

The CNOT gate, which fixes the states |00⟩ and |01⟩, but interchanges the states |10⟩
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and |11⟩ has the following matrix representation.

CNOT =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 .

Any two-qubit level quantum computing system which can initialize the system in the

state |00⟩ and can perform Hadamard and CNOT gates can generate entangled qubit

states. More explicitly, assume a quantum circuit which starts with the state |00⟩. We

first perform a Hadamard gate in the first qubit and get:

(H ⊗ I) |0⟩ = H(|0⟩) |0⟩

=
1√
2
(|0⟩+ |1⟩) |0⟩

=
1√
2
(|00⟩+ |10⟩).

If we now perform a CNOT gate on the state, where the first qubit is the control qubit

and the second qubit is the targe qubit, we get

CNOT (
1√
2
(|00⟩+ |10⟩)) = 1√

2
(CNOT (|00⟩) + CNOT (|10⟩))

=
1√
2
(|00⟩+ |11⟩).

Here we have two notes about generation of entangled qubit states. For the en-

tanglement generation, photonic systems have an advantage since SPDC (sponta-

neous parametric down conversion) type photon sources generate photon pairs which

are entangled to each other. As a second note, the circuit mentioned above cre-

ates entangled pairs for the initial state |00⟩ but not any generic two qubit state.

In order to see this, assume that we have two qubit state described in the form of

(α1 |0⟩+ β1 |1⟩)⊗ (α2 |0⟩+ β2 |1⟩)). If we apply a Hadamard gate on the first qubit,
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(omitting the ⊗ signs) we have

H(α1 |0⟩+ β1 |1⟩)(α2 |0⟩+ β2 |1⟩)

= (
α1√
2
|0⟩+ α1√

2
|1⟩+ β1√

2
|0⟩ β1√

2
|0⟩)(α2 |0⟩+ β2 |1⟩)

= (
α1 + β1√

2
|0⟩+ α1 − β1√

2
|1⟩)(α2 |0⟩+ β2 |1⟩)

=
(α1 + β1)α2√

2
|00⟩+ (α1 + β1)β2√

2
|01⟩

+
(α1 − β1)α2√

2
|10⟩+ (α1 − β1)β2√

2
|11⟩ .

After applying a CNOT operation, we obtain

CNOT
((α1 + β1)α2√

2
|00⟩

)
+ CNOT

((α1 + β1)β2√
2

|01⟩
)
+

CNOT
((α1 − β1)α2√

2
|10⟩

)
+ CNOT

((α1 − β1)β2√
2

|11⟩
)

=
(α1 + β1)α2√

2
|00⟩+ (α1 + β1)β2√

2
|01⟩+ (α1 − β1)α2√

2
|11⟩

+
(α1 − β1)β2√

2
|10⟩ .

The resulting state is entangled in almost all cases but not in all cases. As a more spe-

cific example, consider applying Hadamard followed by a CNOT circuit to the qubit

|φ⟩ = 1√
2
(|00⟩+ |10⟩).

With the Hadamard gate on the first qubit,

H ⊗ I(
1√
2
(|00⟩+ |10⟩)) = 1

2
(|00⟩+ |10⟩) + 1

2
(|00⟩ − |10⟩)

=
1

2
|00⟩+ 1

2
|00⟩

= |00⟩ .

After performing the CNOT gate, the resulting output state is obviously not entangled,
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since,

CNOT |00⟩ = |00⟩

= |0⟩ ⊗ |0⟩ .

2.5 Quantum State Discrimination

In a communication scheme based on quantum theory, the sender side, Alice, needs to

prepare a set quantum states |Φi⟩ in which the intended message is encoded. The role

of the quantum channel is to keep the states Φi unchanged or at least in a recoverable

way. Assuming no error occurred during the preparation and transmission, the crucial

part of the scheme is the measurement performed by the receiver side, Bob. Since the

states collapses, the quantum nature of the system will vanish once the measurements

are performed.

In a quantum communication scheme, Bob is not allowed to copy and store the qubits

and perform repeated measurements on the qubit state. This is a due to a very funda-

mental fact of quantum mechanics known as no-cloning theorem.

Theorem 2.5.1. [27] Unknown quantum states can not be cloned.

Proof. Assume C is the cloning operator, i.e for any n-qubit quantum state |ψ⟩ and a

standard pure state |e⟩,

C(|ψ⟩ |e⟩) = |ψ⟩ |ψ⟩ .

Then for any two different n-qubit states |ψi⟩ and |ψj⟩, under the cloning operator

assumption, we would have

C(|ψi⟩ |e⟩) = |ψi⟩ |ψi⟩

C(|ψj⟩ |e⟩) = |ψj⟩ |ψj⟩ .

Taking the inner product of the terms on the left hand side of the equations above, we

would have
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⟨e| ⟨ψi|C†C |ψj⟩ |e⟩ = ⟨e| ⟨ψi| I |ψj⟩ |e⟩

= ⟨e| ⟨ψi |ψj⟩ |e⟩

= ⟨e |e⟩ ⟨ψi |ψj⟩

= ⟨ψi |ψj⟩ .

(2.64)

Similarly, taking the inner product of the terms on the right hand side of the equations,

we would have

⟨ψi| ⟨ψi |ψj⟩ |ψj⟩ = ⟨ψi |ψj⟩ ⟨ψi |ψj⟩

= (⟨ψi |ψj⟩)2.
(2.65)

Since the Equation (2.65) and Equation (2.66) must be equal, we have

⟨ψi |ψj⟩ = (⟨ψi |ψj⟩)2

which implies

⟨ψi |ψj⟩ = 0

or

⟨ψi |ψj⟩ = 1

The first case ⟨ψi |ψj⟩ = 0 is the case when the two states |ψi⟩ and |ψj⟩ are orthogonal.

The second case however, implies our cloning assumption is not true, the equations

can only be obtained when |ψi⟩ = |ψj⟩.
Therefore, there does not exist a unitary transform that acts on the all qubit states as

a cloning map. Instead, if the state is known, an unitary transformation can be found

copying only the known state.

Consequently, only orthogonal states can be cloned.

When a qubit state is prepared as superposition of basis states, the measurement out-

come will definitely depend on the measurement operator applied. This is an impor-

tant fact especially for quantum communication schemes. In the most general sense,
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in quantum communication schemes , Alice sends quantum states to Bob and Bob is

supposed to measure the states genuinely in order to achieve the best decoding of in-

formation sent by Alice. In order to increase the efficiency, the states Alice is allowed

to prepare must have some restrictions.

Assume that Alice chooses her states from a finite set K = {|ψn⟩} consisting of

orthogonal quantum states. Then, for each |ψi⟩ ∈ K, Bob can make measurements

guided by the operators

Mi = |ψi⟩ ⟨ψi| .

For each Mi, there exists another operator

Di = I−Mi = I− |ψi⟩ ⟨ψi|

which corresponds to no click for event i.

For the measurements, as we discussed in Section 2.3., Bob will apply a measurement

which is a POVM. For Mi, we have,

⟨ψi|Mi |ψi⟩ = ⟨ψi| |ψi⟩ ⟨ψi| |ψi⟩ = 1.

When i ̸= j, for the other POVM’s Mj , we have

⟨ψi|Mj |ψi⟩ = ⟨ψi| |ψj⟩ ⟨ψj| |ψi⟩ = 0.

Therefore, when Alice prepares her states from a finite set of orthogonal states, then

Bob will be able to discriminate the quantum states he received.

However, if the states prepared by Alice are not orthogonal and if they are chosen

from an arbitrary set S = {|φn⟩}, then we will have the following for the measure-

ments:
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⟨φi|Mj |φi⟩ = ⟨φi| |φj⟩ ⟨φj| |φi⟩ ≠ 0

which makes it impossible to perfectly distinguish between the states. Therefore, the

states prepared by Alice must be orthogonal.

So far, we have the following two priority observations on orthogonal quantum states.

• Only orthogonal states can be cloned.

• Only orthogonal states can be distinguished by measurements.

The first observation, the fact that only orthogonal states can be cloned results in some

drawbacks for quantum computing devices. As the cloning is not possible in general,

repetition code like approaches can not be performed in quantum error correction

schemes. Moreover, the signal losses can not be solved by amplification, therefore,

quantum repeaters and quantum data storage devices must handle with losses with

different methods than classical ones. On the other hand, the first observation is use-

ful in quantum key distribution since it restricts the attacker. The second observation

is important for quantum communication protocols as we have already mentioned.

However, the two observations of orthogonal states are quite related to each other.

Actually, existence of one observation implies the other one.

To see the correspondence between the two observations, assume that Bob has re-

ceived two states |φ0⟩ and |φ1⟩ that can not be perfectly distinguished where the bits

0 and 1 are encoded respectively. We also assume that these are the only options Alice

have and she prepares |φ0⟩ with probability p0 and |φ1⟩ with probability p1 = 1− p0.

For the measurement then, the probability of error, Pe is calculated as, ( P (x|y) being

the conditional probability that the state |x⟩ is the output of the measurement on |y⟩.)

Pe = P (φ0)P (1|φ0) + P (φ1)P (0|φ1)

= p0 ⟨φ0|M1 |φ0⟩+ p1 ⟨φ1|M0 |φ1⟩

= p0 ⟨φ0|M1 |φ0⟩+ p1 ⟨φ1| I−M1 |φ1⟩

= p0 − Tr((p0 |φ0⟩ ⟨φ0| − p1 |φ1⟩ ⟨φ1|)M0).
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Taking

|φ0⟩ = cos θ |0⟩+ sin θ |1⟩

and

|φ1⟩ = cos θ |0⟩ − sin θ |1⟩

for a convenient θ, the eigenvalues of the operator

(p0 |φ0⟩ ⟨φ0| − p1 |φ1⟩ ⟨φ1|)

turn out to be

λ1 =
1

2
(p0 − p1 +

√
1− 4p0p1 cos2 2θ)

λ2 =
1

2
(p0 − p1 −

√
1− 4p0p1 cos2 2θ)

implying,

Pe =
1

2
(1−

√
1− 4p0p1|⟨φ0|φ1⟩|2) (2.66)

The statetement in Equation (2.67) is known as Helmstrom bound [14][3].

For n-qubit quantum systems where p0 = p1 = 1
2
, in [2] the Helmstrom bound is

stated as

Pe =
1

2
|⟨φ0|φ1⟩|2n

Under this setting, we now introduce two impossible scenarios known as no-go theo-

rems. In first scenario, assume that a perfect cloning transformation exists. Therefore,

for any non-orthogonal pair |φ0⟩ |φ1⟩ we can generate (|φ0⟩ |φ1⟩)⊗n.Therefore, if ar-

bitrarily large number of copies of |φ0⟩ |φ1⟩ is sent instead of a single copy , then the

probability of error in quantum state discrimination would approach 0 since

lim
n→∞

1

2
|⟨φ0|φ1⟩|2n = 0

Therefore, if quantum cloning were possible, then quantum state discrimination would

be possible as well.

As the second impossible scenario, assume that perfect quantum state discrimination
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is possible with a perfect discriminator machine, D. SinceD can distinguish between

the state and decide whether it is Ψ0 or Ψ1, one could use D for discriminating be-

tween the states and then create arbitrarily many copies of the known state.

Hence, as we discussed above, no-cloning and indistinguishability actually implies

each other. In the next section, we will describe a quantum key distribution proto-

col which directly emphasize the importance of no-cloning and indistinguishability

in application.

2.6 Quantum Key Distribution (QKD)

Despite the fact that most of the recent developments and achievements in modern

cryptography are in the field of asymmetric cryptography, theoretically speaking the

most secure cryptographic protocol ever is a symmetric protocol called One-Time

Pad (OTP). In OTP protocol, the sender and the receiver parties must agree on a key

beforehand, and the length of key must be equal to the length of the message being

transmitted. This is naturally a big drawback and the security of the protocol de-

creases if the same key is used more than once. If the key is used twice, then an

attacker would be able to get the sum of the messages sent in the binary form and

perform a succesful attack analysing the patterns of the language being used or the

communication routines.

In 1984, a quantum mechanics based data transmission protocol was proposed in or-

der to overcome the key sharing problem by Charles Bennett and Gilles Brassard [5].

The protocol named BB84 uses the polarizations of the photons in order to encode

the classical bits 0 and 1. As the sender, Alice needs to prepare and send the photons

to the receiver side, Bob. Bob is in the charge of receiving the photons and mea-

sure them. Once Bob completes the measurement process, they also need a classical

communication channel in order to agree on the key as a part of the information being

sent by Alice through the quantum channel. The classical channel used after quantum

communication need not be encrypted, but it has to be authentic.
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Before we dive into the steps of the BB84 protocol, we first study two different bases

B1 and B2 for 1-qubit systems. The bases are connected to each other with Equations

(2.57) and (2.58) and they are defined as

B1 = {|0⟩ , |1⟩} (2.67)

and

B2 = {|+⟩ = 1√
2
(|0⟩+ |1⟩), |−⟩ = 1√

2
(|0⟩ − |1⟩)} (2.68)

For the states in B1 we have,

⟨0|0⟩ =
[
1 0

]1
0

 = 1

⟨0|1⟩ =
[
1 0

]0
1

 = 0

⟨1|0⟩ =
[
0 1

]1
0

 = 0

⟨1|1⟩ =
[
0 1

]0
1

 = 1.

(2.69)

From the equations listed in (2.69) we understand that the states |0⟩ and |1⟩ are or-

thogonal to each other. Therefore, they can be cloned and moreover they can also

be perfectly distinguished from each other by applying convenient measurement op-

erators. Since they are distinguishable, it is a good idea to use them for quantum

communication protocols.

Similary, for the two states in B2, we have
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⟨+|+⟩ =
[

1√
2

1√
2

]
1√
2
1√
2

 = 1

⟨+|−⟩ =
[

1√
2

1√
2

]
1√
2

− 1√
2

 = 0

⟨−|+⟩ =
[

1√
2

− 1√
2

]
1√
2
1√
2

 = 0

⟨−|−⟩ =
[

1√
2

− 1√
2

]
1√
2

− 1√
2

 = 1.

(2.70)

Therefore, as seen in Equation (2.70), the states |+⟩ and |−⟩ are clonable and distin-

guishable as well. That makes the states in B2 a good choice for quantum communi-

cation protocols like the states in B1.

Moreover, if we consider the inner products of the vectors from different bases B1

and B2 we observe pattern as a result of calculations:

⟨+|0⟩ =
[

1√
2

1√
2

]1
0

 =
1√
2

⟨+|1⟩ =
[

1√
2

1√
2

]0
1

 =
1√
2

⟨−|0⟩ =
[

1√
2

− 1√
2

]1
0

 =
1√
2

⟨−|1⟩ =
[

1√
2

− 1√
2

]0
1

 = − 1√
2
.

(2.71)

Therefore, for two different quantum states |u⟩ and |v⟩ are taken from different sets
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B1 and B2, we always have

|⟨u|v⟩| = 1√
2
. (2.72)

The pattern in the Equation (2.72) is actually very useful. First, we were already

convinced that using the state vectors in B1 and B2 for a quantum communication

scheme was a good idea because they were clonable and distinguishable within each

other. With the Equations (2.72) we understand that even if Alice and Bob employs

their preparation and measurement process with different choices, the probabilty dis-

tributions of measurement outputs will be the same. Therefore, neither of the bases

choices offer an advantage to Alice and Bob. For example, if Alice decides to send

|+⟩ to transmit the information 0, and if Bob decides to measure it with respect to the

measurement operator corresponding to the states in B1, the probability that he will

measure 0 or 1 is one-half.

In BB84 quantum key distribution protocol, we assume that there exist a quantum and

classical channels between Alice and Bob. Also Alice is able to prepare photons and

Bob is able to detect them. When Alice prepares photons, she has to pick between the

computational basis B1 and the diagonal basis B2. For each bit of information being

sent, there are 4 scenarios:

• Alice wants to send 0 and choses B1, then she prepares the photon in the state

|0⟩.

• Alice wants to send 0 and choses B2, then she prepares the photon in the state

|+⟩.

• Alice wants to send 1 and choses B1, then she prepares the photon in the state

|1⟩.

• Alice wants to send 1 and choses B2, then she prepares the photon in the state

|−⟩.

After the preparation, Alice sends the photons to Bob via the quantum channel. Since

Bob does not know about Alice’s basis choice, he has to make a random guess. due
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to Equation (2.72), neither of the choices gives Bob an advantage. For Bob, we have

two scenarios:

• Bob makes the same basis choice with Alice. Then he will get the correct output

with probability 1.

• Bob makes the different basis choice with Alice. Then he will get the correct

output with probability 1
2
.

After Bob’s measurements on the transmitted photons, Alice and Bob use the authen-

ticated classical channel in order to reveal the basis they used for each photon in the

correct order. After receiving this information, they can determine the orders of the

photons they encoded using the same bases which is expected to be half of the cases.

On their measurement results, they discard the bits where they used distinct basis and

keep the parts where their selections were the same. If N photons were sent from

Alice to Bob, they now have
N

2
remaining bits.

In order to make sure that their communication was not eavesdropped, they compare

some part of the remaining
N

2
bits. When the transmission is eavesdropped by a ma-

licious actor Eve, she receives the photon send by Alice, meaasures it with respect to

a basis of her own choice. After the measurement, Eve sends a new photon to Bob

encoded with Eve’s measurement result. But in half of the cases, Eve will use a dif-

ferent basis rather than the basis Alice and Bob agreed on. For this reason, there will

some bits where Alice and Bob use the same basis but still obtain distinct measure-

ment results.

As an example, assume that both Alice and Bob use the computational basis for the

bit 0. Then Alice needs to prepare the state |0⟩ and send it to Bob via the quantum

channel eavesdropped by Eve. If Eve selects the diagonal basis and measures the state

|0⟩, with probability
1

2
she will obtain the result 0 and with probability

1

2
, she will

get 1. Therefore, she will prepere either |+⟩ or |−⟩ based on her measurement result.

In any case, with probability
1

2
Bob will get 0 as the result of his measurement and
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Alice will remain unnoticed. However, Bob will obtain 1 with probability
1

2
which is

not the value intended to be transmitted by Alice.

Therefore, when Eve chooses the bases which Alice and Bob use, she remains unno-

ticed for sure. Therefore, at least in half of the bits she leaves no noticable symptoms.

For the other half, i.e. when her basis is different, with probability
1

2
, she again

remains unnoticed, but leaves symptoms with probability
1

2
. Therefore, out of the

remaining
N

2
bits,

N

2
× 1

4
=

N

8
of them will differ due to existence of Eve. The

different bits can be detected when Alice and Bob share some part of their
N

2
bits

and compare them.

In the case the attacker Eve places herself in the classical channel, where the base

selections are transmitted after Bob’s measurements, again she will have no advan-

tages since the quantum part of the transmission is already over and she already made

her choices without knowing the selections of Alice and Bob. Therefore, there is no

need to consider encrpyting the classical channel in the real-world implementations

of BB84 protocol as long as the authenticity of the channel is provided.

2.7 Quantum Fourier Transform

In this section, we will describe Quantum Fourier Transformation (QFT) which re-

quires implementation of powers of roots of unity as coeffients to basis state vectors.

QFT is analogous to classical type Fourier Transforms and it is of critical importance

for many quantum algorithms.

Let |j⟩ be a basis state in a n-qubit level quantum system. The quantum Fourier

transform (QFT) is analogous to inverse discrete Fourier transform and it is defined

as

QFT (|j⟩) = 1√
N

N−1∑
k=0

ξjkN |k⟩

where N = 2n is the dimension of the complex vector space and ξN is a primitive

N-th root of unity.
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An alternative way of stating the formulation of the Quantum Fourier Transform

would be

QFT =
1√
N

N−1∑
k=0

N−1∑
j=0

ξjkN |k⟩ ⟨j| .

On an arbitrary basis state |α⟩ = |α1α2...αn⟩ of an n-qubit quantum system, QFT acts

as in the following:

QFT |α⟩ = 1√
N

N−1∑
k=0

ξαkN |k⟩

=
1√
N

N−1∑
k=0

e
2πiαk
2n |k⟩

=
1√
N

N−1∑
k=0

e
2πiα(

n∑
m=1

km2n−m)

2n |k⟩

=
1√
N

N−1∑
k=0

e
2παi(

n∑
m=1

km
2m

)
|k1k2...kn⟩

=
1√
N

N−1∑
k=0

n∏
m=1

e
2πiαkm

2m |k1k2...km⟩

=
1√
N

⊗
(|0⟩+ e

2πiα
2m |1⟩ .

(2.73)

More explicitly,

QFT (|α⟩) = 1√
N
(|0⟩+e

2πiα
2 |1⟩)⊗(|0⟩+e

2πiα
22 |1⟩)⊗· · ·⊗(|0⟩+e

2πiα
2n |1⟩). (2.74)

In order to conclude that Quantum Fourier Transform can be implemented in a quan-

tum algorithm as an operational component, we nend to show it is a unitary operator.

Note that the implementation QFT is in the core of many well-known quantum algo-

rithms like Shor’s algorithm.

Lemma 2.7.1. QFT is a unitary operator.
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Proof. We need to show (QFT )(QFT )† = I

(QFT )(QFT )† =
1√
N

N−1∑
k=0

N−1∑
j=0

ξjkN |k⟩ ⟨j| 1√
N

N−1∑
k′=0

N−1∑
j′=0

ξ−j′k′

N |k′⟩ ⟨j′|

=
1

N

∑
j,k,j′,k′

ξ
(jk−j′k′)
N |k⟩ ⟨j |j′⟩ ⟨k′|

=
1

N

∑
j,k,j′,k′

ξ
(jk−j′k′)
N |k⟩ δj,j′ ⟨k′|

=
1

N

∑
k,j,k′

ξ
(j(k−k′))
N |k⟩ ⟨k′|

=
∑
k,k′

δk,k′ |k⟩ ⟨k′|

=
∑
k

|k⟩ ⟨k|

= 1.

In 1-qubit quantum systems, where n = 1, N = 21 = 2, the quantum Fourier

transform and the Hadamard gate coincide with each other since their actions on the

basis state vectors |0⟩ and |1⟩ are the same.

QFT |0⟩ = 1√
2

1∑
k=0

ξ02 |k⟩

=
1√
2
(|0⟩+ |1⟩)

= |+⟩

= H(|0⟩)

and

QFT |1⟩ = 1√
2

1∑
k=0

ξk2 |k⟩

=
1√
2
(|0⟩ − |1⟩)

= |−⟩

= H(|1⟩).
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CHAPTER 3

MUTUALLY UNBIASED BASES AND SOME OF THEIR

CONSTRUCTIONS

Mutually unbiased bases are a specific kind of bases of Hilbert spaces with critical

importance for quantum information theory. In quantum information theory, data is

represented as a linear combinations of basis vectors thanks to the superposition prin-

ciple of quantum mechanics. The measurement operators, as we seen in the Chapter

2 are also defined with respect to the choice of basis states underlying the importance

of the selection of the bases.

Mutually unbiased bases are family of bases which encode the information in a way

that when the measurement is performed with respect to another basis from the fam-

ily, the output probability distribution of each basis state is equal. In formal terms,

mutually unbiased bases are defined as in the following.

Definition 3.0.1. Let H be a Hilbert space of dimension n and let E = {e1, e2, . . . , en}
and F = {f1, f2, . . . , fn} be two bases of H. Then, E and F are called mutually un-

biased bases (MUBs) if the following conditions are satisfied:

• ⟨ei|ej⟩ = 0 = ⟨fi|fj⟩ when i ̸= j.

• ⟨ei|ei⟩ = 1 = ⟨fi|fi⟩ for all 1 ≤ i ≤ n.

• |⟨ei|fj⟩|2 = 1
n

for all 1 ≤ i ≤ n and 1 ≤ j ≤ n.

The very first introduction of mutually unbiased bases was provided by Schwinger in
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1960 [24]. 20 years later, in 1980, Alltop described a way of constructing mutually

unbiased bases without realizing the correspondence of the mutually unbiased bases

with quantum mechanics and quantum information theory [1]. Ivanovic was the first

one considering the applications of mutually unbiased bases in the quantum side[16].

In this chapter, we first introduce some algebraic concepts needed in order to a have

good understanding of some constructions of mutually unbiased bases. Later, we will

describe some methods to construct mutually unbiased bases.

3.1 Characters and Their Properties

In this section we introduce the characters of groups and some of their properties.

Since fields are intrinsically made up of two groups, we will also describe the use of

characters on field. Our main reference in this section is [20].

Definition 3.1.1. Given a finite abelian group G, a character on G is an homomor-

phism χ : G −→ S1 ⊂ C.

We note that S1 is the set of complex numbers whose norm is 1, basically it is the unit

circle. Therefore, any point in S1 can obviously be stated as eiθ. Since homomor-

phisms are defined between groups, we emphasize the group structure of S1. Given

any two points eiθ1 , eiθ2 their ordinary product eiθ1eiθ2 = ei(θ1+θ2) is also on S1. Also

e0 = 1 ∈ S1 and for any θ, eiθe−iθ = 1. Moreover, the multiplicative group S1 is

isomorphic to special orthogonal group SO(2). Indeed, there is a lot to say about the

group structure of S1, like its Lie group structure and its topological aspect, but they

are not directly related to this study.

For a finite cyclic group G, the characters on G can be described as in the following.

Since G is assumed to be cyclic, there exists an element g ∈ G such that G = |g| and

any element of G is of the form gk for some integer k where 0 ≤ k ≤ n− 1 where n

is the order of G. For any integer j such that 0 ≤ j ≤ n− 1, define

χj(g
k) = e

2πijk
n . (3.1)
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Since χj maps G into the unit circle S1 and it satisfies

χj(g
kgl) = χ(g(k+l)) = e

2πij(k+l)
n = e

2πijk
n e

2πijl
n = χj(g

k)χj(g
l)

it is a character on G. Moreover, for any other character χ on the cyclic group G,

since

(χ(g))n = χ(gn) = χ(e) = 1,

(where e is the identity element in G), χ(g) must be an n-th root of unity. Therefore,

χ(g) = e
2πij
n for some integer j.

Given a finite abelian group G, the set of characters on G is denetod by G∧. G∧ is

actually another group with respect to the multiplication operation. Moreover, as G∧

is itself a group, it has its own group of characters constructed in terms of characters

of G as in the following.

Considering G∧ as a group of characters of a finite abelian group G, define the ho-

momorphism

g :G∧ −→ S1

g(χ) = χ(g)

for any g ∈ G. Obviously, for any χ1, χ2 ∈ G∧,

g(χ1χ2) = (χ1χ2)(g) = χ1(g)χ2(g) = g(χ1)g(χ2).

The group of characters on G∧ is denoted by G∧∧. Fixing an element of G∧ and G∧∧

respectively we get the following two lemmas.

Lemma 3.1.2. For a fixed χ ∈ G∧ where χ is not identically 1,
∑

g∈G χ(g) = 0

Proof. Since χ is not identically 1, there exists an a ∈ G such that χ(a) ̸= 1. Then

χ(a)
∑
g∈G

χ(g) =
∑
g∈G

χ(a)χ(g) =
∑
g∈G

χ(ag) =
∑
g∈G

χ(g)
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which implies
∑

g∈G χ(g) = 0.

We also have a similar lemma for G∧∧ whose proof is very similar to the proof of

Lemma 1. Therefore we state the lemma but omit the proof.

Lemma 3.1.3. For g ∈ G which not the identity element of G,
∑

χ∈G∧ χ(g) = 0.

In the following lemma, we state a correspondence between G and G∧ in terms of

their orders as groups.

Lemma 3.1.4. For any finite abelian group G, |G|= |G∧|.

Proof. Consider the double summation∑
g∈G

∑
χ∈G∧

χ(g).

during the iteration on G, by Lemma 3.2.3, the interior summand
∑

χ∈G∧
χ(g) does not

vanish only when g is the identity element of G. When g is the identity element,

χ(g) = 1, therefore,∑
g∈G

∑
χ∈G∧

χ(g) =
∑
χ∈G∧

χ(g) =
∑
χ∈G∧

1 = |G∧|

Similarly, we also have (taking χe as the trivial character),∑
χ∈G∧

∑
g∈G

χ(g) =
∑
g∈G

χe(g) =
∑
g∈G

1 = |G|.

Therefore, we conclude that |G|= |G∧|.

The following theorem introduces the orthogonality conditions on the characters. We

note that for a character χ, its complex conjugate is another character and it is denoted

as χ.

Theorem 3.1.5. Given two characters χ, φ on G,

1

|G|
∑
g∈G

χ(g)φ(g) =

1 if χ = φ

0 if χ ̸= φ
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and given two elements g, h ∈ G

1

|G|
∑
χ∈G∧

χ(g)χ(h) =

1 if g = h

0 if g ̸= h

Proof. We note that only first equation will be proved since the second equation can

be proved in a quite similar way.

Given two characters χ and φ on G, noting that φ is again a homomorphism, the

product χφ is another character on G since it still maps G into S1 and the product of

two homomorphisms is again a homomorphism. In the case χ = φ, the product χφ

is the trivial character identically equal to 1.

However, when χ = φ,

1

|G|
∑
g∈G

χ(g)φ(g) =
1

|G|
∑
g∈G

χ(g)χ(g) =
1

|G|
∑
g∈G

1 = 1.

For the other case, i.e when χ ̸= φ, the product χφ is a non-trivial character on G and

by Lemma 3.2.2, ∑
g∈G

χ(g)φ(g) = 0.

Therefore, when χ ̸= φ,
1

|G|
∑
g∈G

χ(g)φ(g) = 0.

The proof for the second equation can be obtained quite similarly.

We now extend the descriptions of the characters and their properties from groups to

finite fields. Since any field already contains two group structures (additive and mul-

tiplicative groups) it is natural to describe two distinct character structures on fields.

We start with the additive groups.

Let Fq be the finite field with q = pm for a prime integer p. All the elements of Fq

form a group with respect to addition. A well-known way of moving from Fq to the

prime field Fp is to employ trace function, defined as

Tr(c) = c+ cq + · · ·+ cq
m−1

(3.2)
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for any c ∈ Fq.

Note that Tr : Fq :−→ Fp is already a homomorphism between the additive groups

of Fq and Fp since

Tr(c1 + c2) = Tr(c1) + Tr(c2)

for any c1, c2 ∈ Fq. As a result of this fact, the canonical additive character χ1 on the

finite field Fq is defined as

χ1(c) = e2πiTr(c)/p

for all c ∈ Fq.

Under this setting, for any c1, c2 ∈ Fq, we have

χ1(c1 + c2) = e2πiTr(c1+c2)/p

= e2πi(Tr(c1)+Tr(c2))/p

= e2πiTr(c1)/pe2πiTr(c2)/p

= χ1(c1)χ1(c2).

Comparing to the descriptions of characters on additive groups on finite field, the

descriptions of characters on multiplicative groups are more simple. For this, let F∗
q

denote the multiplicative group of Fq . Also, let g be a fixed primitive element of Fq.

Then the function φj defined as

φj(g
k) = e2πijk/(q−1)

where j is an integer with 0 ≤ j ≤ q − 2 is a character of F∗
q .

We have the following orthogonality and summation conditions for additive charac-

ters χa , χb and multiplicative characters φ, τ on finite fields.

∑
c∈Fq

χa(c)χb(c) =

0 if a ̸= b

q if a = b
(3.3)

54



∑
c∈Fq

χa(c) = 0 when a ̸= 0 (3.4)

∑
b∈Fq

χb(c)χb(d) =

0 if c ̸= d

q if c = d
(3.5)

∑
c∈F∗

q

φ(c)τ(c) =

0 if φ ̸= τ

q − 1 if φ = τ
(3.6)

∑
c∈F∗

q

φ(c) = 0 when φ ̸= φ0 (3.7)

∑
φ

φ(c)φ(d) =

0 if c ̸= d

q − 1 if c = d
(3.8)

Given a multiplicative character φ and an additive character χ on a finite field Fq,

the summation formulated as G(φ, χ) =
∑
c∈F∗

q

φ(c)χ(c) is called a Gaussian sum. We

have the following theorem for the Gaussian sums.

Theorem 3.1.6. For a multiplicative character φ and an additive character χ on Fq,

the Gaussian sum G(φ, χ) satisfies

G(φ, χ) =


q − 1 if φ = φ0 and χ = χ0

−1 if φ = φ0 and χ ̸= χ0

0 if φ ̸= φ0 and χ = χ0

In the only remaining case, where φ ̸= φ0 and χ ̸= χ0, we have

|G(φ, χ)|= q1/2.
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Proof. We only give a proof for the last case (φ ̸= φ0 and χ ̸= χ0) since the first

three cases can easily be obtained from the orthogonality conditions.

For the only remaining case, note that for any complex number z, |z|2= zz. Therefore

|G(φ, χ)|2 = G(φ, χ)G(φ, χ)

=
∑
c∈F∗

q

∑
c1∈F∗

q

φ(c)χ(c)φ(c1)χ(c1)

=
∑
c∈F∗

q

∑
c1∈F∗

q

φ(c−1c1)χ(c1 − c).

Take c−1c1 = d. Then,

c1 − c = c(c1c
−1 − 1) = c(d− 1).

Therefore,

|G(φ, χ)|2 =
∑
c∈F∗

q

∑
d∈F∗

q

φ(d)χ(c(d− 1))

=
∑
d∈F∗

q

φ(d)(
∑
c∈Fq

χ(c(d− 1))− χ(0))

=
∑
d∈F∗

q

φ(d)(
∑
c∈Fq

χ(c(d− 1)))

When d = 1, the sum
∑
c∈Fq

χ(c(d− 1)) turns out to be

∑
c∈Fq

χ(0) =
∑
c∈Fq

1 = q.

On the other hand, when d ̸= 1,∑
c∈Fq

χ(c(d− 1)) = 0

Therefore,

|G(φ, χ)|2 =
∑
d∈F∗

q

φ(d)(
∑
c∈Fq

χ(c(d− 1)))

= φ(1)(
∑
c∈Fq

χ(0))

= q
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which implies

|G(φ, χ)|= √
q.

By using the orthogonality conditions of characters, characters can be written in terms

of Gaussian sums. The following lemma offers a restatement of characters using

Gaussian sums.

Lemma 3.1.7. Let φ and χ be multiplicative and additive characters of the finite field

Fq. Then, for any c ∈ F∗
q ,

• φ(c) = 1
q

∑
χ

G(φ, χ)χ(c)

• χ(c) = 1
q−1

∑
χ

G(φ, χ)φ(c).

Proof. For the multiplicative character φ, we claim that

φ(c) =
1

q

∑
d∈F∗

q

φ(d)
∑
b∈Fq

χb(c)χb(d). (3.9)

In Equation (3.9) above, we note that by the orthogonality condition (Equation 3.7),

the summand
∑
b∈Fq

χb(c)χb(d) is equal to q when c = d and vanishes for all other

cases. Then we can write
1

q

∑
d∈F∗

q

φ(d)
∑
b∈Fq

χb(c)χb(d) =
1

q
φ(c)

∑
b∈Fq

χb(c)χb(c)

=
1

q
φ(c)q

= φ(c).

Therefore

φ(c) =
1

q

∑
d∈F∗

q

φ(d)
∑
b∈Fq

χb(c)χb(d)

=
1

c

∑
b∈Fq

χb(c)
∑
d∈F∗

q

φ(d)χb(d)

=
1

q

∑
χ

G(φ, χ)χ(c).
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Similarly, for the additive character χ, we write

χ(c) =
1

q − 1

∑
d∈F∗

q

χ(d)
∑
φ

φ(c)φ(d)

=
1

q − 1

∑
φ

φ(c)
∑
d∈F∗

q

φ(d)χ(d)

=
1

q − 1

∑
φ

G(φ, χ)φ(c).

Theorem 3.1.8. Let χ be a nontrivial additive character of Fq, n ∈ N and λ a multi-

plicative character of Fq of order d = gcd(n, q − 1). Then

∑
c∈Fq

χ(acn + b) = χ(b)
d−1∑
j=1

λj(a)G(λj, χ)

for any a, b ∈ Fp with a ̸= 0.

Proof. Defining a new non-trivial additive character τ where τ(c) = χ(ac), the sum-

mation
∑
c∈Fq

χ(acn + b) can be reformulated as

∑
c∈Fq

χ(acn + b) = χ(b)
∑
c∈Fq

χ(acn)

= χ(b)
∑
c∈Fq

τ(cn).
(3.10)

Since τ is an additive character, by Lemma 3.2.7, we can state

τ(cn) =
1

q − 1

∑
φ

G(φ, τ)τ(cn)

Moreover, ∑
c∈Fq

τ(cn) =
∑

c∈{0}∪F∗
q

τ(cn)

= τ(0) +
∑
c∈F∗

q

τ(cn)

= 1 +
1

q − 1

∑
φ

G(φ, τ)
∑
c∈F∗

q

φn(c).
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The very last part of the equation,
∑
c∈F∗

q

φn(c) equals q − 1 if and only if φn is trivial.

Otherwise, it is zero. On the other hand, φn is trivial if and only if its order divides

d.For that reason, we must have φ = λj where j ∈ {0, 1, ..., d− 1}.

Therefore

∑
c∈Fq

τ(cn) = 1 +
d−1∑
j=0

G(λj, τ)

=
d−1∑
j=1

G(λj, τ).

(3.11)

Plugging Equation (3.13) into Equation (3.12) we conclude,

∑
c∈Fq

χ(acn + b) = χ(b)
∑
c∈Fq

χ(acn)

= χ(b)
∑
c∈Fq

τ(cn)

= χ(b)
d−1∑
j=1

G(λj, τ)

= χ(b)
d−1∑
j=1

λ
j
(a)G(λj, χ).

(3.12)

Theorem 3.1.9. Let χ be a non-trivial additive character of Fq where q is a power of

an odd prime, and let f(x) = a2x
2 + a1x + a0 ∈ Fq[x] be a polynomial of degree 2.

Then ∑
c∈Fq

χ(f(c)) = χ(a0 − a21(4a2)
−1)η(a2)G(η, χ)

where η is the quadratic character.

Proof. First, we reformulate f(x) = a2x
2 + a1x+ a0 ∈ Fq[x] as

f(x) = a2(x+ a1(2a2)
−1)2 + a0 − a21(4a2)

−1.

59



This reformulation is a correct one, since

a2(x+ a1(2a2)
−1)2 + a0 − a21(4a2)

−1

= a2(x
2 + a21(4a

2
2)

−1 + 2xa1(2a2)
−1) + a0 − a21(4a

−1
2 )

= a2x
2 + a214a

−1
2 + 4xa1 + a0 − a1(4a

−1
2 )

= a2x
2 + a1x+ a0

= f(x).

Therefore, relying on this formulation, we can write

f(c) = a2(c+ a1(2a2)
−1)2 + a0 − a21(4a2)

−1.

Now setting

α = c+ a1(2a2)
−1

and

β = a0 − a21(4a2)
−1

and using Theorem 3.1.8, we obtain∑
c∈Fq

χ(f(c)) =
∑
α∈Fq

χ(a2α
2 + β)

= χ(β)η(a2)G(η, χ)

= χ(a0 − a21(4a2)
−1)η(a2)G(η, χ).

Definition 3.1.10. Let f be a polynomial in Fq[x]. Then f is called a permutation

polynomial if the mapping c −→ f(c) permutes in Fq, i.e f(x) = a has a unique

solution in Fq for each a ∈ Fq.

Lemma 3.1.11. [22] Let L(x) ∈ Fq[x] defined as

L(x) =
n−1∑
i=0

aix
pi .

Then for any c ∈ Fq,

Tr(cL(x)) = Tr(xL∗(c))

where L∗(x) =
n−1∑
i=0

ap
n−i

i xp
n−i
.
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Proof. We first note, for all a ∈ Fq,

Tr(a) =
n−1∑
i=0

ap
i

=

(
n−1∑
i=0

ap
i

)p

=
n−1∑
i=0

(
ap

i
)p

=
n−1∑
i=0

(ap)p
i

= Tr(ap).

We calculate,

Tr(cL(x)) = Tr(c
n−1∑
i=0

aix
pi)

= Tr(
n−1∑
i=0

caix
pi)

=
n−1∑
j=0

(
n−1∑
i=0

caix
pi

)pj

=
n−1∑
j=0

(
n−1∑
i=0

cp
j

ap
j

i x
pi+j

)
.

On the other hand,

Tr(xL∗(c)) = Tr(x
n−1∑
i=0

ap
n−i

i cp
n−i

)

= Tr(
n−1∑
i=0

xap
n−i

i cp
n−i

)

=
n−1∑
j=0

(
n−1∑
i=0

xp
j

ap
n−i+j

i cp
n−i+j

)

=
n−1∑
j=0

(
n−1∑
i=0

xp
j

ap
j−i

i cp
j−i

)

=
n−1∑
j=0

(
n−1∑
i=0

xp
i+j

ap
j

i c
pj

)
= Tr(cL(x)).
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3.2 Some Constructions of Mutually Unbiased Bases

The following theorem describes the first construction mutually unbiased bases in-

cluded in our study.

Theorem 3.2.1. (Theorem 1 in [18]) Let Fq be a finite field with characteristic p ≥ 5.

For any α, λ ∈ Fq , set the vectors

bλ,α =
1
√
q
(ξTr((k+α)3+λ(k+α))

p )

where k ∈ Fq and ξp is the p-th complex root of unity. Then, under this setting, the sets

Bα = {bλ,α|λ ∈ Fq} with the standard basis form q + 1 distinct mutually unbiased

bases of Cq.

Proof. Let bλ1,α, bλ2,α be two vectors from the set Bα. Then, their inner product is

⟨bλ1,α, bλ2,α⟩ =
1

q

∑
k∈Fq

ξTr((k+α)3+λ2(k+α)−(k+α)3−λ1(k+α))
p

=
1

q

∑
k∈Fq

ξTr(λ2(k+α)−λ1(k+α))
p

=
1

q

∑
k∈Fq

ξTr((λ2−λ1)(k+α))
p

If the two vectors are the same, i.e λ2 = λ1, then

⟨bλ1,α, bλ1,α⟩ =
1

q

∑
k∈Fq

ξTr((λ1−λ1)(k+α))
p

=
1

q

∑
k∈Fq

ξTr(0)
p

=
1

q

∑
k∈Fq

1

=
1

q
q

= 1.
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If the two vectors are distinct, i.e λ2 ̸= λ1 then,

⟨bλ1,α, bλ2,α⟩ =
1

q

∑
k∈Fq

ξTr((λ2−λ1)(k+α))
p

=
1

q
0

= 0

(3.13)

where we used ∑
k∈Fq

ξTr((λ2−λ1)(k+α))
p = 0

since k ranges through all elements in the finite field Fq and λ2 − λ1 ̸= 0.

When the vectors are picked from two distinct sets, bλ1,α1 ∈ Bα1 , bλ2,α2 ∈ Bα2 , we

have the inner product

⟨bλ1,α1 , bλ2,α2⟩ =
1

q

∑
k∈Fq

ξTr((k+α2)3+λ2(k+α2)−(k+α1)3−λ1(k+α1))
p

=
1

q

∑
k∈Fq

ξTr(k3+3k2a2+3ka22+a32+λ2k+λ2a2−k3−3k2a1−3ka21−a31−λ1k−λ1a1)
p

=
1

q

∑
k∈Fq

ξTr((3a2−3a1)k2+(3a22−3a21+λ2−λ1)k+a32−a31+λ2a2−λ1a1).
p

Setting

A2 = 3a2 − 3a1

A1 = 3a22 − 3a21 + λ2 − λ1

A0 = a32 − a31 + λ2a2 − λ1a1

we have,

⟨bλ1,α1 , bλ2,α2⟩ =
1

q

∑
k∈Fq

ξTr((3a2−3a1)k2+(3a22−3a21+λ2−λ1)k+a32−a31+λ2a2−λ1a1)
p

=
1

q

∑
k∈Fq

ξTr(A2k2+A1k+A0)
p

=
1

q

∑
k∈Fq

χ(A2k
2 + A1k + A0)

where we define the nontrivial character χ(A2k
2 + A1k + A0) as

χ(A2k
2 + A1k + A0) = ξTr(A2k2+A1k+A0)

p .
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By Theorem 3.1.9 we have,

⟨bλ1,α1 , bλ2,α2⟩ =
1

q

∑
k∈Fq

χ(A2k
2 + A1k + A0)

=
1

q
χ(A0 − A2

1(4(A2)
−1)η(A2)G(η, χ).

Therefore, using the fact that both the characters ν and χ are non-trivial and Theorem

3.1.6,

|⟨bλ1,α1 , bλ2,α2⟩| = |1
q
χ(A0 − A2

1(4(A2)
−1)η(A2)G(η, χ)|

=
1

q
|χ(A0 − A2

1(4(A2)
−1)| × |η(A2)| × |G(η, χ)|]

=
1

q

√
q

=
1
√
q
.

For the inner product with the standard base, since the root of unity has norm 1 and

each base set has a coefficient 1√
q
, the norm of the inner product is 1√

q
.

Therefore, the sets described in the statement of the thereom builds q + 1 mutually

unbiased bases.

The following theorem describes a way of building mutually unbiased bases even

when p = 3. We note that p = 3 case was not covered in Theorem 3.2.1.

Theorem 3.2.2. (Theorem 2 in [18]) Let Fq be a finite field with odd characteristic p.

For any a, b ∈ Fq, set the vectors

va,b =
1
√
q
(ξTr(ak2+bk))

p )

where k ∈ Fq and ξp is the p− th complex root of unity. Then, under this setting, the

setsBa = {va,b|λ ∈ Fq} with the standard basis form q+1 distinct mutually unbiased

bases of Cq.
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Proof. For any two vectors, say va,b and vc,d, we have the inner product

⟨vc,d, va,b⟩ =
1

q

∑
k∈Fq

ξTr(ak2+bk−ck2−dk)
p

=
1

q

∑
k∈Fq

ξTr((a−c)k2+(b−d)k)
p .

When the two vectors are the same, i.e, a = c and b = d, we would have

⟨va,b, va,b⟩ =
1

q

∑
k∈Fq

ξTr((a−a)k2+(b−b)k)
p

=
1

q

∑
k∈Fq

ξ0p

=
1

q

∑
k∈Fq

1

=
1

q
q

= 1.

If the two vectors are picked from the same Ba set as distinct vectors, i.e. a = c but

b ̸= d, then

⟨va,d, va,b⟩ =
1

q

∑
k∈Fq

ξTr((a−a)k2+(b−d)k)
p

=
1

q

∑
k∈Fq

ξTr((b−d)k)
p

=
1

q
0

= 0.

Here we have ∑
k∈Fq

ξTr((b−d)k)
p = 0

since k ranges through all the field Fq.
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For the remaining case, a ̸= c and b ̸= d, we set

A2 = a− c

A1 = b− d

A0 = 0

Then,

⟨vc,d, va,b⟩ =
1

q

∑
k∈Fq

ξTr((a−c)k2+(b−d)k)
p

=
1

q

∑
k∈Fq

ξTr(A2k2+A1k)
p

By Theorem 3.1.9,

⟨vc,d, va,b⟩ =
1

q

∑
k∈Fq

ξTr(A2k2+A1k)
p

=
1

q

∑
k∈Fq

χ(A2k
2 + A1k)

=
1

q
χ(−A2

1(4(A2)
−1)η(A2)G(η, χ).

Therefore, as the norm of the inner product,

|⟨vc,d, va,b⟩| = |1
q
χ(−A2

1(4(A2)
−1)η(A2)G(η, χ)|

=
1

q
|χ(−A2

1(4(A2)
−1)||η(A2)||G(η, χ)|

=
1

q

√
q

=
1
√
q
.

The inner product with the vectors in the standard basis would again be 1√
q

since each

component has unit length and the base sets have a coefficient term 1√
q
. Therefore,

the setsBa with the standard basis build up q+1 mutually unbiased bases for Cq.

In the following theorem, a way of constructing mutually unbiased bases using bent

functions are described. However, we need to introduce some terminology before-

hand.
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Given a p-ary function from Fq to Fp, where q = pm, the Walsh transform of f(x) at

a point β ∈ Fq is defined as

Wf (β) =
∑
x∈Fq

ξf(x)−Tr(βx)
p

If |Wf (β)|= p
n
2 for all β ∈ Fq, then f(x) is called a bent function. Moreover,

under the same setting, if there exists a complex number c of unit norm satisfying

Wf (β) = cp
n
2 ξ

f∗(β)
p for some function f ∗(x), f is called a weakly regular function.

For a weakly regular function f(x), the function f ∗(x) is called the dual of f(x).

Theorem 3.2.3. (Theorem 3.1 in [22]) Let Fq be a finite field with characteristic p,

i.e q = pn for some n. Moreover, let D = {(x, y) ∈ Fq × Fp : f(x) + y = 0} where

f is a p-ary weakly regular bent function. Set

va,b =
1
√
q
(ξTr(ax+by)

p )(x,y)∈D =
1
√
q
(χ(ax+ by))(x,y)∈D ∈ Vb

where ξp is the p−th complex root of unity. SetB = Fq/ ∼ where ∼ is an equivalence

relation on Fq defined by

(b1 ∼ b2 ⇐⇒ Tr(b1 − b2) = 0).

The set

A = (
⋃
b∈B

Vb) ∪ {ϵq}

where ϵq is the standard basis, forms a set of p+ 1 mutually unbiased bases of Cq.

Proof. First, we would like to note that in this theorem we construct only p+1 bases,

not q+1. We need to see MUB conditions are satisfied with respect to the Hermitian

inner product. For any b1, b2 ∈ B and a1, a2 ∈ Fq we have

⟨va2,b2 , va1,b1⟩ =
1

q

∑
(x,y)∈D

ξTr(a1−a2)x+(b1−b2)y
p

=
1

q

∑
x∈Fq

∑
y∈Fp

1

p

∑
z∈Fp

ξz(f(x)+y)+Tr((a1−a2)x+(b1−b2)y)
p

(3.14)

In Equation (3.14), x, y values initially taken from the set D ⊂ Fq × Fp are extended

to all of Fq × Fp in a clever way. Note that when the pair (x, y) is in D, we have
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1

p

∑
z∈Fp

ξz(f(x)+y))+Tr((a1−a2)x+(b1−b2)y)
p =

1

p

∑
z∈Fp

ξTr((a1−a2)x+(b1−b2)y)
p

since f(x) + y = 0. Note that the summation is repeated p times z ∈ Fp, therefore

the coefficient
1

p
cancels out.

We now expect the equation to vanish when (x, y) ∈ Fq × Fp \ D since we already

have established the Equation (3.16) when (x, y) ∈ D. Note that f(x) + y ̸= 0 when

(x, y) ∈ Fq × Fp \D.

Assuming (x, y) ∈ Fq × Fp \D,

1

p

∑
z∈Fp

ξz(f(x)+y))+Tr((a1−a2)x+(b1−b2)y)
p =

1

p
ξTr((a1−a2)x+(b1−b2)y)
p

∑
z∈Fp

ξz(f(x)+y)
p = 0

since ∑
z∈Fp

ξz(f(x)+y)
p = 0.

We continue with

⟨va2,b2 , va1,b1⟩ =
1

q

∑
x∈Fq

∑
y∈Fp

1

p

∑
z∈Fp

ξz(f(x)+y)+Tr((a1−a2)x+(b1−b2)y)
p

=
1

pq

(∑
x∈Fq

ξTr((a1−a2)x)
p

∑
y∈Fp

ξTr((b1−b2)y)
p

+
∑
z∈F∗

p

∑
x∈Fq

ξzf(x)+Tr((a1−a2)x)
p

∑
y∈Fp

ξzy+Tr((b1−b2))y)
p

)
.

(3.15)

Equation (3.15) states the formulation of ⟨va2,b2 , va1,b1⟩ in the form of two summands.

The first summand, ∑
x∈Fq

ξTr((a1−a2)x)
p

∑
y∈Fp

ξTr((b1−b2)y)
p

corresponds to the case z = 0. The second one,∑
z∈F∗

p

∑
x∈Fq

ξzf(x)+Tr((a1−a2)x)
p

∑
y∈Fp

ξzy+Tr((b1−b2))y)
p )

corresponds to the remaining case, z ∈ F∗
p.
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Therefore, we finally have

⟨va2,b2 , va1,b1⟩ =
1

pq
(
∑
x∈Fq

ξTr((a1−a2)x)
p

∑
y∈Fp

ξTr((b1−b2)y)
p

+
∑
z∈F∗

p

∑
x∈Fq

ξzf(x)+Tr((a1−a2)x)
p

∑
y∈Fp

ξzy+Tr((b1−b2))y)
p ).

(3.16)

Now, in order to check MUB conditions, we pick two vectors va1,b1 , va2,b2 from the

same basis set, i.e. b1 = b2. With this condition,

⟨va2,b1 , va1,b1⟩ =
1

pq
(
∑
x∈Fq

ξTr((a1−a2)x)
p

∑
y∈Fp

ξTr(0)
p

+
∑
z∈F∗

p

∑
x∈Fq

ξzf(x)+Tr((a1−a2)x)
p

∑
y∈Fp

ξzy+Tr(0)
p )

=
1

pq
(
∑
x∈Fq

ξTr((a1−a2)x)
p

∑
y∈Fp

1 +
∑
z∈F∗

p

∑
x∈Fq

ξzf(x)+Tr((a1−a2)x)
p

∑
y∈Fp

ξzyp )

=
1

pq
(p
∑
x∈Fq

ξTr((a1−a2)x)
p +

∑
z∈F∗

p

∑
x∈Fq

ξzf(x)+Tr((a1−a2)x)
p

∑
y∈Fp

(ξzp)
y)

=
1

pq
(p
∑
x∈Fq

ξTr((a1−a2)x)
p +

∑
z∈F∗

p

∑
x∈Fq

ξzf(x)+Tr((a1−a2)x)
p .0)

=
1

pq
(p
∑
x∈Fq

ξTr((a1−a2)x)
p )

=
1

q
(
∑
x∈Fq

ξTr((a1−a2)x)
p )

(3.17)

When the vectors va1,b1 andva2,b1 are the same vectors, i.e, a1 = a2,

⟨va1,b1 , va1,b1⟩ =
1

q
(
∑
x∈Fq

ξTr((a1−a1)x)
p )

=
1

q
(
∑
x∈Fq

ξTr(0)
p )

=
1

q
(
∑
x∈Fq

1)

=
1

q
(q)

= 1.

(3.18)
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Otherwise, if the vectors va1,b1 andva2,b1 are distinct vectors, i.e, a1 ̸= a2,

⟨va2,b1 , va1,b1⟩ =
1

q
(
∑
x∈Fq

ξTr((a1−a2)x)
p )

=
1

q
(
∑
x∈Fq

(ξTr((a1−a2)x)
p )

=
1

q
(0)

= 0.

(3.19)

If we happen to pick two basis vectors va1,b1 , va2,b2 from two distinct base sets, i.e.

b1 ̸= b2,

⟨va2,b2 , va1,b1⟩ =
1

pq
(
∑
x∈Fq

ξTr((a1−a2)x)
p

∑
y∈Fp

ξTr((b1−b2)y)
p

+
∑
z∈F∗

p

∑
x∈Fq

ξzf(x)+Tr((a1−a2)x)
p

∑
y∈Fp

ξzy+Tr((b1−b2)y)
p )

=
1

pq

∑
z∈F∗

p

∑
x∈Fq

ξzf(x)+Tr((a1−a2)x)
p

∑
y∈Fp

ξzy+Tr((b1−b2)y)
p .

(3.20)

In Equation (3.20), the first part of the equation vanishes since∑
y∈Fp

ξTr((b1−b2)y)
p =

∑
y∈Fp

(ξTr(b1−b2)
p )y = 0.

We continue as

⟨va2,b2 , va1,b1⟩ =
1

pq

∑
z∈F∗

p

∑
x∈Fq

ξzf(x)+Tr((a1−a2)x)
p

∑
y∈Fp

ξzy+Tr((b1−b2)y)
p

=
1

pq

∑
z∈F∗

p

∑
y∈Fp

ξzy+Tr((b1−b2)y)
p σz(Wf (z

−1(a2 − a1))).
(3.21)

Here, we note that

σz(Wf (z
−1(a2 − a1))) = σz(

∑
x∈Fq

ξf(x)−Tr(z−1(a2−a1)x)
p )

=
∑
x∈Fq

ξzf(x)−zTr(z−1(a2−a1)x)
p

=
∑
x∈Fq

ξzf(x)−Tr(zz−1(a2−a1)x)
p

=
∑
x∈Fq

ξzf(x)+Tr((a1−a2)x)
p

and we use
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• σz is an automorphism.

• zTr(ξ) = Tr(zξ).

⟨va2,b2 , va1,b1⟩ =
1

pq

∑
z∈F∗

p

∑
y∈Fp

ξzy+Tr((b1−b2))y)
p σz(Wf (z

−1(a2 − a1)))

=
1

pq

∑
z∈F∗

p

∑
y∈Fp

ξzy+Tr((b1−b2)y)
p σz(ϵf

√
p∗

n
ξf

∗(z−1(a2−a1))
p ).

(3.22)

In equation (3.22), we use

Wf (β) = ϵf
√
p∗

n
ξf

∗(β)
p

where p∗ denotes η(−1)p = (−1)
p−1
2 p and ϵf ∈ {−1, 1} is the sign of the Walsh

transform of f .

⟨va2,b2 , va1,b1⟩ =
1

pq

∑
z∈F∗

p

∑
y∈Fp

ξzy+Tr((b1−b2)y)
p σz(ϵf

√
p∗

n
ξf

∗(z−1(a2−a1))
p )

=
1

pq
ϵf
√
p∗

n
∑
z∈F∗

p

ηn(z)ξzf
∗(z−1(a2−a1))

p )
∑
y∈Fp

ξzy+Tr((b1−b2)y)
p .

(3.23)

In Equation (3.23) we use

σa(
√
p∗

n
) = ηn(a)(

√
p∗

n
)

where σa is the automorphism of the p-th cyclotomic field Q(ξp) determined by

σa(ξp) = ξap .

Now assume that n is even. Then

⟨va2,b2 , va1,b1⟩ =
1

pq
ϵf
√
p∗

n
∑
z∈F∗

p

ηn(z)ξzf
∗(z−1(a2−a1))

p

∑
y∈Fp

ξzy+Tr(b1−b2)y
p

=
1

pq
ϵf
√
p∗

n
∑
z∈F∗

p

ξzf
∗(z−1(a2−a1))

p

∑
y∈Fp

ξ(z+Tr(b1−b2))y
p .

(3.24)

In this expression, the sum ∑
y∈Fp

ξ(z+Tr((b1−b2)y)
p

71



does not vanish only when

z + Tr(b1 − b2) = 0.

Therefore, we have

⟨va2,b2 , va1,b1⟩ =
1

pq
ϵf
√
p∗

n
∑
z∈F∗

p

ξzf
∗(z−1(a2−a1))

p

∑
y∈Fp

ξ(z+Tr((b1−b2))y)
p

=
1

pq
ϵf
√
p∗

n
ξTr(b2−b1)f∗((Tr(b2−b1))−1(a2−a1))
p

∑
y∈Fp

1

=
1

q
ϵf
√
p∗

n
ξTr(b2−b1)f∗((Tr(b2−b1))−1(a2−a1))
p

(3.25)

We check

|⟨va2,b2 , va1,b1⟩ |= |1
q
ϵf
√
p∗

n
ξTr(b2−b1)f∗((Tr(b2−b1))−1(a2−a1))
p |= 1

√
q
.

If n is odd,

⟨va2,b2 , va1,b1⟩ =
1

pq
ϵf
√
p∗

n
∑
z∈F∗

p

ηn(z)ξzf
∗(z−1(a2−a1))

p )
∑
y∈Fp

ξzy+Tr((b1−b2)y)
p

=
1

pq
ϵf
√
p∗

n
∑
z∈F∗

p

η(z)ξzf
∗(z−1(a2−a1))

p )
∑
y∈Fp

ξzy+Tr((b1−b2)y)
p .

(3.26)

Again, the only case satisfying∑
y∈Fp

ξzy+Tr((b1−b2)y)
p ̸= 0

is when

z = Tr(b2 − b1).

Therefore

⟨va2,b2 , va1,b1⟩ =
1

pq
ϵf
√
p∗

n
∑
z∈F∗

p

η(z)ξzf
∗(z−1(a2−a1))

p )
∑
y∈Fp

ξzy+Tr((b1−b2)y)
p

=
1

pq
ϵf
√
p∗

n
∑
z∈F∗

p

η(Tr(b2 − b1))ξ
Tr(b2−b1)f∗(Tr(b2−b1))−1(a2−a1))
p )

∑
y∈Fp

1

=
1

q
ϵf
√
p∗

n
∑
z∈F∗

p

η(Tr(b2 − b1))ξ
Tr(b2−b1)f∗(Tr(b2−b1))−1(a2−a1))
p )

(3.27)
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Again,

|⟨va2,b2 , va1,b1⟩| = |1
q
ϵf
√
p∗

n
∑
z∈F∗

p

η(Tr(b2−b1))ξTr(b2−b1)f∗(Tr(b2−b1))−1(a2−a1))
p )|= 1

√
q
.

If one of the vectors is from the standard base εq = {e1, ..., eq}, for any va,b =

{x1 + iy1, ..., xq + iyq} we have,

|⟨va,b, ej⟩ |=
1
√
q
|ξTr(axj+byj)

p |= 1
√
q

(3.28)

In the following theorem, we require the construction of p being bigger than 3 since

the construction includes polynomials of degree 3.

Theorem 3.2.4. [22] Let p be a prime number greater than 3 and q = pn. Let L(x) =
n−1∑
i=1

aix
pi be a linearized permutational polynomial and χ be a nontrivial additive

character over Fq. Construct a set of basis vectors as Va = {va,b : b ∈ Fq} where

va,b =
1
√
q
{χ((x+ a)3 + bL(x))}x∈Fq

and a ∈ Fq. Then, taking εq = {e1, ..., eq} as the standard basis for Cq, the set

A = (
⋃
a∈Fq

Va) ∪ {εq}

forms a complete set of mutually unbiased bases of Cq.

Proof. First of all, we would like to note that, this theorem constructs a complete

set of mutually unbiased bases of Cq, which means q + 1, the maximum number of

possible mutually unbiased bases is reached. For any va1,b1 ∈ Va1 , va2,b2 ∈ Va2 , we

have

⟨va1,b1 , va2,b2⟩ =
1

q

∑
x∈Fq

χ((x+ a1)
3 + b1L(x)− (x+ a2)

3 − b2L(x))

=
1

q

∑
x∈Fq

χ(x3 + 3x2a1 + 3xa21 + a31 + b1L(x)− x3 − 3x2a2 − 3xa22 − a32 − b2L(x))

=
1

q

∑
x∈Fq

χ(3x2(a1 − a2) + 3x(a21 − a22) + a31 − a32 + (b1 − b2)L(x)).

(3.29)
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If we pick two vectors va1,b1 , va2,b2 from the same basis set, i.e a1 = a2,

⟨va1,b1 , va1,b2⟩ =
1

q

∑
x∈Fq

χ(3x2(a1 − a1) + 3x(a21 − a21) + a31 − a31 + (b1 − b2)L(x))

=
1

q

∑
x∈Fq

χ((b1 − b2)L(x))

(3.30)

If these two vectors va1,b1 , va1,b2 are the same, i.e b1 = b2 as well,

⟨va1,b1 , va1,b1⟩ =
1

q

∑
x∈Fq

χ((b1 − b1)L(x))

=
1

q

∑
x∈Fq

χ(0)

=
1

q

∑
x∈Fq

1

= 1.

(3.31)

Otherwise, if va1,b1 , va1,b2 are distinct, i.e. b1 ̸= b2, we have

⟨va1,b1 , va1,b2⟩ =
1

q

∑
x∈Fq

χ((b1 − b2)L(x))

= 0.

(3.32)

In Equation 3.32, the identity

1

q

∑
x∈Fq

χ((b1 − b2)L(x)) = 0

is obtained by the fact that L(x) is a permutation polynomial.

If the two vectors va1,b1 , va1,b2 are picked from two different basis sets, i.e. a1 ̸= a2,

then,

⟨va1,b1 , va2,b2⟩ =
1

q

∑
x∈Fq

χ(3x2(a1 − a2) + 3x(a21 − a22) + a31 − a32 + (b1 − b2)L(x))

=
1

q

∑
x∈Fq

χ(3x2(a1 − a2) + 3x(a21 − a22) + a31 − a32 + xL∗(b1 − b2)).

(3.33)
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In Equation 3.33, (b1 − b2)L(x) is replaced by xL∗(b1 − b2) as an application of

Lemma 3.1.11.

We continue with

⟨va1,b1 , va2,b2⟩ =
1

q

∑
x∈Fq

χ(3x2(a1 − a2) + 3x(a21 − a22) + a31 − a32 + xL∗(b1 − b2)

=
1

q
χ(a31 − a32 − (3(a21 − a22) + L∗(b1 − b2))

2(12(a1 − a2)
−1)η(3(a1 − a2))G(η, χ).

(3.34)

Since |G(η, χ)|= √
q, we have

|⟨va1,b1 , va2,b2⟩ =
1

q

√
q =

1
√
q
.

If one of the vectors is chosen from the standard basis set εq, say ej , then

|⟨va,b, ej⟩ |=
1
√
q
|χ((a+ xj)

3 + bL(xj))|=
1
√
q
1 =

1
√
q
.

Therefore, A forms a complete set of mutually unbiased bases for Cq.

In order to describe another way of building mutually unbiased bases, we need to

introduce the perfect non-linear (PN) functions and some of their basic properties

with characters.

Definition 3.2.5. For two abelian groups G1 and G2 and a function f : G1 −→ G2,

the map ∆a:f , defined as

∆a:f : G1 −→ G2

∆a:f (x) = f(a+ x)− f(x)

is called the difference operator of f at the point a ∈ G1.

Definition 3.2.6. A function f as described in Definition 3.2.5 is called a perfectly

non-linear function (PN-function) if its difference operator at each point is a permu-

tation polynomial.
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Theorem 3.2.7. [12] Given any finite field Fq, let f : Fq −→ Fq be a perfectly non-

linear function. Then for any a,∈ F∗
q , b ∈ Fq and a non-trivial additive character χ

of Fq, ∣∣∣∣∣∣
∑
x∈Fq

χ(af(x) + bx)

∣∣∣∣∣∣ = √
q

Proof.∣∣∣∣∣∣
∑
x∈Fq

χ(af(x) + bx)

∣∣∣∣∣∣
2

=

∑
x∈Fq

χ(af(x) + bx)

∑
y∈Fq

χ(−af(y)− by)


=
∑
x∈Fq

χ(af(x))
∑
y∈Fq

χ(−af(y)− b(y − x)).

By making a change of parameters, as z = x− y, we state∣∣∣∣∣∣
∑
x∈Fq

χ(af(x) + bx)

∣∣∣∣∣∣
2

=
∑
x∈Fq

χ(af(x))
∑
y∈Fq

χ(−af(y)− b(y − x))

=
∑
x∈Fq

χ(af(x))
∑
z∈Fq

χ(−af(x− z) + bz)

=
∑
z∈Fq

χ(bz)
∑
x∈Fq

χ(a(f(x)− f(x− z))).

(3.35)

Since f is a perfectly non-linear function, we have∑
x∈Fq

χ(a(f(x)− f(x− z))) = 0

when z ̸= 0. However, when z = 0,∑
x∈Fq

χ(a(f(x)− f(x− z))) =
∑
x∈Fq

χ(a(f(x)− f(x)))

=
∑
x∈Fq

χ(0)

=
∑
x∈Fq

1

= q.

We have already realized that

∣∣∣∣∣ ∑x∈Fq

χ(af(x) + bx)

∣∣∣∣∣
2

does not vanish only when z = 0,

therefore, the iteration
∑
z∈Fq

turns into z = 0 in our calculation.

Therefore,
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∣∣∣∣∣∣
∑
x∈Fq

χ(af(x) + bx)

∣∣∣∣∣∣
2

= χ(0)q

= q.

(3.36)

Therefore,

∣∣∣∣∣∣
∑
x∈Fq

χ(af(x) + bx)

∣∣∣∣∣∣ = √
q. (3.37)

The following theorem describes a way of constructing mutually unbiased bases us-

ing perfectly non-linear functions on finite fields.

Theorem 3.2.8. [22] Let χ be a nontrivial additive character of the finite field Fq

with a characteristic p ≥ 5. Set

va,b,c =
1

q

(
χ(x+ b)3 + ax+ cy + bf(y))

)
x,y∈Fq

included in Vb = {va,b,c : a, c ∈ Fq} where f is a perfectly non-linear function from

Fq to Fq.

Then the set

A =
(
∪b∈FqVb

)
∪ {ϵq2}

where {ϵq2} is the standard basis on Cq2 forms a set of q+1 mutually unbiased bases

for Cq2 .

Proof. Under the setting described in the statement of the theorem, for the most gen-
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eral case we have the inner product

⟨va1,b1,c1 , va2,b2,c2⟩

=
1

q2

(
(
∑

x,y∈Fq

χ((x+ b2)
3 + a2x+ c2y + b2f(y)

− ((x+ b1)
3 + a1x− c1y − b1f(y))

)
=

1

q2

( ∑
x,y∈Fq

χ((x+ b2)
3 − (x+ b1)

3 + (a2 − a1)x

+ (c2 − c1)y + (b2 − b1)f(y))
)

=
1

q2

( ∑
x,y∈Fq

χ((x3 + 3x2b2 + 3xb22 + b32)− (x3 + 3x2b1 + 3xb21 + b32)

+ (a2 − a1)x+ (c2 − c1)y + (b2 − b1)f(y))
)

=
1

q2

( ∑
x,y∈Fq

χ(3(b2 − b1)x
2 + (3(b22 − b21) + a2 − a1)x+ b32 − b31

+ (c2 − c1)y + (b2 − b1)f(y))
)

=
1

q2

(∑
x∈Fq

χ(3(b2 − b1)x
2 + (3(b22 − b21) + a2 − a1)x+ b32 − b31)∑

y∈Fq

χ((c2 − c1)y + (b2 − b1)f(y)))
)
.

When two vectors are selected from the same set Vb, i.e. b1 = b2, we have the inner

product as,

⟨va1,b1,c1 , va2,b1,c2⟩ =
1

q2

(∑
x∈Fq

χ(3(b1 − b1)x
2 + (3(b21 − b21) + a2 − a1)x+ b31 − b31)∑

y∈Fq

χ((c2 − c1)y + (b1 − b1)f(y)))
)

=
1

q2

(∑
x∈Fq

χ((a2 − a1)x)
∑
y∈Fq

χ((c2 − c1)y)
)
.

(3.38)

In the Equation (3.38) above, if a1 ̸= a2 or c1 ̸= c2, , i.e. the vectors are not the same

⟨va1,b1,c1 , va2,b1,c2⟩ =
1

q2

(∑
x∈Fq

χ((a2 − a1)x)
∑
y∈Fq

χ((c2 − c1)y)
)

= 0.
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However, when the vectors are the same, i.e a1 = a2 and c1 = c2 as well

⟨va1,b1,c1 , va2,b1,c2⟩ =
1

q2

(∑
x∈Fq

χ((a2 − a1)x)
∑
y∈Fq

χ((c1 − c2)y)
)

=
1

q2

(∑
x∈Fq

χ((a1 − a1)x)
∑
y∈Fq

χ((c1 − c1)y)
)

=
1

q2

(∑
x∈Fq

χ(0)
∑
y∈Fq

χ(0)
)

=
1

q2

(∑
x∈Fq

1
∑
y∈Fq

1
)

=
1

q2
q.q

= 1.

If the two vectors va1,b1,c1 and va2,b2,c2 are taken from different Vb sets, in other words

if b1 ̸= b2:

⟨va1,b1,c1 , va2,b2,c2⟩ =
1

q2

(∑
x∈Fq

χ(3(b2 − b1)x
2 + (3(b22 − b21) + a2 − a1)x+ b32 − b31)∑

y∈Fq

χ((c2 − c1)y + (b2 − b1)f(y))
)
.

Taking

A2 = 3(b2 − b1)

A1 = 3(b22 − b21) + a2 − a1

A0 = b32 − b31

and by Theorem 3.1.9

⟨va1,b1,c1 , va2,b2,c2⟩

=
1

q2

(∑
x∈Fq

χ(A2x
2 + A1x+ A0)

∑
y∈Fq

χ((c2 − c1)y + (b2 − b1)f(y))
)

=
1

q2

(
χ(A0 − A2

1(4A2)
−1)η(A2)G(η, χ)

∑
y∈Fq

χ((c2 − c1)y + (b2 − b1)f(y))
)

=
1

q2

(
χ((b32 − b31)− (3(b22 − b21) + a2 − a1)

2(4(3(b2 − b1)))
−1)η(3(b2 − b1))

G(η, χ)
∑
y∈Fq

χ((c2 − c1)y + (b2 − b1)f(y))
)
.
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Therefore,

|⟨va1,b1,c1 , va2,b2,c2⟩|

=
∣∣∣ 1
q2

(
χ((b32 − b31)− (3(b22 − b21) + a2 − a1)

2(4(3(b2 − b1)))
−1)

η(3(b2 − b1))G(η, χ)
∑
y∈Fq

χ((c2 − c1)y + (b2 − b1)f(y))
)∣∣∣

=
1

q2

∣∣∣χ((b32 − b31)− (3(b22 − b21) + a2 − a1)
2(4(3(b2 − b1)))

−1)
∣∣∣∣∣∣η(3(b2 − b1))

∣∣∣∣∣∣G(η, χ)∣∣∣∣∣∣∑
y∈Fq

χ((c2 − c1)y + (b2 − b1)f(y))
∣∣∣

=
1

q2
1.1.

√
q
∣∣∣∑
y∈Fq

χ((c2 − c1)y + (b2 − b1)f(y))
∣∣∣

=

√
q

q2

∣∣∣∑
y∈Fq

χ((c2 − c1)y + (b2 − b1)f(y))
∣∣∣.

Since f is assumed to be a perfectly non-linear function from Fq to Fq, by Theorem

3.2.7, we have ∣∣∣∑
y∈Fq

χ((c2 − c1)y + (b2 − b1)f(y))
∣∣∣ = √

q

which implies

|⟨va1,b1,c1 , va2,b2,c2⟩| =
√
q

q2

∣∣∣∑
y∈Fq

χ((c2 − c1)y + (b2 − b1)f(y))
∣∣∣

=

√
q

q2
√
q

=
q

q2

=
1

q
.

3.3 Inequivalence of Mutually Unbiased Bases

In Section 3.2, we studied some ways of constructing mutually unbiased bases on

complex space Cq. It turns out, however, with a different perspective, it is possible to

construct an equivalence relation between different mutually unbiased bases[17][8] .
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Definition 3.3.1. A family F = {li} of 1-dimensional subspaces of Cq, where 1 ≤
i ≤ q, is called an orthoframe for Cq if the elements of F are pairwise orthogonal.

Definition 3.3.2. Let F1 and F2 be two distinct orthoframes for Cq. Then F1 and F2

are called mutually unbiased if |⟨u, v⟩| = 1√
q

for two unit vectors u ∈ F1 and v ∈ F2.

We note that one can move from mutually unbiased orthoframes to mutually unbiased

bases by picking one unit vector from each mutually unbiased orthoframes.

Let V = Zn
p be the vector space in order to determine the indices on the complex

space Cq, where q = pn. For any a ∈ V set

Xa(ev) = ev+a (3.39)

and

Za(ev) = (−ξp)a.vev (3.40)

where ew denotes the standard basis vector of Cq corresponding to the index vector

w ∈ V.

Here, we note that the description ofX andZ operators in Equations (3.39) and (3.40)

are in accordance with the X and Z operators we already defined in Equations (2.46)

and (2.48) for 1-qubit quantum systems, since

X1 |0⟩ = |0 + 1⟩ = |1⟩ = X |0⟩

X1 |1⟩ = |1 + 1⟩ = |0⟩ = X |1⟩

and

Z1 |0⟩ = (−1)1.0 |0⟩ = |0⟩ = Z |0⟩

Z1 |1⟩ = (−1)1.1 |1⟩ = − |1⟩ = Z |1⟩ .

Using the operators X and Z, we define two new groups of order q = pn as

X(V) = {X(u)|u ∈ V}
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and

Z(V) = {Z(u)|u ∈ V}.

Under this setting, we define another group in terms of the product

Σ = X(V)Z(V){ξkp I
∣∣0 ≤ k ≤ p− 1}.

The group Σ is called the extraspecial p-group. Its center is

Z(Σ) = {ξkp I
∣∣0 ≤ k ≤ p− 1}.

Also note that

|Σ| = q.q.p = pn.pn.p = p2n+1

We also have the natural homomorphism

ϕ : Σ −→ Σ/Z(Σ) (3.41)

where Σ/Z(E) ∼= V× V.

The quotient space Σ/Z(E) is a symplectic space with respect to:

ab′ − a′b := (X(a)Z(b))−1(X(a′)Z(b′))−1(X(a)Z(b))(X(a′)Z(b′)). (3.42)

Definition 3.3.3. Taking ϕ and Σ as in Equation (3.41), a symplectic spread of ϕ(Σ)

is a family {Ai} of q+1 totally isotropic n-spaces of ϕ(Σ) where Ai ∩ Aj = ∅ when

i ̸= j.

With this setting we have the following theorem:

Theorem 3.3.4. [8] For each symplectic spread Π of ψ(P ), there exists a complete

set F(Π) = {F(ψ(A))
∣∣ψ(A) ∈ Π} of q+1 mutually unbiased basis in Cq such that

each F(ψ(A)) is invariant under Σ.

Moreover, if Π′ is another symplectic spread of ψ(P ), then Π and Π′ are said to be

equivalent if and only if F(Π) and F(Π′) are equivalent under a unitary transforma-

tion on Cq.
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CHAPTER 4

CONCLUSION

In this thesis, we studied mutually unbiased bases (MUBs) which have both poten-

tial and current applications for quantum communication protocols. We also showed

some methods to construct mutually unbiased bases for Hilbert spaces using some

auxiliary concepts like weakly-regular bent functions, linearized permutation poly-

nomials and perfectly non-linear functions.

Since mutually unbiased bases are convenient for quantum communication protocols,

we also introduced fundamental quantum mechanics and quantum computing princi-

ples. We studied the no-go theorems and explained the famous BB84 quantum key

distribution protocol as a showcase where mutually unbiased bases are effectively

employed.
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