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Information Systems, METU

Prof. Dr. Banu Günel Kılıç
Information Systems, METU

Assoc. Prof. Dr. Ayça Tarhan Kolukısa
Computer Engineering, Hacettepe University

Date:19.01.2024



I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Surname: Barış Fındık
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ABSTRACT

USING TOPOLOGICAL FEATURES OF MICROSERVICE CALL GRAPHS
TO PREDICT THE RESPONSE TIME VARIATION

Fındık, Barış

M.S., Department of Information Systems

Supervisor: Prof. Dr. Banu Günel Kılıç

Co-Supervisor: Assoc. Prof. Dr. Aysu Betin Can

January 2024, 97 pages

Microservice architectures are increasingly gaining popularity in the field of soft-

ware design. Research on the topology of graphs formed by communication between

microservices is a subdomain within the broader scope of microservice architecture

research. Although there have been studies examining the relationship between topol-

ogy and response time, the variability in response time and its connection to topology

has not been thoroughly explored. To ensure performance stability, architectures with

low response time variation are needed. Low response time variation enables the cre-

ation of more predictable and easily testable systems. In this study, machine learning

models trained with the topological features of microservice call graphs are used to

explore the impact of topology on predicting response time variation. The feature im-

portance of models achieving successful and significant results is examined. The cen-

tralization, modularity, node count, average degree, and loop count features obtained

from 70,000 microservice call graphs are used to train random forest, LightGBM,

and CatBoost classifiers. These models aim to predict whether the call graph belongs

to the class of high response time variation or low response time variation. The fea-
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ture importance of models achieving F1 score, accuracy, and precision higher than

0.8, along with statistically significant results from the McNemar test, is examined

using SHAP values and dependence plots. Finally, models predicting response time

variation based on topological features and understanding the impact of topological

features on response time variation are obtained in this thesis.

Keywords: Microservices, machine learning, topological features, software architec-

ture, graph algorithms
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ÖZ

MİKROSERVİS ÇAĞRI AĞLARININ TOPOLOJİK ÖZELLİKLERİNİ
KULLANARAK YANIT SÜRESİ DEĞİŞKENLİĞİNİN TAHMİN EDİLMESİ

Fındık, Barış

Yüksek Lisans, Bilişim Sistemleri Bölümü

Tez Yöneticisi: Prof. Dr. Banu Günel Kılıç

Ortak Tez Yöneticisi: Doç. Dr. Aysu Betin Can

Ocak 2024 , 97 sayfa

Mikroservis mimarileri, yazılım tasarım alanında giderek daha fazla popülerlik ka-

zanmaktadır. Mikroservisler arasındaki iletişimden oluşan ağların topolojisi üzerine

yapılan araştırma, mikroservis mimarisi araştırmalarının bir alt alanını oluşturur. To-

poloji ile yanıt süresi arasındaki ilişkiyi inceleyen çalışmalar olmasına rağmen, yanıt

süresindeki değişkenliğin topoloji ile olan bağlantısı tam anlamıyla keşfedilmemiş-

tir. Mikroservis performans istikrarı, mimarinin kalitesini gösteren kritik bir metrik

olarak hizmet verir. Performans istikrarını sağlamak için düşük yanıt süresi değişken-

liğine sahip mimarilere ihtiyaç vardır, bu da daha öngörülebilir ve kolay test edilebi-

lir sistemlerin oluşturulmasını sağlar. Deneysel gözlem, çağrı ağı topolojisinin yanıt

süresi değişkenliği üzerinde önemli bir etkisi olduğunu ortaya koymakta, bu da bu

ilişkinin araştırılmasının önemini vurgulamaktadır. Bu çalışmada, mikroservis çağrı

ağlarının topolojik özellikleri ile eğitilen makine öğrenimi modelleri kullanılarak bu

etkiyi keşfetmek ve yanıt süresi değişkenliğini tahmin etmek amaçlanmaktadır. Başa-

rılı ve istatistiksel olarak anlamlı modellerin özellik önemi incelenir. Bu özellik önemi
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bilgisi ile yanıt süresi değişkenliği açısından stabil olan topolojik tasarımların anla-

şılması hedeflenmektedir. 70 bin mikroservis çağrı ağından elde edilen merkezilik,

modülerlik, mikroservis sayısı, döngü sayısı ve ortalama derece özellikleri rastgele

orman, LightGBM, CatBoost modellerini eğitmek için kullanılır. Bu modeller çağrı

ağının düşük ve yüksek yanıt değişkenliği sınıflarından hangisine ait olduğunu tah-

min etmeye çalışır. İstatistiksel olarak anlamlı ve 0.8’den yüksek F1 skor, doğruluk

ve kesinlik elde eden modellerin SHAP değerleri ve bağımlılık grafikleri incelenerek

özelliklerin model çıktısı üzerindeki etkisi incelenir. Sonuç olarak bu tezde, yanıt sü-

resi değişkenliğini topolojik özellikleri kullanarak sınıflandıran modeller ve topolojik

özelliklerin yanıt süresi değişkenliğindeki etkisi elde edilir.

Anahtar Kelimeler: Mikroservisler, makine öğrenimi, topolojik özellikler, yazılım mi-

marisi, ağ algoritmaları
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Problem Definition

Microservices architectures are becoming an increasingly popular concept in the soft-

ware design world [1]. Since it was first discussed in a software design workshop by

James Lewis and Martin Fowler in May 2011, various studies have been conducted,

and different suggestions have been made regarding how microservices architectures

should be designed [2]. According to Lewis and Fowler’s definition, "Microser-

vice Architecture" is a contemporary approach to designing software applications

into independently deployable services, characterized by features such as organiza-

tion around business capability, automated deployment, intelligence in endpoints, and

decentralized control of languages and data [3].

The primary reason of the popularity of microservices is their advantages over mono-

lithic architectures. These advantages include straightforward scalability, clear sepa-

ration of responsibilities among teams, independent deployment capability, and faster

response to customer feedback through quick releases [4]. Additionally, the architec-

ture introduces flexibility in technology selection by creating technological hetero-

geneity among software development teams.

Research on microservices contains various critical domains, including design, test-

ing, configuration management, migration strategies for legacy systems, architectural

support through reference architectures and modeling, platform support with a focus

on testing, deployment, and microservice identification tools [5]. The exploration

of these research fields aims to advance our understanding and implementation of

microservices, microservice call graph topology, quality assurance, deployment, and
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domain-specific considerations to promote effective and scalable software develop-

ment practices.

The topology of graphs consisting of communications between microservices is also

an essential subdomain in microservices architecture design. Some studies use topol-

ogy information to optimize microservices tests [6][7], for root cause analysis [8],

anomaly detection [9], dealing with cyclic dependencies [10], and measuring archi-

tecture quality [11][12]. There is also a study that uses call graph topology informa-

tion to measure coupling in microservices architectures where low coupling is aimed

[13].

Researchers analyzing the Alibaba Cloud Platform’s cluster with microservices and

traces have contributed to studies on the graph topology and dependencies of Data

Parallel Jobs [14]. Another study focuses on microservice dependencies and perfor-

mance using call graph topologies [15]. Additionally, there is a study that analyzes

the relationship between microservice call graphs and runtime performance along

with topology information and allocated resources to microservices[16]. In addition

to conducting these studies, researchers have shared the datasets they used to enable

further research.

Researchers analyzing the Alibaba cluster trace have shared a dataset in their study

[15] on microservice dependencies and call graph characteristics. This dataset in-

cludes calls between microservices, the microservices themselves, and the time when

the calls occurred. In their study, they aim to predict the response time of calls be-

tween microservices using graph learning algorithms. One of their significant find-

ings is that the response time highly depends on topology.

While it is shown that response time is significantly affected by call graph topology,

their study does not provide information on which topological features are crucial due

to the algorithm used. The algorithm aimed to achieve high prediction scores, and the

study did not focus on identifying which topological features are influential and how

they affect response time.

Although there is an advanced study on response time prediction [15], there is no

comprehensive study in the literature using a dataset like the Alibaba cluster trace
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dataset on response time variation, which has significant effects on the predictability

and testability of systems in production [17].

Response time variation is a very important metric for the predictability and cost

management of systems running on the cloud [18]. Even in the selection of cloud

service providers, low response time variation is an essential factor [19]. Therefore,

it is a valuable scientific research topic.

The lack of examination of the relationship between the topology of microservice call

graphs and response time variation and the absence of a study using a comprehensive

dataset to investigate how call graph topological features affect architecture are the

main motivations for this thesis. Various research questions have been asked based

on this motivation, and their answers are provided in this thesis.

These research questions can be listed as follows:

• Can the response time variation of call graphs be predicted using the topology

of the microservice call graph? How successful can machine learning algo-

rithms be in this prediction task?

• In microservice architectures, which are mentioned in the literature with de-

centralization and modularity frequently [3][20][21][22][23][24][25][26], are

the centralization and modularity features obtained from the topology of call

graphs effective on response time variation? If so, how are they effective?

• What is the impact of features such as node count, average degree, and loop

count obtained from microservice call graphs on response time variation?

1.2 Proposed Methods and Models

To investigate the relationship between topological features and response time vari-

ation, a sample is extracted from the Alibaba dataset [15]. Alibaba dataset consists

of 20 million call graphs. Before sampling, call graphs with a node count fewer than

40 are excluded, and only those with a node count greater than or equal to 40 are

retained. In social network analysis, there have to be at least 30 or 40 nodes to reach
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meaningful network modularity values. Specifically, using call graphs with a low

node count for the modularity metric would lead to issues in its computation. The

selection of a node count filter at 40 is based on the paper that shared the dataset

because the paper shared that 10% of call graphs have a node count greater than 40.

This number seems enough to reach statistically significant results.

Random call graphs from different time intervals within the 7-day Alibaba dataset are

selected and divided into three subsets, and their response time variation distributions

are calculated. To compute the response time variation of a call graph, the coeffi-

cient of variation for each call observed on each edge of the call graph is calculated.

Eventually, the average of all calls is calculated to find the response time variation of

the call graph. The dataset is expanded until each of the three subsets has a similar

response time variation distribution. The Kolmogorov-Smirnov [27] test is applied

to verify whether the response time variation distributions of the three subsets are

similar.

Topological features believed to influence response time variation are identified as

closeness centralization, betweenness centralization, harmonic centralization, modu-

larity with the Louvain algorithm, modularity with label propagation algorithm, node

count, loop count, and average degree. These features are calculated using the Python

programming language’s networkx[28], pandas[29], and numpy[30] libraries. Call

graphs with node count, loop count, and average degree values in the lowest 5%

quantile and above the 95% quantile are considered outliers and eliminated. In the

final step, a sample containing 70,000 microservice call graphs is obtained. All call

graphs are used in their undirected form.

When examining the Pearson correlation coefficient [31]between the calculated topo-

logical features and response time variation, no significant correlation is observed. To

assess feature importance, a methodology inspired by a study on virality [32] in social

media is adopted. Using different threshold values, the problem is transformed from a

regression problem to a binary classification problem. This threshold value is referred

to as the Response Time Variation Threshold (RTVT). Call graphs with response time

variation above the RTVT are labeled as fluctuating, while those below are labeled as

steady. The prediction algorithm aims to determine whether a call graph is steady or
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fluctuating based on topological features. The experiment is repeated with different

RTVT values, and the differences, along with the effects of features, are interpreted.

After determining the topological features and response time variation labels for mi-

croservice call graphs, the Random Forest classifier [33], CatBoost [34] classifier,

and LGBM classifier [35] models are trained with these features and labels. Half of

the dataset is used as test data, and accuracy, precision, and F1 scores are examined.

These scores are compared with the scores of a dummy classifier that makes predic-

tions based on label distribution. The McNemar [36] test is applied using the predic-

tions of the dummy classifier and models. When a statistically significant difference

is obtained from the McNemar test, the first research question, "Can the response

time variation of call graphs be predicted using the topology of the microservice call

graph? How successful can machine learning algorithms be in this prediction task?"

is answered.

To learn the impact of topological features, the SHapley Additive exPlanations (SHAP)

[37] method is used. This method helps understand which features ML models use to

achieve successful predictions. Additionally, it allows the investigation of the ranges

of these topological features that affect whether a microservice call graph is steady or

fluctuating. Through SHAP, the second research question, "In microservice architec-

tures, which are mentioned in the literature as advantageous for being decentralized

and modular, are the centralization and modularity features obtained from the topol-

ogy of call graphs effective on response time variation? If so, how are they effective?",

and the third research question, "What is the impact of features such as node count,

average degree, and loop count obtained from microservice call graphs on response

time variation?" are answered.

In this thesis, while investigating the research questions, there are certain terminology

that are commonly used in various domains with different meanings. Therefore, we

want to clarify this terminology. In graph theory and social network analysis, the term

"node" refers to a vertex in the graph, and in this thesis, when referring to a "node",

it is meant in the sense of a vertex, not a physical machine. The terms "centraliza-

tion" and "modularity" have multiple meanings in software architecture and microser-

vices. In this thesis, their meanings from social network analysis and graph theory
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are adopted. Network centralization refers to the extent to which control, decision-

making, and communication within a network are concentrated in a specific location

or a few nodes, network modularity is a measure of the strength of the division of a

network into modules or subgroups. Networks with high modularity have dense con-

nections between the nodes within modules but sparse connections between nodes in

different modules.

1.3 Contributions

The contributions of the thesis are listed below.

• This thesis demonstrates empirical evidence that the topology of microservice

call graphs can be used to predict the response time variations of call graphs

through machine learning models. It explains the procedure outlining how these

machine learning models are constructed.

• This thesis explains the impact of centralization and modularity features de-

rived from the topology of microservice call graphs on response time variation

through machine learning models and SHAP values. On the Alibaba dataset,

the thesis identifies the advantageous intervals in terms of response time varia-

tion for these topological features.

• This thesis determines the effects of features such as node count, average de-

gree, and loop count obtained from microservice call graphs on the response

time variation of these call graphs through machine learning models and SHAP

values. The intervals that are advantageous for response time variation are also

identified.

• For designers aiming to create a system with low response time variation, this

thesis experimentally highlights the importance of topology in achieving low

response time variation. Various insights regarding the details of the designs

with low response time variation are shared.
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1.4 The Outline of the Thesis

Chapter 2 provides background information on microservice architectures and the al-

gorithms used, along with related research. Chapter 3 is the methodology section,

encompassing details about the created dataset, methods for calculating topological

features, and response time variation labels from microservice call graphs. Addi-

tionally, it outlines the methodologies for using machine learning models. Chapter 4

contains the experiments conducted to answer the research questions and discusses

the results. It also includes comments on the limitations of the thesis and threats re-

garding the validity of the results. Chapter 5 interprets the findings, explains future

work related to the research topic, and concludes the thesis.
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CHAPTER 2

BACKGROUND AND RELATED RESEARCH

2.1 Introduction

This chapter provides information that facilitates understanding of research similar

to the thesis and explains the terms and methods used in the thesis. The research in

the thesis investigates the relationship between the topological features of microser-

vice call graphs and the response time variation of the call graph. In this context,

related research includes the definition of microservice architecture and research on

microservice call graph topology. Background information on these topics is also

covered in this chapter. Other studies that have used the dataset to investigate the re-

lationship between response time variation and microservice call graph topology are

also included in the related research. Research on the importance of response time

variation and how it is measured in different studies is also presented in this chap-

ter. Additionally, this chapter provides information on inspiring research on machine

learning algorithms and feature explanation, which constitute an important part of the

methodology, to increase understanding of these methods.

Research on microservice architectures, which is the main topic of the thesis, and

background information are found in Section 2.2. Sections related to response time

variation are located in Section 2.3. Research and background information on ma-

chine learning and feature explanation are presented in Section 2.4.

2.2 Microservices

Lewis and Fowler introduced the concept of microservices. According to their defini-

tion, the term "Microservice Architecture" is a modern method of structuring software
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applications into autonomously deployable services. This approach includes empha-

sis on organizing around business capability, implementing automated deployment,

incorporating intelligence in endpoints, and adopting decentralized control over data

management [3].

The main factor contributing to the adoption of microservices is its benefits compared

to monolithic architectures. These advantages are scalability, division of responsibil-

ities among teams, autonomous deployment capabilities, and the ability to quickly

respond to customer feedback through rapid releases [4]. Also, the architecture intro-

duces flexibility in technology selection by advancing technological diversity among

software development teams.

Investigations of microservices span a range of areas, including design, testing, con-

figuration, and management. They also include migration strategies for legacy sys-

tems, processes for identifying microservices, architectural suggestions, and platform

support with an emphasis on testing, deployment, and microservice identification

tools [5]. The exploration of these research domains enhances our comprehension

and application of microservices, microservice call graph topology, quality assurance,

deployment, and domain-specific considerations, with the ultimate goal of promoting

efficient and scalable software development practices.

There are many topics studied on microservices, and this thesis focuses on the topolo-

gies of microservice call graphs. The diversity of topologies that can be used in

microservice architectures and the effects of these topologies can be investigated in

various ways. This thesis specifically investigates the relationship between the topo-

logical features of microservice call graphs and response time variation. Therefore,

studies exploring the relationship between microservice topologies and various fea-

tures of architectures are considered as related research in this thesis.

As the usage of call graph topology information has increased in the literature, there is

an open microservice dependency dataset available for researchers [38]. This dataset

extracts the dependencies of open-source projects, providing researchers with access

to their call graphs. Additionally, Alibaba shares the cluster trace data in their cloud

in online platforms [39].
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Graph-based Microservice Analysis and Testing (GMAT) is one of the studies re-

lated to microservice topology [6]. It introduces a method to help the development

of Microservice architectures. Addressing the challenge of handling complex call

relationships between microservices, GMAT proposes a service dependency graph

for analyzing and visualizing dependencies, enabling early anomaly detection and

linkage tracing during development. GMAT has three primary research goals. They

are visualizing dependencies, detecting cyclic references, and improving service test

coverage. GMAT automates service dependency graph generation to detect risky ser-

vices and increase developers’ ability to trace cyclic dependencies. A team mostly

comprised of researchers who developed GMAT has also conducted a study on mi-

croservice retrieval, using methods similar to GMAT along with vector space model

and word2vec [7].

There is a research paper that focuses on service-oriented and microservice architec-

tures, aiming to divide applications into loosely coupled services for rapid develop-

ment and continuous feature deployment [8]. However, the complexity of architec-

tures can prevent observability and maintenance, the paper introduces a root cause

analysis framework based on graph representations, demonstrating its effectiveness

compared to a machine learning method. The advantages of a graph-based represen-

tation include facilitating an exploration of connected components, helping decision-

making in complex architectures, and offering anomaly detection. The incorporation

of expert knowledge enhances understanding, especially in critical systems, where

machine learning decisions may lack transparency. Semantic graphs extend possibili-

ties for incorporating ontology, enabling user-friendly access and defining alerts with

semantic meaning. The system’s flexibility in using and tuning weights and thresh-

olds provides a decision support system for troubleshooting and diagnosing problems

in microservice architectures.

The topology of the call graphs can be useful to detect anomalies. There is a study

that uses topology information by utilizing execution traces to automate the anomaly

detection process [9]. The paper addresses the challenge of detecting anomalies and

locating root causes in microservices, aiming to enhance their reliability. They state

that the current methods often rely on the manual selection of observed metrics or ex-

pert analysis of execution traces, resulting in limitations in accurately locating faults
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at the microservices and components level. The proposed approach utilizes dynamic

tools to collect execution traces, using call trees to describe application execution.

Anomalies are detected by calculating the anomaly degree using tree edit distance

and locating faulty components. The approach is evaluated using a microservice-

based application, demonstrating 81%–97% precision and 75%–99% recall in detect-

ing anomalies caused by CPU, network, memory, and service faults. Contributions

include reducing the number of analyzed traces, automatic anomaly detection through

trace comparison, and experimental validation of the approach’s effectiveness.

There is a paper that tries to solve the challenge of detecting cyclic dependencies, a

common anti-pattern in microservices architecture that can prevent the desired inde-

pendence and decoupling of services. The proposed graph-based solution employs

the strongly connected components (SCC) algorithm to automatically detect cyclic

dependencies at design time. The authors explain the difficulty in achieving decou-

pled independence in microservices and highlight the negative impact of cyclic de-

pendencies on system reliability, maintenance, and scalability. The paper presents

a process, starting with transforming microservices architecture into a graph repre-

sentation, executing the SCC algorithm, and analyzing the results. Two case studies,

Lakeside Mutual and a customized e-commerce application, are used to demonstrate

the effectiveness of the approach.

Microservice call graph topology is also used in the architecture validation framework

named MicroValid [11]. MicroValid offers a validation framework for microservice

architectures by measuring the quality using various quality attributes. This valida-

tion framework evaluates quality attributes in three categories: granularity, coupling,

and cohesion. For granularity, the number of nano entities and lines of code in mi-

croservices is calculated, and the coefficient of variation(CV) is determined based on

these numbers. For coupling, the coefficient of variation of outdegrees of microser-

vices is calculated, and another metric is obtained by dividing the number of strongly

connected components in the architecture by the number of microservices. For co-

hesion, the coefficient of variation of entity numbers, the coefficient of variation of

responsibility numbers, and a score obtained through semantic similarity algorithms

are used. After calculating various metrics for these three categories, a validation

score is obtained for each category. This study particularly claims that the usage of
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strongly connected components in the coupling section and the usage of degrees of

microservices are parts of the topology that need validation.

The coupling in microservice architectures is studied in another paper [13]. In this

paper on software quality management, the authors try to solve the challenge of mea-

suring and comparing the coupling of microservice architecture. They introduce a set

of novel metrics called the Microservice Coupling Index (MCI) derived from rela-

tive measurement theory, aiming to assess the dependency and coupling among mi-

croservices. The dependency information comes from the topology of the call graphs.

The study involves 15 open-source projects with 113 distinct microservices, and the

results show that MCIs outperform existing metrics in discriminating high and low-

coupled microservices. The metrics are also correlated with change impacts, indi-

cating that higher MCIs are associated with greater difficulty in localizing changes

and evolving individual microservices independently. The paper suggests practical

implications for refactoring based on MCI values and discusses potential means to

improve MCIs.

There are studies that focus on microservice call graph topology or utilize microser-

vice call graph topologies. Datasets obtained from Alibaba clusters provide a com-

prehensive source for such studies. Consequently, microservice architectures in pre-

vious research have more limited resources compared to those offered by the Alibaba

dataset. One of the diverse datasets obtained from Alibaba’s clusters is based on di-

rected acyclic graphs (DAGs). The topologies of these graphs are not as extensive in

terms of diversity as the dataset used in this thesis. However, significant research has

also been conducted on DAGs [14]. In the DAG research on Alibaba clusters, they

say that the comprehension of DAG structures and their runtime behaviors in expan-

sive production clusters plays an important role in scheduler design. The research

helps scheduler design by conducting an investigation using a recently released clus-

ter trace from Alibaba. Their analysis reveals that the DAGs of Alibaba jobs show

sparsely connected vertices and can be approximated as multiple trees with limited

depth. Additionally, they delve into the runtime performance of these DAGs, demon-

strating significant variability in resource usage and duration among dependent tasks,

even for recurrent tasks. In contrast to query jobs in standard benchmarks, they find

that they inadequately represent the characteristics of production DAGs in both struc-
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ture and runtime performance. To enhance the benchmarking of DAG schedulers at

scale, they introduce a workload generator capable of accurately synthesizing task

dependencies based on the production Alibaba trace. Their extensive evaluations

confirm that the synthesized DAGs closely imitate the statistical attributes of produc-

tion DAGs, and the scheduling outcomes with various schedulers remain consistent

between synthesized and real workloads.

Apart from the study conducted on DAGs, there is another paper [15] focusing on

microservice architectures, which shares the dataset used in this thesis. It also inves-

tigates the correlation between response time and call graph topology. The shared

data is not only about the call graph topology, but also the resources of microser-

vices. The paper presents a groundbreaking analysis of large-scale microservices

deployed in Alibaba clusters, offering a comprehensive characterization of their struc-

tural properties and runtime performance. Notably, microservice call graphs show a

dynamic nature with a heavy-tail distribution in size, displaying a tree-like topology

where most nodes have in-degrees of one. The study identifies hot spots and multi-

plexing behaviors among microservices, showcasing dynamic call dependencies and

highlighting the unique characteristics of microservice graphs compared to traditional

DAGs. The paper introduces a stochastic model for simulating dynamic microservice

call graphs. Moreover, the research emphasizes the sensitivity of microservice perfor-

mance to CPU interference, providing insights for efficient scheduling and resource

management. The study contributes an examination of existing microservice bench-

marks and proposes roadmaps for future research, positioning itself as a pioneering

exploration into the complex dynamics of large-scale microservice deployments. The

authors also reveal important information about the call graph topology, stating that

the response times of online microservices are strongly influenced by the call graph

topology and there is a need for awareness of topology in order to enhance the effi-

ciency of microservice architectures. They also say that the call graph topology is a

significant challenge.

The dataset, shared in conjunction with Alibaba’s papers, is used in other studies.

Another study utilizing data from Alibaba clusters tries to predict latency by using

its own graph neural network algorithm [40]. The input for their designed model

is the topology of the call graph. In a separate study, a topology-aware scheduling
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framework has been generated, with the goal of optimizing scheduling operations in

the cloud [41]. Additionally, a study in the dataset automates the process of scaling

resources using workload information [42].

2.3 Response Time Variation

The response time is the duration required to send the data, process it through the

computer, and transmit the resulting response back to the upstream service. Response

time is a crucial key performance indicator for cloud platforms, and fast systems are

preferred [20]. While fast systems have their advantages, it is also important for the

system to show stable performance in terms of response time. This ensures that the

system is predictable and testable[17]. It is also important for reducing costs in cloud

platforms [18]. Therefore, response time variation in cloud platforms is a worthwhile

research field.

There is a research on performance variation of cloud service providers. The re-

searchers state that the low-performance variation is an important metric for selection

of cloud service providers [19]. Their research methodology involves characterizing

the performance variability of cloud services. The researchers first create meaningful

datasets from performance traces obtained from production clouds. They use per-

formance indicators, defined as stochastic variables describing the performance of

operations or sequences of operations over time. The response time is evaluated as

the key performance indicator in their research. Performance traces for AWS and

GAE are sourced from Hyperic’s CloudStatus team [43], providing real-time values

and weekly averages for various performance indicators. The analysis method con-

sists of three steps for each trace: determining the presence of variability, identifying

the main characteristics of variability, and analyzing variability time patterns. Vari-

ability is assessed using statistical measures, such as quartiles, mean, standard devia-

tion, inter-quartile range, and coefficient of variation. The researchers also investigate

variability over time, investigating yearly, monthly, weekly, and daily patterns. They

reveal that the coefficient of variation above 1.10 means high variability for their

dataset.
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2.4 Machine Learning Models

Machine learning has become a highly popular field today. The development of new

machine learning algorithms allows solutions to previously unsolvable problems, and

significantly improved performance in existing problems is achieved through these

algorithms [44]. According to Jordan and Mitchell, machine learning is a field that

grows around two questions: How can computer systems be designed to enhance

themselves autonomously through experience? What are the fundamental statistical,

computational, and information-theoretic principles that govern all learning systems,

encompassing computers, humans, and organizations? They claim that investigating

machine learning is essential for solving these fundamental scientific and engineering

questions.

The ability of machine learning algorithms to address complex problems is used in

this thesis. Criteria such as the success of models, the ability to measure the im-

pact of features, and the provision of a fast working environment are considered due

to the existence of various machine learning algorithms. Research is conducted on

performance, feature interpretation, and operational speed to achieve these objec-

tives. Specifically, the research questions in the thesis, which focused on feature

interpretability, highlighted certain models. The studies use the three models in the

thesis. The models are CatBoost, Random Forest, and LightGBM, provided insights

into the selection of these models. Random Forest, being an older model compared to

the other two, is expected to perform less effectively. Information regarding whether

hyperparameter optimization is correctly performed for the other two models could

be handled by using a random forest model. While not precisely a baseline model,

its presence alongside the other two models is advantageous for making compar-

isons. There are studies using Random Forest for feature interpretation [45][46][47],

and similarly, LightGBM is a model used in the literature for feature interpretation

[48][49]. CatBoost’s documentation on its website already references a study where

feature interpretation was performed using SHAP values[50]. Since SHAP values

were considered during the development of the CatBoost model, it is successful in

this area. Numerous examples in the literature also show the usage of CatBoost for

feature interpretation[51][52][53][54]. Additionally, the CatBoost model has been
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able to achieve state-of-the-art results in many tasks where the performance of other

machine learning models has also been evaluated[55][34].

When using Machine Learning models, understanding their operational mechanisms

is crucial. In this context, the working mechanisms of the models are examined and

summarized briefly in this chapter.

Random Forest model is an ensemble of decision trees through bootstrap sampling

and random feature selection [33]. This ensemble approach increases the model’s

performance by solving overfitting problems and improving generalization to new

data. During training, each decision tree is built using a subset of the training data

and a random subset of features at each node. In the prediction phase, the outcomes of

individual trees are combined by voting for classification or averaging for regression,

providing a robust and accurate final prediction. Random Forest is a good option for

large datasets, it requires minimal preprocessing, and it is efficient in terms of both

training and prediction. Moreover, the model offers a valuable feature importance

ranking, helping in the interpretation of the significance of each feature in contributing

to the model output.

LightGBM is a gradient boosting algorithm. It works by using a tree based learning

algorithm to create an ensemble of decision trees [35]. Its working mechanism in-

cludes a depthwise tree growth strategy, prioritizing nodes that lead to larger gains

in training loss. This approach contributes to faster training times and improved ef-

ficiency, especially with large datasets. LightGBM also supports categorical features

naturally without the need for encoding. In terms of feature interpretation, LightGBM

provides a feature importance score, aiding in understanding the contribution of each

feature to the model’s predictive power. Its ability to handle complex relationships,

efficient computation, and feature interpretability makes LightGBM a powerful tool

for various machine learning tasks.

CatBoost is a gradient boosting algorithm. It distinguishes itself through its work-

ing mechanism that incorporates an ordered boosting technique and careful handling

of categorical features [34]. It builds an ensemble of decision trees in a sequential

manner, giving preference to features with greater categorical cardinality. This or-

dered boosting strategy contributes to improved performance and robustness. Cat-
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Boost automatically handles categorical features without the need for preprocessing,

and it incorporates a dynamic learning rate adjustment for faster convergence. In

terms of feature interpretation, CatBoost provides a feature importance ranking, aid-

ing in understanding the relevance of each feature in predicting the target variable.

Its ability to efficiently manage categorical data, coupled with its performance and

interpretability, makes CatBoost a valuable choice for machine learning tasks.

After the model selection research, a research was conducted on the methodology for

feature interpretation. Inspiration is drawn from the methodology of a study aimed

at understanding the reasons behind viral tweets [32], supporting the methodology

of this thesis. Once features that could influence virality are identified in this study,

instead of predicting retweet counts, the retweet count is divided into two classes:

viral and non-viral tweets, using a threshold value. By varying this threshold value,

the results of classification problems with different thresholds are compared. In this

study, the feature importances of models that achieved meaningful results for the

classification problem using a generalized linear model are examined.
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CHAPTER 3

METHODOLOGY

3.1 Introduction

The research questions in this thesis are related to understanding the effects of topo-

logical features of microservice call graphs on response time variation (RTV) and

predicting whether a microservice call graph, based on its topological features, shows

fluctuating or steady behavior in terms of response time variation. To answer these

questions in a data-driven manner, a sufficient number of microservice call graphs,

along with their calculated topological features and response time variation informa-

tion, are required. For this purpose, the topological features and response time vari-

ations of microservice call graphs are computed on a sample taken from the Alibaba

Dataset.

To understand the impact of topological features on RTV and measure their ability to

predict RTV, the problem is formulated as a classification problem. Instead of directly

predicting RTV, microservice call graphs are divided into two classes based on low

and high RTV, treating it as a classification problem. Since the concept of low and

high response time variation is relative, multiple classification problems are created

with different threshold values, and the results for each threshold value are shared.

The class with low RTV is called "steady," while the class with high RTV is called

"fluctuating."

Figure 3.1 includes the steps of the research methodology. According to these steps,

firstly the Alibaba dataset is read and sampled. Missing and unwanted parts are re-

moved from the sampled data. The undirected topological features and RTV labels of

the sampled microservice call graphs are calculated. Three different machine learning
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Figure 3.1: Overview of the Methodology

models are trained using these features and labels. Since it is a binary classification

problem, the results of the models are statistically tested using the McNemar [36] test

and a baseline model generating stratified random predictions. The feature impor-

tance of the models that pass the statistical test is computed using SHAP. Finally, the

feature importance of the models is analyzed.

In this chapter, Section 3.2 explains the details of the Alibaba dataset. Section 3.3

provides information on how the topological features of microservice call graphs and

response time variation labels are calculated and how the tabular dataset suitable for

training machine learning models is created. Section 3.4 covers the training process
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of machine learning models and the stages of statistical testing.

3.2 Dataset

The Alibaba dataset is the most comprehensive source in terms of creating call graphs

from microservices traces. It contains 10 billion calls, 20k+ microservices, and 20

million call graphs.

10% of call graphs have more than 40 nodes. There are many calls between the same

upstream and downstream microservices. All of these calls have various response

time values.

Alibaba cluster trace data is shared in a repository. The repository and the dataset

could be obtained by running the following commands in the terminal.

git clone https://github.com/alibaba/clusterdata.git

cd cluster-trace-microservices-v2021

bash fetchData.sh

Alibaba dataset contains 10 billion calls between microservices and 20 million call

graphs. To reach statistically significant results, 70k call graphs are downloaded with-

out loss of generalizability.

The fetchData.sh file in the repository consists of consecutive traces. To sample traces

from different time intervals without downloading the entire dataset, it is necessary

to change the fetchData.sh file in the repository. First of all, since MSRTQps and

MSResource folders are not needed, the parts related to them can be removed from

the sh file. Afterward, calling the wget command in the file one by one with different

numbers, rather than in a loop, works to collect efficient samples from different time

intervals and topologies.

wget -c --retry-connrefused

--tries=0 --timeout=50 ${url}

/MSCallGraph/MSCallGraph_${i}.tar.gz
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One can change "i" in the code above to download the desired MSCallGraph.

Call graph data is in CSV file format. Each of these CSV files contains millions of

transactions between microservices. Each transaction is in a separate row in CSV

files. Table 3.1 shows an example record from the CSV files.

Table 3.1: An Example Call from Alibaba Dataset

timestamp 229255

traceid 0b133c3215919238292013000eb3c7

UM 6545e5559493a18497075bb949b955abf8642a62d20287

DM 9c2e1e0e2e9a71881cbbf95fab38cc978feee0ba1e7fed

rt 48

rpcid 0.1.2.32.8

rpctype rpc

The explanations of the fields in Table 3.1 are listed below.

• timestamp: Timestamp of call records. Its unit is milliseconds. The start time

of the records is 0.

• traceid: traceid is the id of a call graph. It is unique for call graphs

• UM: The name of upstream microservice. The upstream microservice is the

service that creates a call by sending a request to the downstream microservice.

• DM: The name of downstream microservice. The downstream microservice is

the service that receives a call from the upstream microservice.

• rpcid: Traces have multiple calls. Every call in a trace has a unique rpcid

which includes information about the (UM, DM) pair. Note that, remote invo-

cation calls have two duplicate records with the same rpcid in both upstream

and downstream microservices.

• rpctype: rpctype is the method of communication. It can take "RPC" value for

remote procedure calls. If the downstream microservice is database in inter-
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process communication, rpctype is written as "DB". If the downstream mi-

croservice is cache in inter-process communication, rpctype is written as "MC"

• interface: The interface between UM and DM

• rt: rt is the response time of the call. Its unit is milliseconds. If the response

time is less than 1 ms, its value is written as 0. The rt value can take both

positive and negative values because the rt value can be recorded in both UM

and DM.

Each traceid in Table 3.1 contains multiple calls. The same UM and DM pairs are

observed in more than one call record within a trace. Microservice call graphs are

constructed using these traceids, with each trace having its own call graph. Response

time variation (RTV) is calculated within a trace when the same call is observed mul-

tiple times. To avoid creating a sample consisting of traces observed in the same time

intervals, the upper and lower bounds of timestamp filters are adjusted, and calls from

different time intervals are sampled. The sample size is enlarged slightly by checking

the compatibility of values, such as the number of microservices, call depth, indegree,

and outdegree distribution with those on the paper[15]. It is stopped when similar dis-

tributions and values are captured. Furthermore, the similarity of the response time

variation distributions of the three samples is tested using the Kolmogorov-Smirnov

test. According to the results of the Kolmogorov-Smirnov test, the statistical value D

representing the largest difference between the distributions of the groups was 0.0001.

The p value, which indicates the probability of this difference occurring randomly,

was calculated as 0.45. This obtained p value suggests that there is no statistically

significant difference between the groups. This allows for reaching enough examples

for the representation of RTV and the creation of a sample that represents the entire

dataset in terms of response time variation. Sampling and filtering are carefully done

to ensure that these processes applied to the dataset do not alter the statistics provided

in the paper where the dataset is shared. Firstly, the average depth of the dataset stands

at 4.27, with a standard deviation of 3.25. Notably, over 10% of stateless microser-

vices have an out-degree of at least 5, while the majority of microservices maintain

an in-degree of one. The study also identifies that most of the graphs have a depth

of three in Alibaba traces. Furthermore, the analysis highlights that more than 5% of
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microservices showcase in-degrees of 16 in aggregate calls. These hot spot microser-

vices are pervasive, appearing in nearly 90% of call graphs and handling a substantial

95% of total invocations in Alibaba traces. Additionally, the dataset includes approx-

imately 10% of call graphs comprising more than 40 microservices, emphasizing the

complexity and scale of certain network structures. Moreover, the research notes that

over 4% of call graphs have call depths exceeding ten, underscoring the existence of

deep and intricate call structures within the dataset. These findings collectively con-

tribute to a comprehensive understanding of the characteristics and patterns present

in the analyzed network dataset.

There are some missing and problematic examples in the dataset. All fields must be

in the correct form to obtain topologies properly. RPC and interface fields are ignored

while dropping missing value items because only traceid, UM, DM, and rt fields are

used in this study. After dropping the null values of these four fields, the UM and DM

values which are ’(?)’ are dropped.

Dropping calls changes the graph topologies dramatically. The problematic traces and

calls are removed from the dataset. Graphs with missing edges are excluded from the

dataset by removing these traces.

If the direction of the call is from downstream to upstream, the sign of the response

time is negative. The negative RT values are converted to positive by taking their

absolute values. Unless the negation problem is solved, calculating the response time

variation by using the Coefficient of Variation(CV) might decrease the model perfor-

mance.

Call graphs are sampled based on traces. Microservice call graphs that contain miss-

ing or problematic values are removed. Some graphs consist of the same microservice

set. The duplicate microservices sets may cause overfitting in training the models.

The reliability of the model scores might be suspicious if the model is tested with the

graphs with the same microservices set. To prevent overfitting problems and increase

the reliability of the test scores, the duplicate graphs in terms of the microservices set

are removed from the dataset.

Graphs that are large in size are used to ensure that the dataset intended to be used
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in this study is rich in topological features. For this reason, graphs with node counts

less than 40 are removed from the dataset.

Since the metric to be measured in this study is response time variation, the aim is to

have the same call seen at least 3 times between the same UM and DM. These calls

and traces are cleaned from the dataset. Also, the graphs that have these calls are

removed because the topologies of call graphs should not be broken.

All graphs in the dataset must be reachable because the purpose is to measure the

topological features and use them to predict RTV. Although it is rare, some graphs are

not reachable in the traces. To examine these graphs, the largest connected component

is found and the graph is evaluated based on the largest connected component.

After the feature calculations are completed, the dataset is further reduced by elim-

inating some graphs. The Gaussian distributions of graphs are computed based on

node count, average degree, and loop count. The graphs that are over the 95th per-

centile are removed from the dataset. The experiments are also done for the dataset

that has outliers. The performance scores, which are F1 score, precision, and accu-

racy, are nearly 10% lower. At the end of the preprocessing and outlier elimination

process, there are 70k microservice call graphs in the dataset. In addition to outlier

elimination, call graphs that have the same topology are eliminated during the train-

ing of the machine learning model to ensure they are not included in both the test and

train sets, and unique call graphs with distinct topologies are obtained. The number

of call graphs with identical topologies is even less than 1% of the dataset, and it is

unlikely to have any impact on model performance; however, they are still excluded

to establish a more reliable experimental setup.

3.3 Features and Labels

The primary objective of this thesis is to understand which topological features are

significant and to compare their relative importance. Therefore, the importance of

calculating the topological features is crucial for this study. In contrast to other stud-

ies, the purpose is to predict response time variation instead of response time. It is

vital for microservices architectures not only to have low response times, but also to
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show minimal changes in response time, having a stable response time.

This section includes details regarding the calculation of topological features and the

measurement of response time variation of microservice call graphs.

3.3.1 Features

There are some frequent keywords in the studies that focus on evaluating microser-

vices architecture design. Decentralized architecture and modularity are two signif-

icant examples of these frequent keywords[21][3][22][23][20][24][25][26]. From a

topological perspective, centralization and modularity metrics closely align with these

two architectural design concepts.

There are numerous features that can be obtained from the microservice call graph

topology. In this thesis, instead of preparing a universal set of topological features

and selecting them based on performance, the features to be used are predetermined,

and the experiments in the thesis are built upon these features. Due to the frequent

association of microservice architectures with the concepts of decentralization and

modularity, this thesis uses different features for centralization and modularity. The

metrics for centralization and modularity are calculated using the networkx[28] li-

brary, and the metrics offered by this library are selected. While all metrics in this

library for centralization and modularity are experimented with, not all of them are

suitable for the thesis. This is because some may be too slow, taking over a minute

even for a single call graph, while others have optimization algorithms limited to a

certain number of iterations. Features suitable for continuous and fast experiments

are included in this thesis. Also, node count, degree and loop count features are men-

tioned in the paper which shares the Alibaba dataset. Therefore, node count, degree

and loop count features are added to the feature list.

Centralization and modularity cannot be expressed by a single mathematical equation

because various centralization metrics are designed considering different priorities,

as well as multiple modularity metrics that use different partitioning algorithms.

This subsection includes details on the centralization and modularity metrics used

and how they are calculated. There is information about the calculation of important
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features representing topology, such as node count, average degree, and loop count.

The calculated features for each microservice call graph are provided as input to the

machine learning models that classify response time variation. The subsection also

provides insights into the specific aspects to consider during the calculation of these

metrics.

Besides the calculation of the topological features, the distributions of the calculated

topological features are shared through various plots in this subsection. Someone

aiming to achieve similar results should prepare a dataset for machine learning mod-

els by taking into account these distributions. These distributions contain important

information about the sample used from the Alibaba dataset.

3.3.1.1 Centralization

Centrality provides an evaluation of the significance of a node in terms of its effect on

the connectivity or flow of information in the network. Centrality indicates the impact

of an individual node. A high centrality value indicates a significant impact on both

the information flow within that node and the connectivity of the network. While

centrality provides important information for individual nodes, it does not provide

information about the network as a whole. Finding how centralized a network is needs

calculation of the centrality information of each node. Additionally, calculating the

maximum possible centrality variation in that network is also needed.

C =

∑n
i=1 (Cmax − Ci)∑n

i=1 (Cmax _star_graph − Ci_star_graph)
(3.1)

Centralization is calculated by using Equation 3.1. In Equation 3.1, Ci is the cen-

trality of individual nodes, n is the number of nodes, Cmax is the maximum centrality

value in the graph. Therefore, the centralization can be calculated after calculating

the centrality values of nodes and the maximum possible centrality variation. The

denominator of Equation 3.1 is the star graph version of the formula in the numerator.

This is because, to calculate centralization, the denominator needs to be the maximum

sum of variations that can occur with the same number of nodes. The total variation

is maximized by normalizing it with the maximum possible variation possibile in a
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network of the same size, which is a star network for the four centralization metrics

that are used in this thesis. Centralization means how centralized a network is and it

gives information about the whole network.

There are multiple techniques for computing centrality and centralization. In this

thesis, closeness centrality, betweenness centrality, degree centrality, and harmonic

centrality values are used to compute network centralization.

Degree centrality measures the importance of a node in a network based on the num-

ber of edges connected to it.

CD(v) =
deg(v)
N − 1

(3.2)

The degree centrality of the nodes in the microservice call graph is calculated by

using Equation 3.2. The terms that are used in the equation are listed below.

• CD(v): Degree centrality of node v.

• deg(v): Degree of node v (the number of edges connected to v).

• N : Total number of nodes in the network.

Closeness centrality assesses how quickly a node can interact with other nodes in the

network.

CC(v) =
1∑

shortest paths from node v
(3.3)

The closeness centrality of the nodes in the microservice call graph is calculated by

using Equation 3.3. The terms that are used in the equation are listed below.

• CC(v): Closeness centrality of node v.

•
∑

shortest paths from node v: Sum of the reciprocals of the lengths of the

shortest paths from node v to all other nodes.
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Betweenness centrality identifies nodes that act as bridges along the shortest paths

between other nodes.

CB(v) =
∑
s ̸=v ̸=t

σst(v)

σst

(3.4)

The betweenness centrality of the nodes in the microservice call graph is calculated

by using Equation 3.4. The terms that are used in the equation are listed below.

• CB(v): Betweenness centrality of node v.

• σst(v): Number of shortest paths between nodes s and t that pass through node

v.

• σst: Total number of shortest paths between nodes s and t.

Harmonic centrality emphasizes nodes that are central to multiple other nodes.

CH(v) =
∑
u̸=v

1

d(v, u)
(3.5)

The harmonic centrality of the nodes in the microservice call graph is calculated by

using Equation 3.5. The terms that are used in the equation are listed below.

• CH(v): Harmonic centrality of node v.

• d(v, u): Length of the shortest path between nodes v and u.

After the computation of these four centrality values for every node in the microser-

vice call graphs, star graphs are used to find the maximum possible centrality variation

of a graph with the same number of nodes, which is used then for normalization.

Figure 3.2 shows an example star graph with 40 nodes. A star graph is the most cen-

tralized network for these four centrality metrics, where a single node is responsible

for the connectivity of the graph and has the maximum centrality, while other nodes
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Figure 3.2: A star graph with 40 nodes

have the minimum centrality. Therefore, a star graph helps to calculate the maximum

centrality variation of a graph with the same number of nodes.

In microservice call graphs, centralization features are computed for each node by

using centrality values and the total difference in centrality between the center node of

a star graph with the same number of nodes and other nodes. Betweenness, closeness,

degree, and harmonic centralization values form four columns of the input in the

tabular data format used during the training of the machine learning model.

The distribution of centralization values obtained from centralization calculations di-

rectly impacts the performance of the experiments to be conducted. It is essential

to verify whether the distribution is skewed. When examining the impact of feature

intervals on response time variation in experiment results, it is crucial to understand

the skewness of the distribution, the intervals with the representation ability, and the

intervals where values are not represented in the dataset. Therefore, distributions for

the four calculated centralization metrics are examined using histogram plots.

In the closeness centralization histogram in Figure 3.3, there is a slightly positive

skewness. Most of the centralization values are below 0.5, the call graphs can be
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Figure 3.3: Call graph count histogram with closeness centralization bins

considered decentralized in terms of closeness centrality. The node counts are greater

than 40 and the call graph topologies are very similar to trees. Tree network topol-

ogy and high node count create a positive skewness in the closeness centralization

histogram.

There are no highly centralized call graphs in the dataset, which can be a disadvan-

tage while predicting response time variation of highly centralized graphs in terms of

closeness centrality because they are not represented well in the dataset.

Figure 3.4: Call graph count histogram with betweenness centralization bins

In the betweenness centralization histogram in Figure 3.4, there is no skewness. The

distribution is similar to a normal distribution. All centralization values are properly
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represented in the dataset in terms of betweenness centrality except decentralized

networks which have centralization between 0 and 0.25 in terms of betweenness cen-

tralization. Most of the graphs accumulated between 0.4 and 0.7. Database calls

increase the betweenness centrality because these databases are more likely to be be-

tween two microservices. It is the reason for having no highly decentralized network

in the dataset in terms of betweenness centralization.

Figure 3.5: Call graph count histogram with degree centralization bins

In Figure 3.5, most of the degree centralizations are lower than 0.6. It is an expected

result because there are a minimum 40 nodes in a call graph and most of the nodes

have an indegree and an outdegree of one. Also, there are no nodes with a high degree

that is close to node count. If the degree centralizations lower than 0.6 are considered,

the distribution is similar to the normal distribution. It enables the prediction model

to properly differentiate the impact of degree centralizations lower than 0.6 because

they are represented equally in the dataset.

Figure 3.6 shows the harmonic centralization histogram. Harmonic centralization is

similar to closeness centralization because they are both calculated based on distance.

The harmonic centrality takes harmonic distance into account. On the other hand

closeness centrality is based on the shortest path distance. The distributions of these

two centralization measures based on distance are not the same.
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Figure 3.6: Call graph count histogram with harmonic centralization bins

3.3.1.2 Modularity

Modularity is a metric that shows the strength of the division of a graph into sub-

groups. High modularity means a dense connection between the nodes in the sub-

groups and a sparse connection between the subgroups. It is a popular measure for

microservice call graphs. In literature, the microservices architecture is frequently

mentioned with modularity. Although various definitions of modularity exist, mod-

ularity is defined from the topological perspective in this study because only topo-

logical features of call graphs are considered to evaluate microservices architectures.

Therefore, modularity quantifies the proportion of edges within detected modules,

subtracting the expected fraction of such edges if they were randomly distributed.

The modularity calculation is highly dependent on communities. There are various

methods to assign communities to nodes. Three different community assignment

methods are used while calculating modularity in this study. They are the Louvain al-

gorithm [56], label propagation [57], and Clauset-Newman-Moore greedy algorithm

[58] [59] which is called the greedy algorithm in this thesis.

The steps of community assignment with the label propagation algorithm are listed

below.

• Each node is initially assigned a unique label.
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• Nodes update their labels to the majority label among their neighbors. Ties are

often broken randomly.

• This process continues until a stable state is reached.

Mathematically, the label update process involves selecting the majority label among

neighbors to update a node’s label. However, specific deterministic equations are

often not used in label propagation methods, as they are often defined probabilistically

and may not be easily reduced to a deterministic equation.

The steps of community assignment with the Louvain algorithm are listed below.

• Initially, nodes are assigned to communities.

• Louvain iteratively optimizes modularity by attempting to move nodes between

communities. The objective is to increase modularity.

Mathematically, the process of moving nodes between communities to increase modularity

is an attempt to make changes denoted by the following equation:

∆Q =

[
Σin + 2Σtot

2m
−

(
kin + Σtot

2m

)2
]
−

[
Σin

2m
−
(
kin
2m

)2

−
(
Σtot

2m

)2
]

(3.6)

• ∆Q: Modularity change when a node switches communities. If positive, the

node changes its community; otherwise, it remains.

• Σin: Sum of weights of internal edges in the node’s own community.

• Σtot: Sum of weights of all edges within the node’s own community.

• kin: Degree of the node within its own community.

• m: Total number of edges.

The steps of community assignment with the greedy algorithm are listed below.

• Initially, each node is considered as a separate community.

• Greedy modularity optimization involves iteratively merging communities that

lead to the maximum increase in modularity.
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Mathematically, the algorithm attempts to maximize modularity by considering changes

to the assignment of nodes to communities. The change in modularity (∆Q) for merg-

ing two communities is calculated using the equation:

∆Q =
2

2m

[
Σin −

(
kin
2m

)2
]

(3.7)

• ∆Q: Modularity change when a node switches communities. If positive, the

node changes its community; otherwise, it remains.

• Σin: Sum of weights of internal edges in the two communities being merged.

• kin: Sum of degrees of nodes in the two communities being merged.

• m: Total number of edges.

After assigning the communities to the nodes in the microservice call graphs by three

methods, the modularity values of microservices are computed by the following equa-

tion.

Q =
1

2m

∑
ij

[
Aij −

kikj
2m

]
δ(ci, cj) (3.8)

In Equation 3.8 , Aij is the element in the adjacency matrix, ki and kj are the degrees

of nodes i and j respectively, m is the total number of edges, and δ(ci, cj) is the

Kronecker delta function.

δ(ci, cj) =

1 if ci = cj,

0 if ci ̸= cj.
(3.9)

The Kronecker delta function is shown in Equation 3.9, It ensures that the terms in

the summation only contribute when nodes i and j belong to the same community.

The three modularity features form three columns of the input in the tabular data

format used during the training of the machine learning model. The distribution of

modularity values obtained from modularity calculations directly impacts the per-

formance of the experiments to be conducted. It is essential to verify whether the
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distribution is skewed. When examining the impact of feature intervals on response

time variation in experiment results, it is crucial to understand the skewness of the dis-

tribution, intervals with the representation ability, and intervals where values are not

represented in the dataset. Therefore, distributions for the three modularity features

are examined using histogram plots.

Figure 3.7: Call graph count histogram with Louvain modularity bins

Figure 3.7 shows the Louvain modularity and call graph count histogram. The mod-

ularity values are between 0.4 and 0.8. The call graphs in the dataset have no low

modularity values which are less than 0.4. Most of the call graphs have modularity

between 0.6 and 0.7.

The topology of call graphs is similar to a tree and modularity is calculated by using

undirected graphs. Therefore, high modularity values are expected.

Figure 3.8 shows the label propagation modularity histogram. The distribution is very

similar to the Louvain algorithm, but there is a small difference between Louvain

and label propagation modularities. Louvain values are on average 0.1 higher than

the label propagation algorithm. The reason for this difference is that the Louvain

algorithm can find more dense subgroups than the label propagation algorithm.

Figure 3.9 shows the Greedy modularity distribution. The distribution is the same as

Louvain modularity distribution. The greedy algorithm and Louvain algorithm find

the same communities for this call graph dataset. The Pearson correlation coefficient

between Louvain modularities and greedy modularities is 1. The distribution and the
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Figure 3.8: Call graph count histogram with label propagation modularity bins

Figure 3.9: Call graph count histogram with greedy modularity bins

correlation coefficient show that these two modularity values are the same. It is not

needed to use both of these features while predicting response time variation. The

Louvain algorithm and label propagation algorithm are used in model training.

3.3.1.3 Other Topological Features

Although the impact of centralization and modularity on response time variation is

one of the critical research questions in this study, achieving high model performance

is also one of the primary goals. Therefore, it is necessary to represent the topology

with other features. For this reason, node count, average degree, and loop count are

added to the feature list.
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Centralization and modularity metrics are more meaningful if the node count is in the

same features list. The average degree serves a similar purpose. Although nodes gen-

erally have two degrees, one in-degree and one out-degree, representing how much

the tree branches or deviates from a tree network structure, the average degree plays

a significant role.

In the Alibaba dataset, there are very few networks with directed loops. Their pa-

pers indicate that out of approximately 20 million graphs, about 200 of them contain

cyclic dependencies with a minimum of 3 nodes[15]. Therefore, loop count is cal-

culated based on undirected topology like other features. While not as harmful as

cyclic dependencies, situations with loops can lead to problematic circumstances if

the maintenance strategy is not well designed.

The distribution of average degree, node count, and loop count values directly im-

pacts the performance of the experiments to be conducted. It is essential to verify

whether the distribution is skewed. When examining the impact of feature inter-

vals on response time variation in experiment results, it is crucial to understand the

skewness of the distribution, the representation in different intervals, and the intervals

where values are not represented in the dataset. Therefore, distributions for the three

features are examined using histogram plots.

Figure 3.10: Call graph count histogram with node count bins

Node count distribution is shown in Figure 3.10. Most of the topologies have node

counts between 40 and 50. The call graph count decreases with the increasing node

count. It is valid for the whole Alibaba dataset, finding large graphs is harder than
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finding small graphs in the Alibaba dataset.

Figure 3.11: Call graph count histogram with average degree bins

Figure 3.11 shows the average degree distribution in the dataset. The expected average

degree count is 2.25 for the dataset. It is an expected result because most of the nodes

have one in-degree and one out-degree.

Figure 3.12: Call graph count histogram with loop count bins

Loop count distribution is shown in Figure 3.12. The loop count feature does not rep-

resent cyclic dependencies because undirected topology is used in this study. Database

calls can create loops or some microservice call the same node. The loops may have a

node count that is larger than 3. Although the loop count may appear to have a highly

negative impact on response time variation, it is not easy to predict its effect without

testing, as loops can occur for various reasons. Nevertheless, undirected loops that
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are poorly designed or have not been properly tuned in production have the potential

to create issues.

3.3.2 Correlation Analysis Between Topological Features

Since this thesis uses machine learning models to assess feature importance, the high

correlation between features may adversely impact the interpretations. Therefore, an

examination of the correlation between features is necessary. Correlated variables

should either be removed from the feature list, or these correlations should be taken

into account when interpreting feature importance. Pearson correlation coefficient

is used to measure the correlation between topological features of microservice call

graphs.

The Pearson correlation coefficient (r) measures the linear relationship between two

variables, typically denoted as X and Y . The equation for calculating the Pearson

correlation coefficient is given by:

r =

∑n
i=1(Xi − X̄)(Yi − Ȳ )√∑n

i=1(Xi − X̄)2
√∑n

i=1(Yi − Ȳ )2
(3.10)

In equation 3.10:

• Xi and Yi are the individual data points of variables X and Y respectively.

• X̄ and Ȳ are the means of variables X and Y respectively.

• n is the number of data points.

The value of r ranges from -1 to 1, where:

• r = 1: Perfect positive linear correlation

• r = −1: Perfect negative linear correlation

• r = 0: No linear correlation
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Figure 3.13: Correlation Matrix of Features

Figure 3.13 shows Pearson Correlation coefficients between topological features. Cen-

tralization metrics are positively correlated among themselves. Harmonic centraliza-

tion and degree centralization are highly correlated.

Louvain modularity and greedy modularity have exactly the same values. Only Lou-

vain modularity is used in model training. Greedy modularity is removed from the

feature list. Label modularity and Louvain modularity are positively correlated.

Node count is positively correlated with loop count. It is expected because the high

number of nodes increases the possibility of creating loops. Average degree and loop

count are correlated for the same reason, but loop count is not removed from the fea-

ture list because it has the potential to explain situations with complex dependencies

if the impact of loop count is high during the feature importance calculations.

There is a meaningful negative correlation between modularity and centralization be-

cause centralized networks have fewer communities. Since centralization features

and modularity features are expected to be correlated within their own sets, feature

elimination is not performed due to the observed correlation between these features.
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However, because the greedy algorithm and the Louvain algorithm find the same com-

munities, calculating the modularity feature with the greedy algorithm is unnecessary.

While it may not influence the decisions made by the model, examining one of them

is sufficient from the perspective of feature importance. Due to its high correlation

between loop count - average degree and loop count - node count, loop count can

be excluded from the feature list. However, it is not excluded from the feature list

due to the potential to capture interesting situations in some microservice graphs, it

is important to consider these correlations. If the impact is low, the impact of loop

count can be ignored during the analysis.

3.3.3 Labels and Response Time Variation

Having smaller performance variations is a desired property for microservice archi-

tectures. Small response time variation means a more stable and easily testable sys-

tem.

The main purpose of this research is to investigate the impact of topological features

on response time variation (RTV) and to predict RTV using these features.

In this thesis, the prediction of response time variation is treated as a classification

problem. Firstly, the response time variation of microservices in call graphs is calcu-

lated using the coefficient of variation.

CV =
Standard Deviation

Mean
(3.11)

After calculating the response time variation for each call using the CV, the average

response time variation of call graphs is computed. The average of the response time

variations of calls is considered as the response time variation of the call graph.

Microservice call graphs are labeled by using different response time variation thresh-

old (RTVT) values. Call graphs with RTV values above the RTVT are labeled as

fluctuating, and those below are labeled as steady.

• When the RTVT value is set to 0.3, 51% of the 70k call graphs are labeled as
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fluctuating, and 49% as steady.

• Setting the RTVT value to 0.4 resulted in 32% of the 70k call graphs labeled as

fluctuating and 68% as steady.

• Setting the RTVT value to 0.5, 15% of the 70k call graphs are labeled as fluc-

tuating, and 85% as steady.

The selection of the 0.3, 0.4, and 0.5 thresholds is primarily aimed at adjusting the

sample sizes in the steady and fluctuating classes. When approximately 50%, 30%,

and 15% of the data are labeled as fluctuating, the consistency and differences in

the feature importance of models are analyzed. However, these thresholds also have

real-world implications, affecting user experience. There is a study that considers

a service having a coefficient of variation above 1.0 as an anomaly [60]. When a

network with an RTV above 0.5 is considered to have a normal distribution in terms of

response time variation based on service level, being fluctuating with a 0.5 threshold

indicates a high probability of the service having anomalies, indicating the risk of

improper functioning and a high rate of failures. In another study, it is mentioned

that in a scenario where resources in the cloud are shared, 0.5 response time variation

led to 1.7% of requests experiencing timeout conditions [61]. This underscores that

the fluctuating class with a 0.5 threshold indicates a high likelihood of an average

service experiencing timeouts. Considering service level agreements, being labeled as

fluctuating with a 0.5 threshold is risky. In a network labeled as fluctuating with a 0.4

threshold, it is likely that there are services unable to meet service level agreements,

potentially causing issues for some users in using the application properly. Being

steady with a 0.3 threshold has not been considered a risky situation when looking at

the literature. Networks labeled as fluctuating with this threshold may pose a problem

for applications requiring stable response times and struggling to meet service level

agreements. For example, in the case of a video and music streaming application

providing a user experience at the edge in terms of response time, being steady with

a 0.3 threshold is desirable.

When evaluating the Pearson Correlation Coefficient between RTV and other fea-

tures, no correlation value above 0.3 is found. Node count and closeness centraliza-

tion have the highest correlation values at -0.28.
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Analyzing the correlation between the RTVT values and binary labels created with

the model features provides valuable information for the model development stage.

Therefore, the correlation between binary labels and continuous features is examined

using the Point Biserial Correlation Coefficient.

The point-biserial correlation coefficient (rpb) measures the linear relationship be-

tween a binary variable (coded as 0 or 1) and a continuous variable. It is calculated

using the following equation:

rpb =

∑n
i=1(Xi − X̄)(Yi − Ȳ )√∑n

i=1(Xi − X̄)2
√∑n

i=1(Yi − Ȳ )2
(3.12)

In Equation 3.12:

• Xi is the continuous variable, and Yi is the binary variable (coded as 0 or 1).

• X̄ and Ȳ are the means of variables X and Y , respectively.

• n is the number of data points.

The value of rpb also ranges from -1 to 1, where:

• rpb > 0: Positive correlation (as X increases, Y tends to be 1)

• rpb < 0: Negative correlation (as X increases, Y tends to be 0)

• rpb = 0: No linear correlation

• For the RTVT value of 0.3, except for node count and closeness centralization,

there is no feature with a correlation coefficient above 0.2. Node count shows

a slightly significant correlation with -0.34.

• For the RTVT value of 0.4, except for node count and average degree, there is

no feature with a correlation coefficient above 0.2. Node count shows a slightly

significant correlation with -0.31.

• For the RTVT value of 0.5, except for node count, there is no feature with

a correlation coefficient above 0.2. Node count shows a slightly significant

correlation with -0.21.
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3.4 Machine Learning Models

The analyses conducted in this chapter reveal that the classification of RTV based

on simple correlations is not possible. Therefore, using machine learning models for

prediction provides a more meaningful classification model.

This section provides details on the various models used, model validation, hyperpa-

rameter optimization, and fine-tuning processes.

For the RTV classification problem, a baseline classifier generating random predic-

tions is used. This baseline model is aware of the RTV label distribution and produces

random predictions accordingly. The sklearn [62] Python library’s Dummy Classifier

is used for this purpose, with the strategy set to ’stratified’ to ensure predictions are

made with awareness of the distribution. The purpose of experiments is to produce

statistically significant results by comparing the performance of this baseline model.

Various machine learning models are used to generate better predictions than the base-

line classifier and statistically significant results. These models consist of a random

forest classifier [33], a CatBoost Classifier [34], and a LightGBM [35] Classifier. The

reason for using tree-based models is their success in determining feature importance

which is one of the outputs of this thesis.

After creating the machine learning model, topological features along with the RTV

values are given as features and labels to the model respectively. The model aims

to achieve a high F1 score. To understand if there is an issue in the model-building

procedure, the K-fold cross-validation technique is applied. Here, the fold number is

set to 5. The 5-fold cross-validation reveals whether biases in the dataset will affect

the model’s performance, ensuring a more reliable training process. Once the model

is validated, one can be ensured about the robustness of the model.

3.4.1 Training, Hyperparameter Optimization and Fine Tuning

Adjusting hyperparameters in ML models significantly changes the results. There-

fore, to achieve the most successful results, it is important to find the most suitable

parameters for both the dataset and the model. Once the model’s parameters are de-
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termined, the most successful model can be created. There are different methods

and algorithms for hyperparameters. In this study, Grid Search [62] is used as the

hyperparameter optimization method.

For the Grid Search method, the values that hyperparameters can take must be pre-

defined. The algorithm tries all combinations, finding the combination that produces

the best results. During the hyperparameter optimization and fine-tuning process,

the hyperparameters and their corresponding values for the Random Forest Classifier,

CatBoost, and LightGBM Classifier are determined.

For the LightGBM classifier, the hyperparameter combinations below are used.

• learning rate: [0.05, 0.1, 0.15],

• n estimators: [75,100,150],

• num leaves: [25,30,35],

• colsample bytree : [0.9, 1.0],

• subsample : [0.7, 0.8, 1.0],

• reg alpha : [0,0.5,1.0],

• reg lambda : [0,0.5,1.0],

For the Random forest classifier, the hyperparameter combinations below are used.

• n estimators: [200, 400, 600]

• max features: [’auto’, ’sqrt’],

• bootstrap: [True, False],

• max depth : [5 10 20 30],

• min samples leaf: [1, 2, 4]

For the CatBoost classifier, the hyperparameter combinations below are used.

• learning rate: [0.03, 0,05, 0.08, 0.1],
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• depth: [4, 6, 10, 15],

• l2 leaf reg: [1, 3, 5, 7, 9]

3.4.2 Performance Scores of ML Models and Statistical Tests

After the training processes of the machine learning models are completed, the anal-

ysis phase of the results begins. When reviewing the model’s performance, F1 score,

accuracy, and precision are considered. Analyzing the confusion matrix helps iden-

tify the strengths and weaknesses of the model. To check whether the obtained results

are due to chance, the McNemar [36] statistical test is applied. When conducting the

McNemar test, alongside the ML model’s results, the results of a dummy baseline

model generating stratified random predictions, taking into account the distribution,

are used. After the results are examined and deemed statistically significant, the fea-

ture importance is analyzed.

Accuracy =
True Positive + True Negative

Total Examples
(3.13)

Precision =
True Positive

True Positive + False Positive
(3.14)

Recall =
True Positive

True Positive + False Negative
(3.15)

F1 =
2× Precision × Recall

Precision + Recall
(3.16)

The equations of accuracy, precision, recall and F1 score metrics are shown in Equa-

tions 3.13, 3.14, 3.15, and 3.16 respectively.

The McNemar test is a statistical test used to determine if there are statistically signif-

icant differences between paired proportions from two related groups. The McNemar

test statistic (χ2) is calculated using Equation 3.17
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χ2 =
(|x− y| − 1)2

x+ y
(3.17)

where:

• x is the number of instances where the first condition is true and the second

condition is false.

• y is the number of instances where the first condition is false and the second

condition is true.

The p value for McNemar test can be computed using the chi-squared distribution.

Let χ2
obs be the observed test statistic, then the p value is given by:

p-value = P (χ2 > χ2
obs) = 1− P (χ2 ≤ χ2

obs) (3.18)

After conducting the McNemar test, the p value is determined using Equation 3.18. It

is anticipated that the obtained p value in the models under consideration for feature

importance would be less than 0.001. Models with p values less than this threshold

are then examined for their feature importance.

3.4.3 Feature Importance

The impact of topological features in ML models on microservice response time vari-

ation is calculated using SHAP (SHapley Additive exPlanations) [37]. SHAP values

provide a theoretical framework for measuring the impact of individual features on

the output of an ML model. The SHAP value for a specific feature quantifies its

contribution to the prediction relative to a baseline prediction. The overall model

prediction can be expressed as follows:

Model Prediction = Baseline Prediction +
N∑
i=1

SHAP Valuei (3.19)

In Equation 3.19:
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• N is the number of features.

• SHAP Valuei represents the SHAP value for the i-th feature.

The SHAP values are computed based on Shapley values from game theory. For a

specific example, the Shapley value of a feature is the mean marginal contribution of

that feature to all possible feature subsets. The equation for computing the Shapley

value (ϕi) is given by Equation 3.20.

ϕi(f) =
∑

S⊆N\{i}

|S|!(|N | − |S| − 1)!

|N |!
[f(S ∪ {i})− f(S)] (3.20)

In Equation 3.20:

• f is the model’s prediction function.

• N is the set of all features.

• S is a subset of features.

The SHAP values are then calculated by averaging the Shapley values over all pos-

sible orderings of the features. In practice, higher absolute SHAP values indicate

a greater impact of a feature on the model’s predictions. By analyzing the SHAP

values, one can gain insights into which features are driving specific predictions and

understand the importance of each feature in the overall model behavior.
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CHAPTER 4

EXPERIMENTS

4.1 Introduction

In this chapter, there are experiments conducted to answer the research questions of

the thesis. The research questions to be answered are listed below.

• Can the response time variation of call graphs be predicted using the topology

of the microservice call graph? How successful can machine learning algo-

rithms be in this prediction task?

• In microservice architectures, which are mentioned frequently with decentral-

ization and modularity, are the centralization and modularity features obtained

from the topology of call graphs effective on response time variation? If so,

how are they effective?

• What is the impact of features such as node count, average degree, and loop

count obtained from microservice call graphs on response time variation?

Experiments where machine learning models predict microservice call graph response

time variation using topological features of microservice call graphs demonstrate both

the predictability of response time variation with topological features and the level of

success achieved. For this purpose, the accuracy and F1 scores of machine learning

models, as well as confusion matrices, are shared. These performance scores and

confusion matrices include the answer to the first research question.

Feature importance and dependence plots drawn using SHAP reveal the impact of

each topological feature on the machine learning model’s predictions of response time
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variation. Additionally, they provide the ranking of feature effects. Centralization and

modularity dependence plots are examined to understand the impact of centralization

and modularity features on response time variation, addressing the second research

question. The third research question aims to understand the impact of node count,

average degree, and loop count on response time variation. To achieve this, feature

importance plots and dependence plots containing node count and average degree are

used.

This chapter, apart from experiments seeking answers to research questions, explains

the limitations of the experiments and situations that threaten the validity. Also, it

discusses the results of the experiments.

4.2 Experiment Setup

The classification experiments are conducted with three different label types. These

label types are calculated with different RTVT values, which are 0.3, 0.4, and 0.5. To

achieve the best accuracy and F1 scores, three different ML models are tried that are

random forest classifier, LightGBM classifier, and CatBoost classifier. The objective

of striving to achieve the best F1 score and accuracy in these experiments is twofold:

to demonstrate the predictive ability of response time variation with topological fea-

tures and that the models with high scores provide more accurate results in terms of

feature importance. The optimal parameters for each labeling type are calculated for

these models by using the Grid search algorithm.

In Table 4.1, the hyperparameters resulting from the grid search algorithm for Ran-

dom Forest Classifier, LightGBM classifier, and CatBoost classifier are presented.

Since there are different binary classification problems created with three different

thresholds for response time variation, the grid search algorithm yields different re-

sults for each threshold.
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Table 4.1: Hyperparameters

4.3 Results

Table 4.2, Table 4.3, and Table 4.4 show the accuracies and F1 scores of the Dummy

Baseline Model, Random Forest Classifier, LightGBM classifier, and CatBoost clas-

sifier for RTVT 0.3, RTVT 0.4, and RTVT 0.5 labels.

All performance scores in all tables are statistically significant. The decision on this

comment is made using the McNemar test, comparing the results of algorithms with

a dummy baseline classifier.

When the RTVT value is configured as 0.3, 51% of the 70,000 call graphs are catego-

rized as fluctuating, while 49% are classified as steady. The reason for choosing the

value 0.3 is its ability to evenly split the dataset in half. Consequently, the baseline

classifier achieves accuracy and F1 score values close to 0.5. During model training,

the sizes of the training and test sets were equally utilized for this label value. Their

identical distribution is the main factor contributing to the high performance of the

model compared to other labels across all models.

Configuring the RTVT value to 0.4 resulted in 32% of the 70,000 call graphs being
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Table 4.2: Performance Scores for RTVT 0.3 Label

ML Model Accuracy F1 Score

Dummy Baseline Model 0.499 0.516

Random Forest 0.811 0.816

LightGBM 0.822 0.8

CatBoost 0.826 0.827

Table 4.3: Performance Scores for RTVT 0.4 Label

ML Model Accuracy F1 Score

Dummy Baseline Model 0.50 0.38

Random Forest 0.77 0.68

LightGBM 0.79 0.71

CatBoost 0.80 0.72

classified as fluctuating, while 68% were categorized as steady. In this example, the

test set has the same size as the 0.3 label, but their distributions are different. How-

ever, to address the imbalance in the training set, the number of call graphs labeled as

fluctuating is equal to the number labeled as steady. The performance decrease com-

pared to the RTVT 0.3 label is due to the imbalance in the distribution of the training

set and test set. However, if this imbalance issue is not addressed, much lower F1

scores are obtained.

Configuring the RTVT value to 0.5 results in 15% of the 70,000 call graphs being

labeled as fluctuating, while 85% are categorized as steady. For the RTVT 0.5 label, a

training set is used with an equal number of steady and fluctuating graphs, similar to

the RTVT 0.4 and 0.3 labels. However, no filtering is applied to the test set, resulting
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Table 4.4: Performance Scores for RTVT 0.5 Label

ML Model Accuracy F1 Score

Dummy Baseline Model 0.52 0.22

Random Forest 0.72 0.47

LightGBM 0.75 0.49

CatBoost 0.76 0.49

in fewer fluctuating graphs compared to steady graphs, maintaining the same distri-

bution as the original dataset. While resolving the class imbalance issue significantly

increases the F1 score, the main cause of performance decline is the distribution dif-

ference between the training and test sets.

Figure 4.1: Random Forest Model Confusion Matrix with RTVT 0.3 Labelling

The CatBoost classifier has better results than the other algorithms in terms of both

accuracy and F1 score for all RTVT labels. The ranking for both performance scores

is the same for all three labels, from best to worst: CatBoost, followed by LightGBM,
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Figure 4.2: LGBM Classifier Confusion Matrix with RTVT 0.3 Labelling

and finally, Random Forest. Therefore, when investigating the importance of topo-

logical features, CatBoost is considered the most reliable algorithm. Additionally, the

correlation with LightGBM’s feature importance is examined. For Random Forest,

evaluating feature importance is deemed unnecessary.

The results of the confusion matrices in Figures 4.1, 4.2, and 4.3 indicate that the true

positive and true negative rates of the three models are similar. There is no model

biased towards either true positive or true negative for this label. If there are specific

areas where one model outperformed the others, it would be necessary to consider

this when evaluating the feature importance of the models. However, in terms of true

positive and true negative results, CatBoost performs better than the other models.

CatBoost is slightly better than LightGBM for this RTVT 0.3 label. It manages to

transfer a small number of examples where LightGBM makes false negative and false

positive predictions to true negative and true positive.

Figure 4.4 shows that LightGBM primarily considers closeness centralization and

degree centralization in its predictions. Following these, it gives importance to node

count and the modularity value calculated with the label propagation algorithm. In

contrast, betweenness centralization and harmonic centralization are evaluated as less
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Figure 4.3: Catboost Classifier Confusion Matrix with RTVT 0.3 Labelling

Figure 4.4: LGBM Classifier Feature Importance Plot with RTVT 0.3 Labelling

important compared to other centralization metrics. These two centralization metrics,

which have a high correlation, are similarly important to the model. Interestingly,
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Figure 4.5: Catboost Classifier Feature Importance Plot with RTVT 0.3 Labelling

while attaching significance to label modularity, LightGBM does not use Louvain

Modularity with the same degree of impact as label modularity. The impact of loop

count, examined in an undirected manner, is negligible in the model’s predictions.

After Louvain modularity and loop count, the average degree is identified as the least

important feature.

The importance of the features for the CatBoost classifier in Figure 4.5 is nearly iden-

tical to those of LightGBM. However, CatBoost has evaluated Louvain modularity

as a more important feature compared to LightGBM. The slight score difference be-

tween these two models arises from the importance of Louvain modularity in the

feature importance perspective.

In Figure 4.5, where the feature importances of the CatBoost classifier are evaluated,

there is not only a ranking of feature importance, but also an exploration of the re-

lationship between SHAP values and feature values. According to these evaluations,

low closeness centralization values contribute to predicting a label of 1. In other

words, there is a positive relationship between having low closeness centralization

values and being in the fluctuating class of the microservice call graph. High close-

ness centralization values are more effective in the model’s decision-making com-
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pared to low closeness centralization values. High closeness centralization values

significantly contribute to the model evaluating the microservice call graph as steady.

Contrary to expectations, having a decentralized microservices architecture in terms

of closeness centralization does not lead to stable response time.

For degree centralization, the situation is the opposite of closeness centralization.

From the perspective of degree centralization, graphs that are more centralized have

higher response time variation according to the model, while decentralized graphs are

evaluated as more steady. Low centralization values are more effective in decision-

making compared to high centralization values.

In terms of label modularity and Louvain modularity, the likelihood of the model eval-

uating more modular microservices architecture as steady is higher. Low modularity

values are in a more influential position in the model’s decision-making compared to

high modularity values. For node count, microservices architectures with low node

count are more likely to be evaluated as having higher fluctuation. The impact of high

or low values of betweenness and harmonic centralization on the model’s decisions

cannot be clearly interpreted. These centralization values gain meaning for the model

when interpreted in conjunction with other features.

Figure 4.6: Dependence Plot of Closeness Centralization and Response Time Varia-

tion Class with RTVT 0.3 Labelling
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In Figure 4.6, there is a dependence plot for closeness centralization calculated with

SHAP values. According to this dependence plot, microservice call graphs with

closeness centralization values below 0.3 are more likely to be evaluated as fluctu-

ating. Microservice call graphs with closeness centralization between 0.4 and 0.5 are

evaluated as steady. The dependence plot shows that the model gives the highest im-

portance to the range of closeness centralization values between 0.4 and 0.5. Graphs

with centralization above 0.5 are more likely to be evaluated as steady.

Figure 4.7: Dependence Plot of Degree Centralization and Response Time Variation

Class with RTVT 0.3 Labelling

In Figure 4.7, there is a dependence plot for degree centralization calculated with

SHAP values. According to this dependence plot, microservice call graphs with de-

gree centralization values below 0.25 are more likely to be evaluated as steady. As

the centralization value falls below 0.25, the probability of being evaluated as steady

increases. microservice call graphs with degree centralization between 0.25 and 0.45

are evaluated as fluctuating. Call graphs with centralization above 0.45 are more

likely to be evaluated as steady, but the impact of this range is not as high as the rest

of the values. The degree centralization values that are below 0.25 have the highest

absolute SHAP values among all topological features. It means that creating designs

with degree centralization below 0.25 is the most effective way to achieve a design

with response time variation below the average from a topological perspective.
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Figure 4.8: Dependence Plot of Node Count and Response Time Variation Class with

RTVT 0.3 Labelling

In Figure 4.8, there is a dependence plot for node count calculated with SHAP values.

As node count values increase, the model’s evaluation of the microservice call graph

as steady also increases. The dependence plot indicates that microservice call graphs

with a node count greater than 60 are more likely to be evaluated as steady. In graphs

with the same node count, it is observed that the effect of the node count feature is

variable. This implies that the node count feature is more meaningful when evaluated

in conjunction with other topological features.

In Figure 4.9, there is a dependence plot for label modularity calculated with SHAP

values. The label modularity dependence plot indicates that as modularity increases,

the probability of the model evaluating microservice call graphs as steady also increases.

Graphs with modularity values above 0.6 are considered steady by the model. For

values below 0.6, there is a high probability of being evaluated as fluctuating. As

modularity decreases, the impact of the model becomes more uncertain.

In Figure 4.10, there is a dependence plot for betweenness centralization calculated

with SHAP values. The dependence plot for betweenness centralization shows that it

does not exhibit a clear positive or negative impact. It gains meaningful interpretation

when evaluated in conjunction with other features, as evidenced by a dependence plot.
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Figure 4.9: Dependence Plot of Label Modularity and Response Time Variation Class

with RTVT 0.3 Labelling

Figure 4.10: Dependence Plot of Betweenness Centralization and Response Time

Variation Class with RTVT 0.3 Labelling

Between 0.55 and 0.7, there appears to be a high probability of the model evaluating

microservice call graphs as fluctuating.

In Figure 4.11, there is a dependence plot for Louvain modularity calculated with
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Figure 4.11: Dependence Plot of Louvain Modularity and Response Time Variation

Class with RTVT 0.3 Labelling

SHAP values. Louvain modularity has a similar dependence plot to label modularity.

However, unlike label modularity, there is a region where Louvain modularity has a

peak, particularly for modularity values below 0.6 and above 0.5, where it tends to

evaluate microservice call graphs as fluctuating.

Figure 4.12: Dependence Plot of Harmonic Centralization and Response Time Varia-

tion Class with RTVT 0.3 Labelling
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Figure 4.12 shows that using the harmonic centralization feature, the likelihood of

evaluating as fluctuating or steady is more uncertain compared to other features. In

the dependence plot, the highest impacts are observed around values of 0.3, 0.45,

and 0.6, but the prediction direction is steady, fluctuating, and steady, respectively.

Beyond 0.6, the model is more likely to evaluate microservice call graphs as steady.

However, due to both the low impact and the continuous change in the prediction

direction of this feature, making a meaningful interpretation becomes challenging.

Figure 4.13: Dependence Plot of Average Degree and Response Time Variation Class

with RTVT 0.3 Labelling

Figure 4.13 indicates that the effect of the average degree feature on the CatBoost

classifier is uncertain below 2.3. Beyond this value, the likelihood of being evaluated

as steady appears to be higher. Additionally, microservice graphs with low node count

and high average degree show a higher probability of being evaluated as steady.

In Figure 4.14, there is a confusion matrix for the Catboost classifier model trained

using RTVT 0.4 labels. Unlike the RTVT 0.3 label, an excess of false positives is no-

ticeable here. The probability of the examples that the model identifies as fluctuating

to actually be fluctuating is lower compared to the RTVT 0.3 label. Due to the suc-

cess of the model in evaluating examples as steady, a relatively high accuracy value

is achieved similar to the RTVT 0.3 label. However, when evaluated in terms of F1

score, the same interpretation is not possible because the false positive count is high.
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Figure 4.14: Catboost Classifier Confusion Matrix with RTVT 0.4 Labelling

Figure 4.15: LGBM Classifier Feature Importance Plot with RTVT 0.4 Labelling
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Figure 4.15 shows that the LightGBM classifier that is trained with RTVT 0.4 labels

mainly considers closeness centralization and degree centralization in its predictions.

Following these, it gives importance to node count and the modularity value calcu-

lated with the label propagation algorithm. On the other hand, betweenness central-

ization and harmonic centralization are evaluated as less important compared to other

centralization metrics. These two centralization metrics, which are correlated, are

similarly important to the model. Interestingly, while attaching significance to label

modularity, LightGBM does not rely on Louvain Modularity. The impact of loop

count, examined in an undirected manner, is negligible in the model’s predictions.

After loop count, the average degree is identified as the least important feature. The

feature importance difference between the LightGBM classifier with RTVT 0.3 labels

and RTVT 0.4 labels is negligible, they are almost identical.

Figure 4.16: Catboost Classifier Feature Importance Plot with RTVT 0.4 Labelling

Figure 4.16 shows that when the CatBoost classifier is trained with RTVT 0.4 labels,

it draws a feature importance graph that is different from that of RTVT 0.3 labels.

Although the way features affect the outcome is similar, the ranking of importance

changes. The model considers node count as the most important feature. Loop count

also gains importance and achieves a high rank in terms of feature importance.

Figure 4.17 is a dependence plot for closeness centralization calculated with SHAP
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Figure 4.17: Dependence Plot of Closeness Centralization and Response Time Varia-

tion Class with RTVT 0.4 Labelling

values. According to this dependence plot, microservice call graphs with closeness

centralization values below 0.35 are more likely to be evaluated as fluctuating, but the

effect is uncertain in this range. Microservice call graphs with closeness centraliza-

tion above 0.35 are evaluated as steady. The dependence plot shows that as closeness

centralization increases, the probability of microservice call graphs being evaluated

as fluctuating also increases.

In Figure 4.18, there is a dependence plot for degree centralization calculated with

SHAP values. According to this dependence plot, microservice call graphs with de-

gree centralization values below 0.2 are more likely to be evaluated as steady. As

the centralization value falls below 0.2, the probability of being evaluated as steady

increases. microservice call graphs with degree centralization between 0.2 and 0.4

are evaluated as fluctuating. Graphs with centralization above 0.4 are more likely to

be evaluated as steady, but the impact of this range is lower than the rest of the mi-

croservice call graphs. The SHAP values observed at low degree centralization values

are remarkably high, unlike in any other topological feature. This indicates the pref-

erence for graphs with low degree centralization for performance stability and low

response time variation.
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Figure 4.18: Dependence Plot of Degree Centralization and Response Time Variation

Class with RTVT 0.4 Labelling

Figure 4.19: Dependence Plot of Node Count and Response Time Variation Class

with RTVT 0.4 Labelling

In Figure 4.19, there is a dependence plot for node count calculated with SHAP val-

ues. As node count values increase, the model’s evaluation of the microservice call

graph as steady also increases. The dependence plot indicates that microservice call
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graphs with a node count greater than 60 are more likely to be evaluated as steady.

Figure 4.20: Dependence Plot of Loop Count and Response Time Variation Class

with RTVT 0.4 Labelling

In Figure 4.20, there is a dependence plot for loop count calculated with SHAP val-

ues. As node count values increase, the model’s evaluation of the microservice call

graph as steady also increases. The dependence plot indicates that microservice call

graphs with a node count greater than 16 are more likely to be evaluated as steady.

The call graphs with loop count lower than 15 are evaluated as fluctuating by the

CatBoost classifier. We cannot say that the higher undirected loop count is better for

microservice call graphs, it is not a feasible interpretation. The database and cache

calls create loops and it decreases the response time variation.

In Figure 4.21, there is a dependence plot for label modularity calculated with SHAP

values. The label modularity dependence plot indicates that as modularity increases,

the probability of the model evaluating microservice call graphs as steady also in-

creases. Graphs with modularity values above 0.6 are considered steady by the model.

For values below 0.6, there is a high probability of being evaluated as fluctuating. As

modularity decreases, the impact of the model becomes more uncertain. Even when

modularity is above 0.6, certain examples with a high node count are evaluated as

fluctuating, though with a low impact.
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Figure 4.21: Dependence Plot of Label Modularity and Response Time Variation

Class with RTVT 0.4 Labelling

Figure 4.22: Dependence Plot of Betweenness Centralization and Response Time

Variation Class with RTVT 0.4 Labelling

In Figure 4.22, there is a dependence plot for betweenness centralization calculated

with SHAP values. The dependence plot for betweenness centralization shows that it

does not exhibit a clear positive or negative impact. It gains meaningful interpretation

when evaluated with other features, as evidenced by a dependence plot. Between 0.6
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and 0.75, there appears to be a high probability of the model evaluating microservice

call graphs as fluctuating.

Figure 4.23: Dependence Plot of Louvain Modularity and Response Time Variation

Class with RTVT 0.4 Labelling

In Figure 4.23, there is a dependence plot for Louvain modularity calculated with

SHAP values. Louvain modularity has a similar trend in the dependence plot to label

modularity. However, unlike label modularity, there is a region where Louvain mod-

ularity has a high impact, particularly for modularity values below 0.65 and above

0.55, where it tends to evaluate microservice call graphs as fluctuating.

In Figure 4.24, interpreting the impact of the harmonic centralization feature is not

entirely feasible, much like it is for RTVT 0.3 labels. Moreover, it is not a feature with

a particularly high impact. Unlike other features, no discernible trend is observed

between the SHAP value and the feature value. The interpretations made for RTVT

0.3 labels are applicable to this label as well, with only changes in peak values.

The dependence plot for the average degree in Figure 4.25 for RTVT 0.4 labels

shows that, before the value of 2.4, the ability of the average degree to evaluate a

microservice call graph as fluctuating or steady is weak. In this region, the model

makes decisions based on other topological features. From the perspective of average

degree, the model evaluates call graphs as steady after the threshold of 2.4. In this re-

71



Figure 4.24: Dependence Plot of Harmonic Centralization and Response Time Varia-

tion Class with RTVT 0.4 Labelling

Figure 4.25: Dependence Plot of Average Degree and Response Time Variation Class

with RTVT 0.4 Labelling

gion, as the average degree increases, the likelihood of the model evaluating the graph

as steady also increases. Among graphs with the same average degree, those with low

node count have an increasing impact of average degree on the model’s decisions.
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Figure 4.26: Catboost Classifier Confusion Matrix with RTVT 0.5 Labelling

The confusion matrix in Figure 4.26 for the CatBoost classifier trained with data la-

beled as RTVT 0.5 reveals that the model has a significant number of false negatives,

indicating that a considerable portion of examples identified as fluctuating are incor-

rectly classified. Despite achieving satisfactory accuracy values in predictions labeled

as steady, the low scores obtained in precision result in much lower F1 scores com-

pared to other RTVT labels. While the model’s F1 score is significantly better than the

baseline, it can be considered an unsuccessful model in terms of F1 score. Therefore,

when evaluating feature importance, one should approach the model’s fluctuating de-

cisions at the feature level with skepticism.

In terms of performance scores, the LightGBM classifier is in a worse condition than

the CatBoost classifier for this label too. Therefore, the results of the LightGBM

classifier for this label should also be approached with skepticism. When examining

feature importance values, apart from an increased impact of the modularity value

calculated with the label propagation algorithm, there is no significant difference in
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the model compared to other labels.

Figure 4.27: Catboost Classifier Feature Importance Plot with RTVT 0.5 Labelling

The feature importance plot of the CatBoost Classifier trained with RTVT 0.5 values

in Figure 4.27 indicates that the impact of features is similar to that of RTVT 0.4.

The effect of loop count has decreased compared to its impact in the RTVT 0.4 label,

while the impact of average degree has increased. The dependence plots in Appendix

A show that the pattern between the feature value and SHAP value is very similar,

but the threshold values where the model starts to evaluate the call graph as steady

or fluctuating changes. Similar to how low values of degree centralization increase

the likelihood of being evaluated as a steady graph for RTVT 0.3 and RTVT 0.4

labels, a similar situation applies to RTVT 0.5. This pattern holds not only for degree

centralization, but also for all features.

4.4 Discussion on Results

The experiment results demonstrate that the design of microservice architectures has

significant effects on response time variation. ML models show scores above 0.8 in

terms of accuracy, precision, and F1 score, and these scores are statistically significant

according to the McNemar test. Performance scores and statistical test results sug-

gest that the feature importance information of these models is reliable. Particularly,
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information obtained from the dependence plots of features with high SHAP values

provides valuable insights on how to design the microservice architecture topology to

achieve low response time variation.

The first research question of the thesis is whether the topological features of mi-

croservice call graphs could predict response time variation. The thesis claims that,

within the scope of this question, topological features are effective in predicting re-

sponse time variation. Even without allocating resources and memory information to

microservices, models can achieve performance scores above 0.8 which indicates the

importance of topology. Furthermore, the thesis claims that ML models are successful

in this prediction task.

Due to the frequently associated terms of decentralized and modular with microser-

vice architectures, the second research question of the thesis focused on the impact of

centralization and modularity features. Upon examining the experiment results, it is

observed that centralization has a significant effect on model outputs. However, stat-

ing that this effect implies decentralized architectures are better in terms of response

time variation is not sufficient because decentralized call graphs do not necessarily

have low response time variation for all centralization metrics. In the case of close-

ness centralization, the likelihood of the model predicting low response time variation

is higher for call graphs with high centralization. On the other hand, for degree cen-

tralization, which is another highly impactful centralization metric, the probability

of the model predicting low response time variation is higher for decentralized call

graphs. While it may not be entirely accurate to label graphs with high closeness

centralization as decentralized since closeness centralization is calculated with undi-

rected graphs, also examining betweenness and harmonic centralization dependence

plots reveals that it is not entirely possible to say that decentralized graphs have low

response time variation. Therefore, instead of establishing a relationship solely be-

tween centralization and response time variation, it is more accurate to evaluate each

centralization metric separately. From a designer’s perspective, maintaining a low

degree centralization is the most easily achievable feature related to centralization

because it is a centralization metric that is more easily noticeable. In this regard, if

some advice is to be given to a microservice architecture designer through this the-

sis, keeping degree centralization very low would be preferable for response time
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variation advantages. Additionally, as shown in the dependence plots, after a certain

centralization value, the impact of features remains constant. Although it is not en-

tirely possible to explain this phenomenon, it is probable that after reaching a certain

centralization threshold, maximum attention is given to microservices in the central

position, which may lead to stability remaining constant beyond a certain point.

The impact of modularity features, also examined within the scope of the second re-

search question, can be understood from the dependence plots. Although different

algorithms are used to calculate modularity, modularity metrics do not focus on fea-

tures as diverse as centralization metrics. The community assignment algorithms in

this thesis, capable of working with graphs containing millions of nodes, works for

call graphs with a majority of microservices ranging between 40 and 200, provide

close results. This explains the similar trends observed in dependence plots for the

two modularity features. SHAP values for modularity metrics are meaningful and

the modularity features are influential on model decisions. Models are more likely

to predict low response time variation for call graphs with high modularity. There-

fore, this thesis advises a designer who is designing a microservice architecture to

create call graphs with high modularity to achieve architectures with low response

time variation.

Meaningful interpretations can also be made regarding the impact of the node count

and average degree features in the last research question. It does not seem very feasi-

ble to provide an interpretation on loop count through this thesis because of its high

correlation with node count and its low impact according to SHAP values. For node

count feature, it is not entirely clear why models predict low response time variation

for call graphs with a high node count, but the impact of node count on the model is

high. The presence of more stable calls may come from cache and database calls, in

call graphs with a high node count. Additionally, the use of decomposed call graphs

may contribute to achieving more stable results. Similarly, evaluating the model’s call

graph as having low response time variation in cases of high average degree can also

be explained through decomposition. Since the source code within microservices has

not been evaluated within the scope of this thesis, comments made on decomposition

cannot be exact. Nevertheless, meaningful dependence plots have been presented that

can provide designers with valuable information and insights into these features.
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4.5 Discussion on Threats to Validity

In this study, which investigates the impact of topological features of microservice

call graphs on response time variation, there are some threats to the validity of the

experiments conducted. The results of this thesis can be affected by several factors

such as the feature selection, the data sources, response time variation measurement,

and the statistical methods used. in this section, the thesis discusses threats to the

validity of this thesis and the methods that are used to solve the validity issues.

4.5.1 External Validity

The dataset forming the basis of the study is the Alibaba Cluster Trace data. Although

this dataset contains billions of calls and 20 million microservice call graphs, it is a

sampled dataset within a specific time range, which is 7 days. In the paper[15] where

Luo et al. (2021) published their belief that this 7-day data is a good representation

of Alibaba cloud infrastructure, there may be various anomalies that are overlooked

during this time period and pose a threat to the validation of this study.

The structure of microservice call graphs in the Alibaba dataset closely resembles a

tree structure. This suggests that the topologies in the dataset may actually have a

bias. When examining microservices architectures where tree-like structures are rare,

it should be considered that the results of this study may be biased.

4.5.2 Internal Validity

The entire Alibaba dataset is not used in this study due to its size. The dataset used

in this study, consisting of randomly drawn 70k microservice call graphs, may not

accurately reflect the Alibaba dataset. To address this issue, three different random

samples were taken. Kolmogorov-Smirnov tests are applied to response time vari-

ation distributions of these three random samples until three random samples with

similar distributions in terms of response time variation. The final dataset size ob-

tained is 70k. Although these tests are applied, details that are overlooked in the sam-

pling phase pose a risk to the validation of the study and limit its generalizability. In
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addition, this study carries the possibility of being specific to this dataset. Common

characteristics of large microservice call graphs in the Alibaba cloud infrastructure

may exist, leading to bias when interpreting other architectures.

The response time of microservice call graphs is directly related to the processing

power and memory resources allocated to microservices. Also, the runtime charac-

teristics affect the response time variation. In this study, which only examines the

impact of topology, information about these resources and characteristics is not used.

This should be taken into account when evaluating the accuracy of the results of the

study. Especially, the management of the resources of the sample taken for this study

is important because it is conducted through sampling.

4.5.3 Construct Validity

In this study, features are pre-selected. While the feature list includes popular metrics

that come to mind when talking about topological features, there are many ways to

express topology differently. This factor limits the study that investigates the impact

of topological features on response time variation. Additionally, the features in this

thesis are based on undirected graphs. The use of directed features could provide

more insight into the impact of topology. Besides the contribution of directed features

to model performance, there are situations where not using these features could be

risky. Cyclic dependency negatively affects the variation in response time in a call

graph, and the absence of this information could be a threat to experiments. In the

dataset used in the thesis, out of 20 million call graphs, there are not even 500 call

graphs with cyclic dependency. Additionally, in the sample taken, call graphs without

cyclic dependency are selected. Therefore, this threat has been mitigated. Since the

aim of the thesis is to examine the effect of topology on response time variation, the

most crucial information is found in undirected features. The model results confirm

this claim.

When calculating response time variation, having more than 3 calls in the dataset

ensures more accurate variation values. Calls between microservices vary in number.

Some of these calls occur in large numbers and provide a better representation of

response time variation. However, some calls are seen 4 times. The differences in

78



call numbers are also a factor that may affect the results.

Selecting call graphs with more than 40 microservices is a crucial decision that will

impact the results of the research in terms of microservice count. Call graphs with

fewer than 40 microservices are also worth investigating. However, call graphs with

more than 40 microservices have a memcached service ratio close to 50%, and the

stability of the memcached service ratio compared to call graphs with fewer than 40

nodes is an important factor in selecting the number 40. This is because the mem-

cached service ratio significantly affects response time variation. When the ratios of

memcached microservices in call graphs are not similar, serious biases occur in the

results. Therefore, selecting call graphs with more than 40 nodes helps to mitigate

this bias. Another advantage of selecting the number 40 is a more uniform distri-

bution in terms of topology, as the occurrence of similar topologies increases as the

number of microservices decreases. The reason for precisely selecting the number

40 is the provision of the memcached service ratio in the paper where the dataset is

shared because not all datasets have been examined in this thesis [15]. Additionally,

despite a heavy-tail distribution in terms of node count, 10% of call graphs are larger

than 40, and this information is also available in the paper where the dataset is shared.

A dataset consisting of 2 million call graphs has been sufficient to obtain significant

results from this thesis.

4.5.4 Conclusion Validity

In the examination of the relationship between the topological features of microser-

vice call graphs and response time variation, models with F1 scores, precision, and

accuracy exceeding 0.8 were used. The McNemar statistical test was applied to

verify the statistical significance of the results. The relationship between features

and response time variation (RTV) was explored by evaluating SHAP values. The

aim was to ensure the validity of the conclusions drawn in the thesis by using high-

performance models, statistically significant results, and SHAP values.
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CHAPTER 5

CONCLUSION

In this thesis, various research questions regarding the relationship between topo-

logical features and response time variation of microservice call graphs have been

investigated.

Only by utilizing the topological features of call graphs, it is possible to predict

whether microservice call graphs are steady or fluctuating in terms of response time

variation. Machine learning algorithms have demonstrated successful results in these

predictions. When the first half of microservice call graphs, with low response time

variation labeled as steady, and the other half with high response time variation la-

beled as fluctuating, precision, accuracy, and F1 score values all exceeded 0.8. These

results are statistically significant upon testing.

Examining centralization metrics, it is concluded that graphs with high closeness cen-

tralization and low degree centralization are evaluated as steady by the most success-

ful model, the CatBoost classifier. These two centralization metrics are identified as

the most influential features on response time variation. The results do not demon-

strate a completely linear relationship between these two metrics. The impact of

features on model decisions varies within certain intervals.

When modularity values obtained using the Louvain algorithm and label propagation

algorithm are examined, it is observed that modular call graphs are considered steady

by the model for both of these metrics. According to the model, call graphs with

higher node counts are more likely to be steady. Intervals in which the model evalu-

ates the call graph as steady are identified for betweenness centralization, harmonic

centralization, average degree, and loop count features, and the feature importance
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plots in this thesis show these intervals.

The relationship between the used topological features and call graphs in the Alibaba

dataset has been analyzed in a detailed way. Considering the results of this thesis,

more effective designs for response time variation can be achieved while designing

microservice architectures.

5.1 Future Work

This thesis explores the relationship between the topological features of microser-

vice call graphs and response time variation, interpreting the impact of these features.

There are alternative methods that could be applied to examine the relationship be-

tween microservice call graph topology and response time variation in more detail

and with greater accuracy. Although these methods are not implemented in this the-

sis, they are planned for future work. They will be used to provide a more detailed ex-

planation of the relationship between microservice call graph topology and response

time variation.

The dataset used in this thesis has been prepared with a sample taken from the Alibaba

cluster trace dataset. Although methods are used to maximize the sample’s represen-

tational capabilities, future studies will aim to enhance resource and memory man-

agement to utilize the entire dataset. This approach will eliminate the threats caused

by sampling. Examining response time variation along with runtime characteristics

can produce valuable insights for microservice architecture design, and adding run-

time characteristics to the scope of this research is planned as future work. Different

types of calls, such as RPC and DB calls in the Alibaba dataset, are evaluated in a

similar manner, considering their differences to provide diverse interpretations. The

rationale behind the selection of features used in the thesis is explained in Chapter 3,

but additional features that can be derived from topology should be explored. The se-

lected features are obtained by converting call graphs into undirected graphs, but the

directed form of call graphs, which contains important features representing topol-

ogy, is also worthy for further investigation. Therefore, using topological features of

directed call graph features is planned for future work.
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While the machine learning models obtained in the thesis provide sufficient perfor-

mance and significance to explain the impact of topological features on response time

variation, better-performing models can be achieved, especially with the preference

for deep learning models. The Alibaba dataset has enough data to train a deep learn-

ing model, and maximum performance can be obtained by using the entire dataset.

Although deep learning models may not be as successful as machine learning models

in terms of feature explanation, they are a valuable method for illustrating how effec-

tive topology is on response time variation and achieving the maximum performance.

All the call graphs used in the thesis are from the same source, limiting the generaliz-

ability of the results. To increase the diversity of microservice call graph topologies,

different datasets will be explored. Although there may not be datasets as comprehen-

sive as the Alibaba dataset yet, upcoming datasets in this field will be followed, and

similar methodologies will be applied to enrich the data from these different sources.
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APPENDIX A

THE DEPENDENCE PLOTS OF TOPOLOGICAL FEATURES WITH RTVT

0.5 LABELS

Figure A.1: Dependence Plot of Closeness Centralization and Response Time Varia-

tion Class with RTVT 0.5 Labelling
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Figure A.2: Dependence Plot of Degree Centralization and Response Time Variation

Class with RTVT 0.5 Labelling

Figure A.3: Dependence Plot of Node Count and Response Time Variation Class with

RTVT 0.5 Labelling
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Figure A.4: Dependence Plot of Label Modularity and Response Time Variation Class

with RTVT 0.5 Labelling

Figure A.5: Dependence Plot of Betweenness Centralization and Response Time

Variation Class with RTVT 0.5 Labelling
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Figure A.6: Dependence Plot of Louvain Modularity and Response Time Variation

Class with RTVT 0.5 Labelling

Figure A.7: Dependence Plot of Harmonic Centralization and Response Time Varia-

tion Class with RTVT 0.5 Labelling
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Figure A.8: Dependence Plot of Average Degree and Response Time Variation Class

with RTVT 0.5 Labelling
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