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ABSTRACT

DIELECTRIC FORMULATION OF THE THREE- AND TWO-DIMENSIONAL
QUANTUM MANY-ELECTRON SYSTEMS

Bulutay, Ceyhun
Ph.D., Department of Electrical and Electronics Engineering
Supervisor: Prof. Dr. Nilgiin Giinalp
Co-Supervisor: Prof. Dr. Mehmet Tomak

May 1997, 155 pages.

Low-dimensional and small-scale electronic systems is the common field of interest
of the electrical engineers and the physicists, collaboration of which gave rise to this
work. First, a solid-state electron biprism is proposed based on the phase-coherent
electron beams. Motivated by the phase-breaking effect of the electron-electron in-
teraction, many-body effects in the three- (3D) and two-dimensional (2D) electronic
systems are targeted in the core of the work. The dielectric formulation of the many-
body problem is preferred and the longitudinal dielectric function of the electron
liquid (EL}) is obtained using the self-consistent local-field correction scheme, known
as STLS. The performance of this formalism is compared in both 3D and 2D by the
quantum Monte Carlo data and the pseudopotential approach introduced by Pines
and co-workers. STLS is observed to be a highly satisfactory technique, with some
reservations on the long-wavelength behavioux;. The dielectric properties of the quasi-
two-dimensional (Q2D) EL formed in semiconductor heterojunctions is accurately
characterized taking into account carrier penetration to barrier-acting material, and
the image charges due to background dielectric discontinuity. Analytical forms are
presented for the local-field correction and the dielectric function of the 2D and Q2D
ELs for a wide range of electronic densities and the relevant parameters. Finally,

Mott transitions in 3D and 2D EL are investigated using the STLS screening, giving

ii



due importance to exchange effects. With the adim of a high accuracy, a formulation
leading to an integral equation is obtained. The exchange effects are observed to be
very influential in spin-polarized ELs. Mott transition does not exist in single-valley
2D ELs with spin-polarized and normal-state cases. All of the formulation and the
results are obtained under the zero-temperature framework.

Keywords: Many-body, screening, electron-electron interaction, electron liquid, elec-

tron gas, low-dimensional systems, mesoscopic devices, dielectric function, local-field

correction, correlation energy, heterojunctions, Mott transition, exchange effects.
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0z
UC VE iKi BOYUTLU KUANTUM GOK-ELEKTRONLU
ELEKTRONIK SISTEMLERIN DIELEKTRIK FORMULASYONU

Bulutay, Ceyhun
Doktora, Elektrik ve Elektronik Miihendisligi Boliimi
Tez Yoneticisi: Prof. Dr. Nilgilin Giinalp
Ortak Tez Yoneticisi: Prof. Dr. Mehmet Tomak

Mayis 1997, 155 sayfa.

Bu calisma, elektrik miihendisleri ve fizik¢ilerin ortak ilgi alanim olusturan disiik-
boyutlu ve kiigiik-6lcekli elektronik sistemler konusundaki ortak incelemelerinin sonu-
cudur. Ilk olarak, faz-uyumlu elektron hiizmelerine dayali bir kati-hal elektron ift-
prizmas Onerilmistir. Calismanin ana boliimiinde, elektron-elektron etkilesmesinin
faz kirma etkisinden giidiimle, ii¢ ve iki boyutlu elektronik sistemlerde gok-cisimcik
etkileri hedeflenmistir. Cok-cisimcik probleminin dielektrik ¢oziimlemesi secilerek,
elektron sivismin uzunlamasma dielektrik fonksiyonu, STLS olarak bilinen 6z-tutarl
yerel-alan diizeltmesi diizeninde elde edilmistir. Bu yaklagimin sonuglari, kuantum
Monte Carlo ve Pines ve grubunun ileri siirdiigii gériiniir-potansiyel yaklasimiyla,
kargilastirilmistir. Uzun dalgaboyu davranmisi disinda STLS’in son derece tatmin
edici oldugu gozlenmistir. Yariletken heteroekleminde olusan iki boyutumsu elek-
tron sivisimn dielektrik ozellikleri, tasiyicilarin engel gibi davranan bolgeyi delmeleri
ve geriplan dielektrik siireksizliginden dogan imaj yiikler de dikkate alinarak, hassas
olarak islenmistir. Tam iki boyutlu ve iki boyutumsu elektron sivilarinin yerel-alan
diizeltme ve dielektrik fonksiyonlarina, yaygin elektron yogunluklar: ve diger parame-
treleri igin analitik ifadeler Onerilmigtir. Son olarak, STLS perdelemesi iginde, iic
ve iki boyutlu elektron sivilarinda, degis-tokus etkilerine 6zel onem vererek Mott

gecisi incelenmistir. Yiiksek hassasiyet amaciyla, entegral denklemiyle sonuclanan



bir yontem kullanilmistir. Spin-kutuplu elektron sivilarinda degis-tokus etkisinin gok
etkin oldugu gbzlenmistir. Normal-hal ve spin-kutuplu tek vadili iki boyutlu elektron
sivilarinda Mott gecisi yoktur. Biitiin islemler ve sonuglar sifir sicaklik cercevesinde
elde edilmistir.

Anahtar Kelimeler: Cok-cisimcik, perdeleme, elektron-elektron etkilesimi, elektron
sivisl, elektron gaz, diigiik-boyutlu sistemler, mezoskopik aygitlar, dielektrik fonksiy-

onu, yerel-alan diizeltmesi, korelasyon enerjisi, heteroeklemler, Mott gegisi, degis-

tokus etkileri.
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PREFACE

Electrical engineers and in particular, the device engineers, have been involved
in an endeavor for the journey towards the microscopic world, started about fifty
years ago from the macroscopic one. In these years, this tour is approaching towards
the half-way, the mesoscopic world, with the rules of its own. Condensed matter
physicists have arrived at this point earlier and developed a fair understanding of the
underlying phenomena. As a matter of fact, the current electronics enterprise owes
its birth to basic research, conducted by the physicists Bardeen and Brattain on the
surface states in semiconductors that unexpectedly gave rise to the first transistor,

the point-contact transistor.

This work is an interdisciplinary study in collaboration with the physicists, hav-
ing the goal of understanding and characterizing many-electron systems with three-
and two-dimensional structures. There is concrete evidence that quantum mechan-
ical and statistical effects have substantial part in the mesoscopic phenomena. In
the first chapter, we introduce a novel mesoscopic device, an electron biprism, based
on phase-coherent electron beams. We, then question the role of many-body effects
and build strong motivation for investigating these many-body effects in basic elec-
tronic systems. In Chapter 2, we first discriminate the longitudinal and transverse
dielectric functions and present the general dielectric formulation of a many-body
system. Chapter 3 contains the explicit expressions to be used for the three- and
two-dimensional electron liquids, as well as a detailed derivation of the STLS tech-
nique, that we choose to employ in this work. The results utilizing these expressions
are presented in Chapter 4, where we establish a sound assessment of our approach.
We give special importance to the quasi-two-dimensional electron liquids and spare

Chapter 5 to its comprehensive discussion. Chapter 6 on the Mott transition gives us



the opportunity to display the full strength of our formulation, which we also think
that has a contribution to this long-standing subject. Finally, we summarize our
main findings and list possible improvements and future directions in Chapter 7. The

appendix includes the variational energy expression for a heterojunction.

Most of the results that we present are original, which were already published or
sent for publication to scientific journals. We make every effort to cite the scientific
work that we made use of. For the critical and subtle discussions we prefer to give
expert opinions and occasionally make quotations rather than rephrasing the original

ideas.

xi
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CHAPTER 1

INTRODUCTION

Electronics is becoming continuously richer and exciting. The evolution of the
electronics was initiated by the metal-semiconductor Schottky contact more than fifty
years ago [1] and followed by the bipolar junction transistors, field-effect transistors,
semiconductor lasers, superlattices, heterojunctions, quantum wells, wires and dots.
The materials used changed considerably as well, from group IV semiconductors to
I[II-V and II-VI binary compounds, then the ternary alloys and oxide compounds for
high-temperature superconductors, and also from inorganic semiconductors to organic
ones [2]. What has been tried should not make us think that we are running out of
the possibilities in the periodic table. “Already for a quaternary crystal, with four
elements per unit cell, there are over a hundred million possible crystalline materials,
only a tiny fraction of which has been made” [3]. Electronics is no longer under the
realm of electrical engineering or physics, but an interdisciplinary field with close

ties to chemistry, material science, and probably in the future biology, no need to



mention mathematics and the computing science which serve to all present-day high-
tech fields. Given this highly multi-cultural scientific environment, professional life
becomes quite challenging for the candidates to pursue a career in this field.

From its first days solid-state electronics had continuously been attracted by ever
smaller sizes. This is in fact described by Moore’s law, na,med after the scientist
of the Fairchild Semiconductor, Dr. Gordon Moore, who developed the first planar
transistor. Dr. Moore stated his law in 1965 in the Electronics Magazine, with
the statement that every year the number of components on an integrated circuit
doubles. In the past thirty years, this statement ruled the electronics industry and
it became a widely-accepted law. However, two effects come into play when very
small geometrical dimensions are reached: the quantum mechanical effects and the
sample-specific fluctuations [4]. These two, actually underlie a new physics that has
been named as the mesoscopic physics, a word borrowed from statistical mechanics
[5, 6]. In this new mesoscopic world, an injected electron is seen to preserve its phase
memory within the active device (about few microns) at low temperatures (such as
1K). Thus, the electrons demonstrate a coherent electron wave picture just as in
conventional optical and microwave devices. This similarity of the phase-coherent
electron waves and the classical electromagnetic waves arose a big excitement in the
technical community towards the beginning of 1990’s. The table reproduced below
due to Datta and McLennan [7], lists the anaiogous quantities of electron waves and
classical electromagnetic waves.

This remarkable simila.rity also attracted us to this mesoscopic arena!. In the

next section we present an original solid-state device that we proposed as a potential

! In particular, a paper [8] presented in the IEEE microwave symposium in 1991, where the

author was also participating, has been extremely influential.



Table 1.1: Datta and McLennan’s chart[7] of analogies between coherent electron
waves and electromagnetic (EM) waves.

Electron Waves EM Waves
W) = pA e B B, = B e ]
Energy E Frequency w
Confined channels Waveguides
Subbands Transverse modes
v E
\4 H
Charge density Energy density
Current density Poynting’s vector

V= (E-V) VE=-wlncE

mesoscopic device.

1.1 Solid-State Electron Biprism

1.1.1 Motivation

About four decades ago Mollenstedt and Diiker have utilized the wave nature of elec-
tron beams by inventing a vacuum electron biprism [10]. This device has become an
essential component in electron microscopy and recently used for research in electron
holography [11, 12]. Here we explore a solid-state counterpart to the vacuum electron
biprism by employing the split-gate heterostructure geometry [13] having an impurity
within the channel. The similarity between the two is remarkable as can be seen in
Figs. 1.1 and 1.2. Up to now, impurities were identified as undesirable, degrading
device performance [14, 15], however, an intentionally implanted one can be of advan-
tage in the above mentioned configuration provided that the biprism effect also exists
in this structure. In the literature, both the split-gate geometry [13] and the case

of an impurity within the channel [14, 15, 16, 17, 18, 19, 20] have been extensively



studied. But, the main focus has been on the conductance of the constriction with
the primary observation being the distortion in the quantized conductance plateaus
due to the impurity potential. We anticipate an impurity assisted interference that
can radically alter the functionality of the split-gate geometry. But there are certain
questions that can be raised on the realization of such a device and on the possibility
of implanting an impurity of the desired form within the channel. As for the former,
recent results obtained by Okada and co-workers [21] have demonstrated for the first
time double peaks in the angular distribution of electrons in a quantum point contact
indicating the rigidity of multimode operation of these heterostructures. As a remedy
for the latter, the scanning tunneling microscopy (STM) has been used to manipulate
even the strongly bound silicon atoms or clusters at room temperature [22]. By this
means, surface atoms can be removed and deposited on the STM tip. The tip can
then be positioned over a predetermined surface site and it can implant the foreign
atoms much like a winch [22], or alternatively, the STM tip can approach closely to a
targeted atom and then drag it to a new location [23]. Moreover, experimental reports
show that exacting operations can be performed over length scales as small as 0.9 nm
with the generated marks being stable over extended time periods [24]. These experi-
mental achievments provide a support for the theoretical investigation of a solid-state

electron interferometer based on the fundamental principle of Mollenstedt biprism.
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Figure 1.1: Moéllenstedt biprism - a vacuum electron device. The biprism consists of

two parallel grounded plates with a fine filament between them, the latter having a
potential V}; relative to the former.
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Figure 1.2: Side and top views of split-gate configuration. Top view in the case of an
impurity resembles Mollenstedt biprism in Fig. 1.1.



1.1.2 Description

The split-gate geometry is commonly realized using a GaAs/AlGaAs heterostructure
(Fig. 1.2) resulting in a high electron mobility (see for e.g., Ref. [2]). The triangular-
like barrier confinement along the third dimension (the y—axis in Fig. 1.3) in these
structures reduces the effective physical dimension to two. The reason is that due to
the doping level usually only the lowest subband (mode) of this triangular barrier is
populated. The physical geometry of the problem suggests the space to be divided
into 4 regions (labeled with (a) to (d)) as indicated in Fig. 1.3. An incident elec-
tron beam in region (a) is represented by a unit-amplitude right-going plane wave,
Ui(z, z) = etkos® gik0:7 having an energy Ey, with 2m*Ey/h? = k%, + k3, = k%. The
scattered wave function in each region is considered in its most general form with
unknown expansion coefficients. Particularly, in regions (b) and (c), the forms of
the scattered waves are discrete spectrum waveguide modes, and in regions (a) and
(d) they are continuous spectrum modes, just as in the classical microwave and RF
phenomena. The formulation proceeds by matching the wave functions and their
derivatives across the region boundaries [26]. These equations are then built into
coupled matrix equations? with a source term representing the incident wave in re-
gion (a). The solution of this matrix equation yields the expansion coefficients of
interest in all regions. As our emphasis here is not on the technical details of this

analysis, we refer to our paper [9] about the elaborate mathematical formulation.

? A valuable resource in this field is the Ph. D. thesis of E. Tekman[25].
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Figure 1.3: Top view of the split-gate geometry containing the necessary spatial
dimensions and the labels referred in the mathematical formulation.

1.1.3 Operation

As opposed to the conductance point of view [14, 15, 16, 17, 18, 19, 20], the problem
of an impurity in a split-gate geometry is now revisited to manifest its parallelism
with the Méllenstedt biprism. The information about the excitation, impurity profile,
and the geometrical dimensions used in our theoretical investigation are provided in
Table 1.2. They are chosen so as to closely resemble a practical problem. In GaAs a
Fermi wave number of kr = 0.13nm ™! corresponds to an energy of Ey ~ 10meV.
Before presenting the results, in order to get a base for comparison we need to
know the behavior of the system in the case of no—impézrz'ty within the channel. The
result is given in Fig. 1.4 by the dashed line, showing the probability amplitude
(¥g4) variation in region (d) calculated at z = 15W (W being the half-width of the
channel). The waveform corresponds to the well-known diffraction pattern having a

very big main lobe compared to the neighboring side lobes. Now, if we turn on the

7



Table 1.2: Data related to geometry of the split-gate, excitation and impurity profile
(Infinite-wall confinement is considered in regions (b) and (c)).

Geometry: W =110 nm

L =0.75W

lp =0.75W
Excitation: kr =0.13 nm™!

k‘()z = kF (i.e., kgm = 0)

Impurity Profile: Ujmp(z, 2) = Uy exp (—az?) §(2)
' Uy = —10* Ey where Ey = k%h?/(2m*)
a=1/(0.3W)2

06
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Figure 1.4: Magnitude of probability amplitude variation calculated at z = 15W .
The dashed line corresponds to an impurity-free channel and the solid line illustrates
an attractive impurity at the origin. Refer to Table 1.2 for the dimensions and
excitation.
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Figure 1.5: Effects of the position of the Gaussian impurity on the interference pattern
computed at z = 156W. An attractive impurity at the origin is compared with repul-
sive impurities at the origin and with horizontal and vertical displacements given. The
horizontally shifted repulsive impurity is located at z=-0.45W, x=0 and the vertically
shifted repulsive impurity is positioned at x=0.2W, z=0. Amplitudes and variances
of all Gaussian impurities are the same as in Table 1.2.

impurity potential then the associated probability amplitude variation is shown with
the solid line in the same figure. Clearly the neighboring fringes are grossly enhanced
as compared to the impurity-free channel case. The reflected electron flux is, however,
appreciably increased due to the high impurity potential as can be observed in Fig. 1.4
from the lower value of |¥| in region (d). To assess the sensitivity of the interference
pattern to the location and the lateral functional profile of the impurity, several cases
are considered. In Fig. 1.5 the centered, horizontally shifted and vertically shifted
(all being repulsive) Gaussian impurity profile responses are compared to that of the
centered attractive Gaussian impurity (all of them of the same magnitude). It is
seen that the pattern is more vulnerable to the vertical shift of the impurity location.

Finally, Fig. 1.6 illustrates the effect of the gate width on the interference pattern.



As the channel is constricted the number of propagating modes (subbands) decreases
and the effective impurity width increases resulting in a diminished wave function

transmitted to region (d).
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Figure 1.6: Effect of gate width on the interference pattern as the channel is sym-
metrically constricted. Wy is the original dimension given in Table 1.2. There are
8 modes that can propagate in the constriction for W = 0.9W,. For W = 0.8W;, 7
modes are propagating and for W = 0.75W) the first 6 modes can only propagate.
The parameters in Table 1.2 are used with the impurity potential being repulsive
rather than attractive.

1.2 The Fate of the Mesoscopic Devices ?

The proposed solid-state electron biprism has one superiority over similar devices
such as the quantum interference transistors proposed by Datta [27] and Sols et al.
[28]. These latter device prototypes favor only a single-mode operation, that is to

say, the basic device operation is based on a single-subband being populated. This
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requirement severely restricts the current driving ability. In case more subbands are
allowed to be populated, then the 100% conductance modulation property of these
quantum interference is highly degraded. In contrast, we demonstrate the theoretical
performance of the solid-state electron biprism under nine subbands being populated

in Fig. 1.4.

Unfortunately, there are other concerns about the future of the mesoscopic de-
vices. Thornton [29] has critically examined the mesoscopic devices and concluded
that quantum interference type devices suffer from severe practical limitations. The
basic drawback of these devices is the fragility of the phase coherence of the elec-
tron waves. First of all, at high temperatures due to inelastic phonon scattering
the phase memory of the electron beam gets randomized. Ikoma et al. [30] have ob-
served the rapid drop of the phase coherence time in the GaAs/AlGaAs system above
5K. As a result, the phonon scattering needs to be suppressed for room temperature
operations. The analogy between phase-coherent electron beams and classical elec-
tromagnetic waves breaks down when the many-body effects are considered. The
analogy chart in Table 1.1 is based on the single-electron Schrédinger equation, how-
ever, in any electronic device, a high density of electrons exists making up the electric
current. In many-body aspects electrons and photons are quite different: the former
obeys Fermi-Dirac statistics and are called fermions, whereas the latter are governed
by Bose-Einstein statistics and are called bosons. Furthermore, the Coulomb repul-
sion between the electrons produce non-trivial effects as we illustrate in the following
chapters. Two experiments done by the IBM group in USA [31] and the Jiilich
group [32] in Germany have cast more doubts on the fate of the mesoscopic devices.

These two groups reached the same conclusion about the ballistic electron beams:
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electron-electron interaction in ballistic electron beams is a serious basic limitation
for future devices based on the transport of the electrons in the mesoscopic transport
regime. In other words, the interaction between any two electrons in.an electron
beam is claimed to be an important source for the phase memory loss. Thorton’s
criticisms and these experimental facts have urged us to divert our attention from
phase-coherent mesoscopic devices to many-electron effects in such devices. It is now
becoming a well-agreed fact that many-body effects will rule the next generation

electronic devices and materials (refer to, for instance, to Refs. [33, 34]).

1.3 Many-Particle Electronics

After 1950’s extensive research efforts on classical and quantum many-particle systems
have produced a fruitful body of knowledge that had also technological implications.
However, undergraduate quantum mechanics education in the physics and electrical
engineering curriculum is still dominated by the single-particle quantum mechanics
which dates back to 1920’s. Admittedly, many-body quantum mechanics is quite an
advanced subject, as a matter of fact, Supriyo Datta in his graduate textbook enti-
tled, Quantum Phenomena [35] has the following interesting comment: “A complete
quantum mechanical formalism exists, ... However, these concepts are difficult and
only the very best scientists have a clear comp;ehension of the complex multiparticle
dynamics. Lesser mortals are usually content with trying to unravel the consequences

of the one-electron Schrédinger equation.”

Beginners of the many-body theory are astonished by the overwhelming varieties
of methods in reaching the same end result, each resorting to extremely different

mathematical tools. Actually, the pioneers of this field who laid the foundations in
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1950’s also felt the same way as the beginners of today. A good example is the so-called
random phase approximation (a many-body technique) that has been rediscovered
during a ten-year period between 1950 to 1960, about half a dozen times, each time

aiming to tackle the problem in a completely different way [36].

The essential ingredient in standard many-body approaches is the perturbation
theory. Namely, the two-particle interaction is treated as a small perturbation over a
soluble non-interacting part. The dynamical nature of the quantum particles necessi-
tates the perturbative approach to be also time-dependent. The challenge is that, for
most many-body systems, such as the electrons in a metal or a doped semiconductor,
the perturbation is not small. Even worse, the perturbation series is not a decreas-
ing one in amplitude, but has most of the terms diverging. Surprisingly, a working
theory was reached when scientists insisted to apply the time-dependent perturba-
tion theory to such pathological cases. Their recipe was to sum a certain class of
most-divergent terms, ending up having a finite result, due to apparent cancellations
among the terms. The justification of their approach was the qualitative agreement

with the experiments.

There are quite a number of different many-body approaches with differing lev-
els of theoretical difficulty (for a variety of books on this subject, see [37, 38, 39,
40, 41, 42, 43]. The dielectric formulation of the many-body problem [36] has a
modest complexity and moreover, is unquestionably the most appealing approach
for the electrical engineers, due to its conceptual familiarity, where the formulation
is based on a frequency- and wave number-dependent dielectric function of the sys-
tem. This function contains a wealth of information about the system, and essential

equilibrium and transport parameters are then accessible by straightforward means.
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As the quantum many-body system we choose the electron liquid in three, two and
quasi-two dimensions. This choice is rather obvious, these systems form the generic
models of the bulk and low-dimensional electronic systems, bringing into foreground
the electronic phenomena at the expense of suppressing the crystal structure which

is material-dependent.
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CHAPTER 2

MANY-ELECTRON PHYSICS

USING THE DIELECTRIC FORMULATION

2.1 Introduction

The present chapter forms the backbone of this work ;)n the dielectric characteriza~
tion of electronic materials. The electronic properties (such as transport) of electronic
devices are characterized by the longitudinal dielectric function whereas the optoelec-
tronic properties are determined by the transverse dielectric function. However, the
distinction between these two dielectric functions is seldom made in the literature.
We establish this division by introducing the longitudinal and transverse dielectric
functions starting from Maxwell’s equations with a homogeneous medium in mind.
Within this context we bring up the gauge choice discussion for the electromagnetic
potentials. In the remaining part of this thesis, the term “dielectric function” refers

to the longitudinal one, which plays an utmost role in many physical quantities like

carrier lifetime, mobility, ground-state energy, isothermal compressibility etc. The
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density response function is introduced based on the linear response formalism. Fol-
lowing this, we show the connection of the dielectric function with the diagrammatic
quantity, the polarization insertion. Then, the widely used random phase approxima-
tion is obtained. The relations between the dynamic and static structure factors and
the dielectric function are given. Finally, we close by presenting the role of dynamic
local-field correction. The treatment in this chapter is general within the linear re-
sponse framework and is not specific to three- and two-dimensions. As a matter of
fact, the formalism can easily be extended from electrons to nonrelativistic nucleons!

and also from fermions to bosons as well.

2.2 The Dielectric Function Concept

To know any electronic response of a specific medium, we need to apply an excitation.
For this purpose we assume an applied external charge density, geq+(7,t) and its
associated motion giving rise to the current density 7e,+(7, £). In particular, we choose
the excitation to be of a travelling-wave type with spatial variation characterized by

wave number g and temporal variation by the angular frequency w, so that,
Oext (T 1) = pext(q, w) ei@Fe_Ma (2.1)
Fewt (7 ) = Jeut (T, w) €47 e, (2.2)
Note that, any arbitrary function of (7,f) can be synthesized using the particular
forms in Egs. (2.1),(2.2) by means of the Fourier transform. In developing the formu-
lation we have a homogeneous medium, in our minds. We must also mention that, we

have independent control on the variables ¢ and w separately, that is to say, they are

not related. Especially, those with antenna and electromagnetic theory background

! See our further remarks in the final conclusion chapter.
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are inclined to think that w/q = ¢ which only governs the dispersion relation for free
space electromagnetic wave propagation [44]. So, we probe the electric response of
the medium under an excitation with an arbitrary (¢, w) pair.

The charge and current densities are not independent but constrained by the

continuity equation as

_ 00zt (F: t)

which becomes in (§,w) space
i - Jeat (@ w) = iWpPest(F, w)- (2.4)

As a response to these excitations an electromagnetic field will be generated in the

medium governed by Maxwell’s equations which are listed below? in 3D Fourier do-

main
igx B@w) = ~25@w) + T ea(@,), 25
i x B(g,w) = ic“iB‘(@, W), (2.6)
if - D(§,w) = 47 peat(d; w), (2.7)
iq- B(§,w) = 0. (2.8)

The dielectric function (DF) of a medium which is the primary quantity of interest
is in general a tensor that relates the total electric field E to the displacement field

D in that medium. If this relation is taken to be a linear one3, it becomes

D(qw) =¢ (§,w) E(q,w). (2.9)

% cgs unit system is used throughout the text as this is more common and convenient in the

small-scale device literature.
8 This restricts our treatment to low electric field values. For example, in three-dimensional

quantum Monte Carlo simulations, it has been observed that electric fields upto 2.0 x 10% V/cm,
insure the linearity of the response [45].
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It needs to be mentioned that, the dielectric constant was initially introduced to
describe the reduction of the external field by the medium [44]. The cla;ssical texts
on macroscopic electromagnetics (such as Ref. [46]) consider the dielectric constant
concept to be applicable to dielectrics, that is to say, a medium having only bound
charges that can to some extend polarize under an excitation. Here, we apply the
dielectric constant concept (which now becomes a function of § and w) to a medium
made up of unbound electrons, called the electron liquid. For such a medium the wave
number ¢ dependence is inevitable, which needs to be briefly explained. To begin
with, the DF depends on w, which is also the case for dielectrics; for rapidly time-
varying excitations, the constituent charges of the medium due to their finite masses
follow the excitation by some delay. Furthermore, for the case of unbound carriers
the response, or equivalently the DF has a spatial dispersion. In other words, the
response at a specific point in space is governed by the magnitudes of the excitation
at preceding moments of time not only at that particular space point but also in a
certain neighborhood of that point. This is due to motion of the carriers which retain
traces of the excitation at previous times, while being at other space locations [44].
To have an order of magnitude feeling, an appropriate length-scale for characterizing
the size of the so-called nonlocality radius can be the Fermi wavelength, Ar. In
a medium with ngp = 10'® free electrons per cm?, Fermi wave number is kr =
(31r2n3D)1/3 ~ 3.1 x 108 cm™!, and Ap = 27w/kr ~ 20 nm. So, crudely speaking, an
external perturbation in such a medium with a wavelength larger than say 100 nm
will not be able to resolve the nonlocality present in the response, hence, such an

excitation can enjoy a spatially nondispersive response, € (g =0,w).
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2.3 Longitudinal versus Transverse Dielectric Functions

Recall that we have chosen the excitation to be of a travelling-wave type along the
direction g, so, we split the tensorial DF into longitudinal and transverse parts with

respect to the propagation direction of the excitation, §. Then [47],

=/ — —'®—‘ - = q’®q
F @) = @) I +agw) (1-159). (2.10)

This equation only means that (¢, w) relates the component of the total E field along
the ¢ (i.e., wave propagation) direction to the same component of the displacement
field, in other words, a longitudinal relation. Our work concerns only the longitudinal
part of the tensorial DF. As a side note, the reason why macroscopic electromagnetic
theory is ignorant to the discrimination between the longitudinal and transverse DFs
is due to the fact that, in the long wavelength limit these two DFs become equal [47]
as:

ime (Gw) = lim ey (¢, w) = e(w). (2.11)

To see the physical significance of the longitudinal DF, we first supplement the

Maxwell’s equations with the scalar and vector potentials (V, A) as

B(g,w) =i x A(g,w), (2.12)
= W o N N 5
E(Q7 w) = ? A(Qa w) —q V(Qa w)' (2'13)

Of particular importance is the choice of the gauge and in this work we use the
Coulomb gauge? also known as the transverse or radiation gauges. The name “ra-
diation gauge” stems from the fact that transverse radiation fields are given by the

vector potential A alone, the instantaneous Coulomb potential contributing only to

* This is the most common choice in nonrelativistic many-body treatments.
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near fields. This gauge is particularly useful in quantum electrodynamics as a quan-
tum mechanical description of photon necessitates the quantization of only the vector
potential [48], whereas the instantaneous Coulomb field does not represent indepen-
dent dynamical degrees of freedom but is fully determined by the charges [49]. In the

Coulomb gauge we have

iq- A(§,w) = 0. (2.14)

That is, the vector potential is transverse (with respect to wave propagation direction,

g). Then Gauss’s law turns into

Ampest(@w) = id- D(Tw),

= i € (q,w) E(q,w). (2.15)
Due to the dot product with § only the longitudinal component of € is selected, giving
AT et (§, w) = ie)(§,w) 7~ E(J,w), (2.16)

and using Eq. (2.13) we obtain for the scalar potential

V(§w) = —Letih ¥ 2.17
(@) €7, w) ¢2 (217)

Hence, this equation reminds us that Poisson’s equation is also valid for the AC (time-
varying) case, provided that we work in the Coulomb gauge. It is important to note
that the (screened) scalar potential depends only on the longitudinal DF. Thus the

interaction of two electrons via a screened Coulomb potential energy is

47
User(§yw) = €2 ————.
rer (0 ) €(7, w) g2

(2.18)
In this expression if we identify the electronic charge e as the coupling constant, then

the remaining term corresponds to the dressed propagator of a longitudinal photon
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" 4dn
Dy(q,w) = GG & (2.19)

so that diagrammatically we represent the Coulomb electron-electron interaction as

the exchange of a longitudinal photon.

Usr(q,0) = €® Dy(q, ®)

Figure 2.1: Diagram showing the dressed longitudinal photon exchange by the zig
zag lines. The solid line indicates the electron propagator.

For completeness, we also list the dressed transverse photon propagator [47]

= - _d 4re o~ i@ (f)
D.L(q’ UJ) = w2 G_L(q‘, w) Al qz CZ (1 q2 . (2.20)

The poles of the longitudinal and transverse photon propagators determine respec-

tively the longitudinal and transverse eigenmodes of the dielectric medium, which are

given by

€]l ((-f, w) = 0, (2.21)

w?e) (¢, w)

Il
Q
o

(2.22)

These two equations yield the longitudinal and transverse modes that the medium is
willing to support, just like an LC resonance circuit that is willing to oscillate at the
frequency wy = ﬁ The main additional requirement of quantum mechanics is that

these oscillations should be in discrete packets (quanta) of energy. The quantum of a
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longitudinal /transverse oscillation of the EL is given the name longitudinal/transverse
plasmon. In our work the former plays a decisive role.

In the literature, instead of the word “longitudinal photon”, just Coulomb in-
teraction is used, and photon is reserved to describe the transverse propagator. At
this point we can quote Mahan [42]: “One should keep in mind that the interaction
between two charges occurs via both scalar and vector potentials. How we divide
the interaction between scalar and vector potentials is somewhat a.rbitraer and is
determined by the gauge condition. After making this choice, we assigned the word
photon to the vector potential part. This division between photon and Coulomb is
arbitrary, and both parts should really be viewed as arising from photons.”

A frequently used gauge in quantum field theory is the Lorentz gauge having
manifestly covariant form. In the Lorentz gauge all four auxiliary potentials (V,A)
are quantized leading to two transverse photons (as in the Coulomb gauge), one
longitudinal photon and one scalar (time-like) photon. The last two are virtual quanta
which cannot be probed as free particles. It can be shown that the overall effect of the
longitudinal and scalar photons of the Lorentz gauge is equivalent to the instantaneous
Coulomb interaction of the Coulomb gauge [49]°. Another noteworthy point is that,
in the Coulomb gauge, the scalar potential V' (7,t) mediates the excitation peq(7,t)
without any time delay, that is to say, the Coulomb interaction is instantaneous. This
does not contradict with relativity, again quoting Mahan [42] here:

The net® interaction may not have a component which is instantaneous.
In fact, for a frequency-dependent charge density, at distances large com-
pared to c¢/w, one finds that the photon part of the interaction produces

a term —e?/r which exactly cancels the instantaneous Coulomb interac-
tion. The remaining parts of the photon contribution are the net retarded

% I would like to express my gratitude to Prof. A. Gokalp for an illuminating discussion on this
subject.
¢ Coulomb plus photon is meant.
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interaction. In solids we are usually concerned with interaction over short
distances. Then the retardation is unimportant for most problems. In
the study of the homogeneous electron gas, the photon part is small and
may be neglected. In real solids, the photon part causes some crystal field
effects, which is an unexciting many-body effect. The main effect of re-
tardation is the polariton effects at long wavelength. In general, we have
chosen the Coulomb gauge because the instantaneous Coulomb interac-
tion is usually a large term which forms a central part of the analysis,
while the photon parts are usually secondary. Like most generalizations,
this one has its exceptions.

Based on Mahan’s comments above, especially regarding the homogeneous electron
gas (liquid), we do not include the electron-electron interaction mediated by the
vector potential A (photons) while working in the Coulomb gauge. We shall again be

ignorant to photon part in the quasi-two-dimensional EL which is not a homogeneous

system’.

2.4 The Computation of the Dielectric Function

Having discussed the basic character of the DF in the previous section, there remains
its computation. This is not an easy task for the EL which is a quantum many-
body system; the first successful attempts came not until 1950’s, even though the
foundations of the solid-state quantum mechanics were laid before 1930’s. We defer
the detailed discussion of the EL model till the next chapter.

As in the previous section we consider some arbitrary charge density get(7,t)
and the associated current density 7ez:(7,t). We saw also in the previous section that
the longitudinal DF characterizes how charge densities interact, whereas the current
density interactions are described by the tensorial transverse DF. As a matter of

fact, they are related to density-density and current-current correlation functions,

" Those who are interested in the use of transverse DF in quasi-two-dimensional systems can
refer to Dahl and Sham’s work [50].
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respectively [47]. The EL in response to the external cha;rge density, gegz: will screen
this perturbation but subject to two important constraints i) Pauli exclusion principle,
and ii) Coulomb repulsion among the constituent electrons of the EL. A successful
longitudinal DF should take into account these two effects as much as possible. Due to
Qezt(7, 1), the EL no longer preserves its homogeneity and an inducéd charge density

2ind(7, 1) is produced in response. Hence, the total screened charge density becomes
0ser () = Cext(T, 1) + Oina(T 1), (2.23)

which is in reciprocal space
Pser (@, w) = Pest(, w) + Pina(F; w)- (2.24)

We denote the corresponding number densities by nser (7, w), Nest(d, w) and ni,q(F, w)

with the definition p(q,w) = en(q,w) where e denotes the positron charge. These, in

turn, generate the potential energies®

Ueat(@w) = U(Q) neat(d, ), (2.25)

U(§) nina(@, w), (2.26)

I

Uind(‘ia w)
User(Qyw) = UO(@ Nser(qy ),

= Uext(q_‘: w) + Uind(‘fa w)7 (2'27)

where U°(q) denotes the instantaneous bare 1/R Coulomb interaction which is

’

2
4—;’2‘; in 3D

U%(q) = (2.28)

2,
2re”  in 9D
L ¢

8 In the literature the word potential is used instead of potential energy and denoted by V instead

of U. We try to avoid this, as it becomes confusing when the actual scalar potential is also used in
the same text.
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The relation between the potential energies is through the longitudinal DF as

U (g) = 22522, (2.29)

implying

" ) . Tewt (T, W)

Nser (@ w) = e(q,w) . (2.30)

Note that in these equations and in the rest of this work we denote the longitudinal

DF simply as
€(q w) — €(q,w),

for notational brevity an also the word “longitudinal” will be dropped, as we address

only density-density interactions.

2.4.1 Density Response Function

The following relation is enforced between the external density and the induced den-

sity:
Nind(q, w) = x(q,w) UO(‘;) Next () w) = x(q,w) Uezt(q, w), (2.31)

being a linear relation, this restricts our formulation to the linear response framework;
that is to say, response to each frequency component of the excitation is assumed to
be independent, or in electrical engineering terminology, intermodulation products
are ignored under a two-tone excitation. x here, is referred as the density response
function or just as the susceptibility. So, we arrive at the following equation that

relates the density response function to the DF

1 q}w) =14+ U%q) x(q,w). (2.32)

?
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An alternative expression is reached if we introduce the screened density response

function by

Nind(@, w) = Xser(§, w) Uo(q) Nser (G, w), (2.33)

e(q,w) = 1= U%Q) xser (s w). (2.34)

2.4.2 Polarization Insertion

These equations help to follow the literature more easily, however, still there remains
the question: How to compute €(q,w)? So, we introduce yet one more expression for
the DF, but this time using Feynman’s diagrammatic techniques we can reach to
concrete computation. Simply, the screened (dressed) two-body interaction potential

U(q,w) using Dyson’s equation [51] becomes
U(gw) = U%Q) + U%(q) (@, w) U(J, w)- (2.35)

7*(d,w) is the so-called proper polarization insertion. Eq. (2.35) is represented dia-

grammatically as

NN\ = AN+

Figure 2.2: Diagrammatic representation of the Dyson’s equation for the dressed
insertion, shown by the heavy zig-zag lines and the bare interaction is indicated

by the normal zig-zag lines. The sectioned box stands for the proper polarization
insertion.

So we get

e v
Vew) = G0y = T-0°@ m @)’

(2.36)

26



which gives

e(q,w) =1 - U@ 7*(q,w). (2.37)

When diagrammatic quantities come into play, a word of caution is generally made re-
garding causality. The Wick’s theorem [51] which underlies Feynman’s diagrammatic
rules, is applicable to time-ordered operators. However, the real physical quantities
(actually the response functions) need to be retarded functions due to the causal-
ity principle. For this reason, the diagrammatic quantities, after being computed in
time-ordered form should be converted to retarded form using the analytic relation
between the two [51]. In our work, all response functions such as the DF refers to
retarded functions, but for notational simplicity an extra label is not put.

The equation above reveals that the screened density response function, xs¢r (¢, w)
corresponds to the proper polarization insertion in the diagrammatic dictionary. Sim-

ilarly, the density response function x(q,w) corresponds to the polarization insertion

Xscr(Qaw) =7T(_;Q))

D) (2.38)

x(q,w) =

2.4.3 Random Phase Approximation

Now we are in a position to propose the first approximation for the DF by replacing
the 7*(g,w) with 7%(q,w), where the latter refers to the simple ring diagram without
any interaction lines present, noninteracting EL polarization insertion

As 7% replaces the proper polarization insertion, it corresponds to the summation
of all ring diagrams for the polarization insertion 7(g,w). This approximation is
the celebrated random phase approximation (RPA) and 7°(q,w) is generally called

the Lindhard function [52]°. Equivalently, RPA corresponds to approximating the

® Actually Lindhard is a generic name but we shall also use the word Stern function for the 2D
EL.
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Gy (k)

G'sy (k+q)

Figure 2.3: Simple ring diagram, with the spin and valley labels of the electrons
indicated.

screened density response function by the Lindhard function (also to be denoted in

this text by x%(¢,w)). Summarizing the relations for the RPA,

XA qw) = x(Gw) (2.39)
PG w) = 1-U%9) X" (qw), (2.40)
XA G w) = X0(g,) (2.41)

1-U%Q) x°(§,w)

The physical outcome of these approximations is that the electrons of the EL are
regarded as noninteracting particles but within a field of the external potential as
well as the self-consistent average field of the induced charges. So, the many-body
effects are to some extend contained in this mean field. However, RPA is well-known
to be successful for the long wavelength phenomena. One of the aims of this work is

to have a better feeling about the validity range of the widely used RPA.

2.5 Relation to Dynamic and Static Structure Factors

In the following chapter it is shown that the DF is complex for an arbitrary value of

(¢yw). Through Eq. (2.32) one can see that the density response function will also be
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complex. In other words, they are of the form

€(f,w) = epe(diw)+iem(q,w),

—

X(@w) = Xre(q,w) + i x1m(q,w).

The real parts of these functions represent the actual polarization of the medium
(screening), which is a reversible event, whereas the imaginary parts account for the
energy transfer from the external source to the medium!®, an irreversible process.
The energy transfer to the medium is possible when the medium has an eigenstate
at that particular (¢, w) excitation. Actually these eigenoscillations are rather called
the elementary ezcitations of the medium, which are for the density excitations [36]:
i) single electron-hole pair excitations, ii) multiple electron-hole pair excitations iii)
collective plasma wave excitations. Quantum mechanics also tells us that these exci-
tation energies should be multiples of certain quanta. However, one should not think
that the second item, multiple pair excitations are just the multiple single-pair quanta;
multiple pair excitations account for the nonlinear processes within the medium and
as a matter of fact they are very hard to include in the theory and usually left out
altogether as in our case. The point we want to make about the real and imaginary
parts of €(¢,w) and x(§,w) is that the screening act is inevitably accompanied by the
energy absorbtion from the external source in the form of elementary excitations. We
would like to quote Pines and Noziéres [36] here “... (plasma oscillation) is comple-
mentary to the existence of screening. When the electrons move to screen a charge
disturbance in the plasma, they will, in general, tend to overshoot the mark some-

what. They are consequently pulled back toward that region, overshoot again, etc.,

10 Note that the emergy transfer is one-way as we work at T = 0°K, and the medium is in its
lowest (ground) state.
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in such a way that an oscillation is set up about the state of charge neutrality.”

The function which characterizes the density excitation spectrum of the medium
at hand is the dynamic structure (form) factor, denoted by S(q,w). Based on the
discussion in the previous paragraph, it will not be a surprise to see that the dynamic
form factor is related to the imaginary (i.e., dissipative) parts of € and x as

5(66) =~ In{x(@)} =~ I

h (2.42)

where n is the particle density of the medium. The dynamic form factor, S(q,w)
is also the Fourier transform of S(#,t) which characterizes the density correlations
separated by a distance 7 in space and ¢ in time. Another function that is réadily
measured by experiments is the static structure (form) factor, denoted by S(q), which

is obtained from S(q,w) as

ﬂ@:AWWS@@. (2.43)

The static structure factor characterizes the instantaneous density oscillations [36] as
can be seen from Eq. (2.43), which is essentially the spectral Fourier transform of
8(¢,w) evaluated at ¢ = 0 (i.e., instantaneous). If we use Eq. (2.42) in (2.43), we
obtain a relation between the static structure factor and the DF as

5@ = gz Jo Wil e

which we shall make use of in the following chapter. As another comment, the
Egs. (2.42) and (2.43) are given usually in different forms in the literature, however,
the end result, Eq. (2.44) should come out as given here.

There is also an alternative way of calculating the static structure factor, by rotat-

ing the frequency integration path from real to imaginary axis [53]'!. The expressions

11 I am grateful to Dr. Bilal Tanatar for suggesting me this alternative method.
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are then modified as follows:

S@ = ;Z /ocodwx(q‘,iw), (2.45)
iy o L1
x(@,iw) = 7@ [e@iw) 1], (2.46)
—h o 1
0 = mogh G 24

In our computer code we employ both ordinary and rotated frequency integrations
based on their individual benefits.
Finally, from the static structure factor the pair correlation function, g(7) is ob-

tained (essentially by a Fourier transform) as

D s
o) =1+ [ Gt 5@~ 1] &, 249

where D refers to the dimensionality of the medium (for e.g., in three-dimensions
D = 3). The pair correlation function is a probability'? that measures the likelihood
of finding two electrons separated by a distance ¥. The pair correlation function is a
handy visual tool for demonstrating the Pauli-Coulomb hole around each electron and
is also used for assessing approximate schemes for the DF; most approaches violate

the nonnegative property of the pair distribution function.

2.6 Dynamic Local-Field Correction

The RPA density response function (x®F4) can be corrected by a term called the
local-field correction (LFC), denoted by G(§,w), so that, formally the exact density

response function () is reached. Stating this in mathematical terms [54]

1 1
x(@w) — x"FA(gw)

12 Being a probability, this function needs to be nonnegative.

+ U%q) G(q,w)- (2.49)
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In other words, knowing the ezact LFC is equivalent to knowing the exact density
response function. The problem is that, the determination of the LFC is just as
difficult. A resonable question at this step is why to choose a form like this for

correcting x®F4, rather than, for instance

X(@w) = x*4Gw) + C(G w).

The reason is because the form in Eq. (2.49) has the nice feature that the correc-
tion term G(§,w) can be attributed a direct physical meaning as its name implies.
Namely, G(q,w) has the mission to incorporate the local structure on top of the self-
consistent mean-field brought by the RPA. The local structure is due to so-called
Pauli and Coulomb holes around each constituent electron of the EL; there exists a
neighborhood within which same spin electrons are repelled due to Pauli exclusion
principle, furthermore, all electrons are also subject to Coulomb repulsion.

The DF (which is formally exact if the exact LFC is known) becomes

LFC(g ) = 1= U@ X*(@w) [1 - G(gw)]

T+ U() (@, w) C(G,w) (2.50)

2.6.1 Static Local-Field Correction

As mentioned above the determination of the dynamic LFC is a formidable problem
as the exact many-body solution of the EL itself. The common sense, at this point
suggests for approximate schemes led by physical guidence. The fundamental and the
most crude approximation done is to neglect the frequency dependence of the LFC,
i.e., a static LFC, G(g).. As a matter of fact almost all dielectric formulations of the
EL available today are based on a static LFC, and the dynamic case is the challenge

for the current front-line researchers [55]. In using a static LFC, basically the inertia
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of the Pauli-Coulomb hole is neglected. The particular static LFC that we employ
in our work has one appealing feature among the other LFC candidates: the static
local-field is determined self-consistently. If we include the fact that the mean-field is
also self-consistent, this makes a double self-consistency of the effective field. In the

next chapter we elaborate in detail the method we are using.
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CHAPTER 3

THREE- AND TWO-DIMENSIONAL

ELECTRON LIQUIDS: FORMULATION

3.1 Introduction

This chapter is complementary to the previous chapter in serving for the formula-
tion. As compared to Chapter 2 containing the general formalism, the present chapter
focuses on the explicit expressions for the three- and two-dimensional electron liquid,
with the aim of guiding possible future researchers. Before embarking on the specific
expressions, however, we first introduce the electron liquid (EL) model. Singwi and
coworkers’ original derivation for the STLS LFC is revisited for the purpose of pre-
senting a much more detailed account applicable to a general D-dimensional EL. We
end this chapter by giving the simplified explicit STLS LFC expressions for the 3D
and 2D EL. For the sake of completeness we also include relevant expressions for the

quasi-one- dimensional (Q1D) EL.
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3.2 The Electron Liquid Model

The electron liquid (EL) is a standard model system of many-body quantum mechan-
ics. It contains interacting dynamic electrons and a smeared out (i.e., homogeneous)
positive background enabling the charge neutrality of the system. The background
is taken to be rigid, nonpolarizable. This model is also named as the electron gas in
some literature, but we prefer the word liquid as the correlations among the electrons
are quite significant and short-range order exists as in classical liquids'. The long-
range Coulémb interaction among the electrons renders impossible, the decoupling
of individual electronic motions, and therefore, the EL remained to be the workhorse
of many-body physics for the past four decades. More importantly from practical
point of view, the EL offers to be the generic model for cha.racteriéing the conduc-
tion electrons in metals, and especially low-dimensional doped semiconductors such
as heterojunctions, quantum wells, and to some extend quantum wires. For this
purpose we use as the quantum labels for the constitu;znt electrons of the EL, the
spin z-projection (o), the wave vector (k) and a valley index () to account for the
common case of energetically-degenerate valleys. The electrons are assumed to have
an isotropic effective mass, m* and the dielectric polarization of the bound electrons
are incorporated by a background dielectric constant, .

The shortcomings of the EL model in representing the real systems are the lack of
ionic lattice and disorder effects. The latter is to some extend remedied by introducing
a phenomological imaginary part to the Lindhard function. As for the ionic lattice,
the dielectric function formalism can be extended to include the Frohlich electron-

phonon coupling [42]. All throughout this text we work in zero-temperature, where

! Further supports are given in the next chapter within the discussion of the ground-state energy.
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the non-interacting Fermi occupation function is of the step form.

3.3 3D Electron Liquid Expressions for a General G(q)

We first list the expressions relating electron density (n3p), Fermi wave number (kr),

and r,; for an 3D EL with arbitrary spin and valley degeneracy.

_ 1 kr.g9s,9v _ k%‘ 3 1
nsp = 37 EZ o = 9590530 (3.1)
OV

where V is the volume terminated by periodic boundary conditions and we intro-
duce an overall degeneracy parameter g; to represent compactly the spin and valley

degeneracies, as gq = gsgy.- Then kr depends on n3p as

2 1/3
kp = (6“ "3D> . (3.2)

9d

The most important and actually the only parameter in EL theory is r, defined as

the average electron distance in units of the effective Bohr radius, a% of the system

’ 1
= A 3.3
and
1 9rr \ /3
b= v (o) e
The effective Bohr radius is given by
Kh?
B = e (35)

where & is the background dielectric constant and m* is the (isotropic) effective mass
of the electrons as introduced in the previous section. a} is an important length-scale
and we shall use it also in 2D EL. The bare 1/R Coulomb interaction in reciprocal

space is

4re?

kg2

Usp(g) = (3.6)
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The dynamo of the DF is still the noninteracting polarization insertion, 7°(q, w), the
Lindhard function. We shall generalize it for an arbitrary degeneracy factor, g4. In

real space its representation becomes

0 $1,$2 == Z Z Ga’10'2 vive ‘Tlﬁxz) Go’zo'l Wavi (w2’$1)7 (3‘7)

01,02 V1,V2
where GY denotes the noninteracting propagator and z,z2 denote both space and
time variables. For the homogeneous system at hand working in the reciprocal space

is suitable via the Fourier transform which yields

—igq / dd kdkao

7(q, wg) = (k, wi) GG + kb, wq + wy). (3.8)

We state the result for U, 73, as it always occurs in our expressions in this product

form

0 0 208\ " s 1+v.
Re{Usn(fIn)W:sD(QnaV)} = oz [ 1+—1—y In l

9t 2 2‘1" 1=
1 1+vy ]
- —@1-)In|—= '
A 1/+)1n‘1_y+ ; (3.9)
rsm [ 2g e
Im {Up(an) p(anr )} = 223 (9«3)

,

(1_’/3) for ‘I721,/2+‘In21/2 |Q72z/2_Qn|
X 4 v for g, <2 and g, — g2/2 > v (3.10)

0 otherwise

\

where we use the reduced units for the wave number and frequency as ¢, = q/kF,

_ _hw
u—m,and

I/:t=i:5:q—n.
qn 2

We shall also make use of the Lindhard function with imaginary frequency as men-

tioned in the previous chapter; its form in 3D becomes
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1/3 B
Udp(an) M3p(gn,iv) = —— (29‘1) {1__(}2_1.‘&11—1 [Qn(2 Qn)]

9rrd 2v
v i lam@+aq)] (@ —4) 4L [(gm—22+4(E)
-~ Ztan 1[ -+ ]+ - g 1n[(qn+2)2+4(%)2]}.(3.11)

Using Egs. (3.9) and (3.10) in Eq. (2.50) the expression for the 3D DF, e3p(gn,v) is

reached; we state the static case that will be frequently used

1/3
1+(2_9|i_) 52_(1 4;‘171 12+q [) [1 — G3p(gn)]

e3p(gn,0) = (3.12)

1- (%) Py (1= 28] Gen(an)
As mentioned in the previous chapter, there are two possibilities for the computation
of the static structure factor, S(gq): integration over the real frequency axis (w) or
over the imaginary frequency axis (iw). The former contains contributions from the

plasmon and electron-hole pair excitations as

1/3
3q 97]- Vmaw(qn) ]_
ge-h — _2n ( 20 / dv1 {—}, 3.13
B = o (29d> vminan) - Lean(dn,) 19

where Vmaz(qn) = ¢2/2 + gn and vin(gn) = max {0, q2/2 — dn}-
gplas 3r% o1 (971‘)2/3
(@) - " 292 772 \2g,
(L U3 (a0)78 e )G an)] o
1
o) oo (2]

where v and v+ in this equation have to be evaluated at the plasmon frequency vy,

— VUmax (Qn))a (3'14)

and 6(-) denotes the unit step function. Finally, the imaginary frequency integration

for S(q) simplifies to

3 o0
S3p(qn) = 5-7;/0 dv

~1 [gn(2—gn) ~1 [2n(2+4n (@ -9-4%)?, [(gn—22+4(L)?
{ — o tan 1 [q 2—g ] — £ tan 1 [q (;;q )] + g1 [(qn+2)2+4(§,,;)2]}

1 — Udp(gn) 73p(gn, iv) [1 — G3p(gn)]
(3.15)
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Pair correlation function is the inverse Fourier transform of the static structure factor

with the explicit form

3 [>® ]
gsp(rn) =1+ -——/ dgn n sin(gn7y) [S3p(gn) — 1], (3.16)
gd J0 Tn

where r, = rkr. For r, = 0 this expression reduces to

3 oo}
gsp(r=0)=1+ g—d/O dgy, qfl [Ssp(gn) — 1]. (3.17)

Finally, we state the expression for the statically screened interaction in real space
which is the inverse Fourier transform of the corresponding interaction in reciprocal

space

77 /3 4 1/3 oo .

(3.18)

in effective Rydberg units designated by an overbar; we add and subtract unscreened

Coulomb potential for computational reasons [56].

3.4 2D Electron Liquid Expressions for a General G(q)

We shall proceed in the same order of the 3D EL; the expressions relating electron
density (n2p), Fermi wave number (kr), and r; for an 2D EL with arbitrary spin and

valley degeneracy are

EF,gs,g'v 2
M= ), Mgy =iy (3.19)
k,ov

where A is the area again terminated by periodic boundary conditions. kr depends

on nap as

1/2
kr = (@”2—") . (3.20)
9d
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The relation between nap and ry is

Nap = _ﬂ(rsa%)z’ (3.21)
and
2 1
kp = — 3.22
N (3.22)

In these expressions the effective Bohr radius is the same as the 3D case; that is,
the average distance for a ls electron of a 3D hydrogen atom. In the 2D EL the

interaction potential in reciprocal space is taken to be

27re

Usp(g) = pra (3.23)

This potential is obtained by taking the 2D Fourier transform of the 3D Coulomb
interaction which is 1/R, R denoting distance in real space (see for e.g., [57]). In fact
a strictly 2D solution of Poisson’s equation is proportional to — In(R) [58] rather than
1/R and its 2D Fourier transform is proportional to 1/¢2 as in 3D EL. However, the
— In(R) interaction is seldom used [59] due to indication by real physical 2D systems
that 1/R type of interaction is relevant [60], [61].

Remembering that the 3D polarization insertion is named after Lindhard, it is
appropriate to name the 2D zeroth-order polarization insertion as the Stern function
in honor of Frank Stern who first worked out its explicit form [62], [63]. Again we

state the UJ, 3y, as it always occurs in our expressions in this product form

3/2 4
Re{USD(qn)wgD(qn,y)} = 1394 - [_1 sgn(u_ O] - 1)/ =1

2 g

+ @;-:L) O(|vs| 1)\/;/1 - 1] , (3.24)
32
m {ng(qn) 7TgD(qnaV)} ng; qiz [9(1 — syl = v =01~ v-|)y/1 - VE] ;

(3.25)
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where we use the same definitions for the reduced variables ¢, and vi as in the
previous section, and sgn(-) denotes the signum (sign) function. The 2D static DF

with a general LFC becomes

( g3/2r
1+ % [1—G2p(gn)]
9n for g, <2

€20(qn,0) = ¢ . (3.26)

149 " [1 — 1= (q%)?] [1 — Ganl(gn)]

1—% [1—\/1—(%)2] Gan(gn)

In calculating the static structure factor, S(q) we have two choices, the conventional

for g, > 2

.

approach is to separately account for the electron-hole pair and plasmon contributions

as

4q Vma:c(q'n) 1
s&h(g) = ——"/ dv Im{————}, 3.27
2D ( n) Wr8g3/2 sz'n(‘]n) €2D (Qn, V) ( )

where again vz (an) = ¢2/2 + ¢n and Vimin(gs) = max {0, ¢2/2 — ¢u };

8¢2 [1+ USp(an) 72p (an, v) Gan(gn)]?
_rg_;‘o; () 73p(an,” ] W 00— vlan)),  (3.28)

vy _
\/uf_—l \/173—1

where v and vy in this equation have to be evaluated at the plasmon frequency vp;

!
SgDas (‘In) =

in contrast to 3D case the plasmon dispersion can be obtained in closed form as [64]

gn(z+1 4 71/2
Vp(q'n) = % [qz + 22 —{—22’] ) (329)
with z defined as
2
2= I (3.30)

nggﬂ [1 = Gap(an)]

Eq. (3.29) is valid in the range [0, gn maz) Where gp mae satisfies v, (gn mez) = Gn,maz +

qu’mam/2 and outside this region plasmons dissociate to electron-hole pairs so that
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collective excitations are no longer long-lived. The other alternative for computing
S20(gn) makes use of the Stern function with imaginary frequency, however, we fur-
ther apply the so-called Ioriatti-Isihara transformations [66, 65, 61] which greatly

simplifies calculation to the form

[q"‘ —sin? 6 + 4°°t29] (1 —cos9)

(% - sin?6)"” [1 + %2 (1~ cos) (1 — GzD(qn))]
(3.31)

b

(gn)
Swlan) == [ ao

where

/2 for ¢, <2

algn) = < . (3.32)

{ sin~! (q%) for g, > 2

In the numerical computation one should use

cot2 8 (1 ~ cosf) =~ % (1 - 19—202) for 0 <0 <0.1,

where 6 is in radians; otherwise the term cot? 8 alone will cause a problem for § — 0.
However, the second approach based on Eq. (3.31) becomes numerically very sensitive
and costly for g, > 2, for this reason we switch to ordinary approach (Eq. (3.27))
after the plasmon excitations become Landau-damped.

Finally, the 2D pair correlation function and statically screened interaction in real

space are obtained as

9 [
92D (Tn) =1+ g-—d A dgn qn JO(q'n,"'n) [S2D (Qn) - 1] 3 (3-33)

4
Ts/9dTn "'s \/_—

Uap,ser(rn) = dgn Jo(gnTn) [#qn) - 1] ; (3.34)

where Jy is the zeroth-order cylindrical Bessel function of the first kind.
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3.5 STLS: Derivation and Local-Field Correction Expressions

3.5.1 Derivation of the STLS

We follow the pioneering STLS paper [67] for the derivation of the LFC of a classi-
cal liguid. This is necessary for the understanding of the technique as well as filling
the gaps in the original derivation which was written for the experts of the liquid-
state physics. As a matter of fact, it can be checked that a one page derivation of
the original paper requires highly appreciable and lengthy intermediate steps. For
the consistency of this thesis we also make minor modifications in the notation. We
consider a classical liquid in the presence of an external field creating the potential
energy distribution Uegs(Z,t). The one-particle distribution function f(Z,7}t) is in-
troduced to denote the particle probability density at the 2 x D-dimensional phase
space coordinates (Z,p) at time ¢. It should be mentioned that this function does not
have a direct quantum mechanical analog due to the well-known uncertainty relation
between the noncommuting phase space variables Z and p; the closest quantum me-
chanical function is the so-called Wigner function?. The equation of motion (i.e., the

time evolution) of the classical one-particle distribution function is governed by

d —)7 -;t ~ T D . T Z, D
f(watp ) + 7 Vg f(xap; t) - Vz Ueivt(mat) ) Vﬁf(xsp; t)

— [ VzUNZ—-2") Vs f(& 52, 5'|t) dZ' dp’ = 0. (3.35
P

% The appendix of the original STLS paper [67] presents the derivation for the self-consistent LFC
for a quantum liquid using the Wigner function. Mahan [42], on the other hand, gives a derivation
based on the double commutator of the particle density operator.
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This is actually a statement of df (%, 7} t)/dt = 0 with the total time derivate treated

as the hydrodynamic derivative as

df of dz dp
-9 haindB v 5 2L V. f=0. 3.36
@& @ 2/t dt Vi f (3:36)
—~~ -
velocity force
Force has two contributions; one due to external force, Fopp = —Vz Uest(Z,t) and
the other due to internal particle interactions, Fi,; = —Vz U%( — £'), where U°(%)

denotes the bare interparticle interaction potential energy. However, to be exact for
the internal force we should use the joint two-particle density f(Z,7;Z’,p"|t) that
tracks the simultaneous densities of the test and perturbation coordinates. Then we

must integrate over all possible perturbation coordinates giving
P Vyf == [VaU'@ -2 V5 (@585l d&' a5,

which is just the last term in Eq. (3.35). The equation for the two-particle distribution
function is coupled to the three-particle distribution function and so on. Singwi and
coworkers close this infinite hierarchy by the following ansatz which is the heart of

the STLS technique

f@& 52", 0'1t) = £(Z,5;1) F(&,5";1) 9(F - &), (3.37)

where g(Z) is the static equilibrium pair correlation function. Apart from the strin-
gent restrictions of this form, we shall see that the improvement is quite impressive
for certain applications. Under the perturbation of the external potential, which is

assumed to be small® we write the distribution function as

f(faﬁa ) f0@+f1( 7pa ) (338)

3 Note again the presence of the linear response assumption.

44



In this equation fy denotes the equilibrium distribution which needs to be uniform and
with no time evolution, and f; shows the deviation from the equilibrium distribution

due to external perturbation. The equation of motion (Eq. (3.35)) becomes

*

O -V fy— VaUusl@t) - V3 (fo+ 1)
—_—
- /vf Uz —2")- Vg | fold) +f1(a?,ﬁ;t)}
x g(Z — x') [fo(ﬁ’) + f1(§’,ﬁl )] dﬁ’ =0. (3.39)

We neglect f; terms labeled by * which are presumably small compared to the adja-
cent fo terms and thereby linearize the equation. Furthermore, we use [ dp” fo(5') =0
due to isotropy of the equilibrium distribution (which amounts to saying that the

equilibrium distribution is actually, fo(p)) and get

a = -
[5 +v'Vf]f1($,p;t)

— [Va Ui+ [ 12", 500(@ - )V U@ - &) d&" | V5 () = 0.6.40)

effective force

For further progress it is beneficial to split the indicated effective force in the following

form
mea.n—force-ﬁeid used in RPA
Fopf(£8) = —VaUe(®,t) - / Vs UYE — &) fu(@, 55 1) dE' i’

- [ 1o@ - ) - 1] V0@ - 8') u(&", 7'5t) d” 4. (3.41)

~

local—ﬁeld correction

Now we move to the reciprocal space-time by Fourier transforming both sides of

Eq. (3.41). For the right hand side of Eq. (3.41) we get

/ di / dt 6~0% ¢ B (2,1) = Fopp(d,w). (3.42)

As for the left hand side we have after performing the time transformation
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/ [V Uest(, w)] 707 d — / / dz'f1(Z',w; ") / [V2U°(z - ") | 9% dz
_/dﬁ!/dﬁ:"fl(:i",w;ﬁ')/d:f:'e'_-z‘@fc‘ [g(g—cf_fz) _ 1] Vs Uo(j»_ﬁr), (3.43)

which simplifies to
F1(Gwsp’)

—

~ifUet(@0) - [ df" [ dz'11(", w3 0% i0°(@)

- [ a5 [dz' 5@ wi") e [ dge i) - VU@ (3.49)

f1(@w;p") use convolution property

using the Fourier transform property that the product of two functions are convoluted

in their transforms, we get for this term

dgq’

(27T)D n [S(I —”I) - 1] "q,UO(Q")

where n designates the density of the liquid. The Fourier transform of Eq. (3.41)

becomes
Fops@w) = —iUea(@) = iqU°(@ [ i’ f1(g, i)
[ L s -1 @) [ G 649
(27r)Dn NG, W p ). .

We now use the fact that the deviation of the particle density function f; from the

equilibrium value due to the external perturbation is the induced density,

nina(d0) = [ 45’ 1@ w55 (3.4
Then,
ﬁeff(q; w) = _iq-.Uezt(q-: w) - ZJUO(Q) nind(q; w)
- nund(di6) [ g S 0') = 1) i3 U°@). (347

As a result the equation of motion in (g,w) space turns into

qp/m
~— -
—iwfi(§,w;P) +1 §- T f1(qw; D) + Fess(q,w) - Vi fo(p) = 0. (3.48)
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For further progress, we need to identify the density response of a system of non-
interacting particles to the external field; we shall use this function to build-up the

response of an interacting system.

3.5.1.1 Noninteracting Density Response Function

For the noninteracting case the effective force becomes Fef § = —iq Uezt(q,w), so

Eq. (3.48) becomes

~iwfP(@wiP) +iq- £ (8 wiP) — 7 Ueat(@,0) - V7 fo(B) = 0, (3.49)
giving
) 7 Vs )
UG w;p) = q—ﬁ’”t—"@ Ueat(q, w)- (3.50)
m Y

We integrate both sides over df and use Eq. (3.46), yielding

w) /d"————q Vifo(P)

n‘?ﬂd (¢, w) = Uext(, (3.51)

7

x° (q,w)

where as indicated above the noninteracting density response function for a classical
liquid is identified as
S 7 Vsfo
X(@w) = [ 77— (ﬁ)

Zgm (3.52)
by using

n(z')nd(q; w) = XO (@, w) Uext(q, w)- (3.53)

3.5.1.2 RPA

Having met with the noninteracting susceptibility (x°(q,w)) we can now proceed
by including the mean-field term by setting g(Z,Z’) = 1 in Eq. (3.41). Before more

mathematics, we must observe that in the mean-field approximation any two particles
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are taken to be uncorrelated, which is surely not the case in reality; there exists a
fuzzy forbidden zone around each electron so that g(|Z|) < 1 as |Z] — 0. The effective

force felt by the constituent particles becomes in RPA
FFA @ w) = ~iqUet(q, w) ~ i U°(@) ning™ (@, w)- (3.54)

Then Eq. (3.48) yields

nEEA ) = [Veat(@,0) + U@ nEAGw)] [ & M”f"@ 5 (355)
x°(q,w)
giving
07
nRPA — X (q,(d) (356)

ind (q,UJ) = Uext(‘faw) 1— Uo(q) Xo(qo w)?

xRPA(gw)

hence, the RPA density response function is obtained as

RPA(= .\ . X w)
)= =09 0 G (857

X

Note that this is the same as the expression obtained in the previous chapter using
the polarization insertion diagrams for the quantum case. Similarly the RPA DF is

obtained as

WG = Mol _ LA @@  (59)

3.5.1.3 STLS

Finally STLS is reached by retaining g(#,Z’) as it is

Fequ}Ls(@ w) = —ifUen(q,w) —igU’(q) n;S'n’.I(;LS(q w)

dgq' 1 . o oIy
—nfid @) | Gap 3 807-2) -1 V@i (359

Now we concentrate on the last term; particularly ¢’ can be decomposed as
7' =d) by +d, b,
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defined with respect to the vector ¢, and 4 represents a unit vector. The point is

that, the integral over the transverse part () will vanish due to the integral

JEET LT A oy e W P

This argument is valid for all dimensions D except for D=1, but the result to be given

will trivially hold for D=1 case. As a result the last term reduces the contribution

from longitudinal (||) part as

dg’ 1 L. N ot A
—Nind @nPn [S(lg—q') — 1] U%(@") iq)a-

Also using q|’1 o =q 9:—'1%_’1 we can express the effective force as

FSEES(qw) = —iGUest(d,w) —iqU(@) nig5 (@, w)

{1+1 a4 VA7) [S(Ia—a"n—l]}. (3.60)

@mP ¢ U
So, if we define the last term as the local-field correction

1 [ d¢' q-q' U(q")

- = oy
COD==7]@mP ¢ @ [S(lg—4q") - 1], (3.61)

then the effective force becomes
B @0) = —id{Ual@o) + V@ i Go) 1 - G@]} . (36

Finally, Eq. (3.62) in Eq. (3.48) leads to the following form for the induced density

nSTES () = ——— X&) Vet (@, ). (3.63)
1= 099 (G w) [ - C@],
XSTL‘Sr(q‘,w)

From this equation the STLS density response function is identified as indicated

above. Using this information in Eq. (2.32) the STLS DF is obtained as

eLFC (g, ) = 1-U%Q) x(@w) [1 — G(@)]
’ 1+ U%q) x°(qw) G(@)
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which is just Eq. (2.50) under a static LFC rather than a dynamic one. Actually
these last two equations are applicable for any static LFC; the distinction of the STLS
technique lies in Eq. (3.61) which depends on the static form factor, S(q). S(g), in
turn, depends on the DF through Eq. (2.44). Finally, the DF depends on the LFC
as seen in Eq. (3.64). So, there exists a coupled loop of nonlinear integral equations
which need to be satisfied simultaneously. This is referred as a self-consistent solution.
Having established the STLS LFC for a general D-dimensional case, we present in
the following section the explicit expressions for the three-, two-, and quasi-one-

dimensions.

3.6 Explicit Expressions for the STLS Local-Field Correction

3.6.1 Three-Dimensions

Eq. (3.61) can be simplified further in 3D by performing the angular integrations

analytically [67], and the final form becomes

GSELS (g) = 2—2—; 7 dar 11~ 500 ha(), (3.65)

where a = p, /¢, and

1—a21n|a+1
2a

hsp(a) =1+ . (3.66)

a—1
We observe that hsp(a = 0) = 2 and hgp(a = 1) = 1, so that, it is actually a
well-behaved function without singularities. For completeness we would also like to

include the expression for the Hubbard LFC for a 3D EL having g4 degeneracy,

() =+ (3.67)
DM G T+ @ '

The Hubbard LFC [68] approximately accounts for the exchange (Pauli) hole sur-

rounding each electron.
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3.6.2 Two-Dimensions

In the 2D case, the polar integral of Eq. (3.61) cannot be expressed in terms of ele-
mentary functions, so the computation becomes somewhat more costly. The explicit

form is
STLS 2 [
G555 (an) = — [ donpn [1 = S(on)] han(a), (3.68)
where a = p,/q, and

acos¢p+1
V1+a?+2acosé

ha(e) = = [ a0 (3.69)

The asymptotical form of hop(a) is %, which can safely be used for ¢ > 10. To reduce
the computational labour, we tabulate the function hgp(a) in the interval [0, 10] using
1000 data points, thereby, the burden of the double integration is circumvented.

Finally, the expression for the Hubbard LFC in 2D case is

1 n
Gl (gn) = — 22— (3.70)

9da V1+q
3.6.3 Quasi-One-Dimensions

Even though our goal in this work is to understand and characterize three- and two-
dimensional ELs, for completeness it is appropriate to include certain expressions
regarding quasi-one-dimesional (Q1D) systems. In the first place it needs to be men-
tined that the strictly 1D electronic systems have pathological features, which can
be cured if the finite spread along the transverse coordinates is incorporated. This is
indeed the case in actual systems, like quantum wires. Due to finite extension of the
electronic wave function, the bare 1D Coulomb potential is modified* by averaging

the charge distribution along the transverse plane. Unfortunately, the resultant form

4 For a detailed illustration in Q2D case refer to Chapter 5.
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is cross-section dependent and unnecessarily complicated. For a cylindrical quantum
wire of radius R, the effective 1D Coulomb interaction in real space can be approxi-

mated by [69]

€2 1

— 3.71
k |z| +9R’ (3.71)

Uc%w(z) =

where vy is a fitting parameter having a value about vy ~ 0.3.

Other expressions for the Q1D EL are also listed below, again for general reference

purposes.

+kF.gs,gv
1 kr
nip = Z E : Ngoy = 9d——, (3°72)
k=—kp, o0 T

where L is the length terminated by periodic boundary conditions. Similar to 3D and

- 2D cases we have the relations

=" NG
and
™
= — 3.74
kr 2gq7s a% ( )
The Lindhard function in 1D including the degeneracy factor g4 becomes
2 2
0 gam v - (%L — q”)
Xnelamv) = o 2 20’
7kF qn V2_(_2n+qn)
. ~HE—s 1% -l <v< %+
Xtm(@n, V) = : (3.75)

0; else

Note the difference in the zone boundaries of the pair-continuum with respect to 3D

and 2D Lindhard expressions.
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Finally, the STLS LFC for a Q1D system can be obtained by using the general

form in Eq. (3.61) as

0 DPn Uo(pn) -
CFE @) =5 [ dm PGl - S(a-a0].  (376)

We should caution that the debate on the applicability of the EL model (in broad
sense, the Fermi liquid model) to low-dimensional systems and especially to Q1D,

still continues [70]. We return to this point in the final conclusion chapter.
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CHAPTER 4

THREE- AND TWO-DIMENSIONAL

ELECTRON LIQUIDS: RESULTS

4.1 Introduction

In this chapter we would like to gather the results pertaining the formulation
given in the previous two chapters. For 3D EL, we compare the STLS results with
the recent quantum Monte Carlo (QMC) data released by two groups vivorking in
this field [45, 71]. Currently, QMC is believed to yield the most accurate data,
however, the agreement between the QMC results produced by independent groups is
not satisfactory, and moreover, the computational cost severely restricts the output
to a very coarse data grid. Among the exhaustive list of available LFCs [55], the
approach due to David Pines, who contributed heavily to this field, and his co-workers
[72] deserves special respect and we include in our comparison their pseudopotential
formulation [73, 74], which renders our treatment more interesting a‘,nd complete. Our
results indicate that STLS, with its comparatively low computational cost and apart

from some drawbacks to be mentioned, offers to be a good alternative to QMC.
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The 2D EL is given a special emphasis in this work due to its technological im-
portance. Again we compare the 2D STLS results with the QMC data produced by
two independent groups [75, 76]. This time we also have the opportunity to test the
spin-polarized STLS results with the QMC data of Tanatar and Ceperley [75]. Again
our comparison is supplemented by the pseudopotential approach which was pursued
for 2D EL by Iwamoto [57]. We present an analytical fitting for the normal-state 2D
LFC which was available in the literature for the 3D case, but the 2D counterpart
was lacking until the appearance of our work [63]. In addition to the formulation
presented in the previous chapters, we also include the computation of the correla-
tion energy (equivalently the ground-state energy) and the compressibility of the 2D
EL. These two are one of the most demanding calculations in this work as we do
not resort here to any simplifications such as curve fitting. Furthermore, we gain a
valuable information about a physical issue, the so-called compressibility sum rule,
where STLS is criticised to be poor. Our findings also comply with this common
belief that was mainly established in 3D [42]. Finally, we bring into foreground the
provocative subject of overscreening, which has been very poorly investigated in the

literature. We explore the driving mechanism of this effect.

4.2 3D Electron Liquid Results

Our reference in comparing the STLS DF will be the QMC data recently produced
by two independent groups [45, 71]. This choice is due to the currently existent
confidence on the QMC data. As a matter of fact, our investigation will not only
question STLS but the QMC results as well, by comparing the agreement of the data

produced by these two independent groups. We shall not make use of the full strength
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of the formulation developed in the previous chapters; the comparison will involve
only the normal-state of the single-valley EL (gq = 2), due to lack of QMC data
for other degeneracy factors. However, the chapter on the Mott transition makes an

exhaustive use of the degeneracy factor.
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Figure 4.1: Plasmon energy (E,) normalized to Fermi energy (Er) versus q/kr, of the
3D EL based on STLS. The dotted line marks the onset of particle-hole continuum.

The longitudinal plasmon dispersion extracted from the zeros of the STLS DF is
shown in Fig. 4.1 for several r; values. In this figure, the plasmon energy is normalized
to Fermi energy and the wave number is normalized to Fermi wave number. The plas-
mon dispersion curves are mainly included to assist future researchers for comparing
their own data. The plasmon curves are shown till the dotted line which marks the

onset of the single electron-hole pair production. Within this region, the imaginary
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part of the DF is not zero, however, the zeros of the real part of the DF can still be
traced, even though, the plasmon will not be a long-lived elementary excitation due
to Landau-damping. It needs to be mentioned that most of the techniques includ-
ing STLS, out of the single- pair continuum, predict undamped plasmons. However,
experiments indicate a finite lifetime possibly due to two effects that are ususally
omitted: multipair excitations which are not restricted to the single-pair continuum
zone, and the interaction of the electrons with the periodic lattice potential [77].
Bowen et al. [45] reported their QMC data on the static DF for the 3D EL at the
densities ry = 1, 4, 6 and 10. Soon afterwards, Moroni et al. [71] announced their
QMC results on the static LFC of th;a 3D EL, computed at the r; values 2, 5 and
10. First, we extract G(q) (actually G(q,0)) data from the tabulated ¢1(g,0) data

_of Bowen et al. by means of the equation

Jo il M
“ TG0 D@ PG

G(q,w (4.1)

We should note that this equation is exact. Thereby, we can compare G(g) of STLS
with the two QMC data, as shown in Fig. 4.2. In these figures we also include the LFC
based on Pines and Iwamoto’s pseudopotential theory [73]!. In adapting the liquid
Helium formulation to EL problem, Iwamoto and Pines (IP) essentially constrained
the static LFC, so that certain static response functions of the EL coincide with
the “accurate” QMC data. In particular, they fitted their static LFC to the long-
wavelength limit (¢ — 0) of the compressibility and spin susceptibility QMC data of

Ceperley and Alder [79]. The resultant form of the LFC can be named as a generalized

! David Pines can be described as the most credited scientist in the many-body physics. He is
the author of more than three authoritive research books in this field and he can be named as the
person for constructing the language of correlated electron systems. In 1980’s he revisited the EL
problem after developing a powerful theory for the liquid Helium towards the end of 1970’s together
with Aldrich [78].
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Hubbard LFC, as it also incorporates the correlation among spin antiparallel(f})

electrons as well as the parallel spin ({f) ones,

Giplan) = A (4.2)
2(+d) 2(d+4) -

Excflrange Ex.-Corr.
We should mention that the ordinary Hubbard LFC is obtained from this form by

setting gy — oo (i.e., no correlation) and gy — 1 (exchange part). However, IP’s

LFC reduces for 73 — 0 (exchange dominant regime) to the form {73]

GIP-~H 1 ¢ 43
3D q”)—i_—q2+2’ (4.3)
n

This is nothing but the form suggested by Geldart and Vosko [80] by correcting
Hubbard’s original LFC. The values for gy and gy are tabulated by IP in the density
range 75 =1-20.

Having made this introduction for the pseudopotential theory of IP we can make
the following observations about the Fig. 4.2: i) STLS and the QMC data due to
Bowen et al. denoted by QMC (1) have a reasonable agreement for all r; values
given. G(gq) due to QMC (1) is observed to be consistently lower than that of the
STLS values. ii) The QMC data of Moroni et al. which will be represented by QMC
(2) is reported for g, = q/kp values larger than 1. The agreement of G(g) with STLS
is especially poor for g, > 2 for all r; values. We believe this to be an artifact of
STLS in accounting for the short-range correle_),tions. However, we would like to draw
attention to the case ry = 10, where a direct comparison of the two QMC data is
possible. There, we observe that QMC (2) increasingly disagrees with QMC (1) for
large g, values. The IP LFC fitted to QMC data in the long-wavelength, as expected
agrees with QMC in the g, — 0 region much better than STLS. However, this picture

quickly changes; for the intermediate g, values STLS is superior to IP.
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Figure 4.2: G(q) versus g/kr. (a) Diamonds show QMC data extracted from the
work of Bowen and co-workers, dotted lines refer to Iwamoto and Pines’ (IP) LFC,
(b) solid squares show the QMC data of Moroni and co-workers. The upper curve
also compares the two independent QMC results and STLS, where solid lines indi-
cate STLS results. The curves in (a) and (b) are vertically offset by 1 and 2 units
respectively for clarity.
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Fig. 4.3 illustrates the inverse static DF's of the STLS and the QMC. The agree-
ment of STLS with QMC (1) is good for r; = 1 and 4 values, but for the case of r; = 6
and especially for r; = 10, there is a disagreement for the long wavelengths g, < 1.5.
In this region STLS shows an exaggerated overscreening (i.e., € < 0) as compared to
QMC. Even though, formally both of the techniques are to be questioned, we again
blame STLS due to its violation of the compressibility sum rule [67, 42], which is
manifested in the long wavelength behavior of the static DF. We shall elaborate more
on this subject while analyzing the 2D EL. Another interesting point is that the size-
able disagreement of STLS and QMC in the G(q) data for r; = 10 and ¢, > 2 values
is not reflected on €~1(g) results, where this time an excellent agreement is recorded
for g, > 1.5 between the two. In Fig. 4.3 (b) the RPA result is also included to show
its failure for all practical wave numbers. IP again shows a good agreement with the
QMC data only in the extreme long-wavelength limit; for r; = 6, IP results are not
included in the comparison as gy and g4 values are not supplied by IP at this r; value.
Finally, the disagreement of the two independent QMC data and the few number of
data points available due to computational cost of the simulation, lead us to conclude
that QMC is still premature, and in 3D, STLS seems to be a better alternative for
practical screening applications together with its limitations. The IP pseudopotential
approach shows a complementary performance to that of STLS, where only in the

long-wavelength limit a good agreement with QMC is registered.

60



3.00 4

2.75

2.50 4

2.25

2.00

1.75 4

1.50

()

w 1.25

1.00

0.75 4

0.50

0.25

0.00-

0.0 . 0.5 . 1.0 ' 15 . 2.0 ' 25
(a) /e

1.0

0.8+

0.6 -

-0.2 4

¢ QMC (1)
B QMC (2)
STLS

-0.4

0.0 0.5 1.0 15 2.0 2.5 3.0 3.5

(b) a/ke

Figure 4.3: Inverse static DF versus ¢/kr. (a) Diamonds show QMC data of Bowen
and co-workers and solid lines indicate STLS results for r,=1, 4, 6. (b) Comparison
of the static DF for r; = 10. Additionally, solid squares show the results extracted
from the QMC data of Moroni and co-workers and dashed line indicates the RPA
result. The dotted lines refer to Iwamoto and Pines’ (IP) LFC. The upper curves in
(a) are vertically offset by 1 unit for clarity.
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4.3 2D Electron Liquid Results

Our assessment of the DFs for the 2D EL is more comprehensive than the 3D case.
Our comparison again includes the STLS, QMC and the pseudopotential theory which
was undertaken by Iwamoto for the 2D EL. For the QMC data we have two inde-
pendent simulations due to Tanatar and Ceperley (TC) [75] (to be abbreviated by
QMC-TC) and very recently by Senatore [81, 76] (QMC-S). The former is among the
most cited works in EL theory due to the exhaustive and accurate treatment, more-
over, we have the opportunity to make use of our general formulation by comparing
the spin-polarized EL as well.

In Figs. 4.4 and 4.5 we first compare the STLS g(r) and S(g) data with QMC-TC
in the density range r; = 1 — 20 for both the normal (g; = 2) and spin-polarized
(94 = 1) states of the EL. If we first concentrate on the QMC data, and compare the
effect of the degeneracy factor g4 on g(r) and S(q), we observe that for r; =1 and 5 the
differences are marginal, apart from g(0) values, where the spin-polarized state goes to
zero even for r; = 1 case as expected. Another observation is that the spin-polarized
state has a more pronounced structure for r; = 10 and 20 values. For both states
STLS results are in excellent agreement with the QMC-TC for r; =1 and 5. However,
especially for r; =20 the peaks signifying an approach towards crystallization are very
much underestimated by the STLS. So, in the search for the Wigner solid, which is
predicted to be around ry ~ 37 [75], STLS falls far short?, which requires a very
strong coupling theory. However, such r,; values are well beyond the practical region
utilized by electronic devices and ma,teria,lsb. We also indicate in S(g) curves for g4 =2,

the plasmon contribution for r;=1; observe that in the long-wavelength limit S(q) is

? See also our work for further supports [63).
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Figure 4.4: Pair-correlation function versus distance for rs = 1 — 20. Hollow squares
indicate the QMC data of TC, solid curves are STLS results for a) spin-polarized
EL (gq = 1). Upper curves are successively shifted vertically by one unit for clarity.
Dotted curve on the right shows Iwamoto’s result for 4 = 5.
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Figure 4.5: Static form factor versus normalized wave number for r; = 1 —20. Hollow
squares indicate the QMC data of TC, solid curves are STLS results for a) spin-
polarized EL (gq = 1). Upper curves are successively shifted vertically by one unit
for clarity. The STLS plasmon contribution to the overall form factor is indicated on
the right for the r; = 1 case.
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Figure 4.6: Comparison of STLS (solid lines), QMC-S (squares) and pseudopotential
approach of Iwamoto (dashed lines) for the a) LFC and b) inverse static DF of a 2D
EL withgg=2at r; = 1.
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Figure 4.7: Same as the previous figure but at ry = 2.
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dominated by the plasmon contribution as compared to single-pair and multi-pair
contributions.

Figs. 4.6 to 4.8 compare LFC and static DF for STLS, QMC-S (Senatore) and
pseudopotential approaches. Iwamoto fitted the 2D LFC to the long-wavelength be-
havior of the compressibility and spin susceptibility data of QMC-TC3. The resultant

form of the Iwamoto’s LFC is again a generalization of the Hubbard LFC in 2D as,

dn Qn
Glolan) = + - “4)
2@+ 24/ +ay

Excl;a.nge Ex.-Corr.

_The values for gy and g4 are tabulated by Iwamoto in the density range rs=1-40.

The bottleneck about the static LFCs has been emphasized in another work of
Iwamoto [82]; namely the compressibility sum-rule and the third-frequency moment
sum rule [55] cannot be satisfied simultaneously by static LFCs. So, depending on
the particular application at hand, one should choose a suitable static LFC which
performs well for that specific physical quantity of interest. Iwamoto’s LFC is ap-
pealing for our considerations as it is fitted to the long-wavelength compressiblity of
the QMC data where STLS is known to be very weak. Our following investigation
illuminates this dark spot by comparing the two extreme static LFCs by the QMC
data. On one side we have STLS that violates the compressibility sum rule but has
an impressive pair correlation function due to the built-in self-consistency and on the
other hand the pseudopotential approach that presumably behaves just the opposite
way.

Our observations about Figs. 4.6 to 4.8 can be listed as follows: i) Iwamoto’s

pseudopotential approach only agrees with the QMC-S in the long-wavelengths, where

3 The seven-year gap between the appearance of 3D and 2D pseudopotential forms is due to the
absence of QMC data for the latter, until TC reported their work.
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Figure 4.9: Comparison of the pair-correlation functions of the STLS (solid lines) and

the pseudopotential appproach of Iwamoto (dashed lines) for several densities of the
2D EL with g4 = 2. Curves are successively shifted horizontally by one unit to the

right for clarity.
STLS is observed to be in disagreement, ii) for intermediate wave numbers STLS and

QMC-S agree very well apart from the fluctuations of the latter, ii) for large wave
numbers QMC-S and STLS disagree for G(q) data, where STLS saturates but QMC

continues to grow. However, this disagreement is not reflected to the static DF data
As a matter of fact, we had similar

which shows a good agreement of the two.
observations about the static performances of these three aprroaches in 3D case.

Both Iwamoto-Pines [73] and Iwamoto Fig. 4.9 papers do not present any quanti-
tative assessment of their pair-correlation function. We explore this for the 2D case in
Fig. 4.9 by comparing g(r) of STLS and Iwamoto; also see s = 1 curve in Fig. 4.4 (b).
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g(r) for small r values as calculated from Iwamoto’s LFC is seen to be increasingly
negative for increasing r; values; STLS practically preserves its nonnegative property
for all r, values. In summary, STLS, apart from its deteriorated long-wavelength be-
havior has several appealing features: i) good agreement with QMC for intermediate
and large q values for the static DF over all realistic r, values, ii) almost nonnegative
pair-correlation function, and the most important of all, iii) self- consistent scheme
which does not require any fitting to experimental or simulation data (in contrast to
pseudopotential approach). This last property makes STLS a highly preferred tech-
nique for characterizing quantum liquids with arbitrary geometrical constraints such
as heterojunctions, quantum wells, quantum wires and etc., where QMC data is not

available.

4.4 An Analytical Fitting to 2D STLS Local-Field Correction

To enable a widespread use of the STLS technique in 2D EL we propose an analyt-
ical expression having two fitting parameters {63]. We are led to this effort by the
availability of a similar work in 3D EL by Singwi and co-workers [83, 84, 42]. As in
the 3D counterpart we restrict our fitting only to the normal-state, single-valley EL
(Le., g4 = 2).

To propose a fitting function for the LFC its asymptotic forms must be known. In
the small argument case, as ¢ = 0, G(g) ~ ¥ ¢, and v = £ [7°dp[1 — S(p)]. In other
words, G(q) depends linearly on q. < is an important parameter which is related
to the compressibility [42], [65]. For the large argument behavior, i.e., as ¢ — oo,

G(g) ~ 1 — g(0), where g(0) is the pair correlation function at interparticle distance
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r =0. We propose an interpolating function between these two limiting cases as
Glg)=A(1—e%), (4.5)

in which A and B are the fitting parameters*. If A equals 1—g(0) and B equals y then
the limiting cases will be exactly satisfied, however, to optimize the agreement for all
q values, A and B deviate from these values. Table 4.1 lists the fitting parameters as
a function of 7 from 0.1 to 6. Both A and B depend smoothly on r, and one can use a
linear interpolation for those r,; values not contained in Table 4.1. For r, values larger
than 6, the electron liquid approaches towards crystallization and a peak begins to
appear in G(g). However, the functional form of Eq. (4.5) cannot accommodafe this

peak and therefore it leads to poor agreement, especially, beyond r; = 10.

Table 4.1: Fitting parameters A and B (see Eq. (4.5)) as a function of r; for the
characterization of the 2D electron liquid. The small (i.e., ) and the large argument
(i-e., Goo) behavior of the exact STLS G(q) are also shown for completeness.

Ts 0.1 0.5 1 2 3 T4 5 6

A | 0.5513 | 0.7036 | 0.8128 | 0.9214 | 0.9752 | 1.0004 | 1.0165 | 1.0296

B | 0.6310 | 0.6804 | 0.7322 | 0.8075 | 0.8585 | 0.9121 | 0.9444 | 0.9583
G | 0.5531 | 0.7260 | 0.8406 | 0.9409 | 0.9813 | 0.9989 | 1.0096 | 1.0130

v | 0.4491 | 0.5063 | 0.5472 | 0.5910 | 0.6157 | 0.6317 | 0.6432 | 0.6515

In Fig. 4.10 (a) we present our self-consistent STﬂS results for G(g) and compare
them with the fitted form. The value of vy as calculated by the STLS turns out to be
larger than the correct value 7y which results in the violation of the compressibility
sum rule. It must be mentioned that the fitted form has B > < in the r; range
considered. This in turn, will lead to an even degraded compressibility value for the

fitted form. To further assess the performance of the fitting, in Fig. 4.10 (b), the

* Even though, we use the same symbols for the fitting parameters as in Singwi and co-workers’
expressions, note the difference in the structure. We made this change to attribute to A and B direct
physical meanings; see also Table 4.1.
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Figure 4.10: Comparison of the exact STLS (solid lines) and the fitted form (dotted
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STLS pair correlation function is plotted together with that obtained using the fitted
expression(i.e., Eq. (4.5)) for G(q), excellent agreement can be observed.
Knowing G(g), both the dynamic and the static DF of the 2D EL is easily ob-

tained. In particular, the static DF under the fitted form for the LFC becomes®

1+ var, [1 - Al - e—‘InB/A)]
qﬁ\/i for ¢, < 2
- "s A(1 — e~tnB/AY ‘
n
€5TLS (g, w = 0) = 4
4 Y2 [1 —4j1- (3)21 [1-A(1 - em2B/4)]
(In\/i In 5 for g, > 2
1 YT [1 - \/1 - (—)2] A(l — e B/4)
. n an
(4.6)

4.5 Charge Density Screening in Real Space

One of the direct applications of the DF is to calculate the response of the system
under a spatially and/or temporally varying charge distribution. The formulation
is easier in the reciprocal space (§,w), however, we shall eventually obtain the real
space/time response by a Fourier transform. For instance, an external charge distri-

bution gez+(7,t) has the form in (q,w) space as
peat(@w) = [ [ drdte 7 6t () (4.7)
If, in particular, the external charge has no time dependence (i.e., static) then

Pezt(q,w) = 2 6(w) / d%r 9T Qezt(T) . (4.8)

7

Pext(d)

5 This expression was changed by the editorial office of the Physical Review B for stylistic reasons
and unfortunately, published with a minor mistake in the Ref. {63]). The form given here is correct.
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The system’s response t0 pezt(q, w) is in the form of an induced charge density, which

is also related to the DF and the total screened charge density pser through

aN SN Pext(d,w)
psc‘r(Qa w) = Pznd(Q7 w) +pewt(qa w) = . E((f, w) ) (4'9)
so that,
— 1 -
Pind(dyw) = [EW - 1] Pext(q) w). (4.10)

The induced charge density distribution in real space-time under a dynamic external

perturbation becomes

2o [ Pa [dwi 1 o\ I —iwt
Oind(7,t) = W/g [m—l] Pezt(dyw) "7 e 75 (4.11)

For a static external charge gey:(7), this expression becomes

2 o

We shall consider two static external charge density profiles. The first one will be

a disk-shaped uniform distribution as

po 51 <a

Qewt(ﬂ = 4 . (4.13)

L0 e

The corresponding form in reciprocal space becomes

pext (@) = 2mpo f;Jl(a 9), (4.14)

where J, is n-th order cylindrical Bessel function of the first kind. Then using

Eq. (4.12) the induced charge density in real space becomes

tindl) = apo [ dg Ti(a)Tolar) [‘(;T) -1]. (4.15)
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This expression must be evaluated numerically for a given DF. The total induced

charge is determined simply as

o0
Nina = [ &1 ina() =2 [~ drr gina(r) (4.16)

If we repeat the same analysis for a localized (point) external impurity, i.e.,

Qezt(7) = 0(F), then we get

emd) = [ 520 [y —1] Folar). (@17)

The results of these two test cases, namely the disk-shaped positive static impurity
with pg = 1/(m a?) and a chosen as 2/kr and the point impurity are shown in Fig. 4.11
for r; = 0.5 and 4 values [85]. For comparison purposes the RPA is also included
as well as the STLS results. The latter is observed to have a stronger screening and
the discrepancy with the RPA is more pronounced in the distributed (disk-shaped)
external charge density case. The oscillations of the induced charge density (which
are barely visible in this scale) of the point-charge screening are known as the Friedel

oscillations [51, 42].

4.6 Correlation Energy of the 2D Electron Liquid
Wigner defined the correlation energy per electron of the EL as

where E; is the ground-state energy (per electron) of the EL and EgH F is the ground-
state energy (per electron) in Hartree-Fock (HF) approximation. The difference be-

tween the two lies in the many-body wave functions that characterize the ground-state
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Figure 4.11: Comparison of STLS (solid lines) and RPA (dashed lines) for the induced
charge density versus distance in real space for a) a positive point impurity, b) a
positive disk-shaped impurity (see the text). Normal-state EL (gg = 2) is assumed.
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of the EL: the former considers the ezact ground-state, |¥,), ie., By = (Vg|H =
T + U|¥,) and the latter assumes the ground-state of the EL to be that of the non-
interacting EL, which is the filled Fermi sea, [F), i.e., EXF = (F|H|F). EF can be

splitted into the kinetic and potential energy terms as
EFT = (F|T|F) + (FIU|F) = BiF + EEF. (4.19)

The potential energy for the filled Fermi sea is the Coulomb interaction between equal
spin electrons and for this reason it is abbreviated as ez standing for exchange.

The correlation energy is calculated by treating the Hamiltonian artificially as
H()\) = T + AU and performing an integration over the coupling constant A and

subtracting the HF exchange energy. That is,
Ld\
Beorr = [ 5 Bn(X) — BEF, (420)

where

Eint(N) = (T, AT, (N)). (4.21)

We do not include the details of the calculation®, but present the final form for. the

correlation energy of the 2D EL having g4 = 2.

2v2 [ ' ’ 8v2 ‘
Berrap= o [Tariatl) + 35 (422
Excha,nge-cg;rela.tion En. -EHES,
where
1 [®
Y(rs) = 3 /0 dgn [1— Sy (qn)] - (4.23)

Note that to determine the correlation energy at a density rs, we need to know the

static form factor at all intermediate r} values between 0 to r,. For this reason the

® For the details Mahan’s book can be referred for the 3D El [42] and Iwamoto’s paper includes
both 3D and 2D ELs [82].
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Figure 4.12: a) the ground-state energy and b) the correlation energy (both in Ryd-
bergs) of the 2D EL with g4 = 2 versus r; using several techniques as indicated.
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computation of the correlation energy and therefore the compressibility (see the next
section) of the EL becomes a costly task. To reduce this cost, we could have made
use of the fitted G(g) data, however, we avoid this simplification and present the
correlation energy results of the 2D EL in Table 4.2. This table also contains the
results of several other references for comparison. Fig. 4.12 (a) and (b) illustrate
the ground-state energy and the correlation energy of the 2D EL again under several
approaches. Notably, we indicate in Fig. 4.12 (a) the gas-liquid transition density as
the point where the ground-state energy becomes negative. Having made this choice
which is somewhat arbitrary (see Isihara [61]), all approaches (including the Hartree-
Fock) yield a value about r; = 0.7 for this transition density, however, in this work

we use the word liguid for all densities without discrimination.

4.7 Isothermal Compressibility of the 2D Electron Liquid

For the electrical engineers or even for device engineers, the word isothermal com-
pressibility may sound something of only academic concern or highly irrelevant for the
electronic operation. This turns out to be a simplistic approach, actually every effect
is highly electronic in origin. Isothermal compressibility is a thermodynamic quan-
tity; it describes an important macroscopic property of the system. Our system is
the EL; imagine now that we want to compress this system, keeping the temperature
(i.e., isothermal) and particle number inside constant. We must overcome basically
two kinds of forces: one is the pressure exerted on the bounding walls of the system
due to the kinetic energy of the electrons, the other is the interparticle Coulomb
and exchange forces that resist to compression. To explain the latter just recall that

equal-spin particles do not like to get closer in space, which the compression wants
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Table 4.2: Correlation energy (in absolute value) of the 2D EL with g4 = 2 using
several techniques: STLS (our results), QMC-TC ([75]), STLS-M (Mahan ’85 [64]), -
STLS-J (Jonson ’76 [86]), Freeman’s diagrammatic calculations CCLAD (Freeman
’83 [87]), and Ring (Freeman 78 [88]).

r, | STLS | QMC-TC | STLS-M | STLS-J | CCLAD | Ring |
0.0 039 | 0.393
0.5 | 0270 | 0.268 0.275 0.250 028 |0.274
1 | 0216 | 0220 0224 | 0211 0.22 | 0.231
125 | 0197 | 0.203

1.50 | 0.182 | 0.189 0.192

175 | 0.169 | 0.177

2 | 0.159 | 0.166 0.170 | 0.155 0.16 | 0.185
2.25 | 0.149 | 0.157

2.5 | 0.141 | 0.148

3 | 0127 | 0.135

4 | 0107 | o0.114 0.108 0.11 | 0.141
5 | 0.093 | 0.099

6 | 0.082 | 0.088

7 | 0.074

8 | 0.067 | 0.072 0.066 | 0.064 |0.103
9 | 0.061

10 | 0.057 | 0.061

15 | 0.041 | 0.044

16 | 0.039 | 0.042 0.038 | 0037 |0.072
17 | 0.037

18 | 0.036 | 0.038

19 | 0.034

20 | 0.033 | 0.035
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to achieve.
Again we do not include the intermediate steps but present only the final expres-

sion for the compressiblity of the 2D EL (see the previous footnote).

KgD \/i"'s 1 3 OEcorr2D 4 62Eco'rr 2D
=1-— 2o TN —_— 4.24
Kp » x 8| o, T a2 |’ (4.24)

where E oy 2p in this expression should be in Rydberg units, and KgD is the isother-
mal compressibility of the 2D free Fermi gas, which is used for normalization purposes.
We consider the inverse compressiblity (just as in the inverse static DF case) due to
the ease in plotting this quantity rather than the reciprocal. Observe that, having
determined the correlation energy, we additionally require a double differentiation
with respect to r; to get the compressibility expression.

There is an alternative method of determining the isothermal compressibility
‘which is much easier to compute once the static DF is known. At this point we
quote Iwamoto.[82]: “The requirement that the response of the system to a static
long-wavelength perturbation (a uniform compression) must give the compressibil-
ity which is obtained thermodynamically from the ground-state energy provides a
constraint on the long-wavelength behavior of the static screened response function
and hence G(q)”. There is an ezact relation betwéen the compressiblity and the

long-wavelength limit of the static DF as [42]
(}i_ﬁ% €(g,0) = 1+ U%¢) n? K, (4.25)

where n is the particle density, and this relation is valid for any dimensions. The

normalized compressibility in terms of the static DF for 2D EL becomes

Kop .. [ qa B }
= lim{ L (e(a.0) - 1}, (4.20)
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where grr = 2/a% is the Thomas-Fermi wave number for 2D EL (with gg = 2). We
now list the specific forms of the normalized inverse compressibility for the choices of

RPA, Hubbard and STLS:

0
K =1, (4.27)
Kap ) ppa
KgD Ts
i) = 1= 4.28
(K2D)Hub. \/i ( )
0
(%) = 1-Vr,y(rs) (4.29)
2D/ srLs

where (rs) = 1 [5°dgn [1 — S(ga)]. Also note that the RPA static DF in the long-
wavelength limit behaves just like the noninteracting Fermi gas so that the ratio
comes out as unity.

In summary, we have two choices for computing the compressibility of the EL and
they should yield the same result; this requirement is called the compressibility sum-
rule. The inevitably approximate nature of the DFs cause the violation of this rule
by most of them. We illustrate this point in Fig. 4.13 by calculating the normalized
inverse compressiblity using the energy and the long-wavelength static DF approaches.
As in the 3D EL case [42] STLS violates the compressibility sum-rule which was in

fact, reflected in the poor agreement with the QMC data in the long- wavelengths.

4.8 Overscreening

Fig. 4.13 illustrates that all of the techniques (other than RPA via static DF) agree

upon the fact that eventually the compressibility of the 2D EL becomes negative; their
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Figure 4.13: The isothermal compressibility of the 2D EL with g4 = 2 versus r;
using several techniques. Two alternative approaches, the energy differentiation and
long-wavelength static DF are used as indicated.
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discrepancy is about the critical density at which this occurs. A negative compress-
ibility has a very drastic physical consequence: the system wants to get compressed
without any need for an external force. Obviously such a system cannot be struc-
turally stable; it should collapse beyond this critical density. The stability of real
systems (such as metals, semiconductors) is established by the positive background
[75]; recall that in the EL model we assume the positive background to be rigid, which
cannot respond to any perturbation. For this reason, we can call this peculiar effect
as the negative electronic compressibility, to spare room for the ionic contribution.
The speculative nature of this subject has recently changed, by the announcement
of Eisenstein and co-workers about the measurement of a negative electronic com-
pressiblity of a 2D quantum well, which is actually a quasi-2D structure [89]. Very
recently, Cambridge group also reported their results [90] on the compressibility of
the quantum wells, confirming the previous experiment, but claimed to be with better
accuracy’. Furthermore, it is pointed out that, for the compressibility of quantum
wells with large well widths, the contribution of the Hartree band bending term is
sizeable. As a matter of fact, the theoretical predictions of Gold and Calmels’ [91] on
the compressibility of quasi-2D quantum wells ignoring this term is shown to be in

large disagreement with the experimental data [90].

Negative compressibility is intimately related to the negative long-wavelength
static DF. Figs. 4.6, 4.8 (b) indicate the negative g—zone of the static DF. As Dolgov
et al. [92] have pointed, a negative static DF does not contradict with the causal-
ity, as a matter of fact, this feature is shared by most of the techniques beyond the

RPA including the QMC. The physical consequence of a negative static DF is that

" We are thankful to Prof. B. Tanatar for informing us about this work.

84



an external impurity can be screened by more than the equal amount of opposite
charge. This effect is sometimes named as anti-screening (see, for instance, Ref. [93]),
however, here we prefer the word overscreening. A curious point that has not been
addressed in the literature is the driving mechanism of this effect, which we recently
raised in a previous work [85]. To illuminate this point, we first investigate different
physical systems that show an overscreening. First of all overscreening is not limited
to i) 2D ELs, it exists in 3D EL as well (see, for instance, Fig. 4.3 (b)), moreover, ii)
this effect is present also in Bose liquids [94], furthermore, iii) classical liquids show
overscreening too [95]. These diverse examples reveal that overscreening is not due
to a i) dimensionality effect, or to a ii) quantum statistical effect, or to a iii) quan-
tum mechanical effect, respectively. A common feature in all these example cases is
that overscreening is observed for low particle densities where the strong potential
energy dominates the system behavior, which leads us to conclude that overscreening
is driven by a liquid-solid transition. This subject is still premature and an important
initial step is to determine the phase diagram in the density-temperature plane of the

“normal” electron liquid.
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CHAPTER 5

QUASI-TWO-DIMENSIONAL ELECTRON LIQUID:

HETEROJUNCTIONS

Research in 2D electronic systems has been driven mainly by the technologically im-
portant structures such as silicon-inversion layers which actually forms the basis of the
metal-oxide semiconductor field effect transistors (MOSFETSs) and modulation-doped
field effect transistors (MODFETS or also named as HEMTs) [96]. The geometrical
and physical parameters that define the actual realization of these 2D structures also
bring additional challenges to their characterizations. In addition to these highly
important transistor structures, in 2D, novel physical effects have recently been ob-
served such as high T, superconductivity in Copper Oxide layers, and the integer and

fractional quantum Hall effects [97, 61, 3, 98, 99].

In this part of the thesis, our aim is to present an accurate and systematic char-
acterization of the dielectric properties of the quasi-2D (Q2D) EL in real hetero-
junctions where the electron distribution can penetrate to both sides of the inter-

face. The charge distribution is based on a variational approach proposed by Bastard
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[100, 101, 102]. The accurate characterization of the Q2D EL is formed by two steps.
The first step is the variational determination of the confined electron energy states
and the associated wave functions; this requires a self-consistency as the confinement

potential is in part, due to trapped electrons!

. In mathematical terms, we simply
have a coupling between the Possion’s equation and the Schrodinger equation, so
that both have to be satisfied simultaneously. As a matter of fact, most of the solid-
state problems are defined by coupled equations and need a self-consistent solution.
The second step utilizes the single-electron wave functions to obtain the Coulomb
form factor which determines how much the bare Coulomb interaction differs from its
strictly 2D value, due to the extension of the electrons along the confinement direc-
tion. The image charges arising due to background dielectric constant mismatches at
the material boundaries need to be included as well. The Coulomb form factor is the
key ingredient for an accurate DF of the Q2D EL. The DF of the Q2D EL, which is
our main result, is restricted to the so-called electrical quantum limit (EQL), where
only the lowest subband along the confinement direction is populated?. To assess
the validity region of the EQL and the influences of higher subband populations on
the Coulomb form factor, we actually consider a two-subband populated case. In
the following section we begin by presenting the general framework of the variational
self-consistent treatment of the Q2D EL for any number of filled subbands. Choosing
the GaAs/AlGaAs heterojunction as the canciidate Q2D system, we give the DF for

wide ranges of electron and ionized acceptor densities. We also fit analytical expres-

sions to our data for the efficient use of these results by other researchers [110]. The

! The self-consistent potential produced by these electrons is commonly called the Hartree

potential.

2 We refer to a very recent work [103], discussing somewhat formally, the effects of higher subbands
on the DF.
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variational expressions for a heterojunction with two occupied subbands are deferred

to the appendix section.

5.1 General Framework for the Self~-Consistent Variational

Characterization of the Q2D Electronic Structure

Our aim is to determine, for a given 2D free carrier density (nyp), the subband wave
functions (g;’s), and the Fermi energy Er. Strictly speaking this requires a full 3D
numerical characterization. We rather, follow a variational approach that is sim-
pler but yet highly accurate. However, this variational approach becomes extremely
cumbersome for more than two populated subbands.

As in any problem in quantum mechanics we first need to introduce the Hamilto-
nian (within the single-band effective mass approximation):

K _, hd
H = —th - ?'d—z + UID(Z) + Ue_e(Z) + Uba,'r(z) (51)

where V7 is the transverse Laplacian, Urp is the potential energy due to ionized
dopants, U,_. is the so-called Hartree potential produced by the subband electrons
and Uy, is the barrier potential energy resulting from the conduction band offset at
the heterojunction. As seen from this Hamiltonian the electron is free to move in the
z—1y plane, so the transverse eigenstates are 2D plane waves forming a continuum and
the correct enumeration requires the 2D density of states (DOS). The confinement

along the z—direction gives rise to subbands along the z direction.

h2
H q}i,kz,ky (z,y, Z) = [Eq, + vy (kﬁ + k;)] \Il'i,km,ky (z,9, z), (5.2)
\I’i,kz,ky (37, Y, Z) = T S (z)a (53)

where A is the normalization area in the z — y plane.
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Now we concentrate on the z—problem and apply a variational strategy. The
self-consistency actually comes into play when more than one subband is populated
(i.e., beyond the EQL), so, for generality we relax the EQL approximation. We now
outline the formulation for a fized 2D electron density, with N,; subbands being
occupied. As a matter of fact, we do not know in advance Ny, neither the density

of electrons (ngp;) in each subband. But formally we can write,

Nsub

nap = Y Napy (5.4)
i=1
Ep

mps = [ Dap(B)©(Br — Ei) dE, (5.5)

where Dyp is the 2D density of states including the standard spin degeneracy [104]

m*

Dyp(E) eyt

(5.6)

so that

*
Nop,; = % (Er — E;) ©(EF — E;), (5.7)

where m; is the subband effective mass to be disclosed later.

The first step in the variational procedure is to choose appropriate variational
subband wave functions ;(z, A;) with \; being the variational parameter. For nota-
tional simplicity we shall assume each subband wave function to have one variational
parameter -A, but in our implementation this will be more than one. These subband

wave functions must satisfy the following orthonormality condition

400
/_oo $n(2) sm(2) dz = dnm , (5.8)

for all subbands n, m, where d, 4, is the Kronecker delta.
The potential energy term Up,,(z) in the Hamitonian reminds us that there are

interfaces (physical discontinuties) in the geometry. For illustration purposes we
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assume that we have an interface along z = 2. In general, this forces us to specify
different forms for ¢;(z) on both sides of the interface. Then, we need to impose the

following two continuity conditions at the interface

c7'(‘2)|zb" = Ci(z)lz;}-, (59)
m?l(z) c%(i(Z) = m?l(z) %Ci(z) N (5.10)

where the first one ensures the single-valuedness of the probability and the second
guarantees the continuity of the particle current. |

Having disciplined the variational wave functions with these conditions we can
now outline the recipe for the self-consistent loop for a given nyp.

o First we guess N,,; and subband energy levels E? for i = 1,--+, Ngyp. (Suc-
cessfull guesses can be made if the process is first initiated from densities where EQL
holds and gradually increasing the density keeping track of the energy levels.)

e Fermi energy and subband populations are then determined as

wh?
Ei+ —mep1 = Ep, (5.11)

m

wh?
ENyw + ——m2DN,,, = EF, (5.12)
mNsub
and

n2p,1 +N2p2 + -+ N2p,N,,, = N2D- (5.13)

These constitute (Ngyp + 1) equations for the same number of unknowns.
e Then we determine the total system energy per particle as the sum of the kinetic

and potential energy terms, which are
Noub

1 .
(T)sys = . ;nzp,i (il T|ss), (5.14)
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N

(UroT)sys = Z D,i ($ilUrp + Uper + Ue elSi)s (5.15)
i=1

where the 1/2 term in front of the U,_, term is to avoid the double counting of the
electron-electron interaction in the fotal system energy.
o Now we minimize the total system energy per particle and determine the varia-

tional parameters A;’s accordingly.

Esys(Ala Tty ANsub) = (T>8y8 + (UtOt)3y8° (5'16)

We denote the particular A; values that minimize Fsy; a5 Ajmin-

o Knowing A; min’s now we determine the subband energies E7**¥ as
E;(zew = (Cz()\z,mm)lf + UID + Uba'r + Ue—eICi()\i,min) )a (5-17)

where U,_, actually depends on all variational parameters, A;’s.

This loop has to be iterated till subband energies converge, that is to say

1 Nyup
42 Z |EPew — E2M| < ¢, (5.18)

where € is a suitable small positive threshold number. The common suggestion in any
recursive algorithm is to use a mixture of the n’th and (n — 1)’th iteration results to
assure convergence at the expense of longer execution time. For this reason, we can
mix the subband energies as
_;_ Epew 4 _;_ o,
Finally as promised we mention the subband effective mass which is actually a

wave function-weighted sum of the two region masses as

mt = [/;zb dz |g,(z )2 +/+°0 |5 (z :l 1, (5.19)

where mp (mY) is the conduction band effective mass for the material that resides

in the region z < z, (2 > z).
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5.2 Variational Wave Functions for a Penetrable-Barrier

Heterojunction

The electrons from ionized donors in the barrier side of a modulation doped hetero-
junction are trapped in a wedge-like well formed by a step barrier due to conduc-
tion band edge discontinuity on one side, and the potential due to presence of the(
transferred electrons and ionized acceptors on the other [105]. The one-dimensional
quantum confinement gives the Q2D nature to the system and behaves remarkably
different than ideal 2D and 3D systems. In handling the many-body effects in hetero-
junctions we avoid some critical simplifications that have been used in the past such
as infinite barrier height [106], [107], [108] (which is a reasonable approximation only
for Si inversion layers) and no ionized acceptors within the channel [109] (which is in
fact not the case in practise). For an accurate account of the electronic distribution in
heterojunctions, we use Bastard’s variational approach that was tested previously in
determining the subband energies [102]. We do not mention the particular assump-

tions and the solution of the Poisson’s equation but refer for these to Bastard’s work

[101].

5.2.1 Electric Quantum Limit

Bastard proposed the following variational form for the lowest subband ; (z) allowing
penetration to the barrier region, (z < 0) [101]

4
Myern?/2, forz<0

Gi(z) = J . (5.20)

| Mi(z+ z0)e™%/2, for z >0
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Invoking the continuity of ¢(z) and m‘l(z)d%q (2) at z = 0 and the normalization

of 61(2), [T dz|c1(2)|?> = 1, yields the following three equations,

20

M, = Niz,

2

= mg
b+K‘b1mB

(5.21)

(5.22)

B3

%

2222
1+bzo + 552 (

) (5.23)

Bastard also set s51 = 24/2mpUs/ £2 and used b as the only variational parameter.

Here U, is the barrier height (conduction band offset), i.e., Uper(2) = Uy O(—2). We

tested this claim at two different densities nop = 2 x 101 and 7 x 10! cm—2 by

keeping r;; both as fixed (at the suggested value) and as a variational parameter.

The results are listed in Table 5.1. First note that when ;1 is treated as an additional

variational parameter, the total energy per particle, Eyy, is further lowered which

is the natural characteristic of variational approaches. We observe that Bastard’s

choice is reasonable for the EQL, however, especially at nop = 7 x 10'! cmm™2 the

subband energy deviates more than 1 meV if this parameter is also optimized. Note

Table 5.1: The effect of k;; on several energies. (O) designates that the parameter is
optimized, and (F) means that the paramater is kept fixed at that value.

nep (cm™2) 2 x 1011 7 x 1011

B 0.0148 (O) 0.0149 (O) | 0.0208 (O) 0.0205 (O)
- 0.0763 (F) 0.0800 (O) | 0.0763 (F) 0.0694 (O)
Ep (meV) | 39.543 39.557 84.662 84.361

Ey (meV) | 32.717 32.730 60.826 62.771
Esys (meV') | 24.165 24.158 41.143 41.084

that My, N1 and 2 also depend on b through Eqgs.(5.21)-(5.23). b is determined by

minimizing the fotal system energy. A closed form representation of b is not possible,
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unlike the Si-inversion layer [105], however, the minimization can easily be achieved

numerically.

5.2.2 First-Excited Subband

The EQL breaks down for the GaAs/AlGaAs system beyond the density 7x 10!l cm~2,
so we now include the first-excited subband in our treatment, to explore higher den-
sities. The commonly used variational form for the first-excited subband allowing

penetration to barrier region is

4

Myero22/ 4 for 2 <0

2(2) = < . (5.24)

{ No(z+ 21) (z + z)e"%*/2, for 2> 0

Here c is the variational parameter, similarly ky; can either be kept as an addi-
tional variational parameter or fixed at the suitable value /2mpUy; /h%. Refer to
the appendix section for the lenghty variational energy expression. We compare
in Fig. 5.1 the ground-state and first-excited state wave functions at the density
ngp = 2 x 10'2 cm™2 for the cases of two parameter (b,c) and four parameter
(b, ¢, kb1, Kp2) optimizations. The difference can be observed in the barrier region.
In the same figure, the lower plot shows the subband energies and the Fermi energy
as function of the electron density. Note that beyond the critical density marked
by an arrow, E, falls below the Fermi energy and begins to be populated. We also
show the predictions of the EQL on E; and Ep; the latter is seen to be represented

reasonably well to higher densities than the former.
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Figure 5.1: The upper plot illustrates the ground-state and the first-excited state
wave functions. The lower plot shows the density variation of subband and Fermi
energies.
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5.3 Coulomb Form Factor for a Penetrable Heterojunction

In the 2D EL the interaction potential in reciprocal space is taken to be 2we/q, where
q is the wave number. This potential is obtained by taking the 9D Fourier transform of
the 3D Coulomb interaction which is 1/R, R denoting distance in real space [57]. For
the case of a Q2D system the charge distribution along the third dimension modifies
the effective 2D interaction from 2we/q to F(q)2we/q (to be shown later). F(q)
is the Coulomb form factor describing the effect of the finite spread of the charge
distribution along the confinement direction over a region where the background

dielectric constant is discontinous due to different materials on both sides.

X

Figure 5.2: The geometry for the Poisson’s equation.

Following the approach in the previous section we use the variational charge dis-
tribution that can leak into the barrier region and calculate the function F(q) ac-
cordingly. We first recall the electrostatic potential due to a point charge @, at a
distance d (along the 2-axis) from the interface formed by two semi-infinite dielectric
media with permittivities e4 and ep (see Fig. 5.2). Solution of the Poisson’s equation

subject to continuity requirements at the interface, z = 0 results in an electrostatic
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potential of the form [48],

L % €a—€p_ Q
€A ( R2+(d—-z)2 + €eateB \/Im) , 2 Z 0

P(R,2) = ¢ . (5.25)

4

2 Q
k €ateB \/R2+(d—z)2’ z S 0

This result will now be used in constructing the effective 2D Coulomb interaction

energy between two (charge) distributions n(R, 2) and n(R', ')

Ugep(R—R') =
2 o0 00 23 Bl _ 21

EL g [Par [ 2EANRS)_ eaen n() ne) }
€A 0 0 \/IR_erz_*_(z__z;)z 6A+€B\[R—R’|2+(z+z)2

L& /0 s /0 & n(R, z) n(R, 2 LEB—ca n(R,z) n(R,#)
B |J-o J-w |§—R’[2+(z—z’)2 €A+ e€B \/Iﬁ—ﬁ’|2+(z+z’)2

(R, 2) n(R,2)
+€A+€B {/ dz/ dz \/'R RI|2+ z_zl)2

*° ,_ n(R,z) n(R,2)
+/_°°dz/0 dz\/lR_Rr|2+(z_zl)2}

(5.26)

The first two terms in Eq. (5.26) represent direct and image interaction of the charge
distributions on the right side of the interface (2 > 0). Third and fourth terms
represent the same interactions for 2 < 0 region. The last two terms which are in
fact equal, represent the direct interaction between charge distributions on opposite
sides of the interface.

The charged-particle distribution is n(R, z) = n(z) = |¢1(2)[2, where ¢ (2) is given
in Eq. (5.20). The 2D Fourier transform of Ugap (R— R') is easily obtained using the

result

—igF
/ S 2T lalg (5.27)



2 — 2 2 _ 8 2
Uqzn(q) = 2;: (11 +AZCB Iz) + = (13 + Mu) b I, (5.28)

€atep geB €4+ €p g(ea +€B)
with,
o0 o o] : '
I = / dz/ d2 N*(z + 2)*(2' + z0)%e e b e712=le, (5.29)
0 0
(o.2] o0 ; ’
L= / dz/ dZ N*(z + 20)2(2' + z0)2e %707 e~ (z+2)), (5.30)
0 0
0 0 , ,
Ir = / dz / d Mtem ) g=ls=7ld (5.31)
—o0 —o0 ’
0 0 , ,
I =/ dz/ d2 Miere(#+7) g2 +2) (5.32)
S
o0 0 ' ‘ !
Iy = / dz/ d2' M2 N2 (2 + z)2e~%2e~ (=74, (5.33)
0 —00

These integrals are straightforward and the Coulomb form factor is obtained as

1 1 1 1
Flo) =3 (1 + )Il+2 (1 - a) Lt (1 + >13+2 (1 - 5) Is+2I5, (5.34)

where,

26 [(b+q) (b+q)? (b+g)p?

1 [ 42 622 4 1 [ 122 12 4
+ [z°+z°+z°]+()3[z°+ 2+ ]

(20)2 [(b+q) (b+q? (b+g)?® (b+q) (b+q)?2 (b+q)?
1 242, 12 1 24
T @) [(b +q B+ q)2] RN CTSER O3 } (5.35)
— 5 22y 2 1?

=N [(bfq) T (b+q)3] ! (5-36)

M4
I3 = PR (5.37)

M4
= [Tk (5.38)

_ M2N? % 22 2

~ (m+9) [(b o "o B q)3] (5.39)
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In Eq. (5.34) €4 and ep are the background dielectric constants of the well-acting
and the barrier-acting materials respectively. The bare electron-electron interation

potential energy for this Q2D system becomes

2me?
Uqan(9) = — . F(qg), (5.40)

where € = (e4 + €8)/2 and ¢ is the 2D wave number associated with the spatial

variation along the 2D sheet.

COULOMB FORM FACTOR
°© © © o o
(&) s (3] [+2] -~

)
()

0.1 L 1 1 L I 1 1
0 0.5 1 1.5 2 25 3 3.5 4

Figure 5.3: The Coulomb form factor F' and the effect of the image terms as a function
of wave number ¢ (in units of k) for the electronic densities 7,=0.8 and 20. The
full lines apply to GaAs/AlGaAs heterostructure having e4=13 and eg=12.1. The

dashed lines refer to the same system but with e4 = eg=12.55 so that no image term
appears.

The terms containing I and Iy in Eq. (5.34) represent the image interaction re-
sulting from the different permittivities on both sides. Their effects decrease when
the permittivity contrast diminishes; an example is the GaAs/AlGaAs system con-
sidered in Fig. 5.3 for two different electron densities (see the following section for
the material parameters used). The Coulomb form factor becomes more important in
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high electron densities (see Fig. 5.3) where the in-plane particle separation is compa-
rable to the extension of the charge distribution along the confinement direction. The
expression for F(q) in Eq. (5.34) will especially be useful for heterojunctions with a
high permittivity difference and a low barrier height.

Finally, we consider some limiting cases: the effective 2D interaction Ugap (R—R" )

must reduce to ideal 2D case as |E — B'| — oo

IR—IIgIll—)ooUQzD(R R) = l_.ez_ I—?:’I ( ” +GB) [/ dzn( z)] GBIR 7
2 00
( 6A+EB) U dzn(z)] (€A+€:|R_R,,|/O dzn(z) /_oodz’n(z’).
(5.41)

Using [°n(z)dz =1— [°_n(z')dz’ in Eq. (5.41) leads to the desired result,

e? 2
lim U, R-FR e . 5.42
P L - - Tpyprapes 52)
As a consequence the Fourier transform gives
27e?
li = 43
sim Uqan(q) = = = (5.43)

so that limy,0 F(g) = 1 as can be observed in Fig. 5.3. This also indicates that all

of the interactions are properly accounted for in Eq. (5.28).

5.4 Q2D STLS

We discussed the STLS technique for the strictly 2D case in Chap. 3; in going from
2D to Q2D the only modification (within the EQL) is the replacement of the 2D
Coulomb interaction energy by the effective 2D interaction due to finite extension of

the charge distribution along the confinement direction. The LFC in the case of Q2D
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STLS reads

Gawla) = [[ 22 TEL B2 55— . (5.4

27 F qnPn
A change of variables leads to a substantial improvement in the execution speed of

the STLS algorithm. Using &, = p;, — ¢;, in Eq. (5.44) leads to

acos¢p+1
vV1+a?+2acos¢’

(5.45)

Goanla) = ﬁ% /0 ™ Gt [1-S(8)] /0 "o F (q\/l +a? + 2acos ¢)

where a = t,/an.
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Figure 5.4: Ggap(g) of Q2D EL versus wave number q (in units of kr) for r; values
0.8,1,2,3, 4,5, 10, 15, and 20. Solid lines: STLS and dashed lines: calculation using
the fitted form for Ggap(q); see Eq. (5.53) with the values from Table 5.2.

In Fig. 5.4 we present the self-consistent STLS Ggap(q) results for a wide range
of electronic densities given in terms of r;. 7, is the effective interparticle spacing
defined as ry = 1/a%s/Tnap where nop is the 2D electronic density and a% is the
effective Bohr radius given by a; = ;n-g— %2- € is the background average static dielectric

constant and m* is the effective mass of the electrons considered, and the free electron

mass is denoted by mg. We consider GaAs/AlGaAs heterojunction as the physical
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system with the parameters mg = 0.07mp, mp = 0.088myg, €4 = 13, eg = 12.1
and U, = 0.3eV (corresponding to an Al mole fraction of 0.3) which were used by
Stern and Das Sarma [111]. For a} we used € = 12.55 and m* = 0.07my, giving
ap = 9.49nm. The conduction band offset, U, was measured by some groups to be
around 0.225eV (in contrast to 0.3eV) [112, 113, 114]. We have observed that our
results are not sensitive to the deviation of Uj in this range. In Fig. 5.4 the interval
rs = 0.8 — 20 is shown with an ionized acceptor density of Nyep = 0.46 x 10* cm™2.
For ry < 0.8 the higher subbands start to be populated which was not taken into our
analysis.

For the 2D EL, STLS G(q) becomes proportional to g as ¢ — 0 [63] whereas in
3D case it is proportional to ¢® (see, for instance, Ref. [115]). In the Q2D case we
observe that (see Fig. 5.4) for low 7, values small-q behavior is close to quadratic and
as s increases this behavior goes towards a linear one indicating an approach to a
2D character.

Gold and Calmels also reported their results on Ggap(g) for GaAs/AlGaAs het-
erostructure [109]. Their treatment is based on STLS but with essential discrepancies

compared to ours. They imposed the local-field correction for 2D and Q2D to be of

the form

1.402 ¢
[2.644 C%,(rs) + 22C2,(rs)]1/2

GESp(z) =r2l® (5.46)

where z = Eq;’\/?ég and the coefficients C5 and Chy were tabulated [109]. They as-
sumed no penetration to barrier region in the Coulomb form factor and also neglected
the presence of ionized acceptors in the well-acting region. Especially, the form used

in Eq. (5.46) enabled them to reduce the computational effort appreciably, however,

their results are in strong disagreement with ours for r, > 1 and g ~ 2kr both in
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Figure 5.5: The comparison of the full STLS Q2D local-field correction (solid lines)
with that of Gold and Calmels’ (dashed lines) given by Eq. (5.46) as a function of
wave number ¢ (in units of kr) for r,=1 and 10.

2D [63] and Q2D [110] as can be seen in Fig. 5.5. The form in Eq. (5.46) cannot
accommodate the full STLS G(q) leading to a poor DF and screening properties.
The ionized acceptors in the well region play a primary role and need to be included

in the treatment.

5.5 Q2D Dielectric Function

The function of practical importance is the wave number- and frequency-dependent
(longitudinal) DF, €(g,w) that not only determines the response to a weak exter-
nal perturbation but also possesses information on the many-body dynamics of the

system. With the knowledge of the LFC, €(g,w) is given as

65’12133((1’ W) = 1—-Ugap(q) 71-O(q, w)[l - GQ2D(Q)]
1+ Ugap(q) 70 (g, w) Gqap(9)

, (5.47)

where 70 (g,w) is the 2D zeroth-order polarization insertion, the Stern function [62],

[63]. Apart from 7T0, 2D and Q2D quantities behave differently. This is illustrated
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in Fig. 5.6 showing inverse static DF, ¢ !(g,0) within RPA and STLS for both 2D
and Q2D cases. To assess the effect of penetration of the charge distribution into the
barrier region, we compare U, = 0.1eV case with U, — oo in Fig. 5.7 at r; = 0.8. It
is observed that for GaAs/AlGaAs-like heterojunctions, this penetration has a minor
effect on the static DF. In Fig. 5.8 the inverse static DF of GaAs/AlGaAs heterojunc-
tion is plotted in the density range r; = 0.8 — 20 and for Ngep = 0.46 x 101 cm—2,
Notably, the GaAs/AlGaAs heterostructure shows an overscreening effect (i.e., € < 0)
for rs > 3. The onset of overscreening shifts to higher electron densities for the strictly
2D case [63], due to enhanced particle correlations in lower dimensions. As mentioned
in the previous chapter, the negative DF suggests a negative compressibility of the
Q2D EL [42] and in fact, recently this has been experimentally observed on a GaAs

quantum well structure [89].

1

0.5

INVERSE STATIC DIELECTRIC FUNCTION

Figure 5.6: Comparison of ideal 2D and Q2D inverse static dielectric function,
1/e(q,0) as a function of wave number ¢ (in units of kr) for r,=3. Solid lines:
STLS, dashed lines: RPA. For Q2D EL, GaAs/AlGaAs heterostructure is used with
Ndepl = 0.46 x 101 cm~2,

We would like to include some necessary remarks about this DF. The expression in
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Figure 5.7: The effect of the barrier height, U, on the inverse static dielectric function,
1/e(g,0) as a function of wave number ¢ (in units of kr) for ry=0.8. Solid line:
Uy = 0.1eV, dashed line: U, — oo. Other parameters for the heterostructure are
given in the text.
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Figure 5.8: The inverse static dielectric function of Q2D EL, 1/¢(q,0) as a function
of wave number g (in units of kr) for r; values 0.8, 1, 2, 3, 4, 5, 10, 15, and 20. Solid
lines: STLS and dashed lines: calculation using the fitted forms for Ggap(g) given
by Eq. (5.53) and F(q) given by Eq. (5.55) with the values in Table 5.2.
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Eq. (5.47) only gives the Q2D EL DF. The total screened electron-electron interaction
is
2me? 1
Uq2p,ser(9,w) = F(q)

eq 5 (a,0)

(5.48)

The dielectric responses of the polar lattice and the valence electrons are contained in
the average background dielectric constant €& Here we have used the static dielectric
constant (see, for instance, our definition of a% in this chapter), hence, it is assumed
that the polar lattice can follow the external excitations. Obviously this limits the
validity range of this work to w < wrg, with wro being the transverse optical phonon
frequency. This limitation is relaxed if the background lattice does not have a polar
character. For the particular system that we are considering , the DF is expected to
be valid up to about 1 THz. In principle, however, the static nature of the LFC of

the STLS techniaque can further limit this upoer freauency.
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Figure 5.9: The electron distribution along the confinement direction in arbitrary
units. The total electron density is 1 x 10'? cm~2. Other parameters are as given in
the text. Solid line refers to the two subband populated calculation and the dashed
line is based on the EQL.

Finally, the DF given by Eq. (5.47) takes into account the polarization of the
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electrons in the lowest subband. Even though the presently available experiments
on GaAs/AlGaAs systems mainly fall into this regime [116], [117], the technological
trend aims to populate the higher subbands to increase the amount of current car-
ried in modulation doped field effect transistors by using different materials such as
InGaAs/InAlAs (for a review see [118]). When the higher subbands are occupied the
DF should necessarily be a tensor of the form €;;(g, w), where ¢ = j terms account for
the intrasubband polarizations and ¢ # j terms represent intersubband couplings. To
assess the performance of the presented approach regarding the electrical quantum
limit, we extended the variational wave function technique to include lowest two sub-
bands and determined the subband populations by invoking self-consistency between
Poisson and Schrodinger equations. In Fig. 5.9 we show the charge distributions along
the confinement direction for a density of 1x10'? cm~2. The solid curve represents the
correct charge distribution containing contributions from the lowest and first-excited
subbands. The dashed curve, on the other hand, sticks to the electrical quantum
limit which actually breaks down beyond Nop = 7 x 10" cm~2. It is important to
observe that the difference between the two curves is quite marginal. This is simply

because the percentage of the first-excited subband electrons is 4.7% at this density.

5.6 Plasmon Dispersion

The elementary excitations in electron liquids are electron-hole pair creations and
collective excitations knowns as plasmons [53]. The latter can be characterized with
the knowledge of the wave number and frequency-dependent DF, ¢(g, w). Particularly,

the plasmon dispersion relation, wy(g) is available through the zeros of the dielectric
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function;

€(q, wp(g)) = 0. (5.49)

Inserting the expression for €(q,w) from Eq. (5.47) leads to the following closed form

expression for the plasmon dispersion

_gu(z+1) |, 4
Vp(q) - 9 an + 22 +2Z’ (5'50)

where
7= dn , (5.51)
V2r; F(g) [1 — Gan(g)]
and
vp(a) = T = T, 652

which is valid in the range [0, gn mqez] Where gn mas satisfies vp(qnmaz) = Gnmac +
G2 maz/2 and outside this region plasmons dissociate to electron-hole pairs so that
collective excitations are no longer long-lived. The Eq. (5.50) reduces to the ideal 2D
result [64] when F(g) — 1. Fig. 5.10 shows the plasmon dispersion for GaAs/AlGaAs
heterostructure with Ngep = 0.46 x 10''cm=2 and for several r; values. Even though
the plasmon dispersion can be experimentally probed, such as, through far infrared
spectroscopy [116], the available experimental results pertain to high electronic den-
sities and small wave numbers (¢ < kr). Therefore the effects of the LFC have not

yet been verified.

5.7 Analytical Expressions

In this section, we present our fitted expressions to Ggap(g) and F(q) applicable to

GaAs/AlGaAs heterojunction in the density range s = 0.8 —20. As a fit to Ggap(q)
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Figure 5.10: The normalized plasmon energy (E,/Er = 2vp) as a function of wave
number ¢ (in units of kr) for ry values 1, 5, 10, and 20. Solid lines: STLS and dashed
lines: calculation using the fitted forms for Ggap(g) given by Eq. (5.53) and F(q)
given by Eq. ( 5.55) with the values in Table 5.2. The dotted line marks the onset of
the electron-hole continuum.

(shown in Fig. 5.4 by solid lines), we tried a simple form containing three fitting

parameters,

Ghin@) =4 (1-exp -5 1), (5.53)
where A, B and C are the fitting parameters. The optimized values are tabulated in
Table 5.2 for Ngep = 0.46 x 101 cm~2. The third parameter, C is introduced based
on our observations on the long-wavelength behavior of Ggap(g). In ideal 2D, C was
equal to one and in 3D case C was equal to two. Optimized C values in Table 5.2
show this interpolation between r; = 0.8 to 5, but then this trend is lost to enable a
good fit for the whole q values. The fitted expressions are plotted in Fig. 5.4 by the

dotted lines. To assess the quality of the fitting we use the following error estimate

between a target vector, T'(i) and the fitted vector Ty (i):

T(1) ~ Tyuli)

o 100. (5.54)

1N
error(%) = N Z
=1
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Accordingly the deviation of the fitting in Fig. 5.4 is less than 2.5%.

Table 5.2: Fitting parameters A, B, C, and D used in Eqgs. (5.53) and (5.55) as a
function of r; for the characterization of the Q2D EL in a GaAs/AlGaAs heterostruc-
ture. The ionized acceptor density is Ngep = 0.46 x 101! cm™2. See text for the other
parameters used for GaAs/AlGaAs system.

T A B C D

0.8 0.6243 0.4923 1.5462 1.2750
1.0 0.6549 0.5005 1.5079 1.1542
1.5 0.7250 0.5274 1.4342 0.9285
2.0 0.7857 0.5519 1.3950 0.7690
2.5 0.8380 0.5763 1.3644 0.6497
3.0 0.8794 0.5999 1.3512 0.5571
4.0 0.9405 0.6461 1.3274 0.4321
5.0 0.9779 0.6855 1.3264 0.3494
6.0 1.0012 0.7209 1.3356 0.2922
8.0 1.0225 0.7792 1.3683 0.2197
10 1.0294 0.8223 1.4097 0.1752
12 1.0305 0.8597 1.4545 0.1454
15 1.0295 0.9007 1.5014 0.1158
20 1.0257 0.9555 1.5185 0.0863

The Coulomb form factor, F(g) also requires a laborious work for GaAs/AlGaAs

system. This function can be fitted by a simple expression

1
1+ Dg,’ .

Fyit(q) = (5.55)

containing a single fitting parameter D which is tabulated in Table 5.2 for the same
Ngepr value.

The knowledge of Gg; p(@) and Fy;i(q) is sufficient for representing the DF (see
Eq. (5.47)). The performance of fitting for €~!(g,0) is available from Fig. 5.8 (shown
by dotted lines) where the error, using the estimate in Eq. (5.54) is less than 1%.
Similarly in Fig. 5.10 the plasmon dispersions with the use of the fitted forms are

shown in dashed lines, the fitting error being much less than 0.1%.
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Table 5.3: The constants used in Egs. (5.56)-( 5.59) for different ionized acceptor den-
sities, Ngepr in cm ~2, The parameters characterizing the heterostructure are chosen

suitable to the Ga.As/ AlGaAs system.

Naept a1 az as by by b3 a di da
(x10'1)

0.146  0.6384 0.2213 0.5555 0.3023 4.9907 -0.0435 0.6891 4.3194 2.4659
0.46 0.6770 0.2794 0.6372 0.2575 2.6283 0.1623 0.7914 2.7325 1.3674
1.47 0.6953 0.2302 0.6888 0.2253 1.4913 0.3043 1.1675 1.6566 0.6898
4.69 0.6887 0.1802 0.7418 0.1978 0.6977 0.4195 1.5437 1.0004 0.3518

We have observed that taking the barrier height U, = 0.225eV does not signif-
icantly affect the parameters A,B,C, and D. However, Ny takes an important
part in both G(g) and F(q), so we repeated the self-consistent Q2D STLS technique
for Ngep = 0.146, 1.47, 4.69 x 10! cm™? and performed again fittings. Rather than

specifying these results in tabular form we present below fitted functions of r, for

A,B,C, and D.
Afit = 1.02 [1 — alrgze~asrs] , (5.56)
Byt = by In(bars) + bs, (5.57)
Cyit = 0.42r;¢ 4 1.03 912, (5.58)
dy
Dejp= ——— )
fit = ¥ ri1s (5.59)

the constant parameters contained in these expressions are tabulated in Table ‘5.3
for the considered range of Ny, values. With the expressions in Egs. (5.56)-(5.59),
inverse static DF can be generated to an accuracy of about 1% except r; = 2 case
having an error about 9%. Similarly with these equations plasmon dispersion can be

recovered to an error much less than 0.1%.
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CHAPTER 6

MOTT TRANSITION AND IMPURITY BINDING
ENERGIES IN THREE- AND TWO-DIMENSIONAL

ELECTRON LIQUIDS

6.1 Introduction

One of the long-standing problems of the condensed matter physics is the metal-
nonmetal (MNM) transition [119, 120] introduced by Mott [121]. An important sub-
class of MNM transition consists of the so-called quantum phase transition, which is
a continuous phase transition that occurs at zero temperature, driven by non-thermal
effects with changing some parameter in the Hamiltonian of the system [122]'. On
the theoretical side of the problem, three major lines of thought have dominated:

i) Mott’s original idea based on the overlap of outer shell electronic wave functions

! “This parameter might be the charging energy in Josephson-junction arrays (which controls

their superconductor-insulator transition), the magnetic field in a quantum-Hall sample (which con-
trols the transition between quantized Hall plateaus), doping in the parent compound of a high-T,
superconductor (which destroys the antiferromagnetic spin order), or disorder in a conductor near
its metal-insulator transition (which determines the conductivity at zero temperature)” [123].
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[121], referred to as Mott transition ii) Hubbard’s approach based on his famous tight-
binding Hamiltonian with hopping between the sites [124] known as Mott-Hubbard
transition, and iii) Anderson’s wave function localization due to disorder {125, 126]
referred to as Anderson transition. The first two transitions are driven by many-body
effects, whereas the last one predicts MNM transition by considering a single electron
over a sufficiently strong random potential. However, it has not been possible to
assess the individual role played by many-body and disorder effects on the observed
MNM transitions in real systems [119, 120]. Another aspect of the MNM transition is
the role of dimensionality on the transition. The scaling theory of localization claimed
that there should be no true metallic states of a strictly 2D electronic system with
arbitrary amount of disorder [127]. This result has recently been challenged by both
theoretical [128] and experimental [129, 130, 131; 132] works. The latter attribute
the disagreement between the two to the absence of many-body effects in the scaling

theory of localization.

Our aim in this work [133] is to assess the many-body and in particular ex-
change effects on the MNM transition, both qualitatively and quantitatively in three-
dimensional (3D) and two-dimensional (2D) electronic systems based on the elec-
tron liquid model. We proceed along the lines of Mott’s original idea as opposed
to Hubbard’s tight-binding Hamiltonian. This path has also been followed by other
researchers [134, 135, 136, 137, 138, 139, 140] and their works can be grouped as
variational [134, 135, 136, 137] and numerical [138, 139, 140] treatment of the bound-
electron wave functions. The former is appealing due to its simplicity but may not
be suitable to use in problems such as the Mott transition as the resultant bind-

ing energy will inevitably be higher than the true ground-state energy. Martino et
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al. [138] have shown this to be the case by comparing Krieger and Nightingale’s
[134] variational hydrogenic wave function treatment with their numerical method.
Nevertheless, 3D Mott transition has still been dealt with variational techniques by
replacing the trial wave functions with the Hulthén’s form [141], resulting in a better
agreement with Ref. [138]. In all these works several forms of dielectric screening
have been employed such as Thomas-Fermi [134, 135, 136], Random Phase Approxi-
mation (RPA) [134, 135, 136, 137], and Hubbard-Sham [138, 135, 139]. Very recently
Borges et al. [142] dealt with 3D Mott transition using STLS dielectric function, with
Hulthén variational wave function. In our work we employ the numerical approach
due to mentioned drawbacks of the variational techniques, and consider the 2D Mott

transition as well.

We observe that Friedel oscillations [51, 42] associated with the screening of an
impurity potential play an important role in the Mott transition and impurity binding
energies. Appreciable differences are seen between our ~numerical approach based on
the computationally-efficient solution of an integral equation and the standard hy-
drogenic variational treatments. These results will have implications on the accurate
characterization of impurities as well as excitons [69] upder the presence of free carrier
screening. Furthermore, to the best of our knowledge, exchange effects have not been
studied elaborately in regard to MNM transition, especially in 2D. The full strength
of our formulation can now be utilized; especially, by means of the degeneracy pa-
rameter of the EL, the exchange effects are investigated in the spectrum ranging from
spin-polarized and single-valley EL to six valley EL. In 2D, the existence of the Mott
transition is observed to be controlled by the degeneracy parameter, where no Mott

transition exists for the spin-polarized and the normal-state single-valley EL.
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6.2 Theoretical Approaches

In dealing with MNM transition, the electron-electron interactions are treated start-
ing from two opposite limits [119]: in one method the dielectric formulation [36] is
used assuming that donor impurity electrons form an almost free EL, whereas the
other considers electrons tightly bound to a lattice of impurities with nearest neighbor
hopping leading to an impurity band formation; as mentioned in the previous section
these two approaches are discriminated by the names Mott and Mott-Hubbard tran-
sitions respectively. We focus on the Mott transition and consider a single neutral
impurity? being immersed into an EL, and monitor the binding energy of a bound
electron to the ion as the density of the screening electrons making up the EL is
changed. The reasoning behind this standard model is that for doped semiconduc-
tors, the valence electrons of each donor impurity will also screen other impurity
sites so that effectively an EL will be formed; so, we investigate whether an impurity
can trap an electron with the screening of the EL present. In some systems such as
quasi-2D modulation doped heterostructures the impurity and the free carrier con-
centrations within the active 2D channel are not equal and/or the impurity scattering
on the electronic motion is important. There, our model will not be applicable and
we refer to the relevant work of Serre et al. [143]. The Mott transition in the model
we are using is controlled by three effects: i) the attractive bare Coulomb interaction
of the ion that enhances the binding, ii) the kinetic energy of the bound electron
that tries to overcome the binding and iii) the screening of the bare interaction by
the “free” carriers of the EL that weakens the binding of the electron. The Mott

transition under this picture, is driven by the winning of the last two over the first

2 The chemical identity of the impurity does not play a role in our treatment.
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as the concentration of the free carriers in the EL is increased.

It seems appropriate to stress once again that, we work at zero temperature, and
for the 2D case, aiming for general results, we assume no extension along the third
dimension (i.e., strictly 2D), where electrons still interact with Coulomb 1/R potential
[61]. We mainly use 3D effective Rydbergs (Ry*) for the energies and denote them
with an overbar. Also we introduce length-related reduced variables by scaling with
the effective Bohr radius, a}; and denote them by the subscript r such as a, = a/a},

gr = a)q, for variables having length and reciprocal length dimensions respectively.

6.2.1 Variational Expressions

For completeness we first list the expressions for the hydrogenic variational approach.
In 3D case Krieger and Nightingale [134] used a variational approach for the Mott

transition based on a hydrogenic 1s trial wave function for the bound electron as
o(r) = 7= e~"/e, (6.1)

with a being the variational parameter, whereas Panat and Paranjape [56] used the

same form in 2D with radial variable r being replaced by the polar radial variable p

po(p) = 4/ % e ?le, (6.2)

The corresponding binding energies are given as

as

— 1 _ é oo dq, 1 _ _ 1
Eo(ar) = E = /[; [(a_aqj_)z + 1]2 [€3D(q'r) 1] ar’ (6.3)

in 3D and




in 2D case, where bare interaction is added and subtracted to achieve faster decaying

integrand as suggested in Ref. [56].

6.2.2 Integral Equation Formulation

In contrast to simplicity of the variational techniques, they must be used with care in
problems such as the Mott transition, where the variational energy only yields an up-
per bound for the true ground-state energy. As a better alternative, we present
below an approach that leads to an integral equation for which we also develop

computationally-efficient operator techniques.

6.2.2.1 Formulation for 3D

The bound electron feels a centrally symmetric radial potential, and for the lowest

1s state, Schrodinger equation in 3D becomes

:'23% ("3 g%]?(r_)) + [Bo ~ Tapser ()] ta(rr) = 0. (6.5)

Usp,ser(rr) is the screened potential energy due to a singly-ionized attractive impurity

in real space to be computed as

(6.6)

» . 1/3
— 2 4 oo S (‘Zn% 2] ) 1
U3D,3cr(7'r) =——+ _'/ dg, [1 - —} s
e wJo GnTr €3p(qn)

where 7, is the reduced distance in real space; again we add and subtract unscreened
Coulomb potential for computational reasons [56].

The principal problem in the numerical solution is the infinite domain of the wave
function. As a remedy, Martino et al. [138] noting the difference with the hydrogen

atom problem due to the presence of screening, set Us D,scr () to zero for distances

greater than some large value R. Then, for » > R the wave function for bound states
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becomes [139]

e lzm*
’l,b()(’l") ~ r withx = FIEOI, (67)

upto a normalization constant. The continuity of the wave function together with its
derivative at r = R, or equivalently, the continuity of the logarithmic derivative of

the wave function yields

dlny(r) _ 1
el I K= 5 (6.8)

Eq. (1.5) is a two-value differential equation problem dealt with shooting type nu-

merical techniques [145]. We, rather, prefer to convert the radial Scrédinger equation

to an integral equation as

Tr
D) = ()~ [ ' TG, (69)
Tr JO
where
S(ry) = / dr'r” Tap ser(rh) + T|E0|a
and
T(r,) = r, 22%0(rr) (6.10)
dry

The energy eigenvalue is determined from I'(R,) = —R4/|Eo| — 1. In our work we
extracted the energy eigenvalue E( from the above equation by sampling the wave
function in the 5% neighborhood of R, = 10. Eq. (1.9) is a nonlinear integral equation
of the Volterra type in the fixed-point form (refer to, for e.g., Ref. [146]). However,
we observed very slow convergence of the standard techniques; for this purpose we

first express the Eq. (1.9) as an operator equation as

P[[(ry)] = D(rs) — S(ry) + / dr' T(r')2 = 0 (6.11)
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and resort to operator form of the Newton’s method [147] which requires the inverse
operator of the derivative (Fréchet derivative [147])3 of the operator P evaluated at

the function I'(r,). This inverse operator acting on I'(r,) is given as

— 2 r{n—1)

{P, r" } n—o / dT"F('I") / d’l"”F('r” . "m L dT(n)F(T(n)),
(6.12)

here the prime on the left hand side designates a derivative, whereas, the primes on

the right hand side are used to produce dummy variables. We retain the first two

terms and approximate the final equation as

Taeu(re) = Talrr) = PLa(rl + = [ ' Tar)PLa(r)],  (613)

where T, denotes I" at the n®” iteration; we determine I'y+1 by mixing I'ye, and Ty,
The final form, then offers a rapidly converging algorithm, once we initiate the process
at low densities (like r; = 20) using the variational wave function as the initial guess

and gradually increase the density towards the Mott transition point.

6.2.2.2 Formulation for 2D

2D Schrodinger equation for the ground-state wave function reads

1d (Pr dipo (pr)

pr dp; dp; ) + (Bo - Tan,ser(er)) Yolor) = 0. - (6.14)

The expression for the screened potential energy due to a singly-ionized attractive

impurity in real space, which shows Friedel oscillations is

- _ 2 / e [1__}, 6.15
2D,scr(pr) o T rodas Jo Y (ans \@pr) e2D(dn) (6.15)

3 I would like to thank Prof. M. Kuzuoglu for suggesting me to use Newton’s technique in
operator form and Prof. K. Leblebicioglu for helping me with the Fréchet derivative and refering me
to useful literature.
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Figure 6.1: Potential energy distribution due to a screened, singly-ionized attractive
impurity versus distance. A normal-state, single-valley EL is considered (gg = 2) at
several densities.

where p, is the reduced 2D radial coordinate and Jy is the zeroth-order cylindrical
Bessel function of the first kind. See Fig. 1.1 for the screened potential energy at
several values of the 2D electronic density; also note the evolution of the Friedel
oscillations as the density decreases. As in 3D, we work with the function I'(p,) =
prdIntpg/dp,, rather than with the wave function itself; in this way an exponentially
decaying function is mapped to a linearly decreasing one. The nonlinear integral

equation satisfied by I" becomes

Pr T /)2
L(or) = S(pr) — f dp’—(L)—, (6.16)
0 o
where
Pr — 2-E-
S(pr) = /0 dp'p' Uap ser(p) + 3"—'—2—‘]', : (6.17)
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which is to be computed with very high precision. A nonlinear equation needs to be

solved for the bound-state energy eigenvalue, of the form

I(Ry) = —Rer/| Bol K1 (Bry/ | Bo]) / Ko (Brr/ | Eo)), (6.18)

where K, is the n‘th order modified Bessel function of the second kind.
To achieve much faster convergence than the fixed-point form, the operator P is

introduced as

') _
— =0

We give the final form of the iterative equation we use in 2D which closely resembles

PIL(pr)] = T(pr) = S(pr) + | " 4 (6.19)

the 3D case

Tavalpe) = Talp) = PIn(or)] +2 [ af 2P (). 020

6.3 Results

6.3.1 3D Electron Liquid Results

We investigate the transition of the binding energy of the impurity electron from
bound to unbound state to estimate the Mott transition density. In Fig. 1.2 we plot
the variational (hydrogenic) and integral equation solutions for the binding energy;
the deviation is clearly visible towards the transition point. In Table 1.1, we list the
so-called Mott constant defined by a*Bnég , a8 a function of the degeneracy parameter
gq from spin-polarized electrons to six valley degeneracy as in the conduction band
of silicon. It can be seen that for g, greater than 4 the exchange effects do not lead
to appreciable changes in the Mott constant. The spin-polarized EL (gg = 1) has the

highest Mott constant, which is due to poor screening of the impurity potential by

the participating electrons having large Pauli holes around them.
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Table 6.1: Critical Mott transition density, r,. of the 3D EL. The corresponding Mott
constants, defined as a‘l‘;nég are indicated in parentheses. The numerical results based
on the integral equation solution are more reliable (see text).

Degeneracy factor: gq4 1 2 4 8 12
(spin pol.) (1-valley) (2-valley) (4-valley) (6-valley)
Variational-(H): 7, 2.25 3.57 4.11 4.13 4.05
(Mott Cons.) (0.275) (0.174) (0.151) (0.150) (0.153)
Numerical: 7, 1.44 2.70 3.62 3.80 3.75
(Mott Cons.) (0.430) (0.230) (0.171) (0.163) (0.166)
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Figure 6.2: Binding energy of a bound impurity electron within a normal-state, single-
valley (g4 = 2) 3D EL versus the Mott constant, defined as a}‘gn;g’ . Solid line refers to
integral equation solution which gives a lower energy than the variational treatment

based on the hydrogenic wave function denoted by the dashed lines.
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There is also a large amount of experimental data in the 3D MNM transition; see,
for instance, the compilation by Ref. [148]. The differences between our results and the
experimental data are due to our simplifications as disorder-free electronic system and
the isotropic effective mass for the bound and screening electrons. The latter is pre-
dominantly effective in multi-valley materials such as silicon and germanium. We refer
to other works considering the mass anisotropy problem [136, 137, 142]. However,
in single-valley systems the conduction band effective mass is close to isotropic such
as the Al;Ga;_;As system. Katsumoto et al. [149] using an n-doped Alg3Gag.7As
system measured the Mott constant as 0.21 which is somewhat close to our estimate
of 0.23. We think that the difference is due to disorder apparently effective in this
system. Gold and Ghazali [140] have also dealt with 3D Mott transition using STLS
type screening and numerical solution for the bound electron wave function. They
reported for the same 3D Mott ’consta,nt the value 0.25. We attribute the difference
between our and their results to the fact that these authors enforced Hubbard-like
form for the local-field correction which differs from the exact STLS local-field cor-

rection leading to a discrepancy in the dielectric function.

6.3.2 2D Electron Liquid Results

The dimensionality plays a crucial role in almost all electronic properties and the
Mott transition is of no exception [119]. Particularly, the role of Friedel oscillations
is enhanced in 2D; see Fig. 1.1. However, quite commonly the in-plane wave function
for (quasi) 2D bound impurities [56, 150, 151, 152] in the presence of free carriers (i.e.,
screening) has been chosen to be of e™#/* type where X is the variational parameter.

In Fig. 1.3 the hydrogenic variational probability distribution is compared with that
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of the integral equation solution. The screened attractive potential energy is also
added in this figure to aid the comparison. The probability distribution obtained by
integral equation solution is lower in the first repulsive part of the potential energy
and higher in the neighboring attractive region than the variational solution; in turn,
the electron is expected to be more tightly bound. This is seen to be the case in Fig.
1.4 showing the 2D impurity binding energy for the spin-polarized and normal states
respectively. Furthermore, Mott transition is not observed for these two cases at zero
temperature. For gg = 4, the variational approach predicts a Mott transition in the
range r; = 0.38-1.81. The integral equation solution suggests that this window is
narrower and situated around r, = 1 as can be seen in Fig. 1.5(a). For g4;=8 and 12
Mott transitions are observed (see Fig. 1.5(b)) like the 3D cases at the rs values 1.52
and 1.48 respectively based on the integral equation solution; the variational approach
again leads to higher values. From these three figures we can also conclude that the
hydrogenic variational technique is successful for the small values of the degeneracy

factor, gq4.

Fig. 1.4 shows an interesting strengthening of binding at the high density limit,
7s — 0. The screened interactions for several values of gg at r, = 0.02 are plotted
in Fig. 1.6. In this limit, the Friedel oscillations diminish and the screening is de-
termined by the exchange effects. Hence, for the spin polarized case (gg = 1), the
screening electrons cannot approach to the ion due to their mentioned Pauli holes
resulting in poor screening of the jon potential and enhanced binding. As the de-
generacy parameter, g4 is increased to 12, the exchange effects and the Pauli hole
lose their importance and the screening is more effective than the spin-polarized EL,

which leads to the existance of the Mott transition. Fig. 1.7 compares the effect of
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Figure 6.3: Probability distribution of the bound electron wave function within a 2D
EL having r; = 1 and g4 = 2. Solid line is based on the integral equation solution
and dashed line refers to 2D hydrogenic wave function, i.e., Eq. (1.2). Also shown by
dotted lines is the screened potential energy experienced by the bound electron.
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Figure 6.4: Binding energy of a bound electron within a 2D EL versus r;. Calculations
are based on the integral equation solution (solid lines) and 2D hydrogenic variational
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several dielectric functions (RPA, Hubbard, and STLS) on the impurity binding en-
ergy. Apart from some sizeable quantitative differences, they all agree about the lack

of the Mott transition for g =2. It is seen that STLS dielectric function has stronger

screening power leading to a weaker binding. Note the agreement of the three for
rs — 0 as expected. Hubbard follows STLS at the high density end where exchange

effects are dominant. Finally, from Fig. 1.5 we observe that RPA does not predict a

Mott transition for g4 = 4 case.
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Figure 6.6: Potential energy distribution due to a screened, singly-ionized attractive

impurity versus distance. The effect of the degeneracy factor g4 is illustrated from
spin-polarized (gq = 1) to six-valley degeneracy (gq = 12); all at a very high density

(rs = 0.02) of a 2D EL.

The recent experiments [129, 130, 131, 132] using MOSFET structures detected

a possible MNM transition around r; ~ 8 — 9. As this value is quite large when

compared to the 3D counterparts, the MNM transitions in 3D and 2D seem to be
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RPA, Hubbard and STLS screenings; all computed by solving the integral equation.
Also the STLS screened binding energy is shown based the 2D hydrogenic wave
function labeled by STLS(H). .
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governed by different phenomena. In the light of our work we think that, the ex-
perimentally observed critical transition density will not be obtained by the Mott
transition mechanism alone even with the Coulomb softening due to finite exten-
sion of the charge distribution in real systems included. As a matter of fact, recent
theoretical works stressed the role of disorder in the observed 2D MNM transition,
and identified the insulator phase as a disorder driven electron solid [153, 154] and a
metastable frozen electron solid [155, 156]. It needs to be stressed that the mystery

behind these experiments is not yet unraveled.
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CHAPTER 7

CONCLUSIONS

7.1 Contributions

The workhorse of the conventional electronic systems is the electron liquid model.
We consider three- and two-dimensional ELs and obtain the longitudinal DF using
the self-consistent local-field correction scheme of Singwi and co-workers, known as
STLS. Our treatment is general, in the sense, we consider arbitrary spin and valley
degeneracies. As an interesting remark, if the valley degree of freedom is replaced
by the isospin!, then our formulation is directly extended to non-relativistic nuclear
matter problem; its isospin-polarized case is the neutron matter which has astro-
physical importance in neutron stars [157]. Our preliminary investigation suggests
that the dielectric formulation of the 3D nuclear matter with the STLS technique is

promising. However, unlike the condensed matter physics, in the nuclear physics bare

1 Actually, we first introduced an additional isospin freedom to tackle with the nuclear matter
problem, then used this simple idea in the EL problem to account for the arbitrary valley degeneracy.

The nuclear matter problem was suggested by Prof. S. Ayik from Tennessee Technological University
(USA).
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nucleon-nucleon interaction is not known quantitatively. Furthermore, its form is ex-
ceedingly complicated, with tensorial, velocity- and spin-isospin-dependent features
[158]. A great deal of effort is necessary to fully implement the STLS technique to

the nuclear and neutron matter problems.

Turning back to our actual problem, the electron liquid, knowing the wave number-
and frequency-dependent DF, variety of many-body related terms such as the self-
energy, carrier lifetime, and mobility are routinely accessible. For this reason an
accurate dielectric characterization is vital for the equilibrium and electronic trans-
port properties. We pursue a systematic assessment of the STLS DF by comparing it
with QMC data and the polarization potential theory of Pines and co-workers both in
3D and 2D. Apart from the violation of the compressibility sum rule, which shows it-
self with a poor long-wavelength behavior, and the degraded form towards the Wigner
solid densities, STLS displays an impressive performance within the practical electron
densities. We can summarize our observations on the STLS DF as, a good agreement
with the QMC for intermediate and small wavelengths over all realistic r values, and
almost non-negative pair-correlation function. However, for the low-dimensional, ar-
tificial electronic structures, the most important virtue of the STLS technique, is its
self-cqnsistent scheme which does not require any fitting to experiment or simulation
data (in contrast to the pseudopotential approach), where QMC data. is not available.
In the 2D normal-state single-valley EL case we offer analytical forms for the DF and
the LFC to enable a widespread use of the STLS technique by other researchers. We
calculate the correlation energy and the compressibility and compare them with the

published results.

We also apply the STLS technique to characterize the dielectric properties of
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the quasi-two-dimensional EL, in particular GaAs/AlGaAs heterojunction within the
EQL. We pay special attention to an accurate treatment and consider the penetration
of the Q2D EL to the barrier-acting material; the corresponding Coulomb form factor
is also handled rigorously. The DF and the plasmon dispersion of the Q2D EL are
presented for a wide range of electron and ionized acceptor densities, including the
analytically fitted expressions to these results. We also investigate the effect of the

first- excited subband population on the Coulomb form factor.

We finally apply the STLS dielectric screening to the Mott transition in 3D and
2D ELs. In the last three decades many theoretical works have claimed to have
reproduced the experimentally observed MNM transition densities in 3D electronic
systems. Each successive work then declared !;he previous agreement to be accidental
due to some simplification in the treatment. Admittedly, Mott transition model
alone cannot account for the observed MNM transition in real systems, however,
it serves to the solution of the problem by revealing the role of electron-electron
interactions. Not to sacrifice accuracy, we avoid variational techniques and choose
to formulate the problem that lead to an integral equation for the bound electron
wave function. We propose a rapidly converging Newton’s method in the operator
form. The exchange effects are investigated from spin-polarized single-valley EL to
six-valley EL. In the 3D case, it is seen that the exchange effects are dominant for
the spin-polarized and normal-state single-valley EL, and gradually Mott constant
begins to be less sensitive for larger valley degeneracies. Based on our isotropic
effective mass model, the closest agreement with the observed MNM transition is for
the n-doped Al;Ga;_;As system, having a small mass anisotropy. The difference

may be attributed to the disorder effects. In 2D, electron-electron correlations and
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particularly, the Friedel oscillations are enhanced and lead to interesting physics. We
observe that an attractive singly-ionized impurity can bind an electron in the presence
of screening, and hence, no Mott transition exists for spin-polarized and normal-state
single-valley EL, at zero temperature. The binding energies for these two cases are
seen to be increased as ry — 0 due to exchange effects. The wave function based
on the integral equation solution indicates that the bound electron favors the well
regions of the Freidel oscillations as compared to the variational approach. We believe
that the same behaviour will be operative in the 2D excitons under screening, and
there, the hydrogenic variational form needs to be improved, especially for the high
degeneracy cases. Similarly, the particular form of the dielectric screening employed
has a first-order effect on the Mott constant and binding energies. Finally, we think
that disorder effects and the finite extensions of the electronic distribution along the

third dimension play a determining role in reproducing the experimentally observed

[129, 130, 131, 132] 2D MNM transition.

7.2 Improvements

Having mentioned what has been accomplished by this thesis, we now would like
to discuss possible improvements and future directions, to aid potential researchers.
For the electrial engineers, a formulation at zero temperature is of limited use. The
screening needs to be extended to room temperature [159, 160]. The EL model in our
work assumes mass isotropy, but most semiconductors having a multi-valley conduc-
tion band (such as Si and Ge) possess highly anisotropic dispersion characteristics
(i.e., E — k relation) near the conduction band minima. Borges et al. [142] have very

recently taken this step to incorporate the mass anisotropy to STLS screening. In
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our treatment the positive background which represents the ionic lattice, is taken to
be rigid without any polarizability. The lattice screening, or in technical terminology,
electron-LO phonon (Frohlich) coupling can be taken into account easily within the
dielectric formulation [42]. Similarly, the weak disorder effects are phenomenologi-
cally accounted for easily based on the relaxation-time approximation, again within
the dielectric formulation, as proposed by Mermin [161, 162]. The improvements that
we mentioned up to this point are well within the reach, and as a matter of fact, have
been implemented by several groups. A more challenging improvement is to incorpo-
rate a dynamic LFC, that is to say, to account for the inertia of the Pauli-Coulomb
hole around each electron. Even though several recent attempts have been made to-
wards this direction [159, 163], this field has not become mature yet [55]. A secondary
improvement to STLS-type treatments is the inclusion of the multi-pair excitations.

This point has been particularly stressed in Ref. [73].

7.3 New Directions

We would like to mention currently promising directions in the mesoscopic and low-
dimensional electronic systems; inevitably this section is rather speculative and su-
perficial. A well-defined problem that seems to be easily accessible using our present
formulation is the valley phase transition [61]. The driving mechanism is the com-
petition between the kinetic and the exchange-correlation energies for a multi-valley
EL. As mentioned by Bloss, Sham and Vinter in analysing the Si(100) surface, an
equal population of all valleys minimizes the kinetic energy, whereas the exchange-
correlation energy is lowered when all electrons populate a single valley [164]. This is

a many-body driven phase transition just like the Mott transition; as the electronic
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density decreases, the kinetic energy becomes less dominant and electrons after a

critical density occupy fewer valleys.

Another direction is to explore the fransverse dielectric function of the EL, which
is related to the current-current correlation function [47]. Its importance is that the
transverse DF characterizes the response to an electromagnetic field. Along the same
lines, the photon-assisted transport [165, 166] is a promising field that has technolog-

ical implications, for the least, offering novel millimeter-wave detector possibilities.

For electrical engineers, the subject of quantum transport has gained importance
[4] as the size reduction of field-effect transistors reached the limits of the Boltzmann
transport regime. Quantum transport of interacting electrons is quite an involved
topic with very many alternatives. A conservative approach is the Kubo formalism
based on the retarded current-current correlation tensor which falls into the linear
response framework. The gate lengths in the future transistors is expected to be less
than 0.1 pm, so that very high field transport will be operative. For such applica-
tions, the Kubo formalism does not seem to be applicable, where the transport is far
from equilibrium [167]. As a remedy, the Keldysh formalism which is essentially a
nonequilibrium Green’s function approach has recently regained momentum [168, 25].
These techniques are quite advanced and the controversy in this field still persists,

but this should not distract potential researchers.

7.4 Final Remarks

We would like to reserve our final but important remarks on the fundamental aspects

of our work. As we mentioned in Chapter 3, the dynamo of the (interacting) EL is
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the non-interacting polarization insertion, 7°(g,w). This is simply because the in-
teracting electron liquid is actually based on the soluble model, the non-interacting
Fermi gas (both in 3D and 2D). The EL model that we employ in this work belongs
to the wider class of Fermi liquids [36]. Landau’s Fermi liquid theory is based on the
idea that the interacting system (at least for the low-energy phenomena, at low tem-
peratures, close to the Fermi surface) is governed by the quasiparticles which are still
fermions and carry the same quantum labels as those electrons in the non-interacting
system, but with “renormalized” masses and finite lifetimes. Furthermore, the inter-
actions can also develop new collective modes like plasmons in the EL case [169, 3].
In the past years there have been growing concerns on the applicability of the Fermi
liquid model to several electronic systems. The leading advocate of the non-Fermi
liquid picture is an influential scientist, P. W. Anderson. His main standing point
is that cuprate high-temperature superconductors, above the superconducting tem-
perature T, that is to say, in their normal non-superconducting states do not obey
the Fermi liquid model. The primary difference of non-Fermi liquids is that there
is no quasiparticle type elementary excitations that can be identified with the orig-
inal Fermi surface [70]. For instance, in 1D electronic structures it has been shown
that there are bosonic collective fluctuations named as spinons, carrying spin excita-
tions and holons, carrying the charge excitations[3]. Recall that in Fermi liquids the
quasielectrons carry both the charge and spin simultaneously, however, in 1D systems
an incoming electron (due to electron-electron inetractions and the 1D nature) decays
into such charge and spin excitations, and these excitations propagate with different
velocities, they segregate. Other well-known non-Fermi liquid behviour systems are

2D heterostructures under a high magnetic field that drives the system to integer and
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fractional quantum Hall regimes[98, 99], and the superconducting states of the bulk
and low-dimensional superconductors. These so-called strongly correlated systems,
namely, superconductors, quantum Hall systems, 1D electronic structures, as well as
the disordered systems are not dealt with the jellium EL model, but with the Hubbard
model [42] which was originally introduced to deal with the Mott transition (which we
named as the Mott-Hubbard transition in Chapter 6). The Hubbard model defined
on a discretized space (lattice) [170], is currently a very popular theoretical object
among the condensed matter physicists. In response, the mainstream of research in
the field is the strongly correlated systems analyzed by the Hubbard Hamiltonian.
It seems that intense efforts in this field will lead to a unification of the underlying
mechanism in these diverse systems. No wonder, technological impacts will be revo-
lutionary. Among these new directions, the 3D, 2D and Q2D ELs within the Fermi
liquid framework, to a very good extend, represent the doped semicondqctors and
normal metals in zero magnetic field and with weak disorder. Before embarking on
the controversial and subtle research topics on strongly correlated systems, the core

of the theory had to be mastered, which constitutes the goal of this work.
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APPENDIX A

VARIATIONAL TOTAL SYSTEM ENERGY OF A
HETEROJUNCTION WITH TWO OCCUPIED

SUBBANDS

In this appendix, we include for completeness purposes, the expression for the total
system energy of a heterojunction, allowing for penetration of the charge density to
the barrier-acting region. We assume only the lowest two subbands to be occupied,
with the 2D densities nyp 1 and ngp 3. Throughout this section, all physical quantities
are in atomic units, that is to say, all energies are in Rydbergs (1Ry = moe*/2h?) and
lengths in Bohr radius (ap = h%/mge?). We also der;ote normalized effective masses
in both regions as m} 4 = m%/mg and m}g = mp/mo.

The variational wave functions for the lowest two subbands as proposed by Bastard

are [101]
4

M, eft z/2, for 2 <0

s1(2) $ , (A.1)

\ Ni(z+ z) e %/2, for z>0
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4

M, efv2 %2, for 2 <0

@z) = o . (A.2)

\ No(z + z1) (z + z) e~/2, for z>0

We define the occupation ratio of the lowest subband as

n
L S— (A.3)
n2p,1 + N2p,2

The form of the variational total system energy per electron is given as

(Eror(b, ¢, ki1, k62)) =
occ [(Tz)l + % ((Ue—e,l)l + (Ue—e,Z)l) + (UA)I + (Ubarrier>1]

+ (1 — occ) [(Tz)2 + -;— ((Ue—e,1)2 + (Ue—e2)2) + (Ua)2 + (Ubar'rie'r>2] . (A4)

The terms used in this equation represent the following: (T%); is the kinetic energy
(of the i'th subband electrons) due to motion along the z—direction (the confinement
direction)!, (U4); is the potential energy due to ionized acceptors, (Usarrier)s is the
barrier potential due to conduction band offset, and (U, ;); is the Hartree potential
produced by the j’th subband electrons on an i’th subband electron. The total energy
expression has to be minimized with respect to the variational parameters b, c, Kp1, Kp2-
Now we display each term that goes into the energy expression.

The lowest subband expressions are

M12K,b1 N12

- _ 2.2
(Tz)l = 4m:B + 2mjAb (L+bzg—b z0/2), (A.5)
8 6NZ b2 M?
(UA>1 = lNdepl { b (1 + —bzy + 60) - E_;] ) (AG)
bl

! The z — y plane kinetic energy term does not depend on the variational parameters, and for
this reason, not included in the total energy expression.
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U, M?
(Ubarrie'r)l = ! ) (A7)
Kp1

and

_ 8« N{ (83 25bzy  17b%2% 5 3  biz}
Ue—ex)t = —n2p [b_7 (—4— 5t T+
NZM?
- ,:2 b; (z§b2+2bzo+2)]. (A.8)
b1

For the remaining expressions we define some auxiliary quantities as

KppMrg C

b
d — —;—c’ (A.10)
1 2d4 20
ty = 2dt; + d? 3 .
2 6+ 2dz |:’9b1 ¥ rm + 1+d (1+z0t1)+z0d s (A 11)
2
b _ )" 4 4
i t T
7 o= — g 2) =4 (A.12)
2
by hy" 4 4
t t i
z2 = 2 2 2) 2 ) (A-13)
1
t3 = 25—[24+12zlc+12zgc+2z%c2+8z1z2c2+2z§c2
+222 2 +22 03+ 22N, (A.14)
Ny = (————zl 24 t3) 5 (A.15)
Kp2
M2 = N2 21 22, (A.16)
w; = 21+ 29, . (A.17)
wy = 247 +4n2n, (A.18)
wy = 2122(21+ %), (A.19)
wy = (2122)% (A.20)
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hy

hy

hs

Then, other terms in the energy expresion become

_ Mz2 Kb2 sz 2,2 2
(Ty)y = T +4mrAc3[_h4+2h3+2c (2] + 23)
+4h + 8],
87 M2
(Ua)2 = — Nyepi (ng _T2>’
é Ko
U, M2
(Uba'r'rie'r)z = b2 3
Kp2

Cwi,
c” Wy,
c w3,

C Wy,

hgs+4hs +6hy +48h1 + 120

b
2 (hg +2hg + 18 h; + 48)
65 )
ho +12hy + 36
c4 9
2h1 + 8
c3 ?
1
0_27
1
52‘7
1 2
b3 b2’
6 4z 2
w R
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(A.21)
(A.22)
(A.23)

(A.24)

(A.25)
(A.26)
(A.27)
(A.28)

(A.29)

(A.30)
(A.31)

(A.32)

(A.33)
(A.34)
(A.35)

(A.36)



(Ue-e)2 = —8—Wn2D1N1 N3 [—’Yt3+(—ZT—S7
U0aw; +1208 24w, + 48 Bwr + 247
(b+c)8 (b+¢)®
12wz +68we + 127w,  20ws+4Pws+2vws
(b+c)* (b+¢c)?

2 M2 2 2
Buitayws  yws M3 ( 2 z)] wn

6107 Tbrc NG \b ® B

8« 720 P, 120 (P5 + 2 Py z
(Ue—eo)1 = ——e‘n2D2N2N2 [(b-l— ; ((2:6)64 o)
24(P2+2P320+P4Z0) +6(P1 +2P220+sz§)
(b+c¢)s (b+c)t
2(P0+2P1Z0+P22’§)
(b+ ¢)3

2 2
_2B (4 020 bl (A.38)
”gl

(Ue_e,z)z = ——nap, 2N4 [ (2h4 + 10 A3 + 15 hg + 105 hy + 210)

3P3
1608

+-§2—7(2h4+6h3+6h2+30h1 + 45)

(2hs + 8 g + 10 hy + 60 by + 105)

P
+§—%(2h4+4h3+3h2+12h1+15)

Py

( M2 t3
40

2hg +6hg +Thy +45h1 +93) + N2
2 b2

(A.39)
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