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ABSTRACT 

 

NUMERICAL INVESTIGATION OF AERODYNAMICS OF MISSILES 

WITH WRAP-AROUND TAIL FINS 

 

 

 

Demirtaş, Uğurtan 

Doctor of Philosophy, Aerospace Engineering 

Supervisor : Assoc. Prof. Dr. Nilay Sezer Uzol 

 

 

February 2024, 116 pages 

 

This thesis investigates the aerodynamic characteristics of roll induction for missiles 

with wrap-around tail fins by performing steady-state RANS and unsteady URANS 

and DDES simulations. In RANS simulations, the effects of freestream Mach 

number and angle of attack on the roll moment coefficient are examined and 

compared with the wind tunnel results of Dahlke missile geometry. In order to 

analyze the effect of Riemann solver in unsteady cases, an exact Riemann solver is 

integrated into the open-source CFD flow solver SU2. In DDES simulations, the 

missile with wrap-around fins (WAF) is analyzed for Mach number of 0.5 and an 

angle of attack of 10° by using both exact Riemann solver (ER) and Roe’s 

approximate Riemann solver (ROE). The results show that the ER solver exhibits 

smaller dominant frequencies with larger amplitude than of ROE solver for complex 

separated flow solutions of wrap-around fins. A missile geometry with basic planar 

fins is also used as a validation case for the prediction of static and dynamic 

aerodynamic coefficients by performing RANS and URANS simulations. Due to the 

absence of unsteady experimental validation data for the missile geometries, NACA 

0021 and OAT 15A airfoils are analyzed by both ER and ROE Riemann solvers. 

DDES simulation is performed for NACA 0021 airfoil in deep stall case at an angle 
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of attack of 60°. ER solver shows smaller discrepancy in the frequency spectrum of 

the lift coefficient compared to the ROE solver with the experimental data. The 

URANS simulation is performed for OAT 15A airfoil in transonic shock buffeting 

case at Mach number of 0.73 and an angle of attack of 3.9°. There is no notable 

discrepancy with experimental data in the power spectral density of the pressure 

sensor located in the oscillatory shockwave path on the upper surface of the airfoil 

for both Riemann solvers. 

Keywords: Wrap-Around Fin (WAF), Roll Induction, RANS, URANS, DDES, 

CFD, Riemann solver 
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ÖZ 

 

SARMAL KUYRUK KANATÇIKLI FÜZELERİN AERODİNAMİĞİNİN 

SAYISAL OLARAK İNCELENMESİ 

 

 

 

Demirtaş, Uğurtan 

Doktora, Havacılık ve Uzay Mühendisliği 

Tez Yöneticisi: Doç. Dr. Nilay Sezer Uzol 

 

 

Şubat 2024, 116 sayfa 

 

Bu tez, sarmal kuyruk kanatçıklı füzelerdeki dönme indüksiyonunun aerodinamik 

karakteristiklerini, daimî-durum RANS ve zamana-bağlı URANS ve DDES 

simulasyonları yaparak incelemektedir. RANS simulasyonlarında, serbest akış Mach 

sayısı ve hücum açısının dönme moment katsayısı üzerindeki etkileri Dahlke füze 

geometrisinin rüzgâr tüneli sonuçları ile karşılaştırılarak incelenmiştir. Zamana-

bağlı durumda Riemann çözücüsünün etkisini analiz etmek için, bir kesin Riemann 

çözücü açık-kaynaklı HAD akış çözücü SU2 ile entegre edilmiştir. DDES 

simülasyonlarında, sarmal kanatçıklara (WAF) sahip füze 0.5 Mach sayısı ve 10° 

hücum açısında her iki kesin Riemann çözücü (ER) ve Roe’nun yaklaşık Riemann 

çözücüsü (ROE) ile analiz edilmiştir. Sonuçlar, sarmal kanatçıkların karmaşık 

kopmalı akışları için ER çözücünün ROE çözücüsüne göre daha büyük genliğe sahip 

daha küçük baskın frekanslar sergilediğini gösterir. Basit düzlemsel kanatçıklara 

sahip bir füze geometrisi de, daimi-durum RANS ve zamana-bağlı URANS 

simulasyonları yaparak statik ve dinamik aerodinamik katsayıların tahmininde bir 

doğrulama durumu olarak kullanılmıştır. Füze geometrileri için zamana-bağlı 

deneysel doğrulama verileri olmadığı için, NACA 0021 ve OAT 15A kanat kesitleri 

her iki ER ve ROE Riemann çözücüleri ile analiz edilmiştir. NACA 0021 kanat kesiti 
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için DDES simülasyonu derin stall durumunda, 60° hücum açısında yapılmıştır. ER 

çözücü, ROE çözücüsüne kıyasla taşıma katsayısının frekans spektrumunda 

deneysel verilerle daha küçük bir farklılık göstermiştir. OAT 15A kanat kesiti için, 

zamana-bağlı URANS simülasyonu transonik şok titreşim/darbe (buffeting) 

durumunda, 0.73 Mach sayısı ve 3.9° hücum açısında yapılmıştır. Kanat profilinin 

üst yüzeyindeki salınımlı şok dalgası yolunda yer alan basınç sensörünün güç 

spektral yoğunluğuyla karşılaştırıldığında Riemann çözücüler arasında belirgin bir 

fark gözlenmemiştir. 

Anahtar Kelimeler: Sarmal Kanatçık, Dönme İndüksiyonu, RANS, URANS, DDES, 

HAD, Riemann Çözücü  
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CHAPTER 1  

1 INTRODUCTION  

The tube-launching missiles with wrap-around tail fins exhibit a packaging 

advantage as they do not require any volume allocation for the fins within the 

fuselage, a characteristic not shared by conventional missiles with planar fins. 

However, the asymmetric shape of wrap-around tails induces a roll moment even at 

neutral flight angles. Additionally, the amplitude and physical distribution of shed 

vortices over the wrap-around tails are influenced differently by body blockage and 

flow separation phenomena under non-zero flight angle of attack conditions. Due to 

these peculiarities, wrap-around tails are generally designed rigorously particularly 

in roll autopilot and trim conditions [1].  

Although the induced roll moment is generally two orders of magnitude smaller than 

that of pitch and yaw moments, the smaller roll moment of inertia causes a larger 

angular acceleration in roll axis than the other two axes. Consequently, the roll 

autopilot and roll command must be designed to have more robust response times. 

Additionally, the roll autopilot must trim the induced roll moment for efficient laser 

guidance due to the fact that oscillatory roll motion prevents the laser beam stability. 

1.1 Literature Review on Missiles with Wrap-Around Tail Fins 

Due to the roll moment induction with the packaging advantage of the Wrap-Around 

Fins (WAF) for missiles, there are experimental [1-10] and computational [11-

15] studies, and analysis using aerodynamic/fligth dynamics simulation models [16-

18], and design studies [8, 11, 19] on missiles with wrap-around tail fins in the 

literature, that are mostly available with some limited data, from early studies till 
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today as summarized in Table 1.1 and 1.2 as experimental and computational studies, 

respectively. 

There are experimental studies about WAFs, both in wind tunnels and in free flight 

tests, and free flight model tests (aeroballistic range tests), in the late 1970s and 

1980s for subsonic flow conditions and in 1990s for supersonic flow conditions as 

summarized in Table 1.1. Holmes [2] performed an experimental study to measure 

the surface pressure distribution on wrap-around tail fins of the standard The 

Technical Cooperation Program (TTCP) model missile to understand the roll 

induction mechanism. Dahlke and Flowers [1] extended this experimental study to 

measure the roll moment coefficient under different angles of attack and Mach 

numbers. Lucero [3] performed wind tunnel tests for comparing the performance of 

wrap-around fins and planar fins as control surfaces.  Eastman and Wenndt [4] 

conducted wind tunnel tests on a slender maneuvering missile with four wrap-around 

tail fins at different Mach numbers, at angle of attack of 30 and at several roll angles 

and fin deflections. Predictions with the aerodynamic simulation models also 

compared well with the experiments and showing the differences between the WAFs 

and flat fins. 

Winchenbach et al. [5] analyzed the dynamic instability by subsonic and supersonic 

free flight tests through which the trajectories are measured. They noted that the side 

moment has dynamic unstability in supersonic flights. Abate and Winchenbach [6] 

analyzed the free flight test data for missile models with solid and slotted WAFs. 

They tried to have slots on wrap-around tail fins in order to decrease the roll 

induction without affecting the pitch stability. Vitale et al. [7] performed free flight 

model tests and investigated the shockwave patterns and turbulent bursts forming in 

the boundary layer for supersonic flight conditions, and made comparisons with CFD 

analyses. 

Swenson et al. [8] performed a wind tunnel tests in order to understand aerodynamic 

effects of length to diameter ratio, fin sweep angles, fin thickness and Mach numbers. 

Tilmann et al. [9] analyzed the shock structure and the pressure distribution over the 
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wrap-around fins experimentally in wind tunnel tests at Mach number of 0.9 and by 

performing Euler CFD simulations. In a more recent experimental study, Mandic 

[10] performed wind tunnel tests for different missile configurations with 

wraparound fins and with flat fins to investigate rolling moment coefficients. 

Table 1.1  Summary of Experimental Studies for Missiles with Wrap-Around Fins 

in Literature 

Author Year Experiment 
Mach 

Number 

Holmes, J.E. [2] 1973 Wind Tunnel 0.3 – 1.3 

Dahlke, C.W. and Flowers, L.D 

[1] 

1974 Wind Tunnel 0.3 – 3.0 

Lucero, E.F. [3] 1976 Wind Tunnel 0.65 – 0.98 

Eastman, D.W. and Wenndt, 

D.L. [4] 

1985 Wind Tunnel 0.6 – 1.8 

Winchenbach, G.L., Buff, R.S., 

Whyte, R.H., and Hathaway, 

W.H. [5] 

1986 Free Flight Tests 0.6 – 1.35 

Abate, G.L. and Winchenbach, 

G.L. [6] 

1991 Free Flight  

Model Tests 

0.8 – 1.6 

Vitale, R.E., Abate, G.L., 

Winchenbach, G.L., and Riner, 

W. [7]  

1992 Free Flight  

Model Tests 

2.75 – 5.15 

Swenson, MW., Abate, G.L., 

and Whyte, R.H. [8] 

1994 Free Flight  

Model Tests 

1.03 – 2.96 

Tilmann C.P., Huffman R.E., 

Buter, T.A. and Bowersox, 

R.D.W. [9] 

1997 Wind Tunnel 2.9 

Mandic, S. [10] 2006 Wind Tunnel 0.5 – 0.8 
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In the early numerical studies as summarized in Table 1.2, Bar-Haim and Seginer 

[11] performed subsonic potential flow simulations for the standard TTCP missile 

model at zero angle of attack by using the Vortex Lattice Method (VLM) for the fins 

also with free wake models to investigate the mechanisms for the induced rolling 

moments due to wrap-around fins. Vitale et al. [7] performed free flight model tests 

and Euler simulations for missiles with WAFs and compared the results under 

supersonic conditions. They noted that an anomaly on the variation of pitch stability 

coefficient against Mach number occurs due to the subsonic leading edge flow which 

is accelerated into the supersonic regime. It causes asymmetric shockwave patterns 

for different freestream Mach numbers. Abate and Cook [12] performed Euler 

simulations for a range of subsonic and supersonic flow conditions for missile 

models with WAFs in order to understand the roll induction mechanism and roll 

reversal in supersonic regime. They used de Laval nozzle analogy to explain the roll 

induction and roll reversal phenomena for missiles with wrap-around tail fins. 

In recent numerical studies, Kim et al. [13] investigated the behavior of roll 

characteristics for a standard rolling wrap-around fin missile model (TTCP model) 

under supersonic flow conditions with and without steady-state roll rate condition. 

The computational study was performed by solving 3-D Euler equations and the 

comparisons with the test data and comparisons for the roll damping moment 

coefficients were presented. Li et al. [14] performed a computational study to 

compare the missiles with wrap-around tail fins and conventional planar fins by 

RANS simulations for supersonic flight conditions. They found that there is no roll 

induction with planar fins and the normal force and pitch derivatives differ less than 

1%.  

Mikhail [15] used the available experimental data for the roll damping coefficients 

of missiles with wrap-around tail fins for different Mach numbers and cant angles 

for generating an algebraic correlation to model the roll damping coefficient in 

aerodynamic prediction codes. Tanrikulu and and Mahmutyazicioglu [16, 17] 

analyzed the WAF aerodynamics at supersonic Mach numbers with a flight 

dynamics simulation model and discussed the effect of side moment coupled with 
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the magnus effect for missiles with wrap-around tail fins considering with the base 

cavity. Sharma and Kumar [18] reviewed the CFD analysis of WAFs in the literature 

and summarized the geometries, domain setup, grid generation, and results for WAF 

aerodynamics as a benchmark for future analysis and design studies.  

Table 1.2 Summary of Computational Studies for Missiles with Wrap-Around Fins 

in Literature 

Author Year 
CFD 

Flow Solver 

Mach 

Number 

Bar-Haim, B. and Seginer, A. 

[11] 

1983 Potential Flow 

VLM Code 

0.3 – 0.8 

Vitale, R.E., Abate, G.L., 

Winchenbach, G.L., and Riner, 

W. [7]  

1992 Euler Code 

EAGLE 

2.75 – 5.15 

Abate, G.L. and Cook, T. [12] 1993 Euler Code 

EAGLE 

0.35 – 3.5 

Kim, J.Y., Cho, S., and Lee, I. 

[13]  

2012 Euler Code 1.3 – 3.0 

Li, M., Abbas, L.K., and Rui, X. 

[14]  

2015 RANS – k-ω SST 

Code 

1.2 – 3.0 

 

1.2 Literature Review on Computational Fluid Dynamics 

Computational Fluid Dynamics is commonly used for generating aerodynamic 

database required in guidance, navigation and control systems of missiles [19-26]. 

This database contains six static aerodynamic coefficients for different combinations 

of altitude, Mach number, angle of attack, side slip angle and deflection angles. In 

the early stages of missile design, the aerodynamic database is utilized to develop a 

flight simulator before the first test launch. As the data processing rate of flight 



 

 

6 

computer is limited by the processor speed, the autopilot robustness and the missile 

maneuvarability must be optimized as per the flight characteristics of each missile 

design. Therefore, the accuracy of aerodynamic coefficients generated by 

Computational Fluid Dynamics is of primary importance for guidance and autopilot 

subsystems. 

The conservation equations of mass, momentum and energy are employed in CFD 

analyses for aerodynamic database generation. These equations are strongly coupled 

for compressible flows, necessitating the use of coupled solvers in finite volume 

method . In finite volume method, the domain is discretized into small cells, in each 

of which the cell averages of conserved quantities are changed by the net amount of 

flux divided by the cell volume. 

The fluxes in the Navier-Stokes Equation can be classified as viscous and inviscid 

flux. In the absence of viscous effects, the Navier-Stokes equation transforms into 

the Euler equation, a nonlinear hyperbolic partial differential equation (PDE) in 

which all eigenvalues are real. Due to the nonlinearity in hyperbolic PDEs, there 

exist at least one or more genuinely nonlinear eigenmodes that can have strong or 

weak solutions [27-33]. Rohde [34] investigated the eigenmodes of Euler equations 

for general geometries for finite volume method applications. 

The oscillations on the pressure fields arise due to the turbulent eddies energy 

cascade between different eddy sizes. Since it is computationally expensive to 

resolve all the turbulent eddies as in Direct Numerical Simulations (DNS) until the 

scale of Kolmogorov at which viscous dissipation comes into action to seize the 

energy transfer between cascades, different subgrid scale models such as 

Smagorinsky and Vreman SGS models are used in Large Eddy Simulations [35-37]. 

Although the required grid size for LES is larger than that of DNS, in the wall 

bounded problems the difference decreases sharply, increasing the computational 

cost of LES. For that reason, Spalart et al. [38-40] proposed an hybrid RANS-LES 

method based on the single equation turbulence model. 
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Wilcox proposed and developed two equation k-ω turbulence model in which 

turbulent kinetic energy k and specific dissipation rate ω are solved as per governing 

equations [41]. Menter combined the advantages of two popular turbulent models by 

a blending function that is determined by the closest distance the wall since free shear 

and wall bounded turbulence modelling requires different model parameters [42]. 

In finite volume method, the flux on the cell boundaries is calculated using the left 

and right hand side of the fluxes. Since the first order schemes are highly dissipative, 

second order accurate schemes are generally used. In order to obey the maximum 

principle and total variation diminishing conditions, the second order schemes are 

used with flux limiters. The flux limiter is an active research area in the 

computational fluid dynamics [43-48]. 

After performing the limiters, the flux on each cell interface can be calculated from 

the fluxes on the left and the right sides of the cell interface with a single 

discontinuity known as the Riemann problem. Due to the nonlinearity in Euler 

equations, the exact solution of the Riemann problem requires iterative techniques 

and wave identification to detect the weak solutions. In order to avoid the 

computational cost, there are many approximate Riemann solvers and alternative 

flux methods in the literature [49-62]. 

The most well known Riemann solvers are Roe’s Approximate Riemann solver [49] 

that is explained in detail in the next Chapter. Liou et al. [50-53] developed 

Advection Upstream Splitting Method family for calculating the flux by splitting it 

as the velocity and pressure fluxes. Jameson et al. [54-57] developed a JST central 

scheme with artificial viscosity to avoid the Riemann problem and the limiters. In 

spite of the computational cost of exact Riemann solver, each approximate Riemann 

solver is tested on Sod’s shock tube problem by comparing the result of exact 

Riemann solver [52]. For that reason, an in house exact Riemann solver is used to 

compare with an approximate Riemann solver in a real life CFD problem.  

The errors of approximate Riemann solvers are particularly prominent in unsteady 

cases, low density flows and transonic cases [58-62]. Chiodaroli et al. [63] proved 
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that the admissible weak solutions exist in Euler equations with smooth initial data 

under subsonic flow conditions. As a consequence, the errors on the inviscid flux 

can significantly alter temporal and spatial nature of the pressure distribution over 

the missile surface. Given that the accuracy of the pressure distribution is of 

paramount importance in missile guidance, analyzing the differences between exact 

and approximate Riemann solvers has a practical interest for addressing further 

unsteady aerodynamic problems.  

Palacios et al. [64] developed an open source CFD software package called SU2 that 

combines all different limiters, gradient techniques, turbulence models and flux 

schemes for unstructured grids by C++. There are many steady and unsteady 

validation studies on SU2 including internal and external flows [65-73]. For that 

reason, an in house developed Exact Riemann (ER) solver is added to the open 

source CFD code SU2 for comparing the difference with the built-in Roe’s 

Approximate Riemann (ROE) solver in SU2.  

1.3 Thesis Motivation and Objectives 

This thesis mainly investigates the aerodynamic characteristics of roll induction for 

missiles with wrap-around tail fins by performing steady-state RANS and unsteady 

DDES simulations at different Mach numbers and angles of attack. In order to better 

capture the features of the unsteady complex separated flows of wrap-around fins 

and for better prediction of the aerodynamic coefficients, especially the roll moment 

coefficient, an Exact Riemann (ER) solver is implemented and used and the 

comparisons with the Approximate Riemann (ROE) solver and with the available 

experimental data for four different test cases are done. 

Four different experimental configurations are selected for the CFD simulations as 

shown in Table 1.3. The first case is the generic missile geometry that was tested in 

free flight under transonic flow conditions by Dupuis [74]. Although there was no 

unsteady data sampling, the same test was repeated for many cases for optimizing 
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the aerodynamic database for better flight trajectory estimation. For that reason, this 

case is selected to compare the differences between the Riemann solvers in steady-

state and unsteady RANS simulations. The second case is the generic missile 

geometry with wrap-around tail fins that was tested under different Mach numbers 

in a wind tunnel test campaign by Dahlke and Flowers [1]. In order to clarify the 

aerodynamic roll moment induction at neutral flight angles, the CFD simulations are 

performed for this missile geometry. Additionally, the roll moment change with 

angle of attack at Mach number of 0.5 is also investigated RANS simulations. In 

order to indicate the differences between the Riemann solvers, the flow condition at 

Mach number of 0.5 and an angle of attack of 10° is used.  

Due to the lack of unsteady experimental data in the literature for the missiles with 

WAFs, other unsteady test cases that are avaiable for airfoils are selected. The third 

case is the NACA 0021 airfoil in deep stall case at an angle of attack of 60° which 

was studied in the wind tunnel tests performed by Swalwell et al. [75, 76]. Since for 

this flow condition at a high angle of attack, there are the nonlinearities and unsteady 

effects generated by shed vortices in the separated flow and the test data has the FFT 

spectrum of the lift coefficient, this test case is selected as one of the unsteady 

validation cases. This case is also used for code validation in many CFD studies in 

the literature [77-79]. The fourth case is the OAT 15A airfoil under transonic shock 

buffeting which has rapid and periodic changes in the pressure distribution due to an 

unsteady shockwave on the airfoil upper surface. Joacquin et al. [80] performed a 

set of wind tunnel experiments at an angle of attack range to illustrate the boundary 

of transonic buffeting by a pressure sensor located on the the airfoil surface. Due to 

the unsteady nature of the shockwaves, this case is selected for comparison and 

validation.  
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Table 1.1  Computational Test Cases 

TEST CASES Flow Conditions 
Steady-State / Unsteady 

CFD 

Missile with Basic Fins 

(Basic Finner Geometry 

[74]) 

High Subsonic 

Low AoA 

RANS / URANS 

Missile with WAFs 

(Dahlke Geometry [1]) 

High Subsonic 

Transonic 

Low AoA 

RANS / DDES 

NACA 0021 Airfoil [75] Low Subsonic 

High AoA 

Deep Stall 

- / DDES 

OAT 15A Airfoil [80] High Subsonic 

Low AoA 

Transonic Buffeting 

RANS / URANS 

 

1.4 Thesis Outline 

In this thesis, first in Chapter 1, an introduction about wrap-around fins is presented 

with the literature review on the computational and experimental studies about 

missiles and WAFs and the literature review on the numerical approaches in CFD 

simulations and especially the Riemann solvers are presented. Then, the thesis 

motivation and objectives are described, and the outline is presented. 

In Chapter 2, the numerical methodology, governing equations, turbulence 

modeling, and exact and approximate Riemann solvers are described. 

In Chapter 3, the computational test cases investigated in this thesis are presented 

with details of the geometry and grid generation and flow conditions.  
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In Chapter 4, the results of the CFD simulations performed for the missiles with 

wrap-around fins and with basic planar fins and the aerodynamic characteristics of 

WAFs are presented in detail. 

In Chapter 5, the results of the CFD simulations for two airfoils at two different 

specific conditions, deep stall and transonic buffeting cases, are presented in detail 

as validation studies for the exact Riemann solver implemented in this thesis study.   

Finally, in Chapter 6, the conclusions and future work suggestions are presented. 
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CHAPTER 2  

2 NUMERICAL METHODOLOGIES 

In the first part of this Chapter, the theoretical background is presented starting from 

scalar nonlinear hyperbolic partial differential equations to system of equations to 

define the structure of Euler equations of gas dynamics rigorously. 

In the second part, the role of Euler equations in the Navier-Stokes equations is 

explained in order to stress its effect on the Computational Fluid Dynamics (CFD) 

analyses. In the third part, Reynolds-Averaged Navier-Stokes (RANS) is explained 

in terms of the Finite Volume Method (FVM) with Spalart-Allmaras (SA) turbulence 

model. In the fourth part, the concept of Large Eddy Simulation (LES) and hybrid 

RANS-LES methods based on Detached Eddy Simulation (DES) are explained with 

its emphasis over the flight stability and maneuverability of missiles. 

2.1 Nonlinear Hyperbolic Partial Differential Equations 

Hyperbolic partial differential equations (PDE) are unidirectional depending on the 

direction of eigenvalues in physical space unlike elliptic and parabolic PDEs. 

Therefore, a PDE system can be called hyperbolic if and only if the jacobian matrix 

A is diagonalizable with real eigenvalues for all real coefficients as shown in 

Equations 1 - 3. 

𝑢⃗ = (𝑢1, … , 𝑢𝑠), 𝑢⃗ = 𝑢⃗ (𝑥 , 𝑡), 𝑥 ∈ ℝ𝑑 ,
𝜕𝑢⃗ 

𝜕𝑡
+∑

𝜕

𝜕𝑥𝑗

𝑑

𝑗=1

𝑓 𝑗(𝑢⃗ ) = 0,      (1) 
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𝐴𝑗 ∶=

[
 
 
 
 
 𝜕𝑓1

𝑗

𝜕𝑢1
⋯

𝜕𝑓1
𝑗

𝜕𝑢𝑠
⋮ ⋱ ⋮

𝜕𝑓𝑠
𝑗

𝜕𝑢1
⋯

𝜕𝑓𝑠
𝑗

𝜕𝑢𝑠]
 
 
 
 
 

, 𝑓𝑜𝑟 𝑗 = 1, … , 𝑑                                  (2) 

∀ 𝛼𝑗 ∈ ℝ, 𝐴 ∶= 𝛼1𝐴
1 +⋯+ 𝛼𝑑𝐴

𝑑                                (3) 

The linearity or nonlinearity of hyperbolic equations is determined by the variation 

of an eigenvalue, 𝜆𝑖, along the corresponding eigenvector, 𝜔𝑖, direction in the state 

space as shown in Equation 4. 

∇𝑢⃗⃗ 𝜆𝑖 = [
𝜕𝜆𝑖
𝜕𝑢1

… 
𝜕𝜆𝑖
𝜕𝑢𝑠

]                                                        (4) 

∇𝑢⃗⃗ 𝜆𝑖
𝑇 ∙ 𝜔𝑖    

∇𝑢⃗⃗ 𝜆𝑖
𝑇 ∙ 𝜔𝑖    

≠
=
     0 𝐺𝑒𝑛𝑢𝑖𝑛𝑒 𝑁𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟𝑖𝑡𝑦
0 𝐿𝑖𝑛𝑒𝑎𝑟 𝐷𝑒𝑔𝑒𝑛𝑒𝑟𝑎𝑐𝑦

                                    (5) 

It is clear that ∇𝑢⃗⃗ 𝜆𝑖 is the gradient vector of eigenvalue λi over the conserved vector 

𝑢⃗ . Its dot product by the corresponding eigenvector, 𝜔𝑖, shows the variation of the 

eigenvalue in the eigenvector direction. Genuinely nonlinear eigenvalues are the 

source of nonlinearity whereas linearly degenerate eigenvalues are not the source of 

nonlinearities but they may affect genuinely nonlinear eigenvectors if they exist in 

the system of equations. If all the eigenvalues in the system of equations are linearly 

degenerate, which means that there is no genuinely nonlinear eigenvalues in the 

system of equations, the set of equations can be called linear hyperbolic equations. 

2.1.1 Scalar Nonlinear Hyperbolic Equations 

Inviscid Burgers equation, as nonlinear hyperbolic scalar PDE, is shown in 

conservative form as in Equation 6. 

𝜕𝑢

𝜕𝑡
+
𝜕𝑓

𝜕𝑥
= 0, 𝑓 =

𝑢2

2
                                                       (6) 
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If this equation is written in non conservative from, the Jacobian matrix has only one 

left and right eigenvector 𝜔 = [1] and the eigenvalue is 𝜆 = 𝑢 with a diagonalizable 

property as shown in Equation 7 - 9.  

𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
= 0                                                       (7) 

𝐴 = 𝑃−1Λ 𝑃 = [1][𝑢][1]                                                       (8) 

∇𝑢⃗⃗ 𝜆𝑖
𝑇 ∙ 𝜔𝑖 = [

𝜕𝑢

𝜕𝑢
] ∙ [1] = 1 ≠ 0                                                       (9) 

It is clear that the scalar product of the gradient of eigenvalue and the corresponding 

eigenvector is equal to 1 which is nonzero that is the clear proof of nonlinearity. The 

type of solution for nonlinear eigenmodes in hyperbolic equations cannot be 

restricted in a continuous form. For that reason, the nonconservative from in 

Equation 7 that is based on the assumption that u is a continuous function is not valid 

in the computational domain.  

It is called the weak solution that satisfies Equation 6 yet it is not continuously 

differentiable. In order to find the discontinuous solution, the nonconservative form 

of the equation should be rewritten in the integral form as in Equation 10. 

𝜕

𝜕𝑡
∫ 𝑢𝑑𝑥
𝑥2

𝑥1

= −𝑓(𝑢)│
𝑥1

𝑥2
                                                 (10) 

If a discontinuity is assumed to exist in a position 𝑥𝑠(𝑡) ∈ [𝑥1, 𝑥2], the left hand side 

of Equation 10 can be rewritten as in Equation 11 and 12 in order to take the time 

derivative inside the integral because the function u has no derivative in the 

discontinuity position 𝑥𝑠(𝑡). 

𝜕

𝜕𝑡
[∫ 𝑢𝑑𝑥

𝑥𝑠(𝑡)

𝑥1

+∫ 𝑢𝑑𝑥
𝑥2

𝑥𝑠(𝑡)

] = −𝑓(𝑢)│
𝑥1

𝑥2
                            (11) 

∫
𝜕𝑢

𝜕𝑡
𝑑𝑥

𝑥𝑠(𝑡)

𝑥1

+∫
𝜕𝑢

𝜕𝑡
𝑑𝑥

𝑥2

𝑥𝑠(𝑡)

+ 𝑢−
𝑑𝑥𝑠
𝑑𝑡

− 𝑢+
𝑑𝑥𝑠
𝑑𝑡

= −𝑓(𝑢)│
𝑥1

𝑥2
       (12) 
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In Equation 12, − and + superscripts indicate the value of variable 𝑢 in the upstream 

and downstream on the boundaries of the discontinuity, respectively, as shown in 

Figure 2.1.  

 

Figure 2.1: The boundary values of conserved variable 𝑢 and flux function 𝑓 at a 

discontinuity 

If the boundary [𝑥1, 𝑥2] is shrinked until the boundary of the discontinuity, the 

Rankine-Hugoniot jump condition must be satisfied as shown in Equation 13. 

𝑠 =
𝑑𝑥𝑠
𝑑𝑡

=
𝑓(𝑢−) − 𝑓(𝑢+)

𝑢− − 𝑢+
                                                       (13) 

There are many different weak solutions can be obtained in hyperbolic nonlinear 

scalar PDE’s. However, the type of solution must be unique to satisfy uniqueness of 

the solution. Since the direction of the wave is restricted in the hyperbolic equations, 

the weak solution appears when the characteristics of the waves intersects. It requires 

the Lax entropy condition to be satisfied for weak solutions as shown in Equation 

14. 

𝑓′(𝑢−) > 𝑠 > 𝑓′(𝑢+)                                                     (14) 

This condition states that the form of a discontinuity is possible if and only if the 

derivative of flux function with respect to the conserved quantity decreases i.e. the 

conflict of characteristics appear in the domain. 
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2.1.2 Euler Equations 

Euler equations are well known nonlinear hyperbolic set of PDE that govern the 

mass, momentum and energy conservation as shown in Equation 15-18 for one 

dimensional case under the ideal gas assumption. 

𝜕𝑄⃗ 

𝜕𝑡
+
𝜕𝐹 

𝜕𝑥
= 0                                                     (15) 

𝑄⃗ = [

𝜌
𝜌𝑢
𝜌𝑒𝑜

] , 𝐹 = 𝑢 [

𝜌
𝜌𝑢
𝜌𝑒𝑜

] + 𝑃 [
0
1
𝑢
]                               (16) 

𝑒𝑜 =
𝑎2

𝛾(𝛾 − 1)
+ 𝑒𝑘, ℎ𝑜 =

𝑎2

(𝛾 − 1)
+ 𝑒𝑘                         (17) 

𝑎2 = 𝛾𝑅𝑇,      𝛾 =
𝑐𝑃
𝑐𝑉
,       𝑒𝑘 =

1

2
𝑢2,       𝑃 =

𝜌𝑎2

𝛾
                     (18) 

If the Jacobian matrix is calculated by taking the derivative of flux vector elements 

with respect to the conserved vector elements, it is straightforward to prove that there 

are only real eigenvalues with three independent eigenvectors as shown in Equation 

19-21. 

𝐴̿ =  [

0
(𝛾 − 3)𝑒𝑘

𝑢[(𝛾 − 1)𝑒𝑘 − ℎ𝑜]

1
(3 − 𝛾)𝑢

    ℎ𝑜 − (𝛾 − 1)𝑢
2

0
𝛾 − 1
𝛾𝑢

]                      (19) 

𝑅 = [𝑅⃗ 1𝑅⃗ 2𝑅⃗ 3] =  [

1 1 1
𝑢 − 𝑎 𝑢 𝑢 + 𝑎

ℎ𝑜 − 𝑢𝑎
𝑢2

2
ℎ𝑜 + 𝑢𝑎

]                        (20) 

𝜆 = [𝑢 − 𝑎, 𝑢, 𝑢 + 𝑎]                                        (21) 

If the gradients of the eigenvalues are taken with respect to the elements of conserved 

vector 𝑄⃗ , the classification of eigenvectors can be performed with respect to the rule 

given in Equation 5. As shown in Equation 22, the eigenvalues of 𝑢 − 𝑎 and 𝑢 + 𝑎 

that are called acoustic eigenmodes are genuinely nonlinear whereas the eigenvalue 
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of 𝑢 that is called the contact discontinuity is linearly degenerate as shown in 

Equation 22-23.   

∇𝑄⃗ 𝑢 ± ∇𝑄⃗ 𝑎 =
1

𝜌
[
−𝑢
1
0
] ±

𝛾(𝛾 − 1)

2𝜌𝑎
[
−𝑐𝑣𝑇 +

𝑢2

2
−𝑢
1

]                                     (22) 

∇𝑄⃗ 𝜆𝑖
𝑇 ∙ 𝑅⃗ 𝑖 = [−

𝑎

2𝜌
(𝛾 + 1), 0,

𝑎

2𝜌
(𝛾 + 1)]                                     (23) 

2.1.3 Finite Volume Method 

When Euler equations are extended into three dimensional case, two extra equations 

are involved in the set of equations to conserve momentum in other two dimensions. 

Semi discretized form of the equations are used in order to obtain a single flux vector 

in Finite Volume Method as shown in Equations 24-25: 

𝜕

𝜕𝑡
∫ 𝑄⃗ 𝑑𝑉

 

Ω

+ ∯𝐹 

 

𝜕Ω

𝑑𝐴 = 0                                                     (24) 

𝜕

𝜕𝑡
∫ 𝑄⃗ 𝑑𝑉

 

Ω

+∑𝐹 ∙ 𝑛⃗ 𝑖𝑗𝐴𝑖𝑗

 

𝑗

= 0                                                 (25) 

The normalized flux vector 𝐹 ∙ 𝑛⃗ 𝑖𝑗 and conserved quantity vector 𝑄⃗  are as shown in 

Equation 26-29. The normalization of the flux is obtained by decomposing the 

inviscid flux as convective and pressure flux terms by multiplying by the cell face 

normal unit vector as shown in Equation 26: 

𝑄⃗ =

[
 
 
 
 
𝜌
𝜌𝑢
𝜌𝑣
𝜌𝑤
𝜌𝑒𝑜]

 
 
 
 

 , 𝐹 = 𝑉𝑛

[
 
 
 
 
𝜌
𝜌𝑢
𝜌𝑣
𝜌𝑤
𝜌𝑒𝑜]

 
 
 
 

+ 𝑃

[
 
 
 
 
0
𝑛𝑥
𝑛𝑦
𝑛𝑍
𝑉𝑛 ]
 
 
 
 

                                   (26) 

𝑉𝑛 = 𝑉⃗ ∙ 𝑛⃗ = 𝑢𝑛𝑥 + 𝑣𝑛𝑦 + 𝑤𝑛𝑧                               (27) 
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𝑛𝑥
2 + 𝑛𝑦

2 + 𝑛𝑧
2 = 1                                            (28) 

𝑎2 = 𝛾𝑅𝑇,      𝛾 =
𝑐𝑃
𝑐𝑉
,       𝑒𝑘 =

1

2
(𝑢2 + 𝑣2 + 𝑤2),       𝑃 =

𝜌𝑎2

𝛾
         (29) 

If the Jacobian matrix is calculated by taking the derivative of flux vector elements 

with respect to the conserved vector elements, the Jacobian matrix, its eigenvalues 

and eigenvectors are shown in Equation 30-32. 𝑉𝑛 − 𝑎 and 𝑉𝑛 + 𝑎 are acoutic 

eigenmodes that are genuinely nonlinear whereas repeated eigenvalues of 𝑉𝑛’s are 

linearly degenerate composing of one contact discontinuity and two vorticity waves. 

𝐽 ̿ =  

[
 
 
 
 
 

0
(𝛾 − 1)𝑒𝑘𝑛𝑥 − 𝑢𝑉𝑛
(𝛾 − 1)𝑒𝑘𝑛𝑦 − 𝑣𝑉𝑛
(𝛾 − 1)𝑒𝑘𝑛𝑧 − 𝑤𝑉𝑛
[(𝛾 − 1)𝑒𝑘 − ℎ𝑜]𝑉𝑛

𝑛𝑥
𝑉𝑛 − (𝛾 − 2)𝑢𝑛𝑥

   𝑣𝑛𝑥 − (𝛾 − 1)𝑢𝑛𝑦
    𝑤𝑛𝑥 − (𝛾 − 1)𝑢𝑛𝑧
    ℎ𝑜𝑛𝑥 − (𝛾 − 1)𝑢𝑉𝑛

𝑛𝑦
𝑢𝑛𝑦 − (𝛾 − 1)𝑣𝑛𝑥   

𝑉𝑛 − (𝛾 − 2)𝑣𝑛𝑦
𝑤𝑛𝑦 − (𝛾 − 1)𝑣𝑛𝑧
    ℎ𝑜𝑛𝑦 − (𝛾 − 1)𝑣𝑉𝑛

𝑛𝑧
𝑢𝑛𝑧 − (𝛾 − 1)𝑤𝑛𝑥
𝑣𝑛𝑧 − (𝛾 − 1)𝑤𝑛𝑦
𝑉𝑛 − (𝛾 − 2)𝑤𝑛𝑧

    ℎ𝑜𝑛𝑧 − (𝛾 − 1)𝑤𝑉𝑛

0
   (𝛾 − 1)𝑛𝑥
   (𝛾 − 1)𝑛𝑦
   (𝛾 − 1)𝑛𝑧

𝛾𝑉𝑛 ]
 
 
 
 
 

  (30) 

𝜆𝑖 = {𝑉𝑛 − 𝑎, 𝑉𝑛, 𝑉𝑛 + 𝑎, 𝑉𝑛, 𝑉𝑛}                             (31) 

[𝑅⃗ 1𝑅⃗ 2𝑅⃗ 3𝑅⃗ 4𝑅⃗ 5] =  

[
 
 
 
 

1 1 1 0 0
𝑢 − 𝑎𝑛𝑥 𝑢 𝑢 + 𝑎𝑛𝑥 𝑛𝑦 −𝑛𝑧
𝑣 − 𝑎𝑛𝑦 𝑣 𝑣 + 𝑎𝑛𝑦 −𝑛𝑥 0

𝑤 − 𝑎𝑛𝑧 𝑤 𝑤 + 𝑎𝑛𝑧 0 𝑛𝑥
ℎ0 − 𝑎𝑉𝑛 𝑒𝑘 ℎ0 + 𝑎𝑉𝑛 𝑢𝑛𝑦 − 𝑣𝑛𝑥 𝑤𝑛𝑥 − 𝑢𝑛𝑧]

 
 
 
 

(32) 

The contact discontinuity 𝑅⃗ 2 does not change the velocity components and pressure 

but the density and temperature. In this case, ideal gas law dictates that under 

constant pressure the temperature must change like entropy. Vorticity waves 𝑅⃗ 4 and 

𝑅⃗ 5 cannot change the density, pressure, temperature, and normal velocity component 

with respect to its direction but only the tangential velocity component to generate a 

variation in the vorticity along the wave characteristic direction. As linearly 

degenerate waves, vorticity waves and contact discontinuity (also known as entropy 

wave in other sources) have only one form of solution. Those waves can change the 

total enthalpy. 
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The acoustic eigenvalues 𝑅⃗ 1 and 𝑅⃗ 3  are the only genuinely nonlinear eigenvalues 

that alter the pressure in Euler equations. Those waves can have two different 

solutions as rarefaction waves and shockwaves. The rarefaction waves, as 

idiosyncrasy of nonlinear hyperbolic differential equations, are continuous and 

isentropic through which isentropic relations between pressure and density decrease 

isentropically and velocity decreases. The shockwaves are discontinuous through 

which normal velocity component decreases unlike pressure and density. The 

relative velocity based Rankine-Hugoniot conditions are applied in shockwaves [22-

30]. Rarefaction waves are isentropic i.e., reversible and adiabatic for all thermal and 

chemical equilibrium conditions. The relative velocities with respect to shockwave 

speed must be taken into account for imposing Rankine-Hugoniot jump condition. 

The relative total enthalpy is conserved along a shockwave which means that the 

total enthalpy difference in the up and downstream of a shockwave is due to the 

temporal derivatives in total internal energy but not the shockwave. Therefore, the 

total enthalpy must be conserved in stationary shockwaves. 

2.1.4 Riemann Problem in Finite Volume Method 

Riemann problem is a kind of initial value problem that consists of a conservation 

equation with a single discontinuity in the solution domain as shown in Figure 2.2 

for one dimensional Euler equations. In the context of the FVM, the Riemann 

problem refers to the problem of computing the flux across a cell interface between 

two neighboring cells in a discretized domain. 

Once the velocity vector multiplied by dot product with the cell unit vector on 

neighboring sides, the problem becomes similar to the one dimensional Euler 

equations that contain two genuinely nonlinear fields with a single contact 

discontinuity.  

The Riemann problem arises when computing the flux across the interface between 

two neighboring cells. At the interface, the solution may exhibit a contact 
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discontinuity, a shock wave or a rarefaction wave. To compute the flux, the state of 

the solution on either side of the interface must be identified. The Riemann problem 

is the problem of determining the state in the boundary from the initial conditions. 

 

Figure 2.2: The Riemann Problem in 1D Euler Equations 

2.1.5 Roe’s Approximate Riemann Solver 

Due to the nonlinear nature of Euler equations, the exact solution of Riemann 

problem needs iterative techniques that require more computational power. In order 

to avoid this requirement, Roe [49] developed an approximate Riemann solver that 

linearizes the problem by using an average technique proposed by Roe [49]. If an 

hyperbolic problem is linearized, it can be said that the difference between each wave 

must be a scalar multiple of the corresponding eigenvector as shown in Equations 

49-53: 

  𝐴̿− = 𝑃−1Λ−𝑃, 𝐴̿+ = 𝑃−1Λ+𝑃                              (49) 

  Λ− =∑𝑚𝑖𝑛(0, 𝜆𝑖)

𝑛

𝑖

, Λ+ =∑𝑚𝑎𝑥(0, 𝜆𝑖)

𝑛

𝑖

                    (50) 

  𝐹 𝑤𝑎𝑙𝑙 = 𝐹 𝐿 + 𝐴̿
−(𝑄⃗ 𝑅 − 𝑄⃗ 𝐿)                                              (51) 
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  𝐹 𝑤𝑎𝑙𝑙 = 𝐹 𝑅 − 𝐴̿
+(𝑄⃗ 𝑅 − 𝑄⃗ 𝐿)                                              (52) 

  𝐹 𝑤𝑎𝑙𝑙 =
𝐹 𝐿 + 𝐹 𝑅
2

−
|𝐴̿|

2
(𝑄⃗ 𝑅 − 𝑄⃗ 𝐿)                                         (53) 

The question is to construct the linearized Jacobian matrix |𝐴̿| using average method 

of Roe. Roe chooses a parameter vector 𝑈⃗⃗  to take its average from left and right sides 

of the cell interface as shown in Equation 54. Since the density is not required to 

construct the Jacobian matrix, only the velocity components, total enthalpy and 

speed of sound are calculated as shown in Equations 55-56: 

𝑈⃗⃗ = √𝜌

[
 
 
 
 
1
𝑢
𝑣
𝑤
ℎ𝑜]
 
 
 
 

                                                      (54) 

𝑢̃ =
√𝜌𝐿𝑢𝐿 + √𝜌𝑅𝑢𝑅

√𝜌𝐿 + √𝜌𝑅
, 𝑣̃ =

√𝜌𝐿𝑣𝐿 + √𝜌𝑅𝑣𝑅

√𝜌𝐿 + √𝜌𝑅
, 𝑤̃ =

√𝜌𝐿𝑤𝐿 +√𝜌𝑅𝑤𝑅

√𝜌𝐿 +√𝜌𝑅
            (55) 

𝐻̃ =
√𝜌𝐿𝐻𝐿 +√𝜌𝑅𝐻𝑅

√𝜌𝐿 +√𝜌𝑅
, 𝑎̃ = √(𝛾 − 1) (𝐻̃ −

1

2
(𝑢̃2 + 𝑣̃2 + 𝑤̃2))     (56) 

The other method is the central scheme with artificial viscosity instead of 

constructing a Jacobian Matrix. The need of artificial viscosity is due to the nonlinear 

nature of Euler equations. It is called artificial viscosity because the difference 

between neighboring faces is similar with a diffusive flux that includes viscosity as 

diffusion coefficient as shown in Equation 57 that is also known as Rusanov flux 

[60]: 

𝐹 𝑤𝑎𝑙𝑙 =
𝐹 𝐿 + 𝐹 𝑅
2

−
|𝜆|𝑚𝑎𝑥
2

(𝑄⃗ 𝑅 − 𝑄⃗ 𝐿)                                  (57) 

The maximum eigenvalue of a matrix is called spectral radius since a vector can 

extend by scalar multiple of this eigenvalue when it is multiplied by that matrix. 

Although this technique preserves stability and hyperbolicity of the Jacobian matrix, 
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it is too dissipative since it covers the complete difference on conserved quantities. 

Jameson et al. [27] added extra parameters to the artificial viscosity besides 

maximum eigenvalue. Since the genuinely nonlinear eigenmodes are the only 

eigenmodes that can change the pressure, their strength can be determined by the 

local pressure difference.  

2.1.6 Exact Riemann Solver 

Alternative flux calculation schemes are in good accuracy for most of the flight 

regimes. However, their accuracy might have tendency to decrease if Mach number 

is very low to increase the condition number of the Jacobian matrix to make the 

scheme over diffusive or very close the transonic conditions in which linearization 

of Riemann problem fails [16]. 

In order to have an effective benchmark through which the accuracy levels can be 

illustrated, an iterative Exact Riemann (ER) solver is added to the open source CFD 

code SU2 [42]. Before solving the Riemann problem, the types of genuinely 

nonlinear waves must be determined. 

Despite of the fact that the computationally expensive iterative techniques must be 

performed in exact Riemann solver, the determination of wave types has no such a 

high computational expense. 

There are four different probabilities that are RR, RS, SR and SS where R and S 

stand for rarefaction and shock, respectively. The pressure has to increase and 

decrease in downstream of the shock and rarefaction, respectively. For that reason, 

the shock must exist in the low pressure side in one rarefaction one shock solution. 

Therefore there are three possibilities left. Therefore it is required to assign minimum 

and maximum pressure sides before the determination of wave types if 𝑝𝐿 ≠ 𝑝𝑅 as 

shown in Figure 4.2 and Equation 58: 

𝑝𝑚𝑖𝑛 = 𝑚𝑖𝑛(𝑝𝐿 , 𝑝𝑅), 𝑝𝑚𝑎𝑥 = 𝑚𝑎𝑥(𝑝𝐿, 𝑝𝑅)                            (58) 
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The pressure 𝑝∗ on the cell face may be larger or smaller than both 𝑝𝐿 and 𝑝𝑅 or may 

be between 𝑝𝐿 and 𝑝𝑅 if 𝑝𝐿 ≠ 𝑝𝑅. In case of equality, there are three possibilities that 

are RR, SS or zero amplitude nonlinear waves i.e. isolated contact discontinuity. 

 

Figure 2.3: Riemann problem in finite volume method 

In Figure 2.3, the directions of waves are shown in a subsonic flow with a positive 

velocity 𝑢∗ on the cell interface in the direction of the unit normal vector. In order to 

determine the wave types, the governing equations on both sides of nonlinear waves 

must be used as shown in Equations 59-61: 

𝑢∗ = 𝑢𝐿 + 𝑠𝑖𝑔𝑛(𝑢 − 𝑎) ∗ 𝑓𝐿(𝑝
∗, 𝑈⃗⃗ 𝐿)    

𝑢∗ = 𝑢𝑅 + 𝑠𝑖𝑔𝑛(𝑢 + 𝑎) ∗ 𝑓𝑅(𝑝, 𝑈⃗⃗ 𝑅)   
                               (59) 

0 = 𝑢𝑅 − 𝑢𝐿 + 𝑓𝐿(𝑝
∗, 𝑈⃗⃗ 𝐿) + 𝑓𝑅(𝑝

∗, 𝑈⃗⃗ 𝑅)                          (60) 

𝑓(𝑝∗, 𝑈⃗⃗ 𝐿,𝑅) =

{
 
 
 

 
 
 

(𝑝∗ − 𝑝𝐿,𝑅) [
2

𝜌𝐿,𝑅 ((𝛾 + 1)𝑝∗ + (𝛾 − 1)𝑝𝐿,𝑅)
]

1
2

, 𝑝𝐿,𝑅 < 𝑝∗(𝑆)

2𝑎𝐿,𝑅
𝛾 − 1

[(
𝑝∗

𝑝𝐿,𝑅
)

𝛾−1
2𝛾

− 1],                                           𝑝𝐿,𝑅 ≥ 𝑝
∗(𝑅)

(61) 

The Equation 59 must be satisfied for calorically perfect gases with constant specific 

heat ratio. The type of functions is derived from isentropic relations and Rankine-

Hugoniot jump conditions for rarefaction and shock solutions, respectively [11, 23]. 

Both functions have positive first derivative and negative second derivative and they 

converge to a negative value when 𝑝∗ is going to zero and to a positive value when 

𝑝∗ is going to plus infinity. 
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Due to this property, the type of genuinely nonlinear fields can be determined with 

respect to the algorithm given in Figure 4.3. First, the functions of 𝑓𝐿 and 𝑓𝑅 are 

constructed as two rarefaction solution. If the function 𝐹 has a positive value when 

𝐹(𝑝𝑚𝑎𝑥) is calculated, then there exist two rarefaction solutions. If it has a negative 

value and if 𝑝𝐿 = 𝑝𝑅, then there exists a two shock solution. If it has a zero value 

and if 𝑝𝐿 = 𝑝𝑅, then there exists zero amplitude i.e. isolated discontinuity. If it has a 

negative value and if 𝑝𝐿 ≠ 𝑝𝑅, then the side with minimum pressure has a shock 

solution. In the second step, the function 𝐹 is constructed with a shock solution on 

minimum pressure side and a rarefaction solution on maximum pressure side. If the 

function 𝐹 has a positive value when 𝐹(𝑝𝑚𝑎𝑥) is calculated, then there exists one 

rarefaction on shock solution. If it has a negative value, then there exist two shock 

solutions as shown in Figure 2.4. 

 

 

Figure 2.4: Exact Riemann solver shock capturing algorithm 

Once the type of the nonlinear waves is identified, then the root of function 𝐹 must 

be found for finding 𝑝∗ that is the pressure on the interface and exact solution of the 

Riemann problem. Newton-Raphson algorithm is used for root finding since the 

function 𝐹 has a monotonicity and for that reason Newton-Raphson is faster than 

bisection method as shown in Equation 62: 
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𝑃𝑘+1
∗ = 𝑃𝑘

∗ −
𝑓(𝑃𝑘

∗)

𝜕𝑓(𝑃𝑘
∗)

𝜕𝑃∗

                                                 (62) 

Since two rarefaction has an analytical solution unlike shock including solution, two 

rarefaction solution is used as an intial guess to find the root in Newton-Raphson 

algorithm. Once 𝑝∗ is calculated, 𝜌∗ and  𝑢∗ can be calculated by using isentropic or 

Rankine Hugoniot relations depending on the type of the solution. Depending on the 

sign of 𝑢∗, the tangential velocity component can be added into solution from the 

side of tangential velocity with the same sign of nonlinear wave in the Finite Volume 

Method. The function is added into SU2 C++ structure as a new function under the 

convection subfolder in the flow folder. 

As stopping criteria, EXACT_RIEMANN_MAX_ITER and 

EXACT_RIEMANN_SOLVER_ERROR parameters are added into the cconfig file 

under the common folder. Maximum iteration and solver error are fixed as 100 and 

1e-7 by default, respectively. All CFD simulations are performed by those settings 

unless otherwise specified. 

2.2 Compressible Navier-Stokes Equations 

Euler equations of gas dynamics can be obtained from Navier-Stokes equations with 

absence of viscosity, thermal conductivity and viscous heat dissipation as shown in 

Equations 33-37: 

𝜕𝑄⃗ 

𝜕𝑡
+ ∇ ∙ 𝐹̿𝑖𝑛𝑣 − ∇ ∙ 𝐹̿𝑣𝑖𝑠 = 0                                        (33) 

𝐹̿𝑖𝑛𝑣 =

[
 
 
 
 

𝜌𝑢

𝜌𝑢2 + 𝑝
𝜌𝑢𝑣

𝜌𝑣
𝜌𝑣𝑢

𝜌𝑣2 + 𝑝

𝜌𝑤
𝜌𝑤𝑢
𝜌𝑤𝑣

𝜌𝑢𝑤 𝜌𝑣𝑤 𝜌𝑤2 + 𝑝
𝑢𝑝 + 𝑢𝑒𝑜 𝑣𝑝 + 𝑣𝑒𝑜 𝑤𝑝 + 𝑤𝑒𝑜]

 
 
 
 

                            (34) 
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𝑉⃗ = [
𝑢
𝑣
𝑤
] , ∇𝑉⃗ =

[
 
 
 
 
 
 
𝜕𝑢

𝜕𝑥

𝜕𝑢

𝜕𝑦

𝜕𝑢

𝜕𝑧
𝜕𝑣

𝜕𝑥

𝜕𝑣

𝜕𝑦

𝜕𝑣

𝜕𝑧
𝜕𝑤

𝜕𝑥

𝜕𝑤

𝜕𝑦

𝜕𝑤

𝜕𝑧 ]
 
 
 
 
 
 

                                               (35) 

𝜏̿ = 𝜇(∇𝑉⃗ + ∇𝑉⃗ 𝑇) − 𝜇
2

3
𝐼(̿∇ ∙ 𝑉⃗ ) = 𝜇

[
 
 
 
 
 
 
4

3

𝜕𝑢

𝜕𝑥

𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑥

𝜕𝑢

𝜕𝑧
+
𝜕𝑤

𝜕𝑥
𝜕𝑣

𝜕𝑥
+
𝜕𝑢

𝜕𝑦

4

3

𝜕𝑣

𝜕𝑦

𝜕𝑣

𝜕𝑧
+
𝜕𝑤

𝜕𝑦
𝜕𝑤

𝜕𝑥
+
𝜕𝑢

𝜕𝑧

𝜕𝑤

𝜕𝑦
+
𝜕𝑣

𝜕𝑧

4

3

𝜕𝑤

𝜕𝑧 ]
 
 
 
 
 
 

       (36) 

𝐹̿𝑣𝑖𝑠 = [
0
𝜏̿

𝜏̿ ∙ 𝑉⃗ + 𝑘∇𝑇

]                                              (37) 

The summation of velocity gradient and its transpose ∇𝑉⃗ + ∇𝑉⃗ 𝑇 is the rate of strain 

tensor of rank 2. Its multiplication by the dynamic viscosity is equal to crude shear 

tensor due to the linearity between stress and strain for Newtonian fluids such as air 

and water. The subtracted term 𝜇
2

3
𝐼(̿∇ ∙ 𝑉⃗ ) is stress contribution due to the rapid 

expansion or compression in the fluid due to the difference between mechanical and 

thermodynamic pressures. The shear stress tensor 𝜏̿ is a rank 2 tensor that is the 

mathematical notation of the shape deformation on the fluid element. 

The dot product of shear stress by the velocity vector 𝜏̿ ∙ 𝑉⃗  is the viscous heat 

dissipation mechanism that increases the internal energy of a gas by converting 

mechanical energy into the heat energy. In turbulence, the turbulent eddies transfer 

their energy to the smaller eddies until the viscous heat dissipation prevents energy 

transfer to smaller eddies at Kolmogorov scale. The multiplication of thermal 

gradient by thermal conductivity of a gas 𝑘∇𝑇 is the heat transfer by conduction due 

to Fourier’s law of conduction. 
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2.3 Reynolds-Averaged Navier-Stokes Equations 

Reynolds-Averaged Navier-Stokes (RANS) equations are obtained when the 

quantities are decomposed into time averaged and fluctuating components by 

Reynolds decomposition in nonconservative form of the Navier-Stokes equations as 

shown in Equations 37 and 38: 

𝑢(𝒙⃗⃗ , 𝑡) = 𝑢′ + 𝑢̅                                                     (37) 

𝜌𝑢̅𝑗
𝜕(𝑢̅𝑖)

𝜕𝑥𝑗
=

𝜕

𝜕𝑥𝑗
(−𝑝̅𝛿𝑖𝑗 + 𝜇𝑑 (

𝜕𝑢̅𝑖
𝜕𝑥𝑗

+
𝜕𝑢̅𝑗

𝜕𝑥𝑖
−
2

3

𝜕𝑢̅𝑗

𝜕𝑥𝑗
𝛿𝑖𝑗) − 𝜌𝑢𝑖′𝑢𝑗′̅̅ ̅̅ ̅̅ )    (38) 

Due to the fact that the energy transfer between different eddy sizes cannot take place 

simultaneously at all times, the fluctuating term in the velocity field appears due to 

the turbulence. Since the turbulent eddy dissipation cannot take place until 

Kolmogorov scale that is too small for computational resolution, turbulence models 

are used to include the effect of 𝜌𝑢𝑖′𝑢𝑗′̅̅ ̅̅ ̅̅  by time average rate of strain and turbulent 

viscosity as shown in Equations 39-41: 

−𝜌𝑢𝑖′𝑢𝑗′̅̅ ̅̅ ̅̅ = 𝜇𝑡 (
𝜕𝑢̅𝑖
𝜕𝑥𝑗

+
𝜕𝑢̅𝑗

𝜕𝑥𝑖
)                                            (39) 

𝜇𝑒𝑓𝑓 = 𝜇𝑡 + 𝜇𝑑                                                        (40) 

𝜌𝑢̅𝑗
𝜕(𝑢̅𝑖)

𝜕𝑥𝑗
=

𝜕

𝜕𝑥𝑗
(−𝑝̅𝛿𝑖𝑗 + 𝜇𝑒𝑓𝑓 (

𝜕𝑢̅𝑖
𝜕𝑥𝑗

+
𝜕𝑢̅𝑗

𝜕𝑥𝑖
−
2

3

𝜕𝑢̅𝑗

𝜕𝑥𝑗
𝛿𝑖𝑗))           (41) 

The turbulence occurs due to the fracture of a fluid element under large momentum 

flux-shear stress ratio that is known as Reynolds number as shown in Equation 42: 

𝑅𝑒 =
𝜌𝑉𝐷

𝜇
=
𝜌𝑉2𝐷

𝜇𝑉
=
𝜌𝑉2

𝜇
𝑉
𝐷

                                   (42) 

If a fluid element is exposed to an increasing shear force, it undergoes a fracture after 

certain Reynolds number depending on the problem. After the fracture, two opposing 
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vortices are formed inside the flow field. Due to the vortex stretching, they transfer 

their energy to smaller eddies until their energy is dissipated by the viscous heat 

dissipation i.e. triggering mechanism of the turbulence.  

Turbulence models aim to model turbulent viscosity by time average rate of shear 

stress. However, the unsteady effects in a fluid problem does not necessarily occur 

due to the turbulence but the nature of the hyperbolic PDE’s that might generate 

unsteady effects due to an imbalance between different eigenmodes due to the 

boundary conditions of a fluid problem. For that reason, Unsteady Reynolds-

Averaged Navier-Stokes (URANS) Equations are used as shown in Equation 43: 

𝜕(𝑢̅𝑖)

𝜕𝑡
+ 𝜌𝑢̅𝑗

𝜕(𝑢̅𝑖)

𝜕𝑥𝑗
=

𝜕

𝜕𝑥𝑗
(−𝑝̅𝛿𝑖𝑗 + 𝜇𝑒𝑓𝑓 (

𝜕𝑢̅𝑖
𝜕𝑥𝑗

+
𝜕𝑢̅𝑗

𝜕𝑥𝑖
−
2

3

𝜕𝑢̅𝑗

𝜕𝑥𝑗
𝛿𝑖𝑗))         (43) 

URANS models aim to model all the velocity fluctuations in a given time interval 

by eddy viscosity and time rate of strain by average velocity gradients. If the grid 

density is enough to resolve very large eddies in the domain, they are also modeled 

by the eddy viscosity terms. In order to avoid this effect, eddy viscosity should be 

modelled by sub grid scale (SGS) models instead of RANS based models i.e. Large 

Eddy Simulation (LES) [31, 69]. Smagorinsky [81] proposed a SGS model by 

assuming that turbulent energy production and dissipation are in equilibrium for 

small scales in SGS as shown in Equation 44: 

𝜇𝑒𝑑𝑑𝑦 = 𝐶𝜌∆2|𝑆̅|, |𝑆̅| = √𝑡𝑟(∇𝑉⃗ + ∇𝑉⃗ 𝑇)
2
                           (44) 

This model is used by Deardorff [82] in first LES simulation. Since the eddies close 

to the walls are very small for wall bounded problems, hybrid RANS-LES models 

are used in many industrial problems. 
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2.4 Detached Eddy Simulation with Spalart-Allmaras Model 

The fluctuating component of the velocity field might cause flight instabilities by 

affecting the aerodynamic coefficients if the dimensionalized untrimmed moments 

have large amplitude and small frequency. As the moment inertiae of a missile 

increase, the amplitudes of untrimmed moments decrease due to low pass filter 

behaviour of inertia matrix. However, the untrimmed moments that have small 

frequency and large amplitude must be trimmed by autopilots with smaller gains. If 

the gains are overdecreased, over robust autopilot algorithms decrease the 

maneuvarability of the missile. Therefore, an optimization must be performed 

through a tradeoff between flight stability and maneuvarability. 

In order to determine the gain matrices of autopilot algorithms, it is required to 

collect real time data by free flights, wind tunnels or time dependent CFD analyses. 

The oscillations on the pressure field occur due to the energy transfer between 

different turbulent eddy sizes. The full resolution of eddies until the Kolmogorov 

scale is not realistic for two reasons. The first reason is that the computational cost 

is not realistic for state of the art computational infrastructure. The second reason is 

that the critical eddy sizes and frequencies are function of inertia matrix for flight 

stability. In other words, there is no reason to resolve eddies under a critical 

frequency that is determined by the flight Mach number and missile inertia matrix. 

In wall bounded flows, eddies close to the wall do not have an impact on the flight 

stability since their size and frequency are very small and large, respectively. For 

that reason, DDES (Delayed Detached Eddy Simulation) technique that is based on 

Spalart-Allmaras turbulence model is used in this thesis.  

In Spalart-Allmaras turbulence model, eddy viscosity is calculated from the 

conserved quantity 𝜈 as shown in Equation  45: 
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𝐷𝜈

𝐷𝑡
= 𝐶𝑏1[1 − 𝑓𝑡2]𝑆̃𝜈 +

1

𝜎
{∇ ∙ [(𝜈 + 𝜈)∇𝜈] + 𝐶𝑏2|∇𝜈̃|

2} 

−[𝐶𝑤1𝑓𝑤 −
𝐶𝑏1
𝜅2

𝑓𝑡2] (
𝜈

𝑑̃
)
2

+ 𝑓𝑡1∆𝑈
2                     (45) 

Left hand side of the equation that is the Lagrangian derivative of 𝜈 must be in 

equilibrium with source, destruction and diffusion terms. The last source term 

𝑓𝑡1∆𝑈
2 is responsible for the transition from laminar to turbulent inside the boundary 

layer. The details of the coefficients can be found in the works of Spalart et al. [20-

22]. In isotropic turbulence, the right hand of the equation must be equal to zero i.e. 

an equilibrium must be established between the source 𝐶𝑏1[1 − 𝑓𝑡2]𝑆̃𝜈 and 

destruction [𝐶𝑤1𝑓𝑤 −
𝐶𝑏1

𝜅2
𝑓𝑡2] (

𝜈̃

𝑑̃
)
2

 terms because the diffusive term must be equal to 

zero every point in the domain. Apart from their coefficients, an equilibrium between 

the source and sink terms dictates that 𝜈 is proportional with the multiplication of 

rate of strain by the square of distance as shown in Equation 46: 

𝜈  = 𝑆̃𝑑2                                                             (46) 

The term d in the destruction term is the closest distance to a wall in the domain in 

the Spalart-Allmaras model. This distance is changed in Detached Eddy Simulation 

by 𝑑̃ as per the formula given in Equation 47: 

𝑑̃ = min(𝑑, 𝐶𝐷𝐸𝑆∆) , ∆= max (∆𝑆)                         (47) 

The idea is to increase the magnitude of the destruction term in the model so that the 

destruction term increases to supress 𝜈 for resolving the large eddies. For the cells 

close to walls inside the boundary layer in a grid the distance d is smaller than the 

largest edge of the cell. For that reason, the destruction term is constructed according 

to the Equation 45. It provides a smooth transition from RANS to LES in the domain. 

However, this transition might cause grid induced separation if the increment rate 

between the last element of viscous layer and outer grid. For that reason, Spalart 

proposed a Delayed Detached Eddy Simulation (DDES) in which the transition 
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function is not only function of the grid but also the length scale of the turbulence in 

associated cells as shown in Equation 48: 

𝑑̃ = d − 𝑓𝑑max(0, 𝑑 − 𝐶𝐷𝐸𝑆∆) , 𝑓𝑑 = 1 − tanh(8𝑟𝑑)
3   𝑟𝑑 =

𝜈 + 𝜈𝑡

√𝑈𝑖𝑗𝑈𝑖𝑗𝜅2𝑑2
  (48) 

Since tanh function can vary between 0 and 1 for positive inputs, there is a smooth 

transition from RANS to LES as 𝑟𝑑 changes from zero to infinity. 

2.5 Dynamic Aerodynamic Coefficients 

During tactical maneuvers or under oscillatory atmospheric conditions, missiles are 

exposed to varying forces and moments under time rate of change in flight 

parameters such as velocity, angle of attack or side slip angle. Dynamic aerodynamic 

coefficients determine how the missile corresponds to those changes in flight 

parameters. For this reason, it is of primary importance to determine flight trajectory. 

The most important dynamic stability derivatives are pitch damping coefficient 

(𝐶𝑀𝑦𝛼), dynamic stability coefficient (𝐶𝑀𝛼̇), roll damping coefficient (𝐶𝑀𝑥𝛼), 

Magnus force and Magnus moment. These are used to analyze the missile flight 

stability as it undergoes complex motions.  

2.5.1 Pitch Damping Coefficient and Dynamic Stability 

The calculation of pitch damping and dynamic stability derivative require two 

different unsteady CFD simulations for pitching and plunging motions [83-87]. It is 

due to the fact that the pitching motion around the center of gravity of projectile is 

coupled by the variation of angle attack. However, there is no pitching maneuver in 

the plunging motion as shown in Figure 2.5. 

In order to calculate the pitch damping coefficient and the dynamic stability 

derivatives, the missile is exposed to a forced oscillation as shown in Equation 63 

and 64, respectively: 
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𝛼(𝑡) = 𝛼0 + 𝛼𝑎𝑚𝑝 sin𝜔𝑡                                                  (63) 

𝑥(𝑡) = 𝑥𝑎𝑚𝑝 sin𝜔𝑡                                                 (64) 

 

 

Figure 2.5: a) Pitching and b) Plunging Motion of a Missile 

The analyses are performed around 𝛼0 with an amplitude of 1° angle of attack in the 

pitching motion. The oscillation amplitude in the plunging motion, therefore, must 

be selected to have the same angle of attack range with the pitching motion for more 

precise calculation as shown in Equations 65-67: 

𝑥̇(𝑡) = 𝑥𝑎𝑚𝑝𝜔 cos𝜔𝑡                                                 (65) 

𝛼(𝑡) = tan−1
𝑥𝑎𝑚𝑝𝜔 cos𝜔𝑡

𝑉∞
                                                 (66) 

𝑥𝑎𝑚𝑝 =
𝑉∞ tan𝛼0

𝜔
                                                 (67) 

𝑘 =
𝜔𝐷

2𝑉∞
                                                 (68) 

The determination of oscillation frequency is performed by the nondimensionalized 

reduced frequency as shown in Equation 68. Despeyroux et al. [73] proposed to have 

a reduced frequency of 0.05 for numerically calculated dynamic stability of missiles 

with grid fin. Sahu et al. [74] used different values of reduced frequencies for 
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showing the effect of reduced frequency on the damping coefficients. The reduced 

frequency should be both large enough to distinct any numerical error and small 

enough to conserve the flight regime at each instant of the flight. 

The equilibrium equation for pure pitching motion under the assumption of first 

order Taylor series expansion is as shown in Equation 69 [32]: 

𝐶𝑗(𝑡) = 𝐶𝑗|0° + 𝐶𝑗𝛼𝛼(𝑡) + 𝐶𝑗𝑞
𝑞(𝑡)𝐷

2𝑉∞
+ 𝐶𝑗𝛼̇

𝛼̇(𝑡)𝐷

2𝑉∞
, 𝑗 = 𝑀𝑦, 𝐹𝑧    (69) 

where, 𝐶𝑗|0° and 𝐶𝑗𝛼  are the coefficient at angle of attack of 0° and static derivative 

with respect to angle of attack, respectively. 

Since there is no plunging term in the forced pitching motion, the pitch rate 𝑞(𝑡) and 

angle of attack rate 𝛼̇(𝑡) are equal to each other. Pitch damping coefficient can be 

assumed constant for small amplitude oscillations [33, 34]. Once the integral of 

Equation 69 is taken with respect to 𝛼 under these two assumptions, Equation 70 is 

obtained. If the limits of the integral are kept over one period of motion, 𝐶𝑗|0° and 

𝐶𝑗𝛼  terms are cancelled since they are not time dependent coefficients as shown in 

Equation 71: 

𝐶𝑗𝑞 + 𝐶𝑗𝛼̇ =
2𝑉∞
𝐷

∫[𝐶𝑗(𝑡) − 𝐶𝑗|0° − 𝐶𝑗𝛼𝛼(𝑡)] 𝑑𝛼

∫ 𝛼̇ (𝑡)𝑑𝛼
                       (70) 

𝐶𝑗𝑞 + 𝐶𝑗𝛼̇ =
2𝑉∞
𝐷

∫𝐶𝑗(𝑡) 𝑑𝛼

∫ 𝛼̇ (𝑡)𝑑𝛼
                                                 (71) 

If 𝛼̇(𝑡) is calculated using Equation 63 and the integral is taken over a single period 

of time, the sum of dynamic derivative and pitch damping ratio is as shown in 

Equation 72. 

𝐶𝑗𝑞 + 𝐶𝑗𝛼̇ =
2𝑉∞

𝐷𝛼𝑎𝑚𝑝𝜋
∫𝐶𝑗(𝑡) cos𝜔𝑡 𝑑𝑡, 𝑇 =

2𝜋

𝜔

𝑇

0

                (72) 
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Since the time steps and pitching moment coefficients obtained from URANS 

equation are discontinuous, the trapezoidal rule is used to calculate 𝐶𝑗𝑞 + 𝐶𝑗𝛼̇ as 

shown in Equation 73: 

𝐶𝑗𝑞 + 𝐶𝑗𝛼̇ =
2𝑉∞

𝐷𝛼𝑎𝑚𝑝𝜋

∆𝑡

2
∑ 𝐶𝑗(𝑡𝑛) cos𝜔𝑡𝑛 + 𝐶𝑗(𝑡𝑛+1) cos𝜔𝑡𝑛+1

𝑁−1

𝑛=1

    (73) 

Another method for pitch damping calculation is the mean angular displacement 

position. This method is used by Sahu et al. [74] and DeSpirito et al. [79] for generic 

missiles. As shown in Figure 2.6, an hysteresis curve is constructed by plotting the 

pitching moment coefficient (𝐶𝑀𝑦) or normal force coefficient (𝐶𝐹𝑧) with respect to 

angle of attack (𝛼). In the hysteresis curve 𝐶𝑗+ and 𝐶𝑗− points are determined so that 

𝐶𝑗𝑞 + 𝐶𝑗𝛼̇ can be calculated as shown in Equation 74. It can be simplified for 

symmetric missile configurations that are oscillated around 𝛼0 as shown in Equation 

75: 

𝐶𝑗𝑞 + 𝐶𝑗𝛼̇ = (−1)𝑛
(𝐶𝑗± − 𝐶𝑗0 − 𝐶𝑗𝛼𝛼0)

𝑘𝛼𝑎𝑚𝑝
, 𝑛 = 0, 1, 2, …    (74) 

𝐶𝑗𝑞 + 𝐶𝑗𝛼̇ =
𝐶𝑗+ − 𝐶𝑗−

2𝑘𝛼𝑎𝑚𝑝
                                          (75) 

 

Figure 2.6: Pitching Moment Hysteresis Curve with respect to Angle of Attack 
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CHAPTER 3  

3 COMPUTATIONAL TEST CASES 

In this thesis, 3-D, unsteady, separated complex flow fields around missiles are 

investigated numerically by performing both steady-state and unsteady CFD 

simulations and by using the exact and approximate Riemann solvers. 

A generic missile geometry with basic planar fins [74] is used as an initial 

computational test case for validation and verification of the Exact Riemann (ER) 

solver by performing RANS and URANS CFD simulations. The free flight test 

conditions and the available validated free flight aerodynamic database [74] are used 

for comparison of the CFD simulations with the test data. 

A main computational test case for a generic missile geometry with wrap-around fins 

[1] is selected and the aerodynamic coefficients are investigated numerically in detail 

by performing RANS and DDES CFD simulations. The wind tunnel test conditions 

[1] are used for comparison of the CFD simulations with the available experimental 

data. 

In addition, in order to examine the effects of the Riemann solvers on unsteady 

aerodynamic simulations, two other test cases with available experimental data are 

selected for code validation and verification. The unsteady test cases are an airfoil in 

deep stall in subsonic incompressible flow case with separated flow fields and  an 

airfoil in transonic flow with supersonic flow pocket case with transonic buffeting. 

The selected computational test cases, the flow conditions and the numerical 

approaches used are summarized in Table 3.1. Details of each of these test cases, the 

model geometries and the computational grids generated with the grid independence 
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studies, and the flow conditions of test cases are explained in detail in the following 

sections of this Chapter. 

 

Table 3.1  Computational Test Cases, Flow Conditions and Numerical Approaches 

TEST CASES 

Flow Conditions 
Numerical 

Approaches 

Mach  

Number 

Angle of 

Attack 

Steady-State / 

Unsteady 

CFD 

Missile with Basic Fins 

(Basic Finner Geometry) 

(Dupuis, 2002 [74]) 

High Subsonic 

M = 0.766 & 

M = 0.934 

Low AoA 

α = 0°, 5°, 10° 

RANS / 

URANS 

Missile with WAFs 

(Dahlke Geometry) 

(Dahlke and Flowers, 

1974 [1]) 

High Subsonic 

M = 0.5-0.8 

Transonic 

M = 0.937, 

1.053, 1.1 

Low AoA 

 = 0° – 10° 

RANS / 

DDES 

NACA 0021 Airfoil 

(Swalwell, et al., 2003 

[75]) 

Low Subsonic 

M = 0.0947714 

Re = 270,000 

High AoA 

 = 60° 

- / 

DDES 

OAT 15A Airfoil 

(Joacquin, et al., 2009 

[80]) 

High Subsonic 

M = 0.73 

Re = 2.6E6 

Low AoA 

 = 3.9° 

RANS / 

URANS 
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3.1 Basic Finner Geometry 

Dupuis [74] performed a series of free flight experiments with a generic basic finner 

geometry as shown in Figure 3.1. After repeating of the same flight tests, Dupuis 

[74] used a multiple fit approach to minimize the error between the actual flight 

trajectory and the one obtained from the aerodynamic database by the multiple fit 

approach.  

 

Figure 3.1: Basic Finner: Missile Model Geometry with Basic Fins 

The basic finner geometry test case is used to validate the aerodynamic coefficients 

by an actual flight test instead of wind tunnel data in a generic missile geometry. The 

high subsonic test cases are performed for freestream Mach numbers of 0.766 and 

0.934 at sea level for understanding the effects of the turbulence models and the flux 

schemes for steady state cases. 

3.2 Dahlke Geometry 

A generic geometry of wrap-around fin missile is used in a wind tunnel test campaign 

by Dahlke. Four wrap-around fins at the tail are located so that the fins do not hold 

over each other inside the tube. In Figure 3.2 and 3.3, the dimensions of the generic 

missile geometry with WAFs and the numbering of the tail fins are shown, 
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respectively. For moment calculations, the centroid of the body is selected at 0.22 m 

from the nose. 

 

Figure 3.2: Missile with WAFs: Dahlke Missile Model Geometry with Wrap-

Around Fins 

 

Figure 3.3: Missile with WAFs: 4 Wrap-Around Fins numbered as Tail 1, Tail 2, 

Tail 3, and Tail 4 

The wrap-around tail fins induce a roll moment at different directions in subsonic 

and supersonic flows under sea level conditions. This case is selected for steady 

validation for different freestream Mach numbers and angles of attack by the wind 

tunnel tests [1]. In addition, the differences between Riemann solvers for steady and 

unsteady cases are illustrated by steady RANS and unsteady DDES simulations 
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3.3 NACA 0021 Airfoil in Deep Stall 

The flow separation with high Reynolds number far beyond stall angle of attack is a 

challenging CFD problem due to challenging physical phenomena such as vortex 

shedding and turbulence. The NACA 0021 has well documented unsteady test 

database including unsteady lift and drag history and average pressure coefficients 

that is performed by Swalwell et al. [75, 76]. For that reason, this test case is used as 

a CFD validation case. 

 

Figure 3.2: NACA 0021 Airfoil 

Swalwell, et al., [75] performed a set of wind tunnel tests for NACA 0021 airfoil 

with a chord length of 0.125 m with a chord length based Reynolds number of 

270,000 as shown in Figure 3.4. It corresponds to a freestream Mach number of 

0.0947714 for a pressure and temperature of 101325 Pa and 293 K, respectively. The 

documented unsteady data contain FFT spectrum of lift coefficient, the time 

averaged coefficient of pressure data on chord axis.   

At large angles of attack, the airfoils behave like a bluff body to cause large shedding 

vortices coupled with an asymmetry and pressure difference. In addition to the well 

documented unsteady data, the vortex shedding under large pressure gradient 

presents an important experimental case for validation and comparison of Exact 

Riemann (ER) solver by Roe’s Approximate Riemann solver (ROE). For that reason, 

the NACA 0021 test case at angle of attack of 60° is analyzed by both Exact Riemann 

solver and Roe’s Approximate Riemann solver. 
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3.4 OAT 15A Airfoil in Transonic Flow  

In transonic flow, shockwave boundary layer interaction coupled with flow 

separation may generate unsteady shock wave i.e. transonic buffeting. Transonic 

buffeting might have severe effects due to the vibrations on the blade or airfoil. For 

that reason, Joacqin et al. [80] performed a couple of wind tunnel tests to analyze the 

unsteady oscillations during transonic buffeting for OAT 15A airfoil with a chord 

length of 0.23 m as shown in Figure 3.5. 

 

Figure 3.3: OAT 15A Airfoil 

Joacquin et al. [80] performed the wind tunnel tests at 0.73 freestream Mach number 

with a chord length based Reynolds number of 2.9 x 106. It corresponds to a 

freestream pressure and temperature of 77000 Pa and 293.15 K, respectively. In 

order to compare the ability of Riemann solvers to detect unsteady shockwaves, this 

case with oscillatory shockwaves is performed. The maximum oscillation on the lift 

coefficient is observed at angle of attack of 3.9°. In addition to average coefficient 

of pressure distribution, a pressure probe is set in CFD cases to compare the peaks 

in the frequency domain with the experimental data. 
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CHAPTER 4  

4 RESULTS FOR MISSILE CFD SIMULATIONS 

In this Chapter, the results of the steady-state and unsteady CFD simulations for two 

selected missile geometries, one with the basic planar fins (Basic Finner Geometry) 

and one with the wrap-around fins (Missile with WAF: Dahlke Geometry) are 

presented. The RANS and URANS simulations are performed for the Basic Finner 

Geometry at Mach numbers of 0.766 and 0.934. The RANS and DDES simulations 

are performed for the Dahlke Geometry at Mach number of 0.5. The results are 

obtained by both Riemann solvers and compared with the available experimental 

data. 

4.1 CFD Simulations for Missile with Basic Fins 

Basic Finner geometry is a generic rocket with an aerodynamic database including 

dynamic coefficients which is fitted by a series of repeating tests for trajectory 

estimation under sea level conditions. For that reason, this geometry is investigated 

for comparing the aerodynamic derivatives with an explained grid convergency 

study based on a tetrahedral unstructured grid with a prismatic viscous layers.  

4.1.1 Grid Independence Study 

Spherical solution domain is contructed with a diameter of 6 meter that is 20 times 

larger than the missile length. There are two different locally refined volumes which 

cover tails and the wake region as shown in Figure 4.1. The grid convergency study 

is performed by four different grids with a refinement factor of 1.25 on each surface 

on the missile and refined volumes as shown in Table 4.1.  
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Figure 4.1: Basic Finner: Unstructured Grid 

 

Table 4.1 Basic Finner: Grid Independence Study for RANS Simulations 

Grids 
Number of 

Surface 

Cells 

Number of 

Volume 

Cells 

First Layer 

Thickness 

[m] 

Grid Size 

@ Tail  

[m] 

Grid Size  

@ Wake 

[m] 

Coarse 292682 15E+6 1E-6 8E-4 8E-4 

Medium 391676 21E+6 1E-6 6E-4 6E-4 

Fine 536808 25E+6 1E-6 5E-4 5E-4 

Finest 707028 29E+6 1E-6 4E-4 4E-4 

 

The grid convergency study is performed for ROE solver with Spalart-Allmaras (SA) 

turbulence model. The implicit time integration with a CFL number of 15.0 is 

performed for all grids. The surface y+ is kept below 1.0 as shown in Figure 4.2, for 

all grids with the first layer thickness of 1e-6 m and 30 viscous layers.  The residuals 

decrease minimum four order until the maximum iteration number of 5000 is 

achieved as shown in Figure 4.3 and Figure 4.4. 
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Figure 4.2: Basic Finner: y+ contours on the surface 

 

Figure 4.3: Basic Finner: Residual Plots for the Coarse and Medium Grids 
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Figure 4.4: Basic Finner: Residual Plots for the Fine and Finest grids 

Since there is no control surface on the basic finner generic geometry, a cant angle 

of two degree is applied between tails and the fuselage in order to have a flight 

stability by an induced roll moment. For that reason, the roll moment coefficient and 

axial force coefficient are plotted as shown in Figure 4.5 and 4.6. Since there is a 

difference of 0.7% and 1.0% on the axial force and roll moment coefficient 

respectively, the grid with 25 million cell size is used for further RANS cases. 
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Figure 4.5: Basic Finner: Axial Force Coefficient (CFx) Grid Dependency 

 

Figure 4.6: Basic Finner: Roll Moment Coefficient (CMx) Grid Dependency 

4.1.2 Steady-State Simulations: RANS Results 

Dupuis [74] derived the aerodynamic coefficients by multiple data reduction 

technique in which the time dependent data such as time, position and angles are 

used to derive static and dynamic aerodynamic coefficients by imposing linear 

theory and six degree of freedom analyses [29]. In Table 4.2 and 4.3, the static 
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aerodynamic coefficients are shown for free flight (FF) multiple fit data and RANS 

results of Exact Riemann (ER) solver and ROE solver with Spalart-Allmaras (SA) 

and Menter’s k-ω Shear Stress Transport (SST) turbulence model. The largest 

difference is observed for the axial force coefficient at angle of attack of 0°. It is 

expected to be due to the effect of turbulence model on the axial force coefficient. 

 

Table 4.2 Basic Finner - RANS Results: Aerodynamics Coefficients at M = 0.766 

Methods M Re CFx0 
CFzα  

[rad-1] 

CMyα 

[rad-1] 

CP 

[mm] 

FF 0.766 5E5 0.508 16.70 -40.80 238.3 

ER-SA 0.766 5E5 0.618 16.64 -44.94 245.9 

ROE-SA 0.766 5E5 0.623 15.96 -38.06 246.4 

ROE-SST 0.766 5E5 0.546 15.94 -43.50 246.9 

ER-SST 0.766 5E5 0.547 16.04 -43.02 245.4 

 

 

Table 4.3 Basic Finner - RANS Results: Aerodynamics Coefficients at M = 0.934 

Methods M Re CFx0 
CFzα 

[rad-1] 

CMyα 

[rad-1] 

CP 

[mm] 

FF 0.934 6.1E5 0.669 18.30 -47.20 222.6 

ER-SA 0.934 6.1E5 0.897 17.76 -50.27 249.8 

ROE-SA 0.934 6.1E5 0.893 17.81 -50.45 250.0 

ROE-SST 0.934 6.1E5 0.786 17.73 -50.16 249.8 

ER-SST 0.934 6.1E5 0.790 17.71 -50.11 249.9 

 



 

 

49 

Since the normal force coefficient (CFz) is more sensitive to surface pressure 

distribution than that of axial force coefficient (CFx), the inviscid flux scheme 

becomes dominant for normal force coefficient calculations. CFzα is the derivative of 

normal force coefficient with respect to the angle of attack. The results of the Exact 

Riemann solver are in 0.36% and 2.95% error range for Mach numbers of 0.766 and 

0.934, respectively. 

The static stability coefficient CMyα is the derivative of pitching moment with respect 

to angle of attack. As shown in Table 4.2 and Table 4.3, calculated CMyα is in 10.15% 

and 6.8% error range for Mach numbers of 0.766 and 0.934, respectively. In spite of 

its magnitude, the moment arm vector from the center of pressure to the center of 

gravity might cause large error band in CMyα calculations. For that reason, center of 

pressure calculation that shows 7.6 mm difference with respect to free flight data for 

Mach number of 0.766 is performed to check moment arm length difference. The 

center pressure is in 2.53% error range when it is nondimensionalized by the basic 

finner geometry length. The error in the center of pressure increases as the Mach 

number is increased to 0.934 due to the deviation from turbulence models at larger 

Reynolds numbers. In Figure 4.7 and Figure 4.8, pressure and Mach contours around 

the basic finner geometry are shown at varying angle of attack, respectively. 
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a) α = 0° 

 

b) α = 5° 

 

c) α = 10° 

Figure 4.7: Basic Finner: Pressure contours at sea level for M = 0.766 at different 

angles of attack of α = 0°, 5°, 10° 
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a) α = 0° 

 

b) α = 5° 

 

c) α = 10° 

Figure 4.8: Basic Finner: Mach contours at sea level for M = 0.766 at different 

angles of attack of α = 0°, 5°, 10° 
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4.1.3 Unsteady Simulations: URANS Results for Dynamic Coefficients 

Dupuis [74] derived also the dynamic aerodynamic coefficients by multiple fitting 

technique to the free flight data. The pitch damping coefficient term derivation 

through CFD is performed by imposing a forced pitching motion as shown in Figure 

2.5a. The missile diameter is used as characteristic length for determining the 

required frequency from a reduced frequency of 0.05 as shown in Table 4.4. 

Since the converged RANS result is used as initial condition in URANS case, the 

pattern of pitching moment coefficient 𝐶𝑀𝑦 and normal force coefficient 𝐶𝐹𝑧 start to 

have sinusiodal shapes after tens of iterations as shown in Figure 4.9 and 4.10. The 

hysteresis curve of the pitching moment coefficient based on angle of attack has a 

repeatable pattern as shown in Figure 4.11. For that reason, the mean angular 

displacement method is also used in 𝐶𝑀𝑞 + 𝐶𝑀𝛼̇ calculation as shown in Figure 4.11. 

The 𝐶𝑀𝑞 + 𝐶𝑀𝛼̇ calculation, the combination of the pitch damping coefficient and 

the dynamic stability coefficient, is performed by both mean angular displacement 

and integration over period method as shown in Table 4.5. As shown in Figure 4.12, 

there is no difference between converged results for single and double period 

integration methods. Although the results have a discrepancy of 2-4% from other 

CFD works in the literature [78, 80], there is a wide range of gap between the free 

flight multiple fit data by Dupuis [74]. Since the combination of the pitch damping 

coefficient and the dynamic stability coefficient (𝐶𝑀𝑞 + 𝐶𝑀𝛼̇) is calculated from time 

average of each cycle, the possible behaviour in free flight may not indicate full cycle 

time average precisely. 

 

Table 4.4 Basic Finner - URANS: CFD Simulation Parameters at M = 0.766 

Methods Re 
Time Step 

[sec] 

Omega 

[rad/s] 

Amplitude 

[deg] 

URANS 5E5 36E-6 876.304 0.5 
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Figure 4.9: Basic Finner: Normal Force Coefficient (CFz) vs Time  

in Forced Pitching using ER Solver 

 

Figure 4.10: Basic Finner: Pitching Moment Coefficient (CMy) vs Time  

in Forced Pitching using ER Solver 
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Figure 4.11: Basic Finner: Pitching Moment Coefficient Hysteresis Curve  

(CMy vs 𝛼) in Forced Pitching using ER Solver 

 

Table 4.5 Basic Finner - URANS Results: (𝐶𝑀𝑞 + 𝐶𝑀𝛼̇) Calculations 

Methods 
𝐶𝑀𝑞 + 𝐶𝑀𝛼̇ 

[rad-1] 

Single Period Integration Method -513 

Double Period Integration Method -513 

Mean Angular Displacement Method -518 

Single Period Integration Method [78] -487 

Single Period Integration Method [80] -498 

Dupuis Method [72] -224 
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Figure 4.12: Basic Finner: Pitch Damping Coefficient (𝐶𝑀𝑞 + 𝐶𝑀𝛼̇) vs Time  

in Forced Pitching using ER Solver 

4.1.4 Summary and Discussions 

In this test case, the static aerodynamic coefficients are calculated by both Riemann 

solvers by RANS simulations. Since the unsteady effects are completely modeled by 

eddy viscosity in RANS cases, there is no notable difference between Riemann 

solvers on static aerodynamic coefficients. The pitch damping coefficient is 

calculated by mean angular displacement and integration method techniques. 

Although the results have a discrepancy of 100% with the free flight data, there is a 

discrepancy range of 2-4% with the available results in the literature [78, 80]. This 

case is used to emphasize that there is no effect of the Riemann solver in steady 

cases. 
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4.2 CFD Simulations for Missile with Wrap-Around Fins 

A generic geometry of a wrap-around fin missile is tested by Dahlke in wind tunnel 

test campaign in which the induction of roll moment and its response to increasing 

freestream Mach number are investigated experimentally. A numerical approach 

starting from grid dependency is pursued in order to have understanding the variation 

of roll moment induction under increasing angles of attack. In the final section, 

DDES case is performed for comparing the differences between Roe’s Approximate 

Riemann solver and the Exact Riemann solver. 

4.2.1 Grid Independence Study 

The spanwise dimension contructed with a diameter of 12 meter that is 12 times 

larger than the missile length. There are three different locally refined volumes which 

cover nose, tails and the wake region as shown in Figure 4.13. The grid convergency 

study is performed by four different grids with a refinement factor of 1.25 on each 

surface on the missile and refined volumes as shown in Table 4.6. 

 

Figure 4.13: Missile with WAFs: Unstructured Grid  
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The first layer thickness is kept as 2e-6 meter for having a y+ below 1.5 for majority 

of the surface grid as shown in Figure 4.14. The surface of the missile is covered by 

maximum 36 viscous layers with a growth ratio of 1.25. Viscous layer addition is 

automatically stopped when the volume ratio of 1.5 is achieved with the adjacent 

tetrahedral cell after the addition of first layer. 

 

Figure 4.14: Missile with WAFs: y+ contours on the surface grid 

Roe’s Approximate Riemann solver is used in the grid convergency case with 

Spalart-Allmaras turbulence model. The implicit time integration is used for having 

a CFL number of 15.0 for easier convergence. The residuals decrease three order 

after 4000 iterations as shown in Figure 4.15-4.18.  

Table 4.6 Missile with WAFs: Grid Independence Study for RANS Simulations 

Grids 
Number of 

Surface 

Cells 

Number of 

Volume 

Cells 

First Layer 

Thickness 

[m] 

Grid Size  

@ Tail 

[m] 

Grid Size  

@ Wake 

[m] 

Grid Size  

@ Nose 

[m] 

Coarse 223698 10E+6 2E-6 5E-3 5E-3 5E-3 

Medium 381488 16E+6 2E-6 4E-3 4E-3 4E-3 

Fine 540660 24E+6 2E-6 3E-3 3E-3 3E-3 

Finest 791652 36E+6 2E-6 2E-3 2E-3 2E-3 
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Figure 4.15: Missile with WAFs: Residual plots for coarse grid 

 

Figure 4.16: Missile with WAFs: Residual plots for medium grid 
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Figure 4.17: Missile with WAFs: Residual plots for fine grid 

 

Figure 4.18: Missile with WAFs: Residual plots for finest grid 
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Figure 4.19: Missile with WAFs: Roll Moment Coefficient Grid Dependency 

 

Figure 4.20: Missile with WAFs: Axial Force Coefficient Grid Dependency 

Monotone decrease is achieved in both roll moment and axial force coefficients as 

shown in Figure 4.19 and 4.20.  Since the change in the aerodynamic coefficient is 

less than 0.2% in both roll moment and normal force coefficients, the fine grid is 

used in further analyses. 
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4.2.2 Roll Induction for Missiles with Wrap-Around Fins 

The wrap-around fins are in wrapped position inside the launch tube, there is no need 

to have a closure slots on the body as it is required for traditional tail fins. For those 

reasons, the illustration of roll induction mechanism for the wrap-around tail fins that 

are preferred in subsonic tactical missiles is of paramount importance 

 

Figure 4.21: Missile with WAFs: Roll Induction in Subsonic Flow 

The roll induction mechanism is associated with the behavior of streamlines in Euler 

equations due to the no through boundary condition. Each wrap-around fin distracts 

all the streamlines around its body such that the streamlines are separated as 

decentralized and centralized on the upper and lower regions of the fin, respectively, 

as shown in Figure 4.21. 

Since the vertical area is decreasing between the streamlines in the centralized 

region, the relative velocity is expected to increase whereas the pressure decreases. 

The same aerodynamic phenomenon occurs inversely for the decentralized region. 

Thus, a pressure difference occurs from decentralized to centralized region from 

upper to lower surface of the fin. At zero angle of attack flight condition, the net 

forces cancel out each other while inducing a moment in the x direction. Therefore, 

a roll moment is induced in the x direction while there is no net force in y and z 
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directions. Abate used a converging diverging nozzle analogy to explain the roll 

moment induction and shift of direction in supersonic flows [12].  

4.2.2.1 Effects of Mach Number 

The effect of Mach number on roll moment coefficient in subsonic regime has 

tendency to increase the roll moment coefficient until transonic effects appears 

around Mach number of 0.8. Since the converging-diverging analogy of Abate 

requires sign shift of roll moment under supersonic conditions, the transonic effects 

make the sign reversal of the coefficient in a more continuous manner [12]. 

 

Figure 4.22: Missile with WAFs: Comparison of CFD results with Dahlke wind 

tunnel tests 

In Figure 4.22, the wind tunnel results of Dahlke’s geometry with the CFD results 

are compared. Dahlke added an uncertainty of measured cant angle sensitivity of 

0.1° which corresponds to a magnitude of 0.005 – 0.002 in terms of CMx coefficients 

as specified error bars.  
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The discrepancy is smaller in the Exact Riemann solver coupled with k-ω SST 

turbulence model than Spalart-Allmaras. In subsonic Mach numbers, the results 

between Roe’s Approximate Riemann solver and the Exact Riemann solver show a 

small difference that might be due to the small dissipation of Roe’s Approximate 

Riemann solver due to the entropy fixing as shown in Figure 4.23 and 4.24. 

  

Figure 4.23: Missile with WAFs: Mach Contours at M = 0.6 for  

(a) Exact Riemann (b) Roe’s Approximate Riemann solver with SA 

  

Figure 4.24: Missile with WAFs: Mach Contours at M = 0.6 for 

 (a) Exact Riemann and (b) Roe’s Approximate Riemann solvers with k-ω SST 

The Mach contour plots for the results of RANS simulations for the missile with 

WAFs at different Mach numbers (M = 0.6, 0.937, 1.053, and 1.1) are shown in 

Figures 4.25 and 4.26 for different turbulence models. The results are also obtained 

with both the Exact Riemann (ER)  and Roe’s Approximate Riemann (ROE) solvers 

and by using Spalart-Allmaras (SA) and k-ω SST turbulence models. As the Mach 

number is increased from high subsonic condition (M = 0.6) to the transonic 
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conditions (M = 0.937, 1.053, and 1.1), the flow fields with shock waves are 

observed from the Mach contours in the Figures 4.25 and 4.26 as expected. Smaller 

differences can be observed with ER and ROE solvers and also with SA and k-ω 

SST turbulence models, especially in the separated wake regions. 

The pressure coefficient distribution for Mach number of 1.1 is plotted in Figure 

4.27. The inverse symmetricity between the midspan of the Tail 3 and Tail 1 is visible 

due to angle of attack of 0° as shown in Figure 4.27. Coefficient of pressure in the 

mid span of the Tail 3 is plotted in Figure 4.28. The upper section and lower section 

denotes the larger and smaller z coordinates, respectively. The shock waves are 

distinguished in terms of coefficient of pressure whereas there is no notable 

difference for different turbulence models and Riemann solvers. 

The asymmetry between the upper and lower sections are clear as shown in Figure 

4.28. The shock waves in the upper section are not as strong as in lower section due 

to the strong concavity in the upper section. Nevertheless, the subsonic flow after the 

shock wave caused another acceleration inside the concavity that leads to another 

subsequent shock wave. Although similar shock wave patterns can be observed on 

both sides of the tails, the difference of concavity leads to asymmetric pattern and 

roll induction even at an angle of attack of 0°. 
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(a) M = 0.6 

   

(b) M = 0.937 

   

(c) M = 1.053 

   

(d) M = 1.1 

Figure 4.25: Missile with WAFs: Mach contours for different Mach number flow 

conditions at M = 0.6, 0.937, 1.053, and 1.1 for RANS simulations with SA 

turbulence model by using ER (left) and ROE (right) Riemann solvers 



 

 

66 

   

(a) M = 0.6 

   

(b) M = 0.937 

   

(c) M = 1.053 

   

(d) M = 1.1 

Figure 4.26: Missile with WAFs: Mach contours for different Mach number flow 

conditions at M = 0.6, 0.937, 1.053, and 1.1 for RANS simulations with k-ω SST 

turbulence model by using ER (left) and ROE (right) Riemann solvers  
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Figure 4.27: Missile with WAFs: Pressure Coefficient Distribution at M = 1.1  

Exact Riemann solver with Spalart-Allmaras  

 

Figure 4.28: Missile with WAFs: Pressure Coefficient vs Chord along Midspan on 

Tail 3 
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4.2.2.2 Effects of Angle of Attack 

The effect of angle of attack on the roll moment coefficient is examined by a series 

of CFD analyses for angle of attack between 0° and 10°. Implicit density based 

coupled solver settings are used with Spalart-Allmaras turbulence model. Surface 𝑦+ 

values are kept smaller than 1 on wall boundary conditions and no wall function is 

used. The standard Roe scheme [27] without low dissipation is chosen as the 

convective numerical method. GMRES linear solver with ILU preconditioner is 

chosen with 25 maximum number of iterations for the implicit solver. The side slip 

angle β is not taken into consideration due to its generation of roll moment even for 

planar fins under asymmetric flight conditions due to the body blockage effect over 

the tails. 

In Figure 4.29 and 4.30, the normal force coefficient and roll moment coefficient 

variation with the angle of attack are shown at a freestream Mach number of 0.5, 

respectively. The normal force coefficient has linear variation with respect to angle 

of attack as expected from the literature [2, 5]. On the other hand, the variation of 

roll moment coefficient with angle of attack loses linearity particularly for angle of 

attack larger than 6° as shown in Figure 4.30.  

Due to the nonlinearity in the roll moment coefficient, the missile roll moment 

coefficient are decomposed with respect to the tail numbering in Figure 3.2. Since 

the positive angle of attack is applied on the positive z direction, the roll moment of 

Tail 1 and Tail 3 have different signs but close to each other in magnitude. For that 

reason, their resultant contribution is taken into the account in the calculations as 

shown in Figure 4.31. 

As expected, body has no contribution to the roll moment due to its symmetricity 

and short moment arm in the roll direction. The contribution from Tail 2 shows more 

linear tendency with respect to the Tail 1+3 and Tail 4.  
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Figure 4.29: Missile with WAFs: Normal Force Coefficient (CFz)  

vs Angle of Attack at M = 0.5 

 

Figure 4.30: Missile with WAFs: Roll Moment Coefficient (CMx)  

vs Angle of Attack at M = 0.5 
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Figure 4.31: Missile with WAFs: Partial CMx contributions of body parts (Body 

only, Tail 1 and 3, Tail 2 only and Tail 4 only) at M = 0.5 

Since the air velocity is higher on the inner section of the wrap-around fin, the 

pressure is lower on that section. However, as the air velocity gains a component 

towards the inner section, it increases the pressure over that region as shown in 

Figure 4.32 due to the fact that the air flow expands in inner section and compresses 

in outer section as shown in Figure 4.33. 

 

 

Figure 4.32: Missile with WAFs: Velocity decomposition on Tail 2 in a nonzero 

Angle of Attack 
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Figure 4.33: Missile with WAFs: Expansion and compression in Tail 2 in a 

nonzero Angle of Attack 

Therefore, the lateral velocity component causes local pressure increase to supress 

the pressure decrease by the axial velocity component. For that reason, roll moment 

contribution of Tail 2 gains an inverse tendency with respect to the angle of attack 

of  0° orientation. Therefore Tail 2 changes its sign as the angle of attack increases. 

The inverse of this phenomenon occurs for Tail 4 with an increasing tendency. 

However, Tail 4 has a nonlinearity at larger angle of attack unlike Tail 2 due to the 

body blocking effect. Due to the body blockage, Tail 4 indicates a nonlinearity at 

angle of attack of 10°. 

The contribution from Tail 1+3 has less deterministic nature than the others. Since 

the Tail 1 produces a negative force with respect to the angle of attack direction, the 

increasing angle of attack reduces the stall margin and vice versa for Tail 3. For that 

reason, the local separation regions over those fins are less anticipated than the 

others. 

Since Tail 3 produces positive lift at zero angle of attack unlike Tail 1, at positive 

angle of attack the contribution from Tail 3 is always larger than that of Tail 1. For 

that reason, their moments with respect to missile axis are not equal to each other 

even if they have the same moment arm. 

The moment arm on Tail 1 and Tail 3 is the point where the center of pressure exists. 

Since the flow separation on the tails are varying due to the wrap-around shape, 

center of pressure on Tail 1 and Tail 3 are different unlike planar fins. 
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Figure 4.34: Missile with WAFs: Mach contours using DES (M = 0.5, α = 10°) 

In Figure 4.34, the flow separation asymmetry on Tail 3 can be seen in the Mach 

number contours from DES analyses. In the tip of the wrap-around fin, the flow is 

attached to the wall since the local angle of attack is higher with respect to midspan 

section on Tail 3. At different angles of attack, the asymmetric flow separation 

changes i.e. the shift of moment arm and center of pressure. Since this shift is 

different in Tail 1 and Tail 3, time averaged and instantaneous roll moments are 

different. For that reason, roll moment is induced and varies nonlinearly with the 

angle of attack. 

4.2.3 DDES Results of Missile with WAFs 

The comparison of Roe’s Approximate Riemann solver and the Exact Riemann 

solver is performed for a DDES case with angle of attack of 10°. Component based 

and missile based FFT spectrum is applied to explain the aerodynamic 

characteristics. 
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4.2.3.1 Grid Independence Study  

The integral scale of the turbulence is calculated for k-ε and k-ω turbulence models 

as shown in Equation 76 where k is the turbulent kinetic energy, ε is the rate of 

dissipation of turbulent kinetic energy and Cμ is the constant of 0.09 [33]. 

𝑙𝜀 =
𝑘
3
2⁄

𝜀
=
𝑘
3
2⁄

𝐶𝜇𝑘𝜔
=
√𝑘

𝐶𝜇𝜔
                                                (76) 

RANS based grid index is determined by the ratio of integral scale to the average 

cell size that is approximated by the cubic root of cell volume as shown in Equation 

77. 

𝑟𝑙𝜀 =
𝑙𝜀

√∆
3 =

𝑘
3
2⁄

𝐶𝜇𝑘𝜔√∆
3 =

√𝑘

𝐶𝜇𝜔√∆
3                                                 (77) 

The solution domain is generated by increasing the localized volumes by four times 

based on the finest grid in the grid convergency study as shown in Table 4.7. 

Table 4.7 Missile with WAF: Grid Independence Study for DDES Simulations 

Grids 
Number of 

Surface 

Cells 

Number of 

Volume 

Cells 

First Layer 

Thickness 

[m] 

Grid Size  

@ Tail 

[m] 

Grid Size  

@ Wake 

[m] 

Grid Size  

@ Nose 

[m] 

Finest 791652 36E+6 2E-6 2E-3 2E-3 2E-3 

DDES 

Grid 

791652 81E+6 2E-6 5E-4 5E-4 2E-3 

 

Instead of having a locally refined region around the tails, one larger cylinder is 

generated to cover all the turbulent eddies around the tails as shown in Figure 4.35 

and 4.36. More than 80% of the turbulent kinetic energy from the shed vortices is 

resolved for the regions where the RANS index is larger than 4.8. 
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Figure 4.35: Missile with WAFs: RANS/LES index change along the tail 

percentage of chord from leading edge (LE) to trailing edge (TE) 

 

Figure 4.36: Missile with WAFs: RANS/LES index change in the wake and tail 

downstream at the mid-section vertical plane 
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4.2.3.2 DDES Simulations: Riemann Solvers Comparison 

Since the average length of cells inside the refined volume is equal to 5e-4 meter, 

the time step is taken as 5e-6 for having a CFL number below unity when freestream 

is equal to 171 m/s. Dual time stepping with second order temporal accuracy is used 

with 25 inner iterations at each physical time step.  

 

Figure 4.37: Missile with WAFs: CFx signal in time domain 

 

Figure 4.38: Missile with WAFs: CFy signal in time domain 
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Figure 4.39: Missile with WAFs: CFz signal in time domain 

17499 physical time iteration is applied for both Riemann solvers in a Delayed 

Detached Eddy Simulation. First 2000 iterations are omitted from the data sampling 

process i.e. the time required for more than one missile length. The data sampling is 

performed for 15499 samples with a time length of 0.0775 second that is thirteen 

times larger than missile length divided by the freestream velocity as shown in Figure 

4.37-39. 

In order to check the repeatability, FFT is performed to CFz signal by separating 

signal time domain into the two halves as shown in Figure 4.40 and 4.41. In the Exact 

Riemann (ER) solver, the peak in 0.25 Strouhal number is consistent in both halves 

whereas another inconsistency arises around 0.15 Strouhal number in the second 

half. Since they are very close to each other, the frequency resolution increase by 

sampling more data can change this inconsistency. On the other hand, the peaks in 

Roe’s Approximate Riemann solver are smaller than half of the peaks in the Exact 

Riemann solver. 
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Figure 4.40: Missile with WAFs: Comparison of two halves in FFT spectrum (ER) 

 

Figure 4.41: Missile with WAFs: Comparison of two halves in FFT spectrum 

(ROE) 

The comparison of the Exact Riemann solver and Roe’s Approximate Riemann 

solver is performed for CFz signal as shown in Figure 4.42. The consistent peak 

around the 0.25 Strouhal number is not shown in Roe’s Approximate Riemann 
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solver. Due to the lack of experimental data, experimental validation is not possible 

from the literature. However, the distinction between Riemann solvers indicates that 

the harmonic frequencies in the Exact Riemann solver are smaller with a larger 

amplitude.  

 

Figure 4.42: Missile with WAFs: FFT spectrum of CFz signal 

The oscillations in Tail 3 is larger than Tail 1 due to the stronger shed vortices on the 

suction side of Tail 3 by the centralized streamlines in subsonic flow as shown in 

Figure 4.43 and 4.44. ROE solver has no distinctive property to calculate the flux 

based on the existing weak solutions. Since the weak solutions can only exist in 

unsteady cases for subsonic flows, the differences between the Riemann solvers 

changes as the unsteady effects increases. It explains why the Tail 3 has larger peaks 

than Tail 1 because the higher effective angle of attack causes stronger shed vortices 

and unsteady effects. 
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Figure 4.43: Missile with WAFs:  FFT Spectrum Comparison (Tail 1) 

 

Figure 4.44: Missile with WAFs: FFT Spectrum Comparison (Tail 3) 

4.2.3.3 DDES Simulations: Aerodynamic Interpretation 

In Figure 4.47 and 4.48, the instantaneous streamlines and Mach contours around the 

Tail 1 and Tail 3 are shown. Since the time averaged normal force is larger on Tail 
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3, the tip vortices are stronger in Tail 1 than that of Tail 3. It is due to the fact that 

the Tail 3 has a larger effective angle of attack than Tail 1 as explained by de Laval 

nozzle analogy. 

The wake region of the missile has low pressure region in the flow field. Since the 

flow under the wrap-around fin has high pressure, it causes interaction with the wake 

region. However, the larger tip vortex in Tail 3 causes less interaction with the wake 

region due to the stronger wing tip vortices in Tail 3 as shown in Figure 4.45 and 

4.46. 

In the root section, the difference between tails is negligible whereas it increases as 

going to the tip section from the root due to the dominance of the pressure gradient 

from the wake region for the suction section. In the pressure side, the streamlines in 

the root section changes their route towards the mid span because of the higher 

pressure in the midspan on the pressure side. 

The flow separation around the midspan is more severe in Tail 3 than Tail 1. 

However, its interaction with the wake region is negligible unlike Tail 1 as shown in 

Figure 4.45 and 4.46. Instead, the separation region has more interaction with the 

unseparated regions closer to the tip section where the pressure gradient is larger 

than the wake region. 
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(a)  t = 4.5e-4 s       (b)  t = 9e-4 s 

Figure 4.45: Missile with WAFs: Time accurate DDES Simulations: Instantaneous 

streamlines at t = 4.5e-4 s and t = 9e-4 s around the tip, mid, and root regions of 

wrap-around fins and Mach contours at the centerline cut plane. 
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(a)  t = 13.5e-4 s       (b)  t = 18e-4 s 

Figure 4.46: Missile with WAFs: Time accurate DDES Simulations: Instantaneous 

streamlines at t = 13.5e-4 s and t = 27e-4 s around the tip, mid, and root regions of 

wrap-around fins and Mach contours at the centerline cut plane. 
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(a) t = 9e-4 s 

 

(b) t = 18e-4 s 

Figure 4.47: Missile with WAFs: Time accurate DDES Simulations: Instantaneous 

Q-criterion iso-surfaces over Tail 1 (left) and Tail 3 (right) 
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(a) t = 9e-4 s 

 

(b) t = 18e-4 s 

Figure 4.48: Missile with WAFs: Time accurate DDES Simulations: Instantaneous 

coefficient of pressure iso-surfaces over Tail 1 (left) and Tail 3 (right) 
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(a) t = 9e-4 s 

 

(b) t = 18e-4 s 

Figure 4.49: Missile with WAFs: Time accurate DDES Simulations: Instantaneous 

coefficient of pressure distribution over Tail 1 (left) and Tail 3 (right) 
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The isosurfaces are generated for DDES case for having a comparison between the 

tails where the flow separation and pressure distribution are different. The pressure 

is smaller on Tail 3 suction surface as shown in Figure 4.47 and Figure 4.48. Due to 

the lower pressure, the wingtip vortex size is larger on the tip of Tail 3 than that of 

Tail 1. In Figure 4.49, the distribution of pressure coefficient over the surfaces are 

shown over the tails suction side. Wrap-around fin geometry caused more pressure 

decrease on Tail 3 than that of Tail 1 as expected from the de Laval analogy. 

4.2.4 Summary and Discussions  

The roll induction mechanism is explained by RANS simulations depending on the 

angle of attack and freestream Mach number. The nonlinear variation of roll moment 

coefficient is explained by partial contribution of different tails. In order to 

understand the nonlinear flow separation over the wrap-around fins, DDES case is 

performed by both Riemann solvers for freestream Mach number of 0.5 with an angle 

of attack of 10°. The amplitudes and frequencies in the dominant modes are three 

times smaller in frequency and two times larger in Exact Riemann solver. Due to the 

absence of unsteady wind tunnel data, two unsteady validation cases are performed 

in the following sections for subsonic and transonic flow conditions in the next 

Chapter. 
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CHAPTER 5  

5 RESULTS FOR AIRFOIL CFD SIMULATIONS 

In this chapter, the results of the airfoil CFD simulations for two selected validation 

test cases are presented to investigate the Riemann solvers. Due to the absence of an 

unsteady experimental validation test case in the missile simulations, the two 

different unsteady validation test cases available for NACA 0021 and OAT 15A 

airfoils are analyzed by both ER and ROE Riemann solvers. The DDES simulation 

is performed for NACA 0021 airfoil in deep stall condition with angle of attack of  

60° and Reynolds number of 270,000. The URANS simulation is performed for OAT 

15A airfoil in transonic buffeting condition with angle of attack of 3.9° and Mach 

number of 0.73. 

 

5.1 NACA 0021 Airfoil in Deep Stall 

Swalwell, et al., [75] performed a detailed wind tunnel study with the NACA 0021 

Airfoil with chord based Reynolds number of 270,000. Molina et al. [77] performed 

a DDES study with Roe’s Approximate Riemann solver coupled with Ducros shock 

sensor to detect the weak solutions. Based on the experimental study of Swalwell, et 

al., [75], three different grids are used to validate the average cp over the chordwise 

direction and the Strouhal number based FFT spectrum of lift coefficient is compared 

with the DDES Results of Roe’s Approximate Riemann solver and the Exact 

Riemann solver. 
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5.1.1 Grid Independence Study 

The spanwise dimension is set to two chord length for ensuring that the largest 

vortical size that is equal to chord length can be resolved properly. The diameter of 

the cylindrical solution domain is set to 5 meter that is equal to 22 chord length 

approximately. The first layer cell thickness is set to 3e-6 meter to ensure that the 𝑦+ 

is kept below 1.0 along the airfoil surface. 30 viscous layers are used in the structured 

grid near the airfoil surface. The grid cross section and surface grid are as shown in 

Figure 5.1 - 5. 3.  

In the grid dependency, the refinement factor of 1.5 is used in azimuthal and radial 

directions as shown in Table 5.1.  

The grid convergency study is performed for the time average of center of pressure 

along the central section of the airfoil surface due to the unsteady nature of the flow 

conditions. Roe’s Approximate Riemann solver is used in grid convergency study 

for computational advantage. Due to the smaller unsteady effects, the differences are 

smaller in the lower section of the airfoil as shown in Figure 5.4 

 

 

Figure 5.1: NACA 0021 Airfoil: Cylindrical Computational Domain and 

Unstructured Grid 
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Figure 5.2: NACA 0021 Airfoil: Unstructured Grid 

 

Figure 5.3: NACA 0021 Airfoil: Rectangular Surface Mesh 
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Table 5.1 NACA 0021 Airfoil: Grid Independence Study 

Grids 
Number of 

Grid Points 

Nr 

Number of 

Grid Points 

Nθ 

Number of 

Grid Points 

Nz 

First Layer 

Thickness 

[m] 

Coarse 102 98 38 3E-6 

Medium 151 150 38 3E-6 

Fine 226 222 38 3E-6 

 

 

 

Figure 5.4: NACA 0021 Airfoil - RANS Results: Time-Averaged Pressure 

Coefficient Distribution 
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5.1.2 Results of DDES Simulations 

DDES (Delayed Detached Eddy Simulation) case is restarted from two order 

converged steady RANS analysis. Dual time stepping is performed until the relative 

residual is decreased at least two orders. The time step is set to 2e-6 seconds that 

ensures a CFL number below one for the cells after the viscous layer and the further 

cells from the airfoil section. The FFT analyses are performed after 175000 iterations 

that is equal to physical time of 0.35 seconds as shown in Figure 5.5. 

Figure 5.6 presents the frequency spectrum of the lift coefficient and their 

comparison with the experimental data for the Exact Riemann solver. As shown in 

Figure 5.6, the Exact Riemann solver could capture the first shedding frequency. 

However there is a gap between the amplitudes due to insufficient frequency 

resolution. 

In order to highlight the difference between the Exact Riemann solver and Roe’s 

Approximate Riemann solver, standard Roe scheme is used without any low 

dissipation function such as Ducros or Travin sensors. Although Roe’s Approximate 

Riemann solver could capture the first and second harmonic, it is not as accurate as 

Exact Riemann solver in general frequency domain as shown in Figure 4.46. It can 

be concluded that the detected weak solutions have a larger impact as the shed vortex 

frequencies are getting away from the harmonics. The time averaged pressure 

coefficient indicates a good accuracy for both Riemann solvers as shown in Figure 

5.7 and 5.8. 
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Figure 5.5: NACA 0021 Airfoil - DDES Results: Time History of Lift Coefficient  

using Exact Riemann (ER) and Approximate Riemann (ROE) Solvers 
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Figure 5.6: NACA 0021 Airfoil - DDES Results: FFT spectrum - Lift Coefficient 

vs Strouhal number (St) using Exact Riemann (ER) and Approximate Riemann 

(ROE) Solvers 

 

Figure 5.7: NACA 0021 Airfoil - DDES Results: Time-Averaged Pressure 

Coefficient Distribution using ER Riemann solver 
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Figure 5.8: NACA 0021 Airfoil - DDES Results: Time-Averaged Pressure 

Coefficient Distribution using ROE Riemann solver 

5.1.3 Computational Performance 

DDES simulations are performed by using the National HPC TRUBA 

Supercomputing resources with the Hamsi server that contains Intel(R) Xeon(R) 

Gold 6258R CPU 2.70 GHz processors with 56 cores in each node. In order to avoid 

the disturbing effect of some instantaneous peaks due to the hardware, moving 

average of 5000 iterations are calculated for comparison. In Figure 5.9, the 

computational performance of both Riemann solvers showed that the average 

computational time of Exact Riemann solver is 1.8 – 1.9 times longer than Roe’s 

Approximate Riemann solver as expected from Toro’s results in the literature [31]. 
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Figure 5.9: NACA 0021 Airfoil - DDES Results: Computational Performance of 

ER and ROE Methods by taking moving-average of 5000 iterations 

5.2 OAT 15A Airfoil in Transonic Flow 

Joacquin et al. [80] performed a set of wind tunnel tests for analyzing the unsteady 

transonic buffeting due to the shock boundary layer interaction at high subsonic flow 

conditions. Since Einfeldt [30] mathematically proved that the difference between 

approximate and exact Riemann solvers increases in low density and transonic flows, 

this transonic case at Mach number of 0.73 is chosen as the unsteady configuration 

test case. 

5.2.1 Grid Independence Study 

A two dimensional test case is used in a grid convergence study for the selection of 

grid that is used in URANS case for unsteady validation. The diameter of the 

cylindrical solution domain is set to 9.2 meter that is equal to 40 chord length as also 

implemented by Molina et al. [77]. The first layer cell thickness is set to 3e-6 m to 

ensure that the 𝑦+ is kept below 1.0 along the airfoil surface similarly as shown in 
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Table 5.1. The cell sizes are decreased by the factor of 0.7 that gives a number of 

cell increase as a factor of 2.0 between consecutive grids. Since the number of 

viscous layers are different in each cell for having an area ratio close to 1.0, the exact 

cell size of grids are not precisely equal to 2.0 as shown in Figure 5.10- 5.11. 

The grid convergency check is used for the grids listed in Table 5.2. In the 

simulations k-ω SST turbulence model is used with CFL number of 20.0 for all cases. 

The converged lift and drag coefficients have a discrepancy less than 0.3% as shown 

in Table 5.3. The residuals decrease up to 4-5 orders depending on the grid size as 

shown in Figure 5.12. 

 

 

Figure 5.10: OAT 15A Airfoil: Computational Domain and Structured Grid 
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Figure 5.11: OAT 15A Airfoil: Structured O-Grid around the Airfoil 

 

Table 5.2 OAT 15A Airfoil: Grid Independence Study for RANS Simulations 

Grids 
Number of 

Grid Points 

Nr 

Number of 

Grid Points 

Nθ 

First Layer 

Thickness 

[m] 

Coarse 304 570 3E-6 

Medium 430 805 3E-6 

Fine 583 1142 3E-6 

 

 

Table 5.3 OAT 15A Airfoil - RANS Results: Aerodynamic Coefficients 

Grids CL CD 

Coarse 1.032614 0.056098 

Medium 1.032614 0.056112 

Fine 1.031511 0.056182 
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Figure 5.12: OAT 15A Airfoil - RANS Results: Residual Plots for the Coarse, 

Medium, and Fine Grids 
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5.2.2 Results of URANS Simulations 

In the wind tunnel experiment campaign, Joacquin et al. [80] focused to find the 

starting angle of attack for transonic buffeting. It is reported that the unsteady 

oscillatory behavior is observed after an angle of attack of 3.5°. In order to check 

that the flow has unsteady conditions, angle of attack of 3.9° case is selected for 

validation. The grid is generated from the fine grid with 692000 cells by a refinement 

factor 1.41 in both radial and azimuthal directions. In URANS case a time step of 

5e-7 second is applied. The time average pressure coefficients and the unsteady 

pressure measurement from 45% of the chord axis on the upper side is published by 

Joacquin et al. [80].  

The time average of pressure coefficients shows no discrepancy with experimental 

data for both Exact Riemann (ER) solver and Roe’s Approximate (ROE) solver as 

shown in Figure 5.13. 

Pressure measurement is performed by many points on the upper section of the 

airfoil. Numerical pressure sensor is added to that point on SU2 CFD cases for 

comparing the pressure with the experimental data. The time data of the signal is 

selected to between the local minima position in order to minimize the spectral 

leakage between harmonics as shown in Figure 5.14. 

As shown in Figure 5.16, the fundamental frequencies are expected to be close to 

each other. The damping amplitude of URANS from steady RANS solution are also 

close. For that reason, FFT analysis is performed to compare the possible difference 

in the frequency spectrum. Since the frequency of the other harmonics are not 

known, Hanning windowing function is applied to the signals for FFT analysis. As 

expected from the time history, there is no notable difference between Riemann 

solvers as shown in Figure 5.15. 
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Figure 5.13: OAT 15A Airfoil - URANS Results: Time-Averaged Pressure 

Coefficient Distribution at M = 0.73 and  = 3.9° 

 

 

Figure 5.14: OAT 15A Airfoil - URANS Results: Time History of Pressure 

 at the pressure sensor 
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Figure 5.15: OAT 15A Airfoil - URANS Results: Power Spectral Density (PSD) of 

Pressure at the pressure sensor





 

 

103 

 

CHAPTER 6  

6 CONCLUSIONS 

Roll induction for missiles with wrap-around tail fins is numerically investigated by 

using SU2 flow solver. In subsonic flow, the curvature of wrap-around tail induces 

a roll moment by centralizing and decentralizing subsonic streamlines around the 

fin’s concave and convex side, respectively. The shift of direction occurs in 

supersonic flow since the concave side causes stronger shock wave than that of 

convex side.  

The roll induction mechanism for wrap-around fin missiles are aerodynamically 

explained in terms of Mach number and angle of attack. In order to investigate the 

effect of flux scheme, Roe’s Approximate Riemann solver is compared with the in 

house implemented Exact Riemann (ER) solver. The differences are less than 1% for 

most of the steady-state RANS simulations. The results indicated that the turbulence 

model have more significant differences in aerodynamic coefficients than the flux 

scheme. In subsonic flow, the k-ω SST model has less discrepancy with the 

experimental results than that of Spalart-Allmaras model. On the other hand, Spalart-

Allmaras model has less discrepancy in transonic flow. 

On the other hand, DDES simulation showed that the differences between Riemann 

solvers in unsteady flow cause important changes in harmonics in terms of both 

amplitude and frequency. In the absence of experimental unsteady validation, the 

differences between Riemann solvers are investigated by a DDES campaign for 

solver comparison in Dahlke geometry. Although the time average aerodynamic 

coefficients differences are within the range of 5% and 2% for axial and normal force 

coefficients respectively, the differences in the FFT spectrum showed that the Exact 



 

 

104 

Riemann solver is able to detect the harmonics with two times larger amplitude in 

the Strouhal numbers between 0.2 and 0.3.   

Due to the absence of unsteady experimental validation data for the Dahlke geometry 

and basic finner geometry, NACA 0021 and OAT 15A airfoil profiles are used as 

test cases for unsteady validation and verification.  

In NACA 0021 simulations, three dimensional DDES simulation is performed for an 

angle of attack of 60°. The Exact Riemann solver has less discrepancy in the first 

harmonic amplitude whereas there is no peculiar difference in the second harmonic 

between the Riemann solvers. In addition, the Exact Riemann solver has less 

discrepancy with the experimental data in the overall frequency domain due to the 

identification of wave types in flux calculation. On the other hand, there is no 

particular difference between the time average of local pressure coefficients.  

In OAT 15A simulations, two dimensional URANS simulation is performed for an 

angle of attack of 3.9° and a freestream Mach number of 0.73. In this case, the 

shockwave on the suction side of the airfoil has an oscillatory nature that is observed 

and measured by wind tunnel experiments. There is no distinctive discrepancy in the 

time averaged pressure coefficients and the power spectral density of the pressure 

sensor that is located 45% of chord length on the suction side for both Riemann 

solvers.  

There are three contributions to the literature in this thesis. The first one is the 

aerodynamic interpretation of roll moment induction for wrap-around fin missiles. 

Although the roll induction is explained in the literature [2, 5], the nonlinear behavior 

of roll moment against varying angle of attack is examined by decomposing the roll 

moment contributions of each wrap-around fin in this thesis. 

The second one is the comparison of the effect of flux schemes and turbulence 

models on the induced roll moment at neural flight angles with varying Mach 

numbers in steady RANS cases. The results are compared with the wind tunnel tests. 

In spite of its computational cost, the Exact Riemann solver shows the smaller 
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discrepancy with the test data compared to Roe’s Approximate Riemann solver but 

differences are within the range 1-2% in RANS cases. 

The third one is the comparison of Riemann solvers in DDES and URANS cases. 

Unlike small differences between Riemann solvers in time averaged results, the 

distribution of dominant modes are significantly different. It might be due to the fact 

that Roe linearizes the Riemann problem around the two rarefaction solution whereas 

the Exact Riemann solver identifes the shockwaves to calculate the flux accordingly. 

In future, the sensor capability of the Exact Riemann solver is going to be used for 

setting the flux limiter for preventing numerical oscillations. In addition, DDES 

simulations is going to be extended larger angle of attack to have a better 

understanding of dominant modes for wrap-around fin missiles. In the NACA 0021 

validation case, the DDES simulations is going to be extended to illustrate the effect 

of grid in the frequency domain as well as the different angles of attack. In addition, 

the OAT 15A airfoil case can be repeated for a three dimensional DDES simulation 

for having a better comparison between Riemann solvers. 
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