
PATH GUIDING METHOD FOR WAVEFRONT PATH TRACING: A MEMORY
EFFICIENT APPROACH FOR GPU PATH TRACERS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

BORA YALÇINER

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF DOCTOR OF PHILOSOPHY
IN

COMPUTER ENGINEERING

MARCH 2024

Approval of the thesis:

PATH GUIDING METHOD FOR WAVEFRONT PATH TRACING: A
MEMORY EFFICIENT APPROACH FOR GPU PATH TRACERS

submitted by BORA YALÇINER in partial fulfillment of the requirements for the
degree of Doctor of Philosophy in Computer Engineering Department, Middle
East Technical University by,

Prof. Dr. Halil Kalıpçılar
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Halit Oğuztüzün
Head of Department, Computer Engineering

Prof. Dr. Ahmet Oğuz Akyüz
Supervisor, Computer Engineering, METU

Examining Committee Members:

Prof. Dr. Uğur Güdükbay
Computer Engineering, Bilkent Ünversity

Prof. Dr. Ahmet Oğuz Akyüz
Computer Engineering, METU

Prof. Dr. Yusuf Sahillioğlu
Computer Engineering, METU

Prof. Dr. Tolga Kurtuluş Çapın
Computer Engineering, TED University

Assoc. Prof. Dr. Elif Sürer
Graduate School of Informatics, METU

Date:04.03.2024

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Surname: Bora Yalçıner

Signature :

iv

ABSTRACT

PATH GUIDING METHOD FOR WAVEFRONT PATH TRACING: A
MEMORY EFFICIENT APPROACH FOR GPU PATH TRACERS

Yalçıner, Bora

Ph.D., Department of Computer Engineering

Supervisor: Prof. Dr. Ahmet Oğuz Akyüz

March 2024, 114 pages

In this thesis, we propose a path-guiding algorithm to be incorporated into the wave-

front style of path tracers. As the wavefront technique of path tracers is primarily

implemented on Graphics Processing Units (GPUs), the proposed method aims to

leverage the capabilities of GPUs while reducing the hierarchical data structure us-

age and memory requirements necessary for path-guiding methods. To achieve this,

we propose a wavefront path guiding algorithm that only stores the outgoing irradi-

ance (radiant exitance) on a single global Sparse Voxel Octree (SVO) data structure.

Probability density functions required to guide the rays are generated on-the-fly us-

ing this data structure. The on-the-fly generation of the probability field is made

practical by utilizing the ray-tracing hardware of the latest GPUs. Furthermore, the

proposed approach significantly reduces the persistent memory requirements com-

pared to other state-of-the-art path-guiding techniques. Comparisons suggest that the

proposed method requires less memory while maintaining similar results compared

to the state-of-the-art techniques.

v

Keywords: path tracing, GPGPU, ray tracing, light transport, hardware acceleration

vi

ÖZ

CEHPHE BAZI YOL İZLEME TEKNİKLERİ İÇİN YOL REHBERLİĞİ
YÖNTEMİ: GRAFİK İŞLEMCİ TABANLI YOL İZLEYİCİLERİ İÇİN

BELLEK VERİMLİLİĞİ SAĞLAYAN BİR YAKLAŞIM

Yalçıner, Bora

Doktora, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Ahmet Oğuz Akyüz

Mart 2024 , 114 sayfa

Bu tezde, cephe bazlı yol izleyicileri için bir yol yönlendirme algoritması öneriyoruz.

Cephe bazlı yol izleyiciler öncelikle Grafik İşleme Birimlerinde (GPU’lar) uygulan-

dığından; önerilen yol yönlendirme yöntemi de Grafik İşlemcilerinin yeteneklerini

ön plana çıkaracak şekilde ve aynı zamanda gerekli olan hiyerarşik veri yapısı kul-

lanımını ve bellek gereksinimlerini azaltmayı amaçlamaktadır. Bunu başarmak için,

tek bir küresel seyrek voksel barındıran sekizli ağaç (SVO) tabanlı veri yapısında

yalnızca giden ışınımı (radyant çıkış) depolayan bir dalga cephesi yol yönlendirme

algoritması öneriyoruz. Işınları yönlendirmek için gereken olasılık yoğunluk fonksi-

yonları, bu veri yapısı kullanılarak simülasyon sırasında oluşturulur. Olasılık alanının

anında oluşturulması, en yeni grafik işlemcilerin ışın izleme donanımı kullanılarak

pratik hale getirilmiştir. Ayrıca, önerilen yaklaşım, diğer son teknoloji yol yönlen-

dirme tekniklerine kıyasla kalıcı bellek gereksinimlerini önemli ölçüde azaltır. Karşı-

laştırmalar, son teknoloji tekniklere kıyasla benzer sonuçları korurken, daha az bellek

gerektirdiğini göstermektedir.

vii

Anahtar Kelimeler: yol izleme, grafik işlemcilerde genel hesaplama, ışın izleme, ışık

ulaştırma, donanımsal ivmelendirme

viii

To all people who like to see pretty pictures on a screen

ix

ACKNOWLEDGMENTS

I would like to thank the thesis committee members Prof. Dr. Uğur Güdükbay and

Prof. Dr. Yusuf Sahillioğlu for their valuable comments over multiple committee

meetings, especially to Prof. Dr. Yusuf Sahillioğlu inducing idea that became the

basis of this thesis, although unpurposefully.

Additionally, I would like to thank my advisor Prof. Dr. Ahmet Oğuz Akyüz for his

insightful comments and his experience that guided me throughout my PhD educa-

tion. His lecture named “Special Topics: Advanced Ray Tracing” is the reason for me

to change my MSc-related research of real-time computer graphics to offline-focused

ray tracing.

Some of the reference images presented in this thesis’s Figures were generated at

TUBITAK ULAKBIM, High Performance and Grid Computing Center (TRUBA re-

sources). The CPU reference images and multiple of the CPU-based proposed meth-

ods’ images are generated using this multi-core system. Even then, generating some

of these images took multiple days to complete. Thus, we appreciate the capability

of the distributed system.

x

TABLE OF CONTENTS

ABSTRACT . v

ÖZ . vii

ACKNOWLEDGMENTS . x

TABLE OF CONTENTS . xi

LIST OF TABLES . xv

LIST OF FIGURES . xvi

LIST OF ABBREVIATIONS . xviii

CHAPTERS

1 INTRODUCTION . 1

1.1 Motivation and Problem Definition 1

1.2 Contributions and Novelties . 2

1.3 The Outline of the Thesis . 2

2 LITERATURE SURVEY . 5

2.1 Rendering Equation . 5

2.1.1 Terminology . 7

2.2 Rendering Methodologies . 8

2.2.1 Monte Carlo Integration and Path Tracing 9

2.2.1.1 Multiple Importance Sampling 9

xi

2.2.1.2 Path Tracing . 11

2.2.1.3 Next Event Estimation 11

2.2.1.4 Russian Roulette Path Termination 14

2.2.2 Bi-Directional Path Tracing 14

2.2.3 Metropolis Light Transport or Markov Chain Monte Carlo . . 16

2.2.4 Photon Mapping . 18

2.2.5 Instant Radiosity & Virtual Point Lights 20

2.2.6 Path Guiding . 22

2.2.7 Conclusion . 24

2.3 Massively Parallel Architectures and GPGPU 27

2.3.1 Design Differences between CPUs and GPUs 28

2.4 Sparse Voxel Octrees & Cone Tracing 30

2.5 GPU Oriented Light Transport Proposal 32

3 PARTITION BASED WAVEFRONT PATH TRACING 33

3.1 Preliminaries . 33

3.1.1 Taxonomy . 35

3.2 GPU Oriented Parallel Design . 36

3.2.1 Case Study: Reduction . 36

3.2.2 Parallel Reduction . 37

3.2.3 Massively Parallel Reduction 38

3.3 Path Tracing on the GPU . 40

3.4 Wavefront Path Tracing . 42

3.4.1 Queue-based Partitioning . 45

xii

3.4.1.1 Memory Management Issue 46

3.4.2 Consistency Issue . 47

3.4.3 Sort-based Partitioning . 48

3.4.3.1 Ray Payload & Key Parameter 48

3.4.3.2 The Algorithm . 51

3.5 Final Words . 53

4 WAVEFRONT PATH GUIDING . 55

4.1 Brief Refresh of Path Guiding . 55

4.2 Overview . 57

4.3 Radiant Exittance Caching using Sparse Voxel Octree Structure . . . 59

4.4 On-the-fly Generation of Radiance Field 63

4.4.1 Partitioning . 63

4.4.2 Radiance Field Generation 65

4.5 Exposing BxDF Product the Radiance Field 69

5 IMPLEMENTATION AND RESULTS . 73

5.1 Implementation . 73

5.2 Parametrization . 75

5.3 Path Guiding Visualization Tool . 77

5.4 Profiling . 80

5.5 Baseline Comparison . 82

5.6 Comparison with Literature . 84

5.7 Product Path Guiding . 89

5.8 Limitations and Future Work . 89

xiii

6 CONCLUSIONS . 93

6.1 GPU Limitations . 94

6.2 Final Words . 94

REFERENCES . 97

CURRICULUM VITAE . 111

xiv

LIST OF TABLES

TABLES

Table 5.1 Timings of the wavefront path guiding stages. 81

Table 5.2 Comparisons between Ruppert et al.’s proposal and our method over

two scenes. 87

xv

LIST OF FIGURES

FIGURES

Figure 2.1 Illustration of two PDFs approximating different function domains. 10

Figure 2.2 A case demonstrating when NEE fails to improve the resulting

scene. 12

Figure 2.3 Different kinds of path tracing techniques. 15

Figure 2.4 Photon mapping noise pattern. 19

Figure 2.5 Showing unique noise pattern of Virtual Point Light Techniques. 21

Figure 2.6 Specular-Diffure-Specular interaction demonstration. 25

Figure 2.7 Multiple path integral approximation techniques. 26

Figure 2.8 Highly simplified block layout of a General purpose CPU. 28

Figure 2.9 Highly simplified block layout of a GPU. 30

Figure 3.1 C++ code snippet for reduction, using arithmetic add operation. . 36

Figure 3.2 C++ code snippet for traditional parallel reduction, using arith-

metic add operation. 37

Figure 3.3 C++ code snippet for massively parallel reduction, using arith-

metic add operation. 39

Figure 3.4 Wavefront path tracing algorithm overview. 43

Figure 3.5 The payload of a ray. 49

xvi

Figure 3.6 The material type key structure. 49

Figure 3.7 Array representation of the binary partitioning scheme and mark-

ing algorithms. 52

Figure 3.8 The final result of the sorting-based partitioning algorithm. . . . 52

Figure 4.1 The top-down view of the entire path guiding algorithm. 58

Figure 4.2 Morton code encoding visualization. 61

Figure 4.3 K-means clustering algorithm sketch. 62

Figure 4.4 An example of generated marginal and conditional PDFs from

the radiance field. 68

Figure 5.1 Aliasing illustration. 74

Figure 5.2 Learned or Generated Radiance field PDF of our method and

practical path guiding method. 78

Figure 5.3 Convergenge of Müller et al.’s method and our method. 79

Figure 5.4 Single sample variance of the proposed and traditional path-

tracking methods. 83

Figure 5.5 Mean FLIP comparisons of the experimented sampling techniques. 85

Figure 5.6 Comparison between classical path tracing and Practical Path

Guiding method of Müller et al. 88

Figure 5.7 Demonstration of what product path guiding prevents. 90

xvii

LIST OF ABBREVIATIONS

2D 2 Dimensional

3D 3 Dimensional

SVO Sparse Voxel Octree

MIS Multiple Importance Sampling

WFPG Wavefront Path Tracing

WFPT Wavefront Path Guiding

GPU Graphics Processing Unit

CPU Central Processing Unit

GPGPU General Purpose Graphics Processing Unit

xviii

CHAPTER 1

INTRODUCTION

1.1 Motivation and Problem Definition

Path tracing techniques have become widely adopted in the field of computer graphics

for creating highly realistic images [1]. These methods are preferred due to their ease

of implementation and the high quality of images they produce. Moreover, with the

advancements in graphics hardware, it is now possible to achieve interactive rendering

using these techniques.

Although most of the state-of-the-art methods can be adapted to the graphics hard-

ware, ground-up designed GPU algorithms for light transport simulation are not thor-

oughly researched. One reason is that hardware capability for light transport simula-

tion, especially ray tracing-based capabilities, is very recent. Another reason is that

GPUs are inherently real-time focused devices, which does not suit the complex na-

ture of the light transport problems. Real-time systems either pre-generate complex

light transport phenomena or rely on ad-hoc methods to fastly approximate indirect

phenomena due to computation time limitations.

The recent shift towards ray tracing for real-time graphics is promising. Modern

hardware can accelerate ray tracing in silicon. This hardware acceleration enables in-

teractive light transport simulation that captures all light transport-related phenomena

such as global illumination, indirect lighting, and caustics. Even real-time simulations

that do not rely on ad-hoc methods or pre-computation are starting to emerge.

A traditional approach that simulates light in an unbiased way is path tracing. Path

tracing can encapsulate all of the light transport phenomena in a simple and elegant

1

way. The path tracing approach is a de-facto standard for offline rendering cases in

which CPUs are utilized for computation. Unlike designing a path tracing structure

for CPUs, designing a GPU-based path tracing scheme is not straightforward due to

differences between hardware.

Thus, ground-up designing a GPU-based light transport scheme that utilizes the recent

GPUs’ hardware accelerated ray tracing capabilities for the path tracing logic and

accompanying methodologies that further accelerate light transport simulation is our

main motivation.

1.2 Contributions and Novelties

To this end, we propose a wavefront path tracing scheme that utilizes sorting-based

partitioning and an accompanying wavefront path guiding algorithm to utilize the

GPU. Our main contributions are as follows;

• For GPU path tracing, a radix sort-based partitioning scheme enables consistent

memory allocation.

• On-the-fly generation of radiance field by utilizing incident radiant exitance,

which resides on Sparse Voxel Octree.

• Hardware-accelerated approximate cone tracing for an efficient query of the

radiant exitance.

• GPU-oriented parallel product path guiding scheme that utilizes warp-level in-

trinsics.

• A heuristic that optimally combines the guided samples of the proposed method.

1.3 The Outline of the Thesis

This thesis will first explore the main family of light transport techniques in the litera-

ture. Furthermore, we will discuss general-purpose computing over graphics proces-

2

sor units. We conclude the first chapter by determining which family of light transport

simulations is most suitable for a GPU-based method proposal.

The next chapter explains the parallelization schemes for the GPUs. We compare

and contrast parallelization methodologies of GPUs and CPUs using a simple case.

Moreover, we will discuss wavefront path tracing schemes and propose a novel sort-

based path tracing algorithm for GPUs.

The third chapter proposes an accompanying path guiding technique for wavefront-

style path tracers. This section will explain the proposed method thoroughly and

express the design decisions required to implement the method using GPUs.

The fourth chapter will present the results of the proposal. We compare and con-

trast our proposal with the state-of-the-art path guiding techniques and express our

observations.

Finally, we will conclude our findings by explaining the advantages and shortcomings

of the. We will finalize the thesis with our concluding remarks.

3

4

CHAPTER 2

LITERATURE SURVEY

The light transport problem has been heavily researched in computer graphics litera-

ture for over 25 years. Although it has been researched heavily, proposals for robust

techniques are still desired due to the complex nature of the light transport problem.

In this chapter, we will discuss the light transport problem. Then, we will explain the

main types of algorithms to approximate this complex light transport problem and the

accompanying techniques for these algorithms. Finally, we try to summarize what

can be further improved for all of the explained algorithms.

Furthermore, the design principles of GPU-based light transport algorithms will be

discussed. Such algorithms will be utilized to implement state-of-the-art rendering

techniques and the novel technique proposed for this Ph.D. thesis.

2.1 Rendering Equation

The rendering equation can be considered a fundamental definition of the light contri-

bution of a certain point on a surface [1]. The rendering equation is defined in angular

form as below (Equation 2.1).

Lo(p, wo) = Le(p, wo) +

∫
Ω

fx(p, wi, wo)Li(p, wi) cos θidwi (2.1)

The rendering equation is an energy balance equation which is defined as all outgoing

radiance Lo(p, w0) from a surface point should be equal to all incoming radiance

towards that surface point and emitted radiance Le(p, w0) if available.

5

Incoming Radiance depends on three main concepts. First is the incoming radiance

Li(p, wi), which is the radiance contribution from other objects throughout the scene.

Second is the cosine term that exposes Lambert’s Cosine Law. Lambert’s Cosine

Law states that incoming radiance contribution depends on the angle between the

surface normal and radiance direction. Finally, the last term fx(p, wi, w0) is a bi-

directional distribution function (BxDF). In the context of different surface composi-

tions, BxDFs are further defined as bi-directional “reflectance” distribution function

(BRDF) for opaque objects, bi-directional “scattering” distribution function (BSDF)

for participating media, and bi-directional “subsurface scattering” distribution func-

tion (BSSRDF). Since all materials technically scatter light, “Scattering” can be used

as a superset. All in all, the BxDF function defines how much of that incoming radi-

ance is transferred towards that outgoing direction wo.

Even if it is defined for a single surface, the rendering equation is computationally

complex. Furthermore, each surface’s incoming radiance depends on the outgoing

radiance of the other surfaces. If we assume the volume between objects is void,

radiance along distances will not change. Then, we can recursively define a global

equation that represents the entire radiance contribution of the scene over a single

surface point.

In the Physically Based Rendering Book, such a definition is represented as in Equa-

tions 2.2 and 2.3 [2]. Although these equations are defined in the geometric form

in the Physically Based Rendering Book, the hemispherical form is chosen for this

thesis due to its clarity.

Equations 2.2 and 2.3 define the recursive integral in geometric form instead of a

hemispherical form, which is the form of Equation 2.1. Both of these forms are

equivalent to each other.

L(p1, wo) =
∞∑
n=1

P (p̄n) (2.2)

6

P (p̄n) =

∫
Ω

∫
· · ·
∫
Ω︸ ︷︷ ︸

n−1

Le(pn, won−1)

×

(
n−1∏
j=1

fx(pj+1, woj , wij−1
)

)
dwi2 · · · dwin

(2.3)

Each P (p̄n) represents nth depth of the recursion. On each depth, chained integrals

represent all incoming radiance from surfaces with exactly n bounces. Discretization

of these chained integrals is called paths. Product term
∏n−1

i=1 · · · is often called the

path throughput, which is the term that determines how much energy from the energy

source is culled throughout the bounce process. Throughput will be important for

Monte Carlo integration (see Section 2.2.1).

Technically, L(p1, wo) can be defined on any scene surface point; however, it is most

useful to define it from the camera sensor. Each camera sensor’s 2D discretization

point (pixel) will be computed as a chain of integrals to determine how much radiance

is accumulated over that pixel.

Equations 2.2 and 2.3 show how the light transport problem is mathematically com-

plex. It is an infinite recursion with explicit base conditions (meaning that energy

termination points change with respect to the scenes), and each recursion depth has

chained integrals. Although this representation is complex, it is the mathematically

profound equation for a given point that encapsulates all light-related phenomena.

All upcoming techniques that will be discussed try to find an approximation to this

equation.

2.1.1 Terminology

In order to explain the phenomena related to the light transport problem, we will

define the terminology to ease the discussion. BRDF (BxDF with “reflectance” be-

havior, meaning transport occurs on the hemisphere) functions can be segmented into

two main categories, diffuse and specular. Diffuse reflections uniformly scatter the

incoming radiance throughout the entire hemisphere. On the other hand, specular

reflections nearly fully obey the law of reflection, meaning that outgoing radiance

is concentrated over the reflection of the incoming radiance. We will also inter-

7

change the term “material” with the BxDF function. Transmitting materials such

as dielectrics (i.e., glass) can also behave specularly.

Additional material terms (like glossy materials) exist between diffuse and specular

materials that exhibit reflectance behaviors similar to specular surfaces but disperse

light even more around the reflected direction. However, we won’t delve into these

definitions for this discussion. To illustrate, surfaces like chalk can be classified as

diffuse, while mirrors fall into the specular category.

Caustics is a light transport phenomenon that occurs when light is reflected/transmit-

ted through a single or series of specular objects over a diffuse surface. We mention

this phenomenon in our discussion due to its inherent challenge when calculating

using various methodologies.

Another term we want to explain is “scene dependency”. Scene-dependent phenom-

ena or behavior means that it is hard to encapsulate such occurrence beforehand

(i.e., scene initialization time) is non-trivial. For example, caustics are a scene-

dependent phenomenon; given the scene’s parameters, determining the caustic re-

gions would require computations as expensive as the light transport simulation. On

the other hand, simpler forms of emitter sampling (see Section 2.2.1.3) are “scene-

independent” meaning you can construct data structures beforehand for directly sam-

pling the emitters and acquire acceptable improvements of image quality.

2.2 Rendering Methodologies

Almost all of the algorithms proposed throughout the literature try to approximate

a solution to the rendering equation in one way or another. In this section, we will

explore computational techniques employed to address the rendering equation, along

with the diverse discretization approaches these methods utilize. Ultimately, the pro-

cess of computation necessitates some form of discretization.

It should be noted that only the main light transport family of techniques is explained

in this literature survey. There are various methods for light transport techniques that

are not covered here. One main example is gradient-domain rendering for this family

8

of algorithms; we kindly refer the reader to Hua et al.’s survey of such methods [3].

2.2.1 Monte Carlo Integration and Path Tracing

Monte Carlo integration can be considered a fundamental numeric integral approx-

imation algorithm. The Monte Carlo integration algorithm uniformly samples the

integrand space and averages the results. An example of the Monte Carlo numeric

approximation for a simple single integral can be on Equation 2.4. With enough sam-

ples N , the result will converge to the actual integral result.

∫
A

f(x)dx =
1

N

N∑
i=1

f(xi) (2.4)

Additionally, better to integrate with a probability density function (PDF), which

roughly resembles the integrand. Equation 2.5 is equivalent to Equation 2.4 as long

as the function p(x) is non-zero where the actual function is non-zero over the do-

main of the integral. Additionally and by definition, PDF should integrate to one

(
∫
A
p(x) = 1) over its domain.

∫
A

f(x)dx =
1

N

N∑
i=1

f(xi)

p(xi)
(2.5)

This process is called “importance sampling”. Such an approach could dramatically

decrease the convergence time of the computation to an acceptable level. However,

convergence time can be worse if a PDF that does not resemble the integrand re-

sults. Especially when the PDF is slightly off due to heuristical approximations. This

observation will be important in Section 4,

2.2.1.1 Multiple Importance Sampling

It is not always practical to find a single function that can resemble the integrand and

be able to sample from it. In this case, utilizing multiple PDFs would yield better

results. The combination technique without any bias is called Multiple Importance

Sampling (MIS) [4]. A basic example of this can be seen in Figure 2.1

9

Y

X

 f(x) g(x) Function

Figure 2.1: Illustration of two PDFs approximating different function domains. A
one-dimensional function (the gray line) and two PDFs (in this case, two Gaussian
functions) are represented as blue and orange lines. The integrand function closely
resembles the combination of the two Gaussian. Using the Monte Carlo method to
calculate the integral with only one of these PDF functions is ill-advised, but using
them together will provide better results.

MIS uses weighting functions to combine multiple PDFs called heuristics. Veach et

al. proposed balanced, power, cut-off, and maximum heuristics [4, 5]. Equation 2.6

shows the combination of two different estimators using weighting function w(x)

assuming
∫
Ω
f(x)dx is being approximated via two different sampling strategies with

different PDFs.

1

np1

np1∑
i=1

f(Xi)wp1(Xi)

p1(Xi)
+

1

np2

np2∑
i=1

f(Yi)wp2(Yi)

p2(Yi)
(2.6)

This method is not limited to only two PDF merges; multiple different PDFs can

be combined using this way. The most popular weighting function is the balanced

heuristic, and the formulation is given in Equation 2.7. n is the number of samples of

each estimator.

ωs =
nsps(x)∑K
i nipi(x)

(2.7)

The balanced heuristic is usually optimal and reduces variance [4]. However; research

about how other heuristics can be utilized while reducing variance in certain situations

can be found in literature [6]. MIS is the fundamental variance reduction technique

for path tracing algorithms due to its flexibility and extensibility.

10

2.2.1.2 Path Tracing

The Monte Carlo method is traditionally applied to light transport simulations as fol-

lows. While sampling the light integral, incremental construction of the path is ran-

domly generated from the camera toward the scene. Each integral (Equation 2.1) is

approximated via the Monte Carlo Method. When an emitting source is encountered,

the total radiance contribution is calculated and stored on an image. Traditionally, the

entire BxDF or a portion of the BxDF is utilized as a PDF for importance sampling.

Such an approach is called forward path tracing.

Forward path tracing ensures that each random exploration of the path integral (Equa-

tion 2.3) is guaranteed to contribute to the final image by definition. However, the

actual physical process is reversed; light travels from the emitting source ends on the

camera sensor. Such an approach is applicable because of the bi-directional nature

of the distribution function. The name “bi-directional distribution function” suggests

internal scattering functions are reversible; additionally, outgoing radiance and in-

coming radiance are equal, assuming the traversing medium does not affect light (i.e.,

vacuum). Even if the traversing medium affects the radiance, its distance-related ab-

sorption/scattering function is also reversible.

2.2.1.3 Next Event Estimation

As one can observe, the main radiance contribution towards any surface should come

from directly visible light sources (emitters). Due to this observation, directly sam-

pling emitting sources throughout the scene and advancing paths is considered [7].

Such a method is called “next event estimation”. This method is also called “shadow

ray casting” in real-time computer graphics literature. A direct emitter is sampled on

every surface during the path construction, and its contribution is accumulated. One

should take caution when a path construction encounters the sampled emitter; path

construction should not accumulate its contribution due to double-counting.

For basic NEE, one can utilize a list of emitters as an array, which can be easily con-

structed during initialization time. On every surface, as in Monte Carlo Fashion, the

NEE sampler can randomly select an emitter and sample from it while incorporating

11

(a) Cornell Box (b) Occluded Conrell Box

Figure 2.2: A case demonstrating when NEE fails to improve the resulting scene.
Both images are generated using the same computation time using path tracing with
NEE on. a shows that the scene converges well due to the mostly direct light contri-
butions. On the other hand, in b, most of the surfaces are indirectly lit; thus, NEE
does not improve image quality.

such discrete selection probability as importance sampling fashion.

Even in this simple form, NEE can dramatically improve image quality. However,

it has a potential fallback when the scene is illuminated mostly by indirect illumina-

tion. Since the NEE is a direct sampling technique, regions that receive illumination

indirectly will not benefit from this method.

Another problem with NEE is that in its most basic form, occlusion information is not

incorporated into the sampling scheme due to its complexity. Occlusion information

is scene-dependent; thus, it may require pre-processing or an on-the-fly approxima-

tion of the occlusion field. Guo et al. proposed a dense global visibility (occlusion)

field for such purpose [8].

Specular surface reflected/refracted direct light sources are common in natural-looking

scenes. For example, light bulbs have a specular refracting surface that encapsulates

the actual light source. NEE will fail for such orientations since the actual light source

is technically not directly visible. Such interaction minimally affects the energy of the

source; thus, it may be the dominant contribution source and should be sampled. For

such occurrences, Johannes et al. proposed Manifold exploration NEE in which a

12

light source is sampled and specular to specular interreflections (manifolds) are iter-

atively constructed [9]. Proper importance sampling weights were then incorporated.

Different methods for tackling specular reflection exposed light source sampling also

exist [10, 11].

Light Sampling (NEE) for volumetric mediums (participating media) is also a re-

search area in computer graphics. Kulla and Farjardo proposed an equiangular sam-

pling technique when sampling a light source inside of a participating media [12].

This method suggests an inverse square falloff for the pdf function for the importance

sampling scheme. Another method for sampling light sources for participating me-

dia is proposed by Johannes et al. [13] in which an additional vertex is introduced

to NEE calculations. This method can be considered a light transport analog of the

“once-more collided flux estimation” for neutron transport simulations.

Another research area for NEE estimation is scalability. As the emitter count in-

creases, the amount of calculation for direct light also increases. The emitters’ orien-

tation and distance toward the sampled surface should be incorporated into the NEE

sampling scheme. To this end, Estevez et al. proposed a BVH-like tree structure

in which lights are partitioned with respect to their characteristics as cones [14]. A

similar approach is incorporated for the GPU as well [15].

Bitterli et al. proposed a state-of-the-art GPU-oriented NEE scheme that utilizes

reservoir sampling [16]. This sampling scheme is suited for the GPU since it has

a static data structure that is a series of per-pixel reservoirs. The intuition of this

method is to collaboratively utilize the neighboring reservoirs for sampling in addi-

tion to the calculated pixel’s reservoir. This approach reduces the variance of the

direct light estimator using additional data without the extra work.

Overall, the NEE sampling scheme is a fundamental method that improves the quality

of the image with minimal computational overhead. It is also required for analytic

light sources, especially for point lights, since traditional Monte Carlo path tracing

could not hit such lights.

13

2.2.1.4 Russian Roulette Path Termination

Equation 2.2 is an infinite-length integral that is not practical to calculate. One may

statically determine a culling point up to a certain depth to eliminate this practical

problem. However, every path is different because, after multiple bounces, some

paths may not be in a state of negligible energy. In contrast, the energy contributions

of other paths would have converged to zero. To dynamically cull paths with respect

to a path-dependent parameter is called Russian Roulette, which was first introduced

by Arvo et al. [17]. As the name suggests, paths are stochastically culled with re-

spect to a certain parameter; in traditional cases, path throughput or surface albedo

is used [17]. Importantly, unculled paths are weighted by this probabilistic function

in order to preserve the unbiasedness of the Monte Carlo techniques. While it al-

lows practical traversal of the entire path space in an unbiased manner, this method

increases the variance. Another way to terminate paths is to check the total variance

over the image and terminate accordingly [5].

Newly emerged research improves over the traditional termination methods by using

paths’ total expected contribution from a reference radiance field as a termination

probability [18]. This is especially useful for path guiding techniques (See Section

2.2.6) since such methods’ radiance field is readily available.

Russian roulette is another fundamental technique for path tracing. It tackles the

practical limitations of the light transport simulation in an unbiased manner.

2.2.2 Bi-Directional Path Tracing

For caustics, forward path tracing has a hard time sampling such light paths (see

Figure 2.3a) efficiently. The main reason for this is that local importance sampling

techniques (material-related techniques) do not contribute to the occurrence of caustic

phenomena. To be effective, the caustic receiving surface should sample the next path

location using the incoming radiance field. Approaches that incorporate this incoming

radiance field as an importance sampling method are called “path guiding” methods

and will be discussed in Section 2.2.6.

14

(a) Forward Path Tracing

(b) Light Path Tracing

(c) Bi-directional Path Tracing

Figure 2.3: Different kinds of path tracing techniques. Each pixel is sampled with
eight paths. This figure shows the discrepancies between techniques with respect to
caustics. Best caustics are generated on light tracing. However, it cannot sample
paths that are behind a specular object. On the other hand, the forward path tracer
had bad caustic convergence. Bi-directional path tracers converge better overall.

One may argue that reversing the traversal scheme to light-to-camera would improve

the caustics seen in Figure 2.3b). In this case, NEE works reversely and tries to sam-

ple the camera sensor to calculate the image contribution. However, as Figure 2.3b

suggests, surfaces that are “occluded” by a specular transmissive surface could not be

15

sampled. The camera is a pinhole in these images, meaning the Monte Carlo sam-

pler could not hit the camera stochastically, making these regions pitch black. This

method is called “light tracing” or “light path tracing”.

A final argument can be the combination of forward and light path tracing. However,

naively combining resulting images using simple averaging will not improve the re-

sults; noise from one method will creep into the combined image. Formally, simple

averaging will not decrease the variance.

Bi-directional path tracing method tries to achieve this efficient combination of light

tracing and path tracing [5, 19, 20]. Bi-directional path tracing simultaneously traces

paths from both ends, and light contributions along all traced surfaces with respect

to each other are combined (see Figure 2.3c). More importantly, bi-directional path

tracing selectively combines such paths using MIS. Additionally, utilizing generated

paths between different eye paths using MIS is also introduced [21]. Extensions for

incorporating the participating media are also available [22].

2.2.3 Metropolis Light Transport or Markov Chain Monte Carlo

Metropolis Light Transport (MLT) technique was first introduced to the graphics lit-

erature by Veach et al. [23]. Generic explanation (not light path integral related) is

proposed by Metropolis et al. [24] and Hastings [25].

In the most basic explanation, given an initial state and an integral, the algorithm gen-

erates another state solely depending on the previous state. Such a state is accepted or

rejected, given a probability. Just like fundamental Monte Carlo, when enough states

are traversed, the algorithm converges to the result of the integral. This hierarchy of

states is defined as a Markov Chain, and the process of generating a Markov Chain is

called “doing a random walk”.

Veach et al. proposed the path space Markov Chain, where we start with an initial

state, a connected path from the camera to the light. Using this initial state, the entire

path space is traversed (see Equations 2.2 and 2.3) by mutating the path slightly.

Path space is thoroughly explored via two functionalities of this method. The first

16

method is mutations in which the algorithm introduces or removes vertices over the

path with a probability. This method makes the algorithm jump between P (p̄n) func-

tions on Equation 2.2. The second method is to perturb the given vertices slightly.

Through this method, surface space is explored over the current path length. It should

be noted that the proposed method uses a single chain to explore the entire image by

perturbing the camera plane vertex as well.

Choosing a good initial state is important to eliminate start-up bias. For this purpose,

Veach et al. proposed to use bi-directional path tracing (see Section 2.2.1) for initial

state generation. In literature, methods that use the path space to generate states are

entitled as Path Space Metropolis Light Transport (PSMLT).

Most of the research in this area revolves around two main sections. The first is to

introduce MLT to different spaces aside from path space. Another research area is

introducing better mutation (or perturbation) strategies for different BxDFs and/or

path compositions.

One such proposal is Primary Sample Space MLT (PSSMLT) [26]. In this method,

the sample space of the Markov Chain, which is the space defined by the uniform

samples generated while creating the initial path, is used. These uniform numbers

are perturbed to introduce mutations. Improvement of this method is Multiplexed

Metropolis Light Transport (MMLT) in which information of multiple importance

sampling is incorporated as well [27].

Different mutation strategies are also proposed for MLT. Manifold exploration method

(MEMLT) is proposed to tackle hard light paths that consist of specular or near-

specular surfaces especially SDS paths [28].

A combination of Monte Carlo path tracing and metropolis light transport is also

researched. Instead of using a single initial state, the algorithm finds a path using

path tracing methods; then, such a path undergoes a series of short burst mutations

and contributes to the image.

Instead of using primary sample space or path space, one can use half vector space

instead [29] [30]. Gradient domain MLT approaches also exist [31] [32]. In such

a case, the domain is the differential domain, meaning that the rate of change of

17

radiance is important instead of the actual amount.

For example, if we consider the shadow region of an area of light, gradient-domain

metropolis light transport will have fewer mutations over the fully lit and occluded

regions. Instead, most of the computational power will be concentrated on the penum-

bra region.

It should be noted that MLT algorithms are delicate. Introducing a bad mutation

strategy would result in high variance or biased results. Moreover, not all mutation

strategies would work consistently over all different scenes or path compositions.

The main issue of MLT is the temporal coherency of images. When an animation is

on the scene, successive frames’ pixels may have high variance, resulting in flicker-

ing. This results from the MLT process’ traverse nature, making the image rendered

by an MLT algorithm converge unpredictably. However, preventing this temporal

incoherence is a research area as well [33].

We can see that the MLT algorithms have an advantage over MC approaches in terms

of available information. MC algorithms are unaware of the next hit location since

iteration continues incrementally. On the other hand, MLT algorithms start with a

valid path. With this additional information, an algorithm can decide how to construct

additional paths more effectively than Monte Carlo integration.

2.2.4 Photon Mapping

Photon Mapping algorithm [34, 35] tries to include additional light information about

the scene by using photons. Photons are scattered throughout the scene over the dif-

fuse surface points as a first pass. On the second pass, incoming radiance is approxi-

mated using these photons along the surface points.

There are two key advantages of this method. Firstly, the noise generated by the

photon mapping algorithm is low-frequency. Second, photon mapping decouples the

scene’s complexity from radiance calculation since generated photons are accumu-

lated regardless of occlusion, making the resulting image’s convergence independent

of the scene complexity.

18

(a) Path Traced Reference

(b) Sthochastic Progressive Photon Mapping

Figure 2.4: Photon mapping noise pattern. Camera pixels calculate contributions
from neighboring photons; thus, circular noise patterns may emerge if the photon
count is low. b is specifically generated using a low amount of photons to demonstrate
the noise pattern.

The algorithm assumes that the radiance of surface points that have not received any

photons is correlated with the density of neighboring photons. However, this assump-

tion is not always valid, thus making this approximation biased.

Additionally, a high amount of photons (∼106) are required to have an accurately con-

verged image. However, this requires a high amount of memory. For this approach,

improvements are made, consisting of progressively discarding and generating new

photons instead of generating them in bulk. This approach is called Progressive Pho-

ton Mapping [36]. Camera samples can also be stochastically generated, which is

19

called Stochastic Progressive Photon Mapping [37]. These make the memory re-

quirement constant while having a theoretically infinite amount of photons.

A large leap towards making photon mapping unbiased is made by Hachisuka et al.

and Gergiev et al. [38, 39]. The Vertex connection and merging (VCM) algorithm

combines photon mapping and bi-directional path tracing. The algorithm condition-

ally accepts neighboring pre-generated bi-directional light paths of similar surface

points if such path is in a certain radius r similar to Photon Mapping. Then, this

acceptance radius is reduced gradually, converging to the bi-directional path tracing

algorithm.

Additionally, there are implementations of photon mapping that utilize GPU for pho-

ton generation [40] [41] or final gathering [42].

As shown in Figure 2.4, photon mapping techniques may have unique circular pat-

terns due to the interpolation of light combinations of photons around the sampled

camera ray. Such noise drops as the scene converges. However, the resulting im-

ages will be biased but consistent when generated by a stochastic progressive photon

mapping method.

2.2.5 Instant Radiosity & Virtual Point Lights

In this section, we will explain Instant Radiosity (known as Virtual Point Lights

(VPL) or many-light global illumination). First introduced by Keller, the Instant Ra-

diosity method utilizes point lights to simulate global illumination. Many point light

sources are introduced to the system by tracing light sub-paths of the primary light,

and then a VPL is generated on that surface point. Secondly, each visible surface

point is illuminated by all relevant point lights directly.

At first sight, one can assume that the instant radiosity algorithm is similar to the

Photon Mapping algorithm, but there is a key difference. Photons in the photon map-

ping algorithm discretize flux of energy that is coming out of a light source. Instant

radiosity algorithm discretizes the radiance along the light path using light sources.

Instant Radiosity has a unique noise pattern different from other approximation tech-

20

(a) 32 Virtual Point Lights

(b) 8192 Virtual Point Lights

Figure 2.5: Showing unique noise pattern of Virtual Point Light Techniques. Due to
the hard shadow nature of the virtual point light, the under-sampled scene contains
lines of different light gradients.

niques when less than optimal VPLs are present (see Figure 2.5). Shadows are not

smooth because of the point light discretization nature of the algorithm since point

lights have hard shadow edges. However, it smooths out with enough samples.

As the name suggests, the instant radiosity method does not handle specular objects

naturally. Because of that, a hybrid approach is introduced by Udeshi et al. in order

to approximate specular reflection and refraction [43]. However, it has limited perfor-

mance in generating phenomena like caustics. Wald et al. generalize this algorithm

21

to support such phenomena [44]. Additionally, Virtual Ray Lights, an extension of

this method, is proposed to overcome the singularities created by perfectly specular

objects [45].

This algorithm is inherently acceleratable using GPU hardware [46, 47, 48]. After

determining virtual point lights, GPU rasterization hardware can render the scene for

each VPL and accumulate the result. Visibility of VPLs is determined by shadow

maps [49], which can be accelerated by the GPU as well.

Since many lights are required to approximate the global rendering equation, ac-

celeration structures, light segmentation, or caching are often essential for VPL al-

gorithms. Traditionally, irradiance or radiance caching can be utilized [50], [51].

Data structure-based implementations to sample light sources are another research

area [52, 53, 54, 55, 56]. GPU based many-light acceleration structures also ex-

ist [57, 58].

It is not possible to explain every research paper about virtual point lights. More

comprehensive research is done by Dachsbacher et al., including VPL utilization for

participating media and specular object handling [59]. Readers can refer to that paper

for a more thorough explanation of many-light algorithms.

2.2.6 Path Guiding

As discussed in Section 2.2.1, traditional Monte Carlo Path tracing methods only rely

on local portions of the rendering equation for importance sampling. New techniques

have tried to overcome this problem of path tracing by exposing the global radiance

field around the sampled location. It is not simple to sample the incoming radiance

field since it is scene-dependent, and storing such information on a scene basis is

required. Moreover, the global radiance field of the scene is a “super-set” of the

camera-received radiance.

This family of algorithms is called Path Guiding techniques. Some implementations

pre-generate such radiance field over the scene [60, 61, 62, 63] or progressively gen-

erate using already computed paths [64, 65] in order to estimate incoming radiance.

22

The key difference of these algorithms compared to other radiance, irradiance, or pho-

ton caching algorithms is that these algorithms store radiance probability (or use that

radiance information as a probability) and use it to “guide” paths over the scene in an

unbiased form. Scene radiance is a high dimensional data requiring three dimensions

for spatial information and two for spherical (or hemispherical for opaque surfaces)

direction information. Thus, proposing an efficient data structure to hold and sample

such information is essential for this family of algorithms.

The initial proposal of such a method was made by Lafortune et al [66] and Jensen [67].

The former utilizes a dense 5D data structure to estimate the radiance field, and the

latter utilizes a photon map (Section 2.2.4). Due to the dense nature of the 5D radi-

ance field, memory constraints for such a method is high.

Voba et al. utilize Gaussian Mixtures that are projected on a 2D plane and stored

spatially [60]. This structure is pre-generated using photon distributions and forward

ray distributions. Product sampling, which is the sampling of not only the incoming

radiance but the multiplication of BxDF and radiance, is proved to have better conver-

gence in the case of Gaussian Mixture Model implementation [68]. Similarly, Dodik

et al. utilize spatio-directional mixture models, enabling efficient incorporation with

the BxDFs [69].

Product sampling is an important extension to path-guiding methods for specular

since these surfaces would probably mask most of the incoming radiance field; it

could dramatically reduce variance for such regions. However, if a surface is near

perfect specular, that region may not require path guiding.

Moreover, Muller et al. proposed an on-the-fly approach named the practical path-

guiding method. The algorithm utilizes spatio-dimensional trees (SD-trees) to capture

radiance information [64]. Initially, this tree starts empty, and when a unidirectional

path tracer finds a path, all of the paths’ vertices populate the tree with calculated

radiance information, which progressively continues. Previous image samples are

discarded to reduce variance.

Ruppert et al. use von Mises-Fisher distributions (vMF) for radiance field capture as

another method. Such small distributions are held on a Kd-tree, and nearby sampling

23

locations combine nearby vMFs [70] and samples using the generated probability

field. Due to the analytic nature of the directional field, product sampling can easily

be incorporated into the technique by approximating the BxDF via multiple vMF

distributions.

Machine learning methods are also proposed as path-guiding algorithms. Neural Im-

portance Sampling method proposed by Muller et al. [61] utilizes neural networks to

learn the incoming radiance, and it easily includes product importance sampling.

While Muller et al. train the network on a per-scene basis, Bako et al. pre-train

a generic deep neural network with various scenes, and then this network is uti-

lized over an independent scene [63]. Huo et al. also propose a similar approach

as well [62]. Other reinforced learning methods are also utilized, such as the one pro-

posed by Dahm et al. [71] in which the incoming radiance equation is similar to the

Q-learning function. This method utilizes a point cloud backed by a nearest neighbor

search data structure (for example, a KD tree), and each point holds a dense 2D radi-

ance field. A Bayesian regression model is also applied in order to efficiently sample

light sources for better NEE (Direct illumination) sampling [65].

Unlike other methods, Guo et al. propose a primary sample space path guiding

scheme [72]. In this method, a structure is built by utilizing primary samples and

the luminance of the paths. Primary sample space is a multi-dimensional space of

random numbers that is used to sample the path.

2.2.7 Conclusion

We have discussed various families of rendering methods; in conclusion, none of the

methods is perfect for every scene layout. In this section, we will try to express the

capabilities and shortcomings of these methods.

The convergence rate of Monte Carlo techniques is independent of the dimensionality

of the integral. For the light transport case, it is a strong advantage since Equations 2.2

and 2.3 consist of multiple infinite dimensional integrals. Moreover, the Monte Carlo

approach is simple to implement and an unbiased technique.

24

Near-singular or singular objects have problems with Monte Carlo sampling when

a path consists of specular-diffuse-specular connections. Traditional Monte Carlo

techniques would not be able to find such paths since the paths are enforced by the

perfectly specular surfaces (or multiple of such objects), and endpoints of the path

are also singular (in this case, a point light or a pin-hole camera). To make such

paths sampleable, the light source, camera, or specular object should not be singu-

lar. Even still, such paths would be hard to sample. These paths are defined as

“Specular-Diffuse-Specular” (SDS) paths. An illustration of such paths can be seen

in Figure 2.6. Making such paths easy to sample is one of the main research points

in computer graphics. Path space regularization tries to overcome this problem by

making such impossible paths sample-able by relaxing (by making them a narrow

Gaussian) such singular BxDF and making them diffuse-like functions [73]. Such

constraint gets stricter as the samples accumulate, making the final result consistent.

Perfectly Specular
Volume (Water)

Diffuse Object

Pinhole Camera Point Light Source

Figure 2.6: Specular-Diffure-Specular interaction demonstration. Monte Carlo meth-
ods can not sample such paths due to singularity. Surfaces of the diffuse object (or-
ange) can not “aim” toward the point light source directly by position due to the
specular surface in between the surface and the light source.

The most common natural example of this phenomenon is pool caustics on a sunny

day; although the sun is not a point light, it is high-frequency light compared to the

entire incoming radiance field. A rendered example of this phenomenon can be seen

in Figure 2.7.

This shows the fundamental drawback of general incremental path construction and

path tracing techniques. Such methods are only locally aware of the scene. There is

25

no global information to act on to construct paths toward the required endpoints. As

discussed before, path-guiding methods try to alleviate such lack of global informa-

tion (see Section 2.2.6).

(a) BDPT

(b) MEMLT

(c) Photon Mapping

(d) Reference

A B

Figure 2.7: Multiple path integral approximation techniques. All of them took ap-
proximately the same amount of time (2.5 minutes). The reference image took 8
hours to render using the manifold exploration metropolis light transport technique.
Segment A is zoomed in to show the hard Specular-Diffuse-Specular (SDS) paths.
Section B is even harder, in which an SDS path is reflected. Bi-directional path trac-
ing fails to sample those hard paths efficiently. Photon mapping can efficiently sample
paths, but it is a biased method. Finally, the Manifold Exploration Metropolis Light
Transport method can handle hard paths efficiently, but it is not temporally coherent.

In Figure 2.7, photon mapping and manifold-exploration metropolis light transport

(MEMLT) could generate pool caustics quite well. Although a static MEMLT can not

demonstrate it, it suffers from temporal incoherence, meaning that unless a specific

path space is reached, that path cannot be thoroughly explored by the MLT system.

This results in the spatial segmentation of highly converged regions and noisy regions.

Photon mapping, on the other hand, is a biased technique, which can be ill-suited

when a high-precision comparison is needed with respect to an experimental result

for a research.

Although an image is not available, path-guiding methods can generate comparable

images with respect to both MEMLT and Photon Mapping, given enough samples to

train. However, path-guiding methods are both unbiased, and convergence behavior

is uniform. However, such methods can require a substantial amount of memory de-

26

pending on the scene; furthermore, path-guiding methods will require pre-processing

or on-the-fly training.

With all this in mind, we proposed a path-guiding technique for this thesis. Path

guiding techniques can be considered a “holy grail” of rendering techniques given

enough time and space. However, such a claim is unfortunately not practical.

2.3 Massively Parallel Architectures and GPGPU

As we establish our method, we need to consider the implementing device. As

hardware acceleration becomes available [74] on modern GPUs, proposing a GPU-

oriented path guiding method seemed suitable. Path guiding techniques are similar to

path tracing methods in terms of parallelization, and GPU path tracing implementa-

tions have become available [75, 76, 77].

Initially, GPUs are designed to do raster graphics-related tasks such as texture map-

ping and triangle rasterization. These GPUs have had a static pipeline with minimal

programmability via changing switches exposed by the device. Due to the indepen-

dent nature of the triangle rasterization with respect to other triangles, these devices

are inherently designed to execute many triangles in parallel. Programmability is

introduced to portions of the graphics rasterization pipeline in which vertices of the

triangles and the fragments (potential pixels) that are generated by the rasterizes could

be manipulated by writing programs using assembly language and after using high-

level languages.

Initially, such programmability was not shared, meaning different hardware portions

were responsible for vertex and fragment shading. As the hardware design pro-

gresses, this programmability is unified and exposed to the user. After the GPUs

acquire programmability capability, proposals emerge to utilize such programmabil-

ity for general-purpose floating point compute-heavy tasks. Buck et al. proposed

to utilize the fragment shader for computing such tasks using an extended C-like

language [78, 79]. Although unknown then, this computation model was highly sim-

ilar to the post-processing model before the compute shaders were introduced to the

graphics APIs. In Krüger and Westermann’s case, algorithms for linear algebra-

27

related problems are proposed. Even ray-tracing implementation using this pro-

grammability is proposed way before the actual ray-tracing capable hardware [80].

Hardware Graphics company NVIDIA directly exposed this functionality to C/C++

high-level language [81]. Instead of manipulating a raster graphics pipeline for gen-

eral computing needs, a user can directly write code specifically. NVIDIA chose the

name “Compute Unified Device Architecture” (CUDA). In CUDA, the user can write

a single code that can be compiled into the CPU and the GPU. Consequently, GPUs

become “General-Purpose Graphics Processing Units” (GPGPU).

2.3.1 Design Differences between CPUs and GPUs

In this section, we briefly explain the design differences between CPUs and GPUs.

We deemed such an explanation is important due to establishing design differences

of algorithms that solve the same problem over GPUs and CPUs.

GPUs are inherently designed to compute parallelization-heavy tasks. Such design

principle is the byproduct of the raster graphics pipeline as discussed in Section 2.3.

Because of that, GPUs allocate more area for computational units in the die than

CPUs (see Figures 2.8 and 2.9).

Core

L2 Cache

L1 Cache

Core

L1 Cache

Core

L2 Cache

L1 Cache

Core

L1 Cache

L3 Cache

Figure 2.8: Highly simplified block layout of a General purpose CPU. The general
design of the CPU reserves a larger die area for cores due to their complexity.

28

The reason CPUs could not reduce their core size and introduce additional cores is

due to complexity. Modern CPUs are deeply pipelined, execute instructions in an

out-of-order fashion, and are super-scalar. Super-scalar means that CPUs can issue

multiple instructions simultaneously in a single core. Unlike GPUs, such multi-issue

is determined by the instruction flow and calculated in real-time. This introduces high

complexity to the design of the core. However, such a design enables streamlined

performance with respect to any algorithm type.

GPUs on the other hand, could be delicate compared to CPUs. The design of the

algorithms for a GPU should be highly parallelizable and have minimal branches.

GPU algorithms should be divided into theoretical threads and threads registered to

multiple “streaming multiprocessors” (SMs). A highly simplified version of a GPU

block diagram is given in Figure 2.9. On each SM, instructions are issued in a “single

instruction multiple threads” (SIMT) fashion, meaning multiple threads undergo the

same instruction. These instructions are common for all the threads issued for a

parallel algorithm. SM juggles threads over the cores to hide data dependency and

latency. Due to SIMT design, intra-threads of the SIMT would require processing

both branches if multiple threads take different paths of the branch. While threads

process one part of the thread, the other threads are masked. Thus, branch-heavy

code would reduce the performance.

CPUs alleviate this branch-heavy algorithm by utilizing sophisticated branch predic-

tor hardware. However, such an application is not suitable for GPUs since all threads

that take the SIMT should branch into the same path for branch prediction to be ap-

plicable.

Another design difference is the memory and cache hierarchy. CPUs have sophis-

ticated multi-level caches that utilize temporal and spatial coherency of algorithms.

When data is accessed, neighboring data is fetched onto the cache (spatial coherency).

Likewise, data that has been recently touched (read or written) stays on the cache

(temporal coherency). GPU memory hierarchy could not utilize such sophisticated

hierarchies due to the sheer amount of raw data required to feed all GPU cores. Thus,

GPU memory is throughput optimized, unlike CPU memory hierarchy, which is la-

tency optimized. This observation means that computation-heavy algorithms would

29

Register File

L1 / Texture Cache

SM

Register File

L1 / Texture Cache

SM

L2 Cache

Register File

L1 / Texture Cache

SM

...

“Core”

Figure 2.9: Highly simplified block layout of a GPU. GPU has a high amount of
calculation units (Cores) with a smaller die area compared to CPU.

perform better on the GPUs.

Thus, GPUs expose a fast memory called “shared memory” shared across threads

in an SM. The user can utilize this memory for the collaboration of threads inside

shared memory or for specific caching needs. Such exposure is suitable for GPUs

since hardware-demanded caching may not be suitable for different algorithms.

We will give a simple example, parallel reduction, to expose the differences between

CPU and GPU design in Section 3.2. This explanation would create a baseline for the

proposed method of this thesis.

2.4 Sparse Voxel Octrees & Cone Tracing

The proposal of this thesis will utilize Sparse Voxel Octrees (SVO). Thus; briefly

mentioning the previous work is deemed necessary. Octree structures are predomi-

nantly used for volume rendering. Some methodologies utilize the GPU as well [82,

83]. Hybrid topology tree structures like those proposed by Museth are also used

for volume representations [84]. Museth’s proposal is predominantly used in offline

30

graphics since it is open source. Recently, the GPU implementation of this method

has become available [85]. These methods are similar to an octree; however, their

topology is more similar to B+Trees.

Hybrid dense-sparse octrees are also researched for volume representation [86]. We

would kindly draw the reader’s attention to a recent survey by Beyer et al. about

volume rendering methodologies [87].

The generation of voxel data structure is important for non-volumetric entities. Hard-

ware rasterizer can be utilized as a voxelization technique for triangle meshes [88, 89].

There are voxelization techniques for other solid representations as well [90].

Casting rays over the generated SVO structure may be required for certain tasks.

Our proposal is one task requiring efficient ray casting over the generated SVO. The

traditional approach utilizes a digital differential analysis (DDA) algorithm [91, 92].

In this methodology, empty spaces are skipped according to the leaf voxel sizes of

the octree. Cone tracing algorithms are proposed for high solid-angle information

retreival [83], in which data is queried using cones; thus, only voxels that match the

aperture of the cones are queried. This necessitates holding data not only on the

leaves of the tree but on intermediate nodes as well. Advanced methods, such as the

one proposed by Hadwiger et al. [93], combine the above-mentioned space skipping

with generated ray segments using a rasterizer.

The proposed method discussed in Chapter 4 will have a similar basis to the real-

time global illumination framework proposed by Crassin et al. [94]. In this case, re-

gions’ incoming radiance and material properties are stored in an SVO. Cone tracing

is conducted on camera-visible surfaces to query indirect illumination information.

According to the results, a few large cones would be deemed sufficient for a realis-

tic capture of the indirect illumination, which was a motivating finding for our work.

Chapter 4 has a similar approach; however, instead of directly utilizing the stored data

for estimation, which will be biased, we utilize the data as a guiding metric. Unlike

Crassin et al., we hold radiant exitance over the voxels.

31

2.5 GPU Oriented Light Transport Proposal

Hardware acceleration of computer graphics has a long history. In this section, to the

best of our capability, we try to do a general overview of the main family of rendering

algorithms. Almost all of it has advantages and disadvantages, as discussed in Section

2.2). We concluded that proposing a path-guiding algorithm over massively parallel

architecture like GPUs would be a motivating research area.

To this end, we propose a GPU-oriented path-guiding algorithm that utilizes the ca-

pabilities of GPUs. To the best of our knowledge, such an approach has not been

researched thoroughly in rendering related computer graphics research. Our proposal

will be ground-up designed for the GPUs that utilize the recent hardware acceleration

capabilities and expose the parallelization capability of the GPUs. Before proposing

a path-guiding scheme, we must tackle the light transport problem, which is the basis

of path-guiding algorithms. The next chapter will discuss a parallelized path tracer

that will be extended using a novel path-guiding approach.

32

CHAPTER 3

PARTITION BASED WAVEFRONT PATH TRACING

In this chapter, we explain the baseline of GPU-oriented design using the fundamental

reduction algorithm. After that, we explain the parallelization scheme for path tracing

utilizing a queue-based approach and the novel sorting-based approach. Finally, we

conclude with the pros & cons of both methods.

3.1 Preliminaries

As we establish the underlying hardware in Section 2.3, utilized hardware is selected

as GPU. However, the explanation of the proposal will be on a specific GPU vendor’s

hardware, namely NVIDIA GPUs. Such an explanation may not mean the proposal

is for this specific hardware; GPU hardware can utilize this design. The reason for

this specificity is to standardize terms to enable profound and concise explanations.

In recent years, hardware acceleration for computer graphics shifted towards ray trac-

ing from rasterization. All modern graphics hardware do support hardware-accelerated

ray tracing capability [95, 96, 97]. This capability is first exposed through graphics

APIs such as DirectX [98]. Other graphics APIs, such as Vulkan, acquire this capa-

bility through extensions as well.

The main design scheme of all ray tracing is through a pipeline similar to a raster-

ization pipeline. Unlike the rasterization pipeline, the user feeds rays to the system

instead of triangles. Rays undergo hardware-accelerated intersection tests, and like

the raster pipeline, the user can program specific parts programmatically.

On a ray-tracing pipeline, rays are intersected with triangles via opaque acceleration

33

structures. Although the internals of these acceleration structures are not exposed to

the user due to potential changes in the future, current-generation hardware utilizes

Bounding Volume Hierarchies (BVHs) [99, 100, 101]. Thus, hardware can do axis-

aligned bounding box (AABB) and triangle intersection tests in silicon. This region

is also a potential research area, and initial research emerged to find more suitable

acceleration structures suitable to design in hardware [102].

Due to the complete difference in the algorithm logic, programmability regions of

the ray tracing pipeline are completely different from the raster pipeline’s classic

vertex/pixel shaders. Unlike the raster pipeline, rays can trigger shaders when any

ray-triangle hits succeed or when the closest intersection is found. Finally, a shader

trigger occurs when a ray completely misses the acceleration structure. These shaders

are in the order called “any-hit shader”, “closest-hit shader” and “miss shader” 1.

Another programmable shader portion is the “ray generation shader” in which the

user generates rays that can be fed to the pipeline. The reason for the any-hit shader is

to accept/reject intersections programmatically. One prominent example is the alpha-

masked objects, such as tree leaves.

Another difference is that the ray tracing pipeline is self-triggering. The ray genera-

tion or closest hit shader can trigger ray-tracing calls and re-cycle the pipeline for a

newly created ray. This capability enables path-tracing algorithms to be implemented

using the ray-tracing pipeline. Computation concludes when all of the rays in the

pipeline are exhausted.

By observation, this design is proposed with path tracing in mind; an extensional ap-

proach to path tracing, such as path guiding, would not be able to utilize GPU hard-

ware capabilities fully. Moreover, this pipeline does not expose the shared memory

to the user on all programmable regions. This would limit collaborative approaches,

where multiple rays in close regions on the scene would not amortize similar works.

To alleviate the issues discussed above, Laine et al. [103] proposed the wavefront

style of path tracing. The proposal in this Chapter will have a similar basis with a

different partitioning technique. We will thoroughly explain the methodology in later

1 There is another custom shared phase named “intersection shader” which, can be utilized for non-triangle
primitives (i.e., analytic primitives such as curves, spheres) which is skipped since raster pipeline only operates
over triangles. It makes the compare-contrast convoluted.

34

sections. Before that, we deemed an introduction to GPU parallel design beneficial

for a profound understanding.

3.1.1 Taxonomy

Before explaining the methodology, we will establish the terminology used in this

chapter. We will utilize NVIDIA’s taxonomy for GPU design constructs. Instead of

using CPU and GPU, we use host for the CPU and device for the GPU. Hardware

execution constructs are defined as streaming multiprocessor (SM), grid, block, wrap,

thread, and kernel.

A kernel is a piece of execution that occurs on the device. A kernel can be config-

ured with parameters to tune parallelization. The grid is the main parametrization

of the kernel. A grid consists of multiple blocks, and each block consists of multiple

threads. This hierarchical parametrization enables efficiency between multiple device

families. The user can parametrize the block count and thread count.

One aspect of the blocks is that threads inside of a block can communicate with

each other via shared memory. A shared memory can be allocated on each block if

required, and threads in each block can use that memory collaboratively.

A specific device family may concurrently handle multiple blocks on its internal pro-

cessor block called SM. This is limited by the devices’ resources (registers, static

hardware capabilities). The ratio between the maximum blocks that can be run on an

SM and the kernel’s achieved block count per SM is called occupancy. This crucial

metric directs the programmer to specific designs to minimize register usage, shared

memory allocations, etc.

As we discussed before, GPUs run in SIMT fashion. Each block’s threads are par-

titioned into warps, and warps execute the kernel instructions in lock-step fashion.

For NVIDIA, the warp thread (warp size) did not change throughout the years and is

32. Branch-heavy code could not run efficiently on the GPU because of the warps’

lock-step fashion execution. Intra-threads on a warp must run the same instruction by

design, and if a branch mismatch occurs, both regions of the branch must be executed

in a masked fashion. This limitation is a fundamental path-tracing constraint due to

35

random ray scattering. This limitation will be one of the main issues addressed in this

chapter.

3.2 GPU Oriented Parallel Design

In this section, we will briefly explain a use case to explain the implementation design

differences between the host and the device. To achieve this, we perform parallel

reduction using a massively parallel architecture. Although, this explanation will be

similar to Harris’s explanation [104], it will be more computer science-focused and

illustrative instead of performance-practical.

3.2.1 Case Study: Reduction

Parallel reduction is a key concept in functional programming, commonly employed

in various fundamental algorithms as an intermediary process. In parallel reduction,

a list of N variables is iteratively reduced to a single value using a binary operation

(e.g., addition), with the condition that the operation is both associative and commu-

tative. Associativity will be crucial for devising efficient parallelization strategies,

which will be discussed later. The provided figure (3.1) illustrates a straightforward

non-parallel implementation of this algorithm.

1 int ReductionAdd(const int a*, int N)

2 {

3 int result = 0;

4 for(int i = 0; i < N; i++)

5 {

6 result += a[i];

7 }

8 return result;

9 }

Figure 3.1: C++ code snippet for reduction, using arithmetic add operation. This
reduction function acts over default integer types.

As can be observed, the non-parallel implementation of reduction is embarrassingly

36

straightforward. For a single-threaded CPU, this approach can be considered opti-

mal. However, parallelizing this algorithm will introduce additional complexity. The

destination value ("result") is a critical aspect to consider. When multiple threads at-

tempt to write to it concurrently, it leads to data race issues. Hence, careful attention

to managing the destination value is necessary for effective parallelization.

3.2.2 Parallel Reduction

Now, we will assume a traditional parallelization scheme for reduction operation. We

will divide the data space (source space) into equally sized C portions. Each segment

will independently compute its reduced value, and then these local results will be

written into a shared variable using synchronization mechanisms like semaphores,

mutexes, or atomic operations. An example is given in Figure 3.2. In this case, we

assumed the hardware capability of atomic add operation is available and used such

functionality. Most modern hardware has this capability.

1 // Region [begin, end)

2 // Called for each thread

3 void ReductionAddThreaded(int& result, const int* a,

4 int begin, int end)

5 {

6 int localResult = 0;

7 for(int i = begin; i < end; i++)

8 {

9 localResult += a[i];

10 }

11 atomicAdd(result, localResult);

12 }

Figure 3.2: C++ code snippet for traditional parallel reduction, using arithmetic add
operation. This function is called for each collaborating thread.

Implementation complexity compared to Figure 3.1 did not change as much. Al-

though there is additional overhead to partitioning the operands into threads, which is

not shown in Figure 3.2, it is comparably trivial, and it can be partitioned in constant

time. This shown algorithm can be optimal for CPU-like systems, where C is rela-

37

tively low. The main bottleneck here is the atomic portion, where instructions must

be sequential due to data dependency (in this case, destination dependency).

For distributed systems, where C is much higher, the algorithm in Figure 3.2 can still

be suitable; however, additional improvements would be required. We will skip such

improvements and concentrate where C is asympthotically comparable to N , meaning

givenO(N) work, computing system hasO(N) threads. For CPU-like systems, even

for distributed CPU systems, asymptotically tying C to N is not practical; however,

this is the case for GPU systems.

3.2.3 Massively Parallel Reduction

Imagine C is asymptotically significant for the algorithm exposed in Figure 3.2. Since

the reduction operation is binary, assume C = N/2. The algorithm above will col-

lapse to sequential operations almost immediately; each thread will add two values

and try to pound over the single resulting value. Thus, the above algorithm will not

be efficient in massively parallel architectures such as GPUs.

Since C is asymptotically significant, it should be incorporated into the algorithm.

One can propose a hierarchical approach in which C amount of operations occur and

are written to the memory, on the second iteration C/2 amount of operations occur

and so forth, which will fully utilize such massive parallelization schemes of the

given system throughout the iterations. An example of this kind of approach is given

in Figure 3.3

As shown in Figure 3.3, algorithm complexity increased significantly. We are re-

quired to allocate intermediate buffers, one of which can be skipped if the input list

“a” is modifiable. Moreover, memory throughput is increased significantly; in the

worst case, which is the first iteration, O(N) amount of memory operations would

be required. However, the data dependency bottleneck is eliminated, and as one can

notice, this algorithm would not require critical sections or atomic operations. In this

case, the only needed parallel construct is a barrier that collects the launched threads

issued by the “ParallelIssue < · · · >” command. We assumed such a barrier is

incorporated into the function itself.

38

1 void ReduceIteration(int* outBuffer, const int* inBuffer,

2 int location)

3 {

4 outBuffer[location] = inBuffer[2 * location] +

5 inBuffer[2 * location + 1];

6 }

7

8 int ReduceGPU(const int* a, int N)

9 {

10 // Allocate intermediate buffers

11 std::vector<int> bufferIn(N), bufferOut(N/2);

12 std::copy(bufferIn.begin(), a.cbegin(), a.cend());

13 int iterationDataSize = N;

14 int* inData = bufferIn.data();

15 int* outData = bufferOut.data();

16 do

17 {

18 const int C = iterationDataSize / 2;

19 // Pseudo function that launches a C amount of

20 // threads that call the first argument.

21 // Each call will have a unique 'location'

22 // variable between [0, C)

23 ParallelIssue<C>(ReduceIteration,

24 outData, inData);

25 // Swap the in and out buffers

26 Swap(inData, outData);

27 dataSize = dataSize / 2;

28 } while(dataSize > 1);

29 // Notice: due to the swap, we need to read the first

30 // element of inData instead of out

31 return inData[0];

32 }

Figure 3.3: C++ code snippet for massively parallel reduction, using arithmetic add
operation. To simplify the illustration, assume N is even.

39

Although not indicated in the example algorithm, memory throughput can be utilized

using shared memory on an actual GPU implementation. Each thread on a block can

use the shared memory as a scratchpad to write and read internally locally. Such

optimization in this illustrative example can be considered a low-level optimization

technique and not included in the illustrative Figure.

This example perfectly illustrates the requirements for massively parallel design. We

will list our observations below:

• GPUs are best utilized when parallelized regions are small, and the count of

those regions is high.

• Small parallelized regions mean low register usage and actual hardware can

issue more blocks over its SMs.

• Doing a “multi-pass” over these regions almost always requires an intermediate

buffer.

• Such a multi-pass approach could eliminate data dependencies given the algo-

rithm’s nature.

• Multi-pass approach would require high throughput memory.

One can notice why the design principles of the GPUs are chosen explicitly by this

observation. The availability of a high throughput memory (shared memory) is one of

these reasons. A path-tracing approach should consider all the necessities that came

up with the massively parallel design.

3.3 Path Tracing on the GPU

To quickly reiterate, we re-issue the recursively expanded form of the rendering equa-

tion that is explained in Section 2.2.1 below in Equations 3.1 and 3.2.

L(p1, wo) =
∞∑
n=1

P (p̄n) (3.1)

40

P (p̄n) =

∫
Ω

∫
· · ·
∫
Ω︸ ︷︷ ︸

n−1

Le(pn, won−1)

×

(
n−1∏
j=1

fx(pj+1, woj , wij−1
)

)
dwi2 · · · dwin

(3.2)

Traditional CPU-based path tracers would conduct a Monte Carlo simulation over this

equation by iterating a single ray through path space and incrementally constructing

a path and accumulating radiance. When parallelizing a path tracer, each path is

processed independently in parallel. Each path calculation process ends up in a series

of intersection and material evaluation routines until an emitting source is reached. As

each thread operates on a distinct path, there are no data conflicts between threads,

resulting in no inter-thread data dependencies 2.

Although such an approach is free from data dependency, it is still ill-suited for GPU.

On implementation discussed above, although the data path is independent, the ex-

ecution path is incoherent. For example, threada may calculate a different material

while a threadb works on another because rays are scattered onto different surfaces

that have different material characteristics. Since GPU threads work in SIMT fashion

as discussed in Section 3.1, the different execution paths between warp’s threads will

lead to serial executions; thus reducing efficiency.

On top of incoherent execution, memory accesses are incoherent as well. For exam-

ple, neighboring threads (warp threads) may process the same intersection routine;

however, they may end up in completely different regions of the scene due to scat-

tering and act on different intersection data (such as bounding volume hierarchies).

CPU can hide these memory accesses via sophisticated caches, but this is not true for

GPU devices.

Finally, this material evaluation and intersection routine cycle; given many different

material and surface properties, would pose a significant demand on GPU resources,

potentially reducing GPU occupancy. This can be alleviated by separating intersec-

tion and material evaluation subroutines instead of calculating these on a single large

kernel.

2 There is a data dependency due to image filtering, but it is purposefully skipped to make the explanation
concise.

41

Like the explanation of massively parallel reduction, we are required to segment the

computation into multiple phases to reduce the register overhead. Moreover, incoher-

ent execution should be handled via partitioning rays with respect to execution paths

(such as material and surface characteristics). As in the reduction case, this means

holding ray states in intermediate buffers. This approach is called “Wavefront Path

Tracing” and will be discussed in the next section [103].

3.4 Wavefront Path Tracing

Our approach is similar in the design of both Laine et al. proposal [103] and ray

tracing pipelines of modern GPUs [74]. Such approaches are called wavefront ap-

proaches. The analogy of the naming is unknown to us, but to speculate, waves

represent the union state of the system, and those undergo operations in bulk. When a

wave is exhausted, in metaphor, it breaks and perishes over the coastline, and another

wave replaces its place. In path tracing, the bulk state is the ray list, and rays bounce

around and create new waves, and those perish (i.e., hit an emitter).

This section will discuss the common parts of the wavefront path tracing between

our proposal and Laine et al.’s. Implementation of ray tracing pipelines is hardware-

dependent and proprietary; however, there should be a similar approach in these pro-

prietary systems to alleviate naive path tracing issues.

The main overview of the algorithm can be seen in Figure 3.4. Wavefront path tracing

generates rays in bulk; in the unidirectional path tracing case, rays are generated from

the camera and, in a union, undergo operations together. In Figure 3.4, each red and

teal box represents a kernel call. Rays are partitioned into groups, and a single kernel

is called for each group. Vertically stacked boxes represent concurrent kernel calls.

More specifically, after rays are created in bulk by a custom ray generation kernel,

rays undergo ray casting. The ray-casting algorithm is the same for all the rays.

Thus, a single kernel is launched for all the rays. In the overview, it is segmented

into two phases. This two-phase design enables efficient instancing of surfaces with

different transforms. Assuming the base accelerator is a BVH, some leaves of the tree

can refer to the same second-level acceleration structure with a different transform.

42

Ray
Generation

PRTM

BxDF Batch

...

BxDF Batch

BxDF Batch

BxDF Batch

PRTP

Accelerator Batch

...

Accelerator Batch

Accelerator Batch

Accelerator Batch

Base
Accelerator

Untill Rays are exausted

Untill Closest Hit is Found

Figure 3.4: Wavefront path tracing algorithm overview. The entire path-tracing algo-
rithm is separated into two distinct phases.

Additionally, this enables mixing and matching different acceleration structures for

different primitive surfaces. An example of this can be for participating media such as

fluids. Fluids may utilize octrees instead of BVHs since octrees may be more efficient

in encapsulating volumetric mediums. A similar approach is also exposed on DirectX

Ray Tracing (DXR) as well [98].

With the two-phase design in place, rays undergo partitioning to separate them into

different acceleration structures. The base accelerator traversal stops upon reaching a

leaf node, saving the traversal state before initiating traversal within inner accelerator

structures. Once the inner accelerator traversal completes, rays return to the base ac-

celerator and resume traversal. This cycle repeats until all rays either miss or intersect

with a surface. Subsequently, all rays obtain information about the surface they hit

and the material (BxDF) that needs evaluation.

The BxDF evaluation portion is responsible for evaluating material (BxDF) functions.

Similar to the acceleration portion, rays are partitioned with respect to the material

type, and a different kernel is launched for each specific type of material. Material

evaluation is concluded by a ray generating zero or multiple new rays depending on

the algorithm and the result of the material evaluation.

Finally, those newly generated rays return to the ray-casting step, and the system

cycles again until no ray is left. Technically, as the rays die due to algorithm logic,

another ray generation step can be issued between the cycles, and this step can fill

43

these empty spots. This enables full saturation for the underlying hardware.

The main advantage of this method is that it enables efficient and small parallel seg-

ments so that each ray can dynamically select the code paths that those rays are sup-

posed to run. Branch-heavy portions of the code, such as material evaluation, are

segregated, guaranteeing that no branch divergence can occur over those segregation

logics.

In addition to the execution coherency, another advantage is the memory coherency.

Materials may require multiple textures or data accesses. This design groups these

memory accesses, enabling coalesced reading. Look-up tables can collectively be

loaded into the shared memory and be read from that fast memory location, thus

increasing efficiency.

Algorithm 1 Wavefront path tracing.
Input-Output

R1 = {r1, r2 . . . } ▷ Set of initial rays

Start

Initially Generate rays from the camera and populate R1

for i = 1 to MaxDepth do

if Ri = ∅ then

Terminate.

end if

NRi = {(n1, Rp1), (n2, Rp2) . . . } ← RAYTRACE(Ri)

Ni = {(n1, Rn1), (n2, Rn2) . . . } ← PARTITIONMATERIAL(NRi)

for all (nj, Rnj
) ∈ Ni do

for all rk ∈ Rnj
do

Rj
i+1 ← SAMPLEBXDF(nj, rk)

end for

end for

Ri+1 = {R1
i+1, R

2
i+1 . . . } ▷ Next set of rays

end for

However, this approach also has its drawbacks. As each operation step is separated

into different kernels, the state of rays must be stored in memory for persistence.

44

Given that GPUs are highly parallel devices, this scheme of saving state would de-

mand a considerable amount of storage. This memory could have been used for

higher-resolution scenes. CPU-based design amortizes this storage through their

stack memory since each ray has a sophisticated CPU thread dedicated to itself.

We also provide an algorithmic representation of the method described in Algorithm

1. Ray tracing portion is encapsulated as a method named RAYTRACE routine to

simplify the pseudocode. Operations happen inside the RAYTRACE is similar to the

given code in structure.

In this case, there is an upper limit of the recursion dictated by the parameter “MaxDepth”.

SAMPLEBXDF can also skip generating rays (i.e., when a ray reaches an emitter),

thus terminating the system.

In the next section, we explain the partitioning schemes that can be utilized for the

wavefront path tracing algorithms. We will first explain the method of Laine et al. and

its advantages and disadvantages. Furthermore, we will explain the novel approach

proposed in this thesis, which is a sort-based approach.

3.4.1 Queue-based Partitioning

Laine et al. proposed a queue-based approach for partitioning ray between oper-

ations [103]. Considering the material partitioning stage, each material batch will

have its queue readily available for filling. When the ray tracing step determines the

closest hit location and acquires the resulting material, the routine immediately writes

its result into the appropriate material batch queue. Since the ray tracing routines are

conducted in parallel, queue submission operations should be protected due to data

races. Moreover, GPU hardware has fast atomic increment counters, and a single

ATOMICINCREMENT operation can be used for lock-free enqueue operation.

Given a single global memory variable n that represents the number of items in the

queue, applying ATOMICINCREMENT operation over n will increment n, then writes

the incremented n to its corresponding memory location and finally return the previ-

ous value of n in a single atomic fashion.

45

Combining this with an empty array with N locations and n where n = 0, one can

compose a queue. Enqueue operation will only call ATOMICINCREMENT over n, and

in this case, operation will make n to 1 and return 0. The return value will give the

enqueued location index. In other words, we created an atomic fine-grained allocator.

This approach enables efficient and easy-to-implement queues. Technically, using

ATOMICINCREMENT and its sister operation ATOMICDECREMENT, we could only

be able to create a stack. The name “queue” comes from the producer-consumer

queues. In this scenario, the ray trace kernel act as a producer, inserting relevant

material data into distinct queues. Subsequently, multiple kernels are launched for

each queue, consuming the stored data in parallel.

The approach of this queue-based design is simple to implement and elegant. How-

ever, it has memory-related and consistency issues due to the usage of atomics. The

following two sections will explain these shortcomings.

3.4.1.1 Memory Management Issue

Previous chapters and sections did not explain the fundamental memory management

problem of GPUs, specifically GPU communicating APIs. On graphics-related APIs

such as OpenGL or DirectX during the kernel execution (in OpenGL and DirectX

terminology, in compute shaders), the user can not allocate memory on the heap. All

the potentially required memory should be pre-allocated by the host device. CUDA

alleviates this issue of in-kernel memory allocation; however, this functionality is not

performant compared to static pre-allocation. Additionally, heaps of the same GPU

memory allocated from the host and the device are different. This means you can not

free the host-allocated GPU memory from the device (during kernel execution) and

vice versa.

This limitation implies an implementation complexity for the suggested queues in

Section 3.4.1. Due to API limitations, we could not implement an array-backed queue

that dynamically grows by the threads of a kernel. Even if the hardware grants this

capability, implementation of a dynamic allocation scheme will require mutexes and

will deviate from the simple ATOMICINCREMENT based enqueue operation.

46

Limiting the queues to a static amount alleviates this dynamic allocation; however, it

opens another issue. Determining the queue size beforehand is challenging since this

amount ultimately depends on the scene. One can argue to run the enqueueing kernel

twice; the first run will allocate but does not write the data to the queues, and the

second run will write the data. The host will look at the incremented values between

these kernel calls and allocate enough GPU memory. Unfortunately, this approach

will increase the computation time because it calls the kernel twice.

Another approach could be to allocate enough memory for a worst-case situation.

Assuming we have R amount of rays and M amount of queues, such a worst-case

approach will require R ×M amount of memory in consideration of the case when

all of the rays happen to go into a single queue. Such an approach would be infeasible

due to memory limitations.

There is no straightforward way to alleviate this problem for queue-based partitioning

methods. One can choose a memory or a computation constraint to utilize this queue-

based approach. Our method, however will require constant memory that does not

depend on the partition count.

3.4.2 Consistency Issue

Another potential issue is with the computational consistency of the queue-based sys-

tem. If we iterate over the same worst-case example that is discussed in Section

3.4.1.1, when all of the rays happen to go into the same queue, all of the enqueue

operations will be sequentiality due to ATOMICINCREMENT operation. Such worst-

case occurrences should not be as expected, especially in natural-looking and organic

scenes. However, in scenes with more straightforward layouts with low amounts of

different materials, this sequential behavior will reduce performance.

Authors suggest reducing this sequential behavior using shared memory and intra-

warp level communication intrinsics; however, this availability may not exist on dif-

ferent GPU hardware vendors.

Our approach will have the opposite behavior; for a low amount of partitions, it per-

forms faster compared to a high amount of partitions as one would expect, as opposed

47

to a queue-based approach that performs worse due to atomic pressure increase when

the amount of partitions reaches to one.

3.4.3 Sort-based Partitioning

As we establish the shortcomings of the queue-based partitioning method, we will

explain the proposed sorting-based method. As the name suggests, we sort the rays

according to partition logic in the proposed method. In a path tracer, the logic will be

the material evaluation. We partition rays via a material key, a single 32-bit integer.

Each value of this queue represents both data and execution commonality. The layout

of the Key Structure will be explained in Section 3.4.3.1. We employ an index-id pair

sorting; thus, we do not touch the ray’s state during partitioning. The partitioning

scheme will produce a shuffled list of IDs on one array and another that holds each

partition’s start and end offsets. These offsets are relative to the generated ID array.

This eliminates the disadvantages of the queue-based approach; the sorting scheme

for R amount of rays would require an amount that solely depends on R, and compu-

tation time is consistent.

As a choice of the sorting algorithm, radix sort is the preferred choice on GPU hard-

ware [105]. The main reason for the selection is the performance; however, it exposes

additional advantages when the partition count is low, which is a fortunate byprod-

uct. To explain the performance gains using radix-sort, we are required to explain the

underlying structure of the partitioning system, which will be explained in the next

section.

3.4.3.1 Ray Payload & Key Parameter

Given a sequence of rays that happened to go through a ray tracing operation, rays

will result in multiple data. In tracing terminology, this data is called “ray payload”.

Figure 3.5 gives a stripped-down version of the proposed method’s ray payload.

For each ray, ray tracer kernel routines write multiple data, namely, “PartitionKey”,

“PrimitiveId”, “TransformId”, and hit interpolation variables “Hit Float”. These vari-

48

31 24 0

MatKey InnerIndex

63 0

PrimitiveId

31 0

TransformId

63 31 0

Hit Float0 Hit Float1

Figure 3.5: The payload of a ray. This representation excludes rendering method-
related variables.

ables reside on the acceleration structure leaves and are written to the ray’s payload

when the closest hit is found.

PrimitiveId represents a unique id of a primitive and is the index of that specific

primitive over an array. To clarify further, every different type of primitive has its

array, and this variable represents the index of that array. Distinguishing between

various types of primitives is defined by the “PartitionKet” in addition to the material

logic. “PrimitiveId” is a unique primitive identifier that will be utilized to access a

certain primitive during material evaluation.

PartitionKey variable is split into two sections; the most significant 8-bit portion rep-

resents a unique primitive-material pair, and the lower bits represent the material ID

for that specific material type. Again, the id here can be interchangeable with the

index; every material type has a single array that holds all the different materials with

the same type. Figure 3.6 gives a bit diagram of the Key Structure.
31 24 0

MatKey InnerIndex

Figure 3.6: The material type key structure. The upper (most-significant) bits repre-
sent the code path, and the lower bits represent the data path.

We will clarify the data representation with a concrete example. Assume a scene

consists mainly of triangles and some cubic splines. In this scene, multiple materials

are present, which are purely diffuse, a mix of specular and diffuse, a sub-surface

scattering material, and a custom hair material that simulates interreflections between

49

hair strands. All the materials have multiple data, such as texture maps and albedo

colors.

Custom hair material is defined only over the spline primitives, and other material

types only act upon the triangle primitives. In this case, there will be five different

types of material-primitive pairs. An identifier of this is written on to high bits of the

PartitionKey. All the other intra-type materials (i.e., blue diffuse, yellow diffuse) are

uniquely identified by the “InnerIndex” portion of the key.

Hit values for triangle primitives are barycentric coordinates; for splines, a single

value would suffice for inner-primitive interpolation (the t parameter). We conserva-

tively allocate the hit buffer for the worst-case scenario. This conservative allocation

has minimal impact, and the most interpolants are two. At most, the number of needed

interpolants that occur when a volume representation is present on the scene can be

three.

Since radix sort is stable and not every scene would require all the bits of the 32-bit

word, we split sorting into two phases. First, the upper bits are sorted, and only the

bits that conservatively encapsulate the different material-primitives pairs are sorted.

If there is a m amount of different material types on the scene, it is enough to sort

only ⌈log2(m)⌉ bits on the higher level.

The least significant portion of the key (representing the data) does not need to be

sorted. Execution logic is defined by the most significant portion of the key. We

also chose to sort the least significant portion of the key due to the improvement of

data coherency, which; in theory, should result in better performance due to cache

coherency. Similarly, only the used bits are sorted. Since radix-sort is stable, we can

sort the lower bits independently without scrambling the upper bits.

This concludes the sorting scheme of the partitioning routine. Since we only sort the

required bits, performance should be better when the partition count is low. In the

next Section, we will discuss the latter parts of the partitioning scheme.

50

3.4.3.2 The Algorithm

The rest of the algorithm is straightforward after the sorting is conducted. A kernel

is launched to determine split locations. The kernel is launched with n − 1 threads.

Each thread looks at its corresponding key-value pair and the next neighbor’s pair. If

a discrepancy between the upper 8-bit keys is detected, the next offset is written to an

output array. Pseudocode of this process is given in Algorithm 2.

Algorithm 2 Mark Splits routine. Given n index-key pairs, the upper 8-bit is com-

pared between the forward adjacent neighbor and the current pair. If a change is

detected, offset(j + 1) is written to an array; otherwise, zero is written.
Input-Output

K = {k1, k2 . . . kn} ▷ Set of keys

I = {i1, i2 . . . in} ▷ Set of corresponding ray indices

O = {} ▷ Empty offset output array

Start

for j = 1 to N − 1 do

k′
j ← ACQUIREUPPERBITS(kj)

k′
j+1 ← ACQUIREUPPERBITS(kj+1)

if k′
j ̸= k′

j+1 then

oi ← j + 1

else

oi ← 0

end if

end for

Each operation in this process is independent and can be trivially parallelized by the

GPU. The resulting buffer will have the starting positions of partitions with written

zero values in between. In the end, the resulting data is sparsely filled on a buffer, and

it should be converted into a dense structure. The following kernel call will handle

these zeroes.

To clean away the zeroes, we employ a stable partitioning algorithm. This partitioning

operates similarly to that used in the quick sort algorithm. It should not be confused

with the general partitioning algorithm discussed in this Section. Our partitioning

51

algorithm does a “N-way partitioning,” and N is unknown. In this case, we do a binary

partitioning that divides the structure into two segments. The algorithm checks the

offset array and compares the values between zero and partitions. Figure 3.7 gives an

array diagram of the operation.

0 1 2 3 4 5 6 7

0x02 0x02 0x04 0x04 0x04 0x07 0x08 0x08

0 2 0 0 5 6 0 0

2 5 6 0 0 0 0 0

Keys

Offsets

Partitioned

Figure 3.7: Array representation of the binary partitioning scheme and marking algo-
rithms. The navy array is the result of the marking algorithm. The orange array is the
result of the stable binary partitioning algorithm.

It should be noted that the binary partitioning algorithm should be stable, meaning

the relative order of the value should not change. To iterate the example given in

Figure 3.7, there are four partitions. The value of 4 is unknown until the last phase

of the algorithm. After the mark and partition operations, we acquire three values

representing starting offsets of the partitions of p2 . . . p4. The offset of the partition

p1 is implicit and is zero. As a final operation, we concatenate this implicit zero, and

the ray counts to the resulting array’s start and end positions, respectively.

0 2 5 6 8

4

Resulting Partitions

Total partition Count

Figure 3.8: The final result of the sorting-based partitioning algorithm. All in all, a
series of start and end offsets of each region is calculated.

The final result of the algorithm can be seen in Figure 3.8. Each adjacent pair in the

resulting array represents a partition in which indices between [pi, pi+1) are members

of the partition i.

The computation of the algorithm is consistent, meaning computation does not change

52

with respect to partition count. Memory usage is consistent as well. Given r amount

of rays, this N-way partitioning system would require;

1. 2r for indices (input and output). The initial input is generated via iota routine.

2. r for keys (output). The input keys are readily available in the ray payload.

3. O(smr) amount of extra memory for radix sorting. s is related to the SM count

of the physical device.

4. r for writing offsets (Figure 3.7, blue array).

5. O(smp) for binary partition. s is same as in the item 3.

6. r + 1 for the final output array and count.

Since all operations happen subsequently, the memory usage can be reduced by a

smaller allocation. The allocation can be repurposed as needed. In the end, 2r +

max(O(smp), O(smr)) amount of memory would suffice for the entire N-way parti-

tioning operation.

All fundamental operations are done in GPU using CUDA [81]. Both the radix sort

and partition algorithm used to construct this N-way partitioning algorithm are funda-

mental functional programming constructs and are readily implemented in CUDA’s

CUB Library [106]. The rest of the functions are trivial and implemented with custom

kernels.

Finally, the resulting array and the partition count are transferred to the host device.

Then, the host device launches a kernel for each specific partition. A specific BXDF-

related kernel is launched for each partition in our material evaluation case.

3.5 Final Words

This section proposed an N-way partitioning algorithm for wavefront path tracing on

GPU. Wavefront path tracing generates rays in bulk and segregates the ray tracing

operation and the material evaluation portions of the scheme. Each ray undergoes

53

ray tracing routines using intersection accelerators to find the closest hit surface and

the material of that surface. Then, each ray is partitioned with respect to surface

and material pairs, and specific material-related routines are applied to each partition.

Rays “bounce” over the surfaces and continue to different surfaces; thus, the entire

path space is explored.

During material evaluation routines, rays that hit an emitter write their contribution

to the corresponding pixel. Rays can cease to exist due to Russian Roulette as well.

In the next chapter, we explore the usage of this partitioning scheme for path tracing

and other extension methods, such as path guiding.

54

CHAPTER 4

WAVEFRONT PATH GUIDING

This chapter will propose a novel approach that utilizes the partitioning scheme ex-

plained in Chapter 3. In short, we employ a path-guiding approach that generates

an incoming radiance field on the fly. From this radiance field, a probability density

function will be generated and used for importance sampling.

4.1 Brief Refresh of Path Guiding

This section briefly explains the path-guiding methods and their main motivation. The

rendering equation is defined by the following integral [1].

Lo(p, ωo) = Le(p, ωo) +

∫
Ω

fx(p, ωi, ωo)Li(p, ωi) cos θi∂ωi (4.1)

As discussed before, this integral is estimated over all of the camera-contributing

surfaces over the scene. A Monte Carlo estimator for this function can be seen in the

equation below.

⟨Lx(p, ωo)⟩ =
1

N

n∑
i=1

fx(p, ωi, ωo)Li(p, ωi) cos θi
p(ωi|x, ωo)

(4.2)

Traditionally, p(ωi|x, ωo) is related to the BxDF function of fx(p, ωi, ωo). Sampling

over the BxDF is straightforward since all of the data is locally available during the

sample evaluation time 1. On the other hand, sampling using Li(p, ωi) portion is not

straightforward since the Li term also depends on other inductions of Equation 4.1.
1 cos θi term as well

55

Path guiding approaches try to achieve precisely this, approximating a robust in-

coming radiance field all the camera contributing regions of the scene. As one

may observe, the incoming radiance field across the entire scene constitutes a five-

dimensional function: three dimensions for spatial information and two for direction-

ality.

Another problem with the path-guiding approaches is that the required data (usually

the incoming radiance field over a particular location) is initially unavailable. The

radiance field requires an estimated path-tracing approach; however, we are trying

to do path-tracing anyway. This situation gives rise to a classic “chicken and egg”

dilemma. We need specific data to perform a calculation, yet this data is generated as

an outcome of the calculation we aim to execute.

Because of that, path-guiding methods pre-generate this radiance field or use the ac-

quired samples of the path tracer to estimate the radiance field during execution. For

the latter case, efficient extrapolation data is required for optimal execution.

In theory, path-guiding methods can generate very high-quality samples at the ex-

pense of computation cost. However, more straightforward high-speed methods can

outperform the path-guiding methods in equal time measure. Thus, a path-guiding

method should optimally divide the computational resources between estimating the

radiance field and doing the actual rendering.

The final issue arises in the concept of memory. Scene radiance field is, as discussed,

a 5-dimensional function, and holding the radiance field naively, for example, over

a dense 5D array, would require an excessive amount of memory due to the curse of

dimensionality. This bottleneck is especially predominant on GPUs since GPUs have

relatively low memory capacity compared to GPUs.

Most of the time, path-guiding approaches divide this 5D field into two portions.

One portion is responsible for spatial subdivision, and each spatial subdivided region

contains a . A classic example of this approach can be seen in Müller et al.’s work in

which a binary tree is responsible for spatiality. And for directional portions, a quad-

tree is used [64]. For the directional portion, a combination of integrable analytical

functions can also be utilized [60].

56

Data structures used for path guiding have no information about the scene layout at the

start. As the samples are fed into the system, these structures are adaptively refined to

a method-defined threshold to prevent excessive memory usage. Such approaches are

ill-suited for GPUs since adaptive data structures mean fine-grained dynamic memory

management, which is not straightforward.

Another issue with dynamic data structures is that such structures almost always have

branching behaviors (such as trees), and memory access to these data structures is

incoherent. CPUs can hide this incoherent access via sophisticated caches; however,

GPUs do not have this functionality.

Instead of separately sampling via BxDF and this radiance field, the product of these

two values can also be used for sampling. Such an approach is called “product path

guiding”. Not every path-guiding method trivially enables product sampling; dis-

cretely represented radiance fields require a non-trivial amount of computation to

sample from the product. On the other hand, analytically represented radiance fields

are more straightforward.

Considering this, we propose a GPU-oriented path-guiding method that seamlessly

fits the previously explained wavefront path tracer. Unlike existing approaches, we

estimate the radiant exitance2 of the regions and utilize the radiant exitance to gen-

erate radiance field on-the-fly. This method will use GPU-specific functionalities,

especially the hardware ray-tracing capabilities of the modern GPUs.

4.2 Overview

An overview of the design can be seen in Figure 4.1. This block diagram is similar to

the 3.4 in Chapter 3 with additional extensions. Two extra phases are introduced for

path guiding. The “guiding” phase occurs before the BxDF evaluation and generates

guided directions via creating a radiance field, generating a PDF from that field, and

sampling over this generated PDF.

Generating a radiance field for a single ray is unfeasible. Since the wavefront path

2 Radiant exitance is the inverse of irradiance, which is the radiant flux emitted by a surface per unit area.

57

Ray
Generation PRTM

BxDF Batch

...

Generate Radiance
Field

Generate Radiance
Field

...

Per-ray BxDF Field

Paths that reach to
Emitter

BVH

...

Missed
Hit

...

Missed
Hit

Query Surface Position on SVO,
Running-average estimates

Marginal/Conditional
PDF Generation

BxDF Batch

BxDF Batch

BxDF Batch

PRTP

Spatial Batch

...

Spatial Batch

Spatial Batch

Spatial Batch

ωo

N ωi

ωo

N ωi

...
...

...

L(pj,ωo)

SVOSVO

Radiant Exitance
Estimate

...

...
...

...

Radiant Exitance
Estimate

...

...
...

...

Radiant Exitance
Estimate

...

...
...

...

Radiant Exitance
Estimate

...

...
...

...

Figure 4.1: The top-down view of the entire path guiding algorithm. Blue rectangles
of the image show the wavefront path tracing operations. Other colored parts are the
additional steps required for guiding the rays. PRTp and PRTm sections represent
partitioning the rays by position and material, respectively. Device code is executed
for each spatial batch. Each batch generates an incoming radiance field incorporated
into the sampling scheme. Paths that reach an emitter contribute to an approximation
of the radiant exitance, which is cached on an SVO.

tracers already have many rays in circulation, we amortize the radiance field gen-

eration over the many rays. To accomplish this, rays are partitioned according to

their positions. Then, the partitioned rays collaboratively generate an estimate of the

incoming radiance field and the PDF.

The Pseudocode of the wavefront path guiding method is given in Algorithm 3. The

overall layout of the algorithm is similar to the wavefront path tracing algorithm pre-

sented in Chapter 3 with additional extensions. PARTITION-S routine is precisely

the same partitioning routine discussed in Chapter 3 but with a different key value.

The generation of this key value will be discussed in Section 4.3. Another difference

is that the BxDF evaluation routine is not responsible for generating new rays but

only actually evaluates the reflectance function using the direction generated by the

guiding routine.

Another extension to the path tracing method is the radiant exitance caching. In this

case, the rays that reach an emitter deposit their radiance information onto a spatial

radiant exitance cache. Later, the cached results will be utilized for approximating the

58

Algorithm 3 Wavefront path guiding.
Input-Output

R1 = {r1, r2 . . . } ▷ Set of initial rays

Start

Initially Generate rays from the camera and populate R1

for i = 1 to MaxDepth do

Bi = {(p1, Rp1), (p2, Rp2) . . . } ← PARTITION-S(Ri)

Ni = {(n1, Rn1), (n2, Rn2) . . . } ← PARTITION-M(Ri)

for all (pj, Rpj) ∈ Bi do

Rj
i+1 ← GUIDERAYS((pj, Rpj))

end for

for all (nj, Rnj
) ∈ Ni do

for all rk ∈ Rnj
do

EVALUATEBXDF(nj, rk)

end for

end for

Ri+1 = {R1
i+1, R

2
i+1 . . . } ▷ Next set of rays

end for

for all paths that reach an emitter do

UPDATEEXITANCE(SV O)

end for

radiance field over a specific region in the scene. In the next section, we will discuss

this radiance exitance caching methodology.

4.3 Radiant Exittance Caching using Sparse Voxel Octree Structure

To explain the caching scheme, we need to expand the rendering equation. Equa-

tion 4.3 gives a recursively expanded rendering equation formulation [2].

59

P (p̄n) =

∫
Ω

∫
· · ·
∫
Ω︸ ︷︷ ︸

n−1

Le(pn, ωon−1)

×

(
n−1∏
j=1

fx(pj+1, ωoj , ωij−1
)cosθi

)
∂ωi2 · · · ∂ωin

(4.3)

(
∏

...) term in this equation is defined as path throughput (T (p̄n)). While estimating

the integral via Monte Carlo formulation throughput T (p̄n) can be represented as

follows.

T (p̄n) =
n−1∏
j=1

fx(pj+1, ωoj , ωij−1
)

p(ωij−1
|x, ωoj)

cosθi (4.4)

The outgoing radiance sample at point pk can be extracted from the total throughput

T (p̄n) and the throughput of the path vertex T (p̄k).

Lok(pk, ωok−1
) =

T (p̄n)

T (p̄k)
Le(pn, ωon−1) (4.5)

This necessitates holding the entire path chain while path tracing. The payload of

a ray holds its path chain internally; only the position and throughput of each path

vertex are stored.

After an emitter is encountered on the path chain, the ray calculates the outgoing

radiance of each vertex and deposits it onto a Sparse Voxel Octree (SVO) structure.

SVO is used to approximate the scene layout; a voxel is created for each occupied

scene region. Each voxel holds the radiant exitance and approximation of the surface

normals.

SVO is constructed using Crassin et al.’s approach [88]. This operation utilizes a

hardware rasterizer and is inherently GPU-oriented. Scene layout is pre-determined;

thus, such generation can be done before the rendering. Initially, SVO will be empty;

as the rays deposit the data, the scene’s global radiant exitance estimate will be gen-

erated. The generation scheme also utilizes Karras et al.’s approach for constructing

60

linear bounding volume hierarchies (LBVH) [101]. Indices of the generated voxels

are converted to Morton Codes (see Figure 4.2) and sorted. Discrepancies between

these morton codes directly represent the subdivision structure of the SVO.

More specifically, each (x, y, z) triplet in the MortonCode represents the child index

of that voxel. The most significant triplet shows the subdivision of the root. The next

two triplets combined will give the second level node of that particular voxel. And

this pattern continues. Since voxels are sorted, discrepancies between these bits will

determine the change of parent hierarchy between nodes. By this observation, the

hierarchy of the SVO can be generated.
012345

x6 x5 x4 x3 x2 x1 X

012345

y6 y5 y4 y3 y2 y1 Y

012345

z6 z5 z4 z3 z2 z1 Z

01234567891011121314151617

z6 y6 x6 z5 y5 x5 z4 y4 x4 z3 y3 x3 z2 y2 x2 z1 y1 x1

Figure 4.2: Morton code encoding visualization. Given a 6-bit voxel index of
(x, y, z), encoding interleaves the bits of each dimension (z6, y6, x6 . . . , z1, y1, x1).
In the actual case, the Morton Code width is much larger.

By definition, radiant exitance is directionless. Because of that, we are not required

to hold a directional data structure on the leaves of the SVO. This drastically reduces

memory requirements. As we discussed above, SVO is pre-generated. Thus, the

rendering does not require subdivision, enabling simpler memory management.

Since a voxel is inherently a volumetric structure, representing surfaces creates chal-

lenges. Imagine a two-sided, infinitely thin object, such as a wall separating regions

with drastic illumination discrepancies. Such voxel will transfer the radiance infor-

mation incorrectly to the other side creating light leaks. The main reason is the reso-

lution mismatch; we could not represent some surfaces perfectly because of memory

limitations.

Thus, an approximate surface representation is required. To this end, we store the

normals on the voxels. Again, because of the resolution mismatch, multiple triangles

61

may end up on the same voxel (Figure 4.3). In order to determine the approximate

surface normal, we utilize simple k-means clustering where k = 2 to determine the

normal.

2-means clustering2-means clustering

Initial means

Candidate Surfaces on a Voxel

Surface Normals

Figure 4.3: K-means clustering algorithm sketch. This figure assumes that the voxel
resolution is lower than the triangle resolution in the context. Each triangle will be
rasterized onto this single voxel. The approximate normal is calculated by conducting
a 2-means clustering. This prevents normals of very thin, two-sided objects from
being canceled out.

We select initial means N⃗0 and N⃗1 via selecting the first normal from the pool, namely

N⃗ ′, N⃗0 will be N⃗0 and N⃗1 will be−N⃗0. With that, normals of two surfaces oriented in

opposite directions that share the same voxel will not cancel each other out. Figure 4.3

shows an example of this approach.

By introducing normals, we effectively created two sides of a voxel. Because of that,

radiant exitance for both sides is stored in a voxel. While depositing, the ray will

determine which side they should deposit into by comparing the direction with the

normal of the voxel.

Radiant exitance is only deposited into the leaf voxels of the SVO. However, we

require all nodes of the SVO to hold a radiant exitance value. The reason is to employ

a cone tracing routine, which will be explained in Section 4.4. Thus, we filter the leaf

values towards the root in a bottom-up fashion.

62

This concludes the radiant exitance caching scheme of the system. Rays that undergo

guided path tracing will fill the structure during rendering. While rendering, rays will

use this information to guide rays. The following section will specify the usage of the

radiant exitance cache for path guiding.

4.4 On-the-fly Generation of Radiance Field

Our path tracing scheme is a wavefront scheme; thus, many rays are in circulation

during rendering. During rendering, these rays may end up in similar locations with

similar incoming radiance fields. Because of that, we partition these rays with respect

to the positions. After partitioning is conducted, grouped rays collaboratively gen-

erate the radiance field and do sampling. Sections 4.4.1 and 4.4.2 will explain these

processes.

4.4.1 Partitioning

To partition the rays with respect to position, we utilize the partitioning scheme dis-

cussed in Chapter 3, however, with a different key value. The generation of this key

value will use the generated SVO itself. SVO already partitions the scene by volume,

so using this already-generated data structure will be convenient. We will acquire the

voxel index from the SVO (an integer index (x, y, z)) by descending towards the leaf.

When we encounter the leaf, we increment an atomic counter to express the usage of

that leaf.

Rays could be directly partitioned without the SVO by discretizing the position infor-

mation. We specifically utilize SVO to merge the partitions indicated by the leaves

further. Algorithm 4 explains the process in the pseudocode. This process will further

amortize the radiance field generation cost by reducing the field count per ray.

After rays mark the leaves of the SVO, we bottom-up merge the nodes of the SVO.

This collapse process is orchestrated by two user-defined parameters, namely “min-

BinLevel” lmin and “binRayCount” cray. lmin puts an upper bound for this collapsing

scheme where no collapsing would occur for levels above the SVO level lmin. On the

63

Algorithm 4 PARTITION-S Routine. Partition the paths that have hit pi to series of

bins bj using an SVO with the depth d.

Input

R = {r1, r2 . . .} ▷ Rays that are going to be partitioned

SV O = {(n1)
1, (n1, . . .)

2 . . . (n1, . . .)
d}

Output

B = {(p1, Rp1), (p1, Rp2 . . . } ▷ Pair of position and ray pools

Buffer

I = {b1, b2 . . . bi} ▷ Bin id for each ray

Start

for all ri ∈ R do

pi ← RAYPOSITION(ri)

nd
i ← DESCENDLEAF(pi)

ATOMICADD(nd
i , 1)

bi ← NODEID(nd
i)

end for

for all l ∈ SVO (in bottom-up fashion, up to lmin) do

for all nl ∈ (n . . .)l in SVO level l do

C = {c1, c2, ...c8} ▷ node children’s path count

T ← c1 + · · ·+ c8

if T ≥ cray or l = lmin then

MARKNODE(nl
i)

end if

end for

end for

for all bi ∈ I do

nd
i ← TONODE(bi)

nl
i ← ASCENDANDFINDMARKED(nd

i)

bi ← NODEID(nl
i)

end for

B ← PARTITION(I, R)

64

other hand, cray defines how many rays are deemed enough for amortization. When

a node satisfies these constraints, it is marked.

Rays then again descend on the SVO and find this marked SVO node. When encoun-

tered, the node index of that voxel is written to a buffer. This node index value will be

the key parameter for the partitioning scheme. Finally, we have partitioned the rays

spatially.

4.4.2 Radiance Field Generation

Each partition will generate a single omnidirectional radiance field. The reason for

the omnidirectional radiance field comes from the fact that we do not know which

portions of the radiance field are required for the surfaces. We hold surface normal;

however, such normal is only approximate; it can be an average normal for many

small, differently oriented surfaces. Furthermore, these surfaces may be refractive,

meaning a whole omnidirectional field is needed. For these reasons, we conserva-

tively generate the entire omnidirectional radiance field.

We attach a single block to each partition. Threads on each block will generate a

radiance field using the SVO, and then they read the ray information and sample

directions using the generated radiance field. More importantly, the shared memory

of each block will be used for temporary and fast memory, effectively eliminating the

extra memory cost. Since shared memory does not persist between the kernel calls, it

will automatically discarded after a block is finished with a partition. The Overview

of this process can be seen in algorithm 5.

To generate the incoming radiance field, we utilize the cone tracing approach. Given

the location of the scene pk, omnidirectional radiance field L(pk, wi) is stratified to

equal area patches of ∂ω. For each patch, a cone is launched in that direction. The

cone conducts its tracing and effectively finds a location p′, and then this location is

queried on SVO by looking at the cone’s aperture and position.

The reason we utilize the cone tracing approach has a practical basis. Due to compu-

tational concerns, we could only reasonably launch hundreds of rays for a given par-

tition. Thus, we require an efficient estimation of the radiance field using a minimal

65

Algorithm 5 GUIDERAYS routine. Given a bin with partitioned rays, generate inci-

dent radiance field, generate PDF and CDF, and sample either using path guiding or

BxDF via MIS.
Input

(pj, Rpj) ▷ Partitioned position and rays

Output

Rj
i+1 ▷ Guided rays

Buffer

L(pi, ωi) ▷ Incoming Radiance Field on shared memory

PDF (ωi), CDF (ωi) ▷ PDF and CDF on shared memory

Start

po ← SELECTORIGIN(Rpj)

for all ωi ∈ Ω do

L(po, ωi)← CONETRACE(SV O, po, ωi)

end for

CDF (ωi), PDF (ωi)← GENERATEPDF-CDF(L)

for all rk ∈ Rpj do

M ← ACQUIREMATERIAL(rk)

rknext ← MIS(PDF (wi), CDF (wi),M)

end for

Rj
i+1 = {r1next . . . }

amount of ray-casting operations. By cone tracing, a single cone would accurately

estimate large ∂ω patches.

The projected area with respect to the cone solid angle ω and the distance r can be

formulated as in Equation 4.6.

A = r2ω (4.6)

The solid angle area is then assumed to be a circle due to conal representation, and the

relation between the voxel size of ith level of the SVO vi can be compared as follows.

66

R2 = 4 ∗ A/π

v2i ∼ R2
(4.7)

This is the reason for filtering the leaf radiance exitance values over the upper levels

of the tree. Such an approach estimates radiant exitance efficiently and minimizes the

amount of tracing that would be needed.

A couple of approaches can be utilized to find the incident hit location. A volumetric

estimation proposed by Crassin et al. [94] can be used. Despite being efficient, such

an approach is prone to light leaks. Empty space skipping cone tracing, which is dis-

cussed by Laine et al. [82], can be utilized as well. In this approach, rays are marched

traditionally in an empty-space skipping manner. As rays are marched further, the

cone’s projected area over that area gets larger as well. When it matches the voxel

area of an SVO tree level, tracing terminates, and radiant exitance can be directly

queried from that level of the tree.

Although the above tracing schemes would reasonably estimate the incoming radi-

ance field, such approaches are quite slow. Our path-guiding strategy relies on many

ray-casting operations for the radiance field estimation over many locations on the

scene. We propose a different approach that utilizes the device’s hardware-accelerated

ray tracing capabilities.

Unlike other methods, we directly utilize the ray-tracing hardware on the device.

Instead of tracing the SVO, we trace the scene’s acceleration structure and find a hit

position. From that hit location, distance r is calculated, and Equations 4.6 and 4.7

are calculated as if we traced a cone. Such an approach is approximate since we could

not incrementally check Equation 4.7.

Cone tracing occurs with a user-defined resolution X × Y . This can be considered as

a partition-local camera-generated environment map. By this observation, we utilize

traditional environment sampling schemes. The radiance field is treated as a piece-

wise constant 2D function for which the traditional inverse sampling method is uti-

lized. An example of the method can be found in the Physically Rendering Book [2]

or Shirley’s chapter on Ray Tracing Gems [107]. An example of the process can be

67

seen in Figure 4.4.

(a) Radiance Field (b) Marginal and Conditional PDFs

Figure 4.4: An example of generated marginal and conditional PDFs from the radi-
ance field. For demonstration purposes, the PDFs are low-resolution. The marginal
PDF function is only a one-dimensional array and is responsible for selecting a row
to find a conditional PDF.

More specifically, the computation is done as follows. Each row of the generated 2D

dense radiance field is considered a 1D piecewise constant (PWC) function. Each row

is integrated to find the unnormalized CDF function. Since the function is a PWC inte-

gration, it corresponds to a “scan” (prefix-sum) operation. Scan operation is similar to

reduction operation but has additional complexity. For a list A = {n1, n2, n3, . . . nN},
it creates N element list where the element n′

i =
∑i

j=1 nj .

Each block calculates the row integral in parallel. The last element of the resulting

scan operation is the summation of all row values. We divide all the elements to create

the actual CDF. Radiance field values are also divided to generate the row PDFs. This

total value is also used to create the marginal PDF. For X×Y radiance field, we have

a single Y sized function that undergoes the same operations described above.

Generating the CDF values and normalizing the radiance field to generate PDF is

highly parallelizable; thus, block threads do these operations in parallel. The scan

operation is a fundamental functional programming construct and a readily available

CUDA routine. For our implementation, we utilized CUDA’s implementation.

Sampling from this 2D field requires a two-phase approach. Two random values ξ1, ξ2

68

are generated where ξ ∈ [0, 1). First, a binary search is conducted over the marginal

CDF function using ξ1, and a row is found. The rows CDF is also binary searched via

ξ2, and the actual sampled cell is determined. The PDF value will correspond to the

multiplication of the found marginal and conditional PDFs.

4.5 Exposing BxDF Product the Radiance Field

For discretized path-guiding methods, conducting a product sampling scheme is non-

trivial. In the product path guiding method, we utilize the product of the BxDF and the

radiance field as a sampler instead of directly sampling the radiance field. We utilize

Estevez et al.’s approach [108], which is proposed for environment maps. Since the

generated radiance field can be considered as an environment map this method is

suitable for product path guiding.

In this approach, the radiance field is divided into two layers: one low-resolution

layer and a high-resolution layer. The low-resolution layer is then multiplied with the

discrete representation of BxDF. Similar approaches for sampling are conducted for

the low-resolution level discussed in the section above. One difference is the binary

search; we employ warp-level intrinsics for searching the CDF, which corresponds to

a parallel brute-force search.

Unlike the non-product sampling method described above, an entire block could not

collaboratively generate these low-resolution multiplication fields since each ray may

have a different material. Because of that parallelization scheme is different. While

sampling, a block issues a single warp for each ray. The radiance field query is still

done at the block level. Generating the low-level version of the radiance field is also

done at the block level. Then parallelization scheme is changed within the block,

and a single warp becomes responsible for each ray. A warp calculates BxDF for

each cell and multiplies it with the low-resolution radiance field. This multiplied field

is sampled, and a region is determined. For this region, corresponding cells of the

high-resolution field undergo the same sampling scheme. For example, given 32×32

radiance field and assuming 8×8 field is used for product portion, an inner 4×4 field

will be sampled.

69

The pseudocode of the routine is given in Algorithm 6. Only the sampling scheme for

one of the levels is given. For the pseudocode to be understandable, we must explain

the intrinsics used in the routine.

Algorithm 6 PRODUCTSAMPLE Routine. Given two uniform numbers, sample a

region from the outer radiance field that is multiplied by the reflectance. Returns the

UV coordinates of the sampled location and the multiplied probability. w is thread

per warp and m = n2/w (conditional pdf value per warp). tid is the thread identifier

(between [0, w)). The algorithm assumes n < w and w is evenly divisible by n.
1: Input

2: ξ0, ξ1 ▷ Random values between [0, 1) available only for tid = 0

3: PDFX = {px1, px2 . . .pxm} ▷ Row PDF values

4: CDFX = {cx1, cx2 . . .cxm} ▷ Row CDF values

5: PDFY = py ▷ Marginal PDF values (First n threads has this)

6: CDFY = cy ▷ Marginal CDF values (same as above)

7: Output

8: u, v ▷ Normalized 2D coordinates of the sampled location

9: pdf ▷ Final pdf value

10: Start

11: Sample Marginal PDF

12: ξ0 ← SHUFFLE(ξ0, 0)

13: mask← BALLOT(ξ0 > cy)

14: rowId← FINDFIRSTSET(∼mask)− 1

15: cysample ← SHUFFLE(cy, rowId)

16: if rowId == n then ▷ Eliminate edge case

17: cynext ← 1

18: else

19: cynext ← SHUFFLE(cy, rowId + 1)

20: end if

21: v ←
(

rowId +
ξ0−cysample

cynext−cysample

)
/n

Shuffle intrinsic function broadcasts word-sized values (1st argument) to the threads

from the thread that is distinguished by the 2nd argument. Finally, it returns the broad-

casted value. Ballot routine bitwise packs and returns the provided predicate (1st ar-

70

gument) to all the threads on the warp, meaning each bit will be the result of the

predicate calculated by a thread. Although not warp-related, FindFirstSet routine re-

turns the index of the first set bit on a word. The order is from the least to the most

significant bit.

Given these descriptions, an entire single-layer product sampling routine can be seen

in Algorithm 6. Interestingly, rejection sampling can also be utilized for the inner re-

gion since the resolution of the inner region is relatively low compared to the number

of threads in a warp.

Algorithm 7 PRODUCTSAMPLE Routine continued.
22: Sample Conditional PDF

23: myColId← tid%n

24: myRowId← tid/n

25: localIndex← (rowId/m)

26: ξ1 ← SHUFFLE(ξ1, 0)

27: mask← BALLOT(ξ1 > CDFX [localIndex])

28: mask← mask << rowId%m

29: colId← FINDFIRSTSET(∼mask)− 1

30: colThrd← (rowId ∗ n+ colId)/w

31: cxsample ← SHUFFLE(CDFX [localIndex]), colThrd)

32: if colThrd == n then ▷ Eliminate edge case

33: cxnext ← 1

34: else

35: cxnext ← SHUFFLE(CDFX [localIndex], colThrd + 1)

36: end if

37:

38: u←
(

colId +
ξ1−cxsample

cxnext−cxsample

)
/n

39:

40: Find PDF

41: pdfy ← SHUFFLE(py, rowId)

42: pdfx ← SHUFFLE(PDFX [localIndex], colThrd)

43: pdf ← pdfx ∗ pdfy

71

72

CHAPTER 5

IMPLEMENTATION AND RESULTS

In this section, we will compare state-of-the-art methods and our method and discuss

the practical details of the proposed method. Throughout the chapter, our wavefront

path guiding method will have an abbreviation of WFPG.

5.1 Implementation

We have implemented our algorithm using CUDA [81]. For hardware-accelerated ray

tracing, we utilize the OptiX Framework [109]. The entire wavefront path tracing and

path guiding implementation can be found publicly [110].

In this Section, we will discuss the practical concerns of the proposed wavefront path

guiding method.

OptiX framework and shared memory. Unfortunately, OptiX does not expose ray-

tracing capabilities on custom kernels. Graphics-related APIs like DirectX Ray Trac-

ing and Vulkan Ray Tracing have inline ray tracing capabilities over the compute

shaders. However, Optix only exposes a ray tracing pipeline style of the programming

model. Because of that, we utilize a small persistent buffer to transfer the ray-traced

radiance field between the OptiX kernel and the sampling kernel. The allocation

amount depends on the SM count of the running device. In our experiments, 8 to 16

MiB of memory is enough to saturate a mid to high-end GPU.

Aliasing. As discussed in Chapter 4, after we generate the radiance field and use it for

sampling, we discard it due to memory concerns. Similar to the real-time rendering

paradigm, aliasing becomes an issue. Another reason is the relatively low resolution

73

of the generated radiance fields. High-frequency illumination or occlusion may not

be captured with a single sample. An example of this is given in Figure 5.1.

Bin
Po

ω iω i

Occluder

Figure 5.1: Aliasing illustration. Assuming the radiance field is generated over the
volume represented by the green dashed square, The radiance field is generated from
a point po. The contribution of a small occluder (shaded red) could not be captured
due to the low-resolution radiance field. Cone rays miss the occluder, and the radiant
exitance of the surface behind is queried.

Therefore, we employ a very basic and fast anti-aliasing scheme. We do a Gaussian

Blur over the entire image and jitter the sampling directions while generating the

radiance field.

Aliasing aside, this alleviates another primary issue; it matures the estimated radi-

ance field and reduces harsh variance estimates over high-frequency changing re-

gions. With that, all rays in the regions have a usable field. Since the generated

radiance field corresponds precisely to a single point over the region, rays that trail

slightly different parts of the scene (but in the same bin) would require slightly dif-

ferent fields.

Radiance field capture origin. Selecting the “rendering” origin for the radiance

field is not simple. One may directly select the center point of the partitioned region

for a captured origin. However, such utilization may create self-occlusions or cre-

ate “variance seams”. Instead, we randomly select a candidate ray’s hit position as

74

origin every time a radiance field for that region is needed to be generated. Such an

approach minimizes or eliminates the variance seams, making the rendering image

more suitable for a potential denoising post-process.

Multiple Importance Sampling (MIS). Path guiding methods would require im-

practical memory or computation time to be “zero variance” sampling schemes. Our

method is no different; unlike other path-guiding proposals, our method will have

fewer memory concerns but more significant computational concerns. Due to that,

we utilize the path-guiding method as a sister sampling method with the traditional

BxDF sampling method using MIS. This reveals a practical computational hiccup for

the proposed method. Since we only partition with respect to position, we require

both the BxDF’s PDF and the radiance fields’ PDF to sample using MIS. However,

we did not partition for material; thus, branching discrepancies would occur. Such

discrepancies are minimal in practice since nearby regions mostly have the same ma-

terial. This approach is nonexistent for the product sampling scheme since the entire

warp is responsible for a single ray; thus, no branch mismatches happen in a warp.

Radiance field projection onto 2D Cartesian Space. We do not explain the projec-

tion scheme in Chapter 4. Since we create a relatively low-resolution radiance field,

every pixel is important. To this end, we utilize an equi-area sampling method pro-

posed by Clarberg [111]. Concentric octahedral mapping would give better results on

lower resolutions than other classical projection techniques, such as Spherical Projec-

tion.

5.2 Parametrization

There are multiple parametrization variables available for the implementation, mainly

cray (“BinRayCount”) and lmin (“MinSVOLevel”) as discussed in Chapter 4. Addi-

tional parameters are “BXDF-WFPGMISRatio”, “OctreeLevel”, “FieldResolution”

and “FieldFilterAlpha”.

“BinRayCount” and “MinSVOLevel” handle how many rays should reside in a bin.

Higher “BinRayCount” and lower “MinSVOLevel” create spatially larger bins and

reduce bin count. Ultimately, this results in faster computation. However, having

75

bins that cover larger portions of the scene may result in a suboptimal radiance field

for all of the rays inside the bin. Having fine-grained bins will result in inefficient

utilization of the GPU since the generated radiance fields will be utilized by fewer

rays, thus reducing performance. Therefore, tuning of these parameters is essential.

In our experiments, “BinRayCount” of 512 and “MinSVOLevel” of “OctreeLevel” -

2 result in optimal performance in the resulting scenes.

“OctreeLevel” defines an upper bound for the leaf level of the SVO. Increasing this

parameter will result in a higher resolution radiant exitance field for the entire scene,

but it will also increase memory cost. For scenes that have high fidelity, increasing

this parameter will be required to capture the high-frequency changes of the radiant

exitance field. Additionally, large scenes will require high-resolution SVO, although

local portions of the scene may not necessitate such a high resolution.

Like the other path-guiding approaches, we do not solely utilize WFPG as an importance-

sampling method. “BXDF-WFPGMISRatio” defines the sampling ratio between

BxDF and path guiding. This parameter is defined between 0 and 1 (inclusive). Sim-

ilar to the other approaches, the value of 0.5 is used throughout the test scene. This

means samples are equally generated between BxDF and WFPG.

As we discussed in Section 5.1, the radiance fields are filtered via a simple low-pass

filter (a Gaussian Filter). Parameter “FieldFilterAlpha” is the value α in Equation 5.1.

y = e−
x2

α2 (5.1)

Higher alpha will result in high blurring, which may result in high-frequency feature

loss. On the other hand, lower alpha values would make the generated radiance field

inefficient for rays that are far from the radiance field capture origin. In our exper-

iments, we utilized the value of 0.8, which is strongly tied to the resolution of the

generated radiance fields.

The “FieldResolution” parameter defines the width and height of the radiance field.

Since we utilize the equi-area projection method, both width and height are required

to be equal; thus, a single parameter would suffice to express the resolution. Higher

radiance field resolution will enable the capture of high-frequency features; however,

76

it will increase computation time due to additional ray-casting operations. Radiance

fields that are low-resolution may not capture important illumination sources, result-

ing in an increased variance. Additionally, this parameter is tied to the capabilities of

the GPU because shared memory is utilized for storing radiance fields. For the GPU

utilized (NVIDIA RTX 3070 Mobile) for tests in this Chapter, we would be able to

get the maximum resolution of 128× 128.

We utilize a hierarchical selection of the radiance field due to high-resolution radiance

fields taking a substantial portion of the method’s computation time. The first bounce

will utilize maximum resolution because these rays contribute the highest to the re-

sulting image. Subsequent bounces will reduce the field resolution by two. There is a

lower limit of 16× 16 that will be utilized by the fourth bounce and onwards.

5.3 Path Guiding Visualization Tool

In order to determine the correctness of the generated radiance fields and ease the

development process, we created a path-guiding visualization tool. The implemented

renderer can generate “reference” radiance fields, which can be used to compare the

sampling fields of different methods. Reference radiance field generation occurs in

a per-pixel fashion; the projected area of a camera pixel undergoes traditional path

tracing. However, samples are not accumulated over the pixel but accumulated over

an omnidirectional 2D radiance field image. Figure 5.2 compares our method and the

method proposed by Müller et al. [64].

Our approach enables a uniform high-resolution radiance field due to lower mem-

ory constraints than Müller et al.’s approach. Müller et al.’s approach subdivide the

radiance so that each leaf of the quadtree has a similar radiance value; thus, the nor-

malized view in Figure 5.2 shows similarly colored pixels. However, the subdivision

trend matches the trend of the reference image in an unnormalized form. Even still,

the resolution of the calculated radiance field is comparably low.

We compare the “learning” schemes of our method with the method of Müller et al.

as well. Such demonstration can be seen in Figure 5.3, which exposes the advantage

of our process: our method does not require subdivision schemes for adapting the

77

WFPG PPG Reference

Figure 5.2: Learned or Generated Radiance field PDF of our method (abbreviated as
WFPG) and practical path guiding method (abbreviated as PPG). Our method gen-
erates the radiance field 1282 resolution. Both methods are “trained” with an equal
number of samples (2048 samples per pixel). The reference radiance field is gener-
ated via path tracing and has a resolution of 2562 (216 samples per pixel).

data structure to the incoming radiance field. The directional data structure of our

method is generated with a static discretization scheme and has a 64× 64 resolution.

The adaptation scheme for our method represents more of a noise pattern of path trac-

ing techniques. The first results immediately generate the radiance field’s structure,

78

Camera Reference Location PDF

PPG

WFPG

64× 64

WFPG

128× 128

2 4 8 16

SPP

Location Reference WFPG Hi-Res (210 × 210)

Figure 5.3: Convergenge of Müller et al.’s method and our method. Reference is
generated using path tracing over that region. For our method, 64× 64 and 128× 128
radiance fields are generated. Müller et al.’s method uses default parameters.

79

and additional samples tend to reduce the noise of the generated fields.

Our dense generation scheme can be considered a disadvantage for scenes with high-

frequency radiance fields. Figure 5.3 also demonstrates the issue. Incoming radiance

on the green dot has point light-like illumination. Reference PDF shows the refer-

ence radiance field. If our method generates the radiance field on low resolution, it

generates a “smeared” radiance field, which is not exact. Still, even in this form, this

radiance field is better than having no radiance field. This is especially true for this

scene since dielectric surfaces encapsulate all emitters. Methods such as next event

estimation (casting shadow rays) do not work since this kind of illumination is not a

direct illumination.

Another comment on the resulting reference images is the resolution of the SVO. As

can be seen on the bottom right of Figure 5.3, even with an excessive resolution for

the radiance field (in this case 1024×1024 nearly an HD image), voxel representation

of the scene emerges on to the generated field. Thus, the resolution of the SVO and

the generated radiance field should be adjusted for high resolutions.

5.4 Profiling

To expose the method’s overhead, multiple measurements are conducted over differ-

ent scenes. these can be seen in Table 5.1. Since our method generates radiance fields

on the fly, one can argue that it can have impractical computation times. Although

computation time increases, it is not practically low, for scenes with hard light in-

teractions and high memory consumption would require this extra computation time

instead of high memory usage.

Table 5.1 shows the extended timing table of the entire method compared to wavefront

path tracing, denoted as “PT”. All of the measurements are done using an NVIDIA

3070ti Mobile GPU. Overall, our method doubles the computation cost of each sam-

ple. It should be noted that in the range of 32 to 90 million, additional rays are traced

as cones to generate the radiance fields. Even with that extra cost, only ∼ %100 in-

crease in computation cost is understandable. However, our memory cost compared

to other methods is nearly an order of magnitude lower, which can be desired for

80

Table 5.1: Timings of the wavefront path guiding stages. Each Depthn box has
three values from top-down, which corresponds to “total bin count”, “average ray
per bin”, and the total computation time of Algorithm 5, no product path guiding is
conducted in these measurements. SVO Column values are as follows from top-down;
“SVO Resolution”, “Node Count”, “Total Memory”, and “Construction Time”. The
Miscellaneous portion includes partitioning routines with respect to both position and
material and the material evaluation routines.

Scene (1920× 1080)
PT SVO

WFPG (lmin = 5, cray = 512)

Depth1 Depth2 Depth3 Depth4 Update
Misc. Total

1spp (128× 128) (64× 64) (32× 32) (16× 16) Exitance

C
R

Y
S

P
O

N
Z

A

91.43ms

2563 2005.00 2712.83 2603.67 2444

4.21ms 79.42ms 180.71ms

638,763 1034.28 570.19 444.14 257.21

17.33 MiB

45.45ms 48.29ms 25.36ms 16.68ms 10.96ms

V
E

A
C

H
D

O
O

R

80.8ms

2563 2143.9 2651.28 2881.76 2684.25

4.07ms 74.87ms 165.95ms

199,362 967.39 703.44 612.12 598.50

5.36 MiB

17.81ms 35.76ms 21.23ms 16.84ms 17.25ms

C
B

O
X

O
C

C
L

U
D

E

54.42ms

2563 5534.9 7172.8 7173.01 7172

6.68ms 50.38ms 177.87ms

638,395 207 152.49 140.87 125.63

17.07 MiB

48.04ms 67.13ms 26.36ms 14.91ms 10.09ms

B
A

T
H

R
O

O
M

61.19ms

2563 2448.92 3394.67 3163.44 3050.25

4.59ms 55.33ms 166.82ms

313,791 824.69 516.69 472.53 422.94

8.51 MiB

35.54ms 49.2ms 26.09ms 19.11ms 13.5ms

scenes with high memory. This is the classical computation-cost vs. memory-usage

tradeoff. Arguably, the memory is more precious on the GPU than CPU counterparts,

especially for production-level scenes.

81

5.5 Baseline Comparison

For a baseline comparison, we profiled our method between classical path tracing.

This comparison is used to make equal-time and equal-sample comparisons to check

the method outperforms the classical path tracing. Equal-time comparisons are es-

sential since the path tracer can outperform our method due to the sheer amount of

extra rays generated due to computational efficiency.

Figure 5.4 shows the single sample of the generated method over time. Since path-

guiding methods train over time, the latter samples have higher sample quality than

the previous ones. The first sample has an even higher variance than the path-tracing

sample. This is expected since, initially, SVO is devoid of radiance information.

Subsequent samples immediately outperform the path tracer.

Interestingly, newly generated samples after the first samples do not improve as dra-

matically as the very first samples. This can be tied to the generated radiance fields’

convergence nature (Figure 5.3 WFPG row). By this observation, we experimented

with multiple heuristics to combine the generated samples.

Given a set of n pre-filtered full-image samples and weights Sn = {(s1, w1), (s2, w2),

. . . , (sn, wn)}, the resulting radiance-field of the generated image In can be computed

with the given heuristics function h(i) as follows.

In =

n∑
i=1

wisih(i)

n∑
i=1

wih(i)
(5.2)

Several heuristic functions are shown below. If heuristic function h(i) is constant,

it corresponds to having no sample combination strategy being applied. The final

heuristic, which did not have its heuristic function, is slightly different. It also uses

a constant heuristic function; however, the first sample directly comes from the first

path-tracing sample without applying the path-guiding method. In Figure 5.5, it is

named “PT First”.

82

1 4 7 10 13 16 19 22 25 28 31

2

3

4

5

6

7

Sample per Pixel (SPP)

A
vg

.V
ar

ia
nc

e
(M

SE
)

WFPG
PT

(a) VeachDoor

1 4 7 10 13 16 19 22 25 28 31

0.8

1

1.2

1.4

1.6

·10−2

Sample per Pixel (SPP)

A
vg

.V
ar

ia
nc

e
(M

SE
)

WFPG
PT

(b) Sponza

Figure 5.4: Single sample variance of the proposed and traditional path-tracking
methods. Each sample on the graph did not accumulate with the previous samples.
This graph exposes the learning scheme of our method. The general trend of the ra-
diance field is immediately learned in a couple of samples, especially after the very
first sample.

h(i) =

i i < 5

5 otherwise
(Linear)

h(i) =

i2 i < 5

25 otherwise
(Quadratic)

h(i) =

1 i = 1

2 otherwise
(One-Two)

h(i) =

0 i = 1

1 otherwise
(Discard First)

83

Figure 5.5a graph exposes the mean FLIP of the sample combination strategies [112].

It can be observed that among the proposed strategies, the best combination strategy is

“PT First”. However, except the “Quadratic” heuristic, all other heuristics outperform

the non-weighted sampling strategy.

5.4, has two scenes namely “Sponza” and “VeachDoor”. The camera angle for the

VeachDoor scene is the exact angle shown in Figure 5.6. For the Sponza scene, the

camera angle is similar in Table 5.1, but it is shifted slightly towards the right.

Figure 5.5b shows the equal time comparison of the selected “PT First” heuristic and

the path tracing. Although the proposed method is computationally more expensive,

it outperforms path tracing in equal time.

For Figure 5.5, we only demonstrated the VeachDoor scene. This scene’s camera

angle is dominated by indirect illumination. Thus, we only provided the results of

the Veach Door scene for the equal time comparisons. For the Sponza scene, camera-

captured regions are a mix of directly and indirectly illumination-dominated regions.

For that scene, results are similar but have a tighter gap between curves.

Similar to the approaches discussed in Müller et al. [64, 113], we did not choose to

discard previous samples due to the interactive nature of the proposed method due to

underlying hardware. This proposed heuristic does not discard samples; thus, it aligns

pretty well with the interactive paradigm of the GPUs, which enables fast authoring

of scenes with challenging lighting.

5.6 Comparison with Literature

We have conducted a per-sample comparison between Ruppert et al.’s method [70] as

well as Müller et al.’s method [64]. Müller and Ruppert et al.’s methods have a public

CPU implementation over the Mitsuba Renderer [114]. We refrain from conducting

an equal-time comparison due to hardware differences. GPU implementations would

outperform CPU implementations and would not make a fair comparison.

Results can be seen in Figure 5.6 and Table 5.2. In both cases, we utilize the HDR-

Flip comparison tool [112, 115]. Comparisons between Ruppert et al. provide the

84

2 4 6 8 10 12 14 16

0.2

0.3

0.4

Sample per Pixel (SPP)

M
ea

n
FL

IP

No Weight Linear Quadratic
One-Two Discard First PT First

Path Tracing

(a) VeachDoor - Methods

0 40 80 120 160 200

0.1

0.2

0.3

0.4

0.5

0.6

Time (seconds)

M
ea

n
FL

IP

WFPG “PT First” Path Tracing

(b) VeachDoor - Time

Figure 5.5: Mean FLIP comparisons of the experimented sampling techniques. Ad-
ditionally, equal-time comparisons are presented between the comparably best tech-
nique (“PT First”) and the classical path tracing technique. At the two-minute mark,
the total number of combined samples is 928 for path tracing and 422 for WFPG.

85

FLIP heat map, which also shows the per-pixel difference values of the compared

images. The user-adjustable parameters are on default values except for the training

and sample count variables of both methods.

The entirety of the bathroom scene is dominated by indirect illumination. One reason

is that the scene has specularly encapsulated light sources (i.e., lightbulbs). This

essentially disables next-event estimation; thus, classical path tracing without path

guiding would have difficulty generating images efficiently.

The Sponza scene has a good mix of directly and indirectly illuminated regions. Indi-

rectly illuminated regions are cavities of the scene where illumination is obscured via

pillars and arches. The main hall of the scene is also mostly illuminated via indirect

illumination. However, this region has an easier time reaching the directly illuminated

region.

In all scenes, the WFPG and Ruppert et al.’s methods achieve similar outcomes with

equivalent sample counts. However, Ruppert et al.’s method involves an additional

preprocessing phase that involves training samples to adaptively subdivide the Kd-

tree and von Mises-Fisher Mixcutres (vMM). After construction, these data structures

are used for path guiding. This vMM mixture and Kd-tree training do not directly

impact the final image quality; however, they consume a similar computational time.

Considering this, we included extra samples for the WFPG and PT methods as com-

pensation for that extra computational cost. This operation is also proper for the

comparisons in Figure 5.6. This is false for the Sponza case since the total sample

count is low. Giving additional training samples for that comparison would be unfair.

In summary, Muller and Ruppert et al.’s methods produce similar results with the

exact sample count. The training requirement in Ruppert et al. and the discarding

sample scheme of Muller et al. necessitates additional computation time without

directly impacting the image quality.

Memory usage efficiency is another demonstration of Figure 5.6. Our method ×5
improvement in the memory end due to the on-the-fly generation of radiance fields.

It should be noted that while computing Müller et al. and Ruppert et al.’s FLIP val-

86

Table 5.2: Comparisons between Ruppert et al.’s proposal and our method over two
scenes. The FLIP method is conducted for comparisons. Sample per pixel for each
method and training sample count is given on the second row. For the method of
Ruppert et al., default parameters are used. For our method, lmin = 5, cray = 512 and
SVO resolution of 2563 is used. The maximum ray depth of the bathroom scene is
10. For the Sponza scene, the maximum ray depth is 4. Reported mean FLIP values
are for the entire image. For the Sponza scene, two zoom-in sub-images are provided
over regions dominated by indirect illumination.

Reference PT WFPG Ruppert et al.

1536spp 512t + 1024spp

B
A

T
H

R
O

O
M

FLIP Map

FLIP Mean 0.504965 0.408846 0.423945

32spp 16t + 32spp

C
R

Y
S

P
O

N
Z

A

FLIP Map

Flip Mean 0.227257 0.196408 0.212571

87

Path TracingPath Tracing Mean Flip: 0.9116Mean Flip: 0.9116

Müller et al.Müller et al.

Mean FLIP: 0.3053Mean FLIP: 0.3053

Memory: 15.3MBMemory: 15.3MB

OursOurs

Mean FLIP: 0.2957Mean FLIP: 0.2957

Memory: 0.31MBMemory: 0.31MB

Figure 5.6: Comparison between classical path tracing and Practical Path Guiding
method of Müller et al. [64]. and the proposed method. All methods are rendered
without the next event estimation, and the sample per pixel count is 96. Practical
path guiding method parameters are default, and it is without the extensions proposed
on the course [113]. All other parameters are the default parameters. Our proposed
method’s parameters are as follows. lmin = 6, cray = 512, SVO resolution of 1283,
and using the proposed sample combination method. The proposed method has 5x
less memory utilization with similar errors. Errors are measured using HDR-FLIP
method [115, 112]. Image resolutions are 1920× 1080.

ues, reference images are generated with the Mitsuba Renderer’s Path Tracer. In con-

trast, our method’s reference image is from implementing a GPU Path Tracer. As the

images suggest, there are minimal discrepancies between the renderers. These dis-

crepancies can be attributed to implementation differences and variations in material

evaluation, which have the potential to skew the results. Consequently, we employed

88

different reference images with distinct underlying architectures to ensure accurate

comparisons and evaluations.

5.7 Product Path Guiding

In Table 5.1, timings are measured without the product path guiding method discussed

in Chapter 4. With the same parameters and outer product field of 8× 8, it increases

the computational times up to an additional %50 due to the per-ray calculation of the

BxDF function. One potential future work could be combining the BxDFs of bins to

do a union product sampling.

In our experiments, such low-resolution (8 × 8) product field mainly eliminates the

sidedness problems that occur due to infinitely thin surfaces. When these thin sur-

faces have dramatic illumination differences between them, light leaks will occur.

This light leak differs from the one discussed in Chapter 4; in that case, light leaks

occur due to a resolution mismatch between the scene and the SVO. In this case, this

mismatch is due to a volumetric partitioning scheme and the omnidirectional radiance

field generation.

Figure 5.7 demonstrates the phenomena the product path guiding prevents. The wall

with the painting has darkening when the product path guiding is off.

A higher product resolution can be chosen to capture the BxDF trend better for specu-

lar surfaces, but it will be computationally expensive. This can be a future work where

regions will be marked with a specularity metric, and higher-resolution product fields

will be generated for these regions.

5.8 Limitations and Future Work

The proposed method has multiple limitations, some of which can be addressed by

future works.

Densely generated radiance fields. One main limitation is the densely generated

radiance field. Not every region in the scene may require high-resolution radiance

89

WFPGWFPG WFPG ProductWFPG Product

Figure 5.7: Demonstration of what product path guiding prevents. The image is pur-
posely generated with a low sample count (16spp) to make the phenomena apparent.
The picture on the left corner visually demonstrates the scene layout. Path guiding
omnidirectionally captures the radiance field and wrongly launches rays towards the
wall for the rays in the same room as the camera. The product with the reflectance
prevents this issue.

fields. The opposite is also true; a higher resolution of a radiance field may be required

to capture essential high-frequency features such as a reflection of point light.

Generation of radiance fields requires O(n2) casting operations. Dynamizing this

casting process can be a future work. One implementation can use the data structure

proposed by Ditterbrant et al. named the “Compressed Directional Quadtree” (CQD)

to hold a very low-resolution casting discretization scheme on each voxel [116].

Binned rays can query the SVO to find the nearby CQD and dynamically launch

different-sized cones to estimate the radiance field efficiently. Such an approach can

direct the required computational needs instead of equally dividing them uniformly

over the region.

Radiant exitance and highly specular objects. Another limitation comes from the

radiant exitance usage. Radiant exitance is inherently a directionless definition; thus,

it saves memory on the SVO. However, highly specular objects reflect in a high-

frequency fashion, meaning outgoing radiance changes drastically when the viewing

angle changes.

90

However, determining regions that have specular objects is not a scene-dependent

process. Thus, it can be obtained by looking at the scene definition. While generat-

ing the SVO, voxelized triangles can deposit this information onto the SVO during

voxelization. A potential future work can utilize this process and allocate a small

outgoing radiance field (again, maybe utilizing CDQ) for the required regions.

However, such a method should be used with caution if most regions require such

a radiance field; approaches that cache the incoming radiance field, such as Muller

et al.’s approach, would give better results. This is because one can hold incoming

radiance instead of outgoing radiance and eliminate cone tracing. Thus, the incoming

radiance field can be sampled directly instead.

Large scenes and Sparse Voxel Octree. This is a classical problem for scene ac-

companying data structures. For large scenes, the required data structure can be

massive, meaning some form of the out-of-core process is required to be employed

due to memory limitations. Adaptive subdivision schemes employed by other path-

guiding methods can be utilized, but as demonstrated, these schemes would mean

longer “training” times. A pre-generated, on-demand loadable SVO can be proposed

as a future work.

Volumetric subdivision of the scene. We utilize volumetric subdivision methods for

region binning and radiant exitance caching schemes. However, most natural-looking

scenes have mostly reflective materials, and a surface base subdivision scheme could

be better for most scenes.

Volumetric subdivision creates problems when the sampled surface is reflective and

infinitely thin. Light does not get through these objects, but light leaks would occur

due to volumetric subdivision schemes. Product path guiding can somewhat eliminate

this issue, but a better approach would be to use a low-resolution surface representa-

tion of the scene directly.

This would mean a triangle tesselation for large triangles and triangle decimation for

small triangles. However, such a regularized surface representation may not be trivial

for most scenes.

Determine the regions that would require path guiding. Since we generate radi-

91

ance fields on the fly, determining regions that require path guiding would dramati-

cally improve the computation time. Regions dominated by direct illumination would

not require path guiding if a state-of-the-art next-event estimator is utilized. Perfectly

specular regions (i.e., perfect mirror) would not require path guiding as well because

incoming radiance does not contribute to the sampling scheme as much as BxDF. As

a future work, one can define a heuristic to determine these regions and store it on

the SVO. Binned regions then disregard the path-guiding process by looking to this

value.

This approach may not always be helpful, such as the scene VeachDoor that is dis-

cussed in Section 5.6, but for other scenes, it would be highly beneficial. Also, finding

a profound potential heuristic that captures all phenomena relating to path-guiding

skipping is not trivial.

92

CHAPTER 6

CONCLUSIONS

Light transport simulations are hard. Many methods have many drawbacks and ad-

vantages, but not all methods are efficient for all scenes. Path tracing is a traditional

method that captures every phenomenon but can be computationally expensive for

hard light interactions. Path-guiding methods try to reduce the convergence time of

the generated images of the path tracer. Those methods require estimating the 5D

global radiance field as well as generating the actual image that is being rendered.

Such an ambitious extent means additional complex data management, either learn-

ing this global field while rendering or pre-generation. Especially for GPU-oriented

renderers such dynamic memory management may not be easy to attach to a path

tracer. Moreover, memory is arguably more precious on the GPU due to comparably

low memory availability than CPUs.

In our case, we proposed a ground-up GPU-oriented path-guiding method that alle-

viates the memory requirement by converting such requirement into computational

cost. The proposed path-guiding method is designed for wavefront-style path tracers,

which are predominantly used in GPUs. Wavefront methods already require addi-

tional memory due to the design principles of the GPUs, and high memory using

accompanying methods such as state-of-the-art path guiding methods may not be

suitable for GPUs.

To this end, we proposed a wavefront path-guiding method that generates a local

radiance field on the fly and alleviates the high-memory requirement. This radiance

field generation utilizes the recent accelerated hardware ray tracing capabilities of

modern GPUs. With this utilization, on-the-fly generation is practical in terms of

93

computation time.

6.1 GPU Limitations

Aside from the limitations discussed in Chapter 4, we will present the potential limi-

tations of the GPU-oriented light transport simulations in this section.

The main limitation of the GPU renderers is due to the GPU itself. GPUs are highly

parallel devices and development for these devices is tedious, unlike CPUs. CPUs are

general-purpose machines; even a suboptimal code runs decently on a CPU. How-

ever, on GPU, the computational gap between suboptimal and optimized code can be

tremendous. This practical concern would make development on the GPU compara-

bly harder than a CPU-oriented design.

In addition, memory management on GPUs is not as flexible as CPU counterparts,

and complex memory systems, such as trees and hash tables are not as performant as

regular data structures such as arrays. GPUs require regular data structures, but some

algorithms’ asymptotic complexity would be tied to their usage of these complex

data structures. Thus, it creates a dilemma. Although rarely, an asymptotically less

efficient algorithm for a problem may perform better due to memory access regularity

and simplicity.

However, when a GPU is fully utilized with an algorithm that is parallelizable, it is

hard to beat the computational efficiency of the GPUs.

6.2 Final Words

This thesis demonstrated how the path tracing method can be applied to GPUs. The

proposed method has an efficient scheme and static memory requirements, unlike

queue-based methods. Additionally, we propose a GPU-oriented accompanying path-

guiding method that leverages the hardware ray-tracing capabilities of the recent

GPUs.

Although the proposed path-guiding method requires minimal memory compared to

94

other CPU-based path-guiding methods, it has higher computational time require-

ments. Such computational discrepancy, however, is parallelizable and can be amor-

tized with a high amount of rays. Such an approach is suitable for the GPUs.

95

96

REFERENCES

[1] J. T. Kajiya, “The rendering equation,” in Proceedings of the 13th Annual Con-

ference on Computer Graphics and Interactive Techniques, SIGGRAPH ’86,

(New York, NY, USA), p. 143–150, Association for Computing Machinery,

1986.

[2] M. Pharr, W. Jakob, and G. Humphreys, Physically Based Rendering: From

Theory to Implementation. San Francisco, CA, USA: Morgan Kaufmann Pub-

lishers Inc., 3rd ed., 2016.

[3] B.-S. Hua, A. Gruson, V. Petitjean, M. Zwicker, D. Nowrouzezahrai, E. Eise-

mann, and T. Hachisuka, “A survey on gradient-domain rendering,” Computer

Graphics Forum, vol. 38, no. 2, pp. 455–472, 2019.

[4] E. Veach and L. J. Guibas, “Optimally combining sampling techniques for

monte carlo rendering,” in Proceedings of the 22nd Annual Conference on

Computer Graphics and Interactive Techniques, SIGGRAPH ’95, (New York,

NY, USA), p. 419–428, Association for Computing Machinery, 1995.

[5] E. Veach, Robust Monte Carlo Methods for Light Transport Simulation. PhD

thesis, Stanford University, Stanford, CA, USA, 1998. AAI9837162.

[6] K. Ivo, P. Vévoda, P. Grittmann, T. Skřivan, P. Slusallek, and J. Křivánek, “Op-

timal multiple importance sampling,” ACM Transactions on Graphics (Pro-

ceedings of SIGGRAPH 2019), vol. 38, pp. 37:1–37:14, July 2019.

[7] P. Shirley and C. Wang, “Direct lighting calculation by monte carlo integra-

tion,” in Photorealistic Rendering in Computer Graphics (P. Brunet and F. W.

Jansen, eds.), (Berlin, Heidelberg), pp. 52–59, Springer Berlin Heidelberg,

1994.

[8] J. J. Guo, M. Eisemann, and E. Eisemann, “Next event estimation++: Visibility

97

mapping for efficient light transport simulation,” Computer Graphics Forum,

vol. 39, no. 7, pp. 205–217, 2020.

[9] J. Hanika, M. Droske, and L. Fascione, “Manifold next event estimation,”

Computer Graphics Forum, vol. 34, p. 87–97, jul 2015.

[10] G. Loubet, T. Zeltner, N. Holzschuch, and W. Jakob, “Slope-space integrals for

specular next event estimation,” ACM Transactions on Graphics, vol. 39, nov

2020.

[11] B. Walter, S. Zhao, N. Holzschuch, and K. Bala, “Single scattering in refrac-

tive media with triangle mesh boundaries,” ACM Transactions on Graphics,

vol. 28, jul 2009.

[12] C. Kulla and M. Fajardo, “Importance sampling techniques for path tracing

in participating media,” Computer Graphics Forum, vol. 31, no. 4, pp. 1519–

1528, 2012.

[13] J. Hanika, A. Weidlich, and M. Droske, “Once-more scattered next event es-

timation for volume rendering,” Computer Graphics Forum, vol. 41, no. 4,

pp. 17–28, 2022.

[14] A. Conty Estevez and C. Kulla, “Importance sampling of many lights with

adaptive tree splitting,” Proceedings of the ACM on Computer Graphics and

Interactive Techniques, vol. 1, aug 2018.

[15] P. Moreau, M. Pharr, and P. Clarberg, “Dynamic many-light sampling for

real-time ray tracing,” in Proceedings of the Conference on High-Performance

Graphics, HPG ’19, (Goslar, DEU), p. 21–26, Eurographics Association, 2022.

[16] B. Bitterli, C. Wyman, M. Pharr, P. Shirley, A. Lefohn, and W. Jarosz, “Spa-

tiotemporal reservoir resampling for real-time ray tracing with dynamic direct

lighting,” ACM Transactions on Graphics, vol. 39, aug 2020.

[17] J. Arvo and D. Kirk, “Particle transport and image synthesis,” SIGGRAPH

Computer Graphics, vol. 24, p. 63–66, Sept. 1990.

[18] J. Vorba and J. Křivánek, “Adjoint-driven russian roulette and splitting in light

transport simulation,” ACM Transactions on Graphics, vol. 35, July 2016.

98

[19] E. Veach and L. Guibas, “Bidirectional estimators for light transport,” in Pho-

torealistic Rendering Techniques (G. Sakas, S. Müller, and P. Shirley, eds.),

pp. 145–167, 1995.

[20] E. Lafortune and Y. Willems, “Bi-directional path tracing,” Proceedings of

Third International Conference on Computational Graphics and Visualization

Techniques (Compugraphics’, vol. 93, 01 1998.

[21] S. Popov, R. Ramamoorthi, F. Durand, and G. Drettakis, “Probabilistic con-

nections for bidirectional path tracing,” Computer Graphics Forum, vol. 34,

p. 75–86, July 2015.

[22] E. P. Lafortune and Y. D. Willems, “Rendering participating media with bidi-

rectional path tracing,” in Rendering Techniques ’96 (X. Pueyo and P. Schröder,

eds.), (Vienna), pp. 91–100, Springer Vienna, 1996.

[23] E. Veach and L. J. Guibas, “Metropolis light transport,” in Proceedings of the

24th Annual Conference on Computer Graphics and Interactive Techniques,

SIGGRAPH ’97, (USA), p. 65–76, ACM Press/Addison-Wesley Publishing

Co., 1997.

[24] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller,

“Equation of state calculations by fast computing machines,” The Journal of

Chemical Physics, vol. 21, no. 6, pp. 1087–1092, 1953.

[25] W. K. Hastings, “Monte carlo sampling methods using markov chains and their

applications,” Biometrika, vol. 57, no. 1, pp. 97–109, 1970.

[26] C. Kelemen, L. Szirmay-Kalos, G. Antal, and F. Csonka, “A simple and ro-

bust mutation strategy for the metropolis light transport algorithm,” Computer

Graphics Forum, vol. 21, no. 3, pp. 531–540, 2002.

[27] T. Hachisuka, A. S. Kaplanyan, and C. Dachsbacher, “Multiplexed metropolis

light transport,” ACM Transactions on Graphics, vol. 33, July 2014.

[28] W. Jakob and S. Marschner, “Manifold exploration: A markov chain monte

carlo technique for rendering scenes with difficult specular transport,” ACM

Transactions on Graphics, vol. 31, no. 4, pp. 58:1–58:13, 2012.

99

[29] A. S. Kaplanyan, J. Hanika, and C. Dachsbacher, “The natural-constraint repre-

sentation of the path space for efficient light transport simulation,” ACM Trans-

actions on Graphics, vol. 33, July 2014.

[30] J. Hanika, A. Kaplanyan, and C. Dachsbacher, “Improved half vector space

light transport,” Computer Graphics Forum, vol. 34, p. 65–74, July 2015.

[31] J. Lehtinen, T. Karras, S. Laine, M. Aittala, F. Durand, and T. Aila, “Gradient-

domain metropolis light transport,” ACM Transactions on Graphics, vol. 32,

July 2013.

[32] M. Manzi, F. Rousselle, M. Kettunen, J. Lehtinen, and M. Zwicker, “Improved

sampling for gradient-domain metropolis light transport,” ACM Transactions

on Graphics, vol. 33, Nov. 2014.

[33] J. Van de Woestijne, R. Frederickx, N. Billen, and P. Dutré, “Temporal co-

herence for metropolis light transport,” in Proceedings of the Eurographics

Symposium on Rendering: Experimental Ideas & Implementations, EGSR ’17,

(Goslar, DEU), p. 55–63, Eurographics Association, 2017.

[34] H. W. Jensen, “Importance driven path tracing using the photon map,” in Ren-

dering Techniques ’95 (P. M. Hanrahan and W. Purgathofer, eds.), (Vienna),

pp. 326–335, Springer Vienna, 1995.

[35] Jensen, Henrik Wann, “Global illumination using photon maps,” in Proceed-

ings of the Eurographics Workshop on Rendering Techniques ’96, (Berlin, Hei-

delberg), p. 21–30, Springer-Verlag, 1996.

[36] T. Hachisuka, S. Ogaki, and H. W. Jensen, “Progressive photon mapping,” in

ACM SIGGRAPH Asia 2008 Papers, SIGGRAPH Asia ’08, (New York, NY,

USA), Association for Computing Machinery, 2008.

[37] T. Hachisuka and H. W. Jensen, “Stochastic progressive photon mapping,”

ACM Transactions on Graphics, vol. 28, p. 1–8, Dec. 2009.

[38] I. Georgiev, J. Křivánek, T. Davidovič, and P. Slusallek, “Light transport sim-

ulation with vertex connection and merging,” ACM Transactions on Graphics,

vol. 31, Nov. 2012.

100

[39] T. Hachisuka, J. Pantaleoni, and H. Jensen, “A path space extension for robust

light transport simulation,” ACM Transactions on Graphics, vol. 31, p. 1, 11

2012.

[40] M. McGuire and D. Luebke, “Hardware-accelerated global illumination by im-

age space photon mapping,” in Proceedings of the Conference on High Perfor-

mance Graphics 2009, HPG ’09, (New York, NY, USA), pp. 77–89, ACM,

2009.

[41] C. Yao, B. Wang, B. Chan, J. Yong, and J.-C. Paul, “Multi-image based photon

tracing for interactive global illumination of dynamic scenes,” in Proceedings

of the 21st Eurographics Conference on Rendering, EGSR’10, (Aire-la-Ville,

Switzerland, Switzerland), pp. 1315–1324, Eurographics Association, 2010.

[42] T. Ritschel, T. Engelhardt, T. Grosch, H.-P. Seidel, J. Kautz, and C. Dachs-

bacher, “Micro-rendering for scalable, parallel final gathering,” ACM Transac-

tions on Graphics, vol. 28, pp. 132:1–132:8, Dec. 2009.

[43] T. Udeshi and C. D. Hansen, “Towards interactive photorealistic rendering of

indoor scenes: A hybrid approach,” in Proceedings of the 10th Eurographics

Conference on Rendering, EGWR’99, (Goslar, DEU), p. 63–76, Eurographics

Association, 1999.

[44] I. Wald, T. Kollig, C. Benthin, A. Keller, and P. Slusallek, “Interactive global

illumination using fast ray tracing,” in Proceedings of the 13th Eurographics

Workshop on Rendering, EGRW ’02, (Goslar, DEU), p. 15–24, Eurographics

Association, 2002.

[45] J. Novák, D. Nowrouzezahrai, C. Dachsbacher, and W. Jarosz, “Virtual ray

lights for rendering scenes with participating media,” ACM Transactions on

Graphics, vol. 31, July 2012.

[46] C. Dachsbacher and M. Stamminger, “Reflective shadow maps,” in Proceed-

ings of the 2005 Symposium on Interactive3D Graphics and Games, I3D ’05,

(New York, NY, USA), pp. 203–231, ACM, 2005.

[47] T. Ritschel, T. Grosch, H.-P. Kim, M. H. andSeidel, C. Dachsbacher, and

J. Kautz, “Imperfect shadow maps for efficient computation of indirect illu-

101

mination,” ACM Transactions on Graphics, vol. 27, pp. 129:1–129:8, Dec.

2008.

[48] T. Ritschel, E. Eisemann, I. Ha, J. D. K. Kim, and H.-P. Seidel, “Making im-

perfect shadow maps view-adaptive: High-quality global illumination in large

dynamic scenes,” Computer Graphics Forum, vol. 30, no. 8, pp. 2258–2269,

2011.

[49] L. Williams, “Casting curved shadows on curved surfaces,” SIGGRAPH Com-

puter Graphics, vol. 12, pp. 270–274, Aug. 1978.

[50] G. J. Ward, F. M. Rubinstein, and R. D. Clear, “A ray tracing solution for dif-

fuse interreflection,” in Proceedings of the 15th Annual Conference on Com-

puter Graphics and Interactive Techniques, SIGGRAPH ’88, (New York, NY,

USA), p. 85–92, Association for Computing Machinery, 1988.

[51] J. Krivanek, P. Gautron, S. Pattanaik, and K. Bouatouch, “Radiance caching for

efficient global illumination computation,” IEEE Transactions on Visualization

and Computer Graphics, vol. 11, p. 550–561, Sept. 2005.

[52] A. Conty Estevez and C. Kulla, “Importance sampling of many lights with

adaptive tree splitting,” Proceedings of the ACM on Computer Graphics and

Interactive Techniques, vol. 1, Aug. 2018.

[53] M. Hašan, F. Pellacini, and K. Bala, “Matrix row-column sampling for the

many-light problem,” ACM Transactions on Graphics, vol. 26, July 2007.

[54] C. Sun and E. Agu, “Many-lights real time global illumination using sparse

voxel octree,” in Advances in Visual Computing: 11th InternationalSympo-

sium, ISVC 2015 (G. Bebis, R. Boyle, B. Parvin, D. Koracin, I. Pavlidis,

R. Feris, T. McGraw, M. Elendt, E. Kopper, Regis andRagan, Z. Ye, and G. We-

ber, eds.), (Cham), pp. 150–159, Springer International Publishing, 2015.

[55] B. Walter, S. Fernandez, A. Arbree, K. Bala, M. Donikian, and D. P. Green-

berg, “Lightcuts: A scalable approach to illumination,” ACM Transactions on

Graphics, vol. 24, p. 1098–1107, July 2005.

[56] C. Yuksel, “Stochastic lightcuts,” in High-Performance Graphics (HPG 2019),

The Eurographics Association, 2019.

102

[57] P. Moreau and P. Clarberg, “Importance sampling of many lights on the gpu,”

in Ray Tracing Gems: High-Quality and Real-Time Rendering with DXR and

Other APIs (E. Haines and T. Akenine-Möller, eds.), pp. 255–283, Berkeley,

CA: Apress, 2019.

[58] T. Davidovič, I. Georgiev, and P. Slusallek, “Progressive lightcuts for GPU,”

in ACM SIGGRAPH 2012 Talks, SIGGRAPH ’12, (New York, NY, USA),

Association for Computing Machinery, 2012.

[59] C. Dachsbacher, J. Křivánek, M. Hašan, A. Arbree, B. Walter, and J. Novák,

“Scalable realistic rendering with many-light methods,” Computer Graphics

Forum, vol. 33, no. 1, pp. 88–104, 2014.

[60] J. Vorba, O. Karlík, M. Šik, T. Ritschel, and J. Křivánek, “On-line learning of

parametric mixture models for light transport simulation,” ACM Transactions

on Graphics, vol. 33, July 2014.

[61] T. Müller, B. Mcwilliams, F. Rousselle, M. Gross, and J. Novák, “Neural im-

portance sampling,” ACM Transactions on Graphics, vol. 38, Oct. 2019.

[62] Y. Huo, R. Wang, R. Zheng, H. Xu, H. Bao, and S.-E. Yoon, “Adaptive incident

radiance field sampling and reconstruction using deep reinforcement learning,”

ACM Transactions on Graphics, vol. 39, Jan. 2020.

[63] S. Bako, M. Meyer, T. DeRose, and P. Sen, “Offline deep importance sampling

for monte carlo path tracing,” Computer Graphics Forum, 2019.

[64] T. Müller, M. Gross, and J. Novák, “Practical path guiding for efficient light-

transport simulation,” Computer Graphics Forum, vol. 36, p. 91–100, July

2017.

[65] P. Vévoda, I. Kondapaneni, and J. Křivánek, “Bayesian online regression

for adaptive direct illumination sampling,” ACM Transactions on Graphics,

vol. 37, July 2018.

[66] E. P. Lafortune and Y. D. Willems, “A 5D tree to reduce the variance of monte

carlo ray tracing,” in Rendering Techniques ’95 (Proceedings of the 6th Euro-

graphics Workshop on Rendering), pp. 11–20, 1995.

103

[67] H. W. Jensen, “Importance driven path tracing using the photon map,” in Ren-

dering Techniques, 1995.

[68] S. Herholz, O. Elek, J. Vorba, H. Lensch, and J. Křivánek, “Product importance

sampling for light transport path guiding,” Computer Graphics Forum, vol. 35,

p. 67–77, July 2016.

[69] A. Dodik, M. Papas, C. Öztireli, and T. Müller, “Path guiding using spatio-

directional mixture models,” Computer Graphics Forum, vol. 41, no. 1,

pp. 172–189, 2022.

[70] L. Ruppert, S. Herholz, and H. P. A. Lensch, “Robust fitting of parallax-aware

mixtures for path guiding,” ACM Transactions on Graphics, vol. 39, aug 2020.

[71] K. Dahm and A. Keller, “Learning light transport the reinforced way,” in ACM

SIGGRAPH 2017 Talks, SIGGRAPH ’17, (New York, NY, USA), Association

for Computing Machinery, 2017.

[72] J. Guo, P. Bauszat, J. Bikker, and E. Eisemann, “Primary sample space path

guiding,” in Eurographics Symposium on Rendering - EI & I (W. Jakob and

T. Hachisuka, eds.), pp. 73–82, Eurographics, The Eurographics Association,

July 2018. doi: 10.2312/sre.20181174.

[73] A. Kaplanyan and C. Dachsbacher, “Path space regularization for holistic and

robust light transport,” Computer Graphics Forum, vol. 32, 05 2013.

[74] S. G. Parker, J. Bigler, A. Dietrich, H. Friedrich, J. Hoberock, D. Luebke,

D. McAllister, M. McGuire, K. Morley, A. Robison, and M. Stich, “OptiX: A

general purpose ray tracing engine,” ACM Transactions on Graphics, vol. 29,

jul 2010.

[75] M. Pharr, W. Jakob, and G. Humphreys, Physically Based Rendering: From

Theory to Implementation. Cambridge, MA, USA: The MIT Press, 4th ed.,

2023.

[76] M. Nimier-David, D. Vicini, T. Zeltner, and W. Jakob, “Mitsuba 2: A retar-

getable forward and inverse renderer,” ACM Transactions on Graphics, vol. 38,

nov 2019.

104

[77] S. Zheng, Z. Zhou, X. Chen, D. Yan, C. Zhang, Y. Geng, Y. Gu, and K. Xu,

“Luisarender: A high-performance rendering framework with layered and

unified interfaces on stream architectures,” ACM Transactions on Graphics,

vol. 41, nov 2022.

[78] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Houston, and

P. Hanrahan, “Brook for GPUs: Stream computing on graphics hardware,”

ACM Transactions on Graphics, vol. 23, p. 777–786, aug 2004.

[79] J. Krüger and R. Westermann, “Linear algebra operators for gpu implemen-

tation of numerical algorithms,” ACM Transactions on Graphics, vol. 22,

p. 908–916, jul 2003.

[80] T. J. Purcell, I. Buck, W. R. Mark, and P. Hanrahan, “Ray tracing on pro-

grammable graphics hardware,” ACM Transactions on Graphics, vol. 21,

p. 703–712, jul 2002.

[81] J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scalable parallel program-

ming with cuda: Is cuda the parallel programming model that application de-

velopers have been waiting for?,” Queue, vol. 6, p. 40–53, mar 2008.

[82] S. Laine and T. Karras, “Efficient sparse voxel octrees – analysis, extensions,

and implementation,” NVIDIA Technical Report NVR-2010-001, NVIDIA

Corporation, Feb. 2010.

[83] C. Crassin, F. Neyret, S. Lefebvre, and E. Eisemann, “Gigavoxels: Ray-guided

streaming for efficient and detailed voxel rendering,” in Proceedings of the

2009 Symposium on Interactive 3D Graphics and Games, I3D ’09, (New York,

NY, USA), p. 15–22, Association for Computing Machinery, 2009.

[84] K. Museth, “VDB: High-resolution sparse volumes with dynamic topology,”

ACM Transactions on Graphics, vol. 32, jul 2013.

[85] K. Museth, “NanoVDB: A gpu-friendly and portable vdb data structure for

real-time rendering and simulation,” in ACM SIGGRAPH 2021 Talks, SIG-

GRAPH ’21, (New York, NY, USA), Association for Computing Machinery,

2021.

105

[86] M. Labschütz, S. Bruckner, M. E. Gröller, M. Hadwiger, and P. Rautek, “Jit-

tree: A just-in-time compiled sparse gpu volume data structure,” IEEE Trans-

actions on Visualization and Computer Graphics, vol. 22, no. 1, pp. 1025–

1034, 2016.

[87] J. Beyer, M. Hadwiger, and H. Pfister, “State-of-the-art in gpu-based large-

scale volume visualization,” Computer Graphics Forum, vol. 34, p. 13–37, dec

2015.

[88] C. Crassin and S. Green, Octree-Based Sparse Voxelization Using The GPU

Hardware Rasterizer, ch. 22. CRC Press, Patrick Cozzi and Christophe Riccio,

2012.

[89] J. Pantaleoni, “Voxelpipe: A programmable pipeline for 3d voxelization,” in

Proceedings of the ACM SIGGRAPH Symposium on High Performance Graph-

ics, HPG ’11, (New York, NY, USA), p. 99–106, Association for Computing

Machinery, 2011.

[90] G. Young and A. Krishnamurthy, “Gpu-accelerated generation and rendering

of multi-level voxel representations of solid models,” Computers & Graphics,

vol. 75, pp. 11–24, 2018.

[91] K. Sung, “A DDA Octree Traversal Algorithm for Ray Tracing,” in EG 1991-

Technical Papers, Eurographics Association, 1991.

[92] K. Museth, “Hierarchical digital differential analyzer for efficient ray-

marching in openvdb,” in ACM SIGGRAPH 2014 Talks, SIGGRAPH ’14,

(New York, NY, USA), Association for Computing Machinery, 2014.

[93] M. Hadwiger, A. K. Al-Awami, J. Beyer, M. Agus, and H. Pfister, “Sparseleap:

Efficient empty space skipping for large-scale volume rendering,” IEEE Trans-

actions on Visualization and Computer Graphics, vol. 24, no. 1, pp. 974–983,

2018.

[94] C. Crassin, F. Neyret, M. Sainz, S. Green, and E. Eisemann, “Interactive in-

direct illumination using voxel cone tracing: A preview,” in Symposium on

Interactive 3D Graphics and Games, I3D ’11, (New York, NY, USA), p. 207,

Association for Computing Machinery, 2011.

106

[95] Intel Corporation, “Introduction to the Xe-HPG Architecture,” tech. rep., Intel

Corporation, 2022.

[96] Nvidia Corrporation, “Nvidia Turing GPU Architecture,” tech. rep., Nvidia

Corporation, 2018.

[97] AMD Corporation, RDNA3 Instruction Set Architecture, Reference Guide.

AMD Corporation, 2023.

[98] “DirectX Raytracing (DXR) Functional Spec.” https://microsoft.

github.io/DirectX-Specs/d3d/Raytracing.html. Accessed:

2023-08-05.

[99] M. Stich, H. Friedrich, and A. Dietrich, “Spatial splits in bounding volume

hierarchies,” in Proceedings of the Conference on High Performance Graphics

2009, HPG ’09, (New York, NY, USA), p. 7–13, Association for Computing

Machinery, 2009.

[100] I. Wald, “On fast construction of SAH-based bounding volume hierarchies,” in

2007 IEEE Symposium on Interactive Ray Tracing, pp. 33–40, 2007.

[101] T. Karras and T. Aila, “Fast parallel construction of high-quality bounding vol-

ume hierarchies,” in Proceedings of the 5th High-Performance Graphics Con-

ference, HPG ’13, (New York, NY, USA), p. 89–99, Association for Comput-

ing Machinery, 2013.

[102] E. Vasiou, K. Shkurko, E. Brunvand, and C. Yuksel, “Mach-RT: A many chip

architecture for high-performance ray tracing,” IEEE Transactions on Visual-

ization and Computer Graphics, vol. 28, no. 3, pp. 1585–1596, 2020.

[103] S. Laine, T. Karras, and T. Aila, “Megakernels considered harmful: Wavefront

path tracing on GPUs,” in Proceedings of the 5th High-Performance Graphics

Conference, HPG ’13, (New York, NY, USA), p. 137–143, Association for

Computing Machinery, 2013.

[104] M. Harris et al., “Optimizing parallel reduction in CUDA,” Nvidia developer

technology, vol. 2, no. 4, p. 70, 2007.

107

https://microsoft.github.io/DirectX-Specs/d3d/Raytracing.html
https://microsoft.github.io/DirectX-Specs/d3d/Raytracing.html

[105] D. P. Singh, I. Joshi, and J. Choudhary, “Survey of gpu based sorting algo-

rithms,” Int. J. Parallel Program., vol. 46, p. 1017–1034, dec 2018.

[106] “NVDIA CUB Documentation.” https://nvlabs.github.io/cub/

index.html. Accessed: 2023-08-06.

[107] P. Shirley, S. Laine, D. Hart, M. Pharr, P. Clarberg, E. Haines, M. Raab, and

D. Cline, Sampling Transformations Zoo, ch. Sampling, pp. 223–246. Berke-

ley, CA: Apress, 2019.

[108] A. Conty Estevez and P. Lecocq, “Fast product importance sampling of envi-

ronment maps,” in ACM SIGGRAPH 2018 Talks, SIGGRAPH ’18, (New York,

NY, USA), Association for Computing Machinery, 2018.

[109] S. G. Parker, H. Friedrich, D. Luebke, K. Morley, J. Bigler, J. Hoberock,

D. McAllister, A. Robison, A. Dietrich, G. Humphreys, M. McGuire, and

M. Stich, “Gpu ray tracing,” Commun. ACM, vol. 56, p. 93–101, May 2013.

[110] B. Yalçıner, “Mray: Gpu based research renderer,” 2023.

https://github.com/yalcinerbora/meturay.

[111] P. Clarberg, “Fast Equal-Area Mapping of the (Hemi)Sphere using SIMD,”

Journal of Graphics Tools, vol. 13, no. 3, pp. 53–68, 2008.

[112] P. Andersson, J. Nilsson, P. Shirley, and T. Akenine-Möller, “Visualizing Errors

in Rendered High Dynamic Range Images,” in Eurographics 2021 - Short Pa-

pers (H. Theisel and M. Wimmer, eds.), The Eurographics Association, 2021.

[113] J. Vorba, J. Hanika, S. Herholz, T. Müller, J. Křivánek, and A. Keller, “Path

guiding in production,” in ACM SIGGRAPH 2019 Courses, SIGGRAPH ’19,

(New York, NY, USA), Association for Computing Machinery, 2019.

[114] W. Jakob, “Mitsuba renderer,” 2010. Accessed 22 April 2023.

[115] P. Andersson, J. Nilsson, T. Akenine-Möller, M. Oskarsson, K. Åström, and

M. D. Fairchild, “FLIP: A difference evaluator for alternating images,” Pro-

ceedings of the ACM on Computer Graphics and Interactive Techniques, vol. 3,

aug 2020.

108

https://nvlabs.github.io/cub/index.html
https://nvlabs.github.io/cub/index.html

[116] A. Dittebrandt, J. Hanika, and C. Dachsbacher, “Temporal Sample Reuse for

Next Event Estimation and Path Guiding for Real-Time Path Tracing,” in Eu-

rographics Symposium on Rendering - DL-only Track (C. Dachsbacher and

M. Pharr, eds.), The Eurographics Association, 2020.

109

110

CURRICULUM VITAE

PERSONAL

NAME : Bora Yalçıner

PLACE : Ankara, Turkey

E-MAIL : yalcinerbora@outlook.com

WEBSITE : yalcinerbora.github.io

WORK EXPERIENCE

Research Assistant
DEC. 2020 METU Department of Computer Engineering, Turkey

FEB. 2020 Software Developer
FEB. 2018 R&D Department of VERI-SIS Co., Turkey

Development of NLSW Equations Solver for Marine-related Events

Development of non-linear shallow water (NLSW) equations solver for marine events such
as tsunamis, storm surges, and tropical cyclones. Solver has already been applied to marine
hazard analysis of critical coastal plants such as nuclear power plants.

FEB. 2018 Researcher
MAY 2015 METU Ocean Engineering Research Center, Turkey

Development of NLSW Equations Solver and Real-Time Renderer

Developed non-linear shallow water (NLSW) equations solver for academic and applied
research. Solver enables analysis of tsunamis. Additionally, it provides real-time data visu-
alization of generated outputs.

MAR. 2014 Project Assistant
JUNE 2014 METU Ocean Engineering Research Center, Turkey

Development of Wind Data Acquiring GUI Application

Implemented wind data fetch GUI Application for EU FP7 Funded COCONET (Towards
COast to COast NETworks of marine protected areas: from the shore to the deep sea). The
application provides the acquisition and visualization of wind data on Mediterranean waters.

111

SUMMER 2012 Summer Intern
Zinek Coding House, Turkey

Worked on linear algebra math library and accelerated it using x86 SSE instruction set.
Also worked on their rendering engine in which an abstraction layer is designed to sup-
port OpenGL implementation and the currently available DirectX 9 renderer.

SUMMER 2011 Summer Intern
LST Software, Turkey

Tested the website implementation of the Social Security Institution of Turkey. Addi-
tionally, I was involved in portlet development for the site.

EDUCATION

MAR. 2024 Ph.D. in COMPUTER ENGINEERING

Graduate School of Natural and Applied Sciences

Middle East Technical University (METU), Turkey

Thesis: “Path Guiding Method for Wavefront Path Tracing: A Memory Efficient
Approach for GPU Path Tracers”

Advisor: Ahmet Oğuz AKYÜZ

JULY 2016 MSc. Degree in MULTIMEDIA INFORMATICS

Graduate School of Informatics

Middle East Technical University (METU), Turkey

Thesis: “Dynamic Voxelization to Aid Illumination of Real-Time Scenes”

Advisor: Yusuf SAHILLIOGLU

JULY 2013 Bs Degree in COMPUTER SCIENCE

Faculty of Engineering

Bilkent University, Turkey

PUBLICATIONS

Journal publications are annotated with the “J” prefix.

J Yalciner B., Akyuz A. O. “Path Guiding for Wavefront Path Tracing: A Mem-

ory Efficient Approach for GPU Path Tracers”. Computers & Graphics. Under

Review.

J Dogan G. G., Yalciner A. C., Annunziato A., Yalciner B., Necmioglu O. “Global

propagation of air pressure waves and consequent ocean waves due to the Jan-

112

uary 2022 Hunga Tonga-Hunga Ha’apai eruption”. Ocean Engineering 2023;

267:113174.

J Dogan, G. G., Pelinovsky, E., Zaytsev, A., Metin, A. D., Ozyurt Tarakcioglu,

G., Yalciner, A. C., Yalciner B., Didenkulova, I. (2021). “Long Wave Gen-

eration and Coastal Amplification due to Propagating Atmospheric Pressure

Disturbances”. Natural Hazards, 106(2), 1195–1221. doi:10.1007/s11069-021-

04625-9

Dogan, G. G., Probst, P., Yalciner, B., Annunziato, A., Zahibo, N., Yalciner, A.

C. (2020). “Numerical Modeling of Tropical Cyclone Generated Waves; Case

studies of Irma, Maria and Dorian”. In EGU General Assembly Conference

Abstracts (pp. 11200).

J Yalciner, B., Sahillioğlu, Y. “Voxel Transformation: Scalable Scene Geometry

Discretization for Global Illumination”. J Real-Time Image Proc 17; 1585–1596

(2020).

Yalciner, A. C., Suzen L. M., Tufekci Enginar D., Dogan G. G., Kolat C., Celik-

bas B., Yalciner B., Cabuk O., Bas M., Kilic O., Yahya Mentese E., Tarih A.,

Zaytsev, A., Pelinovski, E. (2019). “Complete Tsunami Hazard Assessment,

Vulnerability and Risk Analysis for the Marmara Coast of Istanbul Metropoli-

tan Area”. In EGU General Assembly Conference Abstracts (pp. 16743).

Zahibo, N., Krien Y., Arnau G., Yalciner B., Zaytsev A., Yalciner A. C., ...

Cabuk, O.(2019). “Storm Surge Analysis for French West Indies”. 14th MED-

COAST Congress on Coastal and Marine Sciences, Engineering, Management

and Conservation, MEDCOAST 2019 (pp.703-710). Marmaris, Turkey

Tufekci Enginar D., Suzen L. M., Yalciner A. C., Kolat C., Dogan G. G., Yal-

ciner, B., Zaytsev A. (2018). “Tsunami Human Vulnerability Assessment of

Silivri District, Istanbul”. In EGU General Assembly Conference Abstracts

(pp. 1068).

J Zaytsev A., Beresnev P., Flatov V., Makarov V., Tyugın D., Zezıulın D., Pelınovsky

E., Yalciner A. C., Yalciner B., Oshmarına O., Kurkın A. (2017). “Coastal

113

Monitoring of the Okhotsk Seas Using an Autonomous Mobile Robot”. Sci-

ence of Tsunami Hazards, 1–12.

Yalciner, B., Zaytsev A. Assessment of Efficiency and Performance in Tsunami

Numerical Modeling with GPU. European Geosciences Union(EGU) General

Assembly 2017; Tsunami (co-organized) NH5.1/OS4.13.

Yalciner, B., Zaytsev A., Yalciner A. C. Accelerated Solutions in Tsunami Sim-

ulation and Visualization with Case Studies. International Tsunami Symposium

(ITS) 2017, Analytical; experimental and numerical methods and applications

(003).

PROGRAMMING

Expert : C++, CUDA

Advanced : C++20, C, OpenGL 2/3/4

Intermediate : Autodesk®Maya, Unity®, Arnold®, Python, Git, LATEX, HTML

Beginner : Javascript, Php, POSIX API, Java, C#, GNU Gimp, DirectX

10/11

Basic : Matlab, ASP.NET, SQL, Bash Script, Batch Script, Assembly

(MIPS, x86, Intel8051)

INTERESTS AND ACTIVITIES

- CMAS Two Star Scuba Diver.

- Licensed amateur captain since February 2009.

- Long-term experience in yachting, navigation, and fishing

- An avid cook and culinary enthusiast

114

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	Introduction
	Motivation and Problem Definition
	Contributions and Novelties
	The Outline of the Thesis

	Literature Survey
	Rendering Equation
	Terminology

	Rendering Methodologies
	Monte Carlo Integration and Path Tracing
	Multiple Importance Sampling
	Path Tracing
	Next Event Estimation
	Russian Roulette Path Termination

	Bi-Directional Path Tracing
	Metropolis Light Transport or Markov Chain Monte Carlo
	Photon Mapping
	Instant Radiosity & Virtual Point Lights
	Path Guiding
	Conclusion

	Massively Parallel Architectures and GPGPU
	Design Differences between CPUs and GPUs

	Sparse Voxel Octrees & Cone Tracing
	GPU Oriented Light Transport Proposal

	Partition Based Wavefront Path Tracing
	Preliminaries
	Taxonomy

	GPU Oriented Parallel Design
	Case Study: Reduction
	Parallel Reduction
	Massively Parallel Reduction

	Path Tracing on the GPU
	Wavefront Path Tracing
	Queue-based Partitioning
	Memory Management Issue

	Consistency Issue
	Sort-based Partitioning
	Ray Payload & Key Parameter
	The Algorithm

	Final Words

	Wavefront Path Guiding
	Brief Refresh of Path Guiding
	Overview
	Radiant Exittance Caching using Sparse Voxel Octree Structure
	On-the-fly Generation of Radiance Field
	Partitioning
	Radiance Field Generation

	Exposing BxDF Product the Radiance Field

	Implementation and Results
	Implementation
	Parametrization
	Path Guiding Visualization Tool
	Profiling
	Baseline Comparison
	Comparison with Literature
	Product Path Guiding
	Limitations and Future Work

	Conclusions
	GPU Limitations
	Final Words

	REFERENCES
	CURRICULUM VITAE

