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ABSTRACT 

 

DATA-DRIVEN AND KNOWLEDGE-ASSISTED MODEL-BASED 

FRAMEWORKS FOR SUPPORTING FACILITY MAINTENANCE 

 

 

Altun, Murat 

Doctor of Philosophy, Civil Engineering 

Supervisor : Asst. Prof. Dr. Aslı Akçamete Güngör 

 

 

 

March 2024, 244 pages 

 

 

Efficient facility maintenance management enhances operational functionality while 

reducing costs. In practice, however, the lack of (i) historical work order records or 

their completeness, (ii) updates or complete documentation of facility tasks, and (iii) 

a sustainable infrastructure makes it difficult to systematically access maintenance 

information when needed. Moreover, the absence of an intelligent reasoning 

mechanism extends problem identification and reasoning time. Therefore, this study 

aims to develop data-driven and knowledge-supported model-based solutions for 

root-cause reasoning to enhance efficiency in facility maintenance management. In 

this study, first, an intelligent reasoning approach is proposed for data-driven 

monitoring to streamline fault reasoning, which combines the maintenance team’s 

expertise with machine learning algorithms in a hybrid intelligence approach to 

improve the fault reasoning predictions continuously. Hierarchical Neural Networks 

are developed to group numerous system faults into manageable classification 

problems, and their prediction capabilities are enhanced through a feedback 

mechanism developed. Secondly, a BIM-based work order management framework 

is introduced through visual programming. It links the assets and space to the 
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counterparts in the model and tags observable symptoms, the fault source asset, 

spatial information, and the impacted assets using symbols and color coding. Using 

these links in the work order records and standardizing their descriptions, a fault 

network is created to construct relations between symptoms, fault types, and their 

assets. When a new work is requested, an analysis approach is proposed to isolate 

and reason the fault by filtering the network connections utilizing the similarities 

based on model-derived spatial, systemic, and feature-based relations. The proposed 

solutions are examined through test cases, and their effectiveness is verified to 

present the potential of the proposed methods. 

Keywords: Building Information Modeling, Facility Maintenance, Fault Reasoning, 

Hybrid Intelligence, Feedback-enhanced Hierarchical Neural Networks, Fault 

Network Analysis  
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ÖZ 

 

TESİS BAKIMINI DESTEKLEMEYE YÖNELİK VERİ ODAKLI VE 

BİLGİ DESTEKLİ MODEL TABANLI ÇERÇEVELER 

 

 

Altun, Murat 

Doktora, İnşaat Mühendisliği 

Tez Yöneticisi: Dr. Öğr. Üyesi Aslı Akçamete Güngör 

 

 

Mart 2024, 244 sayfa 

 

Etkin tesis bakım yönetimi, çalışma işlevselliğini arttırırken maliyeti azaltmaktadır. 

Ancak, uygulamada, (i) geçmiş iş emri kayıtlarının tutulmaması yada eksik 

tutulması, (ii) tesis yineleme bilgilerinin güncel olmaması yada eksik olarak kayıt 

altına alınması, ve (iii) sürdürülebilir bir altyapının olmaması, bakım bilgilerine 

ihtiyaç duyulduğunda sistemli erişimi zorlaştırmaktadır. Ayrıca, akıllı bir 

sebeplendirme mekanizmasının eksikliği, sorunun tespit ve sebeplendirme süresini 

uzatmaktadır. Bu nedenle, bu çalışma tesis bakım yönetiminin etkinliğini arttırmak 

için, kök nedenli sebeplendirme için veri odaklı ve bilgi destekli model tabanlı 

çözümler geliştirmeyi amaçlamaktadır. Çalışmada, ilk olarak, bakım ekibinin 

uzmanlığını makine öğrenme algoritmalarıyla birleştiren hibrit zeka yaklaşımı ile 

sorun sebeplendirme tahminlerini sürekli iyileştirmeyi amaçlayan, veri odaklı izleme 

için akıllı bir sebeplendirme yaklaşımı önerilmektedir. Hiyerarşik Sinir Ağları, 

birçok sistem hatasını yönetilebilir sınıflandırma problemlerine gruplamak için 

geliştirilmiştir ve bunların tahmin yetenekleri, geliştirilmiş bir geri bildirim 

mekanizmasıyla iyileştirilmiştir. İkinci olarak, varlıkları ve mekanları modele 

bağlayan ve gözlemlenebilir semptomları, sorun kaynağı varlığı, mekansal bilgileri 

ve etkilenen varlıkları semboller ve renk kodlama kullanarak etiketleyen, YBM 
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ortamında görsel programlama ile iş emri yönetim çerçevesi sunulmuştur. İş emri 

kayıtlarındaki bu bağlantıları kullanarak ve tanımlamalarını standartlaştırarak, 

semptomlar, sorun tipleri ve ilgili varlıklar arasındaki ilişkiyi kurmak için bir sorun 

ağı oluşturulmuştur. Yeni bir onarım işi istendiğinde, model tabanlı mekansal, 

sistemik ve özellik temelli ilişkileri kullanarak, benzerliklerden ağ bağlantılarını 

filtreleyen, böylece sorunu izole eden ve sebebini anlayan bir analiz yaklaşımı 

önerilmiştir. Önerilen çözümler test vakaları ile incelenmiş ve bunların etkinlikleri 

doğrulanarak potansiyelleri sunulmuştur. 

Anahtar Kelimeler: Yapı Bilgi Modellemesi, Tesis Onarımı, Sorun Sebeplendirme, 

Hibrit Zeka, Geribildirimle İyileştirilmiş Hiyerarşik Sinir Ağları, Sorun Ağı Analizi 
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CHAPTER 1  

1 INTRODUCTION 

The term facility management (FM) encompasses the operational life cycle of a 

facility, starting from initial operations to the demolishing stage. Throughout this 

stage, the main aim of the facility management department is to keep the built 

environment functioning efficiently. Therefore, it consists of various disciplines to 

manage the facility by considering the roles of people, place, process, and technology 

(International Facility Management Association, 2018). However, stakeholders 

often focus on the upfront costs of projects, such as design and construction, during 

the pre-built stage of a facility. From this point of view, the issues considered in the 

operational stage of the facility are commonly taken into consideration starting from 

the end of the construction stage of a facility and sustaining it until the end of its life 

cycle. Contrarily,  the study on life cycle cost (LCC) analysis reveals that, on 

average, design and construction costs constitute only 15% of a facility's life cycle 

costs, while FM costs account for approximately 85% (Edirisinghe et al., 2017). 

Therefore, for design and construction-related faults and any other issues that need 

to be considered earlier before the construction, the solutions developed in the next 

steps of the facility life cycle are not as efficient as the ones in the early pre-built 

stage in terms of operational usability and cost-effectiveness (Altun, 2015).  Hence, 

lifecycle planning in the early stage of facility management gains greater importance 

to significantly improve facility life cycle costs (LCC) and operational efficiency. 

The maintenance and repair tasks comprise at least 65% of the operational cost of 

the facilities and a significant amount of the time spent (W. Chen et al., 2018). In a 

facility, naturally, conditional deterioration of the assets and faults in the operational 

phase of the facility is inevitable. Consequently, either it is detected during a 
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predetermined inspection or notified by occupants, maintenance teams are looking 

for the problem to find its root and fix its source. However, there are times when 

information about the problem's location, source, and root-cause is not clear enough 

to evaluate the situation quickly to solve the problem. In those cases, besides the 

expertise of the maintenance team on the maintenance task, knowledge of (i) which 

information is required, (ii) how to gather this information from the facility sources, 

and (iii)  which steps should be followed systematically for the task to extract the 

information, evaluate it and fix the problem in a reasonable time, plays a crucial role 

in managing the information efficiently for facility maintenance. Therefore, using 

this knowledge, identifying possible root-causes of the problem accelerates the 

evaluation process to find the source of the problem or extracting any beneficial 

information relevant to the problem facilitates its root finding process. 

In contemporary practices, as-built documentation, which encompasses drawings 

and asset documentation and is typically transmitted to the facility management 

department, is one of the critical sources used to evaluate the problem. In the 

operational stage, providing as-built documentation in physical paper formats poses 

several challenges for facility maintenance management. These challenges include 

(i) the significant time needed to control the documents for retrieving the relevant 

information, (ii) the quite complicated process for managing as-built documents to 

capture facility information, and (iii) the difficulties in following updates in the as-

is documents after maintenance and repair tasks during the life cycle. Hence, this 

approach is susceptible to human errors and necessitates a labor-intensive process. 

Therefore, computer-aided systems have been developed to digitalize information to 

either avoid missing information or ease the path to reach the required information 

for specific purposes. However, considering that FM offers interdisciplinary analysis 

and management, integrating the different systems for data exchange may create an 

interoperability problem. On the other hand, Building Information Models (BIM), as 

a digital representation capturing and exchanging information with those FM 

systems and information technologies tools, can be used as an information repository 

to store and deliver as-built information throughout the facility's lifecycle. 
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As indicated above, for efficient facility maintenance information management, the 

maintenance team needs to (i) retrieve the required information provided in as-built 

documents and (ii) keep the history of the previous maintenance tasks for benefiting 

from contained knowledge in those for the following maintenance steps 

systematically to find the root and source of the problem and fix it. Therefore, while 

developing root-cause algorithms to find the source of the problem and to associate 

the effects of the problem on its environment, BIM can be used as an information 

repository to retrieve required information from model elements to construct the 

patterns from those relations. Thus, this facilitates problem solution in facility 

maintenance. 

In this research, we focus on how to utilize BIM for efficient information 

management in facility maintenance and then develop decision-support solutions 

interacting with BIM to retrieve information and use its relational intelligent 

repository, when needed, to facilitate fault reasoning.  

1.1 Problem statement 

Establishing maintenance strategies is the first step in facility maintenance 

management. Facility maintenance can be carried out using a variety of maintenance 

strategies depending on the needs and criticality of assets. In accordance with EN 

13306:2010 Maintenance - Maintenance terminology (Standardisation, 2010), 

maintenance can be basically divided into two main categories: preventive 

maintenance (PM) and corrective maintenance (CM). PM is generally performed on 

an asset at a predetermined frequency or when meter readings indicate the asset 

needs it or the condition of the asset.  Meanwhile, maintenance is delayed in CM 

until a breakdown or fault is found in the asset. In comparison to PM, CM requires 

more resources. The PM also enhances the asset's lifespan. The statistics show that 

CM tasks need three times higher cost than preventive ones (Akcamete, 2011).  

Therefore, facility managers should develop more proactive strategies in facility 

operations to reduce reactive maintenance and increase scheduled preventive 
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maintenance (Edirisinghe et al., 2013). However, they should have a plan for 

responding to sudden breakdowns or unexpected maintenance operations. Hence, 

efficiency in maintenance tasks can be provided by achieving a ratio of 80% (or 

higher) PM to 20% (or less) CM (Wireman, 2009). 

The maintenance strategy of a facility based on preventive maintenance usually 

offers cost-effective solutions. However, as highlighted above, the maintenance 

team's reaction to unexpected faults determines the degree of its efficiency. 

Therefore, it is essential to describe its current maintenance practice to better 

understand the problem of paper-based and digitalized facility maintenance 

management approaches (Wireman, 2009). Therefore, in an unscheduled 

maintenance task, the process begins with the occupant’s complaint report for an 

abnormal condition as a work order request, including space information. The 

facility manager subsequently proceeds to review the request and allocate the 

appropriate maintenance team to address the reported complaints and resolve the 

issue. If the problem is simple and its source can be identified quickly, the 

maintenance team can fix it within a reasonable time. Conversely, if the problem is 

complex and poses difficulties in determining its root cause, the maintenance team 

must consider a variety of possible alternatives in their pursuit of a solution. 

Therefore, the team visits various locations in the facility one after the other, first 

looking at what is required and then contacting the maintenance department to obtain 

the necessary information. Several trips may be required to access instructions, 

engineering drawings, and tools utilized for the task. If these as-built documents are 

not available when needed, the team waits until reaching the information. Hence, the 

lack of support for information leads to an inefficient use of time. The statistics 

indicate that the idle time of the maintenance team while waiting for relevant 

maintenance information causes $1.5 billion in waste annually within the United 

States alone (Gallaher et al., 2004). Each alternative is tested individually and 

sequentially, or some alternatives are prioritized based on the team's experience until 

the root cause of the issue is identified. During this process, the capabilities and 

intuition of the team play a prominent role in solving the problem at a certain time. 
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However, the more complex the problem is, the more time is needed. It is therefore 

to be expected that work efficiency decreases, and sometimes the root-causes are not 

properly recognized and reported, which results in repetitions of the same problem 

for the next one. 

As previously explained, maintenance documents are kept on paper or digital 

platforms. In a paper-based facility maintenance system, the occupant is expected to 

call or inform the facility management division to report abnormalities in the space. 

Then, the manager calls the maintenance team for them to check the problem. During 

this process, the work order request would probably not be recorded. On the other 

hand, in the Computerized Maintenance Management System (CMMS), the 

complaints are entered as work order request tickets, and the manager directly 

assigns the maintenance team to solve the problem. Until the problem is resolved, 

the work order seems incomplete, and the facility managers can easily follow the 

available teams and their locations to direct them to the problem. Moreover, in a 

paper-based process, effective management occurs when the team has documented 

solutions or relevant experience. Without such documentation or experience, 

possible solutions increase exponentially, leading to a time-consuming problem-

solving process. In CMMS, maintenance work orders are recorded in the tool, and 

the drawings are kept in the digital environment to assist in maintenance planning 

and execution. By searching the historical records, the maintenance team may reach 

valuable information such as statistics about the failure of the equipment and their 

possible sources; however, in current practice, a vast number of CMMS tools exist, 

and they do not have standardized capabilities. Therefore, assuming the availability 

of the data as mentioned above, only the statistics of the semantic texts recorded by 

the user as work orders are available. If this data is sufficient to solve the problem, 

it can be used directly; if not, more intelligent relations between the facility elements 

are needed. Moreover, the capabilities of CMMS tools to capture the information for 

supporting maintenance and repair automatically and analyze this data are still 

limited (W. Chen et al., 2018). 
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As explained above, facility maintenance practice for root-cause analysis of the 

problems is quite time-consuming and intuitive. Moreover, it depends on the 

experience of the maintenance team and their analytical skills to relate the source of 

the problem with affected associated assets, as well as the capabilities of the 

computerized tool being used.  To reduce the drawbacks and enhance the practice in 

facility maintenance, BIM-based solutions can be highlighted.  

BIM has several potential benefits to facilitate facility maintenance information 

management and root-cause analysis of the problem for maintenance and repair 

tasks. Firstly, BIM offers an information repository to link information on the model 

elements (Eastman et al., 2011). It can organize maintenance documents more 

systematically to streamline maintenance information flow. Secondly, updating the 

model according to changes in as-built conditions due to maintenance tasks provides 

an up-to-date model without missing any information, and the required information 

can be extracted when needed. Thirdly, it can interact with other computerized 

databases and information technologies for data exchange (Lavy & Jawadekar, 

2014). Fourth, it can provide life cycle information such that information required in 

the facility operations and maintenance can be analyzed in the design stage of the 

facility; therefore, any missing and misinterpreted data can be identified and 

corrected as early as possible. Finally, BIM offers visualization of the model 

elements to improve the maintenance team’s understanding of and communication 

with as-built conditions (Motamedi et al., 2014).  

Besides these potential benefits, BIM has some limitations to support the reasoning 

mechanism of the facility maintenance tasks. Firstly, BIM offers a flexible and 

structured information database that contains maintenance-related informative data; 

however, existing BIM tools have no systematically constructed information 

database to support facility maintenance tasks (Ensafi & Thabet, 2021). Secondly, 

BIM only provides linking options for information and model elements. 

Consequently, it can be used only to extract information from related assets to 

construct an information network for asset groups, especially for monitoring data for 

the Internet of Things, or patterns can be recognized manually by using the available 
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information to construct root causes in the tools (Yang & Ergan, 2016a). However, 

current BIM solutions lack a methodology for automatically building reasoning 

mechanisms, mainly using asset relations. Thirdly, existing BIM tools do not keep 

the change history for the updated model (F. Liu et al., 2014). Therefore, the 

maintenance knowledge/information provided by historical updates is missing when 

spaces or model elements are removed or replaced. Hence, considering the potential 

of BIM and its current limitations in practice, a systematic model-based framework 

using both the current information database and knowledge of the previous 

maintenance work and changes in the facility is needed to support reasoning 

mechanisms in the facility maintenance management. 

In summary, the absence of maintenance information, inaccurate on-hand 

information, challenges faced in obtaining the relevant maintenance information 

within a reasonable time, and lack of a mechanism to interpret the available data to 

facilitate the root-cause detection of reported faults result in delays in time, increased 

costs, and inefficient resource utilization. Therefore, these drawbacks motivate this 

study to develop model-integrated solutions for enabling accurate root-cause 

detection of the reported fault as decision support tools in facility maintenance. 

1.2 Research design  

This section outlines the road map for our research, which includes a description of 

our research objectives (RO), questions (RQ), and methods. As previously explained 

in the problem statement (in Section 1.1), because of the problems encountered with 

the maintenance information flow and root-cause identification, time delays occur, 

costs increase, and resources are not utilized efficiently. To address these issues, we 

are motivated to examine the potential use of Building Information Modeling in 

facility maintenance and focus mainly on model-integrated decision support 

solutions to facilitate the root-cause analysis of problems encountered. Accordingly, 

the roles of BIM in facility maintenance and its information flow are clearly defined 

by developing a conceptual framework based on facility maintenance management; 

then, two different model-integrating decision support solutions for streamlining 
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root-cause of a problem encountered in the facility operations are proposed as 

illustrated in Figure 1.1.  

As summarized above, this research is structured into three distinct sections (chapters 

from 2 to 4), each dedicated to addressing specific research objectives and questions. 

A model-based facility maintenance management framework is introduced 

conceptually (in Chapter 2). Rather than adopting a conventional literature review 

approach to BIM-integrated facility maintenance studies, we synthesize the previous 

studies, the capabilities of the commonly utilized computerized maintenance 

management tools, and our ideas to shape the framework. The main objective of the 

proposed framework is to design a BIM-enabled facility maintenance management 

framework mainly based on a literature review for streamlining information 

management/flow and enhancing fault management, and the secondary one is to 

identify information needs to sustain the facility maintenance operations timely and 

cost-efficient throughout its lifecycle. To investigate these objectives, the framework 

is proposed to address RQ1. 

RQ 1: How can a conceptual framework be formed to address the whole process in 

BIM-driven facility maintenance and fault management? 

Taking a holistic view of which maintenance information is required throughout the 

life cycle of a BIM enabled-facility, how information technologies are integrated 

with the BIM environment to facilitate data collection, information display, retrieval, 

and management for supporting maintenance tasks, and focusing on how 

interoperability issues and integration issues are addressed in model-based 

management, the focus of the framework is narrowly directed from the maintenance 

workflow towards model-based fault and work order management and fault 

detection, diagnosis and reasoning. 

While model-based solutions facilitate the maintenance workflow and enhance the 

process, as stated previously in Section 1.1., specifically, BIM can be used in two 

different ways to support fault reasoning by linking information and model elements.
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BIM-based maintenance 

management  framework 

Information 

technologies

Literature 

review
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of             

CMMS tools

Comprehensive 
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workflow

Research gaps 

for fault reasoning

• Define information requirements

• Utilize information technologies with 

BIM to support maintenance tasks

• Examine interoperability and 

integration issues in model-base 

maintenance

• Investigate model-based work order 

management and fault reasoning 

solutions

BIM-integrated data-driven 

fault reasoning 

Real-time

sensor data

Hierarchical 

classification model

Decision 

support model
Human-AI 

interaction

Site 

feedback

Consistently improved 

fault detection 

and reasoning

• Construct sensor network and interact with BIM

• Collect and preprocess the training data

• Propose AI classification model and train it

• Predict fault condition of real-time data using the trained 

model

• Evaluate the predictions with decision support model

• Generate work order request with fault suggestions to 

facility maintenance team

• Human evaluation of the reported condition and site 

inspection and feedback

• Resample the training data with mispredicted and new 

cases and retrain the model for continuous improvement

BIM-driven fault reasoning 

Work order history

Request for maintenance
Fault network 

analysis

Model-based 

relations

Model-based work 

order generation

Fault localization and 

reasoning

• Define the content of work order and request

• Interact the work order content with BIM

• Construct model-based relations between the fault asset(s) 

and BIM environment

• Establish  comprehensive fault network including the 

relationships between symptoms, fault sources, and spatial 

information 

• Similarity-based filtering of the faults with respect to request.           

Figure 1.1. Research vision for model-based facility maintenance management and fault reasoning
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First, it can be used for information retrieval. To elaborate further, it can extract 

relevant information of assets from repository to construct on-use network of asset 

groups for data-driven conditional monitoring. Moreover, BIM can link the 

maintenance information available in the model to faulty or conditionally 

deteriorated assets detected by monitoring algorithms for streamlining maintenance 

tasks (Golabchi et al., 2016). Second, BIM enables an environment to construct root-

cause patterns manually using on-hand information (Yang & Ergan, 2016a). 

Considering the existing capabilities of BIM, in this research, we developed two 

BIM-integrated decision support tools to facilitate accurate root-cause detection and 

maintenance tasks. First, maintaining the focus on information retrieval, a hybrid 

intelligence approach is proposed for the first time in the literature (in Chapter 3). 

This approach involves the collaboration between artificial intelligence algorithms 

for fault detection during monitoring and the facility maintenance team. AI 

predictions assist the maintenance team in making decisions regarding the fault 

existence and root cause, while the real issues detected by the site team provide 

feedback to the AI algorithm for retraining it. Hence, both sides support each other 

to enhance the accuracy of root-cause predictions throughout the lifecycle of fault 

monitoring and management within a BIM-integrated environment. Second, instead 

of manually constructing patterns between the problem and its root, we initially 

proposed a model-based work order management framework where the work order 

is linked with symptoms, the relevant assets and space in BIM environment to 

capture and construct the relationship between problem symptoms and its location 

with the root sources of the fault. Hence, the intelligent information of the assets and 

spaces are integrated with the symptoms, using spatial, system-based and feature-

based relations to create smarter work orders. Hence, contrary to previous studies, 

the patterns in the work order are recognized automatically using model relations 

database based on geometric and non-geometric features of assets and spaces. In the 

next section, we present a fault network analysis approach to identify the root cause 

of new coming work orders using model-based fault-specific relationships derived 

from BIM model(s) of the facility and historical work order records. This analysis 
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eliminates some of the possible root alternatives of the problem, prioritizes the 

relevant ones and sometimes directly addresses the reason for the fault. 

As introduced above, the hybrid intelligence approach is developed mainly to 

improve the accuracy of current root-cause prediction of the faults monitored in 

living environment and provide continuous improvement in fault management. The 

feedback from the maintenance team to the AI solution, as well as the accuracy of 

AI predictions, and their improvement in time, play an important role in upgrading 

the efficiency of collaboration. Moreover, selection of AI solution and design of fault 

prediction problem are quite critical for accurate AI predictions. Naturally, in a data-

driven system monitoring, first, possible faults in any asset of the system are 

investigated; then, it is formulated as multiclass classification problem; next, it is 

trained with representative sampling data; and finally, the trained AI solution 

predicts the status of the system by testing the real-time data generated. However, in 

reality, a system consists of multiple assets, each asset has different fault types and 

even sometimes, the intensity level of this fault may be crucial in decision making 

to replace the asset with the new one. It is therefore necessary to formulate the 

problem in quite a lot of classes, but it leads to significant accuracy decrease. In this 

research, the second objective of this section is to develop a classification approach 

to divide various faults in a system into manageable units for improving the 

prediction accuracy. Considering the features of the system, a solution based on 

hierarchical classification seems more suitable; however, in this classification 

problem, an incorrect prediction at the higher level adversely influences the accuracy 

of subsequent predictions at lower levels. In other words, there is a cumulative effect 

of information loss. These objectives are explored with RQ 2. 

RQ 2: How is the performance of AI models on data-driven fault reasoning improved 

to facilitate fault management throughout the system's life cycle? 

While developing an enhanced AI solution, our investigation initially concentrates 

on how to facilitate interaction between humans and AI models within a data-driven 

monitoring environment. This interaction aims to enhance fault management and 
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ensure continuous improvement in fault prediction in practical applications. 

Secondly, our focus shifts to proposing an AI algorithm designed to (i) reframe the 

fault classification problem into a more manageable format, particularly in systems 

with diverse fault types across various elements, and (ii) provide accurate predictions 

for fault causes. 

In the light of research objectives and questions, this section introduces a hybrid 

intelligence framework to provide continuous improvement in fault management and 

offer a new hierarchical classification method with feedback mechanism called 

Feedback-enhanced Hierarchical Neural Networks (FEHNN) that predicts fault 

existence, source, diagnosis, and intensity level respectively to improve the accuracy 

of the trained model for evaluating the current condition of the elements in a system. 

The robustness of both hybrid intelligence model and FEHNN are validated with two 

case studies whereas the hybrid intelligence model is evaluated with updated test 

data and FEHNN is compared with different AI methods and alternative neural 

networks. 

As explained above, the last section focuses on utilization of model-based relations 

in the pattern construction for facilitating the root-cause identification of encountered 

issues. Due to the absence of interpretable model-based historical records of work 

orders and manually constructed root-cause patterns in the current literature (Yang 

& Ergan, 2016b), we need first to create an environment for interacting the work 

order records with the contents of the model to construct the relations; then find a 

solution to evaluate these relations for streamlining the root of the encountered 

problem. Therefore, the first objective of the third section is to develop a systematic 

model-based work order management framework for constructing patterns between 

symptoms and the source of the fault, space and the impacted assets from the fault 

using their model-based relations. After constructing model-based framework for 

work order management and collecting the work order with detected relations 

between the relevant items, the second objective of this section is to develop a 

network analysis approach that analyzes possible alternative roots of the problem 
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and provides decision support to find its real root. These objectives are questioned 

with RQ3. 

RQ 3: How can a BIM-enabled work order management framework be developed to 

facilitate network analysis of faults and enhance model-based fault reasoning? 

While developing a model-based solution, the investigation focuses on maximizing 

the information gained from previous work orders and available information by 

examining the formation of work order content and requests. Additionally, the 

integration of this content into a BIM environment to enhance the intelligence of a 

work order management framework is explored. Furthermore, the utilization of BIM 

to establish relationships between assets during faulty conditions is examined. 

Finally, the investigation explores the development of a structured network of 

relationships between symptoms, fault sources, and spatial information to enhance 

the accuracy of prediction for reasoning mechanisms. 

In this section, first, we propose a model-based framework for work order 

management in BIM environment coded via visual programming Dynamo. The 

framework consists of three modules: work request, work order analysis and 

management and work order site module. While information for maintenance request 

and site feedback for the work order is collected via the interface of the framework, 

data analysis and the management of work orders are offered as part of the 

background support. Using on-hand information provided in work order request and 

historical records of work orders, with smart tags, network relations are 

automatically constructed in the encoded environment between symptom, space, 

fault root and other impacted assets. These relations are built upon physical, spatial, 

and systemic relations, as well as similarity of asset’s features. After that, the steps 

of the framework are first tested with use case studies for verification; then, how the 

model constructs the relations using the given smart information is validated using 

cases of each relation type. In the framework, each work order is stored in the 

information repository, including its work request and site feedback details and 

possible child work orders. Hence, using these records and the relationships detected 
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in each order, a comprehensive fault network is constructed. When new work is 

requested, the possible roots of the problem are evaluated using the network. In this 

research, a fault network analysis approach is proposed to (i) filter the roots based 

on the reported symptom and space; then (ii) apply fault measure rule(s) to isolate 

fault source if available; and (iii) finally prioritize the remaining roots according to 

their similarity, critically and frequency. Hence, possible fault sources of the problem 

in a prior list are reported to the site team to facilitate the task.  The efficiency of the 

proposed approach is validated with work order cases. 

In summary, this research is organized in five chapters. First, Chapter 1 presents the 

description of the problem and design of the research including the research 

objectives, question, methods, and scope of the thesis. Chapter 2 describes a 

conceptual model-based facility maintenance management framework developed by 

inspiration from literature studies on this topic, especially focusing on fault 

management. Chapter 3 introduces a hybrid intelligence framework in BIM-

integrated data-driven facility monitoring to provide continuous improvement in 

fault management and offer a new hierarchical classification method with feedback 

mechanism called Feedback-Enhanced Neural Networks to handle possible 

information loss. In Chapter 4, a model-based work order management framework 

is proposed to construct the relationship between symptoms and space and the source 

of the fault using the framework's enriched content. Additionally, we offer a fault 

network analysis approach based on the work orders created by using fault-specific 

and model-based relationships to isolate the reason for abnormalities in the reported 

environment. Finally, Chapter 5 brings the main research findings to a close, 

discusses the limitations of the research, and proposes potential directions for future 

research
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CHAPTER 2  

2 DEVELOPMENT OF CONCEPTUAL FRAMEWORK ON A REVIEW BASED 

BIM-ENABLED FACILITY MAINTENANCE MANAGEMENT  

2.1 Introduction  

Maintenance plays a crucial role in ensuring the longevity and functionality of a 

facility (Teicholz, 2018). Maintenance management encompasses structured 

methods and frameworks that facilitate the planning, execution, and monitoring of 

maintenance activities. These systems represent central pillars in facility 

management, providing essential support for the efficient oversight, tracking, and 

prioritization of maintenance tasks. Their significance extends beyond routine 

upkeep, encompassing critical functions such as minimizing downtime, managing 

costs, optimizing resource allocation, and ensuring the safety and reliability of the 

facilities they govern (Fraser, 2014). 

Encompassing a diverse range of functions, Facility Maintenance Management 

Systems (FMMS) oversee asset tracking and management, coordinate work orders, 

schedule preventive maintenance tasks, manage comprehensive documentation and 

data, generate insightful reports and analytics, efficiently handle inventory, 

coordinate with vendors, and ensure compliance with regulatory standards (Hu et al., 

2018). 

Paper-based facility maintenance management systems suffer from several 

drawbacks in today's digital age. Firstly, they are prone to human error, as manual 

data entry increases the likelihood of mistakes in recording maintenance activities, 

scheduling tasks, and tracking inventory (Bortolini et al., 2016). Moreover, paper-

based systems lack real-time updates and accessibility, making it challenging to keep 
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all stakeholders informed and up-to-date on maintenance schedules and issues. 

Additionally, storing and organizing paper records can be cumbersome and 

inefficient, leading to difficulties in retrieving information when needed (Smillie et 

al., 1988). Therefore, paper-based systems often result in slower response times, 

decreased productivity, and higher operational costs due to their inherent limitations. 

On the other hand, computerized facility maintenance management systems offer 

numerous advantages over paper-based systems, including improved efficiency, 

accuracy, and accessibility. However, they also have their drawbacks. They 

sometimes struggle with integrating data from different sources that cause 

compatibility problems with hardware or other software applications (Moreno et al., 

2022). These issues can disrupt maintenance operations and lead to downtime, 

negatively impacting facility performance and service delivery. Visualization and 

collaboration are limited (Jiang et al., 2017), impacting teams' ability to identify 

issues and work together effectively. Moreover, these systems may be complex, 

difficult to customize, and lack scalability, potentially increasing maintenance costs 

and inefficiencies over time (Alshokry et al., 2021). Additionally, computerized 

systems may require substantial initial investment in software licenses, hardware 

infrastructure, and staff training. Moreover, there may be challenges in data security 

and privacy, particularly concerning sensitive maintenance records and asset 

information. 

Introducing a BIM-based facility maintenance management system addresses many 

of these drawbacks while offering a host of potential additive values. BIM enables 

improved data integration, allowing maintenance teams to access comprehensive and 

up-to-date information about facility assets and maintenance history (Gao & 

Pishdad-Bozorgi, 2018). This facilitates proactive facility maintenance by enabling 

predictive analysis and preemptive maintenance planning (Shalabi & Turkan, 2017). 

Moreover, BIM facilitates life cycle management by incorporating maintenance 

plans into the design stage (Heaton et al., 2019), ensuring that maintenance 

considerations are integrated from the outset. Asset performance monitoring is 

enhanced through BIM's ability to provide real-time data on asset condition and 
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performance (Lu et al., 2020). Furthermore, BIM-based systems offer enhanced 

visualization capabilities, allowing maintenance teams to better understand the 

facility layout and identify maintenance requirements more efficiently (Akcamete et 

al., 2010). Collaboration and communication are also improved through BIM, as 

stakeholders can easily share information and coordinate activities within a 

centralized platform (Korpela et al., 2015; Valdepeñas et al., 2020). Maintenance 

workflows are streamlined through automated processes and centralized data 

management, reducing administrative burden and improving overall efficiency. 

Additionally, BIM-based systems offer future scalability and flexibility, allowing for 

easier adaptation to changes in facility requirements or technological advancements.  

Information management in facility maintenance is significantly enhanced through 

BIM-based systems (Wijekoon et al., 2020). BIM serves as a comprehensive 

information repository, housing all relevant data pertaining to facility assets, 

maintenance schedules, work orders, and historical records. This centralized 

approach to information management ensures data integrity, consistency, and 

accessibility, minimizing the risk of errors and redundancies inherent in manual or 

disparate systems. Maintenance teams can easily retrieve relevant information, track 

asset history, and analyze trends to make informed decisions regarding maintenance 

strategies and resource allocation. BIM also enables the integration of various data 

sources, including IoT sensors, equipment diagnostics, and performance metrics, 

providing a holistic view of facility operations for more effective management. 

In the prior studies, the researchers explored different aspects of facility maintenance 

and information management interacting with BIM; however, there remains a critical 

need for a comprehensive review that synthesizes and integrates these diverse 

findings to provide a holistic understanding of model-based maintenance 

management. Therefore, in this research, we explore a conceptual framework for 

model-based maintenance management, mainly focusing on challenges in 

information and fault management. 
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2.2 Challenges in information management in facility maintenance 

workflow 

Effective information management is crucial in facility maintenance workflows as it 

enhances the organization, accessibility, and utilization of critical data. Properly 

managed information facilitates streamlined communication, ensuring that 

maintenance teams have timely access to essential documentation, schedules, and 

historical records. This not only promotes efficient decision-making but also 

minimizes downtime by enabling proactive maintenance planning and swift response 

to issues. Additionally, comprehensive information management supports 

compliance with regulatory requirements, enhances collaboration among team 

members, and contributes to the overall optimization of maintenance processes, 

fostering a more cost-effective and reliable facility management system.  

Ensuring effective information management proves to be challenging in practice. 

According to research conducted by the National Institute of Standards and 

Technology (Gallaher et al., 2004), the process of verifying or validating information 

for accurate representation incurs substantial time and costs, totaling $4.8 billion in 

labor charges annually. Once the information is obtained, around $613 million is 

allocated for operations and maintenance engineers to convert the verified data into 

an accessible and usable format for staff members performing their tasks. Moreover, 

due to a significant portion of information being stored in paper format, accessing it 

consumes considerable time, leading to information delays. Therefore, these delays, 

causing workers to wait idly for information to address maintenance issues, incurred 

a cost of nearly $1.5 billion in 2002. Furthermore, when dealing with insufficient 

information, operations and maintenance staff often need to revisit maintenance 

problems for correct resolution, incurring additional costs. The annual cost of 

inadequate interoperability for these staff members amounts to $6.9 billion, resulting 

in $1.92 per square meter per year. 

Throughout the maintenance workflow, workers encounter various information-

related challenges that lead to inefficiencies when resolving issues. In accordance 
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with Hicks' analysis of the factors leading to information waste (Hicks, 2007), these 

inefficiencies can be recognized through four specific pathways: (i) essential 

information being unavailable, (ii) dealing with an overload of information, (iii) 

encountering inaccuracies in information, and (iv) facing difficulties in accessing the 

relevant information. Initially, if essential information is not found in current 

documents stemming from gaps in data collection and incomplete or inadequate 

recording (Ensafi et al., 2023), workers must rely on reactive responses based on 

their knowledge and experience to obtain information and address the issues. In 

addition, higher personnel turnover in this practice poses a significant challenge to 

preserving and transferring critical knowledge (Moon et al., 2022). The loss of 

experienced individuals diminishes institutional knowledge, impacting the 

information-centric practices that rely on historical insights. Limited training and 

orientation exacerbate the situation, hindering the effective utilization of information 

in resolving maintenance issues. The risk of safety incidents increases as new 

workers might lack the necessary information to address equipment malfunctions 

safely. Knowledge transfer challenges are heightened, impeding the seamless 

sharing of best practices and lessons learned. As a result, it reduces process 

efficiency, increases asset downtime, and potentially introduces safety risks. 

Moreover, dealing with excessive amounts of data from diverse maintenance sources 

poses a challenge for workers in efficiently managing and retrieving relevant 

information. Particularly in conditions where the searchability of maintenance 

information source is limited such as scanned or paper-based documentation, the 

surplus of data can result in information fatigue, impeding maintenance personnel 

from promptly accessing vital information.  

When the process of handing over the relevant maintenance information lacks clear 

definition and accountability, manual data entries in facility maintenance workflows, 

often relying on unstructured data, tend to amplify human errors and compromise 

the quality of information. Therefore, without a proper feedback mechanism and 

sufficient training for addressing errors in the process and awareness among 

personnel regarding the importance of accurate data entry and maintenance of 
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records, these entries might introduce inaccuracies and inconsistencies, undermining 

the reliability of information for maintenance tasks. Furthermore, when there is a 

lack of regular updates to maintenance information, encompassing manuals, 

equipment specifications, standard operating procedures, and changes in the facility's 

actual state, discrepancies can arise. This inconsistency diminishes the reliability of 

maintenance planning, as the documented information may no longer accurately 

reflect the current condition of the facilities. 

Accessing maintenance information within the system can be challenging, even 

when it is readily available. In a complex workflow, maintenance information might 

be dispersed across various stages, complicating the understanding of task flow and 

dependencies for workers and hindering the prompt location of relevant information. 

The need to follow intricate procedures or deal with convoluted processes can lead 

to delays in accessing critical information. Moreover, when maintenance tasks are 

outsourced to different vendors or information is dispersed across various platforms, 

the absence of standardized practices in data entry and information management 

processes leads to inconsistencies and errors. This situation causes interoperability 

problems, jeopardizing data integrity and hindering seamless information exchange. 

Consequently, it may necessitate costly and time-consuming custom integrations, 

making it challenging to achieve a unified view of maintenance data. It results in 

isolated repositories, limiting the seamless flow of information. Hence, this 

decentralization hampers accessibility to information repositories and introduces 

redundancy in maintenance environment where similar information is stored on 

various platforms. Furthermore, inadequate communication channels and 

collaboration platforms between maintenance stakeholders can lead to 

misunderstandings, delayed responses, and increased downtime. 
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2.3 Approach 

2.3.1 Motivation 

Our departure from a traditional literature review on BIM-based facility maintenance 

management systems signals a strategic move toward innovation. Rather than 

dwelling solely on existing practical approaches, we aim to develop a conceptual 

framework. This shift is grounded in a deliberate emphasis on the profound 

significance of information management throughout the maintenance workflow. 

The motivation for this shift arises from the recognition that existing facility 

maintenance management practices lack a unifying and systematic model. While 

some approaches focus on specific aspects of model-based facility maintenance, they 

fall short of a cohesive and integrated framework that maximizes the benefits BIM 

offers throughout the maintenance process. 

By highlighting this absence, our objective is to underscore the significance of 

establishing a conceptual framework. This framework will transcend the limitations 

of current practices, providing a structured and unified model for leveraging the 

transformative potential of BIM technology in facility maintenance. The emphasis 

on information management within the proposed framework acknowledges its 

crucial role in ensuring the seamless integration of BIM throughout the maintenance 

workflow.  

Through a rigorous examination, analysis, and integration of relevant literature 

studies, our goal is to contribute a conceptual framework that not only addresses the 

current gap but also introduces a fresh perspective for holistic and efficient BIM-

based facility maintenance management practices. 
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2.3.2 Research scope 

This research endeavors to explore the influential factors shaping the model-based 

facility maintenance workflow with the goal of proposing a robust conceptual 

framework for enhanced efficiency. Emphasizing the pivotal role of information 

management within this framework, our approach involves a comprehensive 

examination of literature studies, specifically adopting an information-centric 

workflow. Within this context, our focus is directed towards understanding the 

essential information required for optimizing the workflow, as well as devising 

information technologies for collecting and evaluating this information. Recognizing 

the critical impact of information on the overall process, our aim is to develop 

insights that contribute to the refinement and optimization of facility maintenance 

workflow. Moreover, to offer a more precise and nuanced viewpoint, our framework 

intentionally restricts its scope by taking faulty conditions into account. This 

approach places distinct emphasis on essential dimensions such as model-based fault 

management, work order management, and root-cause analysis. This purposeful 

narrowing of focus enables a comprehensive exploration of these specific areas, 

leading to the advancement of a theoretical framework designed to address the 

intricacies of model-based facility maintenance workflow across diverse conditions. 

Recognizing the significance of analyzing model-based maintenance maturity and 

strategies to enhance our comprehension of the framework, we initiated the process 

by proposing a model-based maturity model integrated with maintenance strategies. 

This initial step laid the foundation for the ongoing development of the 

comprehensive framework. 

2.3.3 Review methodology 

In our research, we thoroughly investigated literature studies focusing on the 

integration of Building Information Modeling in facilities maintenance. The aim was 

to consolidate the findings of these studies and to develop a comprehensive 
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framework for the management of facilities maintenance, utilizing models as a 

foundation. Drawing inspiration from Gao and Pishdad-Bozorgi (2019), the review 

process, as depicted in Figure 2.1., involves a sequential approach encompassing 

four key steps. Firstly, it entails delineating the research scope for model-based 

facilities maintenance management and strategically selecting keywords for 

exploring relevant articles within specified databases. Secondly, the process involves 

the systematic collection of articles along with their abstracts. The third step requires 

the application of content analysis to filter out the irrelevant articles, categorize them 

based on their relevance to model-based maintenance issues, and articulate their 

specific contributions and findings within the defined research scope. Lastly, the 

synthesized contributions play a pivotal role in shaping the development of the 

framework, and the ensuing discussion revolves around these integrated insights. 

To collect the articles , we first conducted a keyword search in Web of Science and 

Scopus databases, restraining the publication year of the article between 2005 and 

2023. 548 articles whose title or abstract containing “BIM” and “maintenance” were 

extracted from the databases and consolidated them into a separate database, 

preserving the contextual relevance, along with their respective abstracts. After that, 

we reviewed 423 abstracts of the collected articles and eliminated those deemed 

irrelevant. The remaining articles were systematically classified based on their 

relevance to model-based facility maintenance into four categories: (i) addressing 

general issues related to BIM-enabled facility maintenance management, 

encompassing information requirements, benefits, values, challenges, maintenance 

strategies, accessibility, practical maintenance actions, safety, and legal issues; (ii) 

focusing on data integration and model-based maintenance systems, covering 

developments in literature, case studies in diverse areas, integration of information 

technologies into model-based facility maintenance, and interoperability issues; (iii) 

delving into model-based fault management, including data analysis and 

management, work order management, conditional assessments, fault detection and 

diagnosis, and root-cause analysis; and (iv) capturing secondary sources that 

contribute to the framework, such as model-based facility management studies,  
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Figure 2.1. Review method of literature studies and their integration to the framework 
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digital twin applications, location-based solutions, and asset and space management. 

The statistical details of the studies are outlined in Appendix A. A thorough 

examination was conducted on the articles belonging to the first three categories to 

extract their findings and assess their potential contribution to our framework. 

Meanwhile, the remaining articles were scanned to identify additional insights that 

could enhance the value of our proposed solution.  

The identical procedure was applied with a heightened focus on fault management. 

Therefore, additional keywords were stipulated to broaden the search scope: “BIM” 

and “work order”, “BIM” and “fault detection and diagnosis”. Articles identified 

through these searches were initially cross-referenced with those from the previous 

search, and only new and relevant ones were incorporated into the evaluation and 

reported in Appendix A. 

2.4 Model-based maintenance maturity and strategies 

Inspired by maturity models of process management (Rosemann & De Bruin, 2005), 

BIM (Alankarage et al., 2023), data governance (G. Cheng et al., 2017), and 

capability (Gökalp et al., 2022), the maturity of BIM-based facility maintenance 

management follows a progressive journey, evolving from initial ad-hoc state to 

optimized level of excellence. Initially, maintenance activities are reactive, 

unstructured, driven by immediate needs and reliant on the knowledge of the 

maintenance personnel.  Since there is a lack of formalized processes and standards 

for gathering, managing, and exchanging information within an organization, 

information needs are often addressed on a case-by-case basis, without a systematic 

approach or clear guidelines. As the documents and 2D CAD drawings are 

independently prepared, there is a restricted collaboration and communication scope 

regarding the collection, storage, and sharing of data. This situation leads to the 

creation of data silos, diminishing the overall operational visibility. Moreover, 

communication tends to be informal, relying heavily on personal interactions and 

individual preferences rather than established protocols. As a result, information may 
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be scattered across various sources, making it challenging to access and use 

effectively. Data entry processes are likely manual and involve redundant efforts. 

Maintenance personnel manually record information on paper or in isolated digital 

documents, leading to the risk of errors, loss of data, and inefficiencies. However, as 

maintenance costs rise, operational disruptions occur, and organizational limitations 

become apparent, the owners and operators recognize the prominence of more 

systematic organization, especially for repetitive maintenance tasks for critical assets 

whose disruption fully or partially impacts the operations of the facility.   Therefore, 

growing awareness leads the organization to establish systematic solutions such as 

introducing preventive measures and routine inspection for those assets and 

collecting and storing information required for their maintenance. This leads to 

scheduled maintenance inspections for critical assets, mitigating the risk of 

unexpected breakdowns.  Moreover, despite limited collaboration among 

stakeholders initially, early efforts facilitate basic 3D modeling of the facility, 

integrating geometric and semantic data. Consequently, raw facility data gradually 

transforms into more organized information. Information is still somewhat 

fragmented, but efforts are made to consolidate and centralize data repositories. 

Hence, basic maintenance management systems such as spreadsheets are introduced 

to track maintenance activities, especially for critical assets. However, processes 

remain predominantly manual and reactive at this stage. 

With increasing capabilities, this approach permeates the entire organization from 

key assets; hence, the maintenance processes are systematically formalized, and roles 

and responsibilities, clear documentation, and standardized practices are defined to 

ensure consistency in performing the maintenance tasks. Within more collaborative 

efforts of the stakeholders in 3D modeling, BIM standards are adopted to create the 

model, and data exchange standards such as Industrial Foundation Classes (IFC) and 

Construction Operations Building Information Exchange (COBie) are introduced to 

facilitate the interoperability between the models and integration of other tools (East, 

2011). It establishes standardized processes for collecting, organizing, and analyzing 

facility data. Data management systems are implemented to ensure consistency and 
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reliability in data capture. Knowledge about facility assets, their condition, and 

maintenance requirements becomes more structured and accessible for preventative 

maintenance. 

Once the model-based maintenance processes have been standardized, proactive 

solutions are then developed to enhance the maintenance efficiency, utilizing control 

mechanisms and performance metrics on the formalized procedures in practice. By 

interacting information technologies to monitor the systems and track the assets and 

computerized maintenance management system and computerized facility 

management systems with the standardized model, key performance indicators are 

defined, and real-time data and historical records obtained from various sources of 

information are analyzed to gain insight about the performance and maintenance 

needs of the facility, and condition of the assets. Knowledge obtained based on a 

deep understanding of asset behavior and performance trends is evaluated to propose 

proactive maintenance strategies to update model-integrated maintenance schedules, 

prioritization, and procedures.  

Model-based maintenance management is fully matured with the development of 

feedback mechanisms to facilitate continuous improvement, addressing not only 

current maintenance needs but also anticipating future demands. At this stage, a 

visionary maintenance approach rooted in wisdom-based decision-making is 

adopted. This approach leverages knowledge for strategic decision-making and 

utilizes data insights to drive continuous improvement in operations, moving away 

from corrective solutions to maintenance issues on a daily basis. Therefore, AI-

driven predictive solutions are embraced to both monitor and predict the condition 

of assets and guide optimization decision-making. Under this paradigm, continuous 

improvement takes precedence, and maintenance strategies are dynamically adjusted 

based on real-time data and feedback. Moreover, while generating the digital model, 

collaborative efforts are maximized between stakeholders that integrate all aspects 

of the project lifecycle and allow them to work simultaneously to create a model. 

Full interoperability is provided while information is shared between the 

stakeholders, and information technologies are integrated into the model.  Hence, a 
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flexible and adaptable information environment for maintenance issues is provided 

within full lifecycle BIM integration.   

In determining the maintenance strategy in a facility, several factors are investigated 

(Patil et al., 2022; Zaim et al., 2012). First and foremost is the criticality of assets, 

which guides prioritization efforts, ensuring resources are allocated to maintain vital 

components essential for operational functionality and continuity. Second, 

adherence to regulatory standards and practices is essential to ensure compliance. 

Third, prioritizing the safety and comfort of occupants and considering the impact 

on the community are critical, necessitating strict adherence to regulations to uphold 

a positive reputation. Fourth, cost considerations balance expenditures with the 

desired level of service, ensuring resource allocation is optimized. Fifth, risk 

tolerance informs decisions regarding the extent of maintenance required to mitigate 

potential risks while aligning with the facility’s organizational objectives. Moreover, 

the availability of skilled personnel influences the complexity and execution of 

maintenance tasks, while technological integration facilitates streamlined processes. 

Furthermore, equipment complexity and worker acceptance necessitate tailored 

strategies to address specific technical challenges effectively. 

2.5 A conceptual framework on BIM-enabled facility maintenance 

management 

In this study, a conceptual framework is developed to offer holistic and efficient 

BIM-based facility maintenance management inferred and synthesized from the 

insights gathered from previous studies and practices. This model-driven framework 

leverages the potential of BIM to tackle the challenges of information management 

in the maintenance workflow. Initially focusing on maintenance management, it 

gradually narrows its scope to model-based work order management and fault 

detection and reasoning that maximizes the information gained to reduce downtime 

and maintenance costs of the facility. The model-based framework consists of the 

following main sections: (i) information requirements, (ii) data handover 
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standardization and interoperability of facility maintenance solutions, (iii) 

integration of information technologies to maintenance workflow, data, and 

information management, and (iv) model-based fault management including work 

order management and fault detection, diagnosis and reasoning.  

As depicted in the flowchart shown in Figure 2.2, in the initial design stage of the 

facility, the FM department collaborates with the design department to convey their 

information needs and expectations to them. Within the integration of BIM into the 

lifecycle of the facility, these interactions are more concretely facilitated and 

streamlined. To mitigate additional maintenance and repair needs or operational 

inefficiencies throughout the facility's remaining lifetime, design details susceptible 

to faults and inefficiencies, as well as difficulties in navigating maintenance routes 

and accessing maintained assets and spaces, are analyzed within the model-driven 

environment. Necessary updates are then made according to the identified needs. The 

FM department is responsible for organizing the model-based information 

requirements. They determine (i) the purposes for which maintenance information is 

needed, (ii) the specific information entries required to meet the needs of those 

purposes, (iii) the format and methodology for collecting the data, and (iv) designate 

the responsible party as the data provider. The procedure and data format for 

preparing and integrating data into the models follow standardized to streamline the 

handover process. The promotion of widely accepted data exchange formats such as 

Industrial Foundation Classes (IFC) and Construction Operations Building 

Information Exchange (COBie) is strongly advocated to enhance interoperability 

during data exchange. In instances where these standards may be insufficient, data 

exchange is facilitated through the utilization of custom-made, generalized 

templates, achieved by leveraging visual programming tools that interact with the 

facility model or Application Programming Interfaces (APIs). Geometric and some 

non-geometric data are shared, sourced from design and construction models, and 

tailored to fit the facility model. At the handover stage, additional facility-specific 

operational details are directly incorporated into the model. This framework utilizes 

a hybrid maintenance strategy customized to individual assets or systems, 
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dynamically adjusting to evolving working conditions. This strategy not only 

addresses maintenance needs but also influences information requirements 

accordingly, especially for maintenance scheduling and work order creation. 
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Figure 2.2. A flowchart of model-based facility maintenance management   
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Once the facility management model is completed, it is synchronized with 

Computer-Aided Facility Management (CAFM) and Computerized Maintenance 

Management System in a common data environment to enhance space utilization 

efficiency and manage the maintenance workflow of the assets, respectively. 

Information technologies have been seamlessly integrated into this environment to 

streamline data collection, information display, retrieval, and management. 

Interacting with BIM, these technologies optimize workflow by bridging static 

models and systems with dynamic IT solutions. Through this synergy, maintenance 

plans and strategies are dynamically communicated, culminating in a comprehensive 

maintenance information environment. The accumulated data and information from 

the assets are consolidated to be comprehensively understood and utilized for 

enhancing model-based maintenance within the contribution of decision-support 

solutions. Therefore, this environment serves multiple purposes to optimize the 

maintenance workflow: 

(i)  supporting maintenance tasks and visual analytics with enhanced 

visualization capabilities. 

(ii)  tracking assets to access and examine spatial and descriptive documentation, 

historical records, maintenance schedule information, and monitoring system 

and equipment performance for predictive and condition-based maintenance 

decision-making. 

(iii) facilitating training and practical efforts, including easy-to-track model-

based procedures, virtual and remote collaboration, accessibility of the 

maintenance area, path planning, and indoor navigation access to information 

on-site. 

(iv)  detecting faults, reporting them with work orders, and analyzing root causes 

to facilitate maintenance tasks. 

Facilities are dynamic living environments that require adaptation to changing 

environmental conditions to maintain functionality and operate efficiently. As the 

collected data and information are comprehended, decision support solutions are 

strategically updated to leverage the insights for continual improvement of the 
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facility's functionality. This framework strongly supports continuous improvement 

of the maintenance workflow within closed-loop feedback. As illustrated in the 

flowchart, data is collected in a structured format whenever possible. When 

determining its content, a participatory feedback mechanism is employed, ensuring 

that the feedback of maintenance personnel who utilize the data and its output in 

decision-making or application are evaluated. Moreover, feedback provided for 

conditional monitoring, predictive condition of the assets, and fault management, 

including fault detection and reasoning and maintenance actions, are collected in a 

database, and used for updating the predictive models. 

In the following sections, the details of the framework are sequentially examined and 

discussed. 

2.5.1 Information requirements and model-based handover 

Ensuring that information shared during handover is accurate, relevant, and complete 

is essential for its efficient use in facility operations and maintenance (Ghosh et al., 

2015). However, the current handover process suffers from delays, lack of structure, 

and inconsistencies in documentation. Before commissioning, facility management 

personnel often lack awareness of the equipment and systems they're responsible for, 

leading to manual data entry after handover (Cavka et al., 2017b). To address 

potential disruptions in information flow, this framework adopts the international 

standards ISO 19650 (X. Pan et al., 2024). It aims to organize the handover procedure 

and content, making it easier to collect relevant information and manage it using 

models (Malla et al., 2024). To systematically define information requirements, it is 

essential to first clarify the strategic maintenance objectives and goals of the facility. 

This entails understanding the overarching vision and mission of the facility in 

relation to its assets and infrastructure, thereby laying the foundation for precise 

identification and prioritization of information needs. Within this framework, a 

proactive solution, enriched by feedback mechanisms, is implemented to optimize a 

dynamic hybrid maintenance strategy. This approach integrates information 
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technologies to facilitate model-based facility maintenance, enhancing efficiency 

and effectiveness in managing assets and infrastructure.  

A methodical sequence of steps characterizes the information requirements for BIM-

based facility maintenance. It begins with defining Organizational Information 

Requirements (OIR), which encompass the data and information needs of the entire 

facility, particularly concerning maintenance strategies and practices. OIR identifies 

the overarching objectives and goals of maintenance activities in the facility. In this 

framework, it defines the strategic direction for maintenance, such as utilizing 

information technologies and structured information and visualization in the BIM 

environment to streamline maintenance information workflow, implementing 

predictive maintenance within information technologies to optimize asset 

performance and detect the faults and its reason, visualize the maintenance 

accessibility and path, and fault patterns to enhance comprehension, applying an 

asset or system specific hybrid maintenance strategy. Additionally, OIR entails 

establishing performance metrics to measure the effectiveness and efficiency of 

maintenance operations at the organizational level. By aligning organizational 

information requirements with the framework, facilities ensure that the necessary 

data and information are available to support decision-making, drive continuous 

improvement, and achieve maintenance objectives effectively. Therefore, to 

complement OIR, Asset Information Requirements (AIR) are defined to delineate 

the specific data and information needs related to individual assets or systems within 

the facility including asset identification, specifications, maintenance history, 

performance criteria, operating manuals, and other pertinent information required for 

maintenance, operations, and decision-making. It ensures that the detailed 

information needed for the maintenance of each asset is identified, structured, and 

accessible within the BIM environment. In contrast to the specific focus of AIR on 

assets, Project Information Requirements (PIR) outline the data and information 

required to plan, execute, and monitor maintenance activities effectively within a 

facility's lifecycle, typically during the design, construction, and handover phases. 

PIR guide the development and exchange of information throughout the project 
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lifecycle, ensuring that stakeholders have access to the necessary data and 

information to support decision-making and project execution within the BIM 

environment. After defining the information requirements, the next step is to plan 

how to collect the data. Exchange Information Requirements (EIR) are then 

formulated to specify the standards and guidelines for data and information exchange 

among stakeholders engaged in facility maintenance. EIR helps the FM department 

assign roles and responsibilities to provide relevant data in the required time horizon 

and establish communication channels and implement feedback mechanisms to 

facilitate effective collaboration. Moreover, EIR delineates the formats, standards, 

and procedures for data exchange, ensuring seamless compatibility and 

interoperability across diverse systems. They also establish protocols for data 

security, access control, and compliance with relevant regulations. Once planned, 

relevant information is delivered by accessing BIM models, asset management 

systems, and other data sources. After that, the accuracy, completeness, and 

timeliness of the gathered information is checked, and it is used to leverage this 

information to facilitate maintenance execution. Finally, from the maintenance 

outcomes, feedback, and experiences, missing and inefficient data requirements are 

defined to continuously improve the information requirement cycle for future 

maintenance activities, thus fostering iterative learning and optimization within the 

BIM-based maintenance process. 

While defining information requirements for facility maintenance, literature studies 

and 12 CMMS tools are investigated. The information requirements reported in each 

tool are reported in Appendix B. These requirements are categorized in six groups: 

(i) descriptive information identifies asset specific information, (ii) spatial 

information covers spatial relations of assets and spaces, (iii) warranty information 

details guarantee conditions and supplier information, (iv) operational information 

gives brief information about operational conditions of the asset, (v) documentation 

reports documentative maintenance information and the remaining ones is collected. 

Descriptive information of an asset encompasses crucial details that provide a 

comprehensive understanding of its characteristics and significance within a 
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facility's infrastructure (Ensafi et al., 2022; R. Liu & Issa, 2016; Thabet & Lucas, 

2017b). Each asset is uniquely identified by an asset ID, facilitating efficient tracking 

and management. The asset's name and description offer additional context, while 

details like make, model, and serial number delineate its specifications and origin 

(Y. Wang et al., 2013; Z. Wang et al., 2015). Categorization by category, family, and 

type aids in organizing assets for maintenance planning and resource allocation. Tags 

and criticality ratings further prioritize assets based on their importance to operations 

(Florez & Afsari, 2018; Kasprzak et al., 2013). Financial data such as purchase price 

and maintenance costs provide insights into investment and ongoing expenditure 

(Y.-C. Lin et al., 2016). 

Spatial information is essential for understanding the physical layout and 

relationships within a facility (Ensafi et al., 2022; R. Liu & Issa, 2016). It includes 

precise coordinates for location tracking and building identification. Position, level, 

and elevation detail vertical placement, aiding navigation. Space/room designations 

categorize areas, while system and space served identify function and dependencies 

(Ensafi et al., 2022). Connections and linked assets describe relationships between 

spaces and assets. Maintenance accessibility paths ensure ease of upkeep (Halmetoja, 

2019; R. Liu & Issa, 2013a). Spatial relations like alignment, adjacency, and 

connectivity illustrate how elements interact (Florez & Afsari, 2018; Halmetoja & 

Lepkova, 2022). 

Warranty information in facility management includes details such as the 

manufacturer's name and contact information, providing a direct line of 

communication for warranty claims and inquiries (P. Dias & Ergan, 2016; R. Liu & 

Issa, 2016). It also encompasses the installation date, expected lifespan, and age of 

the asset in years, aiding in warranty assessment and planning for replacements. The 

warranty commencement date, end date, and duration specify the period during 

which warranty coverage applies, along with the entity providing the warranty (P. D. 

R. Dias & Ergan, 2020). Warranty content outlines the scope of coverage, while 

exclusions highlight any conditions or circumstances not covered. Duration 

extendibility conditions detail requirements for extending warranty coverage if 



 

 

36 

available (Borhani & Dossick, 2020). Replacement cost estimates the expense of 

replacing the asset outside of warranty coverage. Additionally, supplier information 

for subcomponents offers insight into the sources of replacement parts and materials, 

ensuring compatibility and quality (Sattenini et al., 2011). 

Operational information in facility management encompasses various aspects crucial 

for effective operation and maintenance. Operational capacity defines the maximum 

capability of systems or assets to perform their intended functions, guiding usage and 

planning (Kasprzak et al., 2013). Operational thresholds establish limits or 

boundaries within which systems should operate to maintain efficiency and safety 

(Ensafi et al., 2022). Operational schedules outline planned activities, helping to 

coordinate maintenance and usage to minimize disruptions. Performance metrics 

quantify the effectiveness and efficiency of operations, enabling performance 

evaluation and optimization efforts. Cut sheets provide detailed specifications and 

technical information about equipment or systems (R. Liu & Issa, 2013a). Sensor 

data and calibration records offer real-time insights into performance and ensure 

accuracy. Field data gathered from on-site inspections or assessments informs 

decision-making and maintenance planning (Q. Liu & Gao, 2017). Control 

commands and feedback mechanisms enable remote monitoring and adjustment of 

systems for optimal performance(Yang & Ergan, 2017). Asset moveability/location 

information tracks the position and mobility of assets within the facility, aiding in 

asset management and resource allocation. Lastly, spare parts are essential for 

maintaining equipment and ensuring operational continuity within the facility(R. Liu 

& Issa, 2013b). 

In facility management, monitoring the current health condition of equipment is vital 

for proactive maintenance. A priority schedule categorizes maintenance tasks based 

on urgency and importance, ensuring critical issues are addressed promptly (Ali et 

al., 2021). Fault classes classify types of failures, aiding in diagnosis and response 

planning (Lucas, Bulbul, Thabet, et al., 2013b). Work orders, logs, and historical 

records document maintenance activities, providing insights for future planning and 

analysis (Lucas, Bulbul, & Thabet, 2013a; Wanigarathna et al., 2019; Yang & Ergan, 
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2017). Downtime for each fault class measures the duration of disruptions, guiding 

efforts to minimize downtime and optimize reliability. Maintenance frequency 

schedules routine inspections and servicing to prevent failures and maintain 

performance (Farghaly et al., 2017). Equipment performance metrics assess 

efficiency, reliability, and effectiveness, informing maintenance priorities and 

improvement initiatives (Sadeghi et al., 2018). 

Documentation in facility management plays a critical role in ensuring the effective 

operation, safety, and maintenance of facilities (S. Kim et al., 2020; R. Liu & Issa, 

2016; Meadati et al., 2011; Wan Siti Hajar et al., 2022; Z. Wang et al., 2015). This 

documentation includes manuals providing guidance on quality and maintenance 

repair instructions, as well as conditional assessments for evaluating equipment and 

infrastructure (Gu et al., 2014; Korpela et al., 2015). The code of practice for building 

inspection reports establishes standardized procedures for conducting inspections 

and reporting findings (Ali et al., 2021). Specifications outline the requirements and 

characteristics of equipment and materials, ensuring compatibility and compliance 

with standards (Kensek, 2015). Installation manuals offer step-by-step instructions 

for proper installation, while drawings and layouts provide visual representations of 

facility infrastructure and systems (Cavka et al., 2017a). Certificates attest to 

compliance with regulations or standards, instilling confidence in the reliability and 

safety of assets. Code requirements outline legal and regulatory obligations for 

building design, construction, and operation. As-is plans document the current state 

of facilities, aiding in planning and decision-making (R. Liu & Issa, 2013b). 

Emergency operations plans detail procedures and protocols for responding to 

emergencies, ensuring the safety of occupants and minimizing damage(Mayo & Issa, 

2016). Safety and disaster planning documents outline strategies and measures to 

mitigate risks and ensure preparedness for potential hazards (Cavka et al., 2017a; 

Patacas et al., 2016). Instructions for training equip personnel with the knowledge 

and skills necessary to safely operate and maintain facilities. Environmental 

standards guide efforts to minimize environmental impact and promote sustainability 

(Lucas, Bulbul, Thabet, et al., 2013b). Maintenance and inspection reports document 
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findings and actions taken during routine maintenance and inspections, facilitating 

ongoing monitoring and management (Q. Liu & Gao, 2017). Maintenance checklists 

provide structured guidance for conducting maintenance tasks, ensuring 

thoroughness and consistency (Y.-C. Lin et al., 2016). Collectively, this 

documentation supports informed decision-making, compliance with regulations, 

and the efficient and safe operation of facilities. 

In a BIM environment, information for facility maintenance should be gathered and 

integrated into the digital model throughout the project lifecycle, starting from the 

early design stage and continuing up to the handover stage. Initially, asset 

identification and maintenance requirements are established by FM department to 

guarantee that the maintenance needs of the assets and their interaction are 

comprehensively recognized and documented. As the design progresses, this 

framework investigates the potential impact of geometric information and design-

related issues to detect the irregularities before it is constructed. With the help of 

information technologies interacting with BIM environment, maintenance 

accessibility, regulatory compliance checks and design of the critical infrastructure 

that influences both facility health and occupant’s comfort are analyzed virtually. 

While a disabled person should access to any location of the facility, in maintenance 

accessibility, additional issues such physical barrier needs removal (Cavka et al., 

2013) or installing ladders or scaffolding, inadequate lighting or ventilation, 

inadequate space (R. Liu & Issa, 2013a) to perform the maintenance task, path 

inaccessibility to remove larger-size assets and safety issues are addressed initially 

(Akanmu et al., 2018, 2020; R. Liu & Issa, 2014). Moreover, some layout problems 

supported by clash detection of the regulatory compliance or not, are examined to 

avoid potential faults in the future triggering serious faults such as water damage on 

the structural and electrical assets and inadequate design of HVAC. In the absence 

of early detection during the design phase, these problems typically emerge during 

post-occupancy evaluations, leading to expensive retrofits and disruptions in facility 

operations (Seghezzi et al., 2020). Furthermore, in the design phase, detailed 

information about assets is refined and integrated into the evolving BIM model, 
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including most of the spatial and descriptive information of the assets, maintenance 

plans and schedules. During construction, the model is updated to reflect as-built 

conditions and commissioning data. At the handover stage, the BIM model is 

finalized with comprehensive maintenance information, including manuals and 

schedules, and facility staff are trained in its use. By collecting and integrating 

maintenance information within the BIM environment throughout the project 

lifecycle, stakeholders benefit from a digital representation that supports efficient 

and effective maintenance operations, ultimately enhancing the long-term 

performance of the facility. 

In BIM-based facility maintenance management, interoperability ensures smooth 

communication between different systems and stakeholders. BIM serves as the 

central hub, connecting with CMMS, IT solutions, and third-party tools within a 

Common Data Environment. This setup allows all relevant data to be stored, 

managed, and shared collaboratively throughout the lifecycle in a coordination of the 

maintenance team. Within this environment, various data exchange standards are 

utilized to ensure interoperability and seamless communication between different 

systems and stakeholders. 

The Industry Foundation Classes (International Organization for Standardization, 

2018) schema serves as a foundational data exchange standard in BIM. It provides a 

common language for representing building information across different software 

platforms and disciplines. For facility maintenance, IFC is augmented with the IFC-

FM (Facility Management) extension, which includes specific data fields relevant to 

maintenance activities, such as asset information, maintenance schedules, and 

lifecycle data. Another key standard is the Construction Operations Building 

information exchange. COBie (East, 2011) defines a standardized format for 

organizing and exchanging facility asset data in a structured spreadsheet-like format. 

It captures essential information about building components, equipment, and 

systems, making it easier for facility managers to track and manage assets throughout 

their lifecycle. In addition to these standards, visual programming tools that interact 

with BIM environment, manipulate, and interpret BIM data to meet the specific 
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purposes are offered as alternative for repetitive tasks with generalizable customized 

templates. 

When collecting information needed from different vendors, OmniClass serves as a 

standardized classification system that ensures consistency and clarity (Thabet & 

Lucas, 2017a). By using OmniClass codes, information is categorized and organized 

uniformly, enabling easy comparison and integration of data from various sources. 

This standardization simplifies communication with vendors, as they can understand 

and provide the requested information based on common classifications. Ultimately, 

OmniClass streamlines the process of collecting and managing information from 

different vendors, enhancing efficiency, and reducing errors. 

In this study, structural maturity of the information represents the easiness to access 

the information with different format of data and information. BIM-based 

information structural maturity embodies a progressive evolution from static and 

fragmented data sources to dynamic and integrated systems. Initially reliant on 

scanned documents, maintenance processes are hindered by the inefficiencies of 

manually searching for relevant information. The transition to searchable 

documentation improves accessibility and traceability, reduces the time spent 

searching through documents manually, and accelerates troubleshooting processes, 

but still lacks the cohesive organization necessary for streamlined maintenance 

operations. With the advancement to searchable structural information within the 

BIM model, maintenance capabilities were significantly enhanced through 

centralized, standardized, and organized data representation. The maintenance team 

can navigate through the structured data more efficiently, quickly locating relevant 

information without the need for extensive searching or manual sorting. Moreover, 

structured information facilitates the integration of BIM with maintenance 

management systems to automate workflows, analyze historical records of the 

maintenance data to identify trends, patterns, and recurring issues over time, and 

implement predictive maintenance strategies by providing insights into the 

condition, performance, and lifecycle of building assets to address the potential 

problems before they escalate (Pinti et al., 2018). Finally, the pinnacle of this 
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evolution is realized with the integration of AI-powered chatbots for information 

retrieval, offering intuitive and conversational access to BIM-based maintenance 

data. These chatbots leverage natural language processing to provide rapid responses 

to maintenance queries, enabling personnel to make informed decisions swiftly and 

efficiently, thus optimizing facility performance and minimizing downtime. This 

framework strongly advocates the utilization of structural information and creating 

a basement for maintenance chatbot to facilitate information access accurately. 

2.5.2 Information technologies in model-based facility maintenance 

Information technologies are instrumental in the optimization of operational 

processes and the enhancement of efficiency within facility maintenance practices. 

This assortment encompasses a variety of sophisticated tools and methodologies 

such as the Internet of Things (IoT), Augmented Reality (AR), Virtual Reality (VR), 

Mixed Reality (MR), Geographic Information Systems (GIS), QR codes, Radio-

Frequency Identification (RFID), robotics, chatbots, digital twin and blockchain. 

These sophisticated IT-driven solutions significantly elevate the efficacy of facility 

management by facilitating predictive maintenance strategies, enhancing asset 

tracking capabilities, and optimizing overall operational quality. 

IoT: 

The integration of IoT technologies with BIM-enabled facility maintenance 

management marks a significant advancement in building maintenance practices 

(Dahanayake & Sumanarathna, 2022). This integration combines BIM's detailed 

visualization with IoT's real-time data collection, enabling facility managers to 

transition from reactive to proactive maintenance approaches. It enhances real-time 

data collection and monitoring capabilities, allowing facility managers to monitor 

various building components' operational status in real-time (W. Chen et al., 2019). 

Sensors and smart devices collect data such as temperature, humidity, and structural 

integrity, feeding it back to the BIM model. This capability empowers managers to 

visualize the current condition of their buildings intricately (Natephra & Motamedi, 
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2019) , facilitating prompt responses to emerging issues and minimizing both 

downtime and repair expenditures. Furthermore,  model-integrated IoT enables 

predictive maintenance through data analytics (J. C. P. Cheng et al., 2020; Villa et 

al., 2022). IoT sensors can detect potential issues before they escalate (Villa et al., 

2021) and give alerts to warn the maintenance team. This allows for precise 

maintenance responses and scheduling (Hosamo, Svennevig, et al., 2022), 

optimizing building system performance and extending its lifespan, resulting in 

significant cost savings. 

The quality of data collected from BIM-enabled IoT systems relies on various factors 

inherent to the integration of BIM and IoT technologies (Banerjee & Nayaka, 2022). 

Sensor characteristics such as accuracy, reliability, and compatibility with BIM 

infrastructure play a pivotal role in determining data quality. Moreover, the 

efficiency of the IoT architecture, including its support for multi-sensor integration, 

network protocols, and data processing methodologies tailored for BIM 

environments, significantly influences the reliability and accuracy of collected data. 

Project-specific requirements, operator proficiency, and supportive supervision also 

contribute to data quality. Additionally, considerations such as data storage, 

integration, security measures, and interoperability constraints within the BIM-

enabled IoT ecosystem are critical factors in ensuring high-quality data for informed 

decision-making and operational optimization. 

AR/VR/MR: 

BIM provides a comprehensive digital representation of a facility, including 

geometric data, spatial relationships, and maintenance information about assets, 

systems, and spaces, and interacting with maintenance documentation. This enriched 

dataset serves as a foundation for AR, VR, and MR applications (Chung et al., 2018). 

As AR enhances real-world views with digital overlays, VR creates entirely 

simulated environments, and MR combines real and virtual elements for interactive 

experiences (Alizadehsalehi et al., 2020), BIM integration provides the necessary 

information for creating immersive experiences and visual comprehension and 
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tracking of the maintenance issues (Natephra & Motamedi, 2019). First, 

incorporating a game engine (Chou et al., 2016) into this ecosystem allows the 

maintenance team to be trained in virtual environments by simulating various 

maintenance scenarios, equipment failures, and emergencies that enables them to 

practice their skills in a risk-free setting before they perform the tasks in the field. 

Hence, these simulations offer them the opportunity to thoroughly understand 

navigation pathways within facilities (Finco et al., 2023), access points to equipment 

and systems (Khalek et al., 2019), and the complexities of maintenance procedures 

and safety protocols (Y.-J. Chen et al., 2020). By immersing themselves in these 

simulations, they can encounter and troubleshoot potential problems, such as 

equipment malfunctions or safety hazards, in a controlled setting to refine their skills, 

build confidence, and ultimately enhance their ability to perform tasks safely and 

effectively when they transition to real-world field scenarios. Second, these solutions 

empower facility management teams to assess the accessibility of maintainable 

assets (Khalek et al., 2019) and the feasibility of maintenance routes, allowing them 

to practice maintenance tasks during the operational stage. This capability aids in 

identifying potential layout problems during the design stage, enabling necessary 

updates to enhance maintenance efficiency throughout the facility's lifecycle. Third, 

in practice, visual maintenance guides are created for the maintenance team using 

AR glasses or mobile devices to view digital annotations (Diao & Shih, 2019; Xie et 

al., 2020), spatial analysis (Feng et al., 2019), instructions (Koch et al., 2012; 

Mamaghani & Noorzai, 2023), work sequence (Song et al., 2020), checklists 

(Corneli et al., 2019), safety risk assessments and warnings (T. K. Wang & Piao, 

2019) and diagrams superimposed on the physical equipment they are servicing, 

guiding them interactively through maintenance procedures step by step. Fourth, 

these tasks are supported by remote assistance with the contribution of BIM-enabled 

AR and MR solutions (El Ammari & Hammad, 2019). Hence, remote experts can 

annotate live video feeds of maintenance activities with instructions, diagrams, and 

annotations (Irizarry et al., 2014). This allows them to engage with the on-site team 

collaboratively, facilitating the troubleshooting of issues and the execution of 
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complex maintenance tasks more efficiently through knowledge sharing and 

collective brainstorming. 

GIS: 

In facility maintenance, GIS leverages spatial data to manage, analyze, and visualize 

facility assets and infrastructure. Using GIS maintenance team maps the location of 

assets (T. Y. Lin et al., 2018; Ma et al., 2020), identify spatial relationships (Chou et 

al., 2016), and plan the optimal maintenance route (Hu et al., 2018), assess 

accessibility, and pinpoint the areas more prone to maintenance issues. By 

integrating GIS with BIM, the maintenance team access information about asset 

specifications, maintenance history, and spatial relationships directly within the GIS 

platform (R. Liu & Issa, 2012) and visualize spatial data to improve comprehension 

(Vach et al., 2018) and accurately analyze asset conditions, identify maintenance 

needs, plan preventive measures, and make informed decisions regarding 

maintenance activities (X. Wang & Xie, 2022). Additionally, BIM enhances the 

interoperability between GIS and other maintenance management systems, allowing 

for seamless data exchange and integration with workflows (Slongo et al., 2022). 

RFID and QR Codes: 

In practice, assets are labeled with RFID tags containing unique identification code 

and RFID readers are deployed throughout the facility to capture data as assets move 

within the space. This data is then utilized to track the assets, manage the inventory 

and maintenance schedules, and monitor regulatory compliances. Within BIM 

integration, collected RFID data is accessed in the BIM environment and linked to 

specifications, maintenance history, and spatial relationships (Cong et al., 2010; Sun 

et al., 2021). Hence, maintenance teams can visualize asset locations, movement 

patterns (Motamedi et al., 2013a), and maintenance status within the BIM model, 

improving spatial awareness and facilitating informed decision-making (Chan et al., 

2016; Motamedi et al., 2013b). Moreover, BIM integrates RFID data with 

maintenance workflows that enables automated responses or notifications triggered 

by RFID events within the facility maintenance management, such as generating 
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work orders for maintenance tasks, alerting maintenance teams about equipment 

failures or upcoming maintenance schedules, updating asset records with 

maintenance status, or triggering notifications to maintenance office about critical 

events or issues detected by RFID data (Kameli et al., 2021).  

Similar to RFID applications, QR codes are assigned to assets, equipment, or 

maintenance procedures to hyperlink the physical component with digital 

information. QR code readers then scan them to access relevant information, 

instructions, or documentation associated with the QR code, facilitating efficient 

maintenance operations (N.-H. Pan & Chen, 2020). BIM enhances the use of QR 

codes in facility maintenance by integrating them with comprehensive digital models 

of the facility (R. Chen et al., 2015). QR codes within the BIM environment can be 

linked to detailed asset specifications, maintenance schedules, repair manuals, and 

other pertinent data (T. Y. Lin et al., 2018; Meadati & Irizarry, 2015). This 

integration streamlines maintenance workflows by providing instant access to 

critical information, improving accuracy, and enabling proactive maintenance 

planning. Moreover, BIM's visualization capabilities allow the maintenance team to 

identify asset locations, track maintenance activities, and optimize maintenance 

routes, enhancing overall maintenance efficiency and effectiveness (Y. C. Lin & Su, 

2014). In addition to providing a direct link for accessing information and 

visualization, automated retrieval of relevant asset data from BIM models within the 

coding streamlines maintenance processes. This automation populates structural 

details in maintenance forms, facilitating scheduling and generating work orders for 

both service requests and on-site responses. This reduces on-site time and enhances 

the accuracy of information retrieval, optimizing maintenance operations (Chang et 

al., 2013). Moreover, BIM integration enhances inventory management in facility 

maintenance by enabling real-time updates to inventory records, synchronization 

with ERP systems, and tracking inventory items within the digital model (M. Wang 

et al., 2020). 
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Robotics: 

Deploying robotics for facility maintenance not only involves routine maintenance 

tasks but also addresses risky conditions where human intervention is hazardous or 

impractical. Robots equipped with specialized sensors and capabilities can access 

confined spaces, work at heights, or handle hazardous materials without endangering 

human lives(Camus & Moubarak, 2015). By leveraging Building Information 

Modeling (BIM), robots can utilize accurate digital representations of the facility to 

plan and execute maintenance tasks in these risky conditions more safely and 

efficiently (Oyediran et al., 2021). BIM enables robots to analyze potential risks, 

identify obstacles, and navigate complex environments while accessing real-time 

data on asset conditions and maintenance requirements (Follini et al., 2021). This 

integration minimizes human exposure to dangerous situations, reduces the 

likelihood of accidents or injuries, and enhances overall maintenance effectiveness 

in challenging environments. 

Chatbots: 

Deploying AI systems to interact with users through text or voice interfaces, chatbots 

handle routine queries, schedule maintenance activities, provide guidance on 

maintenance procedures, and even troubleshoot issues remotely. With BIM 

integration, comprehensive digital representation and repository of the facility's 

assets, systems, and spatial relationships are served for training chatbots (Saka et al., 

2023). Hence, chatbots can offer more personalized and context-aware assistance to 

maintenance personnel to streamline the maintenance workflow (K. L. Chen & Tsai, 

2021). Chatbots can retrieve detailed asset information from the BIM database and 

provide targeted recommendations for maintenance tasks based on asset conditions, 

usage patterns, and historical data. Furthermore, they visualize facility layouts, asset 

configurations, and maintenance procedures within the digital model (K. L. Chen & 

Tsai, 2021). This visualization capability allows chatbots to guide maintenance 

personnel through complex tasks, provide step-by-step instructions, and highlight 

relevant information directly within the virtual environment. 
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Digital Twin: 

Digital twins enable a new paradigm in facility management by allowing for a real-

time cyber-physical system integration that supports intelligent decision-making and 

predictive maintenance strategies (Halmetoja, 2022). These strategies hinge on the 

continuous collection of data via IoT devices, followed by the application of artificial 

intelligence and machine learning algorithms to predict potential faults and prescribe 

maintenance activities (Hosamo et al., 2023; Hosamo, Svennevig, et al., 2022). This 

leads to cost-effective maintenance approaches, minimizes downtime, and extends 

the lifecycle of assets. Moreover, the integration of BIM with digital twins facilitates 

a more holistic approach to FM by providing detailed digital representations of 

physical assets, which can be updated and manipulated in real-time to reflect 

changes, perform simulations, and improve overall asset management (Hosamo, 

Imran, et al., 2022). 

Blockchain: 

In facility maintenance, blockchain technology offers a secure and transparent way 

to track maintenance activities, ensuring data integrity and accountability. It is more 

applicable in facility maintenance, particularly in industries where data security and 

transparency are crucial, such as healthcare, transportation, and manufacturing. By 

using blockchain, maintenance records can be securely stored and accessed, ensuring 

the integrity of information related to equipment maintenance, repairs, and 

inspections. This technology provides a tamper-proof and auditable record of 

maintenance activities, reducing the risk of errors or fraudulent claims (Moretti et 

al., 2021). Integrating Building Information Modeling (BIM) enhances this process 

by creating a detailed digital representation of the facility. BIM allows for better 

visualization and understanding of the facility's infrastructure, enabling more 

accurate planning and execution of maintenance tasks (T. Zhang et al., 2023). 

Together, blockchain and BIM improve the efficiency, reliability, and compliance of 

facility maintenance processes in various industries. 
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2.5.3 Model-based fault management 

2.5.3.1 Fault detection and reasoning 

Fault detection and diagnosis (FDD) methods are systematic approaches used to 

identify and analyze malfunctions or abnormalities in facilities. While monitoring 

facility operations, FDD algorithms detect deviations from the expected behavior of 

an asset or a system. Once a fault is detected, further analysis is conducted to 

determine the root cause of the deviation and formulate appropriate corrective 

actions. Historical records are investigated, observed deviations are correlated with 

other system parameters, and domain knowledge is leveraged to pinpoint the specific 

component or subsystem within the asset or system that is responsible for the fault. 

After that, based on the findings of the analysis, appropriate measures such as repairs, 

adjustments, or procedural changes are implemented to rectify the fault and restore 

the asset or system to its normal operational state. 

Applying FDD algorithms in a BIM-based environment facilitates fault detection 

and reasoning process. These algorithms are typically employed in three distinct 

manners: quantitative model-based, knowledge-based, and data-driven approaches. 

In quantitative model-based FDDs, detailed engineering calculations or their 

simplified versions, relying on assumptions and approximations are employed to 

clarify the behavior of physical systems (Thumati et al., 2011). In this case, a digital 

twin of the physical system is developed within a virtual environment. This twin is 

employed to monitor the system and elucidate its behavior through simulations, 

where the calculations are embedded in the background (Hosamo, Nielsen, et al., 

2022). First, the current BIM model is transformed to generate a geometric 

representation, which serves as the basis for energy and flow models (Shalabi & 

Turkan, 2020; Zimmermann et al., 2012). Additionally, pertinent technical and 

thermal data is extracted from the BIM and other data sources to finalize the 

simulation model (Hosamo et al., 2023; Zimmermann et al., 2011). After that the 

simulation is applied to comprehend system behavior and its results are calibrated to 
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ensure that they accurately reflect the current condition of the physical system. The 

completed simulation results are compared with the current physical system’s 

behavior to detect the existence of faults from deviation in system behavior (Shalabi 

& Turkan, 2020). Once a fault is detected, the simulation inputs are either configured 

to pinpoint the cause of the fault under current physical conditions, or predefined 

customized simulation results are analyzed alongside the current data using rule-

based or AI-driven methods to determine the root-cause analysis. While detailed 

simulation-based solutions offer a more accurate representation of system behavior, 

their computational intensity (Dong et al., 2014; R. Zhang & Hong, 2017) and 

occasional challenges in interoperability (Fernald et al., 2018), particularly in 

converting 3D models with detailed alphanumeric information into simulation 

models, present difficulties for practitioners. Hence, practitioners often turn to 

knowledge-based and data-driven FDD solutions as alternatives to overcome these 

challenges. 

Knowledge-based methods are simple to develop and apply, easily interpretable  (W. 

Kim & Katipamula, 2018) and constructed on the utilization of the prior knowledge 

relying on either a comprehensive understanding of the system's operations and 

causal relationships through domain expertise or historical records detailing fault 

cases to establish connections between past and present states (Zhao et al., 2019). 

BIM enhances knowledge-based methods by serving as a repository for detailed 

information about the system being monitored (Dibowski et al., 2016). Through 

BIM, practitioners can access comprehensive data about the structure, components, 

and operations of the system and extract the topology of a system (Chan et al., 2016; 

Golabchi et al., 2013), facilitating a deeper understanding of its behavior and 

potential faults. This rich information can then be leveraged to develop more 

accurate if-then-else rules and inference mechanisms for fault detection and 

diagnosis (Hosamo, Svennevig, et al., 2022). Additionally, BIM integrates real-time 

data from sensors and information from CMMS tools and other sources to construct 

model-based fault trees (Lucas, Bulbul, & Thabet, 2013b; Motamedi et al., 2014), 

employ failure mode and effects analysis (Lucas, Bulbul, & Thabet, 2013b), 
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hierarchical rules that checks each fault type one-by-one (Alavi & Forcada, 2022) or 

generalized rules to assess the performance of the certain assets and systems such as 

air handling unit performance assessment rules (Hosamo, Svennevig, et al., 2022). 

In practice, the static rule information and dynamic incoming data are retrieved from 

BIM model or its interacting environment to apply the rules. Moreover, within the 

integration of work order records to the BIM environment, while defining new cases, 

previously encountered cases and their resolution are assessed via similarities 

between current conditions and past cases, facilitating the retrieval of relevant cases 

based on similarity criteria (Guerrero et al., 2022). With access to relevant cases, 

practitioners can adapt solutions used in similar situations to address the current fault 

effectively. BIM's detailed insights into the building's layout, systems, and 

components further support the adaptation of solutions to fit the specific context of 

the current situation (Motawa & Almarshad, 2013). As new fault cases are resolved, 

the outcomes can be stored in the BIM database, contributing to the continuous 

improvement of the CBR system over time. Similarly, work orders are also utilized 

to construct fault patterns manually. By employing problem categories, spatial and 

asset or system scope, and temporal fault patterns along with their associated causes, 

practitioners filter these causes based on matching reported problem details (Yang & 

Ergan, 2016a). After that, they apply specific rules to pinpoint and isolate the root 

cause of the issue.  

Knowledge-based methods, while advantageous in their simplicity and 

interpretability, may encounter drawbacks within a BIM-driven environment. One 

limitation lies in the reliance on static rule sets derived from prior knowledge or 

historical data, which may not adequately capture the dynamic and evolving nature 

of building systems (Shu-Hsien Liao, 2005). Additionally, the effectiveness of these 

methods can be hindered by the complexity and scale of BIM data, which may 

require significant effort to extract and process. Moreover, the manual construction 

of fault patterns and the reliance on predefined rules may overlook nuanced or 

emerging fault scenarios, limiting the adaptability and accuracy of fault detection 

and diagnosis. These challenges underscore the need for continuous refinement and 
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updating of knowledge-based methods to effectively leverage the rich information 

provided by BIM. 

Data-driven FDD methods harness the power of vast datasets and advanced analytics 

to enhance fault detection accuracy and adaptability. Unlike model-based or 

knowledge-based approaches, they rely on algorithms to automatically learn fault 

patterns from historical data without explicitly predefined rules or assumptions. In 

addition to its own repository, BIM interacts with real-time sensor data, maintenance 

records, and other sources of information to construct comprehensive datasets that 

capture the dynamic behavior of building systems (Valinejadshoubi et al., 2022). 

Hence, the datasets are provided as inputs to train AI models. After that, machine 

learning techniques are then applied to analyze these datasets for the conditional 

statement of the assets, identify deviations signaling potential faults or abnormalities 

in system operations and make predictions for their future states (J. C. P. Cheng et 

al., 2020),. This predictive capability enables proactive measures to optimize 

maintenance workflows, ensuring timely interventions to prevent potential faults. 

Moreover, BIM supports simulation and validation of data-driven FDD methods by 

providing a virtual environment for testing different fault scenarios. These methods 

lie in their ability to adapt to changing conditions and detect previously unseen fault 

patterns, thus enhancing the overall effectiveness of fault detection and diagnosis in 

BIM-driven environments. However, challenges such as data quality, feature 

selection, and model interpretability need to be carefully addressed to ensure the 

reliability and usability of data-driven FDD solutions. 

2.5.3.2 Work order management 

Work order management is the systematic process of creating, prioritizing, 

assigning, tracking, and completing tasks related to maintenance, repairs, or other 

activities within a facility. Initially, work orders are generated based on various 

factors such as asset faults, preventive maintenance schedules, or requests from 

occupants (Artan et al., 2022). While creating work orders, BIM enhances step by 
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providing a centralized digital platform that integrates comprehensive data about 

facility and structural information (Pinti et al., 2018). Moreover, the utilization of 

QR codes to access the BIM environment and retrieve pertinent data further 

facilitates the workflow, particularly on-site. By simply scanning QR codes placed 

on assets, personnel can swiftly access the associated BIM data, enabling them to 

create work orders efficiently and accurately (T. Y. Lin et al., 2018). Once an asset 

is identified as faulty, other related entries are automatically retrieved. This 

automation reduces manual data entry errors and ensures that all relevant and up-to-

date information is included in the work order (Lavy & Saxena, 2015). Moreover, 

the relationships of the selected asset within the BIM environment are linked to the 

work order, providing valuable context for data analytics. However, if the model-

based work order system is poorly designed, with complexities in navigating detailed 

data, integration challenges, training requirements, technical issues, and potential 

overload of unnecessary information, processing times may extend beyond those of 

traditional work order solutions (Lavy et al., 2019).  

In a facility, numerous work orders are collected daily, and some of these work 

orders need to be prioritized based on various factors to ensure efficient allocation 

of resources and timely resolution of critical issues (Ensafi et al., 2023). When 

scheduling maintenance tasks, the availability of maintenance personnel and 

necessary inventories becomes the primary bottleneck determinants. The timing of 

tasks relies heavily on the presence of skilled staff and required materials to ensure 

efficient resource utilization and effective task completion. BIM improves this by 

integrating data on staff availability and inventory levels, allowing facilities to 

schedule tasks more effectively based on resource availability. Additionally, 

prioritization considers the criticality of maintenance work, determining its impact 

on overall facility operation and functionality (Kamal et al., 2021). Regulatory 

compliance, which legally mandates specific maintenance activities to uphold 

facility safety and integrity, also holds precedence. By linking maintenance tasks to 

relevant data within the BIM model, such as asset criticality ratings and regulatory 

mandates, facilities can prioritize tasks accordingly. Moreover, tasks directly 
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affecting essential operations or posing significant safety risks are prioritized to 

maintain uninterrupted facility operation. Furthermore, assessment considers 

maintenance cost, task interdependency, urgency of the work from the point of 

occupants, frequency of fault occurrences, and ease of fault inspection to prioritize 

tasks effectively (Y. C. Lin & Su, 2014). Storing the relevant information of these 

factors in BIM environment facilitates model-based work order scheduling and 

prioritization processes and linking the spatial data with the relevant information and 

other technologies, the schedule of the maintenance tasks can be optimized with 

integrated work order prioritization, space utilization and path planning by analyzing 

spatial relations between assets and spaces (W. Chen et al., 2018). 

Following the prioritization efforts, the planned work orders are assigned to the 

relevant maintenance personnel or contractor for execution. Throughout the lifecycle 

of a work order, it is essential to track its progress, monitor costs, and ensure timely 

completion. BIM facilitates progress tracking by providing real-time updates on 

work orders within the facility model. Maintenance team can access the BIM model 

to monitor the status of ongoing tasks, identify any delays or issues, and adjust 

schedules accordingly. Moreover, this real-time visibility enables better coordination 

among team members and ensures that everyone is aligned with project timelines 

and priorities (W. Chen et al., 2018). 

BIM interacts with CMMS tools to maintain comprehensive historical logs of 

maintenance activities and work orders. These logs contain detailed records of past 

maintenance tasks, repairs, inspections, and equipment replacements. When needed, 

these queries are utilized to retrieve specific maintenance information (Y. C. Lin & 

Su, 2014). Access to this historical data enables maintenance team to track asset 

performance over time, identify recurring issues, and make informed decisions about 

future maintenance strategies. Moreover,  these logs are linked to BIM assets and 

textual analytics are applied to work order descriptions to categorize the work orders 

or construct networks to comprehend them about the asset and its spatial relations 

from work order descriptions (Bouabdallaoui et al., 2020; McArthur et al., 2018; 

Nojedehi et al., 2022). However, compared to linking work orders to BIM assets, 
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generating them in BIM environment provides structured information that makes it 

easier to follow the workflow.  

BIM enriches the comprehension of work orders through visual representation by 

offering traceability to spatial and asset-specific conditional status (Firas & Yelda, 

2017; K. Kim et al., 2018) alongside statistics from historical records (McArthur et 

al., 2018; Nojedehi et al., 2021, 2022) , and work order prioritization (El Ammari & 

Hammad, 2019) with color coding(Kamal et al., 2021). Furthermore, additional 

annotations defined within the BIM model enhance the contextual understanding of 

the maintenance tasks. 

2.6 Discussion and conclusion 

This study introduces a conceptual framework aimed at enhancing facility 

maintenance and fault management through BIM. By examining previous studies 

and practices, it covers the entire maintenance process including monitoring the 

facility, handling information, managing work orders, and detecting and reasoning 

faults. Emphasizing information management in a model-based environment, the 

framework addresses information challenges in facility maintenance management by 

leveraging information technologies to optimize maintenance operations. Therefore, 

this framework offers multifaceted solutions to encountered challenges. It effectively 

addresses various issues such as lack of information, data overload, outdated data, 

complex workflows, decentralized information collection, lack of standardization, 

poor data quality, personnel turnover problems, reporting issues, and data analytics 

enhancement.  First, BIM addresses the lack of information by providing a 

centralized repository for storing and accessing comprehensive data about a facility's 

assets and systems. Utilizing BIM, FM department can efficiently manage and 

organize information starting from design phase, ensuring that essential data, such 

as asset specifications, maintenance history, and performance criteria, are readily 

available to support decision-making and optimize maintenance activities. Second, 

the systematic capturing and management of information, achieved through clear 
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definition of maintenance workflow information needs, standardized data collection 

and management procedures, and advocacy for structured information, significantly 

mitigates the risk of data overload. Third, BIM ensures that maintenance activities 

are based on the latest information by maintaining accurate and up-to-date records 

of facility modifications. However, architectural, and mechanical modifications may 

relocate assets to different areas, remove existing assets, or replace them with 

alternatives that serve the same function but exhibit different behavior or features. 

Therefore, to preserve insights from historical work orders, information about 

outdated assets is stored alongside georeferenced data. Fourth, integrating 

standardized procedures, protocols, and guidelines into BIM enhances understanding 

of complex workflows and ensures consistent execution of maintenance tasks. Fifth, 

information provided by decentralized sources is standardized by format and content 

and consolidated with interoperable BIM solutions to provide efficient 

communication across different systems and processes. Sixth, BIM tackles poor data 

quality issues through rigorous data management practices and automation. By 

implementing quality control measures and automating data extraction processes, 

BIM helps maintain data accuracy and completeness. Seven, BIM-based institutional 

knowledge addresses personnel turnover problems. By capturing and codifying 

organizational knowledge within BIM, essential information is preserved and 

accessible even as personnel change over time. Moreover, training of the 

maintenance personnel in a model-driven virtual environment enhances their 

understanding of maintenance workflows in a risk-free, controlled setting. Eight, 

work orders are generated through interaction with the BIM environment. While 

selecting a faulty asset, asset-specific structural data entries are automatically filled 

in. Moreover, spatial, systemic, and parametric information of the asset is linked to 

the work orders.  Hence, by structuring work order records and providing guided 

input mechanisms, BIM ensures that reports are structured, unbiased, and 

comprehensive. Nine, BIM-integrated data analytics enhance insights by leveraging 

the wealth of data stored within BIM. Through advanced analytics tools and 

techniques, BIM enables deeper insights into building performance, fault prediction, 
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maintenance trends, and optimization opportunities. Finally, BIM visualization 

streamlines facility maintenance by providing clear, comprehensive visuals of assets 

and systems, enhancing understanding, communication, and collaboration among 

stakeholders. 

BIM also enhances fault detection and reasoning by consolidating all pertinent data 

into a unified digital model. It enables early detection of issues during design and 

construction phases through clash detection algorithms and simulation tools, whereas 

BIM-integrated fault detection and diagnosis algorithms detect and reason the real-

time faults of the assets and systems in the facility throughout the operation phase 

before the fault escalates. As discussed above, generating a digital twin of the 

facility, and analyzing its condition with a comparison of simulations is well-

documented in literature but, in practice, this approach poses a time management 

challenge since continuous monitoring with simulations is required within a certain 

time intervals. Knowledge-based methods interact with BIM environment to retrieve 

the relevant information to apply the rules or analyze the similarities. Moreover, BIM 

offers an environment to link the fault with its root and influenced assets utilizing 

manually constructed customized templates. However, the untapped potential of 

BIM's intelligence and parametric capabilities is not leveraged enough to shape fault 

reasoning problem in the literature. Meanwhile, BIM contributes to AI-driven fault 

reasoning by (i) supplying data to algorithms and (ii) providing a well-organized 

documentation and visual comprehension of faults throughout the lifecycle of the 

facility. However, the success of these methods depends on the quality and relevance 

of the data provided by BIM and other data sources. Therefore, considerable 

inaccuracy in fault reasoning predictions results in less-than-optimal decisions and 

ineffective maintenance practices. When training the FDD algorithm using a static 

dataset, it may miss out on new cases, leading to ongoing mispredictions in similar 

scenarios. This could result in dissatisfaction among site workers, despite efforts to 

provide repeated feedback. Hence, continuous improvement in AI solutions is 

essential to adapt this dynamic nature of facility operations in practice. Besides the 

limited efforts for continuous improvement throughout the life cycle of the facility 
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in the literature, collaborative works between maintenance team and AI solution need 

to be explored to enhance fault management. 

As illustrated by red arrows in the flowchart in Figure 2.2, this framework strongly 

advocates for continuous improvements in BIM-integrated fault detection and 

reasoning. While the facility is monitored with information technologies within BIM 

environment, decision support solutions evaluate the collected data and information 

to keep the facility functional and promptly identify faults and their root causes for 

swift resolution. The efficiency of this support is investigated with feedback 

provided by the actual condition of the facility and maintenance team. Hence, 

decision support solutions are enhanced with this feedback consistently. Consistent 

with this framework, our focus is directed to BIM-integrated fault reasoning 

solutions. In this regard, we offer two decision support solutions to streamline 

maintenance workflow and enhance information management in BIM-based facility 

maintenance. First, we have developed a hybrid intelligence approach that facilitates 

human interaction with AI models to enhance fault reasoning consistently across the 

facility's lifecycle. This approach is tailored to meet the demands of data-driven fault 

reasoning while seamlessly integrating with the BIM environment to establish 

connections between the data-driven solution and maintenance workflows. Second, 

we propose a model-based work order management framework that establishes 

connections between assets and spaces in the BIM model and their real-world 

counterparts. This framework is designed to maximize information gain by 

leveraging the intelligence of BIM, which relies on spatial, systemic, and feature-

similarity relations. It ensures comprehensive reporting of both the problem and its 

solution. A fault network is constructed based on observable symptoms of the fault, 

fault types of the root asset, and its influenced counterparts. This network is then 

filtered using feedback from work requesters to isolate and identify the root cause of 

the reported fault. Further details of proposed solutions are explored in the following 

chapters. 
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CHAPTER 3  

3 A HYBRID INTELLIGENCE APPROACH FOR DATA-DRIVEN MODEL 

INTEGRATED FAULT REASONING 

3.1 Introduction 

Facility management is a complex discipline involving the strategic oversight of built 

environments, specifically focusing on facility maintenance to ensure operational 

efficiency and longevity. Effectively managing fault data is a crucial aspect of 

successful facility maintenance, allowing for the timely identification and resolution 

of issues, preventing disruptions, and upholding safety standards. 

The incorporation of data-driven monitoring systems in facility management 

streamlines the process of systematically collecting, analyzing, and interpreting 

extensive datasets generated by diverse facility systems. Therefore, the integration 

of Artificial Intelligence, coupled with robust fault data management systems, 

empowers maintenance teams to leverage vast datasets for predictive analysis, early 

detection of faults, and precise diagnosis of underlying issues. This paradigm shifts 

towards data-driven root-cause reasoning addresses immediate concerns and 

facilitates proactive maintenance strategies, enhancing facility operations' reliability 

and efficiency. 

Building Information Modeling, as a digital model, represents detailed information 

about the structure, assets, and systems within a facility. When coupled with data-

driven fault reasoning, this digital representation serves as a dynamic and interactive 

platform to integrate issues into maintenance information and facilitate an 

understanding of system relations and flow. Maintenance professionals can leverage 
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the rich information embedded in the BIM to identify and visualize potential faults, 

understand their root causes, and develop solutions. 

Despite technological advancements, the significance of human intelligence in 

facility maintenance cannot be overstated. Skilled professionals contribute expertise 

and contextual understanding to complement AI-driven solutions. In human-AI 

interaction, the system's capabilities to interpret complex data, exercise judgment, 

and implement tailored solutions underscore the holistic approach necessary for 

effective facility maintenance management. 

In this research, we investigate how the continuous interaction between humans and 

AI, called hybrid intelligence, improves data-driven fault detection and diagnosis to 

facilitate maintenance issues in a BIM-integrated environment. 

3.2 Background research 

3.2.1 Hybrid intelligence studies in facility maintenance 

Hybrid intelligence offers a collaborative approach to bringing the strengths of 

human cognition with artificial intelligence together to detect, diagnose faults, and 

resolve issues in facility maintenance. This synergistic interaction leverages the 

unique capabilities of both humans and machines, fostering a symbiotic relationship 

where human intuition, creativity, and contextual understanding complement the 

computational power and efficiency of AI algorithms (Kamar, 2016). In a hybrid 

intelligence system, humans and machines work together to tackle the issues, each 

contributing their distinct advantages. This integration enhances decision-making 

processes, problem-solving, and overall system performance by harnessing human 

intelligence's cognitive diversity and adaptability alongside AI's speed, accuracy, and 

data-processing capabilities. 

Due to the absence of existing studies on closed-loop fault management in facility 

maintenance, our focus is directed toward examining the maintenance workflow. We 
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aim to explore potential human-in-the-loop and machine-in-the-loop studies to 

dissect and understand the specific roles of humans and machines in these loops 

through the maintenance workflow and operational efficiency. In practice, AI serves 

a dual function in human loops (Dellermann, Ebel, et al., 2019). First, it automates 

tasks that machines can independently handle, such as gathering operational data in 

a cyber-physical system, notifying the maintenance team of system faults, guiding 

them through diagnostic processes (Tehrani et al., 2019), resolving issues, and 

establishing maintenance schedules based on predefined constraints and priorities 

(Dellermann, Calma, et al., 2019). Second, AI provides decision support by 

leveraging predictive capabilities. This involves utilizing fault detection and 

diagnosis algorithms in fault management and assisting the maintenance team in 

decision-making to pinpoint the fault.  On the other hand, human involvement in the 

machine loop enhances the capability of AI solutions. First, human expertise is 

required to (i) detect the faults in a system and label its type in an unidentified case 

before training the models in supervised classification (Ravi et al., 2017)  and (ii) 

tune the models to improve the prediction accuracy (Dellermann, Calma, et al., 

2019). Second, AI models imitate human behavior, responses, and preferences to 

minimize complaints and construct a tradeoff between energy efficiency and thermal 

comfort in the controls of HVAC operations (Jirgl et al., 2018; Kane, 2018; Meimand 

& Jazizadeh, 2022; Zeiler et al., 2014). Additionally, it utilizes the existence of the 

human as design input to optimize the model (Zeiler & Labeodan, 2019). Hence, 

within the human contribution, while complaints are reduced, the robustness of AI 

models is significantly improved in the decision-making process. 

3.2.2 Fault reasoning in facility maintenance 

A fault arises in a facility when an estimated parameter or observable variable 

associated with the process deviates from an acceptable range (Himmelblau, 1978). 

Within this anomaly, the operational efficiency of the system or component 

decreases, occasionally leading to breakdown (Singh et al., 2022). Therefore, timely 
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identification, analysis, and addressing the fault are crucial to responding to the issue 

quickly and accurately to minimize downtime, prevent further damage, and ensure 

the efficient operation of the facility.  

Fault detection and diagnosis methods have been developed to enhance the reasoning 

behind system faults. In identifying a fault, while the changes in the system and its 

symptoms are analyzed to construct the cause-effect relations, fault detection and 

diagnosis methods evaluate the observations and sensor readings to differentiate the 

features and symptoms for diagnosing the fault (Shi & O’Brien, 2019). These 

methods detect abnormalities, isolate their locations, and pinpoint the root causes, 

facilitating the maintenance of the affected components.  

There have been several attempts to classify FDD methods (Abid et al., 2021; 

Katipamula & Brambley, 2005; W. Kim & Katipamula, 2018; Shi & O’Brien, 2019; 

Singh et al., 2022; Zhao et al., 2019); however, a universally accepted standard 

classification is yet to emerge in the literature. The inferences from those studies 

indicate that detailed engineering calculations are required to explain the behavior of 

physical systems most accurately through quantitative model-based methods 

(Thumati et al., 2011). Despite being computationally intensive, proposing the model 

also demands substantial effort (R. Zhang & Hong, 2017). Since the deviations in 

input can substantially influence the results, it is crucial to ensure thorough and 

reliable data acquisition. Therefore, they are better suited to monitor the critical 

systems of the distinguished facilities rather than building systems (W. Kim & 

Katipamula, 2018). On the other hand, the simplified calculations (Zhao et al., 2013), 

based on assumptions and approximations to streamline the mathematical 

expressions, reducing computational complexity, are more practical for routine or 

less complex systems, where a quick and approximate understanding of the behavior 

is sufficient for analyzing the fault. 

Knowledge-based methods require either a thorough understanding of the system's 

operations and causal relationships through domain expertise or the availability of 

historical records detailing fault cases to establish connections between past and 
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present states (Zhao et al., 2019). These methods are straightforward to develop and 

apply, with the advantage of being easy to interpret in terms of relationships (W. 

Kim & Katipamula, 2018). Most of these methods use a priori knowledge to derive 

a set of if-then-else rules and an inference mechanism exploring the rule space to 

identify fault symptoms for drawing conclusions on the fault. The expert system 

formulates rules based on prior experiences, whereas first-principle model-based 

approaches utilize a priori knowledge to construct a model evaluating differences 

between expected and actual states of the physical system. This is followed by a limit 

and alarm analysis to determine if analyzed objects adhere to predefined boundaries. 

Failure Modes, Effects, and Criticality Analysis systematically evaluates potential 

system failure modes, prioritizing them based on criticality for effective risk 

mitigation (Renjith et al., 2018). Meanwhile, Fault Tree Analysis graphically 

represents logical relationships between events to identify combinations leading to 

specific undesired outcomes, aiding in comprehending and preventing system 

failures (Konstantinou et al., 2011; Motamedi et al., 2014). Case-based reasoning 

resolves new problems by recalling and adapting solutions from similar past cases 

(Guerrero et al., 2022). In formulating these methods, the construction of 

relationships is facilitated by incorporating semantic, spatial, and temporal 

information (Delgoshaei et al., 2022). On the other hand, these methods are system-

specific; as the system’s complexity increases, the capabilities of these methods are 

reduced. As the inferred rules are limited to historical cases and the knowledge of 

the domain experts (Shu-Hsien Liao, 2005), it is challenging to identify new fault 

cases beyond established boundaries. Therefore, adapting to dynamic system 

conditions and recognizing novel cases complicates the simplicity of existing 

methods, as integrating new rules to accommodate unique circumstances introduces 

potential complexities. 

In contrast to the methods mentioned earlier relying on prior knowledge on the 

system behavior, data-driven methods leverage the power of available data to 

construct the relationship between system inputs and their impact on the system 

behavior (Mirnaghi & Haghighat, 2020). While statistical methods examine 
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historical data, correlating them to infer and understand the impact of system inputs 

on system faults, machine learning approaches model the problem as a classification 

task. They analyze data to capture fault patterns, especially those not explicitly 

defined or understood. In black box modeling, Principal Component Analysis (S. 

Wang & Xiao, 2004), Artificial Neural Networks (Guo et al., 2017; Hou et al., 2006; 

Zhou et al., 2009), Support Vector Machines (Liang & Du, 2007; K. Yan et al., 2014) 

and Decision Trees (R. Yan, Ma, Zhao, et al., 2016) have been proven high efficient 

to reason the faults (Isermann, 2006; Venkatasubramanian et al., 2003). By 

leveraging the information encapsulated in the data, data-driven methods can build 

models that capture the complex and dynamic nature of the system, allowing for the 

identification of patterns associated with normal and faulty behavior. This 

adaptability makes data-driven approaches particularly valuable in situations where 

a comprehensive understanding of the underlying system is challenging. However, 

it is essential to recognize that the success of these methods is contingent on the 

quality, relevance, and representativeness of the available data to exhibit the whole 

system behavior. Therefore, throughout the system's life cycle, relying on a constant 

training dataset to train the model presents certain shortcomings: (i) it fails to account 

for unforeseen faulty conditions as they arise, thus not adequately represented in the 

classification model; (ii) the classification model's limited capacity leads to 

repetition of the similar mispredictions during operations, consequently diminishing 

its practical reliability; and (iii) extrapolating beyond this data might result in notable 

inaccuracies (R. Yan, Ma, Kokogiannakis, et al., 2016). On the other hand, adding 

new instances in a living environment to the training dataset brings a significant 

computation burden (Thinh et al., 2019) to the model and sometimes results in 

challenges in clearly distinguishing the faults. Especially when the system exhibits 

more complex nonlinear behavior and a significantly increased number of potential 

fault types, the capability of the model is restrained. Therefore, careful selection and 

tuning of appropriate classification models are essential to ensure accurate and 

reliable results (Malhotra, 2015). However, even with these efforts, predicting fault 

classes robustly might not always be achievable. This highlights a gap in the data-
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driven monitoring of systems in a living environment to effectively detect, diagnose, 

and manage faults throughout their life cycles. Addressing this gap is vital for 

consistently and continuously improving fault reasoning and promptly responding to 

maintain operational efficiency. 

3.3 Research methodology 

3.3.1 Motivation 

This study is motivated by the imperative need for an improved environment in the 

lifecycle fault management of facilities. With the rapid integration of technology and 

complex systems across industries, there is a growing demand for efficient fault 

detection and reasoning approaches that can adapt to evolving challenges. The 

absence of comprehensive studies on fault-based hybrid intelligence represents a 

significant gap in current knowledge, hindering the development of tailored solutions 

for the intricate fault management requirements of diverse operational environments. 

This research aims to fill this void by exploring and integrating a hybrid intelligence 

approach, combining artificial intelligence and human capabilities, to develop a 

dynamic fault management solution to accurately facilitate the detection and 

reasoning of the faults for taking precautions efficiently to keep facilities operational 

throughout their lifecycle. 

A systematic approach to hierarchical fault problems is crucial, as complex systems 

often exhibit faults at different levels of hierarchy. The need for a structured fault 

methodology impedes effectively identifying and resolving these issues. 

Additionally, the study responds to the demand for a simplified classification 

approach to the evaluation of multiple faults successively and simultaneously. 

Current methods might struggle with handling numerous faults concurrently, leading 

to increased missing faults and fault alarms in fault detection and diagnosis of the 

complex system. As a result, the site workers question the reliability of the methods, 

as they cannot promptly identify faults that may lead to more severe problems. 
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Alternatively, they may invest time inspecting cases where no actual issues exist. 

This raises concerns about the effectiveness of the methods employed in fault 

detection and resolution, impacting the overall trust in the system. This research 

seeks to provide a systematic and simplified classification approach to handle the 

drawbacks of multi-class classifiers, employing a novel approach to streamline the 

evaluation of multiple faults, enhancing the overall efficiency of fault reasoning for 

facilities. Furthermore, integrating BIM into fault detection and diagnosis enables 

the utilization of comprehensive details regarding the building's components, 

systems, and their interconnections as input for enhancing design and optimizing 

maintenance workflows. This is achieved by offering well-organized documentation 

and a visual understanding of faults throughout the facility's lifecycle. By addressing 

these academic and practical gaps, this research contributes to developing a more 

resilient and adaptive fault reasoning approach tailored to complex operational 

environments. 

3.3.2 Fault classification hierarchy 

A good understanding of how to manage faults effectively is crucial for ensuring the 

reliable and efficient operation of a system that consists of multiple assets in a 

facility. Since faults in a system may arise from diverse reasons, managing and 

distinguishing these faults can be formidable. Consequently, to achieve successful 

fault management, a hierarchical approach is critical. First, it captures inherent 

relationships and dependencies in the hierarchy. Second, this approach reduces the 

complexity of the problem by breaking it down into a series of manageable sub-

problems. Hence, while the number of fault issues in a system significantly increases 

and each exhibits nonlinear behavior that complicates their differentiation, the 

hierarchical relations generate more meaningful information. Therefore, in this 

study, we offer a fault hierarchy approach encompassing a step-by-step procedure 

compatible with data-driven monitoring. This approach starts with detecting a fault, 
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followed by localization to the source asset, diagnosing the reason for the fault, and 

concludes with determining its severity (Figure 3.1). 

A fault hierarchy begins with fault detection, which identifies deviations from 

expected working patterns in the system. It entails continuous monitoring of system 

parameters and using data-driven techniques to detect anomalies or irregularities. 

After detecting a fault, the next stage is to pinpoint the asset and its location within 

the system as a source of the problem and isolate it from the unaffected components. 

   

 
 

Figure 3.1. Fault hierarchy 

Once the source of the fault is detected, the possible reasons that cause abnormal 

behavior in the system are investigated, and the specific reason is diagnosed. Finally, 

the intensity level of the fault is determined to assess its severity and potential 

consequences on the overall system. This information allows decision-makers to 

evaluate the condition of the fault root, enabling them to prioritize and allocate 

resources for timely and appropriate interventions. As a result of this proactive 

maintenance strategy, significant faults are promptly identified and addressed, 

preventing potential negative consequences or disruptions in the system. 
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3.3.3 A hybrid intelligence approach for fault reasoning 

In this study, a hybrid intelligence approach is proposed to facilitate BIM-integrated 

data-driven fault reasoning in a facility. It is envisioned that humans and machines 

collaborate to improve decision-making continuously in analyzing the current status 

of a system and detecting the reason for a fault in abnormal conditions accurately as 

soon as possible. Hence, the on-site maintenance team promptly intervenes in 

identified issues as necessary, fixes the issue, and ensures that the facility functions 

efficiently. In this collaboration, the approach places humans in the pivotal role of 

decision-making in fault management, whereas the machine provides invaluable 

decision support through the prediction of fault reasons. On the other hand, humans 

play a crucial role in the system design, data preprocessing, predictive model 

selection, and constructive feedback to the machine predictions to augment the 

machine for improving the prediction accuracy. 

A big picture drawn for our hybrid intelligence approach summarizes the steps 

followed in fault reasoning, as illustrated in its flowchart in Figure 3.2. Firstly, the 

facility team collaboratively works to set up a sensor network within the system. The 

sensor information is then integrated into a Building Information Modeling (BIM) 

tool, establishing a smooth connection with a BIM-enabled maintenance 

management system. Afterward, two different approaches can be followed to collect 

a large dataset consisting of both normal and faulty conditions systematically: (i) the 

development of an Internet of Things (IoT) system that utilizes this network to collect 

real-time data, or (ii) the simulation of these conditions, fine-tuned to reflect real-

world scenarios as needed accurately. 

Following raw data collection, facility maintenance operators carefully label the 

dataset, creating a hierarchical classification problem encompassing fault existence, 

source, type, and intensity. Subsequently, a robust training dataset is constructed by 

sampling it either before or after labeling, depending on the amount of data available. 

The data scientist in the facility team then selects an appropriate classification model 

for training, and efficient model settings are determined in collaboration with his 
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Figure 3.2. Flowchart of proposed hybrid intelligence approach for fault reasoning 
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guidance and the capabilities of AI. Once the model is built, it accurately predicts 

real-time system conditions, detecting fault existence, identifying fault sources, 

classifying fault types, and estimating fault intensity levels. This predictive 

capability significantly aids in informed decision-making for asset maintenance.  

With real-time monitoring, the prediction model estimates the condition of each asset 

in the system at predetermined time intervals. As real-time data is collected, 

successive data is expected to align with either the preceding or succeeding 

ones.Therefore, a decision support model is deployed to follow these successive 

estimations and assess their consistency. As a result, it notifies the facility team for 

both estimations and their consistency. After that, the facility team evaluates this 

notification by considering the confusion matrices created from training and test data 

to refine the model's performance. Upon receiving the evaluation results, the site 

team inspects potential problem areas identified by the facility team and gives 

feedback to the center. Among the feedback reports, those containing mispredicted 

fault results and unusual inputs not present in the training dataset are stored in a 

database. Based on this feedback, periodic model training is then initiated, ensuring 

consistent updates and continuous enhancement of prediction accuracy. This 

establishes a closed-loop system for improved fault management. 

The hybrid intelligence approach comprises six modules: design, data acquisition 

and preprocessing, predictive modeling, monitoring and decision support, human-

centric evaluation, and continuous enhancement. The content of each module, the 

roles of humans and machines, and their interaction in each one are explained in 

detail below. 

Design module:  

A system comprises multiple assets, and abnormalities in each asset may result in 

various faults. These faults are differentiated using different types of sensors in a 

data-driven environment. To begin with, the facility maintenance team makes a map 

of the system assets and identifies those that are critical, vulnerable, and prone to 

faults. Following that, the team analyzes potential faults that the system may 
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encounter. Different faults may exhibit unique patterns or characteristics specific 

types of sensors can capture. Therefore, the team chooses sensors aligned with fault 

characteristics and places them to ensure maximum coverage and sensitivity 

considering the proximity to critical components, environmental conditions, and 

potential sources of interference. As a result, the maintenance team designs the 

network of the sensors on the system assets, determining the most efficient 

placement and types of sensors for intelligent fault reasoning. 

Secondly, BIM serves as an integrated platform for organizing and managing 

maintenance information. It consolidates maintenance manuals, task lists, and 

procedures within a digital representation of the facility, allowing for systematic 

organization and efficient planning of maintenance tasks. The visualization features 

aid in spatial understanding, while integration with asset management systems 

ensures accurate tracking of assets and maintenance histories. BIM facilitates 

effective communication and collaboration among stakeholders, providing a 

comprehensive solution for streamlined facility maintenance. Therefore, integrating 

sensors with BIM provides clear benefits compared to using sensors alone. When 

real-time sensor data is seamlessly included in the model, it offers a complete 

understanding of how the system in the facility is functioning. This integration 

allows for detailed insights about maintenance issues, as the sensor data is analyzed 

within the overall digital representation of the facility. Therefore, in this approach, 

BIM is integrated with the sensor network to (i) interact the sensors with the 

associated assets for extracting spatial and maintenance information and (ii) provide 

information about the fault assets detected to create work order request (explained in 

the monitoring and decision support module) to facilitate the works of the 

maintenance team for their inspection and maintenance tasks. This not only improves 

the identification of issues on site and the development of solutions but also enhances 

maintenance planning by utilizing the organized structure of maintenance 

information within the BIM model. 
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Data acquisition and preprocessing module:  

Data is pivotal in AI, serving as the training ground for machine learning models to 

learn patterns and relationships for accurate predictions. More specifically, a model's 

abilities to generalize, avoid bias, and adapt to diverse scenarios directly depend on 

the dataset's quality, diversity, and representativeness (Clemmensen & Kjærsgaard, 

2022).   

In our approach, various faults exist in the operation of multiple system assets, which 

makes it necessary to collect and update the dataset carefully to train the 

model.  Hence, we can collect the data in two different ways to adequately represent 

both normal and fault conditions thoroughly: 

(i) Real-time monitoring data:  

In this approach, the constructed IoT platform monitors the system's condition 

via sensor readings. It utilizes actuators to govern physical processes based on 

the information gathered by the sensors. For instance, if a sensor detects a high 

temperature, an actuator might be programmed to activate a cooling system; 

however, it cannot directly grasp what the cause of the problem is. It is pretty 

challenging to determine the faulty conditions during the monitoring for 

collecting its data so that it can be accomplished in three different ways. First, if 

such patterns are available, predefined patterns can be applied to differentiate the 

fault from both normal conditions and other fault types. However, this approach 

may be limited by the complexity and variability of fault scenarios. Second, an 

experienced maintenance worker may use their expertise to manually detect and 

label fault types during data collection. This method is effective when relying on 

human intuition and experience, but it is subject to individual interpretation and 

may not cover all possible fault scenarios. Third, the maintenance team can 

intentionally impose faults to collect relevant data, providing valuable insights 

into specific fault types; however, this approach may not be feasible for all fault 

scenarios and can be resource-intensive. Therefore, as the machine cannot 

directly analyze the fault conditional statement of the system, human 
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involvement is required in each collection to label the fault type of the collected 

data. 

(ii) Simulation data:  

For particular cases, collecting representative and labeled actual monitoring data 

sufficiently and covering the variety of all possible fault types might take a 

considerable amount of time in the operational phase to prepare structured data 

for training an AI algorithm. In such cases, leveraging simulation data for model 

training emerges as a practical solution, offering several advantages over relying 

solely on real-world data. Firstly, it provides a cost-effective alternative, enabling 

a wide range of scenarios and environments for diverse operational settings at a 

lower expense than collecting extensive real-world data. Additionally, 

simulations allow for exploring rare faults that might be challenging to encounter 

in real-time monitoring. This is crucial for training models to handle unusual 

situations comprehensively. Its controlled nature also reduces noise and 

anomalies, focusing the model's learning on essential aspects. The simulation 

further addresses the safety concerns for risky faults where manual fault 

imposition might pose significant threats to the functionality of the assets in the 

system. Moreover, simulated data simplifies the labeling process, as precise 

ground truth can be easily assigned to generated scenarios. On the other hand, 

although simulated data provides a powerful tool for initial model development, 

it is crucial to incorporate real-world data in the later stages of training to ensure 

the model's adaptability and performance in practical applications. The synergy 

of simulated and real data enhances the robustness and reliability of machine 

learning models. 

As explained above, it is essential for the data gathered to train AI models to be both 

representative and unbiased. This is crucial to enable the models to produce accurate 

and reliable results. Moreover, in such cases, since the sensors collect abundant data 

during the monitoring, it should be sampled with representative random input data 

to (i) improve the understanding and generalization capability of a machine learning 
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algorithm with sufficient data and (ii) reduce computational expenses and time 

consumption (Petersen et al., 2005). In real-time monitoring, where the faults are not 

deliberately imposed but rather emerge naturally, data instances are first labeled and 

then sampled since their fault condition is unknown during data collection. 

Conversely, when the fault condition is known, such as in fault imposition during 

real-time monitoring and simulation-based analyses, the data is generated with the 

awareness of these conditions. For both real-time monitoring and simulation, 

systematic sampling that selects data points at regular intervals can be employed to 

capture a continuous and representative flow of data over time, facilitating effective 

monitoring of the system's b Similarly, stratified sampling divides the dataset into 

strata based on the distribution of the target classes. Each stratum corresponds to a 

specific fault class, and samples are then randomly selected from each stratum. This 

ensures that the training set maintains a proportional representation of each fault 

class, preventing the model from being biased towards the majority fault class and 

ensuring that it adequately learns from instances of all fault classes. 

In addition to sampling, the collected data undergoes essential preprocessing steps. 

First, missing values are handled through replacement with representative values or 

removal. Second, duplicates and noisy data are eliminated to maintain dataset 

integrity. Third, outliers, which potentially distort analysis, are detected and 

addressed. Fourth, the input data is normalized to bring all features to the same scale, 

promoting consistency. Finally, input features that provide constant information but 

lack meaningful insights are removed. This comprehensive preprocessing approach 

ensures a refined and standardized dataset to enhance data quality and 

interpretability. All these processes are followed based on human expertise and 

machine capability. 

Predictive modeling module:  

Following data preprocessing, the next step is to train an AI model to detect and 

predict faults based on sensor readings. The selection of an appropriate AI model is 

a critical aspect of this module and holds paramount importance in determining the 
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success of our solution for fault detection and diagnosis. In this selection, data 

scientists and domain (maintenance) experts collaborate to align the model with the 

specific requirements and nuances of fault reasoning. This collaboration is 

imperative since domain expertise is crucial in understanding the relationships 

between sensor data and fault outcomes. Hence, it can be utilized to differentiate and 

isolate fault types using these relations, guide feature engineering, ensure the model 

captures complex patterns, and evaluate AI model prediction output. Guided by 

feedback from domain experts, the data scientists assess various criteria to choose 

the right AI model: size and distribution of data, interpretability, scalability, and 

fitness of algorithmic structure to the nature of the problem: 

▪ Data size: The amount of collected training data should be enough for the 

selected model to generalize well. 

▪ Data distribution: The chosen model should clearly define the system's 

behavior to differentiate the fault types. While a linearly separable model can 

effectively distinguish classes using a straight line or plane, a nonlinear 

model is required to define the complex relationships that a simple linear 

decision boundary cannot capture. 

▪ Interpretability:  The model's predictions should be as interpretable as 

possible so that the facility maintenance team can gain insights into how it 

makes its predictions and what features or factors influence them. 

▪ Scalability: The AI model should be adaptable to handle increasing training 

data, computational efforts, or workload without significantly degrading 

performance. 

▪ Fitness of algorithmic structure to the nature of the problem: the chosen 

algorithmic approach should align well with the inherent characteristics and 

requirements of the problem being addressed. Given that (i) sensor reading 

inputs and their corresponding faults are known, (ii) each output data is 

categorized into fault classes, and (iii) a fault hierarchy is constructed to 

transform a large number of potential fault types arising in a system to be 
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manageable. Therefore, the algorithm's structure should be organized to solve 

the supervised hierarchical classification problem.  

In light of the above key points, the proposed model should correspond to the nature 

of fault reasoning and imitate the fault hierarchy in its algorithmic structure. 

Therefore, it should initially check for the existence of a fault. If present, it should 

first predict the source asset, then identify the fault type, and finally determine its 

severity level. Having defined the algorithmic structure, our initial focus was 

directed toward understanding the operational dynamics of the system. This 

evaluation assesses whether the relationships between the sensor readings and fault 

classes are linearly separable or non-linear. Firstly, linear models were analyzed with 

a case study since they are relatively simple, easy to understand the model's behavior, 

and less susceptible to overfitting. In line with this, we employed two fundamental 

linear models, Logistic Regression and Support Vector Machines, for the fault 

existence classification problem, which represents the first step of fault hierarchy for 

reasoning. However, neither algorithm was able to achieve high prediction accuracy. 

Therefore, two common nonlinear models, Decision Tree and Backpropagated 

Neural Networks, were applied to the same problem to verify non-linear 

relationships. As expected, both models improved the accuracy of the linear models. 

Notably, Decision Trees produces solutions that are more prone to overfitting. 

Therefore, Neural Networks explain the relations more clearly with consistently 

accurate predictions for training and testing data. Hence, our algorithm is constructed 

on the basis of Neural Network classification. 

Following the hierarchical structure and Neural Networks, we proposed Feedback-

enhanced Hierarchical Neural Networks to predict fault reason accurately (if it 

exists) while monitoring the system. The details of the model are explained in the 

next section. While shaping the model, several vital factors significantly contribute 

to accurately tailoring the model to the specific nature of the problem: 

▪ Network chains: The sequential arrangement of multiple neural networks in 

a chained architecture enables systematic progression through fault hierarchy 
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stages. From fault existence to source asset prediction, fault type 

identification, and severity level determination, each network refines 

predictions made in preceding steps, facilitating comprehensive and accurate 

fault analysis. Compared to a global classifier, which is more complex and 

more challenging to train efficiently, with vanishing gradients during 

backpropagation and growing temporal dependencies, the chained networks 

with a top-down approach simplify the algorithmic structure and train each 

stage sequentially and independently with modular network architecture. 

Hence, it is easier to understand how information flows through the networks 

provided and their contribution to the final output.  

▪ Constructive feedback: In the chained networks, errors can propagate 

through the network and affect the prediction of the following stages. For 

instance, if the model incorrectly identifies the source asset of a fault, it 

results in an inaccurate estimation of the fault type and its severity level. 

Therefore, to mitigate this misprediction at the final output of the entire 

chained network, we developed a constructive feedback mechanism to 

improve total prediction accuracy. Once the hierarchical model is trained, its 

confusion matrix, which is constructed to compare predicted and actual 

classifications, is analyzed to detect fault classes the model challenges to 

differentiate and map them to build independent relation sets. After that, 

assuming that additional local classifiers separate the decision boundary 

between the classes of each relation set efficiently in general compared to the 

hierarchical model, providing constructive feedback to the model. In contrast, 

this feedback might be misleading in some conditions, so a combined 

prediction of both the hierarchical model and additional local classifier is 

constructed to enhance the performance of the main model. Therefore, to 

improve the model's accuracy, we use the model outputs of both classifiers 

as inputs to establish a model that best fits the actual output via linear 

regression. 
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▪ Randomized online learning: The model's ability to learn and adapt for 

generalization is enhanced by randomizing the order of training data, 

ensuring a more homogeneous dataset for online learning. Because when the 

model is consistently exposed to the same fault in temporal data, updating its 

learning to accommodate new fault patterns can pose a challenge. Moreover, 

it is more scalable than batch learning, especially when dealing with large 

datasets, as models can be updated with new data as they arrive.  

▪ Shallow architecture:  The system's nonlinear behavior is formulated in our 

network using sigmoid activation functions in the hidden layer(s); therefore, 

to reduce the complexity of the model and make it easier to understand and 

interpret, a single hidden layer is utilized for contributing to a more 

transparent model. 

▪ Conditional stepwise learning schedule: A conditional step-wise learning 

schedule is proposed that the model benefits from a higher learning rate in 

the initial stages to make more extensive updates to the weights and then 

decrease it when the objective (loss) function is not improved for a certain 

number of epochs. Additionally, the model returns to the weights calculated 

in the last control points to converge more slowly, avoiding divergence.  

Monitoring and decision support module:  

The real-time data collected by IoT devices enables continuous monitoring of the 

system, providing instantaneous sensor readings that serve as the foundation for 

predicting the fault conditions of assets. This constant prediction, however, 

introduces challenges related to computational resources and potential information 

overload. The frequent arrival of a large amount of data requires a lot of computer 

power to analyze it quickly. Moreover, the continuous predictions may result in 

overwhelming notifications for the facility team. This might make it hard to separate 

important issues from regular changes in the system. Therefore, a regular time 

interval input is defined to achieve a balance between real-time responsiveness and 

computational efficiency to enhance operational effectiveness. 
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As we collect real-time data, we expect the consecutive data points to align 

consistently with the data before or after them. This expectation stems from the idea 

that a logical and consistent flow in the system’s fault condition should occur over 

time. Therefore, a decision support model is strategically put into action to carefully 

monitor and evaluate the ongoing fault predictions made by the model. As real-time 

data is consistently collected, this decision support model acts as a critical observer, 

assessing how well these predictions align with each other. Its primary role is to 

ensure the predictions are accurate independently and demonstrate reliable 

consistency over time. This consistency is examined through two essential methods: 

fault consistency and severity consistency. 

Firstly, the model assesses fault detection consistency by analyzing sequences of 

prediction instances.  In a case such as 'N-N-N-N-N-N-N-F-F-F-F-F-F-F-F-F-F-F-

F-F,' where 'N' represents regular operation, and 'F' denotes the detection of a fault, 

the model is aware that a fault has been identified while the system is functioning 

normally, and it persists in its operation. In cases where inconsistencies arise, as seen 

in 'N-N-N-F-F-N-N-F-N-F-N-N-F-N-N-N-N-N-N,' the model recognizes the 

instances where fault detection deviates from the expected logical flow. This 

examination aids the decision support model in pinpointing areas where the fault 

detection process may need refinement. Secondly, the model examines inconsistency 

in fault prediction, as exemplified by the sequence 'N-N-N-F1-F1-F1-F2-F1-F2-F1-

F1-F2-F1-F1-F1-F1” where 'F1' and 'F2' represent different fault types. In this case, 

the prediction model detects the fault accurately; however, the fault types contradict 

the conditional flow of the system as it changes multiple times in a sequence. Finally, 

despite the model accurately predicting the existence and type of faults successively, 

the severity level it indicates may conflict with real-time expectations. In other 

words, as evidenced by 'N-N-Fs1-Fs1-Fs1-Fs2-Fs2-Fs3-Fs3-Fs1-Fs1-Fs3-Fs3.' The 

'Fs1,' 'Fs2,' and 'Fs3' denote increasing severity levels, respectively; in most fault 

cases, the asset condition in which the fault occurred is expected to deteriorate 

without any maintenance intervention. When the predicted severity level of the fault 

turns to reverse, the model discerns and notifies it. 
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The decision support model sequentially evaluates predictions, assesses their 

coherence, and ultimately decides to alert the facility maintenance team about the 

system's status if any abnormalities are detected. Upon achieving consistent 

predictions, the model interacts with a Building Information Modeling (BIM) tool to 

retrieve relevant maintenance information. Then, it utilizes this information to create 

a work order request for the facility maintenance team. On the other hand, for the 

contradictory predictions, the model stores both sensor readings and prediction 

outputs in a control database. Moreover, it analyzes the confusion matrix of training 

and test sets to determine whether this contradiction is caused by an edge condition 

where the model struggles to make accurate predictions. Finally, it notifies both 

situations (two different faults or different severity levels of the same fault or one is 

a fault, and the other is a normal condition) with their maintenance information 

extracted from the BIM model, reporting the availability of edge condition. 

Therefore, the assessment of the situation is entrusted to human judgment. Moreover, 

the model detects unusual sensor readings that are not present in the training sets and 

stores them in the control database to enhance the model's generalization capability, 

which will be updated at a later stage. 

Human-centric evaluation module:  

Humans are responsible for determining fault reasoning in the system, while 

machines (AI) provide decision support to facilitate human reasoning. Therefore, the 

first prediction model estimates the fault statement of the system. Then, the decision 

support model analyzes the consistency of the real-time predictions to generate a 

work order request for the faulty condition and send it to the maintenance team. 

Hence, this request is processed through the team's filter to finalize the insight into 

the reason for the fault in the system. As introduced, two different types of requests 

are generated in the previous module based on the consistency of the fault 

predictions. In the first one, the maintenance experts either confirm AI prediction for 

the fault condition or evaluate the given condition differently if they see a statement 

different from the machine estimates. After that, they assign the worker order to the 

site team to inspect the situation on-site. Secondly, the contradictory fault predictions 
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need more attention to reach a decision. In this case, different solution approaches 

can be followed. In the first approach, when the maintenance team possesses 

adequate experience to conduct expert evaluations, they assess both conditions with 

respect to given data readings using their expertise, historical records for the reported 

assets, and a human understanding of the patterns embedded in the AI prediction 

model. At the end of the evaluation, they prioritize the inspection of the faults on site 

and report it to the assigned site team. While their knowledge is insufficient, they 

assign the work order to the relevant technical personnel on-site and direct details of 

the request to them. At this time, the site team quickly analyzes the faults and decides 

to start from which asset fault occurs. Besides human expertise, AI predictions and 

the criticality of the assets are also considered to prioritize the inspection of the faults 

if needed. After that, the site team starts the examination of the prior faulty asset and 

follows the required maintenance task using maintenance information provided in 

the BIM tool and their experience. To summarize, all the process followed in the 

approach aims to (i) monitor the working system, (ii) determine the root of the fault 

in the system as soon as possible, and (iii) reach the corresponding information via 

BIM to manage the maintenance flow efficiently and timely.  

Continuous enhancement module: 

The evaluation of the prediction model does not always accurately pinpoint fault 

detection and reasoning within the system. The subsequent model-based decision 

support and human expert re-evaluation corrects some of these mispredictions; 

however, in some cases, the actual fault of an asset is identified on-site during the 

inspection, contradicting the initial assumption of the prioritized faulty (another) 

asset. Therefore, the prediction model's increasing number of these misestimated 

cases significantly burdens the central maintenance team and amplifies the workload 

for the site team. Moreover, following the site inspection and maintenance task, the 

site team updates the work order to describe the encountered problem and its solution 

for keeping it in historical maintenance records. Therefore, repeating similar faults 

detected during inspections demotivates the site maintenance team since the 
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feedback from previous cases goes unaddressed. This raises concerns about the 

reliability of the proposed prediction model. 

As introduced above, a control database is constructed to store the sensor readings 

and their predictions periodically for contradictory cases, faulty conditions, and out-

of-sample sensor readings. Using feedback reports from the site, each case is labeled. 

After that, the labeled and predicted outputs of the same sensor readings are 

compared. Among these, the mispredicted samples are filtered, and the 

representative ones are incorporated into the training dataset.  Hence, the prediction 

model undergoes retraining using the updated dataset. As the various NN models are 

retrained in our hierarchical chain networks to facilitate the process, the finalized 

weight and architecture of the previously updated model are utilized as the initial 

point to train the model. The prediction model is updated periodically to 

continuously enhance the prediction accuracy in fault reasoning, thereby decreasing 

human effort and improving time management in maintenance works. 

3.3.4 Feedback-enhanced Hierarchical Neural Networks  

In this study, we developed a prediction model named Feedback-enhanced 

Hierarchical Neural Networks to solve hierarchical classification problems, 

specifically for accurately predicting faults and their reasons in the monitored 

system.  

3.3.4.1 Hierarchical model 

In our model, we applied a top-down approach to organize fault classes in a 

hierarchical structure and form their relationships as a rooted tree structure. To 

further elaborate, the foundation of this structure is rooted in the existence of a fault, 

serving as the primary node. Upon detecting a fault, the model initiates an 

investigation into the source of the fault, branching into internal nodes that represent 

different sources. Once the source is identified, the model proceeds to determine the 
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specific fault type associated with that source, further refining the hierarchical 

structure. Finally, at the leaves of the tree, the model predicts the severity level for 

each identified fault type. In other words, the model is structured into four levels of 

hierarchy, and these levels are chained through parent-child relationships. The 

analysis progresses through these levels based on conditional statements, each 

providing more detailed information about the fault. 

The model orchestrates multiple local classifiers based on Neural Networks to 

formulate the problem in harmony with the final prediction. It initiates the decision-

making process at the root node, depicted in Figure 3.3, employing a binary classifier 

to determine whether a fault exists within the system. While traversing down the 

hierarchy, it assigns a local classifier to each parent node in the hierarchy and trains 

each one independently using associated data with the child classes under its 

corresponding parent node. The number of child nodes in this hierarchy influences 

how the classifier is structured. If only one child node exists, no additional classifier 

is necessary, as the decision is straightforward. When two child nodes exist, a binary 

classifier predicts between these two classes. However, if there are more than two 

child nodes, a multi-class classifier is applied to predict the specific child class within 

the set. It allows each local classifier to specialize in distinguishing between classes 

at its hierarchy level. This adaptive approach ensures the classifier aligns with the 

hierarchical complexity, enhancing the model's ability to make accurate predictions. 

3.3.4.2 Proposed neural network model 

A neural network is a machine-learning model inspired by the structure and function 

of the human brain (Wu & Feng, 2018). It consists of interconnected neurons 

arranged into layers and is designed to learn and recognize complex patterns and 

make predictions. In principle, neurons are the building blocks of the nervous 

system. They are capable of receiving input, processing information through 

weighted sums, applying activation functions, and producing outputs (B. Cheng & 

Titterington, 1994). Our neural networks consist of an input layer, one hidden layer,  
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Figure 3.3. A typical example of a hierarchical classification model
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and an output layer. 

A backpropagation algorithm is applied to optimize the weights assigned to 

connections between nodes during training, adapting to the patterns in the training 

data and improving the network's ability to make accurate classifications(Hecht-

Nielsen, 1989). The algorithm comprises two fundamental steps: forward pass and 

backward pass. During the forward pass, input data propagates through the network 

layers to generate predictions. The computed predictions are then compared to the 

target output using a loss function. In the backward pass, the gradient of the loss with 

respect to each weight is calculated by applying the chain rule of calculus. These 

gradients indicate the direction and magnitude of adjustments needed for each weight 

to minimize the loss. The weights are updated in the opposite direction of their 

gradients using a stochastic gradient descent algorithm and conditional staircase 

learning schedule. This process is iteratively repeated until one of the termination 

criteria is satisfied: the network converges to a state where the loss is minimized, or 

the prediction accuracy of the optimized network is not improved. 

In our model, to improve the convergence ability of the network, we apply a 

randomized online learning mechanism, conditional staircase learning schedule, and 

sigmoid activation functions to the hidden layer. Randomizing the order of training 

data in online learning enhances the model's adaptability for generalization, prevents 

overfitting to consistent faults in temporal data, and provides scalability by allowing 

continuous updates with new data, which is particularly beneficial for large datasets 

(Pérez-Sánchez et al., 2018). Moreover, the conditional staircase learning schedule 

adjusts the learning rate in response to the model's performance to avoid overfitting 

and underfitting. While it initially uses a higher learning rate to converge faster, at 

specific epochs, it checks the convergence of the model. In cases where the model 

diverges by generating a higher accumulated loss function or lower model accuracy 

compared to the previous checkpoint, the model returns to the connection weight 

values in the last checkpoint and decreases its learning rate to improve its 

performance. Furthermore, we select sigmoid activation functions on hidden layers 

to effectively capture the non-linear behavior of the model, surpassing the efficiency 
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of linear and rectified linear unit functions (Daqi & Yan, 2005). Additionally, for the 

output layer, a sigmoid function is employed in binary classification, while a softmax 

function is utilized in multi-class classification (Szandała, 2021). The log-loss 

function (in Eq. 3.1) is applied to binary and multi-class classifiers (Janocha & 

Czarnecki, 2017). 

ALF =

1

𝑁𝑑𝑎𝑡𝑎
∑ 𝑦𝑛𝑐 log(𝑝𝑛𝑐) + (1 − 𝑦𝑛𝑐  log (1 − 𝑝𝑛𝑐)

𝑁𝑑𝑎𝑡𝑎

𝑛=1

𝑖𝑓 𝐶𝑐𝑙𝑎𝑠𝑠 = 2

1

𝑁𝑑𝑎𝑡𝑎
∑ ∑ 𝑦𝑛𝑐  log (𝑝𝑛𝑐)

𝐶𝑐𝑙𝑎𝑠𝑠

𝑐=1

𝑁𝑑𝑎𝑡𝑎

𝑛=1

𝐶𝑐𝑙𝑎𝑠𝑠 > 2

 

 

(3.1) 

where y, p, ALF, Ndata, and Cclass present actual output, predicted output, 

accumulated loss function, number of training, and number of classes, respectively. 

 

The pseudocode of our neural network model is presented in Table 3.1. 

Table 3.1 Pseudocode of the Proposed Neural Network 

Design the network: determine the classifier type (binary or multi-class), select the number of 

neurons in the hidden layer and activation functions in both hidden and output layers, define the 

staircase learning set, and set the maximum number of epochs (MaxEpoch), number of epochs to 

check model convergence (ModCheck), number of training data (Ndata), length of learning rate 

set(MaxLR), model accuracy (Acc) and accumulated loss function (ALF) 

 

t=1; i=1; Accold=0;  ALFold = Ndata; 

while (t < MaxEpoch) and  (i<=MaxLR) 

  for n= 1: Ndata 

     Apply forward pass 

     Calculate loss function 

     Follow backward pass  

     Update connection weights (W) using the gradient descent with the corresponding learning rate 

  end 

  if mod (t, ModCheck) = = 0 

     Apply forward pass for all training data 
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     Calculate the accumulated loss function for all training data (ALFnew) 

     Predict the classes  

     Compare the predictions with the actual ones and determine the accuracy of the model  (Accnew) 

            if   Accnew < Accold 

                              i=i+1 

                   W=Wold 

             elif  ALFnew > ALFold  

                              i=i+1 

                   W=Wold 

             else 

                   Accold = Accnew  

                   ALFold = ALFnew 

                   Wold= W 

  end 

   t=t+1 

end 

3.3.4.3 Feedback mechanism 

As explained above, the hierarchical model finalizes its fault reasoning prediction 

through a structured sequence of four hierarchical decision processes, which are 

independently trained.  Naturally, the local classifiers in four hierarchy levels must 

predict the relevant classes accurately to determine the right fault reason within the 

system. In other words, a single misprediction in any of the four decision levels leads 

to a flawed final decision. Therefore, understanding how and why errors propagate 

throughout the hierarchy is crucial for debugging and giving feedback to improve 

model performance. 

In order to develop a constructive feedback mechanism for our model, we initiated 

the analyses from the designed hierarchical model and trained local classifiers. We 

then investigated whether the hierarchical model encounters difficulties in 

distinguishing between the classes and, more specifically, the local classifier on each 

node struggles to separate the decision boundaries of the child classes. To 

accomplish this, the finalized confusion matrix compares the ground truth and 
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predicted classes for all training data. We examined the confusion matrix, detected 

all sets causing striking false classifications between two classes, and mapped them. 

In some cases, the hierarchical model faces challenges in differentiating more than 

two classes. Consequently, we grouped these classes instead of employing pairs. 

Finally, we proposed additional local classifiers for these subsets to gain information 

from them and give constructive feedback to the main hierarchical model to improve 

model accuracy. On the other hand, in specific instances, this feedback to the main 

model might be deceptive; therefore, combining both additional classifiers’ and the 

main model’s predictions is more comprehensive to generate robust estimations. In 

this study, we employed least square regression to minimize the square error between 

actual faults and feedback-enhanced predictions, optimizing the combined weights 

(w) of the hierarchical main model and additive classifier for each subset. While the 

weights are optimized to address the more critical faults in two-class subsets (Eq. 

3.2a), they are adjusted uniformly across all classes in multi-class subsets (Eq. 3.2b). 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 
1

𝑁𝑑𝑎𝑡𝑎
∑ (𝑦𝑛 − 𝑤1 𝑝𝑎,𝑛 − 𝑤2 𝑝𝑚,𝑛)

2

𝑁𝑑𝑎𝑡𝑎

𝑛=1

 

 

(3.2a) 

             𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 
1

𝑁𝑑𝑎𝑡𝑎
∑ ∑ (𝑦𝑛𝑐 − 𝑤1 𝑝𝑎,𝑛𝑐 − 𝑤2 𝑝𝑚,𝑛𝑐)

2

𝐶𝑐𝑙𝑎𝑠𝑠

𝑐=1

𝑁𝑑𝑎𝑡𝑎

𝑛=1

 

 

(3.2b) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜     𝑤1, 𝑤2 ≥ 0 (3.3) 

whereas 𝑝𝑎 and 𝑝ℎ  are the prediction rates of additional classifier and hierarchical model, 

respectively.  

Inherent to their design, both models are anticipated to enhance the optimization of 

the final model through positive weights. However, in some cases, a negative weight 

may emerge at the conclusion of the least square regression. In such cases, if the 

hierarchical model bears a negative weight, the feedback from the additional classifier 

is directly acknowledged, and the weight is updated as w=[1 0]; otherwise, no further 

feedback is deemed necessary. 
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Moreover, to mitigate the adverse effects of error propagation within the hierarchical 

model, the additional classifiers are strategically designed to offer feedback to either 

a parent node or a network at a higher hierarchy level without incurring any loss of 

information, if possible. To illustrate, for the first case, the local classifier at the node 

corresponding to source A is designated to classify its fault types, namely A1, A2, 

A3, and A4; however, it encounters difficulty in distinguishing between A1 and A3.  

Hence, the additional classifier is trained to delineate the boundaries between A1 and 

A3 more distinctly, furnishing constructive feedback to the classifier at the source A 

node. On the other hand, when confronted with the challenge of separating normal 

condition and severity level 1 of the fault type A2 within the model, and in the 

absence of any misclassifications between the normal condition and other severity 

levels of A2, the additional classifier can be tailored to classify the normal condition 

and the A2 fault type. Similarly, this condition applies to source A if none of the 

fault types pertaining to source A is mispredicted in conjunction with the normal 

condition. However, if the model encounters confusion where an instance from 

another severity level is mistakenly identified as the normal condition or vice versa, 

it leads to information loss in the model. Therefore, currently, feedback is selectively 

provided only for classes with normal conditions and severity level 1 of fault type 

A2. 

In this study, we proposed different constructive feedback mechanisms to improve 

the performance of the main hierarchical model as explained below: 

(i)  Global information gained with an additional multi-class classifier: 

In such cases, the main model faces challenges in differentiating between various 

fault types and/or a no-fault condition. Therefore, by utilizing the training ground 

truth outputs and inputs for these classes, an additional multi-class classifier is 

trained. On the other hand, the prediction rate of these classes in the main model is 

calculated using Eq 3.4, multiplying the prediction rate of its corresponding class at 

each hierarchy level up to its level 𝐿𝑝.  
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𝑝𝑚,𝑛𝑐 =    
∏ 𝑝𝑙,𝑛𝑐                   𝑖𝑓 𝑓𝑎𝑢𝑙𝑡 𝑒𝑥𝑖𝑠𝑡𝑠

𝐿𝑝

𝑙=1

1 − 𝑝𝑙=1,𝑛𝑐                           𝑜/𝑤           
 

 

(3.4) 

 

(ii) Global information gained with an additional binary classifier: 

In this scenario, the main model encounters difficulty in distinguishing the two 

classes, either two different fault types for a specific severity level or one for a faulty 

condition, and the other is normal. Rather than involving both classes in determining 

weights as in multi-class cases, the binary classifier concentrates on the critical one 

and updates the weights of the linear regression according to this fault class. Hence, 

an additional binary classifier is trained using the data of both classes, referring to 

the instances as “1” as the critical one and “0” as the other. On the other hand, the 

prediction rate of the critical one for the training instances is calculated using Eq. 

3.5. 

                        𝑝𝑚,𝑛 =  ∏ 𝑝𝑙,𝑛                  

𝐿𝑝

𝑙=1

 

 

(3.5) 

 

(iii) Local information gained for a multi-class classifier: 

In contrast to the previous approaches, we directly focus on the local classifier on 

the corresponding parent node and remove training data of its clearly separated 

classes. After that, a new classifier is trained to classify the remaining classes. While 

the prediction rate is computed using Eq 3.6 for a multi-class classifier for providing 

feedback, Eq. 3.7 applies to binary classifiers where the critical fault is selected as 

reference among the two classes.  

                        𝑝𝑚,𝑛𝑐 = 𝑝𝑙=𝐿𝑝,𝑛𝑐        (3.6) 

                        𝑝𝑚,𝑛 =  𝑝𝑙=𝐿𝑝,𝑛    (3.7) 
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(iv)  Local information gained for a binary classifier with an additional binary 

classifier: 

In such a condition, both local and feedback classifiers utilize identical data instances 

to train their models. Therefore, repeating the same procedure twice does not 

contribute additive feedback to the main model. In such cases, either the 

classification algorithm can be substituted, or the architecture of the neural network 

is modified to enhance the learning process. 

Integrating constructive feedback from additional classifiers into the main model 

involves optimizing the contribution weight of both models through linear 

regression. To ensure a systematic approach, the implementation order of various 

new classifiers supporting the main model is determined based on the independence 

of subsets and the criticality of faults. Initially, classifiers with independent subsets 

that do not influence the prediction of the remaining classes are applied to the model. 

Then, those containing critical fault(s) are implemented, followed by considering the 

remaining classifiers. During each implementation, the performance of the updated 

model is assessed using measures such as, primarily, model accuracy and, 

secondarily, distribution of misclassification. If the model's performance 

demonstrates improvement, the weights of the feedback approach are stored, and the 

model undergoes an upgrade. Conversely, if there is no enhancement in performance, 

the feedback is not accepted, and the model remains unchanged. This iterative 

process is followed for all supportive classifiers, ensuring that only beneficial 

feedback contributes to the model's refinement. 

The pseudocode of the step-by-step explanation of our feedback approach is 

presented in Table 3.2 below: 
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Table 3.2. Step-by step explanation of the proposed feedback mechanism 

Step 1: Set a threshold value for the number of mispredictions in the confusion matrix of the 

hierarchical model 

 

Step 2: Identify two-class subsets that exceed the threshold misprediction number and construct a 

multi-class subset if all pair combinations are available in the subsets, eliminating those pair sets. 

 

Step 3: Determine how to integrate the additional classifier on each subset for constructive 

feedback to the main model  

 

Step 4: Train all additional classifiers using data samples with the corresponding ground truth 

classes 

Step 5: Establish the sequential implementation order for integrating the additional classifiers with 

the main model. Give priority to the classifiers, including independent subsets and critical faults. 

 

Step 6: Apply constructive feedback of each subset to the main model one by one and update the 

model if the model accuracy is improved. 

 

Step 7: Follow the same procedure in the training set and use the same weights for linear regression 

of feedback provided by additional classifiers to predict faults for the test set. Report confusion 

matrix and other performance metrics. 

3.4 Validation case studies 

This research validates the efficiency and practicality of the hybrid intelligence 

approach proposed for fault reasoning through the examination of two case studies. 

Due to challenges in setting up experiments and the unavailability of specific data, 

the datasets initially created for air handling unit (AHU) fault classification 

(Granderson & Lin, 2019) were reorganized to align with our solution approach. 

Therefore, it is assumed that the sensor network was predesigned, and the design 

inputs were comprehensively defined and integrated with the BIM model. Hence, 

the case studies focus more on the efficiency of the proposed classification algorithm 
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and decision support model and the effects of human-machine collaboration for 

continuous improvement.   

The performance of the proposed classification algorithm is tested with these case 

studies and compared with commonly known classifiers: 

(i) linear multi-class classifiers: Logistic Regression, Support Vector Machines, 

(ii) nonlinear multi-class classifiers: Decision Trees, Feed-forward Neural 

Networks, Back-propagated Neural Networks 

(iii) hierarchical models of Decision Trees and Back-propagated Neural 

Networks 

Each classifier is trained and tested in MATLAB using the same datasets with input 

normalization on the interval [-2 2]. While the built-in functions are applied for the 

classifiers: Logistic Regression fitcecoc('Learners','linear') with Cclass*(Cclass-

1)/2 binary classifiers; Support Vector Machines fitcecoc('Learners','svm') 

with linear kernel function whereas other hyperparameters such as regularization 

parameter, kernel scale and strategies for extending binary classifiers to handle 

multiple classes are optimized internally; Feed-forward Neural Networks 

fitcnet() where the weights of the network are optimized by Limited-memory 

Broyden-Fletcher-Goldfarb-Shanno algorithm and Decision Trees fitctree() 

whose hyperparameters including split criterion, at least one observation per child 

node, number of maximum splits and number of predictors to select at random for 

each split are optimized internally; Back-propagated Neural Networks are 

implemented in the MATLAB script. The architecture of each Neural Network 

comprises a hidden layer with 20 neurons activated by the sigmoid function, where 

the output layer is activated by either the softmax function for multi-class 

classification or the sigmoid for binary classification. The number of neurons in the 

hidden layer is experimentally decided. The number of neurons in the hidden layer 

of a neural network is typically determined empirically through experimentation and 

optimization. 
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3.4.1 Case Study 1: Simulated multi-zone variable air volume air handling 

unit 

3.4.1.1 Building and system description 

In this case study, we applied a simulated fault dataset generated by Drexel 

University as part of the ASHRAE 1312 project (Granderson & Lin, 2019). The 

dataset is specifically designed for a small-scale test facility at the energy resource 

station in Iowa, built to facilitate the comparison of different energy efficiency 

measures and the documentation of energy consumption. The facility is configured 

for side-by-side testing, incorporating three AHUs, as shown in Figure 3.4. AHU-1 

is responsible for the common areas, while the remaining AHUs are dedicated to the 

A- and B-Test Systems. In this case, we focus on AHU A, which serves four zones, 

three of which are externally exposed, and one is confined to internal conditions.  

AHU-A consists of multiple major assets: the supply air and return air fans; preheat, 

cooling, and heating coils, as well as heating and cooling control valves; and integral 

elements include recirculated air (RA), exhaust air (EA), and outdoor air (OA) 

dampers, alongside the requisite ductwork for facilitating the conveyance of air to 

and from the conditioned spaces. The fans are responsible for circulating air within 

the system. The supply air fan pushes conditioned air into the space, while the return 

air fan draws air back into the unit for further conditioning. The coils play a crucial 

role in adjusting the temperature of the air. The preheat coil warms the air, the 

cooling coil removes heat, and the heating coil adds heat as needed to achieve the 

desired temperature. On the other hand, dampers regulate airflow to optimize 

ventilation and air quality, while valves control fluid flow to precisely manage the 

thermal characteristics of air, collectively enhancing system efficiency and indoor 

environmental control. To further elaborate, these dampers control the proportions 

of recirculated air (air already present in the building), exhaust air (air being expelled 

from the conditioned space), and outdoor air (fresh air from the environment) that 

are mixed and circulated through the system. Simultaneously, valves provide thermal  
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Figure 3.4.  (a) 3D view and (b) floor plans of the studied energy resource station 

building in Ankeny, Iowa 
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regulation by managing the flow of hot or cold water through the heating and cooling 

coils, thereby controlling the temperature of the air being supplied. This integrated 

control of airflow and thermal conditions ensures a comprehensive approach to the 

system operation, optimizing both air quality and temperature control for occupant 

comfort and energy efficiency. 

The system operates in an occupied mode from Monday to Sunday, spanning the 

hours of 6:00 am to 6:00 pm. During this timeframe, specific control parameters are 

implemented to regulate the HVAC system, ensuring optimal environmental 

conditions within the building. The supply fan and return fans maintain continuous 

operation, while the cooling coil valve modulates to uphold a fixed 55°F supply air 

temperature when the outdoor air damper is at a minimum and mechanical heating 

is required. In the mechanical heating mode, the AHU heating coil valve adjusts to 

maintain a fixed 65°F supply air temperature. The supply fan with variable frequency 

drive (VFD) and return fan operate with static pressure and speed control sequences, 

respectively. Minimum outdoor air control is set at a fixed 40% opening when the 

unit is not in economizer mode. The economizer mode is triggered below 65°F 

outdoor air temperature, and the OA damper and return air damper are adjusted to 

maintain the supply air temperature setpoint with the cooling coil valve closed.  

3.4.1.2 Dataset description 

In this case, the fault dataset presented by Granderson and Lin (Granderson & Lin, 

2019)  is employed. It was generated within a simulation environment. Therefore, 

HVACSIM+ software was utilized to model the dynamic behavior of the AHU-A 

system and four associated building zones involving four variable air volume (VAV) 

boxes. This modeling process was conducted for both typical operation and fault 

conditions across summer, winter, and transition seasons. Each fault was simulated 

throughout the day, and data points were recorded at 1-minute intervals. The 

simulations for faulty conditions mainly focus on the three main assets of the air 

handling unit: outdoor damper and valves of heating and cooling coils, which 
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regulate both temperature and air supply within the system. Specifically, in the 

simulation, scenarios involve the damper and cooling coil valve getting stuck while 

the heating coil valve exhibits leakage. These faults are introduced by setting fixed 

control signal values for the damper and cooling coil valve to simulate being stuck 

and manually opening the heating coil bypass valve to simulate leakage. In the 

process of generating the dataset, four distinct levels of getting stuck for dampers are 

simulated: "fully closed," "40% open", "45% open", and "55% open." Similarly, the 

cooling coil valve is modeled to be stuck in positions such as "fully closed," "fully 

open," "partially open 15%", and "partially open 65". In contrast to the instantaneous 

stuck of these two components in any position, the leakage in the heating coil valve 

gradually increases as it deteriorates. Therefore, it is classified into three different 

classes: "Stage 1: 0.4 GPM", "Stage 2: 1.0 GPM," and "Stage 3: 2.0 GPM". On the 

other hand, a fault-free condition is simulated throughout different times of a year. 

Hence, to encompass all possible simulated conditions, the outputs are illustrated in 

Figure 3.5 using a hierarchical fault tree, organizing the hierarchical model. 

Throughout the simulation of the diverse range of operational and fault conditions 

within the main parts of the air handling unit (AHU-A) system, external parameter 

settings and internal reactions governing the system’s behavior and responses were 

reported as design inputs to generate this dataset. These inputs, tabulated in Table 

3.3, consist of air temperatures measured in outdoor air, supplied air, mixed air, and 

return air; control signal to adjust  (i) the damper position of relevant air types, (ii) 

the valve position of the heating and cooling coils separately, and (iii) fan speed of 

both supply and return air; supply air temperature set point; and measured supply air 

duct static pressure. 

Since only the occupancy mode is under investigation, both the supply and return air 

fan statuses are maintained as “on,” and the targeted duct pressure of the supply 

remains constant. As a result, these constant parameters are not subject to evaluation. 

In total, 13 distinct design inputs are assessed to construct the predictive model. 
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Figure 3.5. Fault hierarchy of case 1
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Table 3.3 Design inputs of case 1 

Input Description 

Supply Air Temperature Measured AHU supply air temperature 

Supply Air Temperature Set Point  AHU supply air temperature set point 

Outdoor Air Temperature Measured AHU outdoor air temperature 

Mixed Air Temperature Measured AHU mixed air temperature 

Return Air Temperature Measured AHU return air temperature 

Supply Air Fan Speed Control Signal 
AHU supply air fan speed; ranges from 0 to 1;  

0 - fan speed is 0%, 1 - fan speed is 100% 

Return Air Fan Speed Control Signal 
AHU return air fan speed; ranges from 0 to 1;  

0 - fan speed is 0%, 1 - fan speed is 100% 

Exhaust Air Damper Control Signal    

The control signal for the AHU exhaust air damper 

ranges from 0 to 1; 0 – damper should be fully closed, 

1 – damper should be fully open.  

Outdoor Air Damper Control Signal 

The control signal for the AHU outdoor air damper 

ranges from 0 to 1; the 0 damper should be fully closed, 

and the 1 damper should be fully open. 

Return Air Damper Control Signal 

The control signal for the AHU return air damper 

ranges from 0 to 1;    0 – damper should be fully closed, 

1 – damper should be fully open. 

Cooling Coil Valve Control Signal 

Control signal for AHU cooling coil valve ranges from 

0 to 1;  0 – valve should be fully closed, 1 – valve should 

be fully open. 

Heating Coil Valve Control Signal 

Control signal for AHU heating coil valve ranges from 

0 to 1;   0 – valve should be fully closed, 1 – valve 

should be fully open. 

Supply Air Duct Static Pressure Measured AHU supply air duct static pressure 

3.4.1.3 Model description 

The dataset explained in the previous section is utilized to validate the continuous 

improvement of our hybrid intelligence approach. In other words, the network 

involving the design inputs in the first module and data to train and test the model is 
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given. Therefore, we first reorganize the dataset to fit it to the formulation nature of 

our hybrid approach. As detailed below, three distinct datasets are essential for  

implementing the model: (i) a training dataset for the initial model, (ii) a test dataset 

for the initial model, and (iii) a test dataset for the updated model. Therefore, the 

simulated data points, arranged in a time series, are organized into five groups, each 

containing consecutive points at fixed five-interval intervals, as illustrated in Figure 

3.6. Each group comprises 1872 data points representing "no-fault" scenarios, along 

with 288 points corresponding to "outdoor damper stuck in a fully closed position." 

Additionally, there are 144 data points for each of the remaining ten classes. All 

design input data is normalized to scale the values within the interval of [-2, 2]. 

 

Figure 3.6. A sample representation of training and test sets in iterative steps 

Two iterative steps are followed to test the hybrid approach. In the first iteration, our 

feedback-enhanced hierarchical model is trained with the data points from the first 

three groups, cross-validated with 3-folds reported in Appendix C, and then tested 

with the data from the fourth group. Following this, the decision support model and 

human evaluations are employed to assess the accuracy of the predictions. Feedback 

from this step is incorporated by adding selected misclassified fault samples to the 

training data for updating the existing model in the second step. The model is then 

trained with the updated dataset and tested with the data from the fifth group. 

Simultaneously, the previous model is tested with the same set of data points for the 

sake of comparison, aiming to explore potential improvements in the updated model. 
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In implementing the predictive model, the hierarchical model sequentially 

orchestrates multiple local classifiers to predict the presence of faults in AHU-A 

operations and determine the specific reason if a fault is detected. The following 

local classifiers are proposed: 

(i) In the first level of the hierarchy, a binary classifier is trained to predict 

whether a fault exists. 

(ii) In the second level, a multi-class classifier is developed to classify the source 

asset of the faults, 

(iii) As each component has a single fault type, no classifier is assigned, 

(iv)  In the lowest level, three different multi-class classifiers are employed for 

each fault type. 

Following the prediction of the trained classifiers in the sequential hierarchy, a 

confusion matrix is constructed for the training dataset.  Based on the confusing class 

sets with more misclassifications than the threshold value, additional local classifiers 

are developed to provide feedback to the model and enhance its performance. The 

threshold value is set to 10. 

The performance of both the initial and updated versions of the proposed model is 

compared with different multi-class classifiers hierarchical models introduced 

above. 

3.4.1.4 Results 

3.4.1.4.1 Performance analysis of hybrid intelligence approach 

As introduced in the previous section, the efficiency of the proposed approach for 

fault reasoning is investigated following at least two iterative steps. In the first 

iteration, the hierarchical model undergoes training using multiple local classifiers, 

each specializing in a specific part of the fault hierarchy. In this model, the binary 

classifier initially predicts the existence of a fault in the system with an accuracy rate 
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of 98.76%. Moving to the next hierarchical level, where the focus shifts to 

identifying specific boundaries within possible fault sources, such as the outdoor 

damper and the valve of heating and cooling coils, the model showcases robust 

performance. The multi-class classifiers effectively delineate fault boundaries, with 

only one misprediction observed out of 5534 data instances. This result highlights 

the model's precision in localizing faults within fault sources. Finally, as expected, 

the local classifiers at the lowest level of the hierarchy precisely classify the severity 

level of each fault type. As a result of this, our hierarchical model predicts the 

training data with 12 distinct classes with an accuracy rate of 98.75%. The 

predictions and ground truth fault classes are compared in a confusion matrix to show 

the performance of the hierarchical model. It appears that the model encounters 

challenges in distinguishing between two specific class pairs: 

(i) "0:No-fault" vs "4-2:Stage 2: 1.00 GM level leaking of heating coil valve" 

(ii) "0:No-fault" vs "4-6:Stuck cooling coil valve in a fully closed position". 

Considering the threshold value, these particular pairs exhibit more 

misclassifications. In the first one, 42 fault-free instances are incorrectly predicted 

as faulty conditions, while 54 fault data instances are missed by erroneously 

assessing that no fault exists. These are 13 and 27 data instances in the second one. 

Therefore, implementing a feedback mechanism is essential to enhance the model's 

ability to differentiate between these classes accurately. As '2: Stage 2: 1.00 GM 

level leaking of heating coil valve' and '6: Stuck cooling coil valve in a fully closed 

position' can be effectively differentiated in the hierarchical model, two additional 

binary classifiers are introduced. These classifiers serve to provide valuable feedback 

on the main model. Since both faults are assumed to be at the same criticality level, 

the priority for implementing feedback is determined by the number of 

misclassifications observed in both pairs. Hence, the feedback from the first pair, 

which incurred 96 misclassifications, is initially implemented, followed by the 

feedback from the second pair with 40 misclassifications. 
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The confusion matrix reveals a significant imbalance in data distribution between 'no 

fault' cases and other fault conditions used for providing feedback. Additionally, the 

model effortlessly distinguishes 'no fault' instances from different severity levels of 

leaking heating and stuck cooling coil valves. Hence, utilizing fault sources instead 

of the specified severity level of their fault types may offer more valuable feedback 

to the main model, addressing issues related to balanced data distribution and 

information loss resulting from its hierarchical structure. The following additional 

classifiers are developed to gain global information and improve the capability of the 

main hierarchical model with constructive feedback: 

(i) A binary classifier to distinguish “0:no-fault”  and faults of “2:2heating coil 

valve”,  

(ii) A binary classifier to distinguish “0:no-fault” and faults of “2:3 cooling coil 

valve”,  

In this context, the faulty classes are assessed as 'critical' and serve as a reference in 

the feedback calculations. Following the training of additional classifiers, linear 

regression is utilized to determine the weights of the additional classifiers and the 

main model, facilitating the update of the overall model. In the first case, the weights 

are optimized as w2,02=[1.0303 -0.0203]; however, it is corrected as w2,02=[1 0] since 

the negative feedback of the main model to the overall one is not acceptable. Within 

this upgrade, the overall model corrects nearly half of the misclassifications in the 

hierarchical model. Therefore, the first feedback is accepted. In the second case, the 

regression model adjusts the weights as w2,03= [0.8303 0.1691], where the additional 

classifier contributes more to the overall model. This update indicates that the overall 

model enhances accurate predictions by one instance in total, as outlined in Table 

3.4; however, the missed faults decrease to 5 cases (previously 27), whereas false 

fault alarms increase to 34 (previously 13). From the maintenance office's 

perspective, an increase in false fault alarms adds to the workload of the site team, 

requiring inspection of reported faults and raising concerns about the predictive 

model's reliability. Conversely, missing faults have the potential to impact the 

system's functionality. Given the higher criticality of functionality in this case, the 
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feedback from the additional classifier is deemed constructive and accepted. 

Consequently, this feedback enhances the accuracy rate of the model to 99.21%. 

We tested the performance of the hierarchical model with a set of test instances, 

using the multiple trained classifiers arranged in a predefined hierarchy.  The results 

show that the hierarchical model predicts the classes of the faults with an accuracy 

rate of 98.42%. However, similar to challenges faced during training, the model 

struggles to differentiate between pairs of the same class. In the first pair case, it 

incorrectly classifies 19 fault-free instances as faulty while missing 17 actual faults, 

resulting in misclassifications of 5 and 11 instances in the second case. As reported 

in the confusion matrix of the test cases in Table 3.5, introducing feedback classifiers 

to the overall model, incorporating optimized weights obtained during training, 

reduces false fault alarms to 13 instances in the first case, while keeping the number 

of missed faults the same. In the second case, the feedback mechanism decreases the 

total number of misclassified instances by three; however, missed faults decrease to 

3, while false fault alarms increase to 11. Consequently, this feedback mechanism 

corrects nearly 17% of the misclassified instances in the hierarchical model and 

enhances the overall accuracy rate to 98.69%.  

The decision support model assesses successive model predictions of test instances 

at five-minute intervals. It identifies a single-step change in prediction as a false 

prediction, while the model flags suspicious prediction patterns for human evaluation 

through work order requests. These patterns include (i) the sustained prediction of 

the same reason after a change in at least two successive instances (e.g., 0-6-6-0, 8-

0-0-0) and (ii) predictions changing at least four times within one or two interval 

steps (e.g., 0-6-0-6-0-0-6, 0-8-0-0-8-0-8). Therefore, the model recognizes 19 

instances out of 49 as false predictions and stores them in the database. The 

remaining predictions are found suspicious and reported to the maintenance office 

through 7 work order requests, comprising three false alarms and four missing faults. 

It is assumed that the site team inspects both heating and cooling coil valves and 

reports the results. Without any feedback, the workload of the site team could have 

escalated, necessitating four additional inspections, encompassing three false alarms  
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Table 3.4 Confusion matrix of the training dataset trained by the initial feedback-enhanced hierarchical model for case 1 

Training Set 

Predicted 

No-

Fault 

Outdoor air damper (stuck) Heating coil valve (leaking) Cooling coil valve (stuck) 

Fully 

closed 

40% 

open 

45% 

open 

55% 

open 

Stage 1: 

0.4 GPM 

Stage 2: 1.0 

GPM 

Stage 3: 

2.0 GPM 

Fully 

closed 

Fully 

open 

Partially 

open 15% 

Partially 

open 65% 

A
ct

u
al

 

No-Fault 5561 1 0 0 0 0 20 0 34 0 0 0 

Outdoor 

air 

damper 

(stuck) 

Fully 

closed 
1 863 0 0 0 0 0 0 0 0 0 0 

40% open 0 0 432 0 0 0 0 0 0 0 0 0 

45% open 0 0 0 432 0 0 0 0 0 0 0 0 

55% open 0 0 0 0 431 0 0 1 0 0 0 0 

Heating  

coil 

valve 

(leaking) 

Stage 1: 

0.4 GPM 
0 0 0 0 0 432 0 0 0 0 0 0 

Stage 2: 

1.0 GPM 
27 0 0 0 0 0 407 0 0 0 0 0 

Stage 3: 

2.0 GPM 
0 0 0 0 0 0 0 432 0 0 0 0 

Cooling 

coil 

valve 

(stuck) 

Fully 

closed 
5 0 0 0 0 0 0 0 428 0 0 0 

Fully open 0 0 0 0 0 0 0 0 0 864 0 0 

Partially 

open 15% 
0 0 0 0 0 0 0 0 0 0 432 0 

Partially 

open 65% 
0 0 0 0 0 0 0 0 0 0 0 432 
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Table 3.5 Confusion matrix of the test dataset trained by the initial feedback-enhanced hierarchical model for case 1 

Training Set 

Model 

No-

Fault 

Outdoor air damper (stuck) Heating coil valve (leaking) Cooling coil valve (stuck) 

Fully 

closed 

40% 

open 

45% 

open 

55% 

open 

Stage 1: 

0.4 GPM 

Stage 2: 1.0 

GPM 

Stage 3: 

2.0 GPM 

Fully 

closed 

Fully 

open 

Partially 

open 15% 

Partially 

open 65% 

A
ct

u
al

 

No-Fault 1848 0 0 0 0 0 13 0 11 0 0 0 

Outdoor 

air 

damper 

(stuck) 

Fully 

closed 
0 288 0 0 0 0 0 0 0 0 0 0 

40% open 0 0 144 0 0 0 0 0 0 0 0 0 

45% open 0 0 0 142 1 1 0 0 0 0 0 0 

55% open 0 0 0 0 143 0 0 1 0 0 0 0 

Heating  

coil 

valve 

(leaking) 

Stage 1: 

0.4 GPM 
0 0 0 0 0 144 0 0 0 0 0 0 

Stage 2: 

1.0 GPM 
17 0 0 0 0 0 126 0 1 0 0 0 

Stage 3: 

2.0 GPM 
0 0 0 0 1 0 0 143 0 0 0 0 

Cooling 

coil 

valve 

(stuck) 

Fully 

closed 
3 0 0 0 0 0 0 0 133 0 0 0 

Fully open 0 0 0 0 0 0 0 0 0 287 0 1 

Partially 

open 15% 
1 0 0 0 0 0 0 0 0 0 143 0 

Partially 

open 65% 
0 0 0 0 0 0 0 0 0 0 0 144 
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and one missed fault case. Hence, using both direct prediction of the decision support 

model and site feedback, 42 misclassified samples are evaluated and added to the 

training dataset to update the overall model. 

Following the update of the training dataset, all local classifiers within the 

hierarchical model undergo retraining. During this training session, each previously 

trained classifier's final version from the preceding step serves as the starting point 

for updating, facilitating an accelerated learning process. Consequently, the 

hierarchical model is reconstructed with the updated local classifiers. Upon the 

inclusion of new samples in the training dataset, the prediction accuracy of the 

original hierarchical model experiences a decline to 98.46%. In contrast, the updated 

hierarchical model demonstrates an improvement in accuracy, reaching a rate of 

98.60 %. The comparison of actual and predicted fault reasoning classes shows the  

challenges to distinguish fault-free conditions with the “Stage 2: 1.00 GM” level of  

heating coil leakage and stuck cooling coil in the fully closed position as reported in  

Table 3.6. Therefore, the same local classifiers are retrained to provide feedback to  

the updated model. 

Table 3.6 Confusion matrix of the training dataset for selected fault classes trained 

by the updated feedback-enhanced hierarchical model for case 1 

  Predicted 

Training Set No-Fault Stage 2:1.0 GPM 

Leaking of heating 

coil valve 

Stuck cooling coil 

valve at fully closed 

position 

Actual 

No-Fault 5554 46 27 

Stage 2:1.0 GPM 

Leaking of heating 

coil valve 

67 381 0 

Stuck cooling coil 

valve at fully closed 

position 

14 0 430 
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After retraining these additional classifiers, linear regression is employed to update 

the contribution rates of both the additional classifier and the updated hierarchical 

model, aiming to enhance the overall model. In the first case, the optimized weights 

are determined as wu,2,02=[0.9855, 0.0154], signifying a substantial influence of the 

additional classifier on the decision-making process. Within this contribution, the 

overall model successfully rectifies the prediction of 46 instances out of 114. In the 

second case, the regression model refines the weights to wu,2,03=[0.9179, 0.0827]; 

however, this adjustment does not yield a noticeable enhancement in the prediction 

accuracy of the overall model. As a result of this, only the first feedback is accepted 

and integrated into the overall model. This feedback enhances the prediction 

accuracy of the overall model to 99.00%, as illustrated in Table 3.7, which presents 

the finalized confusion matrix of the training set. 

Finally, the performance of the overall model is assessed with new test instances. 

The hierarchical model exhibits a commendable accuracy rate of 98.58%, accurately 

predicting most cases. However, challenges persist in distinguishing between pairs 

of the same class. By incorporating only constructive feedback provided from the 

first case, the model successfully decreases false leaking alarms to 13 instances 

(compared to the previous 17 in the hierarchical model), and missing leaking faults 

decrease to 15 (previously 21), as reported in Table 3.8. Hence, this feedback corrects 

ten predictions, leading to an updated prediction accuracy of 98.90%. 

The decision support model tracks the predictions and identifies the patterns for the 

successive incoming ones. Out of 41 misclassifications, the model detects nine 

instances, recording them in the database. In contrast, the model recognizes some 

contradictory patterns for the remaining cases and prepares four work order requests 

to the maintenance office to evaluate the situation. These requests involve two false 

alarms and two missing faults. Compared to the hierarchical model, the number of 

human interventions decreases by two times. Additionally, the model updates 

contribute to a reduction in the necessity for on-site inspections.
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Table 3.7 Confusion matrix of the training dataset trained by the updated feedback-enhanced hierarchical model for case 1 

Training Set 

Model 

No-

Fault 

Outdoor air damper (stuck) Heating coil valve (leaking) Cooling coil valve (stuck) 

Fully 

closed 

40% 

open 

45% 

open 

55% 

open 

Stage 1: 

0.4 GPM 

Stage 2: 1.0 

GPM 

Stage 3: 

2.0 GPM 

Fully 

closed 

Fully 

open 

Partially 

open 15% 

Partially 

open 65% 

A
ct

u
al

 

No-Fault 5558 0 0 0 1 0 38 0 31 0 0 0 

Outdoor 

air 

damper 

(stuck) 

Fully 

closed 
2 862 0 0 0 0 0 0 0 0 0 0 

40% open 0 0 432 0 0 0 0 0 0 0 0 0 

45% open 0 0 0 432 0 0 0 0 0 0 0 0 

55% open 0 0 0 0 432 0 0 1 0 0 0 0 

Heating  

coil 

valve 

(leaking) 

Stage 1: 

0.4 GPM 
0 0 0 0 0 432 0 0 0 0 0 0 

Stage 2: 

1.0 GPM 
30 0 0 0 0 0 418 0 0 0 0 0 

Stage 3: 

2.0 GPM 
0 0 0 0 0 0 0 433 0 0 0 0 

Cooling 

coil 

valve 

(stuck) 

Fully 

closed 
10 0 0 0 0 0 0 0 434 0 0 0 

Fully open 0 0 0 0 0 0 0 0 0 864 0 0 

Partially 

open 15% 
0 0 0 0 0 0 0 0 0 0 432 0 

Partially 

open 65% 
0 0 0 0 0 0 0 0 0 0 0 432 
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Table 3.8 Confusion matrix of the test dataset trained by the updated feedback-enhanced hierarchical model for case 1 

Training Set 

Model 

No-

Fault 

Outdoor air damper (stuck) Heating coil valve (leaking) Cooling coil valve (stuck) 

Fully 

closed 

40% 

open 

45% 

open 

55% 

open 

Stage 1: 

0.4 GPM 

Stage 2: 1.0 

GPM 

Stage 3: 

2.0 GPM 

Fully 

closed 

Fully 

open 

Partially 

open 15% 

Partially 

open 65% 

A
ct

u
al

 

No-Fault 1843 0 0 0 1 0 15 0 13 0 0 0 

Outdoor 

air 

damper 

(stuck) 

Fully 

closed 
0 288 0 0 0 0 0 0 0 0 0 0 

40% open 0 0 144 0 0 0 0 0 0 0 0 0 

45% open 0 0 0 144 0 0 0 0 0 0 0 0 

55% open 0 0 0 0 144 0 0 0 0 0 0 0 

Heating  

coil 

valve 

(leaking) 

Stage 1: 

0.4 GPM 
0 0 0 0 0 144 0 0 0 0 0 0 

Stage 2: 

1.0 GPM 
10 0 0 0 0 0 134 0 0 0 0 0 

Stage 3: 

2.0 GPM 
0 0 0 0 1 0 0 143 0 0 0 0 

Cooling 

coil 

valve 

(stuck) 

Fully 

closed 
1 0 0 0 0 0 0 0 143 0 0 0 

Fully open 0 0 0 0 0 0 0 0 0 288 0 0 

Partially 

open 15% 
0 0 0 0 0 0 0 0 0 0 144 0 

Partially 

open 65% 
0 0 0 0 0 0 0 0 0 0 0 144 
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In conclusion, we introduce a hybrid intelligence approach to enhance fault 

reasoning predictability throughout the life cycle of a system. The effectiveness of 

this approach is tested by comparing the performance of the original hierarchical 

model with the updated feedback-enhanced hierarchical model using test instances 

in the second step. Results indicate that the original model achieves a prediction 

accuracy of 98.46%, while our model improves accuracy by accurately predicting 

29% of previously misclassified instances, leading to an overall accuracy of 98.90%. 

This improvement comprises a 0.12% contribution from regular classifier updates, 

and the feedback mechanism significantly contributes with a 0.32% enhancement in 

total. Moreover, these improvements reduce the workload by decreasing the need for 

human intervention for decision-making. Therefore, this underscores the robustness 

of our model in addressing the hierarchical fault reasoning problem. 

3.4.1.4.2 Comparative analyses of FEHNNs with AI methods 

The performance of our classification algorithm, Feedback-enhanced Hierarchical 

Neural Networks, is tested with both initial and updated training and test datasets 

and compared with other commonly known classification algorithms: 

(i) Logistic Regression and Support Vector Machines as linear multi-class 

classifiers,  

(ii) Decision Trees and Neural Networks, which include both Feed-forward 

Neural Networks and Back-propagated Neural Networks, as nonlinear multi-

class classifiers, 

(iii) Hierarchical models of Decision Trees and Back-propagated Neural 

Networks. 

The comparison results for both datasets are detailed in Tables 3.9 and 3.10. As 

indicated in the results, within the additional misclassified samples in the original 

training dataset, the newly trained classifiers exhibit a decrease in their training 

accuracy compared to the original ones. Overall, the algorithms display similar  
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Table 3.9 Prediction accuracy of different classification algorithms using original 

dataset for case 1 

 Training Accuracy 

(%) 

Testing Accuracy 

(%) 

Logistic Regression 91.56 91.67 

Support Vector Machines 91.59 91.67 

Feed-forward Neural Network 96.97 96.66 

Decision Tree 99.07 98.16 

Hierarchical Decision Tree 98.96 97.92 

Back-propagated Neural Network 98.45 97.76 

Hierarchical Neural Networks 98.75 98.42 

Feedback Enhanced Hierarchical 

Neural Networks 

99.21 98.69 

 

Table 3.10 Prediction accuracy of different classification algorithms using updated 

training set for case 1 

 Training Accuracy 

(%) 

Testing Accuracy 

(%) 

Logistic Regression 91.36 91.64 

Support Vector Machines 91.36 91.64 

Feed-forward Neural Network 96.60 96.88 

Decision Tree 98.94 98.56 

Hierarchical Decision Tree 98.97 98.34 

Back-propagated Neural Network 98.38 98.42 

Hierarchical Neural Networks 98.60 98.58 

Feedback Enhanced Hierarchical 

Neural Networks 

99.09 98.93 
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behavior with minor differences. To begin with, linear classifiers, including Logistic 

Regression and Support Vector Machines, consistently achieve accuracy levels 

exceeding 90%, establishing a robust baseline for comparison. However, nonlinear 

classifiers prove to offer more resilient solutions in comparison to their linear 

counterparts, attaining a notable accuracy of over 96%.  

In nonlinear comparison, while Decision Trees yield more accurate predictions for 

training sets than various versions of multi-class Neural Networks, there exists a 

noticeable gap between its training and testing accuracy, indicating potential 

overfitting. Hence, BPNN exhibits better performance than with decision trees in test 

sets. In the case of FEHNN, it not only enhances the performance of its root 

algorithms but also achieves the highest testing accuracy among all the algorithms 

considered. 

Comparing the performance of our hierarchical neural network model with other 

neural network architectures, such as the Feed-forward Neural Network and Back-

propagated Neural Network, reveals the superiority of the hierarchical approach. 

While the Feed-forward Neural Network exhibits slightly lower accuracy, the 

hierarchical models, especially FEHNN, demonstrate better control over-

generalization. Additionally, the FEHNN model outperforms the Back-propagated 

Neural Network in both training and testing accuracies. In contrast, the hierarchical 

model based on Decision Trees does not achieve solutions with the same level of 

accuracy and efficiency as the multi-classifier counterpart since the hierarchical 

model requires mitigating overfitting to prevent the accumulation of information loss 

throughout the hierarchical structure. Therefore, our solution showcases its 

effectiveness in capturing hierarchical relationships and incorporating feedback 

mechanisms. These results underline the advantage of employing a hierarchical 

structure in neural networks, particularly with feedback enhancements. This 

approach enhances the generalization capabilities of the hierarchical models and 

leads to superior performance and robustness in addressing this fault reasoning 

problem. 
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3.4.2 Experimental case study 2: experimental single-zone variable air 

volume air handling unit 

3.4.2.1 Building and system description  

In this case, we applied the experimental dataset for a Single Zone Variable Air 

Volume (SZVAV) Air Handling Unit generated at Lawrence Berkeley National 

Laboratory (LBNL) in their FLEXLAB test facility (Granderson & Lin, 2019), 

figured out in Figure 3.6. The AHU used in the experiments served test cell X3A and 

featured major components such as a supply air fan with a VFD, cooling and heating 

coils, cooling and heating control valves, outdoor air, return air, and exhaust air 

dampers where it is schematic diagram is given Figure 3.7. The functional roles of 

each reported asset remain consistent with those in the initial case study. Throughout 

the summer of 2017, the AHU operated as a SZVAV AHU for data acquisition 

without the incorporation of dehumidification control measures. 

The AHU system operates in an occupied mode throughout the week, from Monday 

to Sunday, spanning the hours of 6:00 am to 6:00 pm. Within this timeframe, specific 

control parameters are implemented to regulate the system, ensuring optimal 

environmental conditions within the building. Concerning fan operation, the supply 

fan consistently operates. Specific measures have been implemented to control the 

supply air temperature. In cooling mode, the heating coil valve is closed, and the 

cooling coil valve is adjusted to maintain a preset Supply Air Temperature (SAT) 

within the range of 55°F/12.8°C to 72.5°F/22.5°C based on zone demand. In heating 

mode, the cooling coil valve is closed, and the heating coil valve is adjusted to 

maintain the SAT within the range of 72.5°F/22.5°C to 86°F/30°C based on zone 

demand. To control the supply air fan speed, the reset occurs between a minimum 

(10%) and maximum speed (50% in cooling mode, 30% in heating mode) based on 

zone demand. The minimum speed aligns with ventilation needs when the outdoor 

air damper is fully open, and the maximum speed is set for the required design  
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(a) 

 

(b) 

Figure 3.7 (a) 3D view of FLEXLAB Test cell X3A and (b) Schematic diagram of 

single-zone AHU in FLEXLAB 

airflow for each mode. When not in economizer mode, the OA damper is fixed at a 

minimum position (10% to 15%), subject to resetting based on supply fan speed. 

Simultaneously, the return air damper is fully open, and the exhaust air damper is 

fully closed. Economizer mode activates when the outdoor air temperature is 3.6°F 

(2°C) lower than the return air temperature. During this mode, the OA damper opens 

to 100%, the RA damper gradually closes to 0%, and the EA damper gradually opens 

to 100%. In order to control the space temperature, the designated heating and 

Test cell X3A used 
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cooling setpoints for the zone are maintained at 71°F/21.7°C and 74°F/23.3°C, 

respectively, throughout the occupied period. 

3.4.2.2 Dataset description 

As introduced in the previous section, we utilized the experimental dataset generated 

for an Air Handling Unit (AHU) with variable air volume serving a single zone in 

FLEXLAB at Lawrence Berkeley National Laboratory. In that experiment, faults 

were imposed on the control mechanism of the three main components of the AHU 

system: the outdoor damper and the valves of the heating and cooling coils. In the 

"stuck" scenario, the control signal values are automatically overridden with a 

constant value corresponding to the given conditions of any asset. In the "leaking" 

scenario, the bypass valve of the heating or cooling coils is activated to be open in a 

proportional position equivalent to the amount of leakage. In those fault scenarios, 

outdoor dampers are stuck either when they are "fully open" or at the "minimum 

position"; the heating coil valve is stuck either when it is "fully open" or "partially 

fully open," and it is leaking with an intensity of "40% of max coil valve flow"; and 

the cooling coil valve is stuck when it is "fully open" and is leaking with an intensity 

of "50% of max coil valve flow". Furthermore, normal conditions were also 

examined. Each scenario was tested throughout the day, with data points recorded at 

1-minute intervals. Therefore, to cover all conceivable experimented conditions, the 

outputs are depicted in Figure 3.8 using a hierarchical fault tree, organizing the 

model hierarchically. 

During the experiments encompassing various operational and fault conditions in the 

primary assets of the air handling unit, external parameter settings, and internal 

reactions governing the system's behavior and responses were documented as design 

inputs to create this dataset. The inputs, presented in Table 3.11, include air 

temperatures measured in outdoor air, supplied air, mixed air, and return air; the 

control signal adjustments for (i) the damper position of relevant air types, (ii) the 

valve position of the heating and cooling coils separately, and (iii) the fan speed of 
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the supply air. Additionally, the supply air temperature heating and cooling set points 

are included. As only the occupancy mode is under investigation, the supply air fan 

statuses are consistently maintained as "on." This parameter is not evaluated as it 

remains constant throughout the experiment. Therefore, a total of 13 distinct design 

inputs are considered for constructing the predictive model. 

Table 3.11 Design inputs for case 2 

Input Description 

Supply Air Temperature Measured AHU supply air temperature 

Supply Air Temperature Heating Set 

Point  
AHU supply air temperature heating set point 

Supply Air Temperature Cooling Set 

Point  
AHU supply air temperature cooling set point 

Outdoor Air Temperature Measured AHU outdoor air temperature 

Mixed Air Temperature Measured AHU mixed air temperature 

Return Air Temperature Measured AHU return air temperature 

Supply Air Fan Speed Control Signal 
AHU supply air fan speed; ranges from 0 to 1; 

0 - fan speed is 0%, 1 - fan speed is 100% 

Exhaust Air Damper Control Signal    

Control signal for AHU exhaust air damper ranges 

from 0 to 1; 0 – damper should be fully closed, 1 – 

damper should be fully open.  

Outdoor Air Damper Control Signal 

The control signal for the AHU outdoor air damper 

ranges from 0 to 1; the 0 damper should be fully 

closed, and the 1 damper should be fully open. 

Return Air Damper Control Signal 

The control signal for the AHU return air damper 

ranges from 0 to 1;    0 – damper should be fully 

closed, 1 – damper should be fully open. 

Cooling Coil Valve Control Signal 

Control signal for AHU cooling coil valve ranges 

from 0 to 1;     0 – valve should be fully closed, 1 – 

valve should be fully open. 

Heating Coil Valve Control Signal 

Control signal for AHU heating coil valve ranges 

from 0 to 1;          0 – valve should be fully closed, 1 

– valve should be fully open. 
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Figure 3.8. Fault hierarchy of case 2
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3.4.2.3 Model description 

Our hybrid intelligence approach is further validated using experimental datasets to 

demonstrate its continuous improvements. Following a two-step iterative process, 

similar to the procedure in the first case study, a systematic sampling approach is 

employed to group the data instances into five different sets. Each set comprises 

consecutive instances at fixed five-minute intervals, encompassing 576 instances. 

representing "no-fault" scenarios and 144 instances for each faulty class. Similar to 

the previous case, the design input data undergoes normalization, scaling the values 

within the interval of [-2, 2]. Through the two iterative step implementation, initially, 

a feedback-enhanced hierarchical model is trained with data from the first three 

groups, cross-validated reported in Appendix C, and tested with the fourth group. 

After that, the decision support model and human evaluations assess prediction 

accuracy. Feedback is incorporated by adding selected misclassified fault samples to 

update the model in the second step. The updated model is trained and tested with 

data from the fifth group, while the previous model is tested simultaneously for 

comparison, aiming to explore potential improvements. 

A hierarchical model sequentially coordinates various local classifiers to analyze the 

operations of AHU. The goal of the model is to identify specific reasons if a fault is 

detected. The following local classifiers are proposed: 

(i) In the first level of the hierarchy, a binary classifier is trained to predict 

whether a fault exists. 

(ii) In the second level, a multi-class classifier is developed to classify the source 

asset of the faults, 

(iii) As the outdoor damper has only stuck faults, no classifier is assigned to it. 

In contrast, two binary classifiers are trained separately to distinguish stuck 

and leaking faults for heating and cooling coil valves. 

(iv) At the lowest level, two binary classifiers are proposed for stuck faults of the 

outdoor damper and heating coil valve to differentiate their positions. 
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Following the same procedure in the first case study, a confusion matrix utilizing the 

finalized predictions of the hierarchical model and ground truth conditions is 

generated for the training dataset. Additional local classifiers are then developed 

based on confusing class sets with a misclassification count exceeding the threshold 

value. The threshold value is set at 10. This feedback mechanism aims to improve 

the model's performance by addressing classes with a higher number of 

misclassifications. 

 The performance of both the initial and updated versions of the proposed model is 

evaluated and compared with the linear and nonlinear classifiers used in the previous 

case study. 

3.4.2.4 Results 

3.4.2.4.1 Performance analysis of hybrid intelligence approach 

We examine the efficacy of our approach for the second case through a systematic, 

two-step iteration procedure. To begin with, our hierarchical model undergoes 

training employing a set of local classifiers, each specialized in a designated facet of 

the fault hierarchy. Within this model, the binary classifier excels in initially 

predicting the presence of a fault in the system, achieving a reasonable accuracy rate 

of 99.37%. At the next level, the model accurately detects all potential fault sources, 

such as the outdoor damper and the valve of heating and cooling coils. Advancing to 

the fault type hierarchical level, two different classifiers are trained to differentiate 

“Stuck” and “Leaking” faults of coil valves. The cooling coil dataset classifier 

precisely separates the decision boundaries between the two faults, while the other 

classifier faced challenges in distinguishing fault types for only two instances, 

yielding an accuracy rate of 99.85%. Further, two classifiers are employed to 

distinguish the "Stuck" position for the outdoor damper and heating coil valve. While 

the outdoor damper classifier accurately addressed all instances, the heating coil 

valve model struggled with differentiation in a considerable number of data 
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instances. Consequently, our hierarchical model predicts the training data with eight 

distinct classes, achieving an overall accuracy rate of 99.10%. The model's 

predictions are evaluated against ground truth fault classes using a confusion matrix. 

Noteworthy challenges emerged in distinguishing between two specific class pairs: 

(i) "0:No-fault" vs "4-2: Stuck outdoor damper in a fully open position." 

(ii) "4-3: Stuck heating coil valve in a fully open position " vs "4-4: Stuck 

heating coil valve in a fully partially 50% open position ". 

These pairs exhibit more misclassifications, with 15 fault-free instances erroneously 

predicted as faulty in the first case and 14 actual fault instances missing. In the 

second case, the stuck position of the heating cooling valve is mispredicted in 11 

instances against nine fully open valves and two partially open valves in the ground 

truth. Therefore, implementing a feedback mechanism is imperative to enhance the 

model's accuracy in distinguishing these specific classes accurately.  

The feedback solution is independently applied to the main hierarchical model as the 

two pairs have no common faults. Starting with the first pair, where the model 

misclassifies an instance with normal operations as "4-1: Stuck outdoor damper at 

minimum position", the focus is directed towards distinguishing faults in this specific 

pair. To provide comprehensive information gain, a binary classifier is implemented 

to differentiate between (i) "0: No-fault" and "4-2: Stuck outdoor damper in a fully 

open position". After training the binary classifier, referencing the fault condition, 

linear regression is applied to calculate the weights of the additional classifiers and 

the main model to improve the overall model.  Within the optimization of the 

contribution weights as w4,02=[0.7742 0.2332], the feedback classifier plays more 

role in the determination of the predictions; hence, the overall model decreases the 

number of false alarms and missing faults to 7 and 7, respectively, accurately 

predicting the more than half of the misclassified instances. 

In the second pair, where the model encounters challenges in separating only two 

classes at the lowest hierarchy level, the architecture of the Neural Network is 

modified to offer value-additive feedback. Therefore, a binary Back-propagated 
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Neural Network classifier is employed, featuring two hidden layers, each comprising 

ten neurons activated by the sigmoid function. This classifier is specifically designed 

to classify the severity level of a heating valve stuck. Within linear regression, the 

feedback classifier dominates the process with contribution weights denoted as 

w4,34=[0.9258 0.0751].  This refinement results in a noteworthy reduction in the 

number of misclassified faults to 7. Through these improvements, reported in Table 

3.12, the accuracy rate of the model on the training dataset increases to 99.49%. 

Furthermore, we conduct a performance assessment of the hierarchical model with a 

test dataset. The results revealed that the hierarchical model predicts fault classes 

with an accuracy rate of 95.83%. As anticipated, similar to the challenges faced 

during training, the model struggles with differentiating between pairs of the same 

class. Moreover, in contrast to the training set and cross-validation of the training 

dataset, a new pattern is identified, where instances of faulty conditions with a stuck 

cooling coil valve at a fully open position are erroneously predicted as fault-free. 

Given that the feedback model addresses only the first case, it corrects the testing 

results pertaining to these instances. Consequently, the number of false alarm 

instances decreases to 8, compared to 21 in the hierarchical model. Similarly, 

missing stuck damper faults decrease to 6 instances from the initial 12 cases before 

the feedback. On the other hand, under the dominance of the feedback classifier, 

incorrectly misclassified instances decrease to 3 (3+0) from 9 (5+4). Hence, this 

feedback corrects 25 predictions, resulting in an updated prediction accuracy of 

97.41%, marking a 1.58% increase in total accuracy, as presented in Table 3.13. 

Following the same procedure as in the first case study, the decision support model 

identifies 14 instances out of 41 as false predictions, which are then stored in the 

database. The remaining predictions are deemed suspicious and reported to the 

maintenance office through 6 work order requests. These requests consist of three 

false alarms, two missing faults, and one incorrect fault. Consequently, by utilizing 

both the direct predictions of the decision support model and the feedback from the 

site, a total of 34 misclassified samples are thoroughly evaluated and incorporated 

into the train.  
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   Table 3.12 Confusion matrix of the training dataset trained by the initial feedback-enhanced hierarchical model for case 2 

Training Set 

Model 

No-Fault 

Outdoor damper Heating coil valve Cooling coil valve 

Stuck Stuck Leaking Stuck Leaking 

Minimum 

position 

Fully 

open 

Fully 

open 

Partially 

open 50% 

40% of max 

coil valve 

flow 

Fully 

open 

50% of 

max coil 

valve flow 

A
ct

u
al

 

No-Fault 1720 1 7 0 0 0 0 0 

Outdoor 

damper 
Stuck 

Minimum 

position 
0 432 0 0 0 0 0 0 

Fully open 7 0 425 0 0 0 0 0 

Heating 

coil valve 

Stuck 

Fully open 0 0 0 426 5 1 0 0 

Partially open 

50% 
0 0 0 2 430 0 0 0 

Leaking 
40% of max 

coil valve flow 
0 0 0 1 0 431 0 0 

Cooling 

coil valve 

Stuck Fully open 0 0 0 0 0 0 432 0 

Leaking 
50% of max 

coil valve flow 
0 0 0 0 0 0 0 432 
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Table 3.13. Confusion matrix of the test dataset trained by the initial feedback-enhanced hierarchical model for case 2 

Training Set 

Model 

No-Fault 

Outdoor damper Heating coil valve Cooling coil valve 

Stuck Stuck Leaking Stuck Leaking 

Minimum 

position 

Fully 

open 

Fully 

open 

Partially 

open 50% 

40% of 

max coil 

valve flow 

Fully 

open 

50% of max 

coil valve 

flow 

A
ct

u
al

 

No-Fault 563 1 8 0 0 0 2 2 

Outdoor 

damper 
Stuck 

Minimum 

position 
1 143 0 0 0 0 0 0 

Fully open 6 0 138 0 0 0 0 0 

Heating 

coil valve 

Stuck 

Fully open 0 0 0 140 3 1 0 0 

Partially open 

50% 
0 0 0 0 142 2 0 0 

Leaking 
40% of max 

coil valve flow 
0 0 0 0 0 144 0 0 

Cooling 

coil valve 

Stuck Fully open 15 0 0 0 0 0 129 0 

Leaking 
50% of max 

coil valve flow 
0 0 0 0 0 0 0 144 



 

 

125 

After updating the training set, all local classifiers of the hierarchical model are 

retrained, employing their previous versions as initial points to expedite the learning 

process. Consequently, the hierarchical model is reorganized using the updated local 

classifiers. In this new learning process, the updated hierarchical model demonstrates 

an improved accuracy rate of 98.91%, compared to the original model's accuracy of 

98.62%. A detailed analysis of the confusion matrix indicates that the challenges 

faced by the model in the previous iteration persist for the same pairs. In the first 

case, the model incorrectly classifies 12 instances as faults, while it misses the faults 

for 22 instances by identifying them as fault-free conditions. On the other hand, in 

the second case, the model predicts seven instances of the heating coil valve being 

stuck in a partially open position when they are fully open and, in eight instances, 

vice versa. On the other hand, the behavior of unexpected instances in the previous 

iteration is learned by the model. As a result, the same binary classifiers are retrained 

to offer feedback to the updated model. Utilizing linear regression, the optimized 

contribution rates for the cases are quantified as wu,4,02=[0.8301 0.1815] and 

wu,4,34=[1 0]. This adjustment yields a significant enhancement in the overall model 

predictions: (i) the first feedback rectifies more than half of the misclassified 

instances, with a minimal occurrence of 4 false alarms and 11 missing fault instances; 

(ii) the second feedback further reduces the instances incorrectly classified to 4. 

Hence, as depicted in Table 3.14, which portrays the conclusive confusion matrix of 

the training set, the aggregate effect leads to an elevated prediction accuracy of the 

model, reaching 99.54%. 

The overall model's performance is evaluated with new test instances. The 

hierarchical model demonstrates a notable accuracy rate of 98.58%, accurately 

predicting nearly all instances except one instance and conflicting pair instances. 

Those instances are 14 false alarms and ten missing faults in the first pair, and three 

and five misclassified faults in the second one, respectively. The incorporation of 

constructive feedback proves impactful. In the first case, false alarms significantly 

decrease, and a considerable reduction is detected in missing faults, as detailed in 

Table 3.15. On the other hand, within the second feedback, only two instances are 
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Table 3.14. Confusion matrix of the training dataset trained by the updated feedback-enhanced hierarchical model for case 2 

Training Set 

Model 

No-

Fault 

Outdoor damper Heating coil valve Cooling coil valve 

Stuck Stuck Leaking Stuck Leaking 

Minimum 

position 

Fully 

open 

Fully 

open 

Partially open 

50% 

40% of 

max coil 

valve flow 

Fully 

open 

50% of 

max coil 

valve flow 

A
ct

u
al

 

No-Fault 1736 0 4 0 0 0 0 0 

Outdoor 

damper 
Stuck 

Minimum 

position 
0 432 0 0 0 0 0 0 

Fully open 11 0 430 0 0 0 0 0 

Heating coil 

valve 

Stuck 

Fully open 0 0 0 435 2 2 0 0 

Partially open 

50% 
0 0 0 2 434 1 0 0 

Leaking 

40% of max 

coil valve 

flow 

0 0 0 0 0 433 0 0 

Cooling coil 

valve 

Stuck Fully open 15 0 0 0 0 0 432 0 

Leaking 

50% of max 

coil valve 

flow 

0 0 0 0 0 0 0 432 
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Table 3.15 Confusion matrix of the test dataset trained by the updated feedback-enhanced hierarchical model for case 2 

Training Set 

Model 

No-

Fault 

Outdoor damper Heating coil valve Cooling coil valve 

Stuck Stuck Leaking Stuck Leaking 

Minimum 

position 

Fully 

open 

Fully 

open 

Partially open 

50% 

40% of 

max coil 

valve flow 

Fully 

open 

50% of 

max coil 

valve flow 

A
ct

u
al

 

No-Fault 575 0 1 0 0 0 0 0 

Outdoor 

damper 
Stuck 

Minimum 

position 
0 144 0 0 0 0 0 0 

Fully open 6 0 138 0 0 0 0 0 

Heating coil 

valve 

Stuck 

Fully open 0 0 0 141 2 1 0 0 

Partially open 

50% 
0 0 0 0 144 0 0 0 

Leaking 

40% of max 

coil valve 

flow 

0 0 0 0 0 144 0 0 

Cooling coil 

valve 

Stuck Fully open 0 0 0 0 0 0 144 0 

Leaking 

50% of max 

coil valve 

flow 

0 0 0 0 0 0 0 144 
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incorrectly classified. Consequently, the overall accuracy of the tested instances 

improves to 99.37% for the overall model. 

The decision support model systematically monitors predictions, discerning patterns 

in successive incoming instances. Out of 10 misclassifications, the model identifies 

five instances, documenting them in the database. Conversely, for the remaining 

instances, the model discerns contradictory patterns and initiates two work order 

requests to the maintenance office for further evaluation. These requests encompass 

one incorrectly predicted fault and one missing fault. On the other hand, the feedback 

mechanism prevents the maintenance team from one missing fault. 

The efficacy of this approach is evaluated by comparing the performance of the 

original hierarchical model with the finalized model using the latest test instances. 

Results indicate that the original model achieves a prediction accuracy of 97.10%. 

In comparison, our model enhances the accuracy quite significantly by correcting 

78% of previously misclassified instances, resulting in an overall accuracy of 

99.37%. This improvement comprises a 0.82% contribution from regular classifier 

updates, and the feedback mechanism significantly contributes with a 1.45% 

enhancement in total. As highlighted in the previous case study, these enhancements 

reduce workload by decreasing the need for human intervention in decision-making. 

Hence, this underscores the robustness of our model in addressing the hierarchical 

fault reasoning problem. 

3.4.2.4.2 Comparative analyses of FEHNNs with AI methods 

We assess the efficiency of FEHNs by conducting tests on both the original and 

revised training and test datasets. We then compare its performance with widely 

recognized classification linear and nonlinear multi-class classification algorithms 

and hierarchical models. The following inferences are deduced from the results of 

the comparative analysis for both datasets, which are presented comprehensively in 

Tables 3.16 and 3.17: 
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Table 3.16. Prediction accuracy of different classification algorithms using original 

dataset for case 2 

 Training Accuracy 

(%) 

Testing Accuracy 

(%) 

Logistic Regression 75.04 75.13 

Support Vector Machines 79.34 79.55 

Feed-forward Neural Network 93.39 92.55 

Decision Tree 98.88 95.45 

Hierarchical Decision Tree 99.03 95.71 

Back-propagated Neural Network 98.78 97.29 

Hierarchical Neural Networks 99.10 95.87 

Feedback Enhanced Hierarchical 

Neural Networks 

99.49 97.41 

 

Table 3.17 Prediction accuracy of different classification algorithms using updated 

training set for case 2 

 Training Accuracy 

(%) 

Testing Accuracy 

(%) 

Logistic Regression 74.99 75.57 

Support Vector Machines 79.34 79.55 

Feed-forward Neural Network 94.65 93.94 

Decision Tree 98.93 96.53 

Hierarchical Decision Tree 99.12 96.53 

Back-propagated Neural Network 98.31 97.16 

Hierarchical Neural Networks 98.91 97.92 

Feedback Enhanced Hierarchical 

Neural Networks 

99.54 99.37 
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• FEHNNs outperform all the algorithms under comparison, with the feedback 

mechanism notably enhancing the algorithm's accuracy compared to its 

hierarchical model, particularly in updated datasets. 

• Linear classifiers, such as Logistic Regression and Support Vector Machines, 

prove unsuitable for this case, as they both inaccurately classify nearly a 

quarter of all test instances. Nonlinear classifiers improve their performance 

considerably in the initial scenario; however, the emergence of new patterns 

not covered in the trained model substantially reduces their testing accuracy. 

Despite this, with updates to the training model, they exhibit improved 

robustness in handling new test sets, except BPNN. 

3.5 Research findings and discussion 

In this study, we have developed a hybrid intelligence approach to ensure continuous 

improvement in detecting and reasoning faults within a system. The primary goal is 

to maintain a robust and resilient infrastructure, minimize downtime, and provide the 

system's ability to function efficiently and securely over time. The approach consists 

of six modules: (i) design module to construct the sensor network as design inputs; 

(ii) data acquisition and preprocessing module to collect data through real-time 

monitoring or simulation, clean and sample the data for training and testing purposes; 

(iii) predictive modeling module to select or design the right AI algorithm and train 

it for fault detection and reasoning ; (iv) monitoring and decision support module to 

test the constructed algorithm with incoming data, monitor consecutive predictions, 

and report suspicious patterns as work order requests to the facility maintenance 

office; (v) human-centric evaluation module proposed for maintenance team assesses 

the requests, conducts on-site inspections, addresses detected problems, and provides 

feedback to enhance prediction accuracy; (vi) continuous enhancement to utilize 

feedback from site inspections and the decision support model to enhance data 

support for fault detection and reasoning continually. In the proposed approach, BIM 

is integrated to interact with (i) the sensor network for extracting the relevant sensor 
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information for the corresponding asset and (ii) the decision support model to 

provide spatial and maintenance information and documentation for the work order 

request.  

In the design of the predictive model, we applied hierarchical classification, 

strategically breaking down the extensive set of fault classes into more manageable 

smaller units. This approach is particularly useful in systems with numerous fault 

types and varying severity levels across assets. The algorithm's structure aligns with 

the fault hierarchy, orchestrating multiple local classifiers in hierarchical harmony. 

It systematically checks for the fault's presence, identifies the fault's source asset, 

determines its fault type, and finally assesses its severity level. This structured 

approach aids in both interpreting and resolving issues effectively. Moreover, to 

address errors propagated through the hierarchy, we have developed local classifiers 

based on a Back-propagated Neural Network with conditional stepwise learning, 

mitigating the risk of overfitting. Additionally, additional local classifiers are trained 

to provide constructive feedback to update the main hierarchical model. This 

involves combined contribution weights, determined through linear regression, of 

the feedback classifier(s) and the main model, enhancing the predictive accuracy and 

robustness of the overall model. 

As indicated in the previous section, the interaction between humans and machines 

is crucial for improving the predictability of fault reasoning in the development and 

sustainability of the approach. Humans play a significant role in the development of 

network construction, data preprocessing, predictive model selection, decision-

making in fault management, and constructive feedback from site inspection to 

machine predictions to augment the machine and improve prediction accuracy. On 

the other hand, the machine shortens the repetitive and time-consuming processes in 

the modules and provides invaluable decision support through the prediction of fault 

reasons to facilitate human decision-making.  

The applied case studies underline that the hierarchical fitness and feedback 

mechanisms to the predictive model and regular updates, incorporating feedback 
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from test instances of the previous step, are the main drivers to enhance the 

approach's capability. With the contribution of the feedback provided from different 

sides, the accuracy of the predictive model increases, human interventions due to 

suspicious prediction patterns decrease, and both false alarms and missing faults are 

reduced. These improvements lead to an enhancement in the reliability of the 

approach in practice. 

Besides the predictive model design and regular updates of training data, various 

factors affect the performance of the proposed approach. To begin with, the network 

of the sensors determines the design inputs of the predictive model. Although these 

inputs were predefined in the two case studies, in a newly constructed system, 

optimizing the location and type of the sensor is the first step. While the irrelevant 

sensors are removed through feature selection, missing ones could reduce model 

accuracy. Moreover, the accuracy of the approach is directly affected by the quality 

of sensor readings, influenced by fluctuations, gradual changes due to aging or 

environmental conditions, calibration issues, and sensor malfunctions, all 

contributing to noisy data. As a result, it is essential to detect such instances, ensuring 

they are not included in the training dataset and are excluded from consideration 

during testing to maintain the integrity of the evaluation process. 

In addition, data quality and representativeness are paramount in ensuring the 

effectiveness and reliability of the predictive model. High-quality data, free from 

errors and inaccuracies, is the foundation for training models to make accurate 

predictions and decisions. Moreover, the representativeness of the data is crucial for 

enabling the model to create generalizable solutions to incoming and unseen 

scenarios. If the training data is biased, incomplete, or unrepresentative of the real-

world context, the model may struggle to handle diverse inputs and can lead to 

skewed or unfair outcomes. On the other hand, from the point of initial training, 

developing the predictive model is challenging due to the unavailability of sensor 

data. This problem can be mitigated by following the strategies: 
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(i) Simulating data that represents expected patterns and behaviors of faults. 

This synthetic data can serve as an initial training set for the model. It 

may not capture the complexity of real-world scenarios, but it provides a 

starting point for the model to learn. 

(ii) Utilizing pre-trained models on a similar system and fine-tuning them 

with synthetic or limited real-world data. This transfer learning leverages 

knowledge gained from other sources, potentially accelerating the 

learning process if it is sufficiently representative. 

(iii) Collaborating with domain experts to gain insights into the expected 

behaviors of fault conditions, using their expertise to detect and label fault 

types manually during data collection. However, this effort is not 

expected to cover all faulty conditions sufficiently. 

(iv) Testing faults in controlled environments with minimal risks. This allows 

the facility maintenance team to observe its behavior, identify potential 

issues, and iteratively improve the model before deploying it in more 

complex or critical scenarios. 

In practice, a preliminary predictive model is established by employing one or a 

combination of strategies to provide a solid starting point. As real-time data 

accumulates with accurate labeling, the initial training dataset is regularly updated 

by replacing or supplementing it with authentic, representative data. This ongoing 

process ensures that the models are continuously trained with the most relevant 

information, leading to increased accuracy and adaptability over time. 

Furthermore, data preprocessing is a vital step in achieving an accurate and reliable 

predictive model. It consists of multiple techniques to prepare the raw data for 

optimal training: 

(i) symmetric normalization of design inputs, such as [-2, 2], to scale the data 

for allowing all variables to contribute proportionally to the learning process, 

(ii) feature selection or elimination to enhance model efficiency and accuracy 

by retaining only the most relevant features, 
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(iii) removing noise, handling missing values, and addressing outliers. 

Therefore, these preprocessing steps not only mitigate potential biases but also 

contribute to improving the model's interpretability, generalization, and robustness, 

resulting in more precise predictions and better overall model performance. 

As stated in the model initialization, transfer learning utilizes the accumulated 

knowledge from the previous cases to expedite the learning process for updating the 

model. In this study, we implement the classifiers trained in the last iteration as the 

starting point to iteratively update the model through regular updates. This approach 

leverages the information learned in the previous iterations, enhancing the efficiency 

and adaptability of the model to evolving data patterns over time. 

According to the findings presented in the case study, FEHNN's performance 

surpasses that of widely recognized linear and non-linear classifiers. Consequently, 

ensemble models emerge as viable alternatives for enhancing our model's 

competitiveness since they combine the predictions of multiple base models to 

compensate for the weaknesses of individual models, improving overall 

performance, generalization, and robustness. However, understanding the 

contribution of each base model to the overall prediction might be less 

straightforward compared to individual models. Therefore, three different ensemble 

model types are proposed in the literature. These models and their comparison with 

our solution approach are explained as follows: 

(i) bagging model to train multiple instances of the same base model on different 

subsets of the training data and combine their predictions through averaging 

or voting to improve overall model robustness.  In MATLAB, Decision Trees 

are employed by default to train these models using the randomly selected 

subsets of the updated training dataset to construct Random Forests in the 

second case study, using fitcensemble(input,output,”Bag”). The analysis 

reveals that the bagging model RF markedly enhances the training accuracy 

to 99.79%; however, its test accuracy is notably lower at 98.61% compared 

to our model. Due to the use of numerous base models in composing the 
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overall model and the inherent flexibility of Decision Trees, this approach 

leads to both overfitting and challenges for the maintenance team in 

interpreting prediction results. 

(ii) boosting models to train the multiple weak learners sequentially, where each 

learner corrects the errors of its predecessor. The final prediction is a 

weighted combination of the individual models. This model is tested with 

AdaBoosting, utilizing MATLAB classifier fitcensemble (input, output, 

”AdaBoostM2”), but it decreases the model's accuracy by under 90%. 

(iii) stacking models to combine the predictions of multiple diverse base models 

trained using the same datasets, using a meta-learner. The meta-learner is 

trained on the predictions of the base models. In this study, Decision Trees is 

implemented as a meta-learner using the predictions of BPNN and HNN as 

inputs to the model. The results demonstrate that the meta-model enhances 

the performance of both individual models in terms of training and test 

accuracy, achieving rates of 99.64% and 98.36%, respectively. However, 

compared to our proposed feedback mechanism, the stacking model struggles 

to effectively address overfitting, leading to limited improvement in testing 

accuracy despite high training success. Additionally, the nonlinearity 

introduced by both individual models and the meta-learner results in a 

complex model, making it challenging to understand the system behavior. 

Alternatively, we explored combining the predictions of BPNN and HNN 

through a process that optimizes their weight contributions using linear 

regression, mirroring our feedback mechanism. Notably, the distinction lies 

in our approach: our feedback mechanism focuses on resolving the main 

conflicting points, whereas the stacking model considers the complete set of 

predictions. In contrast to the nonlinear approach, this method is more 

interpretable. Nevertheless, it comes with a drawback of less accurate 

predictions, as indicated by accuracy rates of 99.00% for the training set and 

98.17% for the test set. 
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The comparison between our model and ensemble solutions reveals that the 

suggested feedback mechanism substantially improves the performance of the 

hierarchical model, providing robust and competitive solutions. Moreover, this 

mechanism can be extended to multi-class classifiers, aiding in clarifying 

distinctions between frequently misclassified classes.  

In this research, when tackling the problem of fault reasoning classification, we treat 

all fault classes as equally important. Nevertheless, in practice, the impact of faults 

on the system and facility varies. Faults in critical assets can lead to system 

breakdowns, while others may only slightly decrease system efficiency.  As a result, 

the maintenance team aims to address prominent issues since their misclassification 

costs significant consequences, while less critical faults may be less pressing. 

Therefore, weighting schemes can be utilized to assign different weights to different 

classes in the loss function of the model (in Eq 3.1.) to address imbalances and 

improve the model's accuracy, especially when certain classes are underrepresented 

or have more significant consequences.  

Following the model training, the decision support model examines prediction 

patterns in real-world operations to detect faulty conditions and identify suspicious 

patterns. While it is not properly designed, it may miss false alarms, or the existing 

fault may not be detected when it is omitted. Moreover, it may bring a significant 

workload to the facility maintenance office by frequently reporting numerous 

conditions as suspicious patterns. During this process, the maintenance team may 

identify patterns that challenge the predictive model's differentiation abilities. 

Consequently, this information is provided as feedback to the model for 

incorporation into regular updates. Despite the updates, certain fault patterns known 

to the maintenance team may remain undetected by the predictive model. This 

diminishes the reliability of both the model and how the maintenance team perceives 

it. Therefore, it is quite critical to construct a bridge between the predictive model 

(machine) and maintenance office (human) for managing the prediction analysis 

efficiently. Initially, the facility maintenance office formulates patterns using a set 

of rules for the model to detect and comprehend. These rules are revised when 
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repetitive patterns are flagged as suspicious or when the predictive model gains an 

understanding of conditions through regular updates.  As a result, it is designed to 

determine patterns, report the detected faults as work order requests, and minimize 

the recognition of suspicious patterns so that the maintenance office can be left with 

minimum effort. In other words, humans play a supervisory role in the control and 

confirmation of the work order request and intervene only in edge conditions for 

decision-making, and revision is needed according to the feedback provided by the 

site inspections. Moreover, the decision support model collects representative 

unusual data for fault-free and faulty conditions to facilitate the generalization ability 

of the updated models. Utilizing the collected dataset and feedback from on-site 

inspections for misclassified cases, the model undergoes regular updates by 

resampling the training data. This iterative process ensures continuous refinement, 

allowing the model to adapt to emerging patterns, enhance its accuracy, and improve 

reliability based on real-world observations and practical feedback. Once this 

approach is established and operational over time with human-machine 

collaboration, initial human intuition on the construction of modules is replaced by 

machine automation to facilitate and standardize the processes. On the other hand, 

humans take the place of final decision-making, site inspections, and operational 

controls of the overall approach. 

Within this approach, faults are categorized into classes and predicted through the 

utilization of a feedback-enhanced hierarchical model in system operation. This 

model is trained using readings from sensors installed on the system assets. 

Nevertheless, in certain scenarios, fault detection and isolation become more 

straightforward by implementing threshold rules based on the readings from the 

relevant sensors. Hence, by filtering out these readily detectable faults, the model 

directs its attention more towards faults exhibiting nonlinear behavior, narrowing 

down to a reduced set of fault classes. In this scenario, faults are initially categorized 

into two groups under the guidance of domain experts based on their ease of 

detectability. Threshold rules are established for each conspicuous fault, while the 

remaining faults are organized according to the fault hierarchy. Our model is then 
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trained on these fault classes using their respective training datasets. During the 

assessment of incoming instances in operational testing, threshold rules are initially 

employed on the instance. Upon detecting a fault, the decision support model 

promptly generates a work order request, reporting it with certainty to the facility 

maintenance office. Conversely, if no fault is identified, the predictive model is 

activated to estimate the system's condition. For this case, the decision support model 

applies the same procedure in the original approach for predicted instances. 

In this study, our classification model is developed to detect the reason for a fault if 

it exists. It is limited to the detection of a single fault at a time; however, in practical 

operations, multiple faults may occur simultaneously. In this scenario, the model 

checks whether a fault exists and then predicts the source and type of each fault. 

When multiple faults occur simultaneously, they may appear either in the same asset 

with different fault types, in different assets, or in a combination of both. In simpler 

terms, although the local classifiers for fault detection and severity level 

classification remain unchanged, the ones for fault source and type classification are 

adjusted to accommodate the selection of at least one class for the same instances 

rather than just one. In the light of this information, the model can be modified in 

two ways: 

(i) in the first approach, the algorithmic structure of the original hierarchical 

model is retained. However, modifications are made to the local classifiers 

responsible for determining fault source or fault type. In those cases, the 

softmax activation function in the output layer of multi-class classifiers is 

replaced by the sigmoid function. Additionally, binary classifiers are 

substituted with two-class (multi-class) classifiers, utilizing the sigmoid 

activation function in their output layers. Consequently, all classes are 

activated for potential selection. The training of these classifiers involves 

using the loss function specific to a multi-class problem, as outlined in Eq. 

3.1. On the other hand, in the feedback mechanism, the procedure applied in 

the original mode is followed to update the model. The only variation occurs 
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during the training of the feedback classifier, where instances involving at 

least two of the compared fault classes are excluded from the training set  

(ii) in the second approach, the hierarchical level between fault source and fault 

type is deconstructed, and a horizontal level based on fault type, which 

incorporates source information, is established. Hence, the model first checks 

the fault presence then predicts the existing fault types of the sources if a fault 

exists, and finally determines the severity levels of each. As in the original 

hierarchical model, the same classifiers are employed for fault existence and 

severity level predictions. Conversely, in the second level of the modified 

fault hierarchy in this model, a binary classifier is designated for each option.  

These classifiers are trained with faulty datasets, employing a one-vs-all 

approach to compare the selected faults with the remaining ones. This is done 

to determine whether a fault is detected for the respective fault type in the 

asset. 

Additional binary classifiers are introduced for conflicting classes in the 

feedback mechanism to enhance the algorithm's performance. These 

classifiers are specifically built upon the more critical asset(s). In the 

implementation of successive feedback for the same fault type, fault-free 

feedback is initially utilized, followed by the introduction of faulty instances 

based on their criticality.  

In contrast to the original model, the algorithmic structure of the multi-fault models 

accommodates some conflicting issues. For example, while the initial classifier 

detects the faults for an instance, in the hierarchy levels of fault source and fault type, 

none of them predicts its occurrence. Hence, the detected fault might not be sustained 

in the next levels, leading to either the rectification of false alarms or the missing of 

the faults at lower hierarchy levels. Therefore, our model, including an enhanced 

feedback mechanism, also tackles this issue to improve the model. 
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3.6 Conclusion 

In this research, we proposed a hybrid intelligence approach that relies on human-

machine interaction to improve fault detection and reasoning within a system 

continuously across its life cycle, addressing RQ 2. Within the approach, humans are 

pivotal in tasks such as network construction, data preprocessing, model selection, 

decision-making in fault management, and offering constructive feedback from site 

inspections to improve machine predictions. Simultaneously, the machine 

streamlines repetitive processes and provides crucial decision support by predicting 

fault reasons, ultimately facilitating human decision-making. Therefore, through this 

collaborative and synergistic approach, our solution attains sustainability with 

continuous improvement. Moreover, BIM is integrated to interact with the sensor 

network and decision support model, providing spatial and maintenance information 

for efficient work order requests. 

In constructing the predictive model, a hierarchical classification approach was 

employed to break down an extensive set of fault classes into more manageable units, 

particularly beneficial for systems with diverse fault types and varying severity 

levels. The model aligns with this fault hierarchy, orchestrating multiple local 

classifiers for systematic fault detection, source asset identification, fault type 

determination, and severity level assessment. To address potential information 

losses, especially in the hierarchy, local classifiers based on a Back-propagated 

Neural Network with conditional stepwise learning were developed, mitigating 

overfitting risks. Moreover, Additional local classifiers contribute feedback through 

combined weights determined via linear regression, enhancing the overall model's 

predictive accuracy and robustness.  

In essence, this research contributes to advancing fault detection and reasoning 

approach by combining human and machine intelligence, utilizing hierarchical 

models with feedback mechanisms, and discusses challenges in data quality, 

representation, imbalanced distribution, hybrid prediction models, multi-fault 

scenarios, and evaluation of suspicious prediction patterns. The proposed approach 
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offers a practical and effective solution for maintaining resilient and efficient 

infrastructures over time, with continuous improvement driven by collaborative 

efforts between humans and machines. 

The performance of the approach was validated with two existing case studies with 

a relatively limited number of fault classes throughout one-stage improvement. In 

comparison to classifiers previously validated for their efficiency in those studies, 

the approach exhibits superior performance. In future studies, the robustness of the 

approach will be investigated with more complex cases involving a greater variety 

of fault types and severity levels across a more extensive set of assets. 
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CHAPTER 4  

4 A FRAMEWORK FOR MODEL-BASED WORK ORDER MANAGEMENT AND 

FAULT NETWORK ANALYSIS APPROACH FOR FAULT REASONING 

4.1 Introduction 

Efficient work order management is essential for the well-organized and successful 

implementation of maintenance tasks in a facility. It provides the systematic creation, 

assignment, tracking, and completion of work orders related to equipment, facilities, 

or assets that require maintenance. The process begins with identifying maintenance 

needs, which are then translated into work orders specifying the tasks, resources, and 

timelines. Work order maintenance management helps prioritize and schedule 

maintenance tasks efficiently, ensuring that critical equipment or systems receive 

prompt attention. It also facilitates communication between maintenance teams, 

supervisors, and other relevant stakeholders, fostering collaboration and 

accountability. By centralizing and streamlining maintenance processes through 

work orders, the facility can optimize resource utilization, reduce downtime, extend 

the lifespan of assets, and enhance overall operational efficiency. 

Integrating Building Information Modeling with work order management is a 

powerful strategy that brings digital intelligence to the maintenance processes. By 

linking BIM data to work orders and utilizing the model, maintenance teams can (i) 

access detailed information about the structure, components, and systems involved, 

(ii) visually analyze the maintenance requirements to enable more informed 

decision-making, (iii) collaborate and communicate more efficiently and streamline 

information sharing and decision-making processes to execute maintenance tasks 

more efficiently; (iv) leverage BIM’s capabilities to anticipate potential issues and 

schedule preventive maintenance proactively. 
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This integration allows for better visualization of maintenance requirements, 

enabling more informed decision-making. For example, maintenance personnel can 

quickly identify the location of a specific asset within a building or facility, 

understand its history, and access relevant documentation. Additionally, it enables 

real-time collaboration and communication between stakeholders to foster better 

coordination and information sharing and streamline decision-making processes to 

execute maintenance tasks more efficiently. Moreover, BIM's predictive capabilities 

can be leveraged to proactively anticipate potential issues and schedule preventive 

maintenance. By analyzing the model, the maintenance team can identify assets 

requiring attention based on their condition, usage patterns, or historical performance 

data. 

Utilizing a work order management system to facilitate fault reasoning is paramount 

for the seamless integration of maintenance processes. By serving as a centralized 

repository for fault reporting and resolution, it ensures that reported issues are 

systematically documented, creating a structured database for fault reasoning. 

Moreover, real-time integration with monitoring systems enables immediate fault 

detection, triggering automated work orders and facilitating a proactive approach to 

maintenance. The system's workflow automation expedites fault resolution and 

ensures a systematic reasoning process. The historical records provide insights into 

fault patterns, aiding maintenance teams in root cause analysis and long-term 

decision-making. Although it facilitates the maintenance workflow and enhances the 

decision-making processes, the efficient utilization of the historical records in the 

workflow, especially finding the root-cause patterns, depends on the quality and 

understandability of the provided information. Therefore, in this research, we 

investigate the isolation and reasoning of the faults using work orders integrated with 

the BIM environment. First, the case studies from the practice and literature studies 

on BIM-based reasoning of the faults are examined, then, model-based work order 

management framework and fault network analysis approach to isolate the fault and 

pinpoint the reason, if available, are presented and validated with case studies. 
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4.2 Motivating case studies on work order management in practice 

We have conducted two informative motivation case studies to better understand the 

current statement of work order management in practice, specifically focusing on 

information accessibility and retrieval. In the first case, we examined work order 

forms and BIM-integrated and standalone CMMS tools to analyze the attributes of 

work orders and gather valuable insights. On the other hand, the focus of the second 

case study was a more in-depth concentration on the work order records stored in an 

airport work order database. This investigation specifically delved into the fault 

descriptions and explanations of performed work, intending to retrieve beneficial 

information to establish a linkage between them for facilitating fault reasoning. 

In the first case study, we divided the work order documentation into two parts: one 

for work order requests and another for tracking and reporting.  A comprehensive 

analysis was conducted on 46 request forms, revealing that common attributes such 

as the date of request, location, requester name, and problem description were 

consistently present. Notably, approximately three-fourths of the forms 

encompassed contact information. On the other hand, 12 forms showed how urgently 

the customer needed maintenance work. Regarding the identification of the source 

asset causing the problem, only six forms directly addressed this issue. Additionally, 

merely two forms sought information on the maintenance history of the same 

problem. Finally, a single form provided a comprehensive selection of options in a 

checkbox format for problem types, including categories such as cold, hot, leakage, 

clogged, cracked, and smells. Furthermore, out of the 46 forms analyzed, details 

regarding the tracking and reporting of the work order were present in only 17 forms, 

whereas the remaining ones were reported in a separate document. While all forms 

consistently included details about the assigned person for the maintenance task and 

its completion date, the work order action description was absent in one-third of these 

request forms. Conversely, it consistently appeared in all the separated forms; 

however, only three forms asked for the root cause of the problem in the attached 

action plan. Moreover, the approvals of the completed maintenance tasks were 
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available in 21 forms, while the detailed scheduling and tracking tables were 

presented in only four forms. The statistics of these forms are reported in Table 4.1. 

Table 4.1 Statistical information of analyzed work order and request forms 

Information details 

The number of forms 

corresponding 

information is available 

Analyzed request form 46/46 

Information about the requester's name, request date, 

location, and problem description  

46/46 

Contact information of the requester 34/46 

The urgency of the requested problem 12/46 

Source of the requested problem 6/46 

Questioning the maintenance history of the 

requested problem 

2/46 

Categorization of the requested problem 1/46 

The form includes both request and work order 

details 

Information about the assigned person and 

completion date of the work order 

Work order description 

17/46 

 

17/17 

 

11/17 

Work order and request forms are separate  

Information about the assigned person and 

completion date of the work order and work order 

action description 

29/46 

 

29/29 

The root cause of the problem reported in the action 

plan  

3/46 

Approvals of the completed maintenance tasks 21/46 

Detailed scheduling and tracking table 4/46 
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Similarly, we applied the same procedure to analyze the attributes of work orders 

and their requests in CMMS tools. The investigation focused on the work order 

generation process across 12 different CMMS tools, including Maximo, Ecodomus, 

Limbe, QRmaint, Mobility Work, MaintainX, UpKeep, Fiix, MainWinWin, 

AssetPanda, FM Systems, and BIM Genie, reported in Appendix D. While most tools 

are primarily designed for essential work order management, a few offer more 

advanced solutions. To begin with the work order request, essential CMMS tools 

replicate request forms, providing content such as the requester's details, request 

description, and location information. In contrast to the forms, these requests are 

enhanced with additional files and photos from the site. Conversely, advanced 

CMMS tools enrich request content with information about the asset requiring 

maintenance, the requester's priority, maintenance type, problem type, and the 

requester's expected schedule. Compared to basic forms, both location and asset can 

be selected from predefined lists within the tool. This functionality is particularly 

noteworthy in BIM integration, where it can be presented within a visualized 

environment. In work order tracking and reporting, the basic tools report the work 

order description, its priority, asset, location information, the assigned person to 

handle the maintenance task, and schedule information. The advanced tools focus on 

more detailed aspects of the work order. Specifically, they (i) separate the description 

of the problem into two parts, fault description and works performed; (ii) categorize 

the work orders based on maintenance type, failure location or system (HVAC, pipe, 

runway), and problem types (temperature, lightning); track the status of the work 

order, including its planned and actual schedule; and report the responsible personnel 

for the maintenance task and its progress tracking for approvals. Moreover, they 

consolidate relevant work orders under a parent work order umbrella for consistent 

evaluation. By linking maintenance documentation of the assets with the work order, 

safety plans, specifications, and contract issues can also be assessed in conjunction 

with the work order. Furthermore, among the 12 tools, only three directly report the 

textual root-cause attribute for the work order. 
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The investigation of the attributes of the work orders for request, tracking, and 

reporting shows that the forms limit the attributes to gain information from the 

maintenance request and its post-solution reporting. It is more related to reactive 

solutions, where the effectiveness of time utilization and access to on-hand 

information heavily relies on the maintenance worker's experience. However, 

lessons learned from that work order from each work order are confined to the 

knowledge of the specific worker involved. Hence, personnel turnover may lead to 

the loss of valuable information accumulated from previous cases. When a new 

worker faces similar challenges, he must invest additional time to attain the same 

level of experience as his predecessor in an identical case. Therefore, either recording 

the filled forms in a CMMS tool or directly using the CMMS tool to create work 

orders establishes a database. This database serves as a repository for retaining 

historical records, ensuring the preservation of information gained at least. By 

adopting this practice, the maintenance team protects valuable insights, even during 

personnel turnover, facilitating efficient knowledge retention across various 

maintenance cases. Within the maturity of CMMS, it enables more comprehensive 

and structured work order recording and organizes the maintenance documentation 

more systematically. This allows the utilization of historical records for work order 

analytics, examining the distribution of work orders based on location and assets. 

Moreover, the analyses also include performance metrics such as completion times, 

resource utilization, and costs, and businesses can make informed decisions about 

workforce management, equipment maintenance, and budgeting to improve the 

maintenance processes. The integration of Building Information Modeling (BIM) 

further contributes by visualizing this distribution through color coding, enhancing 

understanding of the current status within the facility. Additionally, BIM strengthens 

maintenance task documentation and information management. It also simulates and 

analyzes scenarios, aiding in identifying potential risks and challenges to address 

issues before escalation, reducing the likelihood of emergencies and associated work 

orders. BIM's role extends to managing spatial relationships within the facility, 

ensuring that work orders align with the building's physical layout for efficient work 
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order scheduling. On the other hand, despite the improvements in the process and 

structured information of asset and location information, the most critical 

information about the details of the maintenance task is provided from the 

description of the work orders (what the problem is) and works performed to handle 

the issue (how it is resolved).  Therefore, the quality of the textual information 

offered in these two attributes of the work order might enhance the efficiency of the 

next maintenance tasks. 

In the second case study, we examined the descriptions of the historical work order 

records collected throughout the airport maintenance. The airport maintenance office 

had delegated maintenance tasks for distinct sites to different firms under clearly 

defined contracts. All corresponding work records were systematically collected in 

a centralized maintenance database. In the airport, a significant portion of tasks 

underwent regular inspections, while corrective maintenance was implemented for 

the remainder. The work orders were classified according to their asset type or 

location in the given database. In this case, we analyzed the work orders in the 

corrective maintenance database and those for preventative maintenance where 

tolerable faults were identified during inspections or significant anomalies were 

detected suddenly for the regularly assessed assets. Out of 2,884 work orders 

documented in the preventative maintenance database, 266 records revealed 

anomalies, while 805 corrective work orders were examined.  

To begin with corrective work orders, first, we examined work order descriptions on 

faulty conditions. The findings revealed a lack of clarity in problem descriptions in 

numerous cases. Specifically, in 156 work orders, the only explanation provided was 

that the asset was "not working." Similarly, for lights, "not working" was replaced 

by "off" in 279 instances. Additionally, there were instances where the same issue 

was articulated using different phrases, such as "lights were not working" or "lights 

were off." Furthermore, in 223 orders, the issue was conveyed through the general 

term "need," as seen in statements like "needs a carpenter" or "the asset needs to be 

fixed." However, these explanations lack clarity. In the first case, the reason for 

needing a carpenter is not clearly described. In the second case, the entry merely 
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acknowledges the presence of an anomaly in the specified asset without providing 

detailed information. As a result, the explanations fall short of providing the clarity 

necessary to extract valuable insights to enhance the maintenance process. On the 

other hand, an examination of the descriptions detailing the actions taken to resolve 

issues in the specified work orders yielded the following results: (i) in 288 instances, 

no information was available as the field was left blank; (ii) 40 instances revealed 

false alarms, indicating no problems were found during site inspections; (iii) in 58 

instances, explanations were present, but they lacked substantive information such 

as "work is completed" or "the issue is fixed." Conversely, in 320 instances, the 

faulty asset was directly addressed using terms like "fix, replace, install, and change"; 

however, this information was also available since the source asset was an attribute 

of the work order. Thus, out of 805 work orders, the descriptions of the performed 

works provided additional information in only 67 instances, encompassing detailed 

explanations of the fault source along with its corresponding 45 faulty subparts and 

22 root causes of the problem. 

We also analyzed 266 work orders addressing the faults in the preventative 

maintenance database regarding fault description and works performed. Beginning 

with fault descriptions, in 177 instances, the explanations of the fault conditions were 

overly broad, providing insufficient clarity. This included phrases such as "not 

working" in 167 instances and "need …." in 13 instances; however, compared to the 

corrective work orders, the faults were more clearly explained in these instances, 

such as “leaking in an asset” or “ the asset is not cooling.”  On the flip side, an 

investigation of the descriptions explaining the work performed to handle the 

problems in the specified work orders revealed the following outcomes : (i) in 39 

instances, the field was left blank, resulting in a lack of available information; (ii) in 

58 instances, the explanations were inferior, lacking substantial information. (iii)  in 

188 instances, the problematic asset was explicitly mentioned using terms such as 

"fix, replace, install, and change." However, it's worth noting that this information 

was redundantly available since the source asset was already an attribute of the work 

order. Therefore, only 73 instances contributed valuable information, presenting 
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detailed explanations of the fault source, encompassing 41 corresponding faulty 

subparts and 32 root causes of the problem. 

The following inferences were drawn from the examination of the description entries 

in the work order records, encompassing both corrective and preventative 

maintenance tasks: 

(i) While the descriptions in preventative maintenance tasks are notably clearer 

compared to corrective ones, only one-third of their fault descriptions provide 

valuable input for information management in maintenance. Conversely, 

27% of these work orders yield additional information to the process, with 

only 12% of them addressing information about the root cause of the 

problem. It was lower than 10% in all three cases for the corrective 

maintenance.  

(ii) The content and format of the description entries exhibit variations from 

worker to worker and subcontractor to subcontractor. 

(iii)Integrating the work orders with the BIM model solely offered a visual 

representation of faults and their statistics; however, its spatial and relational 

repository did not interact with the work orders and their interpretation. 

The findings from these case studies indicate the necessity for (i) customizing the 

work order request and reporting section to enhance clarity in information retrieval 

and root-cause analysis; (ii) standardizing the format and content of description 

entries for fault description and work performed; and (iii) leveraging Building 

Information Modeling (BIM) not only for visualizing work orders but also for 

establishing relationships between problems and corresponding resolutions using its 

spatial and relational repository, expediting the maintenance process accurately. The 

research outlined in this chapter addresses these requirements by developing a 

model-based work order framework and proposing a fault network analysis to 

capture information gained in tasks and enhance the reasoning mechanisms for 

faults, thereby improving their utilization in future tasks. 
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4.3 Background research 

The research efforts on refining the reasoning mechanism within Building 

Information Modeling for facility maintenance have been a focal point in previous 

studies.  Akcamete et al. ( 2011) emphasized the significance of maintaining an up-

to-date model for an accurate reasoning mechanism in facility maintenance. To 

achieve this, customized templates were created within the model to record facility 

changes. Utilizing these templates facilitated the establishment of a change history, 

aiding in identifying patterns in repetitive maintenance tasks. 

In a related study, Lucas et al. (2013) proposed a research study aimed at developing 

a healthcare facility maintenance information management system. The study delved 

into how facility failures impact patient health to develop an efficient maintenance 

strategy. Through case scenarios, potential failure modes were generated. The fault 

tree analysis and failure mode and effects analysis were employed to determine the 

causes by retrieving data of the assets in the model and the effects of the failure in 

the facility, respectively. Considering the source of the failure, an analysis was 

conducted to understand its impact on patients and to identify the necessary actions 

required to minimize or mitigate the failure. 

Motawa and Almarshad (2013) introduced a knowledge-based Case-Based 

Reasoning (CBR) model linking root-cause relations between problems and model 

elements through previous case studies that included problem, solution, and 

associated model elements affected by the case. The model employed a manual 

structured filtering mechanism to define the issues and filter similar studies based on 

their similarity to the defined problem. Model elements were utilized solely to 

connect cases with relevant elements. 

Motamedi et al. (2014) proposed a knowledge-assisted BIM-based visual analytics 

for root-cause detection in facility faults and condition-based maintenance. Faults or 

conditional statements were identified using CMMS work orders, conditional 

maintenance, and inspection reports. The model visualized results in the BIM 
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environment through color codes, associating problems with the model elements and 

utilizing fault tree analysis to determine potential sources of issues. 

Yang and Ergan (2016a) developed a framework for identifying and retrieving 

information to troubleshoot HVAC-related corrective maintenance problems. 

Considering the HVAC-related problems in practice, 40 work orders were generated 

based on characteristics such as reported problem type, spatial scope, HVAC system 

type, HVAC control system type, and time pattern of problems. For each work order, 

applicable causes were listed. Using the model, the characteristics of the HVAC 

system and reported problems were matched with work orders to filter possible 

applicable causes of HVAC-related failures. 

Alavi and Forcada (2022) developed a hierarchical rule-based framework to isolate 

the location of the faults and determine the root cause of HVAC problems reported 

by occupants. According to the investigated rules, room and asset information is 

extracted to compare the existing thermal load of the room with the asset’s indoor 

capacity. When an HVAC design problem is detected, the rules question the building 

envelope performance and the indoor capacity of the HVAC system successively; 

otherwise, information about the pressure and temperature from the Building 

Management System is checked to decide whether the outdoor or indoor unit of the 

HVAC system causes the discomfort problem. To implement this procedure, the 

framework was integrated into the visual programming tool Dynamo, which directly 

interacts with the BIM model. Consequently, the framework extracts maintenance 

requests from the CMMS tool and temperature and pressure values from the Building 

Management System to apply the rules. Dynamo identifies the HVAC system in the 

reported room, extracts the indoor capacity value from the model asset's features, 

and executes the procedure. Finally, it visualizes the root cause of the reported work 

order using color coding. This study demonstrates the use of BIM to gather non-

geometrical information about an asset from the repository and visualize the detected 

problem's root cause. 
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In the previously mentioned research studies, the relationships between the problem 

source and its influencing model elements were established based on pre-defined 

customized templates and case studies. Each study constructed a database for 

predetermined situations. Therefore, for the current problem, algorithms were 

employed to search and filter templates in the database, ranking or filtering them 

based on relevance. Following this, a developed root-cause mechanism associated 

with the selected template was utilized to identify the source of the problem and its 

correlated model elements. These model elements were only used to be associated 

with the selected template. Furthermore, the focus on intelligent data was limited to 

filtering applicable root-cause options by matching the properties of model elements 

with those constructed in the historical or created template database. This approach 

leaves a gap in utilizing intelligent model data to automatically establish 

relationships in the course of root-cause analysis, incorporating spatial and 

element/system-specific properties. 

4.4 A model-based work order management framework 

In this study, we designed a model-driven framework for managing work orders, 

aimed at structuring the content and format of work orders to establish connections 

among observable symptoms, the source asset of the fault, spatial information, and 

the impacted assets within the BIM environment. By leveraging automatically 

detectable relations, this framework utilizes information gained from historical work 

order records to streamline the isolation of faults and their root-cause relations. 

Therefore, using the BIM model, the framework reduces the time needed to identify 

and address the root of the problem and resolve the issue. Additionally, the 

maintenance team can promptly access the necessary maintenance information 

because they are familiar with the organized structure facilitated by the model.  

Hence, the systematic organization of maintenance information and documentation 

enables efficient retrieval whenever needed. 
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In this framework, work orders are generated with a focus on space-centered 

information. Hence, when submitting a work order request, the occupant first 

specifies the space where the fault is detected. The remaining details are then 

structured and organized based on the identified space. Therefore, the relationship 

types established between the assets in the model are defined based on the space-

centered perspective as follows: 

(i) Spatial relations are defined to pinpoint assets within the relevant space and 

determine their positions, while also outlining the physical contacts between 

them. Furthermore, spatial relations encompass the vertical projection of 

assets from one floor to the floor below, particularly when analyzing faults 

related to liquids. This relational framework also considers the 

interconnection of spaces in terms of proximity, adjacency, or any spatial 

configuration. 

(ii) Systemic relations encompass interconnected elements that operate 

cohesively within a specified system. These relations denote functional 

dependencies, indicating that the performance or behavior of one component 

can impact or rely on another component within the system. To be more 

specific, the occurrence of an anomaly in a system's asset can lead to issues 

within the associated space where another asset of the system is located. 

(iii)Feature-based relations are employed to classify the substitutable assets or 

systems on shared features and functionality. Hence, problems identified in 

one asset can be leveraged to detect similar issues in another asset. 

The focus of the framework is limited to the content and format of the work order 

and their interaction with the BIM model to make work orders more intelligent and 

leverage acquired information for expediting fault isolation and reasoning. 

Therefore, certain typical aspects of a work order management system, such as 

scheduling and prioritizing work orders, optimizing resource utilization, integration 

with other business systems, and related considerations, are not directly addressed 

within the current framework. The framework prioritizes efficiency and intelligence 
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in fault handling through its specific emphasis on work order content and BIM model 

interaction. 

The work order management framework comprises four modules: work request, 

evaluation and management, site feedback, and data analytics. The framework 

utilizes Dynamo visual programming to facilitate the interaction between work order 

content with the BIM model. The Dynamo interface serves as the interactive input 

platform for the requester and site maintenance team, allowing seamless integration 

of their content into the system. Hence, the work request module processes the 

occupant’s complaints by directing them to comprehend and isolate the fault. The 

facility maintenance office then reviews the output from the module to ensure the 

request's consistency, correct any errors, and establish a connection with the model. 

Following this, they apply some basic rules to a fault network based on the model, 

constructed using relationships between assets, spaces, and symptoms. These rules 

eliminate the irrelevant potential faults identified by the request and prioritize the 

remaining ones for forwarding to the site maintenance team. Upon receiving the 

work order, the site team assesses the potential faults reported, incorporating their 

on-site experience into the analysis to inspect each identified fault and address the 

issue. Once they fix the problem, the site team utilizes the site feedback module to 

report details such as the nature of the problem, the resolution method employed, the 

root cause of the problem, and an assessment of whether the information provided 

by the maintenance office was beneficial in addressing the issue.  The facility 

maintenance office methodically reviews feedback from both occupants and the site 

maintenance team. They standardize the format and content of work orders and 

employ tags to connect the relations. The updated work order content, reflecting 

these improvements, is then shared as feedback with the requesters and site workers 

entering the work orders. This practice aims to minimize the need for content 

corrections over time, promoting effective communication and continuous 

improvement in the work order management process. The office manages the whole 

work order process. Finally, the maintenance office leverages the data analytics 

module to examine the distribution of work orders, asset replacements, partial 
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changes, and the quality of feedback. This analysis involves statistical and visual 

assessments, allowing the office to detect potential issues from a comprehensive 

perspective and proactively resolve them. The details of each module are explained 

as follows: 

Work request module: 

The module was designed with the intention of systematically guiding the requester 

to retrieve all pertinent information about the issue. This systematic approach aims 

to expedite the detection and maintenance process by ensuring that valuable details 

are captured efficiently. 

It is assumed that comprehensive information about the requester, including name, 

contact details (e-mail and phone number), occupancy information (room, 

department, level, building), and any existing maintenance contract, is recorded in 

the database and updated as needed. As she accesses the request module, potential 

spaces for reporting complaints are automatically presented according to her identity. 

For example, a resident is limited to reporting issues within her residence, the 

common space on the same level, the entrance of the residence, and the parking lot 

floor. Conversely, a healthcare worker is accountable for addressing concerns only 

within her specialized department in the hospital. As illustrated in the flowchart of 

the work request process in Figure 4.1, upon selecting the space, she chooses the 

symptom(s) of the problems from the dropdown list. Hence, the spatial relations are 

automatically identified to detect the assets in or intersecting the specified space and 

then filter them according to the encounters with the reported symptom(s).  After 

that, she can directly select the relevant asset if it is known; otherwise, all potentially 

faulty assets are observed. In the next session, she employs sensory observations to 

collect supplementary information on these assets, leveraging the five senses while 

adhering to maintenance safety regulations. These observations encompass visually 

inspecting the asset, identifying its sound and direction, physically touching it to 

identify mainly thermal and pressure-related faults, and detecting any odors arising 

from the asset. However, tasting the asset's output primarily conflicts with safety  
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Open request module

Select the 

space
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Intervention ?

NO
Does the requester 

accept it ?

NO

YES

 

Figure 4.1. Flowchart of work order request 

regulations. Visual inspection and tactile examination are the primary senses 

employed to identify and isolate faults in this session. Whether it's a single asset or 

multiple assets, the investigation involves exploring potential issues detectable 

through sensory observations. Depending on the requester's feedback, the module 

prompts further observation of additional asset(s). For example, suppose a 

malfunction in the heater is detected through tactile examination. In that case, the 

module might suggest checking another heater connected to the same system to 

isolate the location of the problem. This iterative process continues until a final 

decision is reached. Finally, when the module accurately identifies the problem, and 

she can address it without needing technical intervention from the maintenance team, 

it proposes a solution for resolution. If the requester accepts the suggested solution, 

no further action is necessary. However, if the proposal is declined, the site team is 
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directed to the reported space for further investigation and resolution. At the end of 

this module, the description of the faults is automatically filled by integrating space, 

symptom, and asset information with smart tags to connect them to the model. On 

the other hand, an additional note attribute is provided for the requester to convey 

any available supplementary information textually.  The proposed solution offers 

ideal steps to maximize the information gain from the requester; however, in 

practice, some requesters might not be willing to follow all iterative steps. In this 

case, following the first sensory observations, the requester completes the process 

unless additional notes are reported. 

In addition to the details about the requester, space, symptom, asset, and fault 

description, the module also incorporates attributes for the occurrence and reported 

time of the fault, its urgency level, and includes additional documentation and photo 

attributes. During the hierarchical definition of the problem, asset and space 

information is reinforced with their 2D-floor view to enhance visual comprehension. 

Furthermore, visual guidance is extended during sensory observations to streamline 

the controls. 

As outlined in the previous chapter, the faults or suspicious faulty patterns detected 

in a data-driven environment are integrated into our framework to create work order 

requests. Once the model is confident about the faulty condition, the data-driven 

environment is designated as the requester, and the predictive model directly 

estimates the problem. Hence, the space and asset of the detected problem by the 

model can be directly extracted from the BIM model since the position of each asset 

in the system was clearly defined in the BIM model, which has interacted with the 

sensors previously. Moreover, if the symptom of the encountered fault is not 

determined beforehand, the symptom attribute is left blank; otherwise, the 

predefined one is directly assigned to the attribute. In the description, the design 

inputs and the fault condition are reported.  On the other hand, in suspicious patterns, 

the predictive model struggles to distinguish at least two faulty/normal conditions. 

Therefore, it presents the successive predictions to the view of the maintenance 

office to decide how to evaluate the situation. Hence, since at least two different 
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conditions are reported, space, asset, and symptom information cannot be provided 

unless they are common. Therefore, the description is utilized to both report the 

selection probability of the successive predictions and explain space, asset, and fault 

type information of each faulty case with smart tags to connect them with the BIM 

model. 

Work order evaluation and management module: 

The case study outlined in the preceding section demonstrates that, despite 

addressing the same issue, there is a considerable variation in the content and format 

of work orders when different workers complete the descriptions. Therefore, 

standardizing both format and content becomes essential, enabling the facility 

maintenance office to acquire more valuable and consistent information. While the 

work order request description is automatically generated according to feedback 

provided by the requester, only the textual additional notes might show variation. 

Therefore, the facility maintenance office controls the provided information to 

identify and rectify any contradictory situations, ensuring that additional information 

adheres to the accepted format. Moreover, when the additional notes encompass 

intelligent details regarding spaces, assets, fault types, and symptoms, they are 

incorporated into the model using smart tags to capture model-based relations. In the 

event of modifications to the request content, the requester is notified, allowing for 

adjustments in their explanation based on the feedback to enhance the accuracy of 

future requests. 

Following the request update, a fault network analysis approach was developed to 

apply some filters based on similarities for spatial information, fault symptoms, and 

the results of existing fault measures. This process aims to isolate the faulty asset 

and streamline the identification of the root cause of the fault. In cases where 

multiple potential faults persist, the prioritization of fault inspections is determined 

by factors related to asset characteristics, maintenance issues, and historical records. 

Comprehensive details on the network analysis and the factors influencing 

prioritization are provided in Section 4.5. 
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After prioritizing the potential root faults, the maintenance office schedules the task 

and assigns the work order to the on-site worker by transmitting a list containing the 

work order description and pertinent maintenance information, all coordinated with 

the BIM model. Hence, the office tracks the status of the work order until it is 

completed. Once the issue is resolved, the worker reports what the fault was, how it 

was solved, the action taken, the root of the fault, and the status of the work order is 

set to “Waiting for Approval.” While the last two were selected from a predefined 

list or new items were added to the structured list, textual information was provided 

for the solution description. The office checks the feedback of the site, corrects the 

format of the description, analyzes the consistency between description, action, and 

the root cause of the fault, and updates the predefined list if a new item is identified. 

If the finalized content of the work order is acceptable, its status is marked as 

“Completed.” In contrast, if the solution description is either incomplete or 

insufficient for generating valuable feedback, the work order status is revised to 

"Reporting." It is then returned to the assigned worker with a request to provide a 

clearer update. For instance, a description like “the desk has been fixed" provides 

rather general information. On the contrary, a detailed explanation such as "the desk 

was unstable due to shaky right legs caused by joint failure, and we replaced the 

joints to address the stability problem" provides a clear summary of the issue and 

clarifies how joint failures resulted in instability for the desk. Following the updates, 

the maintenance office links the description, the action taken, and the root cause with 

the model and relevant assets through smart tags. Additional tags are then defined as 

keywords to clarify the specificity of the work order compared to others. Hence, the 

model-based work order is completed. 

 

 

 

 



 

 

162 

The textual descriptions and additional notes provided by the requester and the on-

site workers must meet the following criteria: 

(i) It should be accurate, clear, easily understandable, concise, and consistent.  

(ii) It should furnish additional information that enhances the maintenance 

process. 

(iii) It should incorporate information reinforcing the reasoning behind faults, 

particularly through site feedback. 

(iv)  The text content should be aligned with the tagging requirements, including 

smart tags linking the model with content for improving the understandability 

of the work order and fault network construction systematically, and keyword 

tags to make the process easier to search, organize, and retrieve relevant 

information. 

In this study, we employed color coding and symbols to establish connections among 

stakeholders in the fault network analysis. The meanings of the color codes and 

symbols, along with their corresponding explanations, are detailed in Tables 4.2 and 

4.3, respectively. 

Table 4.2 Color codes for description tagging 

Color  Explanation 

Brown Actions taken to resolve the issue 

Green 
The cause of the fault utilized for the fault type and asset for 

intermediate or final cause 

Grey Flow or item flows 

Navy blue Space (linking to the model) 

Orange System (linking to the model) 

Purple The root phase of the fault utilized for the reason an asset 

Red Symptom 
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Table 4.3 Symbols for description tagging 

Symbol Explanation 

🔍 The root reason of the fault 

🛠️ Asset (linking to the model) 

→ Final cause 

 
Intermediate cause  

(reason for a fault and cause of another fault) 

# Unmodelled subcomponent of an asset or a system 

** Keyword tag 

 

Site feedback module: 

This module is designed to gather feedback on the completed maintenance works 

from the maintenance site. It aims to enhance the usability of the historical work 

order records to facilitate the understandability of the future work order request. 

Following the assignment of the work order, the on-site worker assesses the priority 

list of fault types, including the fault checklist reported in the request module, based 

on the site experience and asset criticality. The worker then inspects the relevant 

cases to identify the root cause of the problem and proceeds with the necessary fixes. 

When multiple workers are assigned to a work order due to diverse expertise required 

for fault types listed in the priority list, child work ID is defined to collect each 

inspection under the same umbrella. Hence, each worker performs tailored 

inspections specific to the assigned fault types to address the issue. However, in the 

end, these individual assessments are collectively evaluated to generate a cohesive 

feedback report for the entire work order. Similarly, when distinct work orders 

concurrently tackle the same issue, a unified approach is adopted by assessing 

information gathered from the work requests from these orders together. Moreover, 

a comprehensive feedback report is generated from the site, utilizing the parent work 

ID attribute to consolidate the information. Upon finishing the maintenance task, the 
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on-site worker utilizes the module to report the following information to the 

maintenance office: 

(i)  Unique identifiers to match the site feedback with the work order: work 

order ID, parent worker order, and child work order ID if needed, 

(ii)  Actual start and finish date and time of the work, whereas actual duration 

is automatically calculated, 

(iii) Description of the solution including what the problem was, how it was 

solved, explanation patterns starting from the symptoms and observation 

throughout the cause and root of the problem, 

(iv)   Action taken and corresponding asset in a structured format, 

(v)  Root of the problem and corresponding asset, 

(vi)  Observability of the detected fault for giving feedback to determine whether 

a new case can be added to the sensory observations in the work request 

module. 

(vii) The usefulness of the work description sent by the maintenance office 

to isolate the fault and find the root of the fault. 

The initial three information entries are directly extracted from the examined tools, 

while (iv) and (v) are derived from these tools and reformatted structurally, and  the 

final two entries are uniquely defined within this framework. The structural 

information of (iv) and (v) facilitates the construction of the fault network, whereas 

(vi) and (vii) provide feedback to enhance the capability of the whole framework. 

Data analytics module: 

We developed a data analytics module designed to extract work orders generated 

from the database through model-based processes. This module then analyzes the 

outputs to assess the efficiency of the constructed framework. The evaluation 

encompasses (i) the effectiveness of the feedback provided by requesters and the site 

team and (ii) statistics related to symptoms, spatial aspects, and asset-specific work 

orders and their correlations with feedback and accuracy. 
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The module empowers the maintenance office to proactively identify potential issues 

by inferring insights from work order statistics and descriptions. Regular analysis 

enables the detection of possible problems and identifies areas for improvement in 

total accuracy and efficiency within the framework. Additionally, the module 

interacts with the Building Information Modeling (BIM) environment and may 

provide a visual representation of the facility's maintenance history. This 

comprehensive approach facilitates ongoing improvements and a deeper 

understanding of the facility's maintenance needs. 

4.5 A model-based fault network analysis approach for fault reasoning 

Inspired by the dynamics of the social network, we proposed a fault network analysis 

approach to manage the maintenance process efficiently, using the work orders 

generated in the model-based work order management system. The ultimate aim of 

the network is to guide the maintenance office in isolating the requested fault and 

finding its root cause, if possible. 

The network, presented in Figure 4.2, is established based on the following 

relationships: 

(i)  Asset vs fault type: An asset, acting as a fault source, is prone to experiencing 

multiple types of faults. 

(ii)  Symptom vs fault type: When a fault type occurs in an asset, symptoms arise. 

(iii) Fault type vs fault measure: Observable signal, specific rule, or system 

evaluation is followed to isolate the fault type from the others. 

(iv)  Root vs cause: A fault type encountered in an asset causes another fault type 

of the impacted asset. 

In the network, the process flow is represented by arrows, illustrating how a change 

in one element affects another. This flow originates from a fault type in an asset, 

leading directly to the emergence of its symptoms, influencing other fault types in 

different assets if they interact, and ultimately resulting in symptoms across all 
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impacted fault types. Considering that various flows lead to identical symptoms, we 

backtrack the flow to discard inconsistent alternatives that do not adhere to the 

specified spatial and observational constraints outlined in the work order request. 

Moreover, whether the relevant fault type is part of the fault network flow depends 

on the information obtained from the available fault measure for that specific fault 

type. If the measure addresses the faulty condition, the flow pathways that do not 

pass through the fault type are eliminated; otherwise, only these pathways are 

considered. 

Asset B

Fault type 

B-1

Fault type 

B-2

Fault type 

B-3

Asset A

Fault type 

A-1

Symptom 

X

Symptom 

Y

Asset C

Fault type 

C-1

Fault type 

C-2

 

Figure 4.2. Symbolic representation of fault network relations 

This network analysis filters the potential fault sources according to the feedback 

provided by the work order request and the fault measures. As a result of this, the 

remaining ones are evaluated by the facility maintenance office to report them in 

priority to the site maintenance team for accelerating the maintenance tasks. The 

implementation steps of the fault network analysis are explained as follows: 
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Step 0: Construct a model-based work order management system, identify existing 

fault types, and propose a checklist for observable faults in each asset. Using this 

information, develop the fault network. 

Step 1: Review the simultaneously filled work order request report and filter the 

network based on reported symptoms and spatial information. 

Step 2: Use the requester's sensory observations checklist to eliminate irrelevant 

potential fault locations and isolate the network with potential fault types. 

Step 3: Analyze the fault measures of these fault types, if available, and eliminate 

pathways that contradict the results. 

Step 4: Prioritize the remaining fault types of the assets according to their criticality 

and other metrics based on historical work records. 

Step 5: Report the prior fault types, their fault source, and location extracted from 

the model to the site maintenance team. 

Step 6: Analyze feedback from the site in the work order report. Update the fault 

network and observation checklist with new information and adjustments to 

prioritization. Return to step 1 for a new work order request.  

When multiple fault types may persist following fault network analysis, a 

prioritization method becomes necessary for the site maintenance team to sequence 

fault inspections. The factors outlined in Table 4.4, based on both practice and 

literature review, were identified for utilization. However, due to the limited quantity 

and diversity of available work orders, establishing a widely applicable prioritization 

method proved challenging. As an alternative, asset criticality is assumed to be the 

primary factor for prioritization. In cases where fault types possess equal criticality, 

frequency of occurrence serves as the secondary determinant. 
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Table 4.4 Factors determining the prioritization of the fault type inspection  

Factors Explanation 

Criticality Prioritize inspecting the fault associated with the asset, 

which is more critical to the system's functionality or safety 

and performance. 

Interconnectedness Prioritize the inspection of the asset whose proper 

functioning is crucial for the performance of other 

interconnected systems. 

Safety concerns Prioritize the inspection of the fault associated with the asset 

that presents the higher safety risk if either a fault poses 

safety risks or has the potential for severe consequences, 

Frequency of 

occurrences 

Prioritize inspecting the more frequently occurring fault first 

and consider the frequency of the faults encountered in the 

same asset located in different spaces, similar types of assets, 

and assets with the same functionality. 

Similarity with 

recent work orders 

Prioritize the fault complements with the recent work orders. 

Ease of inspection If a fault can be quickly and easily inspected, it might make 

sense to address it first, especially if time is a critical factor. 

Maintenance cost If one fault, when left unaddressed, could lead to higher 

repair or replacement costs, it may be prioritized to prevent 

increased expenses. 

Regulatory 

compliance 

Prioritize the faults that could lead to regulatory compliance. 

Downtime and 

repair time 

Prioritize the fault to minimize disruption 
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4.6 Validation case studies 

In this section, we verify the procedure employed in the request and site feedback 

module for generating work orders. Furthermore, the effectiveness and practicality 

of the proposed model-based work order management system in fault network 

analysis are substantiated through mini-case studies. These studies demonstrate how 

the model utilizes smart information to establish relationships, enabling the isolation 

of fault sources and identification of the root cause of the problem. Four different 

case studies are implemented, each specifically highlighting a specific capability of 

the framework. 

As explained in the preceding section, the request and site feedback modules were 

developed within the Dynamo environment, interacting seamlessly with Revit and 

manipulating model repositories. Utilizing the data-shapes package in Dynamo, we 

introduced an interface. We collaborated with the Dynamo Player embedded in Revit 

to gather feedback for work orders from both requesters and on-site workers. 

Importantly, via these interfaces, individuals without prior knowledge of Building 

Information Modeling (BIM) can effortlessly manage the completion of work order 

requests or site feedback. Sample-filled examples for both the request and site 

feedback modules are provided in Appendix E. 

4.6.1 Mini case study 1: prominence of systematic work request - a 

pressure problem in a combined boiler 

This hypothetical case study is designed to illustrate how the work request module 

is structured to optimize information extraction from complaints while minimizing 

the additional efforts required by maintenance workers to address the issues.  

In the 5-story headquarters of a construction company, the heating system utilizes 

radiator heaters that operate by circulating hot water to warm the spaces. The heat is 

generated by a combined boiler situated on each floor. These story-based boilers heat 

the water and convey it through a network of pipes to the respective radiators on that 
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floor. The radiators, in turn, release the generated heat into the spaces, effectively 

warming up the spaces.  

On a cold winter day, while Engineer A was working in her enclosed office A-307, 

she became aware that the office was not sufficiently warm for comfortable working. 

Following this, she inspected potential openings through which cold air could enter 

from the outdoors. After that, she decided to submit a work order request. Upon 

accessing the request module, office A-307 was initially assigned to spaces in her 

request. She then specifically chose the symptom "too cold." In the historical records 

of the office, this symptom was previously associated only with the air conditioner. 

However, it was also identified when the radiator was not heating or not heating 

enough, and heat was escaping from the corners of curtain-walled office windows in 

various offices throughout the building. Therefore, by employing feature-based 

relations and space filtering, potential fault sources were narrowed down to three 

assets: air conditioner, radiator, and curtain wall. In the next step, the request module 

presented potential detectable faults by sensory observations. Since the air 

conditioner was not in operation during the working day, she logically excluded this 

option and proceeded to examine potential faults in other assets. While conducting a 

tactile examination of the radiator, she visually inspected the curtain wall. Finally, 

she detected the fault in the office: “The radiator is not producing adequate heat.” 

After that, the module identified the heating system to which the radiator belongs 

and provided another instruction based on her spatial accessibility: "Control the 

nearest radiator in the corridor.", pinpointing the position of the radiator visually in 

the floor view. This was done to ascertain whether the fault was specific to the 

radiator in the office or related to another asset in the central system. However, she 

detected the same problem in the radiator and reported it to the module. Hence, the 

fault is rooted in the central system, either from the combined boiler or the pipes. In 

the next step, the module reported the potential observable faults of the combined 

boiler and pipes. As illustrated in Figure 4.3 for the combined boiler, the fault 

checklist for each asset is enriched with visual representation to enhance 

understanding and facilitate the followability of the process. While reviewing the 



 

 

171 

fault list, she identified fault (7) as the pressure in the boiler was significantly low. 

Hence, the description of the request is defined as follows: 

“ The quite 🔍lower pressure of the 🛠️ combined boiler significantly decreases the 

boiler's heat output, causes 🛠️ the radiators, including the ones in the corridor and 

office A-307, → not producing adequate heat. Hence, the office is too cold.” 

After that, the module provided instructions on how to increase the pressure. Once 

she resolved the pressure issue, the request was logged as statistics and additional 

information for the regular inspection of the boiler. In the case of more technical 

problems being reported, the maintenance office would always direct a maintenance 

worker to address the issue. 

 

1. The valves intersect the pipes.  

2. A special symbol is available in the digital indicator. 

3. Digital indicators are not working while the control fuse 

is active. 

….. 

… 

7. The pressure in the boiler is quite low in the red level. 

8. The pressure in the boiler is quite high, and water is 

discharged from the boiler. 

… 

  

Figure 4.3. Visual representation of fault checklist for the combined boiler 

This case study verifies the implementation steps of the request module to create a 

work order request. Moreover, it shows effectiveness in systematically guiding 

requesters to maximize information retrieval. The module is designed to isolate 

issues and identify their root causes, thereby expediting the maintenance process. 

Additionally, in cases involving observable and easily rectifiable conditions that do 

not compromise safety regulations, the requesters receive instructions to address the 

issues independently, without the need for intervention from maintenance 

professionals. 
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4.6.2 Mini case study 2: model integrated work order management in 

data-driven facility operations – a stuck coil valve problem in AHU 

operations 

This case study investigates the reporting of a faulty condition in data-driven facility 

operations within a model-based work order management framework. The analysis 

explores two distinct scenarios for AHU operations of the second case study in 

Chapter 3: one addressing a specific confined faulty condition and the other 

revolving around a suspicious pattern identified by the hybrid intelligence 

framework.  

In the first case, while the Air Handling Unit (AHU) was in operation, the model 

systematically identified a leakage issue in the heating coil valve. The decision 

support model confirmed the presence of a leakage problem within the system and 

seamlessly interacted with the request module to notify the problem to the facility 

maintenance office. In this case, the AHU system's name was automatically 

designated as the requester, and the mechanical room associated with the AHU was 

assigned as the relevant space. As the issue was evident, leaking symptoms are 

predefined. Consequently, the root cause of the system's problem was documented 

in the description section, as tabulated in Table 4.5, with the attachment of 

operational input data. 

Table 4.5 Requested work order of leaking heating coil valve 

Requester AHU-2 

Space Mechanical Room-2 

Symptom Leaking 

Description 🛠️ The heating coil valve of AHU-2 system located 

in Mechanical Room-2 is 🔍leaking. 

 

After that, the maintenance office received, accepted, and assigned an HVAC  
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technician to inspect the request. Following the resolution of the issue, the technician 

reported the solution using the site feedback module. Initially, the solution 

description stated, "The valve is replaced," lacking sufficient detail. Therefore, 

additional, comprehensive information was requested to finalize the work order. 

Responding to the feedback, the technician enhanced the solution description, 

providing more detailed information as outlined in Table 4.6. The action taken to 

resolve the issue and its root cause was selected from the dropdown list, with 

additional information added if necessary. The description offered valuable insights 

for the root-cause analysis of the solution, marked with "No" for observability, as it 

required technical knowledge that could not be easily detected by sensory 

observations. The accurate transmission of the problem to the site technicians 

facilitated useful feedback. Therefore, this work order report not only confirmed the 

accuracy of the model predictions but also underscored the crucial role of site 

feedback in updating the hybrid intelligence model. 

Table 4.6 Filled site feedback module for leaking heating coil valve 

Work Order ID AHU-213 

Reported By Ali Asaf 

Actual Start Time 2017-09-11 13:14  

Actual Finish Time 2017-09-11 13:42 

Description of the 

solution 

🔍Corrosion weakens the structure of     the valve, 

leading to cracks. It causes → leakage in 🛠️the 

heating coil valve of the AHU-2 system located in 

Mechanical Room-2. 🛠️The valve is replaced. 

Action taken Replacement of the heating coil valve 

The root of the problem Corrosion in heating coil valve 

Observability No 

The usefulness of work 

description 

Yes 
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In the second case study, the decision support model detected suspicious patterns in 

the conditional prediction of the AHU operations and reported it to the maintenance 

office. Since at least two different types of fault or fault-free instances exist in the 

suspicious patterns, only the common attributes are reported. The operational input 

data is attached to the request. The request details are as follows in Table 4.7.: 

Table 4.7 Requested work order report for suspicious fault pattern 

Requester AHU-2 

Space Mechanical Room-2 

Symptom - 

Description 2017-09-18 13:15  “ No fault” with a probability of 

0.85 

2017-09-18 13:20 “ Stuck outdoor damper in a fully 

open position” with a probability of 0.72 

2017-09-18 13:25 “ No fault” with a probability of 

0.65 

2017-09-18 13:30 “ Stuck outdoor damper in a fully 

open position” with a probability of 0.90 

2017-09-18 13:35 “ No fault” with a probability of 

0.84 

2017-09-18 13:40 “ Stuck outdoor damper in a fully 

open position” with a probability of 0.76 

 

A suspicious pattern is detected with respect to two 

conditions: 

(1) No fault 

(2) 🔍Stuck 🛠️outdoor damper in a full open 

position of AHU-2 system in Mechanical Room 2 
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Simultaneously, another work order was requested by the occupant of the space 

where AHU-2 serves; however, in this request, only the symptoms and the fault asset 

can be identified by the requester, as reported in Table 4.8. 

Table 4.8 Requested work order report for the faults in air conditioner. 

Requester Kemal Teke 

Space Test Cell X3A 

Symptom Too cold, Excessive airflow intake  

Potential faulty asset Air conditioner  

Description Excessive airflow is coming from 🛠️ the air 

conditioner. Therefore, Test Cell X3A is too cold. 

 

The facility maintenance office independently accepted two requests. Despite the 

suspicious pattern in the data-driven environment, there was an awareness that a 

stuck outdoor air damper might lead to the same issue reported in the second request. 

Consequently, both requests were evaluated jointly, and an experienced HVAC 

technician was assigned to inspect the outdoor damper. The technician was tasked 

with taking appropriate action to address the issue if identified.  After conducting an 

inspection in compliance with safety regulations by powering off the Air Handling 

Unit (AHU) unit, the technician identified a break in the wiring between the actuator 

and the outdoor damper. Despite the actuator sending a signal to the damper, the 

disconnection resulted in no change in the damper's position. To ensure operational 

continuity, the technician replaced the broken wire, reestablishing the connection 

between the actuator and the outdoor damper. After that, the technician reports the 

findings via the site feedback module, as outlined in Table 4.9. The discrepancies 

between the predictive model's estimations and the actual faults were evident, as the 

second request and site feedback confirmed the presence of faults. Consequently, 

instances predicting "no faults" were stored in a database for inclusion in training 

sets when updating the prediction model within the hybrid intelligence framework.  
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This case study verifies the implementation of data-driven work order requests in 

this framework. Additionally, it integrates the faults predicted in the data-driven 

environment into model-based work order management. As a result, both data-based 

and textual recordings interact synergistically with the model, enhancing the 

generation of intelligent work orders. This integration aims to facilitate the utilization 

of order intelligence for future requests, contributing to a more efficient and 

informed work order management process. 

Table 4.9 Filled site feedback module report for stuck outdoor damper 

Work Order ID AHU-241 

Reported By Veli Kan 

Actual Start Time 2017-09-18 14:21  

Actual Finish Time 2017-09-18 16:15 

Description of the 

solution 

🔍The broken #wire cuts the connection between 

🛠️actuator and 🛠️outdoor damper of AHU-2 system 

in Mechanical Room 2. It causes → stuck in 🛠️ the 

damper. #The wire is replaced, and a connection is 

provided. 

Action taken Replacement of wires 

The root of the problem Broken wiring between the control system and the 

damper 

Observability No 

The usefulness of work 

description 

Yes 
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4.6.3 Mini case study 3: investigation of spatial relations in fault isolation 

- water leakage problem  

This case study aims to demonstrate how spatial relations, specifically those 

pertaining to space-to-space connections, are assessed in the context of work order 

generation. In an airport restroom, a passenger noticed water stains, discoloration, or 

visible wet spots on the ceiling and brought the situation to the attention of the airport 

staff. Following that, the staff inspected the restroom, closed the relevant sections 

for use, and accessed the request module to submit the complaints by specifying the 

location of the restroom and indicating water leakage as the symptom. Upon 

selecting these options, the module prompted a question regarding whether the issue 

is detected on the ceilings and their connected walls, aiming to ascertain whether the 

problem arises from the interior assets or not. When choosing the ceiling, the assets 

associated with the ceilings of the restroom and the floor above were evaluated, 

incorporating the projection of the floor onto the ceiling. It became evident that the 

leakage was located at the projection of the intersection where tee elbow connects 

two pipes. Therefore, among the checklist reporting the faults related to assets of the 

wastewater system and toilet fixtures, he opted for the elbow and ticked off “the 

water leaks in the elbow connections.” Hence, the request was reported as outlined 

in Table 4.10. 

Table 4.10 Requested work order report for water leakage issue in the restroom.  

Requester Mehmet Kemal 

Space Restroom 105 

Symptom Water leakage  

Potential faulty asset Elbow tee 502 

Description   The water leaks in the # connections of 🛠️elbow tee 

502 of wastewater system 103 in Restroom 205 
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When the facility maintenance office received the request, they assigned a plumber 

to fix the problem immediately. The plumber arrived at the maintenance site 

equipped with a spare identical elbow tee. Using the device to identify water droplets 

at the reported coordinates of the elbow tee, he successfully pinpointed the source of 

the leakage, same as reported in the request. After that, he restricted access to the 

restroom partially, and without delay, he removed all materials obstructing the path 

to the elbow tee. Upon accessing the problematic area, he observed that the 

connection of the elbow tee with a pipe was slightly cracked, causing water to leak 

from the damaged surface. After that, he replaced the cracked elbow tee with the one 

he had brought and returned everything to its previous condition. Finally, he reported 

the work order via the site feedback module. The description of the solution was 

reported in the final work order as follows: 

“🔍The crack in # the connection of 🛠️elbow tee 502 of wastewater system 103 

and  🛠️the pipe 142 causes water leakage, and it results in → water stains, 

discoloration, or visible wet spots on 🛠️ the ceiling of Restroom 105.” 

This case study verifies how the projection information can be utilized in fault 

isolation using space-to-space relations. Additionally, the feedback provided by the 

requester, with the assistance of a model-based environment, informs the plumber 

about potential faults and enhances his awareness to take necessary precautions. 

Therefore, by having the spare elbow tee during the initial inspection, the 

maintenance task was shortened by eliminating the time spent to identify potential 

faults part and retrieving new one from inventory, allowing the restrooms to be 

reopened earlier for use. This not only reduces the potential idle time for the plumber 

but also minimizes passenger complaints about restroom accessibility. 
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4.6.4 Mini case study 4: data analytics on the resolution of repeating 

lighting faults 

As explained in the module, data analytics is utilized in work order management to 

extract valuable insights, identify patterns, and optimize processes, enhancing 

efficiency and decision-making. In this case study, we examined two hypothetical 

scenarios inspired by the challenging work orders actually encountered at an airport: 

(i) a bottleneck in carpentry works and (ii) a rise in lighting faults and associated 

complaints in a designated baggage claim area. 

Carpentry works encompass a range of tasks, including the maintenance, repair, and 

installation of wooden fixtures such as seating, counters, and custom millwork at the 

airport. Carpenters play a crucial role in ensuring the structural integrity, safety, and 

visual appeal of various airport facilities, including waiting areas, lounges, boarding 

areas, and information desks. Their responsibilities might also extend to flooring, 

cabinetry, and other wooden elements, contributing to a well-maintained and 

welcoming environment for passengers and staff. However, the frequent delays in 

completing these tasks increase complaints. This is due to the restricted availability 

of seating and the lack of clear signage to assist passengers, as well as occasional 

noise and disruption. Additionally, access to amenities like restrooms and 

information desks is often restricted. This problem sometimes results in delays in 

boarding and departure. Therefore, the facility maintenance office regularly analyzes 

performance metrics of maintenance works including the carpentry works to 

improve maintenance efficiency and prevent potential complaints. In one of these 

analyses, they first investigated the performance of the carpenters; however, no 

significant differences were observed in their performance. Then, a detailed analysis 

was undertaken to assess the space-based performance of the carpentry works, 

specifically the works conducted in the waiting and boarding areas. In this analysis, 

the works on the second floor and those on the basement floor are compared. Despite 

the works being similarly distributed across both floors, the average execution time 

of tasks on the second floor was found to be reasonably higher than those on the 
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basement floor. To delve deeper into the analysis, the statistics of other attributes 

were examined, and a significant clue was captured in “the usefulness of work 

description.” While the carpenters found most of the work description informative 

and value-additive for the basement floor, this rate decreased to two-thirds on the 

second floor. The carpenters also validated this finding. Given the extensive scope 

of the work, the feedback provided by the requester emerged as a pivotal factor in 

streamlining the maintenance process and expediting the tasks. Therefore, a 

collaborative meeting was arranged to explore ways of enhancing requester 

feedback. After that, a training program was formulated to educate requesters on how 

to submit clear and comprehensive work order requests. Through this program, in 

the next regular inspection six months later, the feedback efficiency of requesters 

from the second floor for the cases deemed not informative improved in at least one 

out of the five instances. As a result, the execution time of the carpentry works for 

that floor was considerably improved. It demonstrates how initial efficient feedback 

on requested work significantly enhances the entire maintenance process, especially 

concerning carpentry works. 

The complaints of the passengers and airport staff are systematically collected to 

enhance the operational efficiency of the airport. These concerns are conveyed to the 

corresponding management units regularly to address and resolve the issues. The 

facility maintenance office reviews these complaints as part of its routine analysis of 

work orders. Some of these complaints specifically mention the lighting issue in the 

baggage claim area 4, citing discomfort in the visual experience due to excessive 

brightness. Upon examining the statistics of lighting faults in baggage claim areas, 

it was observed that despite the use of the same light bulbs in other areas, certain 

bulbs in the pinpointed area were replaced three times within a short period.  

While the same cable line powered all the replaced bulbs, other lines connecting to 

the same electrical panel did not encounter any faulty issues. The historical records 

indicate that the maintenance task was previously performed on the same panel 

before these problems arose. This issue is likely a result of human error during or 

after that task, pointing to a problem in the connection between the panel and the 
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cable line. The reported excessive brightness in complaints directly highlights a 

configuration problem in the connections of the cable line and electric panel. Hence, 

a work order was initiated, assigning an electrician to inspect the current condition 

and address any identified issues. According to the report, the electrician detected 

and resolved the configuration problem. In the next routine analysis, no significant 

complaints on the same issue were encountered. 

4.7 Discussion and conclusion 

In this research, we developed a model-based work order management framework 

that links assets and spaces to the corresponding ones in the BIM model. The 

observable symptoms, the source asset of the fault, spatial information, and the 

impacted assets are symbolized with tags, including color coding. The linked models 

and tagged order are brought together to detect spatial, systemic, and feature-based 

relations automatically and make the work order smarter, addressing RQ 3a. Hence, 

information gained from these linked historical records is utilized to facilitate fault 

isolation and reasoning. The content of the framework is limited to the four modules: 

request, site feedback, evaluation and management, and data analytics. The request 

module was designed in a guided structural form to maximize the information gained 

initially for detecting the problem accurately and directing the maintenance team 

with enough information. The site feedback module was proposed to collect 

constructive feedback on the completed maintenance works. The evaluation and 

management module was constructed to control, correct and link the work requested 

and work order completed. In other words, it is the control points managed by the 

facility maintenance office to standardize the entries of the work order forms 

provided by different requesters and maintenance site workers. Moreover, a fault 

network analysis approach was developed, addressing RQ 3b to construct the 

relations between fault symptoms, assets, asset-specific fault types, and fault 

measures if they exist. When a new work is requested, according to the information 

provided, utilizing the similarities in spatial information, fault symptoms, and the 
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results of existing fault measures, filters are applied to isolate the fault and detect its 

root. The facility maintenance office evaluates the outputs of the analysis and assigns 

the corresponding maintenance worker to inspect the fault on site. Finally, a data 

analytics module was developed to analyze the statistics of the existing work orders 

regularly to identify potential issues by inferring insights and taking necessary 

precautions proactively. The applicability of the proposed framework is verified with 

four different case studies that show how the proposed fault network approach and 

smart work orders linked with model elements defining the relations automatically. 

Hence, by employing fault network analysis alongside data obtained from work 

requests, the framework's ability to isolate faults and potentially identify their 

reasons is validated. As a result, this framework streamlines fault isolation and 

reasoning processes through the utilization of model-based relations, facilitating a 

model-driven approach. 

From the point of information needs, first, space and symptom information is 

received, and then, using asset-space relations, the potential faulty assets are listed. 

To isolate the fault, fault lists based on sensory observations of the assets are required 

to be provided to the requester for checking. Additionally, when the resolution of the 

problem is non-technical, information on how to resolve it is needed to guide the 

requester. In the site feedback module, while actions taken to handle the issue and 

its root are received in the structural form, observability of the resolved issue and 

usefulness of the work description sent to the site workers are evaluated to give 

feedback for updating the framework to improve prediction accuracy. 

The facility maintenance office standardizes the format and content of work requests 

and solution descriptions within the framework. While the description for both 

semantic and data-driven work requests is automatically generated from the guided 

structural form, and rules are defined for entries in the site feedback module. If the 

description lacks sufficient details to explain the completed work, feedback is sent 

to the responsible worker for a more detailed redescribing of the task. Following the 

completion of the request and work order descriptions, they are linked to the 

corresponding model elements. When ordinary people read the color-coded and 



 

 

183 

tagged descriptions, they can easily construct fault patterns using the established 

relationships. 

In the development of the framework, detailed information is required about 

potential faults of the assets available in the model to facilitate the isolation of the 

issues in the request where the faults can be observed by five senses. Therefore, in 

the handover stage, a guideline and form should be prepared to standardize the fault 

information collection and gather them from the vendors, including the asset, its 

subcomponent, its corresponding fault type, symptom(s), and fault information, and 

action taken to handle the issue. The information that is not available for the assets, 

especially for structural and architectural components, needs to be collected before 

the handover stage. Since it provides system-specific or asset-specific fault 

information, including symptoms, fault types, and their relations, the historical 

records of similar facilities can be utilized to adapt their information to the new one. 

On the other hand, information collected for newly defined assets or systems can be 

integrated into the fault network in a customizable manner. Moreover, the linkage of 

the assets with the work order depends on the availability of assets or their 

subcomponent in the model. If it is modeled, the work order is linked to the asset; 

otherwise, the “#” symbol is presented in the description to link it to the most relevant 

asset or system. Furthermore, in the application of the framework, when a new fault 

case that is not defined before emerges, information is collected via additional notes 

from the request module, and the case is inspected and resolved by the site workers 

and reported via the feedback module. In the case of new information emergence for 

the structural information presented in a dropdown list or checklist, including 

symptoms or action taken to handle the issue, it is allowed to add new items and then 

controlled and corrected by the facility maintenance office. When a new observable 

fault is detected by the site workers via the observability attribute, feedback is given 

to the maintenance office. The fault checklist of the asset by sensor observations is 

then updated. 

In the future, as the usage of the framework matures over time, the responsibilities 

of the facility maintenance office in controlling and correcting the content of work 
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orders and requests will gradually be delegated to an AI model. This transition will 

occur once a sufficient amount of work order data is collected to train the model. 

Hence, it will provide decision support for the maintenance office to accelerate the 

process. Moreover, the office controls the model outputs, corrects them, and gives 

feedback to update the AI model regularly for continuous improvement. In addition, 

as explained in Section 4.5, the prioritization of fault reasoning when more than one 

alternative is available will be formulated. Furthermore, since BIM facilitates the 

linking the relations between assets and spaces and only observable faults are 

considered in this framework, developing an asset-specific expert system for fault 

reasoning and integrating it into the framework will broaden its coverage and 

improve the systematic and comprehensive analysis of faults within the facility.  
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CHAPTER 5  

5 CONCLUSIONS AND FUTURE RESEARCH 

In this research, a conceptual framework for BIM-driven facility maintenance and 

fault management is developed to address the entire maintenance process by 

reviewing previous studies and practices. The research's focus begins from the pre-

maintenance stage encompassing asset tracking and system monitoring, fault 

detection and reasoning, work order management, and information management in 

maintenance tasks. To facilitate information management in this process, the 

framework concentrates on information requirements, standardization and resolution 

of interoperability and integration issues in model-based environments, efficient 

utilization of information technologies to streamline maintenance tasks, and 

specifically, needs analysis for model-based work order and fault management.  To 

eliminate potential significant time and money lost due to information losses and 

delays in understanding the real reason for the faults in a facility, the research gaps 

are identified, and the potential of BIM is leveraged to develop two decision-support 

solutions for fault reasoning.  

In the first solution, considering the need for adaptation to uncover the behavior of 

the whole system and provision of practical reliability of the monitoring system, a 

hybrid intelligence approach is developed to interact humans with AI models for 

consistently improving the fault reasoning throughout the lifecycle of the facility to 

meet the needs of data-driven fault reasoning and integrating with the BIM 

environment to link the data-driven solution with maintenance workflow. The 

approach comprises six interconnected modules. Firstly, the design module 

constructs the sensor network as design inputs. Secondly, the data acquisition and 

preprocessing module collects data through real-time monitoring or simulation, 

cleaning, and sampling it for training and testing purposes. Thirdly, the predictive 

modeling module selects or designs the appropriate AI algorithm and trains it for 
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fault detection and reasoning. Fourthly, the monitoring and decision support module 

tests the constructed algorithm with incoming data, monitors consecutive 

predictions, and reports suspicious patterns as work order requests to the facility 

maintenance office. The fifth module, the human-centric evaluation, involves the 

maintenance team in assessing requests, conducting on-site inspections, addressing 

detected problems, and providing feedback to enhance prediction accuracy. Lastly, 

the continuous enhancement module utilizes feedback from site inspections and the 

decision support model to improve data support for fault detection and reasoning 

continually. BIM is integrated into the approach to interact with the sensor network 

for extracting relevant sensor information for corresponding assets and with the 

decision support model to provide spatial and maintenance information and 

documentation for the work order request. As highlighted above, the interaction 

between humans and machines is pivotal for enhancing fault reasoning predictability 

and advancing the sustainability of the approach. Humans are central in various 

aspects, including network construction development, data preprocessing, predictive 

model selection, decision-making in fault management, and offering constructive 

feedback from site inspections to enhance machine predictions and improve 

prediction accuracy. In contrast, AI models streamline repetitive and time-

consuming processes within the modules and provide invaluable decision support by 

predicting fault reasons, thereby facilitating human decision-making. Since the 

predictive model is one of the main determinants of efficient fault reasoning, we 

implemented hierarchical classification, strategically dividing the extensive array of 

fault classes into more manageable units. This strategy proves particularly beneficial 

in systems housing numerous fault types with varying severity levels across assets. 

The architecture of the algorithm mirrors the fault hierarchy, coordinating multiple 

local classifiers in hierarchical alignment. It systematically detects the fault's 

presence, pinpoints the fault's source asset, identifies its fault type, and evaluates its 

severity level. This structured methodology aids in both understanding and resolving 

issues efficiently. Furthermore, to tackle errors propagated through the hierarchy, we 

devised local classifiers utilizing a Back-propagated Neural Network with 
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conditional stepwise learning, thus minimizing the risk of overfitting. Additionally, 

we trained additional local classifiers to offer constructive feedback for updating the 

primary hierarchical model. This process involves determining combined 

contribution weights via linear regression from the feedback classifier(s) and the 

main model, thereby enhancing the predictive accuracy and robustness of the overall 

model. As a result, the performance of the proposed approach and AI models is 

validated with two case studies by comparing its solution quality with the common 

AI classification models. 

In the second solution, a model-based work order management framework that 

connects assets and spaces with their counterparts in the BIM model is proposed to 

facilitate information gains while the problem and its solution are reported. 

Observable symptoms, fault source assets, spatial information, and affected assets 

are represented using tags, including color codes. These linked models and tagged 

orders enable the automatic detection of spatial, systemic, and feature-based 

relationships, thus enhancing work order intelligence. Hence, information gained 

from these linked historical records is utilized to facilitate fault isolation and 

reasoning. The framework comprises four modules: request, site feedback, 

evaluation and management, and data analytics. The request module is structured to 

maximize initial information acquisition for accurate problem detection and to guide 

the maintenance team effectively. The site feedback module collects constructive 

feedback on completed maintenance tasks. The evaluation and management module 

controls, corrects, and links requested work with completed work orders, serving as 

control points managed by the facility maintenance office to standardize entries from 

different requesters and maintenance workers. Furthermore, a fault network analysis 

approach is proposed to establish relations between fault symptoms, assets, asset-

specific fault types, and fault measures, if applicable. When a new work order is 

requested, filters are applied based on spatial information, fault symptoms, and 

existing fault measures to isolate and identify the root cause of the fault. The facility 

maintenance office evaluates the analysis outputs and assigns maintenance workers 

to inspect the fault on site. Lastly, a data analytics module was created to regularly 
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analyze existing work order statistics, infer insights, and proactively take necessary 

precautions to identify potential issues. The proposed framework's applicability was 

verified and validated successfully through four case studies, demonstrating how the 

fault network approach and smart work orders linked with model elements 

automatically facilitate fault isolation and reasoning. 

5.1 Summary of contributions 

This research contributes to several aspects of model-based facility maintenance 

management and fault reasoning to facilitate the maintenance tasks: 

Review-based facility maintenance management framework: Current literature 

studies focus on the restricted aspects of BIM-based facility maintenance to manage 

information flow and maintenance workflow. This research introduces a conceptual 

framework founded on comprehensive reviews of existing practices, methodologies, 

and technologies in model-based maintenance management. By synthesizing ideas 

from the reviews about the strengths and weaknesses of current approaches, the 

framework offers a robust foundation for efficient facility maintenance operations, 

including information requirements in different stages of the facility lifecycle, 

utilization of information technologies to facilitate maintenance information 

workflow, compatibilities for interoperability and integration of BIM with other 

technologies, and direction for model-based work order and fault management. 

First hybrid intelligence application in fault reasoning:  The efficacy of current AI 

classification models for fault detection and reasoning hinges upon the quality, 

relevance, and representativeness of the available data, which are imperative for 

demonstrating the holistic behavior of the system. However, throughout the system's 

life cycle, unforeseen conditions and repetition of similar mispredictions due to the 

capability of the current AI model diminish the reliability of the proposed solution 

in practice. Therefore, to address the drawbacks, this study presents a pioneer 

solution to data-driven fault reasoning, called the hybrid intelligence approach, to 
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provide iterative feedback within the interaction of humans and AI models for 

consistently improving fault detection and reasoning predictions. While humans 

construct the data-driven monitoring network, preprocess the initial training data, 

select and fine-tune the AI model intuitively, provide constructive feedback from site 

inspection to machine prediction, and finally make a decision on fault conditions in 

practice, AI models collect the real-time data and makes predictions to provide 

decision support for human-decision-making. The collected feedback for 

mispredictions detected by the decision support model and site inspection is utilized 

to resample the training data and retrain the AI model for regular updates. Hence, by 

integrating human expertise and insights with the AI model’s capabilities, both 

parties augment each other for continuous improvement in the predictions. 

A novel feedback mechanism to improve the performance of classification models: 

The hierarchical classification model orchestrates multiple independently trained 

local classifiers through a structured sequence of hierarchical decision processes to 

finalize its reasoning predictions. However, mispredictions at any level of the 

hierarchy propagate and accumulate errors. Therefore, in order to regain a significant 

portion of the information loss through this hierarchy, a novel feedback mechanism 

is developed to improve the prediction accuracy, especially for conflicting fault 

classes where mispredictions exceed the predefined threshold values. In this path, 

examining the confusion matrix of the training data, independent subsets, including 

conflicting classes, are determined, and an additional local classifier is trained using 

the dataset of the classes in each subset. After that, least square regression is 

employed to minimize the square error between actual faults and feedback-enhanced 

predictions, optimizing the combined weights of the hierarchical main model and 

additive classifier for each subset. Hence, constructive feedback from the conflicting 

classes is integrated into the main hierarchical model to improve model accuracy. 

This feedback mechanism offers a robust alternative to ensemble models, including 

bagging, boosting, and stacking ones, in the classification problem literature, as 

evidenced by applied case studies. 
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A knowledge-assisted model-based fault reasoning: The previous studies established 

relationships between problem sources and model elements using predefined 

manually customized templates and case studies, each creating a database for 

specific situations, from which algorithms were employed to search and filter 

relevant templates. Hence, a root-cause mechanism associated with selected 

templates identified problem sources and correlated model elements solely linked to 

the chosen template, whereas the intelligence of BIM was not actively utilized to 

define the templates and fault patterns. In contrast, this research is founded on the 

utilization of model-based relations and the information gained from the relevant 

historical work order records to isolate and localize the faults. Therefore, a model-

driven framework to manage work orders is designed in a Dynamo environment to 

structure and standardize the content and format of work orders to establish 

connections among observable symptoms, the source asset of the fault, spatial 

information, and the impacted assets within the BIM environment. Moreover, smart 

tags are employed to construct a fault network using the relations between asset and 

fault type, symptom and fault type, fault type and fault measure, and finally, between 

fault types defining the root and cause of the problem and connect the work orders 

to the model elements. Based on the information provided by the maintenance 

requester on fault space, symptom, asset, and system, the fault network is filtered to 

isolate the potential fault reason(s) and pinpoint it if possible. Since the faults are 

defined specific to the assets or systems, while replacing the type of existing assets 

or constructing fault network for a newly built facility, the general fault network is 

customizable to meet the specific requirements of the facility.  

5.2 Limitations of research 

While the contributions of this research mark significant advancements to support 

facility maintenance, they also present some limitations, as reported below: 

• Although the abstracts of all reported articles are examined one by one, the 

articles collected from Web of Science and Scopus databases to evaluate for 
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literature review of model-based maintenance management and fault 

reasoning to construct the conceptual framework are restrained with certain 

keywords such as “BIM” and “maintenance,” “BIM” and “work order,” and 

“BIM” and “fault detection and diagnosis.” The relevant studies on facility 

maintenance, work order management, and fault reasoning, but those that are 

out of BIM scope, have not been evaluated. 

• The hybrid intelligence approach offers continuous improvement to detect 

and reason the faults throughout the lifecycle monitoring of the systems 

within the facility.  Using a real-time dataset on a longer time horizon within 

regular updates would be more efficient in validating the efficiency of this 

approach. However, due to the absence of data availability, the datasets 

generated for fault patterns using experiments and simulations are evaluated 

in the validation process. Since at least two iterative steps are required to 

show consistent improvement in fault predictions, the datasets in time series 

were divided into five sets, as reported in Chapter 3. While the model was 

first trained with the three sets and tested with the fourth one, in the second 

step, the samples of the incorrectly classified test instances were added to the 

training data, and the model was retrained and tested with the fifth set. 

• The feedback-enhanced hierarchical classification model in the hybrid 

intelligence approach is designed assuming that a single fault exists at a time 

in the system, compatible with validation cases; however, the scenario 

involving multiple faults detected simultaneously is also discussed in Chapter 

3. Nevertheless, in that model, the existence of faults and the classification 

of their severity levels are modeled as in the original one. However, in 

contrast to our model, the fault hierarchy, including faulty assets and their 

fault types, is deconstructed, and the sigmoid function replaces the softmax 

activation function for multi-class classification and binary classifiers are 

exchanged with two-class multi-classifiers. While the softmax function 

allows for relative comparison and addresses a faulty asset and fault type for 

the continuity of the hierarchical classification, the sigmoid function 
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evaluates each alternative independently. As a result of this, while a fault can 

be detected by the fault existence classifier at the top node of the hierarchy, 

none of the fault types of the assets might theoretically be addressed at the 

next level of the hierarchy, resulting in information losses and limitations in 

information transfer. 

• The model-based work order framework primarily concentrates on the 

content and format of work orders and their integration with the BIM model 

to enhance the intelligence of work orders and utilize acquired information 

to expedite fault isolation and reasoning. Therefore, certain conventional 

aspects of work order management systems, such as scheduling and 

prioritizing work orders, optimizing resource utilization, integrating with 

other business systems, and related considerations, are not directly covered 

within this framework. Initially, our intention was to develop an index for 

prioritizing the remaining fault types if more than one exists following the 

receipt of a work order request. However, we encountered challenges in 

establishing a prioritization method that could be widely applicable, 

primarily due to the limited quantity and diversity of available work orders. 

Therefore, the criticality of the assets was evaluated to prioritize the 

inspection order. 

• In knowledge-assisted model-based fault reasoning, smart tags or additional 

tags are utilized to link work order descriptions to the relevant assets, their 

fault types, space, system, and symptoms in the model. Using the information 

provided by historical records and model-based relations, potential faults are 

isolated, and the reason for the fault is pinpointed if available. However, 

while linking information gained from the work orders, the “garbage in, 

garbage out” principle comes into play for the model. In cases where the asset 

and its subcomponents are fully modeled, the relevant ones are easily linked 

with the work order description. Otherwise, a practical approach involves 

utilizing placeholders or indicators, such as the "#" symbol, within the work 

order descriptions. This symbol serves as a reference point, indicating that 
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the work order is linked to the most relevant asset or system, even if the asset 

is not fully modeled or specified within the BIM environment. If the 

boundaries of the spaces and relations of the systems are not clearly defined, 

it influences the accuracy and reliability of the fault reasoning model. 

5.3 Practical implications and recommendations for future studies 

The journey of this research has not only uncovered novel findings but has also 

illuminated practical pathways for improving information management in facility 

maintenance and streamlining fault reasoning.  To begin with the conceptual 

framework for model-based facility maintenance and fault management, it increases 

the awareness of the facility managers for lifecycle model-driven maintenance 

management by drawing the whole picture of the maintenance issues integrated with 

BIM and information technologies to facilitate the tasks, not only for asset tracking 

and system monitoring, but also fault detection and diagnosis and maintenance 

training and tracking.  The framework advocates for a proactive role of the facility 

management office during the design stage of the facility rather than waiting until 

the handover stage before the operational phase. This proactive involvement ensures 

that potential issues related to accessibility paths and design are identified and 

rectified earlier to prevent design faults and repair needs later. Leveraging BIM-

integrated virtual solutions, such as simulations and model-based design checks, 

facilitates this process by providing insights into the facility's functionality and 

identifying any design-related shortcomings. Additionally, during the handover 

stage, a detailed list of maintenance items from previous studies and industry 

practices can be used to create a specialized checklist for maintenance issues. This 

helps ensure that all necessary maintenance considerations are addressed from the 

start, setting the stage for smoother operations and upkeep in the long run. Moreover, 

standardization of data format, naming, and information content facilitates data 

exchange between maintenance tools.  
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In addition to universally accepted formats like IFC, IFC-FM, and COBie, this 

framework also offers alternative, customizable solutions using application 

programming interfaces (API) and visual programming tools. These tools enable the 

manipulation and extraction of data from models, allowing for the creation of 

customized sheets tailored to specific needs. This approach streamlines repetitive 

tasks during handover and model updates, enhancing efficiency and accuracy. 

Furthermore, the framework demonstrates how various information technologies 

such as technologies such as internet of things, augmented, virtual, and mixed reality, 

GIS, barcodes, especially QR codes, game engines, RFID, blockchain, digital twin, 

robotics, laser scanning, chatbots, artificial intelligence, and natural language 

programming, enterprise resource planning are integrated within the BIM 

environment. These technologies facilitate data collection, information display, 

retrieval, and management, thereby supporting maintenance tasks effectively. By 

incorporating these technologies into the BIM environment, facility managers are 

empowered to establish a robust technological foundation during the planning stages. 

This foundation facilitates seamless operations from a maintenance perspective, 

enabling efficient and effective maintenance activities throughout the lifecycle of the 

facility. 

Apart from the supportive concepts within the conceptual framework, two model-

integrated decision-support solutions for fault reasoning are highly practical in 

application. The hybrid intelligence approach is well-suited for continuously 

monitored systems reliant on sensor-based tracking within data-driven 

environments. These systems encompass a wide array of facilities, including heating, 

ventilation, and air conditioning, environmental monitoring, electrical, lighting, 

plumbing, elevator, and lifting systems, as well as industrial equipment and 

machinery. On the other hand, knowledge-assisted model-based fault reasoning is 

highly beneficial for tackling general maintenance issues across various systems. 

This approach benefits from observable symptoms to effectively distinguish between 

faults, which directs the requester to maximize the information gained for isolating 

the faults. While the first approach provides a solution centered around the system 
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itself, the second framework offers a search focused on spatial analysis. However, 

both solutions are open to improvement through constructive feedback provided for 

new and misevaluated cases. 

To apply the hybrid intelligence approach, the facility maintenance team should be 

experienced and knowledgeable about the fault patterns of the system. Due to the 

scarcity of data collected initially from the system, developing predictive models for 

initial training poses challenges. To overcome these challenges, domain expertise is 

required to label the faults and develop strategies for initial training data collection 

such as (i) simulating data to represent expected fault patterns, (ii) leveraging pre-

trained models for similar systems and fine-tuning them with synthetic or limited 

real-world data, (iii) collaborating with domain experts to understand fault behaviors 

and manually label data, and (iv) testing faults in controlled environments to refine 

the model before deployment in more complex scenarios iteratively. This approach 

is more practical for organizations that operate more than multiple facilities with 

identical functionalities and utilizing the same systems. Hence, lessons learned from 

the models constructed for the operated facilities can be applied while creating the 

model of the new one. Moreover, the feedback-enhanced hierarchical classification 

model, which predicts the existence of the fault and its reason, offers generalizable 

data-driven fault reasoning solutions. In practice, priorly, the model with multiple 

fault detection simultaneously, instead of a single fault at a time, is directly 

applicable to the relevant systems; however, in some cases where the number of fault 

classes is limited, multi-class classification can be applied with feedback mechanism 

instead of hierarchical model to reduce the complexity of the problem and 

computational time. Additionally, specific to the used system, some faults are easily 

separable from others by defining simple, precise rules; hence, no feedback is 

required to correct any misprediction. In this application, the predictive model should 

be constructed using the remaining fault classes after filtering the separable faults. 

In real-time monitoring, incoming data instances are tested with both rules and a 

predictive model. While the rule-based fault detections are directly reported as work 

order requests, the maintenance team defines rules as a decision support model to 
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make a tradeoff between workload to examine faulty data instances predicted and 

suspicious pattern changes in the consecutive data instances, and misevaluations 

including missing faults, misclassified faults or false alarms for fault inspections. 

The rules defined in this research can be initially utilized; however, each system 

evolves its own set of rules over time in practical application. As humans are the 

main playmakers of this maintenance approach, especially at the beginning of the 

newly constructed system, their judgments are critical for ensuring a sound and 

accurate start in data-driven fault reasoning. While integrating BIM with a hybrid 

intelligence approach enables consistency and continuity in the maintenance process, 

the standalone version is also viable for detecting and reasoning faults within the 

facility's lifecycle. 

In contrast to the previous approach, knowledge-assisted model-based fault 

reasoning relies on BIM-based relations. Therefore, to implement this solution in 

practice, having a BIM model of the facility is essential. Hence, with respect to the 

“garbage in, garbage out” principle, the accurateness and efficient applicability of 

the model-centered solution are directly impacted by the completeness of the model. 

The geometric boundaries of the spaces and their relations with assets need to be 

clearly defined. Moreover, comprehensive information is essential about potential 

faults of the assets available in the model to facilitate the isolation of the issues in 

the request where the faults can be observed by five senses. Therefore, during the 

handover stage, it is imperative to prepare guidelines and forms to standardize the 

collection of fault information. This entails gathering details from vendors, including 

the asset, its subcomponent, corresponding fault type, symptoms, fault information, 

and actions taken to address the issue. As it furnishes system-specific or asset-

specific fault information, encompassing symptoms, fault types, and their 

interrelations, historical records from similar operating facilities can be utilized to 

customize their information for the new facility.  

In practice, multiple workers and occupants contribute to the generation of work 

order content. To ensure consistent generation of historical records, the framework 

facilitates standardized formats and content for work requests and solution 
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descriptions. Workers are required to describe completed tasks in accordance with 

predefined rules to standardize explanations. Maintenance requesters are guided 

through structured forms to generate semantic and data-driven work requests 

automatically. This guided content of the request, including structural information, 

helps alleviate the reluctance of occupants to provide detailed information. Similar 

to the previous approach, the facility maintenance team’s efforts are required to 

manage the work order process and link them with corresponding model elements 

via color-coded and tagged descriptions; hence, even ordinary people can easily 

identify fault patterns by utilizing the established relationships. 

In addition to the practical implications of our fault reasoning solutions, in future 

studies, the capabilities of both solutions will be enhanced with more complex 

scenarios. To begin with the hybrid intelligence approach, as the number of fault 

classes is relatively limited in the validated case studies, the robustness of the 

approach will be examined with more complex cases in a living environment 

encompassing a diverse range of fault types and severity levels across a broader 

spectrum of assets within a system. Expanding the scope of analysis aims to validate 

the effectiveness and investigate the reliability of the framework under varied and 

challenging conditions. This comprehensive examination will provide valuable 

insights into the adaptability and scalability of the approach to enhance its practical 

utility in real-world applications. Furthermore, as the framework gains traction and 

evolves, there will be a gradual transition towards leveraging AI models to 

streamline the management and correction of work orders and maintenance requests 

within facility maintenance offices. With the accumulation of a substantial volume 

of work order data, the AI model will be trained to provide decision support, 

expediting the processing of maintenance tasks. The maintenance office will retain 

control over the model outputs, ensuring accuracy and relevance while also actively 

engaging in the continuous refinement of the AI model through feedback 

mechanisms. Additionally, efforts will be directed toward formulating a 

prioritization mechanism for fault reasoning in cases where multiple alternatives 

exist, enhancing the efficiency of fault management processes. Moreover, the 
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integration of asset-specific expert systems for fault reasoning, alongside the BIM 

utilization to establish linkages between assets and spaces, will further enrich the 

analytical capabilities of the framework, enabling a more systematic and 

comprehensive analysis of facility faults. This integrated approach promises to 

significantly enhance fault detection and resolution within the facility management 

domain, ultimately optimizing maintenance operations and enhancing overall 

operational efficiency. 
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7 APPENDICES 

A. Statistical information of reviewed articles in Chapter 2 

Tablo A.1 Statistics of categorization for the reviewed article   

Category Content # of studies 

FMM 

Information needs & requirements, and quality 

of information    
55 

Accessibility 3 

Benefits, values, and challenges: Case studies 

& handover      
46 

Strategies for BIM-FMM 2 

BIM-FMM Studies 

BIM-FMM systems  33 

Applications in different areas for BIM-FM/M 46 

Interoperability & open BIM 70 

Integrated information technologies 97 

Legal issues 1 

Fault management 

Work order management 10 

Fault detection, diagnosis and reasoning 25 

Maintenance actions & practice and safety 1 

Data analysis and management for O&M 19 

Conditional assessments 13 

Root-cause analysis 5 

BIM-FM Studies 

BIM-FM & Digital Twin 90 

Location-based solutions 2 

Asset management 20 

Space management 1 

Others 
Review studies 33 

Others 16 

TOTAL 423 
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B. Asset information parameters of CMMS tools in Chapter 2 

Tablo B.2 Asset information parameters of CMMS tools   

Tools Parameters 

Maximo 

ID, description, status, model, serial number, type, location, 

current health condition, criticality, age in years, system, 

working calendar, working shift, vendor, manufacturer, 

installation date, expected life, purchase price, replacement cost, 

priority, failure class, total downtime, risk, spare parts & 

subcomponents, spare parts quantities on hand, spare parts 

quantities issued, safety- hazard type, safety- hazard materials, 

safety- precautions to each hazard type, safety, specifications, 

relationship (source or target) 

Ecodomus 

ID, name, description, serial number, tag, barcode, area served, 

warranty duration, warranty start, warranty end, installation date, 

technical features 

Limbo 
ID, name, category, model, PM schedule, work orders/logs, 

parts, vendors, report 

QRmaint 

ID, name, model, serial number, type, location, system, photo, 

manufacturer, installation date, service provider, warranty 

expiration date, purchase price, cost, contact person, asset 

maintainer 

Mobility 

Work 

Name, description, photo, cost center (production), barcode, 

tags, linked equipment, manufacturer 

MaintainX Name, description, photo, location, barcode, vendor 

UpKeep 

Name, description, model, category, area, barcode, photo, 

depreciation details, responsible personnel, vendor, customer, 

warranty expiration date, service date, spare parts, attached files, 

location, parent asset (system), check-in/out 
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Tablo B.1 Asset information parameters of CMMS tools (cont’d) 

 

 

 

 

 

 

 

 

 

 

 

Tools Parameters 

Fiix 
Name, ID, description, make, model, serial number, barcode, 

category, location, system, notes 

MainWinWin 

ID, name, model, serial number, year, category, location, system, 

supplier name, installation date, useful life, investment, photo, 

maintenance contract, warranty date 

AssetPanda 

ID, description, type, location, status, serial number, responsible 

personnel, cost, check out, manufacturer, date purchased, useful 

life, replacement cost, next service date, subcomponents, 

depreciation details 

FM Systems 

ID, description, model, serial number, manufacturer, installation 

date, warranty in months, warranty expiration date, condition, 

tag number, relationship type, maintenance log, priority, cost 
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C. Cross-validation results of validation case studies in Chapter 3 

The case studies were cross validated with decision trees: 

Table C.3. Cross-validation results of validation case studies  

Case # Train and test sets Training Accuracy 

(%) 

Testing Accuracy 

(%) 

Case 1 

Train with sets 1 and 2, 

and test  with set 3 
98.93 97.70 

Train with sets 1 and 3, 

and test  with set 2 
99.01 98.10 

Train with sets 2 and 3, 

and test  with set 1 
99.07 97.81 

Case 2 

Train with sets 1 and 2, 

and test  with set 3 
98.01 95.57 

Train with sets 1 and 3, 

and test  with set 2 
97.95 95.36 

Train with sets 2 and 3, 

and test  with set 1 
98.04 95.71 
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D. Work order contents in CMMS tools reviewed in Chapter 4 

Table D.4. Work order request parameters of CMMS Tools 

Tools Parameters 

Limbe  Title, description, requester contact info, location, 

asset, photo, files attached 

QRmaint Title, description, photo, asset, location, assigned 

personnel, task calendar, tags, priority, 

work type (breakdown, failure, inspection, calibration, 

legalization), maintenance type (cm, pm, request) 

UpKeep Description, location, photo, priority, files attached 

MainWinWin Title, ID, date, urgency, status, employee, approved 

by, description 

MicroMain ID, description, status, asset, location, priority, 

category, schedule (issued date, start date, due date, 

completed date, closed date, estimated duration) 

BIM-genie Description, location, photo, files attached 

Maximo Request ID, requester, contact info, asset, location, 

priority, reported and affected date, target start and 

finish 

FM Systems Requested for, location, department, category, 

description, upload document, upload image, is this a 

health and safety issue? 
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Table D.5. Work order parameters of CMMS Tools 

Tools Parameters 

Maximo 

Work order ID, description, asset, location, priority, 

parent work orders, maintenance work type, failure category 

(HVAC, pipe, engineering), problem code (too hot/cold, 

lighting problem), work order status, work order status 

date/log-flow action, schedule (scheduled/target/actual 

start/end date), job plan, safety plan, contract, inspection 

form, inspection result, responsibility (reported by, 

supervised by, lead by, assigned workers) 

datasheet, specifications 

Limbo 

Name, description, downtime, instructions, assigned 

personnel, due date, maintenance type, spare parts, tools, 

customized tags 

QRmaint 

Title, description, photo, asset or location, assigned 

personnel, task calendar, tags, priority, work type 

(breakdown, failure, inspection, calibration, legalization), 

maintenance type (CM, PM, request) 

Mobility Works 
Asset, task description, planned start and end dates, assigned 

personnel, observer, tags, checklist 

MaintainX 

Title, description, procedure, photo, assigned to, due date and 

schedule, priority, location, asset, attached files, maintenance 

categories (damage, electric, inspection, mechanical, safety), 

vendor 

UpKeep 

Title, description, photo, due date, estimated duration, 

priority, maintenance categories (damage, electric, 

inspection, mechanical, safety), assigned personnel, location, 

asset, purchase order/spare part, assigned tasks, attached 

files, signature, created time and by 
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Table D.2. Work order parameters of CMMS Tools (cont’d) 

Tools Parameters 

Fiix 

Work order code, asset code, project name, work order 

description, work order task description, task completion 

date, task time estimated, task time spent, task assigned user, 

task completed by the user, work order suggested completion 

date, date created, work order completion notes, work order 

problem, work order root cause, work order solution, work 

order status, work order priority, work order maintenance 

type, charge department code, account code 

MainWinWin 
ID, description, asset, urgency, system, work type, contract, 

status, employee, approved by 

Maintenance 

Connection 

ID, requester, contact info, failure class, problem, cause, 

remedy, asset, location, category, priority, procedure, tasks, 

documents, special instructions, labor report, maintenance 

log, assigned personnel, contract, shift 

FM Systems Request ID, priority, is this a health and safety issue? 

urgency, location, status, category, activity, problem 

description, action taken, estimated and actual hours, 

estimated and actual cost, equipment id, cause of incident, 

comments 

A BIM-based 

work order tool 

ID, WO site, issued date, status, maintenance organization, 

priority, criticality, work type, action, requester contract, 

schedule (planned/actual start and end date, time spent), 

event, discovery-error, symptom, contract, fault description, 

work description, error cause, inspection note, work done, 

assigned personnel (prepared by, work leader, executed by, 

contract no), asset, location, PM repeat details. 

 



 

 

236 

E. Sample examples of model-base work order generation in the Dynamo 

interface described in Chapter 4 

E.1. Work order request: 

Step 1: Select the space. 

 

Figure E.1. Work order request module: selecting spaces. 

Step 2: Select the symptom(s) from the checklist. 

 

Figure E.2. Work order request module: selecting symptoms from the checklist 
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Step 3: Utilizing the symptom and space, filter potential fault assets and select the 

relevant assets in two ways: 

(i) Select either from checklist 

  

Figure E.3. Work order request module: selecting assets from checklist 

(ii)  Click on “Select Model Element(s)”, it directly open 3D view of the space 

and visually select the relevant assets. 

  

Figure E.4. Work order request module: visual selection of assets 
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Step 4: Add notes if available and finalize the request. 

 

Figure E.5. Work order request module: request finalization 
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E.2. Site feedback module: 

 

Figure E.6. Work order site feedback module 
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E.3. Work order evaluation and management module: 

The solution description is updated by the facility maintenance office and 

integrated into BIM. 

Description: 

🔍Corrosion weakens the structure of     the valve, leading to cracks. It causes → 

leakage in 🛠️the heating coil valve of the AHU-2 system located in Mechanical 

Room-2. 🛠️The valve is replaced.  

Utilizing the solution description, the fault network is filtered and drawn as 

follows: 

Heating coil valve

Corrosion Crack

Water 

leakage

 

Figure E.7. Filtered fault network of example case 
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