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ABSTRACT 

 

Designing Non-Invasive Quality Control Methods for Pharmaceutical Drugs 

 

Alam, Hani 

Doctor of Philosophy, Biotechnology 

Supervisor: Prof. Dr. Halil Mecit ÖZTOP 

Co-supervisor: Assoc. Prof. Dr. Emin Burçin ÖZVURAL 

 

 

March 2024, 190 Pages 

 

The quality of pharmaceutical products is a critical aspect of the pharmaceutical 

industry that attempts to ensure that they meet the required safety and efficacy 

standards. Quality control ensures that these products are safe and meet the 

requirements of the regulators and government agencies. The main objective of 

quality control is to identify and quantify active substances and track impurities using 

analytical techniques, such as high-performance liquid chromatography (HPLC). 

However, many of these techniques are time consuming, destructive to samples, 

damaging to the environment, and expensive to operate and maintain. This study 

aims to use alternative methods for quality control that are easy to operate, 

affordable, eco-friendly, and non-destructive to samples.  

This study examined near infrared spectroscopy (NIRS) and time-domain nuclear 

magnetic resonance (TD-NMR) in order to produce non-destructive methods for 

three different quality control issues. 

The first part of this study focused on measuring the mixture ratios of two different 

insulin drugs and succeeded by integrating two different TD-NMR techniques. The 
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second part measured the degradation of aspirin to salicylic acid using NIRS and 

TD-NMR. The third part involved the use of bovine serum albumin as a model drug 

for biopharmaceuticals. Later, glycation was applied and measured using different 

TD-NMR techniques to be compared with browning measurements and the O-

phthalaldehyde (OPA) method, which are two parameters used to measure glycation. 

This dissertation has demonstrated that TD-NMR and NIRS are valuable and useful 

methods for various pharmaceutical quality control procedures as more affordable, 

eco-friendly, and user-friendly alternatives to the current destructive chemical and 

chromatographic techniques. 

 

Keywords: Aspirin, Insulin mixtures, Glycation, Time-Domain Nuclear Magnetic 

Resonance (TD-NMR), Near Infrared Spectrometry (NIRS), Pharmaceutical Quality 

Control  
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ÖZ 

 

Farmasötik İlaçlar İçin Non-invasif Kalite Kontrol Yöntemlerinin 

Tasarlanması 

 

Alam, Hani 

Doktora, Biyoteknoloji 

Tez Yöneticisi: Prof. Dr. Halil Mecit ÖZTOP 

Ortak Tez Danışmanı: Doç. Dr. Emin Burçin ÖZVURAL 

 

 

Mart 2024, 190 Sayfa 

 

Farmasötik ürünlerin kalitesi, ilaç endüstrisinin güvenlik ve etki standartlarını 

karşılaması açısından çok kritiktir. Kalite kontrol, bu ürünlerin güvenli olmasını 

sağlayarak düzenleyicilerin ve devlet kurumlarının gereksinimlerini karşılar. Kalite 

kontrolün temel amacı, yüksek performanslı sıvı kromatografisi (HPLC) gibi analitik 

teknikler kullanarak aktif maddeleri tanımlamak, miktarlarını belirlemek ve 

safsızlıklarını ölçmektir.  

Ancak bu tekniklerin çoğu zaman alan, numunelere zarar veren, çevreye zararlı ve 

işletme ve bakımı pahalı olan tekniklerdir. Bu çalışma, kalite kontrolü için kullanımı 

kolay, uygun fiyatlı, çevre dostu ve numunelere zarar vermeyen alternatif yöntemler 

kullanmayı amaçlamaktadır. 

Bu çalışmada, üç farklı kalite kontrol sorunu için noninvasif teknikler üretmek 

amacıyla Yakın-kızılötesi spektroskopisi (NIRS) ve zamansal alanda nükleer 

manyetik rezonans (TD-NMR) kullanılmıştır. 
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Bu çalışmanın ilk bölümünde iki farklı insülin ilacının karışım oranlarını ölçülmeye 

çalışılmış ve bunda iki farklı TD-NMR tekniğini entegre ederek başarılı olunmuştur. 

İkinci bölümünde NIRS ve TD-NMR kullanılarak aspirinin salisilik aside bozunması 

ölçülmüştür. Üçüncü bölümünde, biyofarmasötikler için model ilaç olarak sığır 

serum albümini kullanıldı. Daha sonra glikasyon yapıldı ve glikasyonu ölçmek için 

kullanılan esmerleşme ölçümleri ve O-ftalaldehit (OPA) yöntemi ile karşılaştırılmak 

üzere farklı TD-NMR teknikleri kullanılarak ölçüldü. 

Bu tez, TD-NMR ve NIRS'in çeşitli farmasötik kalite kontrol prosedürleri için 

mevcut kimyasal ve kromatografik tekniklere göre daha uygun fiyatlı, çevre dostu 

ve kullanıcı dostu alternatifler olarak kullanışlı yöntemler olduğunu göstermiştir. 

 

Anahtar Kelimeler: Aspirin, İnsülin karışımları, Glikasyon, Zaman Alanı Nükleer 

Manyetik Rezonans (TD-NMR), Yakın Kızılötesi Spektroskopisi (NIRS), 

Farmasötik kalite kontrolu 
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CHAPTER 1  

1 INTRODUCTION  

1.1 Pharmaceutical Quality Control 

The pharmaceutical sector is subject to strict regulations because patients and 

customers often cannot detect quality issues and problems in pharmaceutical 

products unless they experience serious ill effects or fatalities after consumption. 

Various defects in the quality of pharmaceutical products may exhibit and occur, 

including inferior lower yield of the manufacturing process, or potential damage on 

the pharmaceutical´s therapeutic efficiency. In addition, there is often a lack of 

understanding when it comes to technological deliveries and scaling up of the 

product. Moreover, there is a lack of understanding and a lack of examination for the 

causes of the manufacture’s failures and misfunctions. Although the pharmaceutical 

industry is seen as profit-orientated, it is mistrusted by the public. There is a common 

belief that all pharmaceuticals approved and regulated by governments are safe, 

effective and meet high-quality standards. This drives manufacturers to follow 

regulations and quality standards issued by government agencies (Djuris et al., 2024; 

Poonia et al., 2023; Yu & Kopcha, 2017). 

Quality assurance (QA) is the general term for ensuring high-quality pharmaceutical 

products, which could be stated as the total cumulative approaches to guarantee the 

pharmaceutical products to achieve the designed high standards for their planed and 

proposed usage.  Quality assurance is a systemic procedure which is operated to 

assert and guarantee that pharmaceutical products in the market are harmless, risk 

free, and comply with the expected criteria based on the laws and regulations. These 

include all the operations from the raw materials toward the production and 
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distributions of end products (Cardinal, 2001; Tefera Mekasha et al., 2020; Yu, 

2008). 

Quality control (QC) is described as the main organized structure that provide and 

retain the intended quality standards in supplied products and services by cautious 

provisions, usage of suitable tools and apparatus, regular examinations, and the 

restorations as needed (Gee, 2022). 

According to the International Standard Organization (ISO), quality assurance 

handles the actions accomplished by laboratories in order to maintain and deliver 

faith that products live up to the intended and required standards. However, quality 

control includes the separate examinations methods and techniques which satisfy the 

required standards(Wulandari et al., 2022). 

To ensure the preservation of high quality, effective pharmaceutical products, 

governments and agencies work on guidelines, practices such as Good 

Manufacturing Practice (GMP) and Good Distribution Practice (GDP), and testing, 

including import testing and in-process control testing. GDP represents the minimum 

standards of quality and integrity needed for medicines and pharmaceuticals that 

manufacturers and pharmaceutical traders must provide and secure during the supply 

chain. As an example, these standards should be maintained when medications are 

stored to be always in the right environments and surroundings, including handling, 

storage, and transportation (Good Distribution Practice | European Medicines 

Agency, 2021). GMP represents the minimum requirements that pharmaceutical 

companies must guarantee during drug manufacturing, assembly, and production, 

ensuring high quality production and maintaining intended use (Good Manufacturing 

Practice, European Medicines Agency, 2021). Import testing describes how 

governments and official organizations would review imported drugs to ensure their 

qualification. For example, imported drugs must be kept from being adulterated or 

misbranded. Imported drugs must be safe for human consumption and appropriately 

effective for the intended use (FDA, 2020). 

These governmental offices and agencies include the Turkish Medicines and 

Medical Devices Agency (TITCK) in Turkey, Food and Drug Administration (FDA) 
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in the USA, as well as organizations that ensure harmony and similarities of 

standards between different countries, such as ICH ( The International Conference 

on Harmonization of Technical Requirements for Registration of Pharmaceuticals 

for Human Use), EMA (European Medicines Agency) in European countries, and 

World Health Organization (WHO) by the United Nations. These organizations and 

agencies make it easier and more efficient for drugs to be transported between 

countries with confidence and agreement in safety standards and quality control 

protocols between different countries. It also eliminates delays and indifferences 

between countries while preserving the health security and quality standards that 

protect public health. (Haleem et al., 2015). 

1.2 Traditional Quality Control Methods 

Quality control has one major important goal, which is to determine and quantitate 

drug substances (active pharmaceutical ingredients, excipients and impurities) in 

addition to search for contaminations. All these are utilized by using various 

analytical methods, among them separation and spectroscopic methods. European 

Pharmacopeias (EU) and US Pharmacopeia (USP) consider liquid chromatography 

to be the main prevalent analytical procedure for quality control examinations. This 

description can be extended to the majority of pharmaceutical sections which 

includes Gas Chromatography, High Pressure Liquid Chromatography, and Ultra 

High Pressure Liquid Chromatography, (whether or not Mass Spectrometry 

detectors are bounded to) as the most regularly chosen methods in various 

pharmaceutical processes (Dispas et al., 2022; Mattrey et al., 2017). 

Gas chromatography (GC) is an analytical tool that is used to separate compounds 

in complex mixtures on the basis of their polarity. Separation is achieved only for 

volatile compounds, or that can be made volatile on derivatization. (C. Moldoveanu 

& David, 2019). Gas chromatography has many applications in the pharmaceutical 

industry, such as impurity profiling, chemical separation, and chemical and 

metabolomics analysis (D’Atri et al., 2019; Jwaili & Jwaili, 2019). It can also be 
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used for enantiomer separation between different drugs or to study drug purity 

(Carrão et al., 2020; Matamoros et al., 2009; Ribeiro et al., 2021; Xie et al., 2020). 

High performance liquid chromatography (HPLC) is a modern application of liquid 

chromatography and a primary analytical tool in chemical and pharmaceutical 

analyses. HPLC can be used for analytical validation to calibrate the active 

pharmaceutical ingredients, adulterated ingredients, excipients, and degraded 

impurities. However, HPLC has limitations, such as being a laborious and time-

consuming measurement. The HPLC procedure is executed by different interactions 

between the separatory column as a stationary phase and various solvents in the 

mobile phase. Consequently, the samples should be dissolved in the mobile phase, 

making HPLC a destructive method. Moreover, organic solvents are widely used as 

mobile phases, making HPLC a costly procedure that is harmful to the ecosystem 

because organic waste requires appropriate waste clearance (Chew et al., 2021; 

Yabré et al., 2018). 

The ultra-high performance liquid chromatography (UHPLC) system is superior to 

the HPLC system because the UHPLC system operates at high pressures of up to 

1000 bar or more, whereas the HPLC system can operate only at pressures of up to 

400 bar. In addition, the UHPLC system consumes smaller amounts of solvent and 

requires a reduced amount of analytic time than HPLC. Applying smaller particle 

size results in improved peak resolution, quicker analysis, and more defined and 

elevated peaks. Although UHPLC has become more robust, including a prolonged 

column lifetime and enhanced software capabilities, it still presents challenges that 

may limit its attractiveness to a broader user base (Rodriguez-Aller et al., 2013). 

These problems include the association of UHPLC with organic solvents, their toxic 

nature, and their harmful effects on the environment (Narwate et al., 2014; Rathod 

et al., 2019). Additionally, there are several other shortcomings, such as frictional 

heating effects, narrow analyte peaks, and column blockage (López-Ruiz et al., 

2019). 
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Chromatographic devices are complicated and although they have seen technological 

leaps and advancements, they still have a major drawback as they need experienced 

and especially educated workers. In addition, these devices still need regular care 

and sustainability operations, which in turn demands continuous training and 

updating of the personnel. Most importantly, sample preparation is a crucial step in 

regards for gas chromatography. Especially because GC is a method with drawbacks 

such as being lengthy prolonged, time wasting, tedious and high susceptibility to 

errors. A large portion of the time assigned for analysis is wasted to sample gathering 

and sample preparations (Dugheri et al., 2020). The majority of these validation 

methods are uneconomic with their costly reagents and pricey operations.  As over 

70% of the pharmaceutical regulatory systems in some regions are inadequate in 

ensuring the intended pharmaceutical standards (Tchounga et al., 2023; WHO - 

Regional Office for Africa, 2018). 

Invasive methods typically involve direct contact with or extraction of samples, 

which can be time consuming and may alter the sample. In contrast, non-invasive 

methods allow for analysis without physically disturbing the sample or preserving 

its integrity. These methods provide valuable insights into the chemical composition 

of samples without altering them. In contrast, invasive methods, such as chemical 

measurements, are more time consuming and can potentially impact the 

characteristics of the sample (Kasper et al., 2020). The limitations of these traditional 

invasive methods, especially for the costs, environment, and destruction of the 

pharmaceutical products, resulted in research for using other non-invasive analysis 

methods that can be used effectively without these disadvantages. 

1.3 Near Infrared Spectroscopy (NIRS) 

Near infrared spectroscopy (NIRS) is a high-energy vibrational spectroscopy 

technique performed in the wavelength range of 800–2500 nm (12500–4000 cm−1 

wave number). Vibrations in this range are exclusive to changes in the dipole 

moments of the molecules. The dipole moment arises from the difference between 
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the electromagnetic charges and the distance between the two bonded atoms. When 

molecules absorb NIR light, they tend to vibrate in two approaches. The first is 

stretching, which changes the interatomic distance between two bonded atoms, 

whereas the other is bending, which changes the bond angle. Both of these are unique 

to different molecules. In addition, NIRS is affected by vibration frequencies that 

differ between chemical bonds. The remaining unabsorbed NIR light is proportional 

to the vibrations and is reflected toward the detector to be measured. Mainly, 

vibrations of –NH, –OH, –SH, and –CH bonds are detected in NIR (De Beer et al., 

2011; Johnson & Naiker, 2019; Pasquini, 2018; Roggo et al., 2007). The basic 

principle of NIRS detection can be summarized as the change in light energy caused 

by its interaction with the sample. This can be expressed using the following 

equation: 

𝐸 = ℎ. 𝑓 =
ℎ. 𝑐

𝜆
(1) 

Where E is the energy of light, h is the Planck constant, f is the frequency of light, c 

is the speed of light, and λ is the wavelength of light (Pu et al., 2020).  

The core fundamentals of NIRS are derived from the utilization of near infrared 

(NIR) light, which is defined as the area from the infrared (IR) spectrum starting at 

650 nm toward 950 nm. Sir William Herschel was earliest to identify the IR radiation 

after observing a change in temperature nearby the red color while experimenting 

the transmission of sunlight through a variety of filters (Gomez et al., 2021; Herschel, 

1800b, 1800a). Karl Norris, an agro-industrial researcher had found out the usability 

of the NIRS in the 1960s after implementing multiple linear regression. In 1975, Phil 

Williams utilized NIRS rather than the conventional Kjeldahl testing technique  for 

measurements of proteins in wheat (Norris & Butler, 1961; Tsuchikawa et al., 2022; 

Williams, Phil, Marena Manley, 2019). Since then, the use of NIRS as an analytical 

method has increased in various sciences and industries (Eilert, 2023). 

The near-infrared spectrometer consists of a light source, such as an LED, which is 

be the source of radiation, a monochromator that would limit the radiation to only 
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NIR wavelengths, a sample holder to place the sample on, and a detector to measure 

reflected or transmitted light (Figure 1). The detector is either a diffuse reflectance 

detector that is used in opaque samples, such as tablets, which would reflect only the 

surface, or a transmittance detector for transparent samples that has the ability to get 

detailed data for the whole parts of the sample (Reich, 2005). There is also a 

Transflectance mode, which combines both methods and is particularly appropriate 

for liquid samples like milk (Evangelista et al., 2021; Tsenkova et al., 2001).  

 

 

Figure 1 Basic NIR spectrometer configurations (Reich, 2005) 

NIRS is a versatile analytical method which enables a simultaneous and precise 

measurements of several parameters at the same time with good precision with 

characteristics such as being rapid, nondestructive, precise, high analytical 

performance, and has lower costs than other laboratory analytical methods 

(Evangelista et al., 2021; Givens et al., 1997; Johnson, 2020; Pu et al., 2020; Yakubu 

et al., 2022). Furthermore, it is an environmentally friendly method (chemical-free 

and does not require waste disposal) (Pu et al., 2020). Although NIRS is not a 

primary analytical method but a secondary analytical technique as it relies on 

measuring reference data from a primary analytical technique in order to design a 
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calibration method. Yet NIRS is recognized to be similar and equally important to 

other primary analytical methods. Even though the predictability and measurement 

accuracy of NIRS relies on the predictability and measurement accuracy of the 

primary methods, NIRS is regarded as better in regards of reproducibility (Manley, 

2014). 

These characteristics have contributed to the wide availability of NIRS applications 

in various sciences and industries. NIRS has a long history in the food industry, 

including industrial on-line and in-line measurement techniques (Huang et al., 2008; 

Porep et al., 2015). NIRS is used in medicinal research to analyze and detect diseases 

in human tissues (Sakudo, 2016). NIRS has also been used in synthetic chemistry 

and agriculture (Jamrógiewicz, 2012). In addition, in biomedical applications, such 

as monitoring cerebrovascular physiology in patients with acute brain injury (Rachel 

Thomas, Samuel S. Shin, 2023), whereas in agriculture, NIR spectrometry has been 

utilized to monitor biomass conversion processes (Devos et al., 2020). In food 

engineering, NIRS has been applied to detect the quality of strawberries (G.Zhao et 

al., 2023). The use of NIRS in the pharmaceutical sector is well established, as it is 

included in the European Pharmacopeia and the US Pharmacopeia (Roggo et al., 

2007), the European Medicine Agency (EMA, 2014), and the FDA (FDA, 2021) (Pu 

et al., 2020). It is used for tablets and pharmaceutical solid forms, including drug 

content analysis, identification, and degradation studies (Merckle & Kovar, 1998). 

In addition, NIRS can be used to detect drug–excipient segregation (Desai et al., 

2020). NIRS can also measure the water content of pharmaceutical excipients 

(Luypaert et al., 2007).  

While the NIRS method is powerful, it has some drawbacks, one of them is that 

NIRS causes the spectral data to be unified in a singular spectrum that depicts the 

measured sample volume without providing any data on the changes between 

different locations of the different sample parts. However, in order to acquire data 

and measure these differences is to use near-infrared spectroscopy chemical imaging 

(NIR-CI), an advanced NIRS method that comes with advancements in camera 

technologies and computers. A hyper spectral image which is built on information 
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and data in a three dimensional array that represents a nearinfrared chemical image 

(Amigo, 2010; Khorasani et al., 2016). However, NIR-CI has a primary drawback 

which is its high costs. Another issue is that NIR-CI is considered an immature 

technology that still needs to be explored and researched (Alcalà et al., 2013; 

Manley, 2014). 

The availability of overtone and combination presets, in addition to the high 

magnitude of potential vibrations are making NIRS an extremely complicated data 

that is difficult to comprehend with its overlapping data (multicollinearity data). As 

a result, NIRS become challenging to represent and comprehend graphically, 

challenging to distinct different chemical bonds, and challenging to obtain data from 

the spectra. Correlations between absorption data at each wavelength and the 

reference value of the chemical components should be easy to predict and define. 

With advances in computer science and chemometrics, the relationship between 

NIRS measured data and reference data can be calculated to develop an NIRS 

measurement method (Manley, 2014). 

1.4 Time Domain Nuclear Magnetic Resonance (TD-NMR) 

Nuclear magnetic resonance (NMR) was first reported by Isidor Rabi in 1938, which 

later awarded him a Nobel prize (Rabi et al., 1938; Yao et al., 2022). Later, NMR 

spectroscopy in condensed matter was found in 1946. This later progressed, 

extended, and evolved into a cornerstone of chemical research, earning its 

researchers a Nobel Prize. 

NMR has different functionalities which lead it to be classified into several 

disciplines: magnetic resonance imaging (MRI), NMR spectroscopy, NMR 

diffusometry, and NMR relaxometry (Yao et al., 2022). Low-Field (LF) instruments 

are maintained and employed with maximum strength of 2T. The increasing interest 

in low-field (LF) technology is due to constraints of high-field MRI and NMR 

instruments in industrial settings. Constraints such as the necessity of utilizing 
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cryogens with open magnetic fields, the necessity of strict safety regulation, and the 

highly expensive prices of these instruments in the commercial field (Blümich et al., 

2009; Nikolskaya & Hiltunen, 2020). 

Nevertheless, in certain implementations and usages, LF-NMR is known to be less 

precise in comparison to HF-NMR devices (Hwang, 2017; Osheter et al., 2022). 

Generally speaking, High field (HF) NMR spectroscopy is the desired choice over 

TD-NMR in the majority of applications of identifying counterfeiting food products, 

that is because NMR spectroscopy has the capacity to produce a characteristic 

spectrum of the measured sample. Additionally, TD-NMR applications does not 

have the capacity to measure variations derived from different chemical shifts 

(Esteki et al., 2018; Ezeanaka et al., 2019; Ozel & Oztop, 2021). However, these 

devices are costly and need momentous operative and maintenance workload, hence 

restricting their usages in the research and industrial sectors. Besides, LF-NMR has 

the capacity to operate not only in closed geometry but also in open geometry 

applications, particularly NMR-MOUSE (Besghini et al., 2019; Eidmann et al., 

1996). 

Recently, a middle-resolution benchtop NMR spectrometer utilizing permanent 

magnets with strength between 1 to 2.5 T, has been introduced and utilized in order 

to acquire data on the spectrum parameters such as chemical shifts parameters. 

Nonetheless, they are restricted to liquids or solutions with a diameter of 5 mm, 

which restricts their applications in the noninvasive analysis of many solids, such as 

intact food products or tablets (Moraes & Colnago, 2022). 

Magnetic resonance imaging (MRI) is a very well known analytical method in the 

medical field, which is generally implemented to study and evaluate human organic 

organs and tissues for clinical diagnostic and treatment applications. Additionally, it 

can be used to characterize many biological and non-biological systems. However, 

In NMR relaxometry experiment are different than MRI since the received signal 

represents the whole sample, while spatial information is only available in MRI 

(D’Avila et al., 2005; Kirtil & Oztop, 2015). 
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TD-NMR is a Low-filed NMR analytical method that is increasing in popularity 

because it is quick, easy to operate, and offers high instrumental stability. TD-NMR 

uses small magnets that can generate low magnetic field ranging from 20 toward 60 

MHz, it has smaller and compact size that can be used over a bench or be mobilized. 

Moreover, it can be effortlessly employed easily used directly on intact samples to 

measure proton spins and proton matrix relationships (Blümich, 2019; Kirtil, 

Cikrikci, et al., 2017b; Osheter et al., 2022; Rudszuck et al., 2019). 

While TD-NMR can theoretically measure all different atoms and their nuclear spins, 

only ½ spins that are extensively occupy the measured sample with a satisfactory 

signal to noise ratio. Another limitation is that these spins should obtain high 

gyromagnetism with high Larmor frequencies at low fields of magnetism. Therefore, 

there are only two atoms, Hydrogen-1 and Fluorine-19, can fulfil all these restrictions 

(Besghini et al., 2019). 

The NMR properties originate from the angular and magnetic momenta of the 

nucleus. A precession movement of the nucleus occurs under an external magnetic 

field toward specific atoms (such as hydrogen or carbon). Due to its superior 

magnetic momentum, hydrogen protons exhibit the uppermost sensitivity to NMR 

devices. Furthermore, hydrogen is incomparable available atom in the human, 

animal, and plant cells, in addition to many products such as foods or liquid drugs. 

That is why TD-NMR is usually applied to H+ (Balthazar et al., 2021a; Fan & Zhang, 

2019). 

In the TD-NMR method, the sample is inserted within a large static magnetic field 

(B0) (Hata! Başvuru kaynağı bulunamadı.a). Then, the magnetic field forces 

protons to be aligned in the Z direction of the applied magnetic field, making both 

transverse magnetization and magnetization at the XY plane equal to zero (Hata! 

Başvuru kaynağı bulunamadı.a, and 2b). Later, the sample will be excited with a 

radio frequency (RF) pulse, moving the net magnetization from the Z-direction into 

the XY plane (Hata! Başvuru kaynağı bulunamadı.c). Thus, the longitudinal 

magnetization and net magnetization in the Z-direction become equal to zero. When 
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the RF pulse is removed, longitudinal (T1) and transverse (T2) magnetization 

relaxation occurs as protons return to the Z-direction (Kirtil & Oztop, 2015; J.Li et 

al., 2021). T1 and T2 relaxation times represents the time needed for the 

magnetization vector to exponentially change until the equilibrium state is achieved 

(Osheter et al., 2022). 

Initially TD-NMR devices were commercially employed in food quality control 

applications in order to measure the oil ratio of intact oilseed. With the beginning of 

this millennia modern usages of TD-NMR began to surface coinciding with the 

introduction of adaptable pulse programs and better friendlier user interfaces of 

computer programs. Since then, TD-NMR applications are increasing with their 

usages and applications especially because of their lower cost, smaller sizes, reduced 

weights and portability (Blümich, 2019; Colnago et al., 2021; Todt et al., 2001). 

Due to variations in the magnetic field, it is not possible to obtain detailed structural 

information about the chemical composition of a sample. Nonetheless, the fading 

and decline of the TD-NMR signals, that occur after implementing a radio frequency 

(RF) pulse on the sample, can produce significant information that can be used in 

various applications. These data can be built in the form of longitudinal (T1) and 

transverse (T2) relaxation times (Hata! Başvuru kaynağı bulunamadı.D). These 

can be used to obtain more information about the nature, size, and physical states of 

molecules and their interactions with surrounding molecules, as well as the 

physicochemical characteristics of the surroundings (Blümich, 2016; Colnago et al., 

2021; Mas Garcia et al., 2021; Riley et al., 2022). 
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Figure 2 Representative diagram of a TD-NMR device consists of four main parts: a 

magnetic unit, a radiofrequency source, a temperature regulating unit, and a data 

processing unit. (a–d) present the standard NMR working concepts (J. Li et al., 

2021). 

In addition to the advantages mentioned earlier in TD-NMR, this method uses an 

inexpensive benchtop analytical system owing to permanent magnet technology. 

TD-NMR does not require any sample preparation, which makes it a non-destructive 

and non-invasive procedure. Additionally, TD-NMR can be used for through-

package analysis. All of these traits have resulted in the increasing popularity of TD-

NMR in research and industry (Santos et al., 2016). 

There are advanced TD-NMR techniques that uses extra apparatuses, most knowns 

are the fast field cycling (FFC) and the pulse field gradient (PFG). In the FFC system, 

measurements of T1 are produced depending on the changes of the magnetic field 
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strength unlike most TD-NMR devices that have a static magnetic field strength. The 

PFG on the other hand is a method which measures the diffusion of molecules. A 

gradient radio frequency pulses can generate NMR signals that display the molecular 

diffusion of the sample (Marques et al., 2018; Steele et al., 2016). 

TD-NMR has diverse applications as it has been extensively studied in food sciences 

and industry (Ozel & Oztop, 2021), agriculture (Colnago et al., 2021), building 

materials (Nagel et al., 2021), and medical sciences (Dupré et al., 2019), polymer 

sciences such as measuring and studying rubber since the 1960s (Miyaji et al., 2020). 

TD-NMR studies are also increasing in the pharmaceutical sciences, considering the 

ability of TD-NMR to detect the physicochemical properties of pharmaceuticals 

(Ohgi et al., 2021). Some of these studies focused on the crystallization of 

carbamazepine and indomethacin in powdered drugs (Okada et al., 2019), measuring 

water ratios in pharmaceutical forms such as wet granules (Ohgi et al., 2021), 

quantifying the water content in a lyophilized monoclonal antibody (mAb), spotting 

counterfeit Viagra found in markets from the original Viagra (Wilczyńki et al., 

2017), and identifying altered counterfeited antibodies in biological pharmaceuticals 

(Akhunzada et al., 2021). 

1.5 Chemometrics 

The earliest studies that describe statistical relationships with chemical changes can 

go back to the early 1900s and 1920s (Esbensen & Geladi, 1990). However, with the 

advancements of modern computers and its availability for smaller scales in 

universities leads to advancement studies and rise of chemometric studies in the 

1960s such as work that was published by Malinowski, Jurs, and Massart (Brereton, 

2014; Jurs et al., 1969; Massart et al., 1972; Weiner et al., 1970). In the 1970s the 

term “kemometrik” in Swedish which translate to chemometrics was first mentioned 

by Svante Wold, who later built the International Chemometric Society with the help 

of Bruce.R. Kowalski. These led to an increasing number of published works and 

attention toward chemometrics (Brereton, 2014; Kowalski et al., 1987; Wold, 1972). 
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Chemical theories in general make idealized concepts and rules which need idealized 

environments and conditions. This idealization has become a problem in descriptive 

and practical terms as real-life experiments and tests are far away from ideal 

conditions. Classical linear regression analytics are based on different presumptions 

that mirror idealized conditions and parameters which limit the analysis. However, 

chemometrics relies on fewer presumptions and involves extracting and representing 

data in a more realistic way. In addition to putting the idealized relationships that 

define the chemical and physical properties of any tests. They try to understand other 

empirical relationships and unknown patterns (Brereton et al., 2018; Wold, 1995). 

Chemometrics can be defined as the use of mathematical and statistical approaches 

to analyze, examine and understand the experimental data in a broader and further 

manner than the classic univariant methods. Chemometrics offers an effective 

quantitative understanding on the resulted experimental data. At the same time it 

provides a comprehensive identification of trends and understand chemical 

relationships which were previously ignored. Chemometric can also be defined as a 

developing field of study that aims to gather and extract effective and valuable data 

from analytical methods (Inobeme et al., 2022). 

Most researchers utilize univariate model analysis to express and calibrate their 

measurements by using univariate statistical methods such as analysis of variance 

(ANOVA) or t-tests for normally distributed data. However, the progress and 

improvements with computer science helped to ease the usage of more complex 

multivariate statistical methods. This helped the analysis of more complex and 

enormous data to be analyzed especially those of newer analytical devices that 

produce such a huge number of data and doesn´t rely on a single instrumental signal. 

For example, data collected from spectroscopy where data are collected from signals 

that are widespread over many different wavelengths  (Brown & Steven Brown, 

2017; Gómez-Caravaca et al., 2016; Harynuk et al., 2012). 

Chemometrics is used in a variety of devices and tools especially for non-invasive 

and non-destructive devices that can identify and quantify contents of the sample. 
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Devices such as ultraviolet–visible spectroscopy, mid-infrared spectroscopy, near-

infrared (NIR) spectroscopy, Raman spectroscopy, terahertz spectroscopy, nuclear 

magnetic resonance (NMR) spectroscopy, laser-induced breakdown spectroscopy. 

The usage of chemometric analysis with these devices provide to be beneficial for 

various applications in agricultural sciences, food engineering, pharmaceutical 

industry, petrochemical analysis, environmental and medical studies (Afsah-Hejri et 

al., 2020; T. Chen et al., 2020; Kaavya et al., 2020; Tahir et al., 2022; H. P. Wang et 

al., 2022).  

Chemometrics has various applications and implementations in the pharmaceutical 

industry including QC and process analysis. Some of these implementations were 

successful enough to become included in regulatory guidelines of regulation 

authorities. For instance, the European Pharmacopoeia (EP) and similarly the United 

States Pharmacopoeia (USP) have issued specific chapters on chemometrics. In 

addition, the Food and Drugs Administration (FDA) has given instructions for 

chemometrics usages. While ICH has aggregate the chemometrics usages in specific 

chapters (Vignaduzzo et al., 2020). 

One of the main aspects of chemometric application is the preprocessing step. It has 

a crucial role as it eliminates many additional extra factors that cause changes in the 

measurement values outside of the intended samples. These artifacts include rough 

surfaces, optic effects, detector noise, baseline corrections, temperature and 

particle size (Gendrin et al., 2008). 

Validation is an essential component in chemometrics as it can provide reliability 

and demonstrates the quality of the applied statistical methods. It can either be 

presented graphically to give a clear illustration of the overall procedure or can be 

measured numerically with statistical methods to show the quality of the applied 

method. Validation should either be done using a cross validation set of data or an 

external set of data that was not included during the preparation of the chemometric 

method (Anderssen et al., 2006; Brereton et al., 2018). 
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1.6 Novel Quality Control Methods 

In this study, the focus will be on solving three different quality control issues by 

using non-invasive measuring techniques. 

1.6.1 Quality issue of Insulin 

Diabetes is an extremely popular and globularly expanding disorder in a rapid 

fashion. It is estimated increase in numbers to reach around 700 million adults’ 

patient by 2045. Diabetes is a chronic metabolic disorder of the endocrine system 

that can be described with unnaturally high amount of glucose in the blood, which 

could be caused from total or proportional insulin shortage. These can appear when 

β-cell dysfunction, insulin resistance in tissues, or both. Although diabetes is 

generally categorized as an autoimmune class that starts with childhood (type 

1 diabetes, T1D) and a non-autoimmune class that usually starts at adulthood (type 

2 diabetes, T2D), there are additional distinct types of diabetes. These includes 

monogenic diabetes such as, maturity-onset diabetes of the young or neonatal 

diabetes, gestational diabetes in pregnant women, and potentially an autoimmune 

class that can develop in adults at later stages of life (Ahlqvist et al., 2018; N.H. Cho 

et al., 2018; Cole & Florez, 2020; Udler et al., 2018). 

The typical symptoms of diabetes, such as excessive weight loss, excessive thirst, 

and excessive urination, were first mentioned in medicinal history 3500 years ago by 

the ancient Egyptians, while the word “diabetes” which comes from Greek was first 

mentioned by Aretaeus of Cappadocia around the 1st century AD. The sweetness of 

urine was discovered by Thomas Willis in the 17th century, leading to the addition 

of "mellitus" to the name of the disease (Mekala & Bertoni, 2020). The highest 

prevalence of diabetes is found in few Pacific Island nations including of adults in the 

Marshall Islands with 30.5%, in Mauritius with 22%, and  in Papua-New Guinea 

with 17.7%, then succeeded in countries of the Middle East particularly Saudi 

Arabia, Egypt, and United Arab Emirates where around 18% of adults are affected. 
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Turkey has over 10 million diabetic patients (Mekala & Bertoni, 2020; Ministry of 

Family and Social Services, 2019). 

In 1889, Minkowski and von Mering noted that the complete removal of pancreas 

causes the production of severe diabetes. In 1922, the first human experiments 

involved the administration of the pancreatic isolate and reversing the symptoms of 

diabetes. In May 1922, the active component was named insulin. Commercial sales 

started a year later as a treatment for diabetes, which led to the reward for this 

research and experiment with the Nobel Prize in the same year (Mekala & Bertoni, 

2020; Wilcox, 2005). 

Insulin is a dipeptide hormone comprised of A and B chains connected together by 

a disulfide bond and contains 51 amino acids. Insulin is released from the β cells of 

the pancreatic islets of Langerhans. Insulin is an effectual anabolic compound that 

advances cellular absorption, storage, and production of nutrients while obstructing 

nutrient breakdown and release into the bloodstream. Insulin performs other tasks 

such as inducing mobility of nutrients toward cells, regulating metabolic enzyme 

activity, checking the transcription of metabolic genes, regulates cellular growth and 

differentiation, and govern its own removal from the cell, all that via activating its 

receptor (Saltiel, 2021; Wilcox, 2005). 

Beside the tasks and functions of insulin in diabetes, recent research demonstrated 

other functions and activities of insulin in different organs which includes the brain, 

heart, kidney, bone, skin, and hair follicles. Insulin assists the development of bones, 

reduces inflammation caused by osteoporosis, function on the central nervous 

system, and acts on pro-atherogenic and anti-atherogenic tasks in the cardiovascular 

system (Rahman et al., 2021; Rorsman & Braun, 2013). 

The treatment of diabetes consists of antidiabetic drugs and gene therapy. Insulin 

drug is considered the primary therapy for type 1 diabetes, and their use is expanding 

in type 2 diabetes. People with diabetes have to use insulin shots to regulate glucose 

levels in their bodies. Insulin has five major types, which are Rapid-acting insulin, 

Regular or short-acting insulin (e.g., Humulin R), Intermediate-acting insulin (e.g., 
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Humulin N), Long-acting insulin, and Ultra long-acting insulin (Swain et al., 2022). 

These types differ in their chemical formulas and physical structure, inducing 

varying pharmacokinetics with different absorption rates and duration of actions 

(Mathieu et al., 2017) 

The timing of insulin action depends on each insulin and formulation's unique 

pharmacokinetics (PK) and pharmacodynamics (PD). The term "pharmacokinetics" 

denotes the time frame of insulin circulation levels after subcutaneous injection or 

other delivery methods. To maintain normal blood glucose levels without risking the 

patient, insulins must be given with knowledge of their PK and PD effects. Both PK 

and PD are influenced by insulin injection parameters and physiological factors such 

as workout, body heat, and insulin sensitivity. In order to administrate an insulin 

regimen, it is of high importance to have a good and clear understanding and 

knowledge of PK and PD characteristics of different insulins and their different 

formulations and related physiological factors. Baseline insulin, which is available 

in intermediate- and long-acting forms, is often the initial treatment for type 2 

diabetes. Protamine, a positively charged protein, precipitates insulin hexamers, 

resulting in a suspension formulation. Injections of protamine/insulin crystals limit 

insulin hexamers' dissociation, thereby reducing insulin monomers' absorption into 

circulation (Hirsch et al., 2020). 

Some patients can use two different insulin types at different times and can mix two 

types of insulin inside a single syringe for single use, such as insulin NPH (insulin 

neutral protamine hagedorn) with regular insulin or with insulin lispro, a process 

referred to as “free mixing” (Eau Claire, 2023; Hirsch et al., 2020).  Some patients 

use premixed insulin mixtures to control their blood glucose levels at a given time. 

Premixed insulin mixtures include Humulin 30/70 (30% intermediate-acting insulin 

NPH ratio to 70% regular insulin ratio), Humulin 50/50, Humulin 70/30, Humalog 

Mix 25, Novolin 50/50 (Brunetti, 2022). It is crucial for patients to administer exact 

amounts of insulins, as miscalculations of insulin drugs or between doses of mixed 

insulins can lead to reduced effects of the drug or serious complications such as 
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hypoglycemia that can end up in the emergency departments of hospitals and can be 

fatal (Geller et al., 2021). 

There are quality control methods to overcome these errors, but they are mostly 

performed only for selected  batches after the production lines (Carter et al., 2016). 

They are invasive and destroy the drugs, making  them unusable. Therefore, there is 

an emerging need for a quick and non-destructive method to detect quantification 

errors. Time domain nuclear magnetic resonance (TD-NMR) is an analytical method 

that is becoming increasingly popular because it is quick, easy to operate, and offers 

high instrumental stability. This is based on continuous measurements of protonation 

in the sample. TD-NMR is capable of observing molecular dynamics in simple and 

complex environments (Balthazar et al., 2021b; Kiselev, 2019; J. Li et al., 2021). It 

is used in various branches of scientific research and industries, such as food (Kirtil 

et al., 2017), pharmaceuticals (Kuentz et al., 2006), botany (Kovrlija et al., 2020), 

agriculture (Colnago et al., 2021), and polymer studies (Besghini et al., 2019). TD-

NMR incorporates several measurements, such as T1 longitudinal relaxation times, 

T2 transverse relaxation times, and T1T2 maps (Baran et al., 2023; Ozel & Oztop, 

2021), which are bidimensional NMR maps generated by a correlation between T1 

and T2 relaxation times. T2 relaxation times allow the characterization of nuclei by 

their states, such as bound water, free water, and the exchange between these two 

states (Santos et al., 2016), which is of immense importance when measuring a 

mixture of insulin drugs with different solubilities. T1T2 maps separate physical and 

chemical influences by distinguishing overlapping data in the T2 relaxation times 

(Li et al., 2021). 

In this study, insulin drug mixtures were analyzed using two different TD-NMR 

techniques, which are T2 relaxation and T1T2 maps. Additionally, multiple linear 

regression (MLR) was applied to integrate the linear regressions of the two methods. 

The final aim is to design a novel, non-destructive, affordable, user-friendly and 

precise quantification method for mixed insulin drugs using TD-NMR techniques. 
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1.6.2 Quality issue of Aspirin 

Aspirin is considered to be one of the oldest drugs known to men. It was obtained 

from willow bark for over millennia until Felix Hoffmann succeeded in producing 

acetylsalicylic acid at Bayer to proceed and secure a patent in 1899 (Sneader, 2000). 

The ancient Sumerians and Egyptians consumed willow bark for its medicinal values 

even though they were unaware of its content of salicin (Figure 3) which is the active 

ingredient that gives willow bark its medicinal values and was the cornerstone in the 

development of aspirin. Willow bark continued to be consumed during the ancient 

Greece era for its reducing pain characteristics. Back then it was suggested by 

Hippocrates for the purpose of reducing pain during childbirth, and it was mentioned 

during the Roman era since it was suggested by Pliny the Elder (Desborough & 

Keeling, 2017). In 1828, Johann Buchner processed willow bark to obtain yellow 

crystals which he called Salicin, named after the plant genus of the willow tree, Salix. 

Salicin was the active compound that gives willow bark its medicinal properties. 

Later, the procedure was taken another step by Pierre-Joseph Leroux. To be refined 

one more time by Raffaele Piria were the product called salicylic acid (Figure 3) was 

introduced with a higher activity (Desborough & Keeling, 2017; Leroux, 1830; R 

Piria, 1838; Schindler, 1978). 

Aspirin became widely accessible and considered an over-the-counter drug, a drug 

that can be taken without a prescription. Its analgesic, antipyretic, and anti-

inflammatory properties originate from aspirin being part of a group known as 

nonsteroidal anti-inflammatory drugs (NSAID). NSAIDs are a class of drugs that 

reduces pain, decreases fever, and prevents blood clots (Tolba, 2017). They are 

chemically and physiologically distinct from steroids (Buer, 2014). They account for 

5% of the entire prescribed medicines worldwide. The irreversible acetylating 
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property of aspirin distinguishes it from other NSAIDs, such as diclofenac and 

naproxen. This irreversible acetylation forms a covalent bond between aspirin's 

acetyl group and the serine residue of cyclooxygenase's active site in platelets, which 

is irreversible. Consequently, it inhibits platelet function for more than a week. 

Making aspirin a suitable antiplatelet medicine with a crucial role in the prophylaxis 

of thrombosis (blood clots) (Santos-Gallego & Badimon, 2021; Tóth et al., 2013). In 

addition, NSAIDs are known to inhibit cyclooxygenase enzymes (COX), which are 

responsible for the synthesis of prostanoids, which in turn intermediate 

inflammation, pain, and fever. While most NSAIDs inhibit these enzymes reversibly, 

high doses of aspirin irreversibly inhibit them, and this irreversible inhibition of 

COX enzymes by aspirin leads to a longer half-life; in other words, aspirin has a 

longer duration of action than other NSAIDs (Seliger et al., 2018; Tolba, 2017). 

Aspirin contains many additional pharmacological properties, making it an option 

for various therapies (Willetts & Foley, 2020). In addition to its treatment of pain, 

fever, and inflammation, aspirin is used as a prophylactic agent for the primary and 

secondary prevention of cardiovascular diseases (Dasa et al., 2021). Aspirin’s 

antithrombotic properties reduce blood clots and the risk of stroke and myocardial 

infarction (Fiala & Pasic, 2020). Furthermore, aspirin can be used to control heart 

rate variability and cardiac autonomic activity  (Minhas et al., 2021). It is anticipated 

that aspirin has an antiangiogenic characteristic that causes downscale cancer risks. 

Figure 3 Chemical Structure of Salicilin, Salicylic acid and Acetyl salicylic 

acid (Desborough & Keeling, 2017b) 
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Due to this, in recent years, studies have shown that aspirin can be used as a 

prophylactic agent for cancer (Cao et al., 2016). For example, the risks of cancers in 

the GIT, such as esophageal, stomach, and colorectal cancers, were reduced by over 

25% compared to those in a control group. (Bosetti et al., 2020; Xie et al., 2021).  

The use of low dose aspirin in patients at risk for coronary heart disease is considered 

an economical approach, as it can result in reduced costs for patients, insurance, and 

national health services (Lamotte, Piñol, et al., 2006; Tsutani et al., 2007; Zhong et 

al., 2021). The cost reduction also benefits patients, resulting in savings of up to €797 

per patient in Spain and €889 per patient in Japan(Lamotte, Annemans, et al., 2006; 

Lamotte, Piñol, et al., 2006). The European Heart Network has estimated that 

cardiovascular diseases cost the EU economy more than €200 billion annually 

(Timmis et al., 2022). Heart disease costs the United States approximately $239.9 

billion annually from 2018 to 2019. This includes the costs of healthcare services, 

medicines, and productivity lost related to death (Tsao et al., 2023). Additionally, 

the economic significance of aspirin extends to its role in precision medicine and 

pharmacogenomics. Studies have developed cost-effective approaches to genotyping 

related to aspirin pharmacogenomics, providing valuable tools for personalized 

medicine and efficient drug delivery (Li, 2024). This emphasizes aspirin's potential 

to optimize treatment strategies, leading to better health outcomes and cost savings 

(C.Y. Li et al., 2024). 

Contrastingly to aspirin's advantages and positive characteristics, aspirin has 

disadvantages and drawbacks. One of its primary issues is its damage to the 

gastrointestinal tract (Kedir et al., 2021), which led manufacturers to resolve this 

issue by producing enteric-coated aspirin tablets that do not dissolve in the stomach 

but dissolve in the intestine or for doctors to prescribe reduced doses of aspirin, 

especially for the prevention of cardiovascular diseases in which small amounts are 

adequate (Kedir et al., 2021), or for aspirin to be prescribed with proton pump 

inhibitor drugs to substitute the increased acidity of the stomach caused by aspirin 

(Tosetti & Nanni, 2017).  A second issue is that aspirin drugs may interact with or 

interfere with other medications, such as warfarin or NSAIDs. This results in 
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complications with clinical management, including increasing complexity in 

prescribing medications as a means to avoid adverse drug reactions and changes in 

medicinal effectiveness (Alqahtani & Jamali, 2018; Hurlen et al., 2000; Palleria et 

al., 2013).  

Regarding its physicochemical properties, aspirin has one substantial issue. It is 

hygroscopic, which means that it is affected by the humidity of its surroundings. This 

issue causes aspirin to degrade into salicylic acid and acetic acid (Figure 4). Due to 

this matter, the wet granulation technique cannot produce aspirin tablets (an 

inexpensive technique that uses water for tablet production). For that, slugging is the 

method employed in aspirins production (Avbunudiogba, 2013).  

 

Figure 4 Aspirin degradation under humid conditions (Josh Bloom, 2018) 

Temperature is another parameter that catalyzes aspirin degradation to salicylic acid 

and acetic acid (Al-Maydama et al., 2018). Temperature catalyzes humidity 

degradation, and this process is related to humidity values. The more heat is applied, 

the more degradation it causes (Li et al., 2008). Aspirin is recommended to be around 

room temperature, while the relative humidity should be no more than 55% 

(Yamazaki et al., 2010). 

The salicylic acid formed from aspirin degradation is considered to be toxic in 

excessive amounts. The British Pharmacopoeia (BP) reported that the salicylic acid 

content within an aspirin tablet is restricted to 3% (Raimi-Abraham et al., 2017). 

This kind of degradation is escalated upon stress environments caused by elevated 

temperatures and humidity (El‐ Banna et al., 1978; Waterman et al., 2007). The long 
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term increase in salicylic acid uptake in patients leads to chronic intoxication, which 

is termed therapeutic salicylate poisoning. It displays central nervous system 

symptoms such as hyperventilation and memory deficit. It may also cause cardiac 

arrest or severe brain damage, which would lead to death (Kamal et al., 2020; 

Pearlman & Gambhir, 2009). 

As a consequence of the importance of preventing excessive salicylic acid in aspirin 

pharmaceuticals, and with the intention of lowering the cost and using a more 

environmentally friendly and non-destructive method for detecting salicylic acid, 

this study suggests TD-NMR accompanied by NIRS as an alternative measurement 

to HPLC for determining unsuitable degraded aspirin pharmaceuticals caused by 

humidity and temperature, resulting in excessive salicylic acid production.  

1.6.3 Glycation as a quality issue 

Glycation is a chemical reaction occurring in biopharmaceuticals. This reaction 

occurs between a protein's primary amine molecule and a reduced saccharide's 

aldehyde unit. It usually happens on lysine residues and, to a lesser degree, on 

arginine residues and N-terminal amino acids. Glycation can affect the 

functionality and reliability of biopharmaceuticals. (Fischer et al., 2008; Gstöttner 

et al., 2020; Kennedy et al., 2008; Wei et al., 2017) 
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Figure 5 Glycation reaction and its followed reactions and products (S. Cho et al., 

2022) 

When a sugar molecule or saccharide interacts with a protein molecule (Figure 5), a 

complex compound known as a Schiff base is formed. This reaction occurs when the 

sugar's active carbonyl group combines with the protein's nucleophilic free amino 

group, creating a C=N double bond. Following this initial reaction, the Schiff base 

undergoes additional transformations such as dehydration, rearrangement, 

cyclization, oxidation, and another round of dehydration. These processes produce 

advanced glycation end products (AGEs), which are more stable compounds. (Chan-

Sik Kim, Sok Park, 2017; S. Cho et al., 2022). 

In 1912, Louis-Camille Maillard found that when amino acids and sugars are mixed 

together and heated, they turn intensely dark. This type of interaction between amino 

acids and saccharides is referred to as the Maillard reaction. (Hellwig et al., 2014; 

LC Millard, 1912). In 1985, the Nomenclature Committee of the International Union 

of Biochemistry and the International Union of Pure and Applied Chemistry 

proposed using the term glycation to refer to all reactions that join a sugar to a protein 
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or peptide, regardless of whether an enzyme is involved. Later, it was clarified that 

there is a distinctive difference between protein modifications in consequence of 

saccharides. As non-enzymatic modifications produce glycated proteins while 

enzymatic modifications produce glycoproteins (Lis & Sharon, 1993; Sharon, 1986). 

Glycation is a process in which saccharides change proteins non-enzymatically. This 

is known as selective adoption. It is important to distinguish between glycation 

adduct residues and the binding of free adducts since one of them creates a covalent 

bond and the other does not. (Agalou et al., 2005; Rabbani et al., 2007; Rabbani & 

Thornalley, 2012)  

In recent decades, biopharmaceuticals have experienced a notable surge due to the 

remarkable progress made in recombinant DNA technology. Among the various 

types of biopharmaceuticals, monoclonal antibodies (mAbs) stand out as a prominent 

category, with their efficacy in treating a diverse range of ailments, including cancer, 

asthma, central nervous system disorders, infectious diseases, and cardiovascular 

diseases (Fekete et al., 2012; Le Basle et al., 2020). Over 125 antibodies have been 

approved and commercialized, with some of them being among the top-selling 

pharmaceuticals. Sugars or polyols are added to lyophilized powders to create a 

stable, glassy, and amorphous matrix to preserve the antibodies. Among the sugars 

used in antibody compositions, the non-reducing disaccharides sucrose and trehalose 

are recognized for their ability to stabilize antibodies and proteins (Le Basle et al., 

2020; Strickley & Lambert, 2021; Sudrik et al., 2019). 

During fermentation or upstream production of antibodies, glycation reactions can 

occur because of the presence of sugars, particularly glucose, which are used as an 

energy source. The reactivity of these reactions depends on the antibodies involved. 

The rate and extent of glycation can be influenced by factors such as temperature, 

pH, duration, and ionic strength, which should be maintained at physiological levels 

(Leblanc et al., 2016; Quan et al., 2008a; Wei et al., 2017; Yuk et al., 2011).  

During the fermentation process, monoclonal antibodies are subject to glycation, 

which occurs as the mAb-producing cells utilize glucose as a source of energy. The 
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amount of sugar provided during mammalian cell culture significantly impacts 

glycation levels. Factors such as temperature, pH, duration, and ionic strength, which 

are maintained at physiological levels, can influence the rate and extent of glycation 

(Quan et al., 2008a; Wei et al., 2017; Yuk et al., 2011). Studies have shown that the 

glycation is negligible when monoclonal antibodies are stored long-term at 2–8 °C 

with sucrose. However, when stored at ambient temperature with dextrose, glycation 

occurs at significant levels (Fischer et al., 2008; Le Basle et al., 2020; Sreedhara et 

al., 2012). 

Supercooling and storage temperatures can influence glycation. For instance, room 

temperature and 60% relative humidity can lead to glycation of lyophilized products, 

whereas 5°C does not generate glycation. No glycation was observed in liquid 

antibody products stored at 4° C, but considerable glycation occurred at 37° C even 

when sucrose, a non-reducing monosaccharide, was used instead of glucose 

(Awotwe-Otoo et al., 2015; Gadgil et al., 2007). 

Glycated products can be detected by liquid chromatography-mass spectrometry 

(LC-MS) to measure the overall glycation levels or peptide mapping for individual 

site glycation results. Boronate affinity chromatography can be used to assess 

glycation and monitor overall glycation levels (Lhota et al., 2021; Quan et al., 2008b; 

van Schaick et al., 2023). The O-phthalaldehyde (OPA) technique can be used to 

measure glycated compounds. (Ertugrul et al., 2021; Fischer et al., 2008; Mo et al., 

2018). However, these methods are invasive and destructive to the samples; 

therefore, they can only be used for selective samples instead of a non-invasive 

method that can be used on all samples. In this part of the study, the focus will be on 

using TD-NMR as a non-invasive method for the detection of glycation in 

pharmaceutical products by using glucose and bovine serum albumin as a model and 

then surrounding the model with accelerated conditions to provide glycation. This 

glycation was examined by TD-NMR and compared to the OPA method. 
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1.7 Objectives of the Study 

The objective of this study is to use Time Domain NMR and Near infrared 

Spectroscopy as non-invasive, non-destructive, affordable, user friendly, and precise 

quality control methods as an alternative to the current chemical quality control 

methods that destroy the samples, have costs for chemical materials, need trained 

labor, and cannot measure all samples but can only be used on a portion of the 

samples. 

Specific objectives 

 Preparing different mixture ratios of two different insulin drugs that can 

represent any insulin mixing ratio. 

 Analyzing these mixtures with T2 relaxation is necessary to understand the 

relationship between changing the mixing ratio of insulin mixtures and the 

mobility of water, as well as the interactions between water and insulin 

mixtures. 

 Analyzing these mixtures with 2D-NMR to generate T1T2 maps of mixture 

ratios to better understand different proton domains and how they differ with 

changing the mixing ratios. 

 Finding the relationship between different quantities of insulin mixing ratios 

on the one hand and TD-NMR results of T2 relaxation and T1T2 maps on 

the other hand. 

 Integrating these methods using statistical or chemometric methods such as 

multiple line regression. 

 Validating the final method using data outside the training data. 

 To produce a non-invasive technique which can serve as a means of a quality 

control method to quantify and measure the mixing ratio of two different 

insulin drugs in order to ensure the safety of mixing ratios and avoid 

miscalculations that lead to health issues such as hypoglycemia. 

 Preparing degraded aspirin tablets by placing them in stressful environments 

with elevated temperature and humidity. 
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 Measuring them by infrared spectroscopy and obtaining spectroscopy data. 

 Use chemometrics to analyze these data. 

 Development of a calibration method for measuring aspirin degradation 

using  NIRS. 

 Validate the data using a validation set of degraded aspirin tablets. 

 Measure aspirin tablets by TD-NMR and compare the results to XRD 

crystallization and Karl-Fischer titration moisture content. 

 Preparing samples with different glycation ratios. 

 Samples contain model drug formulation of BSA and glucose. 

 Placing these samples in an accelerated environment to promote glycation. 

 Measuring the browning of these samples as a glycation measurement. 

 Measuring the samples with the OPA method to ensure and quantify their 

glycation. 

 Measuring the samples with T1 relaxation to understand the relationship 

between glycation and hydration.  

 Measuring the samples with T2 relaxation to understand the relationship 

between molecules and water during glycation reaction. 

 Measuring the samples with T1T2 maps relaxation to understand the 

relationship between glycation and different proton pool domains. 

 Comparing the OPA method with other methods is necessary to find the most 

suitable non-invasive method that can be a substitute for the OPA method. 

 Ensuring that TD-NMR can be used as a substitute for the OPA method. 

 Being able to monitor glycation using TD-NMR as a quality control method.  
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CHAPTER 2  

2 MATERIALS AND METHODS 

2.1 Part 1. Quality Issue of Insulin 

2.1.1 Sample Preparation 

Humulin R® U-100 (Eli Lilly & Company, Indianapolis, IN, USA) and Humulin N® 

U-100 (Eli Lilly & Company, Indianapolis, IN, USA) were purchased from a local 

pharmacy. Humulin R® U-100 contains 100 units/ml, which is equivalent to 3.5 

mg/ml of human insulin (rDNA origin), 16 mg/ml of glycerin, 2.5 mg/ml of meta-

cresol, and 0.015 mg/ml of endogenous zinc. Humulin N® U-100 contains 100 

units/ml, which is equivalent to 3.5 mg/ml of human insulin, 0.35 mg/ml of 

protamine sulfate, 16 mg/ml of glycerin, 3.78 mg/ml of dibasic sodium phosphate, 

1.6 mg/ml of meta-cresol, 0.65 mg/ml of phenol and 0.025 mg/ml zinc ion.  

Table 1 Mixture ratios of Humulin N (insulin-NPH) and Humulin R (regular 

insulin)  

Mixing 

Ratios  
1  2  3  4  5  6  7  

Humulin N  0%  5%  10%  15%  20%  25%  30%  

Humulin R  100%  95%  90%  85%  80%  75%  70%  

Mixing 

Ratios  
8  9  10  11  12  13  14  

Humulin N  35%  40%  45%  50%  55%  60%  65%  

Humulin R  65%  60%  55%  50%  45%  40%  35%  

Mixing 

Ratios  
15  16  17  18  19  20  21  

Humulin N  70%  75%  80%  85%  90%  95%  100%  

Humulin R  30%  25%  20%  15%  10%  5%  0%  
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The samples were prepared by gently shaking the Humulin N and Humulin R bottles 

upside down (Turkish Medicines and Medical Devices Agency (TICK), 2023) and 

then transferring the solvents from both bottles to be mixed in different ratios starting 

from 0:100 (Humulin N: Humulin R) toward 100:0 (Humulin N: Humulin R), as 

depicted in Table 1. Each mixing ratio contained three samples with 0.5 ml of exact 

quantities from different Humulin N and Humulin R bottles. Finally, 63 samples 

were prepared from 20 Humulin N and Humulin R bottles. Humulin N is a 

suspension that tends to precipitate over time. As a means of guaranteeing the 

homogeneity of the samples and uniformity of the mixing state, each sample was 

subjected to vortexing for five seconds, followed by TD-NMR measurement 

precisely 15 seconds after that. Subsequently, samples were stored in refrigerators at 

4° C until further analysis. 

2.1.2 Benchtop TD-NMR Instrument 

The experimental setup was performed by a benchtop NMR system (Pure Devices 

GmbH, Germany) operating at a 1H frequency of 24.15 MHz. The system was set 

up with a radio frequency coil measuring 10 mm, corresponding to the cylinder 

where the samples were placed inside 10 mm wide tubes. The device temperature 

was set to 28° C for all experiments. The samples were equilibrated to this 

temperature prior to measurements. 

2.1.3 TD-NMR experiment parameters 

2.1.3.1 Hydration measurements by T2 Relaxation Sequences 

The T2 relaxation times of the insulin mixtures were determined using the Carr-

Purcell-Meiboom-Gill (CPMG) sequence (Figure 6). The CPMG signal is assembled 

by employing a 90° RF pulse following numerous 180° RF pulses separated by an 

equal number of times, known as the repetition time. With every single 180° pulse, 
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the signal intensity of protons declines depending on the inhomogeneous magnetic 

field of the sample (Carr & Purcell, 1954; Meiboom & Gill, 1958). The number of 

echoes is 12,500, the echo time interval is 10 ms, the repetition time (TR) is 14000 

ms, and the number of scans is 2. The received NMR signals were evaluated using 

MATLAB software (The MathWorks Inc, 2023) and fitted to mono-exponential 

models to acquire T2 relaxation times. 

 

2.1.3.2 Proton domains by T1T2 Maps 

Correlation experiments between T1 and T2 achieved bidimensional T1T2 maps 

Figure 8) in all samples to better understand proton interactions and demonstrate 

protonation differences between samples of different mixture ratios. T1T2 maps were 

acquired by applying the IR-CPMG (Inversion Recovery Carr-Purcell-Meiboom-

Gill) pulse sequence to the samples. IR-CPMG consists of an inversion recovery 

Figure 6 A representative exponential curve of spin-spin transverse T2 relaxation 

for insulin mixture of Humulin N 35: Humulin R 65  
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sequence (T1), followed by a CPMG sequence (T2). The sequence is reeated at 

different inversion recovery delays and captures a sequence of echoes for each delay 

(Panattoni et al., 2021). The signal amplitude data for the T1T2 maps were estimated 

using the following equation: 

𝑀(𝜏, 𝑡) = 𝑀0 (1 − 𝑒
−𝜏

𝑇1
⁄ ) 𝑒

−𝑡
𝑇2

⁄ (2) 

where M is the magnetization amplitude at a given time, M0 is the magnetization 

amplitude at equilibrium, τ is the recovery time, t is the echo time multiplied by the 

number of echoes, T1 is the longitudinal relaxation time, and T2 is the transverse 

relaxation time (Du et al., 2020). The number of echoes was set to 250, while the 

echo time was equal to 15 ms, with 10 points for inversion recovery. The collected 

IR-CPMG data were converted to T1T2 maps using a 2D inverse Laplace transform 

(2D-ILT)  using in-house MATLAB codes. The cumulative signal amplitudes of 

certain proton pools were collected from the maps. The computational tool used was 

MATLAB software (The MathWorks Inc, 2023). 

2.1.4 Data Analysis Procedure 

This research used chemometric methods to quantitatively distinguish between 

different ratios of insulin drug mixtures by finding the relationship between them 

and their corresponding T1T2 maps and T2 values. This relationship should provide 

a prediction method to determine an unknown mixture ratio using its corresponding 

T2 value and T1T2 map.  

The first step in the analysis was to remove outliers. Three samples were removed 

from the dataset because they were recognized as outliers after an intuitive 

assessment of the data as a whole. The remaining datasets (60 samples) were 

randomly divided into two groups using MATLAB code: training set (42 samples, 

70%) and validation set (18 samples, 30%).  
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Data preprocessing involved scaling T2 relaxation times and data from the signal 

amplitudes of the T1T2 maps to establish an equitable model for training and 

validation. Scaling was also done to ensure that data from T2 values and data from 

T1T2 maps are comparable and equivalent to each other, protecting the more minor 

scale data from being dominated by the more extensive data (Sharma et al., 2023). 

Therefore, the two datasets were modified to be within the same range. Scaling was 

done by Min-Max normalization, which transforms the data to be in the range 

between zero and one and has the following equation: 

𝑋∗ =
𝑋 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛

(3) 

where X* is the normalized scaled value of the data, X is the original value, Xmin is 

the minimum value of the trained group, and Xmax is the maximum value of the 

trained group (Wang et al., 2018). The minimum and maximum values were selected 

only from the training group to ensure consistency in the parameters for the 

prediction method.  

The data were processed using a multiple linear regression model (MLR). MLR is a 

standard and straightforward calibration method that quantifies the relationship 

between the linear regression of a dependent variable (mixture ratio) and one or more 

independent variables (T2 relaxation times). The MLR follows the following 

equation:  

𝑦 = 𝛽0 + 𝛽1𝑥1 + ⋯ + 𝛽𝑛𝑥𝑛 + 𝜖 (4) 

Where y is the dependent variable (here, the concentration), X1 … Xn represent the 

independent variables (T2 relaxation times and the T1T2 signal amplitude), β1… βn 

are the regression coefficients or the parameters of the independent variables for the 

equation, β0 is the parameter when all independent variables are equal to zero, and ε 

is the error (Mihaela Florea et al., 2016; Uyanık & Güler, 2013).  

The precision and predictability of the model were evaluated using the correlation 

coefficient (R2), adjusted correlation coefficient (R2
 adj), and root mean square error 
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(RMSE). MATLAB (The MathWorks Inc, 2023) was used as the primary 

computational tool for all the data analyses. 

2.2 Part 2. Quality Issue of Aspirin 

2.2.1 Samples 

Acetylsalicylic acid and salicylic acid were purchased from Sigma-Aldrich Chemical 

Co. (Saint Louis,MO, USA) Aspirin drugs were purchased from a local pharmacy in 

different forms with different concentrations and excipients, as stated in Table 2 and 

Table 3. 

Table 2 Aspirin drugs with their concentrations, different API (Active 

Pharmaceutical Ingredients), forms, and names of manufactures 

Name 
Aspirin 

content 
Pharmaceutical Form Manufacture 

Aspirin 100 100 mg Tablet Bayer 

Aspirin 500 500 mg Tablet Bayer 

Coraspin 100 100 mg Coated Tablet Bayer 

Coraspin 300 300 mg Coated Tablet Bayer 

Ecopirin Pro 

81 
81 mg Coated Tablet Abdi Ibrahim 

Ecopirin 300 300 mg Coated Tablet Abdi Ibrahim 
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Table 3 Excipients of each aspirin drug 

Name Excipients 

Aspirin 100 Cellulose - Maize - Starch - L-Rotlack - Saccharine 

Aspirin 500 Cellulose – Maize 

Coraspin 100 
Bayer - Cellulose - Maize - Starch - Eudragit L30D - Triethyl Citrate 

- Talc 

Coraspin 300 Bayer - Cellulose - Maize - Starch - Eudragit L30D - Triethyl Citrate 

Ecopirin Pro 

81 

Microcrystalline Cellulose (112) - Starch - Talc - Eudragit L30D - 

Triethyl Citrate - Croscarmellose Sodium - E110 

Ecopirin Pro 

150 

Microcrystalline Cellulose (112) - Starch - Talc - Eudragit L30D - 

Triethyl Citrate - Croscarmellose Sodium - E110 

Ecopirin Pro 

300 

Microcrystalline Cellulose (112) - Starch - Talc - Eudragit L30D - 

Triethyl Citrate - Croscarmellose Sodium - E110 

Ecopirin 100 
Starch - Talc - Eudragit L30D - Triethyl Citrate - Croscarmellose 

Sodium - E110 

 

2.2.2 Treatment of Stress Conditions 

Moisture treatments were carried out for the degradation study of acetylsalicylic 

acid. To measure the relative humidity (RH) effect on acetylsalicylic acid 

degradation, aspirin drugs were subjected to different humidity conditions. This can 

be achieved by placing aspirin in a closed desiccator alongside the saturated salt 

solutions. Each saturated salt solution provides a different relative humidity (RH) 

value. 

Temperature is another parameter that affects the damage and degradation of aspirin 

pharmaceuticals toward salicylic acid and acetic acid. Since elevated temperatures 

catalyze aspirin degradation by humidity, higher temperatures with higher humidity 

would create a more stressful environment that facilitates aspirin degradation. 
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There were three environments for temperature and humidity stress conditions: an 

environment with 29% RH at 25C° which represents an acceptable safe environment 

from degradation, a second environment with 75% RH at 30° C which represents an 

environment where degradation should happen, and a third environment with 90% 

RH at 45° C which represent a very risky environment where an accelerated 

degradation should apply . 

Aspirin drugs were taken from desiccators under different stress conditions at 

various periods, followed by further experiments. 

2.2.3 Moisture content by Karl-Fischer titration 

Karl Fisher titration instrument (TitraLab KF1000 Series, HACH, UK) was used to 

characterize water content and get a better idea of the water uptake after being 

admitted to different stress conditions and through various pharmaceutical forms and 

ingredients of aspirin drugs. The titration is established on the oxidation of sulfur 

dioxide by iodine in the presence of water. 

2.2.4 Quantification of Acetylsalicylic acid and salicylic acid by HPLC 

After stress condition treatment, the amount of acetylsalicylic acid remaining in the 

pharmaceutical products and the amount of salicylic acid caused by these stress 

conditions were examined using high performance liquid chromatography (HPLC). 

The HPLC Device Pursuit C18 Colon has Microsorb MV C18 (4.6 × 250 mm, 5 mm) 

and UV-Vis (Prostar 330 PDA) detector. The procedure is similar to that described 

by Yamazaki and others (Yamazaki et al., 2010). The mobile phase was a 3:2 

monobasic potassium phosphate/methanol solution with pH 2. The flow rate was 1.2 

ml/min at a column temperature of 40 °C, and the wavelength was measured at 295 

nm. Measurements were performed using standard and sample solutions. The 

standard solution used purified acetylsalicylic acid and salicylic acid. The sample 
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solution was prepared by dissolving 0.5 g of the powder in 10 ml of ethanol and then 

filled with pure water up to 50 ml. 

The degradation of acetylsalicylic acid can be measured using the following 

equation: 

𝐴𝑠𝑝𝑖𝑟𝑖𝑛𝐷𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛(%) =
𝑆𝑎𝑙𝑖𝑐𝑦𝑙𝑖𝑐 𝐴𝑐𝑖𝑑

𝐴𝑆𝐴 + 𝑆𝑎𝑙𝑖𝑐𝑦𝑙𝑖𝑐 𝐴𝑐𝑖𝑑
𝑋100 (5) 

2.2.5 Quantity determination by NIRS 

Near-Infrared spectrometry (NIRS) analysis was used to investigate aspirin 

degradation into salicylic acid and acetic acid. NIRS can be used to detect chemical 

changes in solid surfaces such as tablets.  

Near-Infrared spectrometry analysis was performed using a benchtop device 

NIRFlex N-500 spectrometer (Büchi, Flawil, Switzerland), which measures near-

infrared reflectance data points in the spectrum region of 10,000 to 4000 cm−1 

(1000–2500 nm) with a resolution of 8 cm−1 (2 nm at 1582 nm) interpolated to 4 

cm−1. Each sample was measured three times, and each measurement was repeated 

three times. NIRS analysis was conducted using the NIR Ware software (Büchi, 

Flawil, Switzerland). 

2.2.6 Evaluation by TD-NMR 

Time-domain nuclear magnetic resonance (TD-NMR) was used to analyze 

the degradation of acetylsalicylic acid. Spin-lattice relaxation time experiments (T1) 

were carried out using a 0.5 T (20.34 MHz) NMR instrument (Spin Track, Resonance 

Systems GmbH, Kirchheim/Teck, Germany). A saturation recovery sequence was 

employed with a 400 ms relaxation period (TR), 3600 ms observation time, and one 

scan. Monoexponential fitting was conducted on the relaxation curves using 

MATLAB. 
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2.3 Part 3. Glycation as a Quality Issue 

2.3.1 Materials 

Sodium bicarbonate (NaHCO3), zinc sulfate heptahydrate (ZnSO4 · 7H2O), o-

phthaldialdehyde (OPA), sodium dodecyl sulfate (SDS), glycine, bovine serum 

albumin (BSA), sodium azide (NaN3), acetonitrile, and β-mercaptoethanol (2-

mercaptoethanol) were purchased from Sigma-Aldrich Chemical Co. (Saint Louis, 

MO, USA). Glucose was bought from Tito (Turkey), di-sodium tetraborate 

decahydrate (Na2B4O7 · 10 H2O), potassium hexacyanoferrate (II) trihydrate 

(K4[Fe(CN)6]·3H2O), ethanol, were supplied from Merck KGaA (Darmstadt, 

Germany), Distilled water was obtained from 0.2 µs/cm purity mpMinipure Dest 

system (mpMinipure Ultrapure Water Systems, Ankara, Turkey). 

2.3.2 Methods 

2.3.2.1 Sample Preparation and Glycation Procedure 

Bovine serum albumin (20 mg/mL) was mixed with 180 mg/ml glucose in distilled 

water, in addition to 0.02% (w/v) sodium azide to inhibit microbial growth. The 

prepared solutions were then mixed and allowed to stand overnight. These were then 

divided into seven samples representing different time points (0, 0.5, 1, 2, 4, 6, and 

12 hours). Three replicates were performed at each point. They were placed inside a 

water bath at 85° C and closed tidily to avoid evaporation. They were removed 

according to their time points and placed in water at room temperature for 30 minutes 

to stop glycation. Then, the samples were kept inside a refrigerator at 4° C for further 

experiments, except at time point zero, when they were not placed inside the water 

bath but directly inside the fridge. 
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2.3.2.2 Quantification of free amino groups 

The quantity of accessible unbonded free amino groups was examined by the OPA 

method with few alterations (Diab et al., 2008; Tas et al., 2021); OPA reagent was 

adjusted using o-phthalaldehyde (OPA), ethanol, borax buffer, β-mercaptoethanol, 

and Sodium Dodecyl Sulfate (SDS) solution. For the later preparation, 40 mg of the 

OPA reagent was dissolved in 1 ml 95% ethanol solution. After complete dissolution, 

25 mL of 100 mM borax buffer (pH 9.5) was added to the solution. The reagent 

preparation was completed by adding 100 µL β-mercaptoethanol and 2.5 mL 20% 

SDS solution. Finally, the volume of the reagent was adjusted to 50 mL. After 

preparation of the OPA reagent, glycated bovine serum albumin (0.5 mL) was mixed 

with 1.5 mL of the prepared OPA reagent for 3 minutes. Then, the absorbance values 

were measured at 340 nm using a Microplate Reader (FlexA-200, Allsheng, 

Hangzhou, China). 

2.3.2.3 Browning Measurements 

The degree of glycation or browning was measured according to the color change 

that occurred with the Maillard reaction. Samples (250 µL) were measured at 420 

nm (Morales & Jiménez-Pérez, 2001; Nasrollahzadeh et al., 2017)using a UV-Vis 

Microplate Reader (FlexA-200, Allsheng, Hangzhou, China). 

2.3.2.4 TD-NMR Measurements 

The experimental setup was performed by a benchtop NMR system (Pure 

Devices GmbH, Germany) operating at a 1H frequency of 24.15 MHz. The system 

was set up with a radio frequency coil measuring 10 mm, corresponding to the 

cylinder where the samples were placed inside 10 mm wide tubes. The device 

temperature was set to 28° C for all experiments. Samples were equilibrated to 

this temperature before the measurements.  
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The T1 relaxation times of the glycated samples were determined using 

saturation recovery (SR) sequence with the number of echoes as 2048, echo time 

interval as 16.7 ms, the number of time points as 20, and the number of scans as 1.  

The T2 relaxation times of the glycated samples were determined using the 

Carr-Purcell-Meiboom-Gill (CPMG) sequence. The number of echoes is 12,500, 

the echo time interval is 10 ms, the repetition time (TR) is 13000 ms, and the 

number of scans is 2. The received NMR signals were evaluated using 

MATLAB software (The MathWorks Inc, 2023) and fitted to mono-exponential 

models to acquire T2 relaxation times.  

The T1T2 correlation maps were obtained by applying the IR-CPMG (Inversion 

Recovery Carr-Purcell-Meiboom-Gill) pulse sequence to the samples. The number 

of echoes was set to 200, and the echo time was 15 ms, with 10 points for inversion 

recovery. The collected IR-CPMG data were converted to T1T2 maps using a 2D 

inverse Laplace transform (2D-ILT)  using in-house MATLAB codes. The 

cumulative signal amplitudes of certain proton pools were collected from the maps. 

The computational tool used was MATLAB software (The MathWorks Inc, 2023). 
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CHAPTER 3  

3 RESULTS & DISCUSSIONS 

3.1 Part 1. Quality Issue of Insulin 

Insulin mixtures with different Humulin N and Humulin R ratios were first analyzed 

using spin-spin transverse relaxometry (T2) (Figure 7). Spin-spin transverse 

relaxation times (T2 relaxation times) represent the mobility and interaction of water 

molecules with insulin and its excipients. Since there are two distinct types of insulin 

with slightly different excipients, and because Humulin N is a suspension, whereas 

the other insulin drug is a solution, the interaction and mobility with water are 

expected to differ. Hence, different results are to be obtained depending on the 

mixture ratio. T2 Relaxation times were between 1142 and 2389 ms. T2 relaxation 

times were examined to provide data on the interactions between water molecules 

and other drug components in the mixtures. Based on the graph, it is evident that the 

three samples have identical mixing ratios at each point and exhibit the same T2 

relaxation time. This observation is consistent with previous findings, in which ten 

samples of different insulin products were examined at the same concentrations, and 

consistent uniformity results were obtained (Taraban et al., 2022). However, the 

samples with varying mixing ratios exhibited different T2 relaxation times. 

This outcome was expected because an increase in molecular concentration, such as 

protein or polysaccharide in a solution, leads to a higher water binding capacity, 

consecutively lowering the amount of free water and hence reducing the T2 

relaxation time (Dekkers et al., 2016; Małyszek et al., 2021). 

The relationship between the T2 relaxation times and mixture ratios of different 

insulins can be explained by the linear regression coefficient (R2), which was 

measured as ~0.85. This relationship shows a positive relationship between the T2 

relaxation times of the mixture and the Humulin R ratios. At the same time, there 
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was a negative relationship between the T2 relaxation times and the Humulin N ratios 

in the mixture. However, this relationship is not strong enough to quantify the 

mixture ratios. Therefore, T2 measurements are insufficient to be used appropriately 

as an alternative to chemical methods, such as spectrophotometry. The graph shows 

that the correlation between T2 relaxation times and mixture ratios is disrupted when 

the Humulin N ratio is greater than 80%. To illustrate this, the relation between the 

Humulin N ratio and T2 relaxation below 80% has a higher R2 value of ~0.96.  

When the mixture ratios are changed, the concentrations of substances from each 

drug change, including the concentrations of meta-cresol, phenol, zinc, and the 

proportion of insulin-protamine complexes to protamine-free insulins. Studies 

support the concept that measuring T2 relaxation times would have a linear 

relationship with the concentration of a substance, such as by increasing the free base 

content in binary powder blends, which would cause a decrease in the T2 values 

y = 15.207x + 732.34

R² = 0.9638

y = -11.303x + 2139.4

R² = 0.8491
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Figure 7 T2 relaxation times vs Humulin R% ratio inside Humulin R and 

Humulin N mixtures. The first linear trendline (▲) is between HR:HN 0:100 - 
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45 

(Chiba et al., 2022). Although Stueber and Jehle (2017) measured the concentrations 

of a blend of binary molecules (Pajzderska & Wąsicki, 2021; Stueber & Jehle, 2017), 

they presumed that TD-NMR could be used to measure a mixture of four different 

molecules. Other researchers measured the concentration of adulterated milk in 

water and found that increasing the water ratio increased the T2 relaxation times 

(Santos et al., 2016). In a pharmaceutical study, Akhunzada et al. (2021) measured 

different antibodies at different concentrations using TD-NMR, and they succeeded 

in quantifying variations up to 2 mg/ml (Akhunzada et al., 2021).  

However, they mixed different solutions without mixing any suspension; in addition, 

the substance variations in the mixtures in our study are much lower, as can be seen 

from the contents of each drug in the 2.1.1 Sample Preparation subsection. All of 

these studies either measured simple components or relied on measuring one or a 

few components, such as an antibiotic or a binary blind. The complex was measured 

by changing the amount of solvent water. However, insulin mixtures contain the 

same amount of solvent water and are more complex. They have different physical 

forms: one is suspension, and the other is a solution. Different mixture ratios contain 

several substances with various concentrations, which may explain why using T2 

relaxation times alone was insufficient to determine all mixture ratios.  

When Humulin N and Humulin R are mixed, different physical characteristics 

change between different mixing ratios, and two of them can explain the change in 

the TD-NMR results. The first is the mobility of water; the higher the mobility, the 

longer the T2 relaxation time, which illustrates the generally higher T2 value with a 

decrease in the Humulin N suspension ratio (Pocan et al., 2019). However, it still 

does not describe why the decline is not linear for ratios above 80% of the Humulin 

N ratio. The size of the molecules is another physical property that affects the T2 

relaxation results. The larger the undissolved molecules, the higher the T2 relaxation 

time (Okada et al., 2021). Increasing the ratio of Humulin N would increase the 

suspension and macromolecules of the protamine insulin compound compared to the 

protamine-free insulin molecules, and the ratio of macromolecules and larger 
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molecules would increase, which explains why high ratios of Humulin N would 

disrupt the decrease in T2 relaxation times.  

When analyzing complex mixtures, T2 relaxation can result in an oversimplification 

of complex molecular dynamics owing to the overlap of signals from different 

components, leading to misinterpretations of the results. Therefore, it is essential to 

investigate an alternative model that can effectively rationalize the multiexponential 

behavior of T2 relaxation and provide a deeper understanding of complex systems. 

Previous studies have demonstrated that T1T2 maps can address these challenges 

(Colnago et al., 2021; J. Li et al., 2021). The T1T2 map is a bidimensional NMR 

system (2D-NMR) that can provide valuable information on different water domains 

and the distribution of protons based on their T2 relaxation time as one dimension 

and the correlated T1 relaxation time as the other dimension. This method is highly 

efficient for distinguishing the contributions of different domains that carry 

hydrogen molecules (Fleury & Romero-Sarmiento, 2016). 

As shown in Figure 8, the system consists of several proton pools, of which two are 

more present, α and ß. The ß proton pool decreases in size (Figure 8 a,b,c,d,e) as the 

Humulin R ratios increase and the Humulin N ratio decreases until the ß proton pool 

becomes unnoticeable when the Humulin R ratios reach 100% (Figure 8Hata! 

Başvuru kaynağı bulunamadı. f). The presence of this ß proton pool can account 

for the observed elevation of T2 values in mixtures containing Humulin N ratios 

exceeding 80%. Humulin N is a suspension that undergoes precipitation of its 

crystallized contents, which is caused by a composite structure of insulin, zinc, and 

protamine, whereas Humulin R is a solution (Hirsch et al., 2020). Increasing the 

suspension ratio causes an increase in the concentration ratio of solids in a mixture, 

leading to an increase in the interaction between water and a solid surface and an 
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increase in its proton pool amplitude. It is typical for the T2 relaxation of water in 

contact with a solid surface to be lower than that of water containing dissolved 

molecules (Fleury & Romero-Sarmiento, 2016), which may explain why the ß proton 

pool has a shorter T2 relaxation time than the α proton pool and why it increases with 

the increase in Humulin N. 

Figure 9 shows the total cumulative signal from the newly emerged ß proton pool 

(T1 ∼ 1600 ms, T2 ∼ 200 ms) for each sample against the mixture ratios of Humulin 

N and Humulin R. It is noticeable that the decrease in the amplitude signal of the 

proton pool can be related to the reduction in the Humulin N ratio. However, with a 

correlation coefficient of 0.6914, this measurement method could not be used as a 

Figure 8 T1T2 maps of different insulin mixture ratios, a) HN: HR 100:00 b) HN:HR 

80:20 c) HN: HR 60:40 d) HN: HR 40:60 e) HN: HR 20:80 f) HN: HR 0:100. α and ß 

are two main proton pools. 
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reliable quantitative method. When the Humulin N ratio is below 30%, the proton 

pools are difficult to distinguish from each other or from noise and cannot be detected 

in some mixtures. On the contrary, when the Humulin N ratio is greater than 70%, 

the signals of the proton pools can be seen to have a highly positive relationship with 

the mixture ratios with a correlation coefficient R2 of 0.988. These indicate that 

measuring T1T2 maps of mixture solutions and extracting proton pool signals can 

only be helpful for mixtures with a high Humulin N ratio, which is insufficient for 

practical applications. The stable increase in the signal from the ß proton pool only 

with high Humulin N ratios can be attributed to the partial dissolution of solid 

molecules in the unsaturated Humulin R solution during mixing. This process 

reduces the number of undissolved particles in the mixture, thereby decreasing the 

signal from the immobilized water. However, after saturation, the proton pool 

increased steadily. The locations of the two main proton pools α (T1~2500 ms, 

T2~1700 ms, T1/T2 ~1.5) and ß (T1~2100 ms, T2~200 ms, T1/T2~10) in the map are 

consistent with other studies, which have reported similar results for the proton pools 

of water and undissolved solids, respectively (Baran et al., 2023; Fleury & Romero-

Sarmiento, 2016; S. Wang et al., 2020). In mixtures with high Humulin N ratios, 

each of the two major proton pools is divided into two separate proton pools, four in 

total. This division is caused by a better separation between the supernatant and 

precipitation phases, which is attributed to the different signals from the bulk water 

and undissolved particles. Otherwise, in smaller Humulin N ratios, these proton 

pools overlapped and merged together. Other proton pools from T1T2 maps are 

considered artifacts or noise because of their small size and because none are 

presented in a stable form between different measurements.  

Many studies have shown that T1T2 maps are commonly used as identification 

techniques (Silletta et al., 2022). They can be used as fluid quantification methods to 

measure migrated water (Zheng et al., 2017) or to determine the amount of starch, 

proteins, or pentosans in the water (Serial et al., 2016). T1T2 Maps were used to 

determine the ratios of pine resin to water in the wood (Xin et al., 2020). These results 

demonstrate the benefits of T1T2 maps in differentiating between solids and liquids, 
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as well as between different liquid phases. Nevertheless, T1T2 maps do not 

distinguish much between the same liquid phase but with varying dissolution rates. 

Such is the case with insulin mixtures with lower Humulin N ratios. 

The measurement of insulin mixtures of Humulin N and Humulin R in different 

ratios showed opposite results depending on the measurements. Although T2 

relaxation showed a high correlation with most of the mixture ratios, it showed a 

poor correlation when the Humulin N ratio was high. In contrast, T1T2 maps showed 

a high correlation only for mixtures with high Humulin N ratios. These two methods 

can be integrated using MLR to establish a link between the two measurement 

methods and the mixture ratios. MLR is a statistical technique that can model the 

linear relationship between the dependent variable (mixture ratio) and the 

independent variables (T2 relaxation and proton pool signal) (Maulud & Mohsin 

Abdulazeez, 2020).  
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The two datasets were divided into training and validation groups and then scaled by 

Min-Max normalization. Subsequently, an MLR model was established to provide a 

linear regression model by integrating the two methods (Figure 10). The model is 

considered accurate as it showed high accuracy measurements: RMSE = 4.57, R2 = 

0.976, and adjusted R2 = 0.975. 

All these results demonstrate that the new model fits well with the training dataset. 

The data was validated using the validation group (Figure 11). The validation group 

showed high accuracy measurements with RMSE = 6.2561, R2 = 0.9581, and 

Adjusted R2 = 0.9525. This confirms that the method is suitable for measuring 

mixture ratios. 

This integrated TD-NMR method requires a few minutes to detect the mixing ratio 

in each sample, making it a quick and desirable approach. It is an intuitive and user-

friendly method (Yildiz et al., 2018) that nurses and physicians in hospitals and 

Figure 10 Actual vs. Predicted Concentrations, after applying Multiple Linear 

Regression (MLR) on the training group. 
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healthcare centers can easily apply. Furthermore, it is non-invasive and non-

destructive, which allows its application to all insulin drugs mixed before 

administration to the patient without damaging or impacting the mixture. Moreover, 

it can be automated (Fenerick et al., 2022). The aforementioned characteristics cause 

this integrated method to avoid a remarkable quality control issue (Carter et al., 

2016), as it can be performed by manufacturers or regulatory agencies for every 

mixed drug produced by manufacturers or every product in a batch instead of 

measuring only a small quantity of each batch, whether used for high production by 

manufacturers or quality control regulators. All these benefits make the integrated 

method of this study a suitable alternative or an excellent complement to current 

quality control methods, such as HPLC, that lack these characteristics and benefits. 

Figure 11 Actual vs. Predicted Concentrations, after applying the Multiple 

Linear Regression MLR to the validation group. 
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One limitation of this study is that neither insulin bottles nor insulin mixtures were 

measured to ensure that all components between bottles were the same. However, 

such a change in different bottles from different batches is improbable (Taraban et 

al., 2022). In addition, TD-NMR can be used to measure bottles before mixing to 

ensure uniformity. Although this study focused on two different insulin mixtures 

without measuring other insulin mixtures, such as insulin lispro, it is highly implied 

that this measurement approach should also be applicable to other insulin mixtures. 

The combination of medications and solvents for suspensions and solutions is 

common in the pharmaceutical industry. Therefore, this integrated TD-NMR method 

can be used to quantify other mixed pharmaceutical drugs in addition to mixed 

insulins. Combination strategies of different antibiotics can be used for bactericidal 

synergism, combat drug resistant microbial pathogens, and suppress resistance 

development (P. H. Chen et al., 2022; Xu et al., 2018). Pediatricians and pharmacists 

can dilute an adult suspension drug with a solution to achieve the correct and 

appropriate dosage for a child (O’Hara, 2016). This is needed due to the lack of 

suitable drug preparations and because the proper dose of a drug is correlated with 

the age and weight of the child (Belayneh et al., 2020). This integrated TD-NMR 

method shows promise for measuring mixed or combination drugs to minimize 

medication errors and reduce hospital admissions and therapeutic complications 

(Kelly et al., 2020). The results demonstrate that by merging or joining two different 

TD-NMR methods, the shortcomings of each of these TD-NMR methods can be 

compensated for and solved. If there is a change in protonation and if a TD-NMR 

method has a partially stable correlation with this change, then the measurement and 

integration of other TD-NMR methods should be considered in future studies. 

Furthermore, measuring other pulse sequences, such as 2D-CPMG–CWFP–T1 (Two 

dimension- CPMG - Continuous Wave Free Precession with low flip angle), instead 

of IR-CPMG, may yield different results because it allows a higher resolution in the 

direct dimension T1 but a lower resolution in the indirect dimension T2 (Monaretto 

et al., 2020).  
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Since this study presented a TD-NMR technique that measures preparations of 

different mixing ratios of suspensions and solutions, then this technique should be 

considered for measuring similar mixture preparations outside the pharmaceutical 

industry, including the energy industry where nanoparticle suspensions can be 

processed by solution mixing (Mohanty et al., 2021), chemical engineering, for 

example, suspension polymerization is applied by adding suspension or solution 

drops (Hashim & Brooks, 2004), and food engineering, such as measuring the ratio 

of suspended particles, which is essential for the stability of drinks (Muhammad et 

al., 2021). It is also important to consider that this study provides a TD-NMR 

technique to measure the changing solubility of solid molecules and the increasing 

amount of undissolved particles (or the precipitated environment); therefore, this 

method has the potential to be applied to study precipitation reactions, reactions that 

cause the formation of solid particles in solvents (Karpinski & Wey, 2002) in 

chemical and pharmaceutical research. 

3.2 Part 2. Quality Issue of Aspirin 

3.2.1 Crystallization detection by XRD 

The study incorporated XRD measurements to determine the proportional ratio of 

crystalline and amorphous components in aspirin tablets prior and after putting them 

under stress conditions of humidity and temperature. From Table 4 and Figure 12, 

we can see that the degree of crystallinity for Coraspin 100, Coraspin 300, and 

Ecopirin 300 increased, whereas the crystallinity ratio for Ecopirin Pro decreased, 

and Aspirin 100 and Aspirin 500 did not change significantly. 

3.2.2 Quantification by NIRS 

Partial Least Squares Regression (PLSR) was carried out using the whole NIR 

spectra to determine the correlation between the NIR values of tablets and HPLC 
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values of the same samples. A total of 1500 spectra were collected (three spectra for 

each sample) and used to develop a calibration model corresponding to 100 samples 

of aspirin tablets of each kind (500 samples in total). These samples were analyzed 

using HPLC to form a standard reference for calibration. NIRCal software performed 

wavelength selection according to a repeated method, combining all spectral data 

and preprocessing to acquire the best combination for calibration. 

Table 4 Crystallinity of tablets under different environments 

 Asp 100 

before 

Asp 100 

75% - 30° 

Asp 100 

90% - 45° 

Asp 500 

before 

Asp 500 

75% - 30° 

Asp 500 

90% - 45° 

Crystallinity 

rate 
57.3% 57.7% 57.4% 41.5% 39.5% 40.7% 

 Cor 100 

before 

Cor 100 

75% - 30° 

Cor 100 

90% - 45° 

Cor 300 

before 

Cor 300 

75% - 30° 

Cor 300 

90% - 45° 

Crystallinity 

rate 
40.1% 41.3% 41.7% 39.3% 40.3% 40.5% 

 Eco Pro 

before 

Eco Pro 

75% - 30° 

Eco Pro 

90% - 45° 

Eco 300 

before 

Eco 300 

75% - 30° 

Eco 300 

90% - 45° 

Crystallinity 

rate 
39.3% 37.4% 36.8% 38% 38.5% 38.7% 

Figure 12 XRD spectra for aspirin tablets before and after being under stress 

conditions of humidity and temperature. 
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Partial Least Squares Regression (PLSR) was implemented using the whole NIR 

spectra to determine the correlation between the NIR values of tablets and HPLC 

values of the same samples. A total of 1500 spectra were collected (three spectra for 

each sample) and used to develop a calibration model corresponding to 100 samples 

of aspirin tablets of each type (500 samples in total). These samples were analyzed 

using HPLC to form a standard reference for calibration. NIRCal software performed 

wavelength selection according to a repeated method, combining all spectral data 

and preprocessing to acquire the best combination for calibration. 

Table 5 shows number of principal components and measurements quality 

parameters of NIRS for each different aspirin tablets. 

 Aspirin 100 Aspirin 

500 

Coraspin 100 Coraspin 300 

Principal Component 

(PC) 5 4 4 5 

Q-value 0.71 0.74 0.80 0.76 

Standard 

Error Prediction (SEP) 0.35 0.15 0.35 0.27 

Standard 

Error Calibration 

(SEC) 0.33 0.13 0.33 0.25 

Consistency SEC/SEP 94% 86% 94% 93% 

PRESS 4.4 2 7 4 

The Q-value represented the calibration rate and was calculated using NIRCal 

software, integrating different statistical measurement measures (SEC, SEP, and 

regression coefficients). The calibration rating ranged between 0 (incompetent) and 

1 (perfect). At the same time, the Q-value should be above 0.60 to be considered 
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trustworthy for measurements. From Table 5, we notice that 4 or 5 principal 

components were needed to obtain a good measurement parameter. This also shows 

that calibration error ratio is small while the correlations are high. 

Figures 13 – 16 shows differences between original spectra and the spectra after 

applying preprocessing and PLSR. However, while these results show that size of 

tablets is not an issue toward measuring tablets and while film coated tablets can also 

be measured and calibrated. The sugar coated Ecopirin tablets failed to give a good 

results of calibration measurements indicating that the thin film layer can let NIRS 

to pass through it while the sugar coated layer doesn´t by blocking NIR. 

 

 

Figure 13 Differences between original spectra, preprocessed spectra, and processed 

spectra by PSLR for Apsirin 100 tablets. 
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Figure 14 Differences between original spectra, preprocessed spectra, and processed 

spectra by PSLR for coraspin 100 tablets. 

 

 

  

Figure 15Differences between original spectra, preprocessed spectra, and processed 

spectra by PSLR for Apsirin 500 tablets. 
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Figure 16 Differences between original spectra, preprocessed spectra, and processed 

spectra by PSLR for Coraspin300 tablets. 
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3.2.3 Protonation measurement by TD-NMR  

NMR relaxometry is an easy to use, fast, and non-destructive analytical method 

used in this study to investigate changes in protons in aspirin tablets. The relaxation 
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times of aspirin tablets were measured under different humidity and 

temperature environments, as shown in Figures 17, 18, and 19. The T1 data were 

analyzed using MATLAB (MathWorks, Inc., Natick, Massachusetts, United States) 

by fitting the data to a mono-exponential model.  

The longitudinal relaxation time (T1), which is called spin-lattice relaxation time, 

can be described as the time needed for the spins of the protons to release the energy 

that they capture from the radio frequency (RF) pulse toward the nearby lattice as 

a means to return to the equilibrium state (Hashemi et al., 2010). 

T1 value is reliant on the mobility of water protons. hus, we can conclude 

that adsorbed water molecules on tablets should increase T1 values due to an increase 

in protons’ mobility. T1 values can also be increased in relation to higher 

crystallinity rate and crystal sizes (Adam-Berret et al., 2009; Okur et al., 2022), and 

since aspirin tablets did increase their crystallinity rate during high temperature and 

high relative humidity conditions, then it is expected to cause an increase in T1 

values. 

Since it is recommended for aspirin to be around room temperature while 

relative humidity should be no more than 55% (Yamazaki et al., 2010), then looking 

at Figure 17, Figure 18 and Figure 19, we notice that there wasn’t much change for 
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T1 values, onfirming that there wasn’t degradation or crystallization during these 

mild conditions.  

However, under harsh simulated conditions with a high relative humidity of 75% or 

90%, we notice an apparent change in T1 values within a week in these 

environments. This increase can be explained by an increase in crystallinity, water 

adsorption, and aspirin degradation to acetylsalicylic acid and acetic acid. The 

decrease can be interpreted as a cause of the hydrolysis reaction of cellulose and 

maize in Aspirin 100 and Aspirin 500, which leads to an increase in free hydroxide 

groups. Thus, there is a reduction in proton mobility in the medium despite an 

increase in crystallinity and aspirin degradation. Coraspin 100, on the other hand, 

needs an alkaline medium to degrade since it was prepared to degrade in the 

intestines. 
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3.3 Part 3. Glycation as a quality Issue 

3.3.1 Free Amino Group Determination by OPA Method 

Figure 20 shows a continuous decline in the free amino group during the experiment, 

which was expected as the elevated temperatures promote glycation reaction. 

Elevated temperatures can unfold proteins and expose more amino groups to the 

medium. Moreover, higher temperatures increase the reactivity between the 

aldehyde groups and amino groups (Bodiga et al., 2013; Garcia-Amezquita et al., 

2014). The decrease was sharp during the first hour of the experiment, and then, the 

decrease in the free amino group decreased at a slower rate.   

This is because the amount of free amino groups decreased, and the glycation 

reaction caused an increase in the medium's acidity with the introduction of 

methylglyoxal and glyoxal (D.Zhao et al., 2021), which slows the glycation reaction. 

While buffers do help avoid pH changes, mAb pharmaceuticals do not necessarily 

contain buffers within them (Food and Drug Administration (FDA), 2012). 
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Figure 20 Free amino group determination of glycated samples by OPA Method 

under 12 hours of elevated temperatures. 
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3.3.2 Browning Measurements 

The color change of the samples with time was a direct and easy indication of the 

progress of the glycation reaction. The light absorbance at 420 nm was used to 

monitor the glycation reaction. Figure 21 shows that there is a general increase in the 

absorbance over time. Nonetheless, the first hour showed a slight decrease, and the 

increase seemed to stop after 6 hours. The unclear changes in the first hour can be 

explained as the UV-visible spectrometry may not be reliable for minor changes 

(Sooväli et al., 2006). In addition, UV–Vis absorbance at 420 nm is typically used to 

evaluate brown polymers in the final products. In the initial stages of glycation, the 

reaction is reversible until more advanced glycation end products are generated, 

which are chemically more stable (Chen et al., 2020; S. Cho et al., 2022; Yang et al., 

2011; Ye et al., 2022). The browning increases discontinue after six hours, and that 

can either mean that the glycation has stopped, which is disproven by the previous 

results of the OPA method, or the generated AGE is colorless and may even dilute 

the brown color as the formed AGE partially causes color change while the majority 

of AGE including CML- modified molecules would not participate in the browning 

reaction (Vetter & Indurthi, 2011). However, for a better understanding of the 

changes between 6-12 hours, more time points should be measured in between.  
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3.3.3 TD-NMR Measurements  

T1 relaxation times and T2 relaxation times were measured for all Figure 22 and 

Figure 23. The T1 relaxation times decrease with a decrease in hydration, which the 

glycation reaction can cause (Davies et al., 2019; Schumacher et al., 2017). 

T2 relaxation time identifies differences in the spin's mobility in a solution. It can 

also provide details about the water's mobility and freedom and its interaction with 

the surrounding molecules. In this study, The T1 and T2 relaxations of all 

measurements were more accurately characterized by a monoexponential pattern. As 

glycation progressed, T1 and T2 relaxation times decreased. T1 relaxation times are 

often assessed using the SR sequence, whereas T2 relaxation times are assessed 

using the CPMG sequence (Kirtil & Oztop, 2015; Tas et al., 2022).  

TD-NMR measures the T1 and T2 relaxation signals from all protons in the sample. 

Non-exchangeable protons, including those from non-exchangeable CH bonds in 

solids, do not affect the signal because of the measurement delay restriction in low-
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Figure 21 Browning measurements of glycated samples by OPA Method under 

12 hours of elevated temperatures. Based on reading at 420 nm. 
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field NMR systems (Kirtil, Dag, et al., 2017). The change in T2 relaxation times with 

glycation was slower at some time points than at others, which can be explained by 

the various effects of glycation that can change and affect T2 relaxation times. For 

example, as a consequence of agglomeration and fibril formation caused by 

glycation, there is a decrease in the T2 relaxation points. Another explanation for the 

decline in T2 relaxation is the unveiling of hydrophobic amino acids by the structural 

changes caused by glycation (Rabbani et al., 2021). These hydrophobic compounds 

interact less with water and would decrease the T2 relaxation times (Suekuni & 

Allgeier, 2023). 

The T1T2 map is a two-dimensional NMR system (2D-NMR) that offers 

clearer insights into various water domains and proton distributions, which relies on 

their T2 relaxation time in the x-axis correlated to T1 relaxation time in the Y-

axis. This approach is quite practical for separating the contributions of several 

domains that contain hydrogen molecules with different activities (Fleury & 

Romero-Sarmiento, 2016) 

The T1T2 maps of the glycated solutions displayed two prominent proton pools, α, 

and ß (Figure 24). The T1/T2 value of any proton pool can identify the molecules of 

a proton pool, even if its T1 and T2 values or its placement has changed. This 
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Figure 22 T1 relaxation time of BSA and Glucose mixtures between 12 hours. 
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indicates that changes in the T1/T2 values of the proton pool change the chemical 

structure related to that proton pool. Measuring T1/T2 placement points for α proton 

pools (Figure 25) shows an increase for T1/T2, with the increase in time indicating 

changes in the characteristic of the proton pool and changes in the chemical structure 

or changes in the mobility of water accordingly(J. Li & Ma, 2022; Silletta et al., 

2022), which can be explained by the glycation reaction. 

 

Figure 23  T2 relaxation times of BSA and Glucose mixtures between 12 hours. 

This ensures that these changes in the T1, T2, and T1T2 maps change accordingly 

with glycation. They were correlated with the OPA method (Table 6). Because T1/T2 

changes were disproportional with OPA, T2/T1 were also added to compare 

proportional change. The correlation was measured with r, R2, and p-value. 

Table 6 shows that T2/T1 highly correlates with the OPA method with r= 0.98, R2 

= 0.96, and p-value < 0.01. This demonstrates that T2/T1 should be considered as an 

alternative non-invasive and non-destructive method for glycation measurements. 
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However, this study has a few limitations, as it is done on accelerated conditions that 

may not resemble the bad storage conditions that may apply practically. 

Furthermore, it was applied to premade model samples of glucose and BSA instead 

of examining the theory on pharmaceuticals from the market. Unlike LC-MS, this 

method cannot detect amino acids that undergo glycation (Mou et al., 2022).  

Table 6 Correlation between measurements of OPA method and other 

measurements. 

 T1 T2 T1/T2 Brown T2/T1 1/Brown 

r 0.95 0.91 -0.93 -0.88 0.98 0.96 

R2 0.91 0.83 0.87 0.78 0.96 0.92 

p-value <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 

Figure 24 A representative T1T2 map for glycation. 
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Figure 25 A representative that shows the center point of each α proton pool of 

each time point. 
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CHAPTER 4  

4 CONCLUSIONS 

 In this study, three novel pharmaceutical quality control methods were 

developed. 

 These methods are non-invasive, non-destructive, affordable, user-friendly, 

and environmentally friendly. 

 The first quality control method aimed to quantify the correct mixture ratio 

of mixed insulin drugs. 

 Measurements were performed using T2 relaxation times and proton pools 

of the T1T2 maps. 

 By integrating two TD-NMR techniques, T2 relaxation times and T1T2 

maps, a new method was developed that can successfully predict the mixture 

ratios. 

 This method proposes that merging two TD-NMR spectra can be used to 

compensate for each of their shortcomings. 

 Studies should be conducted to examine the potential of this integration to 

measure other solvent combinations in the pharmaceutical and other 

industries. 

 Aspirin tablets of varied sizes and coatings were purchased. 

 They were measured using NIRS and chemometrics by applying 

chemometrics and then compared to HPLC to produce a calibration method. 

 The calibration method successfully predicted the validation set. 

 Aspirin tablets were measured with T1 relaxation times, and the crystallinity 

measured by XRD, and moisture content measured by Karl-Fischer titration 

were compared. 
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 Bovine serum albumin (BSA) was used as a model protein for 

biopharmaceuticals. 

 Glycation of BSA was measured using different techniques of TD-NMR and 

compared with the OPA method and Browning measurement. 

 Measurements of the T2/T1 value of a specific proton pool inside T1T2 maps 

can be used as an alternative measurement for glycation degree. It was highly 

fitted and correlated with the OPA method, even more than the fitting 

between the OPA method and the browning measurement. 

 It is recommended that more studies be conducted using biopharmaceuticals 

from the market and different glycation preparations. 
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