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A B S T R A C T   

The machine’s health should be continuously monitored, or a test should be applied on a regular basis to predict 
failure before fatal damage is incurred. Unexpected failures, particularly in mission-critical applications, can 
cause irreversible damage to the system, or even human life. This paper introduces a novel non-intrusive, real- 
time, online Condition Monitoring (CM), and Fault Diagnosis (FD) system for Permanent Magnet Synchronous 
Machines (PMSMs). Only the motor drive’s built-in sensors, such as current and position sensors, are used to 
detect three types of faults: inter-turn short circuit, partial demagnetization, and static eccentricity. It encom
passes the implementation of algorithms within a motor drive system and the creation of failure mode models. 
The proposed solution adopts a hardware-free approach, utilizing current/voltage signature analysis for cost- 
effectiveness. It requires a small memory and short execution time, allowing it to be implemented on a simple 
motor controller with limited memory and calculation power. The drive system is intended for mission critical 
applications, therefore, computation load, code size, memory allocation, run-time optimization, etc. are the key 
focuses for real-time operation. It offers immediate insights into motor’s health without interrupting the drive 
operation. Additionally, it ensures rapid processing with modest computational requirements, making it 
adaptable for implementation on any PMSM controller. The non-intrusive nature of this diagnostic approach has 
the potential to enhance safety in systems reliant on PMSM drives. The proposed method has a high detection 
accuracy of 98%, is computationally efficient and can detect and classify the fault accurately. Simulation and 
experimental results demonstrate the efficiency of the FD algorithm for online identification and classification of 
machine faults. Theoretical hypotheses are proven based on experimental data.   

1. Introduction 

1.1. Condition monitoring and fault diagnosis overview 

Permanent magnet synchronous motors (PMSM) are widely used in 
medical, military and aerospace applications because of their easy and 
precise speed and position control [1]. These applications necessitate a 
high level of reliability and safety. Electrical motors are exposed to 
external stresses such as vibration and high thermal cycles, resulting in 
various problems. To minimize disastrous system damage, these faults 
should be detected and diagnosed in early stages [2]. Condition moni
toring (CM) and fault diagnosis (FD) are required to prevent minor faults 
from progressing to complete malfunction [3]. 

State-of-the-art investigations revealed that signature-based 

methods were more frequently used in CM and FD of electrical motors 
because they use well-known motor signatures, such as harmonic 
analysis, and are easy to apply. As an illustration, the analysis of me
chanical vibration signals proves valuable in the diagnosis of faults in 
PMSMs. Rafaq et al. employed an accelerometer to assess vibration 
harmonics, successfully identifying mass unbalance faults in PMSMs [4]. 
Although their method was accurate in fault detection, it requires an 
additional sensor and verified by offline calculations. Measuring me
chanical signals generally requires additional sensors, therefore elec
trical signals are more suitable for condition monitoring. 

The most common electrical signature-based method is Motor Cur
rent Signature Analysis (MCSA). For example, the authors in [5] and [6] 
applied frequency response analysis to the stator current of the PMSMs 
to detect the Inter Turn Short Circuit Fault (ITSCF). Despite the fact that 
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their methods are non-invasive and can distinguish between healthy and 
faulty motors, investigations on a real time motor drive system were not 
presented. A comparison between spectral analysis and wavelet trans
form methods was presented in [7] to find the optimal fault indictors for 
one turn short circuit fault based on stator phase current and current 
phase envelope. In a recent development, the authors in [8], introduced 
a technique to identify ITSFs in an induction machine by analysing 
spectrograms of motor currents. The proposed fault detection method 
was thoroughly investigated in terms of complexity, cost-effectiveness, 
computational load, generality, and accuracy. Nevertheless, it is note
worthy that the method has not been implemented on a low-cost 
microprocessor. Instead, the algorithm operates offline, with computa
tions carried out on a PC equipped with an Intel Core i7 processor. In [9], 
an FPGA-based motor control and CM algorithm was introduced. 
Exploiting the parallel operation capability of FPGA, MCSA was per
formed easily, and harmonic content of the phase currents were calcu
lated. However, it is not presented how this information can be used for 
real-time CM. Harmonic current injection method was also applied in 
[10] to detect ITSCF on a real-time system, but specialised hardware is 
required to inject high frequency current into the motor phases. This 
brings additional cost and more challenging to implement on any motor 
drive system. In [11], the detection of ITSCF and rotor misalignment 
faults relied on current residual variance. Despite being described as 
computationally low-cost, the study lacks real-time implementation or a 
comparison with alternative methods. In [12], a fluxgate sensor was 
employed to monitor the stray magnetic field around the PMSM for 
ITSCF detection. Although the study encompasses modelling, simula
tion, and experimental verification, it primarily focuses on faults and 
necessitates the insertion of an additional flux sensor into the machine, 
posing a disadvantage. External leakage flux sensors were also utilized 
in [13] for online detection of Stator Eccentricity Faults (SEF); however, 
the publication does not present the implementation of the proposed 
algorithm. Similarly, the proposed solution is deemed disadvantageous 
for the same reason [13]. 

The literature also uses MCSA to investigate the Partial Demagneti
zation Faults (DEF), and Static Eccentricity Faults (SEF). However, a 
complete practical solution for CM and FD of ITSCF, DEF, and SEF is 
omitted. The Vold-Kalman filter was used in [14], to track the DEF of the 
PMSMs. In non-stationery conditions, only related harmonics of the 
stator current were observed to track the DEF [1]. Non-invasive SEF 
detection method based on frequency response analysis of the stator 
current was presented in [15]. Simulation results were only presented in 
this study to detect the level of SEF. Motor Voltage Signal Analysis 
(MVSA) has also been investigated in the literature. For example, stator 
voltage was used in ITSCF detection by the authors in [16]. The main 
drawback of this method is requiring access to stator voltage in DQ 
frame [1]. In [17], the current and voltage signals of the stator were used 
to detect the DEF in PMSM. The obtained simulation results based on 
continues wavelet transform and Fourier analysis shown that stator 
current and stator voltage analysis are useful for accurate DEF detection. 
The proposed method conducted by Orji et al. involves monitoring the 
health status of a motor non-intrusively by observing line currents and 
processing them. However, the study lacks fault classification, and the 
method, despite being non-intrusive, mandates additional expenses for 
current sensors and analog filters, introducing additional costs to the 
system. Additionally, the location of the calculations and the determi
nation of the machine’s health status and fault type remain unclear [18]. 

The literature has also offered various other signal analysis tech
niques, including those that use motor speed, vibration, acoustics, 
magnetic flux, etc. For instance, the motor speed signal was used in [19] 
to apply a particle filter-based magnetic flux estimating approach. 
Knowing the flux density allows one to assess the rotor magnets’ state of 
health. The measurement of magnetic flux can be accomplished using 
analog hall sensors, as demonstrated in the research conducted in [20]. 
While these sensors provide precise measurements of flux density in the 
motor, specifically for detecting demagnetization and eccentricity 

faults, the limited prevalence of analog magnetic sensors in motor 
design hinders the widespread applicability of the fault detection algo
rithm. In a more recent investigation by Skarmoutsos et al., partial 
demagnetization faults are identified through the motor’s speed and 
induced electromotive force (EMF) in a supplementary winding [21]. 
Although the method is validated through simulations and experiments, 
the primary drawback lies in the requirement for additional hardware. 

Model-based techniques are less sensitive to transients than signa
ture analysis, allowing them to be more accurate, but they require 
specific motor and drive system parameters to produce reliable results 
[22]. Even if the parameters are accurate, model-based techniques may 
not be suitable for low-cost motor drivers due to their computational 
load. In [23], a Simulink model was established to extract features of the 
demagnetization faults on PMSMs. Support vector regression method 
was used to detect the level of the fault but the proposed algorithm was 
not verified experimentally on a real system. Zhu et al. [24] estimated 
the rotor flux linkage by a torque ripple model of PMSM. Their method 
was proven experimentally at different speed and load levels, but it was 
an incomplete work because it did not take ITSCF and SEF into account. 
In [25], effect of SEF on the inductances of a machine was examined 
through a mathematical model. Then the model was verified by FEA, but 
a FD algorithm was not introduced to apply on a real system. The au
thors in [26], employed a model-based approach to estimate the Q and D 
axis inductances of a machine for detecting ITSCF. The authors assert 
that their algorithm can detect ITSCF both at startup and during oper
ation through online monitoring. Nevertheless, the study lacks a 
detailed explanation of the online functionality of the algorithm and 
does not provide information on the computational burden associated 
with the method. While mathematical modelling, FEA and experimental 
verification are very common in the literature, only a few have imple
mented their methods to real motor drive systems and proposed prac
tical solutions to the realization of CM and FD algorithms in a limited 
environment, such as a digital signal processor (DSP) or a 
microprocessor. 

AI-based approaches have lately gained popularity and they often 
provide generic CM and FD solutions that are not particular to the sys
tem or motor. For instance, Saucedo-Dorantes et al. conducted a 
comprehensive investigation aimed at detecting three simultaneous 
rotor faults in IM [27]. Here, a high-dimensional set of hybrid features 
derived from motor currents and a vibration sensor mounted on the 
motor was utilized, introducing additional costs to the drive system. 
While the proposed method’s accuracy is confirmed through experi
ments, it is noteworthy that the study does not feature implementation 
on a low-cost microprocessor for online CM. In [28], a recurrent neural 
network (RNN) model for ITSCF detection was developed. Three-phase 
current and rotational speed were selected as input features and fed to 
the RNN for training and FD. Although the authors validate their theory 
experimentally and detect the fault and its severity accurately without 
using external sensors, their work covers only ITSF detection, and the 
computational burden of the AI algorithm makes it difficult to imple
ment on a low-cost microprocessor. Similarly, Song et al. employed a 
Convolutional Neural Network (CNN) to estimate ITSCF in PMSM 
through post-processing motor signals. However, the study does not 
provide details on the implementation of the proposed method on a real- 
time, low-cost processor [29]. In a related context, Maraaba et al. uti
lized CNN for ITSCF detection in PMSMs, training the algorithm with 
real motor data and conducting experimental testing. Notably, the 
method operates offline on a computer rather than on the processor of a 
motor driver [30]. A multi-layer perceptron based diagnostic method 
was presented in [31] and [32]. The extraction of the features was 
performed using spectral analysis. In [17], a deep convolutional neural 
network (CNN) called a lifting net was combined with a second- 
generation wavelet transforms for mechanical fault classification. Wen 
et al. [33] developed a novel fault diagnosis approach by converting the 
measured signals into 2-D images. The converted images are then fed to 
a CNN known as LeNet-5 for features extraction and fault diagnosis. AI- 
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based methods have the disadvantages of requiring more computational 
resources than model-based techniques and must be trained in several 
different systems over a long time. Also, there is no such research that 
focuses on ITSF, DEF and SEF at the same time. 

In this paper, current and voltage signatures have been used for real 
time CM and FD of PMSM. The faults were mathematically modelled, 
and then simulations and experiments were performed to validate the 
derived models. The experiments were conducted on a PMSM drive 
system with field-oriented control fed by a voltage source inverter. It 
must be emphasized that the data has been collected in a closed loop 
speed-controlled system including an inner current control loop. The 
majority of previous research relied on ideal conditions and open-loop 
setups to gather data that could be used for modelling and parameter 
estimation to detect faults but neglected to consider the impact of the 
actual closed-loop operation on current/voltage signatures, which 
would have a direct effect on the fault detection accuracy. The influence 
of measurement noise has also been ignored. 

The most prevalent failures on PMSMs include stator ITSCF, non- 
uniform demagnetization of permanent magnets, and static rotor ec
centricities [34], all of which are investigated in this work. To the best of 
authors knowledge, most of the research focuses only on one or two 
types of faults. 

1.2. Contributions and paper structure 

Given the recent developments presented in the literature, several 
challenges have been established in online and real-time CM and FD 
techniques for the motor drive, particularly in mission-critical applica
tions. These necessitate the integration of the FD algorithm into the 
motor drive software to provide a degree of drive system CM. In such 
applications, the FD algorithm must be independent of the motor control 
software. The FD algorithm’s computation load should be low, and FD 
tasks should allocate a predetermined amount of memory such that the 
tasks can function independently, allowing software bugs to be isolated 
[35]. All of above challenges were considered in the development and 
implementation of the proposed CM and FD algorithm. 

In existing literature, many PMSM fault diagnosis techniques fail to 
address the potential for hardware implementation, often requiring 
additional hardware or expensive software [1]. To mitigate this limita
tion, it is crucial to prioritize the integration of FD algorithms on DSPs or 
low-cost microcontrollers, ideally harmonized with motor control soft
ware. This study introduces a comprehensive, non-invasive, online, and 
real-time CM and FD solution. The unique contribution lies in imple
menting the algorithm directly on a real motor drive system, accom
panied by mathematical models of various failure modes. This research 
significantly enhances the reliability and safety of mission-critical sys
tems by enabling the detection of faults in PMSMs. By issuing timely 
warnings to users before the system necessitates shutdown, it effectively 
prevents unexpected failures and operational disruptions. The key ad
vantages of this proposed solution are as follows:  

• The solution utilizes current and voltage signature analysis without 
the need for additional hardware, ensuring a highly cost-effective 
implementation.  

• It furnishes immediate and accurate information on the motor’s 
health without disrupting the normal operation of the drive system.  

• The algorithm seamlessly integrates into the motor drive system, 
relying exclusively on the motor drive’s built-in sensors. 

• Operating swiftly and consuming only a modest amount of CPU re
sources, the solution can be readily implemented on any PMSM 
controller equipped with current and position sensors. This facili
tates the straightforward integration of the proposed CM and FD 
algorithm into existing systems. 

This paper is set out as follows: Section II presents detailed modelling 
and simulation of PMSM faults. Section III discusses the experimental 

validation of the proposed CM and FD algorithm, which includes three 
types of faults: inter-turn short circuit, partial demagnetization, and 
static eccentricity, while Section IV discusses the real time imple
mentation of the proposed CM and FD blocks into the DSP. Finally, 
conclusions from the work are outlined in Section V. 

2. Analytical modelling and simulations of PMSM faults 

The three key faults investigated in this study are stator inter-turn 
short circuit faults, non-uniform permanent magnet demagnetization 
faults, and rotor static eccentricity faults. The effects of failure modes are 
mathematically modelled, and each fault is simulated using an ANSYS 
Maxwell simulation. The electrical and mechanical properties of the 
PMSM and the motor drive are listed in Table 1. 

2.1. Stator inter-turn short circuit faults 

Stator ITSC faults can occur from high voltage stresses caused by the 
motor’s fast-switching control, and excessive heating due to overloading 
or fabrication faults in the windings or insulation layer [36]. 

2.1.1. Analysis of stator itsc faults 
Fig. 1 shows a simplified electrical equivalent circuit of stator 

windings for a Y-connected PMSM with ITSCF [37]. Stator voltage for 
the faulty PMSM in a stationary ABC reference frame can be written as 
[2] 

vabcf = Riabcf + L
d
dt
iabcf +

d
dt
λm,abcf (1) 

where 

vabcf =

⎡

⎢
⎢
⎣

va
vb
vc
0

⎤

⎥
⎥
⎦, iabcf =

⎡

⎢
⎢
⎣

ia
ib
ic
if

⎤

⎥
⎥
⎦,

λm,abcf =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

λmcos(θ)

λmcos
(

θ −
2π
3

)

λmcos
(

θ +
2π
3

)

uλmcos(θ)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(2) 

Table 1 
Electrical and mechanical parameters of the test motor and the motor drive.  

Property Value 

Winding 3-phase Y-connected 
Rated voltage 18–32 V 
Rated current 18.67 Arms 
Rated torque 1.68 Nm 
Rated speed 2300 rpm 
Rated power 400 W 
Number of pole pair 4 
Number of stator 

slots 
27 

Moment of inertia 0.374 kg.cm2 
Stator and rotor 

length 
40 mm 

Stator outer 
diameter 

68 mm 

Rotor outer 
diameter 

33 mm 

Air-gap length 1.8 mm 
Motor driver 3-phase voltage source inverter 
Control Field-oriented control with space vector pulse width 

modulation (SVPMW) 
Software Embedded C code on TMS320C6713 Digital Signal Processor 

(DSP)  
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R =

⎡

⎢
⎢
⎣

Rs 0 0 − uRs
0 Rs 0 0
0 0 Rs 0
uRs 0 0 − uRs − Rf

⎤

⎥
⎥
⎦ (3)  

L =

⎡

⎢
⎢
⎣

2Lm − Lm − Lm − u2Lm
− Lm 2Lm − Lm − uLm
− Lm − Lm 2Lm − uLm
u2Lm − uLm − uLm − u22Lm

⎤

⎥
⎥
⎦, u =

n
N

(4) 

The phase voltage can also be written independently to study the 
effect of the fault on each phase as 

va = Rsia + 2Lm
d
dt
ia − Lm

d
dt
(ib + ic)

+
d
dt
λmcos(θ) − uRsif − u2Lm

d
dt
if (5)  

vb = Rsib + 2Lm
d
dt
ib − Lm

d
dt
(ia + ic)

+
d
dt
λmcos

(

θ −
2π
3

)

− uLm
d
dt
if (6)  

vc = Rsic+ 2Lm
d
dt
ic − Lm

d
dt
(ia + ib)

+
d
dt
λmcos

(

θ+
2π
3

)

− uLm
d
dt
if (7) 

According to aforementioned phase voltage equations, faulty motor 
equations differ from those for a healthy motor as they include if . It is 
logical that if there is no fault, if equals zero, and (5) to (7) remain true 
for healthy motors. Considering root-mean-square (RMS) phasor values 
of phase voltages, (5) to (7) can thus be re-written as 

Va,RMS
̅̅̅ →

= Vbase,RMS
̅̅̅̅̅→

− uRsIf ,RMS
̅̅̅→

− u2XmIf ,RMS
̅̅̅→ (8)  

Vb,RMS
̅̅̅ →

= Vbase,RMS
̅̅̅̅̅→

− uXmIf ,RMS
̅̅̅→ (9)  

Vc,RMS
̅̅̅→

= Vbase,RMS
̅̅̅̅̅→

− uXmIf ,RMS
̅̅̅→ (10) 

Here, Vbase,RMS is the common term for all phases. The amplitude of 
the difference between the RMS voltages of faulty and healthy phases is 
described in (11). 

|Vf ,RMS − Vh,RMS| = u|If ,RMS|
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
R2
s + X2

m

)√

(11) 

Now, when an inter-turn short circuit occurs in phase A, change in 
the RMS voltage will be greater than other two phases. This voltage 
difference depends on the motor speed and fault characteristics. When u 
increases, voltage difference between healthy and faulty phases also 
increases according to (11). Supposing the effective resistance of the 
shorted turns remains the same, fault current If ,RMS also increases 
because of the increase in the induced voltage. This yields more voltage 
difference as a result. Moreover, voltage difference increases with the 
severity of the fault. If Rf is small, i.e., the fault is severe, If ,RMS increases 
which is positively related with voltage deviation. It is important to 
mention that increase in motor speed also leads to increase in induced 
voltage on faulty turns, which causes more If ,RMS to flow. Therefore, the 
effect of motor speed on faulty signal should be eliminated for accurate 
fault diagnosis. 

Unbalanced phase resistances might create the similar effect with the 
ITSCF; however, the severity of a short circuit would be much higher. 
Normally, the PMSMs are tested for such defects before the first use. 
Therefore, the unbalance between phases are assumed to be smaller than 
a predefined threshold value. If an ITSCF occurs during the operation of 
the motor, this threshold value should be exceeded to alarm a short 
circuit fault. 

2.1.2. Electromagnetic FEA simulations 
The motor is modelled in FEA software, and the winding scheme of 

the healthy motor is modified to create a one-turn ITSC fault on phase A. 
Both healthy and faulty motors, running at 1500 rpm and loaded at 
nominal torque, are subject to transient analysis. Fig. 2 depicts the flux 
linkages of healthy and faulty motors while Fig. 3 shows the torque 
output of healthy and faulty motors. As shown in Fig. 3, ITSCF creates 
torque ripple at the motor shaft and may lead to mechanical unbalance 
and vibration. Also, average torque is the same for healty and faulty 
motors beause the load torque and the motor speed are the same (see 
Fig. 3). Normally, ITSF decreases the average electromagnetic torque; 
however, phase cuurents are greater in the faulty motor resulting the 
same average torque. 

According to (8) to (10), induced phase voltages have the same 
characteristics as flux linkages, which simulations confirm (see Fig. 4). 
As shown in Fig. 4(b), the three-phase balance of the motor is disturbed, 
which creates third harmonic component. Therefore, by applying Clarke 
and Park transformations to the phase voltages, the ITSCF effect can be 
observed on Vq as a second harmonic. Fig. 5 shows the amplitude 
spectrum of Vq for healthy and faulty PMSMs; fe is 100 Hz. The harmonic 
at 600 Hz is caused by voltage source inverter and PWM switching; the 
fault frequency is 200 Hz. It is clearly observed in Fig. 4 that the faulty 
phase voltage decreases by a certain amount, which verifying (11). The 
difference between peak or RMS values of phase voltages can be used to 
detect the ITSCF as predicted mathematically in (11). 

As a result, the signature of ITSCF is the difference between peak or 
RMS values of the induced phase voltages. For fault diagnosis, the RMS 

Fig. 1. Electrical equivalent representation of the stator windings of a PMSM.  

Fig. 2. Simulation of the flux linkages of the stator windings of PMSMs: a) a 
healthy PMSM; and b) a PMSM with ITSCF. 
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values of the phase voltages will be calculated and compared to their 
average value. The fault alarm will be activated when a phase voltage 
deviates from the average value more than a pre-determined threshold 
value. Even though the simulations were only performed for ideal short 
circuit case, the effect of the fault on the phase voltages was clearly 
visible. Although fault current can be measured in simulations, these 
fault currents will never be available for real fault scenarios. 

There are many advantages of detecting the ITSCF by looking at 
phase voltages. First, by transforming Vd and Vq, phase voltage mea
surements can easily be obtained, thus no additional sensors are 
required. Second, performing a spectrum analysis is far more difficult 
than calculating the RMS value of a signal so the proposed method does 
not impose a heavy computational burden. Finally, fault severity can be 
evaluated and detected, since the greater the phase voltage difference, 
the more severe the short circuit fault. However, the suggested approach 
fails to differentiate between significantly raised levels of faulty turns 
and poor fault resistance, as each of these influences the voltage dif
ference in the same way. Generally, these data may not be needed and 
the user ought only to be notified of the fault and its scale to determine if 

the operation should continue. Moreover, as the assessment of transient 
regions could initiate false alarms, decisions should be made during 
steady state operation assuming that the algorithm has taken this into 
consideration. 

2.2. Non-uniform demagnetization faults 

Demagnetization of the permanent magnet can be caused by local 
heating due to excessive stator current, a strong magnetic field opposing 
the magnet flux due to extremely high negative d-axis current or me
chanical stresses [3839]. 

2.2.1. Analysis of demagnetization faults 
In permanent magnet demagnetization faults, the spatial flux dis

tribution of the airgap is disturbed. Fig. 6 shows fundamental magnetic 
flux density through the airgap for healthy and faulty motors. Due to a 
non-uniform magnet defect in one pole, flux density decreases in that 
area, which is depicted by the green line in Fig. 6. The resulting mag
netic flux density function is given in (12), where Kdem and pp are the 
fault severity distortion factor and the number of pole pairs, respectively 
[40]. 

B(θ) = Bf cos(pp*θ)

+Kdem

∑∞

k=1
sin

(
πk

2pp

)

cos
(

θ
(

1 ±
k
pp

))

(12) 

The frequency components at the rotational frequency and its integer 
multiples increase for all three phase currents as a result of the step 
change in flux density at the fault location. Fault frequencies on phase 
currents can thus be represented by (13) using (1) and (12) [41]. 

fdemag = fe
(

1 ±
k
pp

)

, k = 1, 2, 3,⋯ (13) 

It is worth noting that DEF has the same effects on three-phase cur
rents. Therefore, phase currents can be represented as 

i(A)(t) = Icos(2πfet)

+ If
∑∞

k=1
sin

(
πk

2pp

)

cos
(
k2πfet
pp

)

(14)  

i(B)(t) = Icos
(

2πfet −
2π
3

)

+ If
∑∞

k=1
sin

(
πk

2pp

)

cos
(
k2πfet
pp

−
2π
3

)

(15)  

i(C)(t) = Icos
(

2πfet+
2π
3

)

Fig. 3. Simulation of the electromagnetic torque produced by the healthy 
PMSM and PMSM with ITSCF. 

Fig. 4. Simulation of the induced phase voltages of PMSMs: a) the healthy 
PMSM b) the PMSM with ITSCF. 

Fig. 5. Simulation of the amplitude spectrum of Vq at 1500 rpm with 2.5 Nm 
load torque for the healthy PMSM and PMSM with ITSCF. 

Fig. 6. Analysis of the magnetic flux density through the airgap for healthy 
PMSM and PMSM with demagnetization fault. 
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+ If
∑∞

k=1
sin

(
πk

2pp

)

cos
(
k2πfet
pp

+
2π
3

)

(16) 

Since the fault frequency components described in (13) exist in all 
three phases, they are likewise present in iq. When rotational frame 
transformation is applied to a signal of fs frequency with the reference 
frame having a frequency of fr, the resulting waveform has the frequency 
of |fs − fr|. By applying synchronous reference frame transformation to 
the phase currents presented in (14) to (16), iq can be written as 

iq(t) = Iq + If
∑∞

k=1
sin

(
πk

2pp

)

cos
((

1 ±
k
pp

)

2πfet
)

(17) 

The effect of DEF on iq is shown in (17). The iq of a healthy motor is 
represented by the fundamental DC component, whereas the fault cur
rents are represented by the AC harmonics. Here, the common factor of 
all harmonics is If , which is dependent on the demagnetization level. The 
fault current, If , increases with the severity of the fault and speed, but 
not with the load as demonstrated in (17). Non-uniform DEF in PMSMs is 
indicated by harmonics on iq at rotational frequency and integer mul
tiples of this. By monitoring these harmonics in steady state operation, 
an accurate FD can be achieved. 

2.2.2. Electromagnetic simulations 
The simulations were performed on the same healthy model created 

for ITSC faults. One of the eight magnets was removed from the model to 
represent the total demagnetization of a single magnet. Transient anal
ysis was performed on both healthy and faulty motors, which were 
loaded at nominal torque and rotating at 750 rpm and 1500 rpm. Fig. 7 
depicts the magnetic flux density distribution of the faulty motor. Near 
the faulty magnet, the magnetic flux density of the stator teeth is 0.5 T, 
reaching 1.7 T near the healthy magnets. As the motor rotates, the 
asymmetry moves along all three phases, and therefore DEF has the 
same effects on all three phases. 

The change in the phase currents is reflected to the produced torque 
and Iq. Fig. 8 and Fig. 9 show the torque output and Iq of healthy and 
faulty motors, respectively. The average value of the current increases to 
obtain the same amount of torque. The motor torque constant and motor 
efficiency decrease as a result of demagnetization fault. Also, increase in 
the torque ripple may create mechanical unbalance and vibration in the 
future. The frequency of the oscillations in Iq are the indications of DEF. 
According to (17), an increase in the harmonic content of Iq at me
chanical frequency and its integer multiples is expected. When rota
tional frame transformation is applied to phase currents to calculate iq, 
harmonic content at fe4 shifts to 3fe

4 . Therefore, maximum disturbance on Iq 

is expected at that frequency. Table 2 shows the harmonic contents of Iq 

for healthy and faulty motors, confirming the mathematical approach to 

the effect of demagnetization. 

2.3. Static eccentricity faults 

Static eccentricity faults may be caused by incorrect positioning 
during machine assembly or stresses applied to the machine’s stator 
[42]. As a result of SEF, motor phase current balance will be disturbed 
and this may lead to driver phase faults at very high-performance op
erations. Also, static eccentricity faults may evolve to dynamic eccen
tricity faults in time due to creation of mechanical stress on the shaft and 
bearings. 

2.3.1. Analysis of static eccentricity faults 
Fig. 10 shows the nature of SEF. In such a fault, the position of 

minimum airgap length does not change as the rotor rotates. Therefore, 
machine variables are in a steady condition and do not create harmonic 
components at the rotational frequency, as is the case with DEF. Hence, 
it can be concluded that a pure SEF cannot be detected the fault har
monics in the current spectrum at the rotational frequency [41]. 
Although the motor variables are steady in time, there are differences 
between phase inductances. Motor phase inductances are inversely 
proportional to the airgap length between stator and rotor, as given in 
(18). 

Lx = μ0N
2
x
π
4

(
rl
g

)

(18) 

In SEF, the rotor’s centre of rotation is displaced by a certain amount, 
Fig. 7. FEA simulation of 2D Flux density distribution of PMSM with a 
demagnetization fault. The faulty magnet is shown in the black circle. 

Fig. 8. Simulation of the electromagnetic torque produced by healthy a PMSM 
and a PMSM with a demagnetization fault. 

Fig. 9. Simulation of the Q-axis current waveforms of a healthy PMSM and a 
PMSM with a demagnetization fault. 

Table 2 
Harmonic Contents of Iq for healthy PMSM and PMSM with demagnetization 
fault.  

Harmonic Healthy (fe = 100 Hz) Faulty (fe = 100 Hz)

3fe
4  

0.07 %  3.73 % 

6fe
4   

0.08 %  3.16 %  
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causing the airgap length to increase for an arbitrary phase but decrease 
for others, or vice versa. Differences in inductive values between phases 
are caused by displacement and changes in airgap length. In terms of 
instantaneous voltage and current vectors, as well as the machine’s 
variables, phase voltage can be stated as 

⎡

⎣
va
vb
vc

⎤

⎦ = R

⎡

⎣
ia
ib
ic

⎤

⎦+
d
dt

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

La
− La

2
− La

2
− Lb

2
Lb −

Lb
2

− Lc
2

− Lc
2

Lc

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎣
ia
ib
ic

⎤

⎦

+
d
dt

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

λm

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

cos(θ)

cos
(

θ −
2π
3

)

cos
(

θ +
2π
3

)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

(19) 

Considering the steady state RMS values of currents and voltages, 
(19) can be rewritten for each phase as 

V̂a − jwλ̂m = Rs Îa + jwLa
(

Îa −
1
2
(Îb + Îc)

)

(20)  

V̂b − je− j2π3 wλ̂m = Rs Îb + jwLb
(

Îb −
1
2
(Îa + Îc)

)

(21)  

V̂c − je+j2π3 wλ̂m = Rs Îb + jwLc
(

Îc −
1
2
(Îa + Îb)

)

(22) 

When the three-phase excitations and permanent magnet flux are the 
same, the left sides of (20) to (22) have equal amplitudes. As a result, it 
can be deduced from the right side that phase inductances and phase 
currents have an inverse relationship. At high speeds, inductance 
impedance rises, and resistive terms become insignificant. Therefore, at 
higher speeds, the difference between the phase currents is more pro
nounced. Monitoring peak or RMS values of phase currents helps to 
detect rotor SEF. Since the fault is asymmetric, it has a greater impact on 
one phase than the others. Because all three phases are impacted in the 
same way in such instances, the faulty condition can be distinguished 
from the instantaneous speed and load changes. However, the following 

facts should be considered: 1) the more the eccentricity, the greater the 
imbalance in the phase currents; 2) the proposed method is applicable 
for steady state operation of the motor; and 3) the proposed method 
produces more accurate results at higher motor speeds. 

2.3.2. Electromagnetic FEA simulations 
To simulate SEF, the centre of rotor and axis of rotation are displaced 

from the centre of stator in a healthy motor model. As illustrated in 
Fig. 11, simulations were carried out for three levels of SEF, corre
sponding to 0.3 mm, 0.5 mm, and 0.8 mm displacements. Table 3 shows 
the numerical results. The peak values of the three phases differ 
depending on the severity of the faults, as illustrated in Fig. 12. This is 
due to the movement of minimum airgap position towards one of the 
phases. 

The detection of SEF by observing phase currents has some advan
tages. First, it is simple to implement. In motor drive, phase current 
feedbacks are already accessible for motor control, and so performing 
CM requires no additional sensors. Second, calculating current peak or 
RMS values is easier than performing a spectrum analysis. Therefore, the 
proposed method is computationally light and can be implemented on 
microprocessor used for motor control. Finally, the difference between 
phase currents can be used to detect a fault’s severity. However, in the 
transient period, the method may trigger false alarms so the FD algo
rithm should be conducted in a steady state. 

3. Experimental validations and data collection 

To verify the precision of the fault indicators introduced in Section II, 
four identical PMSMs underwent disassembly, and artificial faults were 
intentionally induced. The process of creating individual faults is 
elucidated in detail in the corresponding section. The electrical speci
fications of the test PMSM and the motor driver are detailed in Table 1. 
This particular PMSM was selected as the test motor due to its wide
spread use in motion control systems, with over 5000 instances available 
in the field, facilitating the potential collection of field data for further 
studies. 

The system schematic and experimental setup are illustrated in 
Fig. 13 and Fig. 14. Prior to implementing real-time Condition Moni
toring (CM) and Fault Detection (FD) algorithms, both healthy and 
faulty motors underwent five consecutive runs for each specified oper
ating condition as detailed in Table 4. Current and voltage signals were 
recorded through the RS422 test channel and subsequently processed 
offline using a MATLAB Simulink model to validate the proposed fault 
indicators. The repetition of experiments reveals minimal variation in 
measurements between consecutive runs for the same fault, speed, and 
load level. This marginal difference does not impact the fault diagnosis 
algorithm. Consequently, in all subsequent figures, one measurement for 
each condition is selected and presented, while the others are omitted 
for the sake of simplicity. 

The results obtained from theoretical and simulation analyses in 
Section II were then compared with the signal characteristics, such as 
harmonic content and Root Mean Square (RMS) values, of healthy and 
faulty motors recorded during the experimental runs. Once the offline 
calculations confirmed the signal characteristics proposed in Section II, 

Fig. 10. Drawing of a static eccentricity fault.  

Fig. 11. Drawing of three levels of static eccentricity fault.  
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the online CM and FD algorithm was implemented in real-time motor 
control software (MCS), as detailed in Section IV. 

3.1. Experiments with stator inter-turn short circuit faults 

The stator winding of the PMSM comprises a distributed winding 
with 128 turns, organized into 16 series and 8 parallel turns. Fig. 15 
illustrates that one of these 16 series turns is accessible from A2 and A3 
terminals, while Fig. 16 provides a detailed view of the terminals, 
revealing 8 parallel conductors within them. Initially, a minor fault, 
specifically a one-conductor fault, is induced by short-circuiting only 
one of the 8 parallel conductors (A2-a and A3-a). This results in a 1/128 
(0.8 %) ITSCF on phase A. Subsequently, a two-conductor fault is 
introduced by additionally short-circuiting one more turn (A2-b and A3- 
b), corresponding to a 1.6 % ITSCF. For a clearer understanding, Fig. 17 
presents a view of the real test motor and its terminals. In Fig. 18, a 

comparison is depicted between the phase currents of healthy and 1.6 % 
faulty PMSMs operating at 1800 rpm with a 0.8 Nm load torque. At this 
operating point, total RMS vibrations of the phase currents are − 6.84 dB 
and − 6.58 dB for healthy and faulty motors, respectively. However, the 
amplitudes of the phase currents are higher in the faulty case to produce 
the same amount of torque to maintain the operating point. 

Because a short circuit current is a direct indictor of fault severity, it 
was measured in both cases under various torque and speed conditions. 
Fault current increased as the number of shorted turns and motor speed 
increased, but did not alter with the load torque, as seen in Fig. 19. The 
results demonstrate that, in faulty cases, phase voltage differences 

Table 3 
Simulation results of the peak values of phase currents and their difference for a 
healthy PMSM and a PMSM wıth a static eccentricity fault running at 1,500 RPM 
and 2.5 Nm Load Torque.   

Ia(Peak) Ib(Peak) Ic(Peak) Maximum Difference 

Healthy motor 49.36A 49.55A 49.42A 0.23A 
Faulty motor (0.3 mm) 49.48A 49.01A 49.45A 0.47A 
Faulty motor (0.5 mm) 49.70A 48.82A 49.55A 0.88A 
Faulty motor (0.8 mm) 49.76A 48.28A 49.63A 1.48A  

Fig. 12. Simulations of the phase current waveforms of healthy and faulty 
PMSMs: a) A healthy motor; b) A faulty motor with 0.3 mm static eccentricity; 
c) A faulty motor with 0.5 mm static eccentricity; and d) A faulty motor with 
0.8 mm static eccentricity. 

Fig. 13. Experimental setup schematic.  

Fig. 14. The experimental setup.  

Table 4 
Test conditions for the motors.   

0 Nm 0.4 Nm 0.8 Nm 1.2 Nm 1.6 Nm 

600 rpm ✓ ✓ ✓ ✓ ✓ 
1,200 rpm ✓ ✓ ✓ ✓ ✓ 
1,800 rpm ✓ ✓ ✓ ✓ ✓ 
2,400 rpm ✓ ✓ ✓ ✓ ✓  

Fig. 15. Drawing of the windings and terminals of the special design stator.  

Fig. 16. Detailed view of the windings on which the short circuit fault 
is created. 
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increase. The faulty phase deviates the most from the average. In Fig. 20, 
the maximum voltage differences for Root Mean Square (RMS) phase 
voltages are depicted for both healthy and faulty motors across diverse 
load and speed conditions, as detailed in Table 4. Obviously, the RMS 
voltage deviation is a true diagnostic of ITSCF as it has the same char
acteristics as the short circuit fault currents. The deviation is normalized 
by the average of RMS phase voltages to create an indicator that is in
dependent of the speed. The resulting indicator in Fig. 21 is nearly speed 
independent, and it increases as the severity of the fault increase. Thus, 
the fault indicator also provides information about the severity of the 
fault. 

3.2. Experiments with non-uniform demagnetization faults 

To corroborate the findings outlined in Section II, a non-uniform 
demagnetization was induced in a test motor. To achieve this, one 
magnet was deliberately detached from the rotor and exposed to intense 
heat until demagnetization occurred. The demagnetization process is 
illustrated in Fig. 22. Subsequently, experiments were conducted at the 
specified speed and torque values detailed in Table 4. 

Torque oscillations at mechanical rotational frequency are caused by 
single faulty magnet on the rotor. In speed control mode, the speed 
controller compensates for torque oscillations by adjusting motor phase 
currents. Therefore, the effects of the fault can be seen on the phase 
currents and Iq in this scenario, shown in Fig. 9. 

The phase current measurements of healthy and faulty motors were 
compared. The FFT coefficients of phase currents corresponding to fm 
were higher for the faulty motors. Fig. 23 shows the amplitude spectrum 
of phase A current for healthy and faulty motors running at 1200 rpm 
under the no-load condition. For a better view, the frequency axis was 
centred around the mechanical frequency, which was 20 Hz. At this 
particular operating point, total RMS vibration of the phase currents are 
− 4.26 dB and − 4.16 dB for the healthy and faulty motors, respectively. 
However, sideband at the mechanical frequency rises from − 37.4 dB to 
–23.55 dB with respect to the fundamental frequency when the fault 
occurs, proving that the proposed signal is an accurate fault indictor. At 
all operating points shown in Table 4, a higher harmonic content is 
measured for the faulty motor at mechanical frequency meeting the 
expectations. Permanent magnet DEF created no asymmetries between 
the phases. Therefore, the FFT coefficient of Iq corresponding to 3fe

pp 

should be used as a DEF indictor, as given in (17). FFT coefficients of Iq 

at 3fe
pp for the healthy and faulty motors running at varied torque and 

speed conditions are shown in Fig. 24. 
Although the relevant coefficient was unaffected by load torque, it 

did increase with speed. To determine a fault indictor that is indepen
dent of speed, the FFT coefficients were normalized with the square of 
the rotor speed per unit. As shown in Fig. 25, the resulting indicator 
easily distinguishes between healthy and faulty motors under all oper
ating conditions. In speed control mode of operation, speed was regu
lated by the motor controller and the effect of demagnetization was seen 
in the phase currents and Iq. According to these experimental results, the 

harmonic contents of phase currents at fm and Iq at 3fe
pp are good 

Fig. 17. Actual test motor with specially designed stator and terminals.  

Fig. 18. Experimental results of the phase current measurements of healthy 
and 1.6 % faulty PMSMs operating at 1,800 rpm with a 0.8 Nm load for Inter- 
turn Short Circuit Fault. 

Fig. 19. Experimental results of the short circuit fault current vs motor Speed: 
a) 0.4 Nm, b) 0.8 Nm, c) 1.2 Nm, d) 1.6 Nm. 

Fig. 20. Experimental results of the deviation of Va with speed and torque for 
healthy, one-turn and two-turns conductor fault cases. 

Fig. 21. Experimental results of the normalized deviation of Va from the 
average vs motor speed at no load. 
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candidates to be indicators of permanent magnet DEF, corroborating the 
conclusion presented in Section II. 

3.3. Experiments with static eccentricity faults 

In order to fully verify the results presented in Section II, the effects 
of SEF on the motor signals were observed experimentally. A permanent 
static eccentricity fault was intentionally induced in the motor by 
machining the inner part of the motor cage by 0.5 mm on one side and 
placing a shim on the other side. The resulting permanent static ec
centricity fault in the motor is depicted in Fig. 26. Given the 1.8 mm air 
gap, the 0.5 mm displacement led to a 28 % SEF. 

The tests in Table 4 were carried out. The rotor’s displacement from 
the stator’s centre caused a non-uniform airgap clearance. Non-uniform 
airgap distribution causes variances in phase inductances, as seen in 
(18). Changes in inductances disrupt the motor’s three-phase balance, 
causing phase currents to differ in the case of SEF. Phase currents of 
healthy and faulty motors running at 1800 rpm with 0.4 Nm load are 
shown in Fig. 27. At this particular operating point, total RMS vibration 
of the phase currents are − 6.76 dB and − 6.69 dB for the healthy and 
faulty motors, respectively. However, the peak value of phase current C 
was higher for the faulty PMSM because the machined part of the 
bearing is close to phase-C winding. In all operating conditions, as 
shown in Fig. 28, phase current deviations from the average were bigger 
for the faulty motor. 

This deviation is proportional to speed and independent of load 
torque. The fault indicator becomes speed independent when the devi
ation is normalized by motor speed, as shown in Fig. 29. Experimental 
results reveal that SEF disrupts the three-phase balance of motor 
windings, resulting in changes in RMS values for phase currents. As the 
motor speed increased, the difference became larger. By normalizing 
phase current differences by motor speed, a proper FD indicator can be 
used. In conclusion, the experimental work supports the theoretical 
predictions. 

3.4. Remarks on the experiments 

Experiments on partial DEF, stator ITSCF, and rotor SEF were con
ducted, and analytical methodologies were validated. Explanations and 
comments on the correctness of the experiments are presented in this 
section. First, the fault indications for healthy PMSMs were non-zero due 
to inherent mechanical and electrical imperfections, such as rotor im
balances, stator winding unbalances and so on. Measurement noises also 

Fig. 22. Demagnetization process of the permanent magnet.  

Fig. 23. Experimental results of the normalized amplitude spectrum of phase-A 
current for the healthy motor and the motor with demagnetization fault 
running at 1,200 rpm and no load, fe = 80 Hz, fmech = 20 Hz. 

Fig. 24. Experimental results of FFT coefficients of Iq at the fault frequencies 
for the healthy motor and the motor with demagnetization fault: a) 0.4 Nm, b) 
0.8 Nm, c) 1.2 Nm, d) 1.6 Nm. 

Fig. 25. Experimental results of FFT coefficients of Iq at fault frequencies 
normalized by w2 for the Healthy Motor and the Motor with Demagnetization 
Fault: a) 0.4 Nm, b) 0.8 Nm, c) 1.2 Nm, d) 1.6 Nm. 

Fig. 26. Static eccentricity fault on the test motor.  
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affect the accuracy of FD. The software’s resolution for phase currents 
and rotor position measurements is limited and noise is unavoidable. 
Healthy and faulty lines become closer at speeds below 25 % of the rated 
speed. As a result, fault signals below 600 rpm can be ignored to avoid 
false alarms. Confusion can also be caused by the effects of different sorts 
of faults on the same signal. 

In such instances, the FD algorithm should evaluate numerous sig
nals to classify the fault appropriately. Consider the following scenario: 

• Using deviations of phase currents normalized by motor speed, SEF 
can be easily detected, as shown in Fig. 29. However, as demonstrated in 
Fig. 30, the same fault indication cannot discriminate between DEF and 
SEF in low torque operation. As a result, when utilizing only one vari
able, faults may not be distinguished from one another. 

• When the fault indication used to detect DEF is also used in the SEF 
decision process, the algorithm can decide whether the irregularity in 
the motor is a SEF or DEF signature. SEF does not appear in the ampli

tude spectrum of Iq, as illustrated in Fig. 31. 

4. Implementation of the proposed condition monitoring and 
fault diagnosis algorithm 

As mentioned earlier, an online real time algorithm is needed to 
detect PMSM faults early and alert users so that they can take pre
cautions. The proposed CM and FD algorithm has four key goals: 1) 
online and real time monitoring with minimum time delay; 2) accurate 
detection of the fault type and its severity; 3) sole use of built-in sensors; 
and 4) implementation on a low-cost microprocessor platform. 

4.1. Feature extraction method 

Motor signals were evaluated under stationary conditions. The short 
time Fourier transform (STFT) is a suitable method of feature extraction 
because it provides appropriate time and frequency resolutions [43]. 

At nominal speed, frequencies up to a third harmonic (480 Hz) can 
be detected; this adequately implements the proposed FD algorithm 
because only fractional harmonics need to be calculated. When deter
mining the window length of an STFF, the frequency resolution re
quirements, and available memory in the processor should be 
considered. A 512-point FFT divides double sided frequency spectrum 
into 512 equal parts, yielding a frequency resolution of 2 Hz. While the 
motor is running at 120 rpm, a resolution of 2 Hz is sufficient to extract 
information from the measurements (5 % of the nominal speed). Then, 
the motor signals used in the calculations are stored in 32-bit registers. 
Prior to calculations, these signals should be buffered. For STFT and 
RMS calculations, the buffer length is 512 and 128 samples, respec
tively. The memory requirement of these buffers is indicated in Fig. 32. 
Moreover, fault decision blocks need 0.3 kB of memory for low-pass 
filtering. To implement a real-time FD algorithm in the servo 
controller, around 8 kB of memory is required for data storage. 

Fig. 27. Experimental results of the phase current measurements of healthy 
and faulty PMSMs running at 1,800 rpm with 0.4 Nm load: a) Healthy motor, b) 
Motor with Static eccentricity fault. 

Fig. 28. Experimental results of the deviation of phase currents from the 
average for a healthy motor and a motor with a static eccentricity fault: a) 0.4 
Nm, b) 0.8 Nm, c) 1.2 Nm, d) 1.6 Nm. 

Fig. 29. Experimental results of the normalized deviation of phase currents 
from the average for a healthy motor and a motor with a static eccentricity 
fault: a) 0.4 Nm, b) 0.8 Nm, c) 1.2 Nm, d) 1.6 Nm. 

Fig. 30. Experimental results of the normalized deviation of phase currents 
from the average for demagnetization and static eccentricity faults: a) 0.4 Nm, 
b) 0.8 Nm, c) 1.2 Nm, d) 1.6 Nm. 

Fig. 31. Experimental results of FFT coefficients of Iq corresponding to fault 
frequencies normalized by w2 for demagnetization and static eccentricity faults: 
a) 0.4 Nm, b) 0.8 Nm, c) 1.2 Nm, d) 1.6 Nm. 
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4.2. System design and implementation 

A Simulink model of the proposed CM and FD algorithm was built for 
each fault case. A fixed step time of 1 ms was selected since the feedback 
signals, were collected and evaluated at 1 kHz in DSP. Embedded-Coder 
in Simulink can generate C-code of the designed models for real-time 
and standalone implementation on DSP. 

4.2.1. Demagnetization fault detection block 
Fig. 33 depicts the block’s content for DEF detection. The fault in

dicator for DEF, which is given in (23), is: 1) for the faulty motor, greater 
than 0.08 in all cases; and 2) for the healthy motor, less than 0.02 in all 
cases as shown in Fig. 25. Therefore, the fault threshold for DEF was set 
to 0.06. 

fimagnet = FFT 3fe
pp

(
iq
)
*
(
wmax

wrotor

)2

(23)  

4.2.2. Short circuit fault detection block 
Fig. 34 shows the block’s content for the proposed ITCF detection. 

The fault indicator, which is presented in (24), is: 1) greater than 0.01 in 
all cases for the faulty motor; and 2) less than 0.002 in all cases for the 
healthy motor as shown in Fig. 21. Thus, the fault threshold is set at 
0.005. In addition, the designed model detects the faulty phase and 
alerts the user. The faulty phase is the one with maximum voltage 
deviation. 

fishortcircuit =

max
(
|Vb + Vc − 2Va|
Va + Vb + Vc

,
|Va + Vc − 2Vb|
Va + Vb + Vc

,
|Va + Vb − 2Vc|
Va + Vb + Vc

)

(24)  

4.2.3. Static eccentricity fault detection block 
Content of the model for SEF detection is shown in Fig. 35. The fault 

indicator, which is given in (25), is: 1) greater than 0.85 in all cases for 
the faulty motor; and 2) smaller than 0.55 in all cases for the healthy 
motor as shown in Fig. 29. Therefore, the fault threshold is set to 0.7. 
Checking multiple fault indicators prior to decision of SEF improves the 
accuracy of FD, as explained in the Section III. 

fiecc =
(
wmax

wrotor

)

*  

max(|Ib + Ic − 2Ia|, |Ia + Ic − 2Ib|, |Ia + Ib − 2Ic| ) (25) 

In all the fault blocks, if the fault indicator exceeds the fault 
threshold, the comparator is activated. After that, it passes through a 
low-pass filter. Finally, the presence of a fault is given as a percent 
probability to the user. The threshold values are derived from the 
measured data for both healthy and faulty motors. In other words, the 

Fig. 32. Memory requirement for data storage of the fault detection algorithm.  

Fig. 33. Content of demagnetization fault detection block.  

Fig. 34. Content of the short circuit fault detection block.  

Fig. 35. Content of the static eccentricity fault detection block.  
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CM and FD algorithm requires training data to identify a proper fault 
threshold. Although IoT and AI algorithms can be used to collect and 
evaluate training data from PMSMs distributed in the field, for now it is 
outside the scope of this work. 

4.3. Integration of the proposed condition monitoring and fault detection 
algorithm with the motor control software 

The next phase is to integrate the FD blocks into the motor control 
software. The DSP is a fixed-step time controller that is typically 
implemented in a low-cost, low memory processor. Therefore, the 
designed blocks must be structured so that they can run in real-time 
without compromising the motor control functions. 

4.3.1. Memory and run-time considerations 
As indicated in Fig. 32, the amount of memory required for data 

storage is 8 kB. The FD algorithm, which includes STFT, buffers, RMS 
computations, and other features, is added to DSP, which increases the 
size of the output code. Another critical parameter is the runtime. Tasks 
are classified and a specified amount of time is allocated for each task to 
be accomplished for proper operation of motor control and CM at the 
same time. As a result, optimization is required to construct a model that 
runs quick enough to finish all tasks within the time constraints while 
also fitting inside the DSP memory map. 

The algorithm is implemented in DSP’s speed controller loop. All 
activities in the speed loop must be accomplished in one millisecond. 
Fig. 36 shows a timing diagram for the speed control loop. The 
maximum amount of time available for fault detection is 300 micro
seconds. STFT and RMS computations consume a significant amount of 
time. The length of the STFT can be reduced to minimize the runtime, 
but this reduces the frequency resolution. The same principle applies to 
RMS calculations. As a result, runtime should be lowered without 
compromising the FD algorithm’s performance. Two different models 
are used for this purpose, which are fault detection preliminaries and 
fault detection. Fig. 37 depicts the data flow between these blocks. 

Fault detection preliminaries update every 1 ms in the speed 
controller loop. There are stages for buffering the signals that are subject 
to STFT and these signals are recorded in data stores after being sampled 
at 1 kHz. With a sampling frequency of 1 kHz, the RMS values of phase 
currents and voltages are determined. All relevant data are written to the 
data stores to be used in fault detection model. 

The sample period for fault detection is 64 ms; both STFT and de
cision making are performed in this block and updated every 64 ms. 
Since electrical signals are sampled and buffered inside the speed control 
loop at 1 kHz, there is no loss in the frequency resolution. The trade-off is 
in the time resolution. Fault decisions are made every 64 ms instead of 
every 1 ms; however, this does not compromise the overall performance 
of the CM and FD algorithm because the motor faults occur and evolve at 
a much slower transition rate. The speed controller loop with the FD 
method takes 900 microseconds to run. Fig. 38 shows the updated 
timing diagram in further detail. Preliminaries for fault detection are 
accomplished in less than 200 microseconds, ensuring that the motor 
control and CM algorithms are working properly at the same time. The 
software is compiled and the sizes of the resulting code segments are 
compared. The FD algorithm uses 36 kB of RAM, of which 8 kB is used 
for data storage and the rest is to generate C code. 

4.3.2. Real-time testing of the proposed algorithm 
The Real-time CM and FD algorithms underwent testing on the 

experimental setup post successful integration with the motor control 
software. Tests were conducted using both healthy and faulty motors, 
following the parameters outlined in Table 4. Based on the results of the 
real-time CM and FD algorithm tests, 125 out of 128 accurate decisions 
were made, resulting in an algorithmic accuracy of 98 %. Fault signals at 
the user-end are illustrated in Fig. 39, Fig. 40, Fig. 41 and Fig. 42 under 
conditions where the load torque is 0.8 Nm, and the motor speed is 1800 
rpm. After a three-second start-up, the system is poised for fault detec
tion. In the case of healthy PMSMs, all three signals register as zero, 
affirming the motor’s sound condition. 

For DEF and SEF, related signals go high showing that the PMSM is 
faulty. Fault categorizations are correct. Finally, for ITSCF, the fault 
signal goes high, and another parameter shows the faulty phase, which is 
phase-A in the experiments. The incorrect decisions are made when the 
motor speed and load torque were 600 rpm and 0.4 Nm, respectively. 
The fundamental frequencies of the signals become smaller in this sit
uation. As a result, performing STFT and RMS computations at the same 
time produces fluctuating results. The decisions are correct in all other 
circumstances, and the overall accuracy is 98 %. Furthermore, all cases 
with a healthy motor are accurately identified, ensuring that no false 

Fig. 36. Timing diagram of speed control loop.  

Fig. 37. Fault detection preliminaries and fault detection blocks.  

Fig. 38. Timing diagram of speed control loop including fault detection 
preliminaries. 

Fig. 39. Experimental results of fault detection algorithm results in a 
healthy case. 
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alarm is activated. 

5. Conclusion 

In this paper, a complete solution has presented from mathematical 
models of the failure modes to implementation of the algorithm on a real 
motor drive. The proposed method is non-distractive and has the 
advantage of not requiring any external hardware or sensors. Three 
types of faults known as ITSCF, non-uniform DEF, and SEF in PMSMs 
were investigated. The proposed CM and FD algorithm was integrated 
into the motor drive system for real time operation. It has found that the 
proposed FD requires a small memory and a short runtime so that it can 
be realized on even a simple motor controller having limited memory 
and calculation power. The FD algorithm was designed for steady state 
operation of the motor to overcome faulty alarms, and the feedback 
signals were evaluated during steady speed operation. From all these 
points of views, the proposed algorithm is compared with the most 
recent and related research in Table 5. It is seen that, the work con
ducted in this article is unique and contributes to the literature. 

Experimental results showed that the proposed solution achieved 98 
% accuracy in fault detection without jeopardizing the motor drive’s 
operation. To detect the slightest fault indications and determine fault 
threshold limits for a different PMSM, the algorithm should be trained so 
that it acclimatizes to the normal operation of the machine and then 
recognizes faults. The algorithm can easily be transferred to other sys
tems by running a learning algorithm on the drive and tracking the 
behaviour of healthy motors in order to understand the fault pattern 
using AI algorithms; this will be the focus of future work. 

Fig. 40. Experimental results of fault detection algorithm results in stator short 
circuit fault. 

Fig. 41. Experimental results of fault detection algorithm results in demagne
tization fault. 

Fig. 42. Experimental results of fault detection algorithm results in static ec
centricity fault. 
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