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A R T I C L E I N F O A B S T R A C T

Editor: Stephan Stieberger Recently, it was discovered that lower-dimensional versions of Lovelock gravity exist as scalar-
tensor theories that are examples of Horndeski gravity. We study the thermodynamics of the static 
black hole solutions in these theories up to cubic order through Euclidean methods. Considering 
solutions with spherical, planar and hyperbolic event horizons (𝑘 = +1, 0, −1), we show that the 
universality of the thermodynamics for planar black holes (𝑘 = 0) and the extended first law that 
include the variation of the couplings together with their associated potentials hold also in lower 
dimensions. We find that in 𝐷 = 4, 6 where the 2nd- and the 3rd-order Lovelock Lagrangians are 
boundary terms respectively, the Smarr relation is modified since the entropy is not a homogenous 
function in these dimensions. We also present a derivation of the Smarr relation and its modified 
version based on the global scaling properties of the reduced action that is used to obtain the 
solutions consistently. Unlike the other hairy black hole solutions that have been analyzed before, 
despite the terms in the reduced action that break the scaling symmetry, the derivation still 
follows from a conserved Noether charge.
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1. Introduction

For a better understanding of Einstein’s general relativity (GR), it is of crucial importance to find out which features are special 
to it and which ones can be realized in some alternatives. Among the theories that can be derived from a Lagrangian of the form 
L[𝑔𝜇𝜈, 𝑅

𝜇
𝜈𝜌𝜎], which naturally provides a generalization to Einstein tensor (symmetric and covariantly conserved) that can be con-

sistently coupled to a covariantly conserved energy-momentum tensor, the Lovelock gravity [1–3] (see [4] for a review of important 
properties) shares the following properties:

i) The field equations contain at most the second derivative of the metric.
ii) It possesses a unitary massless spin-2 graviton around any of its constant curvature vacua [5].

iii) Its metric and Palatini formulations are equivalent when the torsion is zero [6].

The Lagrangian of Lovelock gravity is given by

L =
∑
𝑚

𝑐𝑚L𝑚, (1.1)

where the 𝑚-th order Lovelock Lagrangian is defined as

L𝑚 = 1
2𝑚

𝛿
𝜇1𝜈1⋯𝜇𝑚𝜈𝑚
𝜌1𝜎1⋯𝜌𝑚𝜎𝑚

𝑅
𝜌1𝜎1

𝜇1𝜈1
⋯𝑅

𝜌𝑚𝜎𝑚
𝜇𝑚𝜈𝑚

. (1.2)

It is a boundary term when1 𝐷 = 2𝑚 and vanishes identically in 𝐷 < 2𝑚. Therefore, one can have a more general theory with the 
above-mentioned properties only in 𝐷 > 2𝑚.

Analogous to the Schwarzschild black hole in GR, the generic 𝑁 -th order Lovelock gravity admits static black hole solutions 
with spherical, planar and hyperbolic horizons (𝑘 = 1, 0, −1) [7–11]. Remarkably, as later shown in [12], the fact that it admits such 
solutions satisfying 𝑔𝑡𝑡𝑔𝑟𝑟 = −1 the Boyer–Lindquist coordinates is a consequence of that the theory has a unitary massless spin-2 
graviton if the solution is to represent the exterior field of a spherically symmetric distribution of mass.

With or without the cosmological constant, interesting features of the thermodynamics of these solutions were discovered [10,
11,13–16]. Although the equation for the metric function, which is an 𝑁 -th order polynomial equation, and the resulting horizon 
structure is quite complicated, it is possible to study the thermodynamics of these solutions with relative ease by finding the relevant 
quantities in terms of the horizon radius [11] and see the effect of the Lovelock terms on the thermodynamics without the explicit 
form of the metric function. For example, one can show the universality of the thermodynamics of Lovelock branes (𝑘 = 0). Although 
the solutions differ, their thermodynamics is identical to that of the static solution of GR. (see [17,18] for recent investigations).

The study of the thermodynamics of static black holes in Lovelock gravity also led to an extended first law [19], where the 
variations of the couplings are included. When the cosmological constant is introduced as the zeroth-order Lovelock term (L0 = 1), 
the mass of the black hole is a function of the entropy 𝑆 and the coupling constants 𝑐𝑛≠1, i.e., 𝑀 =𝑀(𝑆, 𝑐𝑛≠1). Since 𝑐𝑛≠1 have the 
length unit 𝓁2(𝑛−1), using the Euler’s theorem suggest the following Smarr relation

(𝐷 − 3)𝑀 = (𝐷 − 2)𝑇𝑆 +
∑
𝑛≠1

2(𝑛− 1)A𝑛𝑐𝑛, (1.3)

with potentials A𝑛 =
𝜕𝑀

𝜕𝑐𝑛
, and the following extended form of the first law2

𝛿𝑀 = 𝑇 𝛿𝑆 +
∑
𝑛≠1

A𝑛𝛿𝑐𝑛. (1.4)

In [19], generalizing the findings of [20] for GR with a cosmological constant, the Smarr relation (1.3) is verified geometrically 
from Komar integrals for the Lovelock Lagrangians [21] and the extended first law (1.4) was obtained through the Hamiltonian 

1 For this reason, 𝐷 = 2𝑚 is called the critical dimension for the 𝑚-th order Lagrangian L𝑚.
2 Throughout the paper, we derive the Smarr relation and the extended first law using the dimensionless form of the coupling constants since the equation satisfied 
2

by the metric function takes a simpler form with them.
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techniques. In this picture, a negative cosmological constant can be seen as the thermodynamics pressure and one obtains the notion 
of a thermodynamics volume (A0𝑐0 ∼ 𝑉 𝑃 ), allowing the interpretation of the black hole mass 𝑀 as the enthalpy of the spacetime 
[20]. In this extended phase space, novel phase transitions arise naturally (see [22] for a review of developments in this line of 
research called the black hole chemistry).

Recently, it was discovered that lower-dimensional (𝐷 ≤ 2𝑚) versions of Lovelock gravity exist as scalar-tensor theories of Horn-
deski type [23,24] with second-order field equations for the metric and the scalar field, which were obtained by two different 
methods that yield the same result under certain conditions. In the so-called “Weyl trick”, one evaluates the difference of the 𝑚-th 
order Lovelock Lagrangian for two conformally related metrics and finds a well-defined scalar-tensor theory after a regularization 
of the coupling constant 𝑐𝑚. Alternatively, one can perform a Kaluza-Klein reduction by again regularizing the relevant coupling 
constant with an internal space that is conformally related to a maximally symmetric space via the scalar 𝜙. In the latter approach, 
one obtains terms that are proportional to curvature of the maximally symmetric space. When the curvature is set to zero, the result 
agrees with that of the former method. Throughout this work, we will refer to these scalar-tensor theories as lower-dimensional 
Lovelock gravity. The 2nd- [25–28] and 3rd-order [29] Lagrangians are as follows:

LST
2 =𝜙L2 + 4𝐺𝜇𝜈𝜙𝜇𝜙𝜈 − 4𝑋□𝜙+ 2𝑋2, (1.5)

LST
3 =𝜙L3 − 3𝜙L2𝑋 − 12𝑅(□𝜙)2 − 48𝑅 𝛼

𝜇
𝑅𝜈𝛼𝜙

𝜇𝜙𝜈

+ 24𝑅𝜇𝜈𝑅𝜙𝜇𝜙𝜈 − 48𝑅𝜇𝛼𝑅𝜈𝛼𝜌𝜇𝜙
𝜈𝜙𝜌 + 24𝑅 𝜎𝜇𝜈

𝛼
𝑅𝛽𝜎𝜇𝜈𝜙

𝛼𝜙𝛽

+ 6𝑅𝑋2 + 24𝑅𝜙𝜇𝜈𝜙
𝜇𝜙𝜈 + 12𝑅𝜙𝜇𝜈𝜙

𝜇𝜈 − 96𝑅 𝛼
𝜇
𝜙𝜇𝜙𝜈𝜙𝛼𝜈

+ 48𝑅𝜇𝜈□𝜙𝜙𝜇𝜈 + 48𝑅𝜇𝜈□𝜙𝜙𝜇𝜙𝜈 − 48𝑅𝜇𝜈𝑋𝜙𝜇𝜙𝜈

− 48𝑅𝜇𝜈𝜙𝛼𝜈𝜙
𝛼
𝜇
− 48𝑅𝛼𝜎𝛽𝜇𝜙

𝛼𝜙𝛽𝜙𝜇𝜎 − 24𝑅𝛼𝜎𝛽𝜇𝜙
𝛽𝛼𝜙𝜇𝜎

− 16(□𝜙)3 + 24𝑋(□𝜙)2 + 96□𝜙𝜙𝜇𝜈𝜙
𝜇𝜙𝜈 − 24𝑋3

− 144𝑋𝜙𝜇𝜈𝜙
𝜇𝜙𝜈 − 96𝜙𝜇𝜙𝜈𝜙𝛼𝜈𝜙

𝛼
𝜇
− 32𝜙𝜇𝜈𝜙𝛼𝜇𝜙

𝛼
𝜈

+ 48□𝜙𝜙𝜇𝜈𝜙
𝜇𝜈 − 24𝑋𝜙𝜇𝜈𝜙

𝜇𝜈, (1.6)

where 𝜙𝜇 ≡ 𝜕𝜇𝜙, 𝜙𝜇𝜈 ≡∇𝜇∇𝜈𝜙 and 𝑋 ≡ 𝜕𝜇𝜙𝜕
𝜇𝜙. Note that the first one is valid for 𝐷 ≤ 4 and the second one applies when 𝐷 ≤ 6.

There has been an ongoing investigation of the properties of the lower-dimensional Lovelock gravity in the literature [30–
37] including the thermodynamics of black hole solutions of 2nd-order theory. In this work, we aim to give an analysis of the 
thermodynamics of static black solutions in the up to cubic order using the Euclidean methods [38,39], which, as will be seen, makes 
the connection between higher-dimensional pure gravity theories and the lower-dimensional scalar-tensor theories transparent. In 
this approach, one gets the usual 𝛿𝑀 = 𝑇 𝛿𝑆 form of the first law. However; after obtaining the Smarr relation from Euler’s theorem 
and finding a modified version of it, which we will call a Smarr-like relation, in 𝐷 = 4, 6 where the entropy is not a homogeneous 
function (see Subsections 3.1 and 3.3 for details), the extended first law for these theories can be derived easily.

Additionally, we will give a derivation of the Smarr relation and its modification that we call a Smarr-like relation from the scale 
symmetry of the reduced action that follows from the ansatz which can be employed to find the solution consistently. Initiated in 
[40], this approach has been used for studying planar black holes (𝑘 = 0) in different models [41–50] and how the method should 
be modified in the existence of terms breaking the scale symmetry was presented in [51]. This modification provides an efficient 
way to obtain the holographically renormalized action and was successfully applied to various AdS/CMT models in [52]. In such a 
case, instead of a conserved Noether charge that exists in the scale-symmetric case, one can define a charge function that evolves 
in the radial direction. But still, by evaluating it on the horizon and at infinity, the Smarr relation can be derived. We will show 
that in higher dimensions, one finds the Noether charge and then can derive the Smarr relation also for solutions with non-planar 
event horizons in addition to the planar case. The lower-dimensional theories that we will study in this paper exhibit an exceptional 
behavior that has not been observed in the literature before: Despite the scale-symmetry breaking terms in the reduced action that 
appear for nonplanar horizons (𝑘 ≠ 0), the charge function is conserved on-shell for the solutions under study and the Smarr(-like) 
relation follows straightforwardly.

The outline of this paper is as follows: In Section 2, we derive the static black hole solution of the cubic Lovelock gravity in 
higher dimensions, where it exists as a pure gravity theory, from a reduced action and study the thermodynamics of the solution. 
Then, we give a derivation of the Smarr relation based on the scale symmetry of the reduced action. In Section 3, we apply the same 
techniques to scalar-tensor theories that are lower-dimensional versions of cubic Lovelock gravity and discuss the similarities and 
differences compared to the higher-dimensional case. We end our paper with a summary and discussion of our results in Section 4.

2. Cubic Lovelock gravity in higher dimensions

2.1. General relativity with a cosmological constant in 𝐷 = 4

In order to introduce the methods that we will use in a simple setup, we will first present the analysis of static black hole solutions 
3

of GR with the cosmological constant in 𝐷 = 4, whose action is given by
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𝐼 = ∫ d4𝑥
[ 6
𝐿2 𝜁 +𝑅

]
, (2.1)

which corresponds to 𝐷 = 4, (𝑐0, 𝑐1) =
(
6𝜁
𝐿2 ,1

)
and (L0, L1) = (1, 𝑅) in the general form (1.1). In this paper, we will use the 

dimensionless form of the coupling constants in deriving the static black hole solutions and 𝜁 is the first example. Instead of using 
the covariant form of the field equations, one can insert the ansatz

d𝑠2 = −𝑁2(𝑟)ℎ(𝑟) d𝑡2 + d𝑟2

ℎ(𝑟)
+ 𝑟2dΣ2

2,𝑘, (2.2)

where

ℎ(𝑟) = 𝑘+ 𝑟2

𝐿2 𝑓 (𝑟), (2.3)

and

dΣ2,𝑘 = 𝛾𝑖𝑗d𝑥𝑖d𝑥𝑗 = d𝑥2

1 − 𝑘𝑥2
+ 𝑘2d𝜃2, 𝑖, 𝑗 = 2,3 (2.4)

which corresponds to 2-dimensional spherical, planar and hyperbolic horizons (𝑘 = +1, 0, −1), into the action (2.1) to find the 
following reduced action

𝐼 =−Σ2 ∫ d𝑡∫ d𝑟 𝑟

𝐿2

[
𝑁 ′ (3𝑟3𝑓 ′ + 10𝑟2𝑓 + 4𝑘𝐿2)

+𝑟𝑁
(
𝑟2𝑓 ′′ + 8𝑟𝑓 ′ + 12𝑓 − 6𝜁

)
+ 2𝑟𝑁 ′′ (𝑟2𝑓 + 𝑘𝐿2)] , (2.5)

where Σ2 = ∫ √
𝛾 d2𝑥 and primes denote the derivative with respect to the coordinate 𝑟. By integrating by parts, the reduced action 

can be simplified into

𝐼 = 2Σ2 ∫ d𝑡∫ d𝑟𝑁 d
d𝑟

[
𝑟3

𝐿2 (𝜁 − 𝑓 )
]
. (2.6)

The equations for the functions {𝑁(𝑟), 𝑓 (𝑟)} can be found from the variation of the reduced action. 𝛿𝐼

𝛿𝑁
= 0 gives the following 

algebraic equation for the function 𝑓 (𝑟)

𝜁 − 𝑓 = 𝜔

𝑟3
, 𝜔 ∶ constant. (2.7)

An important point is that one obtains this simple form thanks to the form of the function ℎ(𝑟) given in (2.3), which will also be 
useful when we study more general cases. 𝛿𝐼

𝛿𝑓
= 0 is satisfied for 𝑁(𝑟) = 1, which determines the class of metrics that we study in this 

paper.
In the Euclidean approach to thermodynamics, we identify the partition function for a thermodynamic ensemble with the Eu-

clidean path integral evaluated by the saddle-point approximation around the Euclidean continuation of the classical solution [39]. 
In our case, the Euclidean continuation of the metric is as follows

d𝑠2E =𝑁2(𝑟)ℎ(𝑟) d𝜏2 + d𝑟2

ℎ(𝑟)
+ 𝑟2dΣ2

2,𝑘, (2.8)

where 𝜏 = 𝑖𝑡 is the periodic Euclidean time and the Euclidean and Lorentzian actions are related by 𝐼E = −𝑖𝐼 . The periodicity of the 
Euclidean time is the inverse temperature of the solution which is determined by avoiding a conical singularity at the horizon. For 
𝑁(𝑟) = 1, it reads

𝛽 = 1
𝑇

= 4𝜋
ℎ′(𝑟+)

, (2.9)

where 𝑟+ is the location of the event horizon, which is found from the condition ℎ(𝑟+) = 0. In terms of the metric function 𝑓 (𝑟), these 
relations imply,

𝑓 (𝑟+) = −𝑘
𝐿2

𝑟2+
, (2.10)

𝛽 =
4𝜋𝑟+𝐿2

−2𝑘𝐿2 + 𝑟3+𝑓
′(𝑟+)

, (2.11)

which follows from eqn. (2.3). Note that so far we have used only the relation between functions ℎ(𝑟) and 𝑓 (𝑟) in deriving these 
relations. Therefore, they will be valid when we study the generalization of the line element (2.2) to higher dimensions.

For static solutions of 4D GR with a cosmological constant, one has to impose the equation for the metric function 𝑓 (𝑟) given in 
(2.7). Setting 𝑟 = 𝑟+ in this equation (and its derivative) and using the relations (2.10), (2.11), we find the integration constant 𝜔
4

and the inverse temperature 𝛽 for our solutions as follows
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𝜔 =𝐿3

[
𝜁
𝑟3+

𝐿3 + 𝑘
𝑟+
𝐿

]
, (2.12)

𝛽 =
4𝜋𝑟+

3𝜁 𝑟2+
𝐿2 + 𝑘

. (2.13)

The Euclidean action reads

𝐼E = −2𝛽Σ2

∞

∫
𝑟+

d𝑟𝑁 d
d𝑟

[
𝑟3

𝐿2 (𝜁 − 𝑓 )
]
+

∞

∫
𝑟+

d𝑟 d𝐵
d𝑟

, (2.14)

where the 𝛽 factor arises from the integration over the periodic Euclidean time and the boundary term 𝐵 is fixed by requiring that 
the Euclidean action 𝐼E has an extremum on-shell, i.e., 𝛿𝐼E

||on-shell = 0. For the reduced action in (2.14), one finds

𝛿𝐵 =
−2𝛽Σ2𝑁𝑟3

𝐿2 𝛿𝑓 . (2.15)

Using the equation satisfied by the metric function (2.7), one sees that the on-shell Euclidean action is given by

𝐼E

||||on-shell
=𝐵

||||∞ −𝐵
||||𝑟+ , (2.16)

which is related to the free energy 𝐹 as

𝐼E

||||on-shell
= 𝛽𝐹 = 𝛽𝑀 −𝑆, (2.17)

where 𝑀 and 𝑆 are the black hole mass and entropy respectively. Therefore, they can be obtained from the on-shell action as follows

𝑀 = 𝜕𝛽𝐼E

||||on-shell
, (2.18)

𝑆 =
(
𝛽𝜕𝛽 − 1

)
𝐼E

||||on-shell
. (2.19)

This reduces the problem into finding the boundary term at infinity and on the horizon, for which the variation of the metric function 
𝑓 (𝑟) at these values of the radial coordinate is required. In studying the thermodynamics of the solutions, the variations should be 
taken with respect to the parameters characterizing the mass and the entropy of the solutions. In our case, we will work with the 
event horizon radius 𝑟+.

The variation at infinity easily follows from (2.7) as

𝛿𝑓
||||∞ = − 𝛿𝜔

𝑟3

||||∞, (2.20)

which can be related to the changes in 𝑟+ via eqn. (2.12) but we will proceed with this form because of its compactness.
For the variation on the horizon, we should make use of the conditions ℎ(𝑟+ = 0) and (ℎ + 𝛿ℎ)(𝑟+ + 𝛿𝑟+) = 0 together with the 

definition of the inverse temperature 𝛽 (2.9), which imply 𝛿ℎ||𝑟+ = −4𝜋
𝛽
𝛿𝑟+. For the metric function, upon using (2.3), this gives

𝛿𝑓
||||𝑟+ = −4𝜋𝐿2

𝛽𝑟2+
𝛿𝑟+. (2.21)

The on-shell action can now be obtained by integrating the boundary term (2.15) after inserting the variations (2.20), (2.21) as

𝐼E =
2𝛽Σ2𝜔

𝐿2 − 4𝜋Σ2𝑟
2
+, (2.22)

from which the mass and the entropy follows as

𝑀 =
2Σ2𝜔

𝐿2 = 2Σ2𝑟+

[
𝜁
𝑟2+

𝐿2 + 𝑘

]
, (2.23)

𝑆 = 4𝜋Σ2𝑟
2
+, (2.24)

where we have used (2.12) to express the mass 𝑀 in terms of the event horizon radius 𝑟+. Note that the entropy 𝑆 obeys the 
celebrated area law.

Since we have computed 𝑀 =𝑀(𝑟+, 𝜁) and 𝑆(𝑟+), using Euler’s theorem we can write

𝑀 = 𝑟+
𝜕𝑀

𝜕𝑟+
− 2𝜁 𝜕𝑀

𝜕𝜁
, (2.25)

𝜕𝑆
5

2𝑆 = 𝑟+
𝜕𝑟+

. (2.26)
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From the chain rule, we have 𝜕𝑀
𝜕𝑟+

= 1
𝛽

𝜕𝑆

𝜕𝑟+
. Solving for 𝜕𝑆

𝜕𝑟+
in (2.26) and inserting the result in (2.25), we find the Smarr relation as

𝛽𝑀 = 2𝑆 − 2𝛽𝜁A0, A0 = 2Σ2
𝑟3+

𝐿2 . (2.27)

Considering the changes in the dimensionless coupling constant 𝜁 , the extended first law can be written as

𝛽𝛿𝑀 = 𝛿𝑆 + 𝛽A0𝛿𝜁. (2.28)

This is the result first obtained in [20] where the mass is interpreted as the enthalpy of the spacetime and A0𝛿𝜁 term in the extended 
first law (2.28) is the 𝑉 𝛿𝑃 term in our conventions. We will repeat the same procedure when dealing with more complicated 
expressions for the mass 𝑀 and the entropy 𝑆 .

The Smarr relation (2.27) can also be derived from the global scaling symmetry of the reduced action [40]. If the reduced 
action enjoys a scaling symmetry for a Lagrangian 𝐿red[Φ𝐴, Φ′

𝐴
, 𝑟] which is a function of the functions Φ𝐴 = {𝑁(𝑟), 𝑓 (𝑟)}, their first 

derivatives Φ′
𝐴
=
{
𝑁 ′(𝑟), 𝑓 ′(𝑟)

}
and the coordinate 𝑟, the associated Noether charge is

𝑄 =
∑
𝐴

𝜕𝐿red

𝜕Φ′
𝐴

𝛿Φ𝐴 − 𝑟𝐿red, (2.29)

where under a global scaling of the coordinate 𝑟 (𝑟 → 𝑟 =Λ𝑟, Λ: constant), the scaling weights of the functions are defined as

Φ𝐴 → Φ̃𝐴(𝑟) = Λ−Δ𝐴Φ𝐴(𝑟), (2.30)

which gives rise to the infinitesimal transformations

𝛿Φ𝐴 = 𝑟Φ′
𝐴
+Δ𝐴Φ𝐴. (2.31)

Our reduced action (2.14) is scale invariant with the scaling weights (Δ𝑁, Δ𝑓 ) = (3, 0), from which the Noether charge is found to be

𝑄 =
6𝛽Σ2𝑁𝑟3

𝐿2 (𝜁 − 𝑓 ), (2.32)

which is obviously conserved on-shell due to the equation (2.7) satisfied by the metric function 𝑓 (𝑟) and can be written in terms of 
the integration constant 𝜔 as

𝑄 =
6𝛽Σ2𝜔

𝐿2 . (2.33)

Evaluating the Noether charge 𝑄 at infinity and at the horizon, we obtain

𝑄
||||∞ = 3𝛽𝑀, 𝑄

||||𝑟+ = 3
(
2𝑆 − 2𝛽𝜁A0

)
, (2.34)

which are the left- and the right-hand-side of the Smarr relation (2.27) multiplied by 3. Hence, we have derived it from the Noether 
charge of the global scaling symmetry of the reduced action (2.14).

2.2. Cubic Lovelock gravity in 𝐷> 6

Now, we are ready to analyze the thermodynamics of static black hole solutions of cubic Lovelock gravity in higher dimensions 
(𝐷 > 6) where it exits as a pure gravity theory. The action of the theory is as follows

𝐼 = ∫ d𝐷𝑥
√
−𝑔

[
(𝐷 − 1)(𝐷 − 2)

𝐿2 𝜁 +𝑅+ 𝛼2𝐿
2L2 + 𝛼3𝐿

4L3

]
. (2.35)

In the general form of the Lagrangian (1.1), we have chosen

(𝑐0, 𝑐1, 𝑐2, 𝑐3) =
(
(𝐷 − 1)(𝐷 − 2)𝜁

𝐿2 ,1, 𝛼2𝐿2, 𝛼3𝐿
4
)

, (2.36)

where 𝜁 , 𝛼2 and 𝛼3 are the dimensionless coupling constants corresponding to the 0th- (L0 = 1), 2nd- and 3rd-order Lovelock 
Lagrangians.

The generalization of our metric ansatz to generic 𝐷-dimensions takes the following form

d𝑠2
𝐷
= −𝑁2(𝑟)ℎ(𝑟) d𝑡2 + d𝑟2

ℎ(𝑟)
+ 𝑟2dΣ2

𝐷−2,𝑘, (2.37)

where we choose the function ℎ(𝑟) again as in (2.3). The metric of (𝐷 − 2)-dimensional constant curvature space of unit radius is 
given by

d𝑥2
6

𝑑Σ2
𝐷−2,𝑘 = 𝛾𝑖𝑗d𝑥𝑖d𝑥𝑗 =

1 − 𝑘𝑥2
+ 𝑥2dΩ2

𝐷−3, 𝑖, 𝑗 = 2,…𝐷 − 1 (2.38)
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with dΩ2
𝐷−3 = d𝜃21 + sin2 𝜃1d𝜃2 +⋯ +sin2 𝜃1… sin2 𝜃𝐷−4d𝜃2𝐷−3 being the metric on a (𝐷−3)-dimensional unit sphere. By appropriate 

identifications, it is possible to make any constant (𝑟, 𝑡) section of the spacetime compact [53]. Substituting this ansatz into the action 
and integrating by parts, we arrive at the reduced action

𝐼 = (𝐷 − 2)Σ𝐷−2 ∫ d𝑡∫ d𝑟𝑁 d
d𝑟

[
𝑟𝐷−1

𝐿2

[
𝜁 − 𝑓 + �̃�2𝑓

2 − �̃�3𝑓
3]] , (2.39)

where Σ𝐷−2 = ∫ √
𝛾 d𝐷−2𝑥 and we rewrite the effect of the couplings in a compact form as

�̃�2 = (𝐷 − 3)(𝐷 − 4)𝛼2, �̃�3 = (𝐷 − 3)(𝐷 − 4)(𝐷 − 5)(𝐷 − 6)𝛼3. (2.40)

We explicitly see that the 2nd- and 3rd-order Lovelock Lagrangians give a nontrivial contribution to the reduced action and the 
equation for the metric function 𝑓 (𝑟) when 𝐷 > 4 and 𝐷 > 6 respectively. As before, 𝛿𝐼

𝛿𝑓
= 0 is satisfied for 𝑁(𝑟) = 1. From 𝛿𝐼

𝛿𝑁
= 0, 

we again find an algebraic equation for the metric function 𝑓 (𝑟)

𝜁 − 𝑓 + �̃�2𝑓
2 − �̃�3𝑓

3 = 𝜔

𝑟𝐷−1 , 𝜔 ∶ constant. (2.41)

Remember that the expressions for the metric function evaluated at the horizon radius 𝑓 (𝑟+) (2.10) and the inverse temperature 
(2.11) are still valid since they just follow the definition of the inverse temperature (2.9) and the relation (2.3) between the functions 
ℎ(𝑟) and 𝑓 (𝑟). Using them together with the equation (2.41) satisfied by the metric function 𝑓 (𝑟) in cubic Lovelock gravity in higher 
dimensions, one finds the following expressions for the integration constant 𝜔 and the inverse temperature 𝛽

𝜔 =𝐿2𝑟𝐷−3
+

[
𝜁
𝑟2+

𝐿2 + 𝑘+ �̃�2𝑘
2𝐿

2

𝑟2+
+ �̃�3𝑘

3𝐿
4

𝑟4+

]
, (2.42)

𝛽 = 4𝜋𝑟+

⎡⎢⎢⎢⎣
1 + 2�̃�2𝑘

𝐿2

𝑟2+
+ 3�̃�3𝑘2

𝐿4

𝑟4+

(𝐷 − 1)𝜁 𝑟2+
𝐿2 + (𝐷 − 3)𝑘+ (𝐷 − 5)�̃�2𝑘2

𝐿2

𝑟2+
+ (𝐷 − 7)�̃�3𝑘3

𝐿4

𝑟4+

⎤⎥⎥⎥⎦ . (2.43)

From the Euclidean action

𝐼E = −(𝐷 − 2)𝛽Σ𝐷−2

∞

∫
𝑟+

d𝑟𝑁 d
d𝑟

[
𝑟𝐷−1

𝐿2

[
𝜁 − 𝑓 + �̃�2𝑓

2 − �̃�3𝑓
3]]+ ∞

∫
𝑟+

d𝑟 d𝐵
d𝑟

, (2.44)

one can easily show that in order to ensure 𝛿𝐼E
||on-shell = 0, the variation of the boundary term should be taken as

𝛿𝐵 = −
(𝐷 − 2)𝛽Σ𝐷−2𝑁𝑟𝐷−1

𝐿2

[
1 − 2�̃�2𝑓 + 3�̃�3𝑓 2] 𝛿𝑓 . (2.45)

While the variation of the metric function at infinity can be obtained from the algebraic eqn. (2.41) satisfied it, which is given by

𝛿𝑓
||||∞ = − 𝛿𝜔(

1 − 2�̃�2𝑓 + 3�̃�3𝑓 2
)
𝑟𝐷−1

, (2.46)

the variation on the horizon is again given by (2.21) since it directly follows from the defining property of the horizon, i.e., ℎ(𝑟+) = 0, 
and the definition of the inverse temperature (2.9). With these at hand, it is straightforward to find the variation of the boundary 
term (2.45) at infinity and on the horizon. From the Euclidean action (2.44), it is apparent that the on-shell action still obeys eqn. 
(2.16) with the boundary term now given by (2.45). Using the relations (2.18), (2.19), we find the mass and the entropy of the 
solution as

𝑀 = (𝐷 − 2)Σ𝐷−2𝑟
𝐷−3
+

[
𝜁
𝑟2+

𝐿2 + 𝑘+
�̃�2𝑘

2𝐿2

𝑟2+
+

�̃�3𝑘
3𝐿4

𝑟4+

]
, (2.47)

𝑆 = 4𝜋Σ𝐷−2𝑟
𝐷−2
+

[
1 +

2(𝐷 − 3)!𝛼2𝑘𝐿2

(𝐷 − 1)!𝑟2+
+

3(𝐷 − 5)!𝛼3𝑘3𝐿4

(𝐷 − 1)!𝑟4+

]
, (2.48)

which agree with the results of [11]. Note that in the expression for the mass 𝑀 , we use the compact form of the couplings introduced 
in (2.40). In the critical dimensions where the 𝑚-th order Lovelock Lagrangian L𝑚 is a boundary term, the equation (2.41) for the 
metric function 𝑓 (𝑟) and the mass 𝑀 gets no contribution. However, as explicitly seen in the eqn. (2.48), the entropy is modified. 
Also, in 𝐷 > 6 dimensions, while the equation (2.41) for the metric function 𝑓 (𝑟) gets non-trivial contributions from the 2nd- and 
3rd-order Lovelock Lagrangians L2,3, for a solution with a planar horizon, the expressions for the mass and the entropy coincide with 
those of GR. This is the universality of the thermodynamics of Lovelock branes discussed in the literature [17,18].

In order to obtain the Smarr relation, we first use Euler’s theorem with 𝑀 =𝑀(𝑟+, 𝜁, ̃𝛼2, ̃𝛼3) and 𝑆 = 𝑆(𝑟+, ̃𝛼2, ̃𝛼3) to write

𝜕𝑀 𝜕𝑀 𝜕𝑀 𝜕𝑀
7

(𝐷 − 3)𝑀 = 𝑟+
𝜕𝑟+

− 2𝜁
𝜕𝜁

+ 2�̃�2
𝜕�̃�2

+ 4�̃�3
𝜕�̃�3

, (2.49)
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Table 1

Values of �̃�2 and �̃�3 for various dimensions in terms of 
original dimensionless coupling constants 𝛼2 and 𝛼3 .

𝐷 �̃�2 �̃�3

3 −𝛼2 −6𝛼3
4 𝛼2 2𝛼3
5 2𝛼2 −2𝛼3
6 6𝛼2 6𝛼3

(𝐷 − 2)𝑆 = 𝑟+
𝜕𝑆

𝜕𝑟+
+ 2�̃�2

𝜕𝑆

𝜕�̃�2
+ 4�̃�3

𝜕𝑆

𝜕�̃�3
. (2.50)

Using these relations together with 𝜕𝑀
𝜕𝑟+

= 1
𝛽

𝜕𝑆

𝜕𝑟+
yields the Smarr relation as follows

(𝐷 − 3)𝛽𝑀 = (𝐷 − 2)𝑆 + 2𝛽
(
−𝜁A0 + �̃�2A2 + 2�̃�3A3

)
, (2.51)

where

A0 = (𝐷 − 2)
Σ𝐷−2𝑟

𝐷−1
+

𝐿2 , (2.52)

A2 =
(𝐷 − 2)Σ𝐷−2𝑘𝐿

2𝑟𝐷−1
+

(𝐷 − 4)
(
𝑟4+ + 2�̃�2𝑘𝐿2𝑟2+ + 3�̃�3𝑘2𝐿4

) [
−2𝜁(𝐷 − 1)

𝑟2+

𝐿2 − (𝐷 − 2)𝑘+ 2�̃�2𝑘2
𝐿2

𝑟2+
+ �̃�3(𝐷 + 2)𝑘3𝐿

4

𝑟4+

]
, (2.53)

A3 = −
(𝐷 − 2)Σ𝐷−2𝑘

2𝐿4𝑟𝐷−3
+

(𝐷 − 6)
(
𝑟4+ + 2�̃�2𝑘𝐿2𝑟2+ + 3�̃�3𝑘2𝐿4

) [3𝜁(𝐷 − 1)
𝑟2+

𝐿2 + (2𝐷 − 3)𝑘+ �̃�2(𝐷 − 3)𝑘2𝐿
2

𝑟2+
− 3�̃�3𝑘3

𝐿4

𝑟4+

]
. (2.54)

This leads to the following form of the extended first law

𝛽𝛿𝑀 = 𝛿𝑆 + 𝛽
[
A0𝛿𝜁 +A2𝛿�̃�2 +A3𝛿�̃�3

]
, (2.55)

which was first proven in [19] for generic 𝑁 -th order Lovelock gravity.
The reduced action (2.44) again enjoys a scaling symmetry with the weights (Δ𝑁, Δ𝑓 ) = (𝐷−1, 0). Calculating the Noether charge 

from (2.29), we find

𝑄 =
(𝐷 − 1)(𝐷 − 2)𝛽Σ𝐷−2𝑁𝑟𝐷−1

𝐿2

[
𝜁 − �̃�1𝑓 (𝑟) + �̃�2𝑓

2(𝑟) − �̃�3𝑓
3(𝑟)

]
, (2.56)

which is conserved on-shell for 𝑁(𝑟) = 1 due to the equation (2.41) satisfied by the metric function 𝑓 (𝑟). It can also be written in 
terms of the integration constant 𝜔 as follows

𝑄 =
(𝐷 − 1)(𝐷 − 2)𝛽Σ𝐷−2𝜔

𝐿2 . (2.57)

When evaluated at infinity and at the horizon, it gives

𝑄
||||∞ = (𝐷 − 1)𝛽𝑀, 𝑄

||||𝑟+ = 𝐷 − 1
𝐷 − 3

[
(𝐷 − 2)𝑆 + 2𝛽

(
−𝜁A0 + �̃�2A2 + 2�̃�3A3

)]
, (2.58)

which provides a derivation of the Smarr relation given in (2.51). Note that in the previous studies of Lovelock gravity [42,50], 
only planar black holes (𝑘 = 0) were considered. However; we see that the scaling symmetry is present even for black holes with 
non-planar horizons.

3. Cubic Lovelock gravity in lower dimensions

In this section, we will study the thermodynamics of the static black hole solutions of cubic Lovelock gravity in lower dimensions, 
which is a scalar-tensor theory. A detailed study of the solutions satisfying 𝑔𝑡𝑡𝑔𝑟𝑟 = −1 in the Boyer–Lindquist coordinates that 
corresponds to 𝑁(𝑟) = 1 in our metric ansatz (2.37) was done in [29] via the reduced action that is obtained by employing the ansatz 
(2.37) and assuming a radial profile for the scalar field, i.e., 𝜙 = 𝜙(𝑟). It was found that apart from a notable exception in 𝐷 = 4, 
there exist scalar configurations such that the metric function 𝑓 (𝑟) satisfies the algebraic equation (2.41) with different �̃�𝑖 ’s (𝑖 = 2, 3) 
that are given in Table 1. Note that they coincide with the values obtained by scaling them by a factor of 1

𝐷−𝑑
where 𝑑 is the lower 

dimension in which we obtain the solution and then setting 𝐷 = 𝑑. In [54], it was claimed that this procedure defines the Lovelock 
gravity in lower dimensions, which was later refuted [25,55–65]. In our setting, we realize these configurations as solutions of a 
well-defined scalar-tensor theory. The scalar field configurations that give rise to these solutions (with non-zero �̃�2 and �̃�3) are given 
8

by [29]



Nuclear Physics, Section B 1002 (2024) 116535G. Alkaç, G.D. Özen, H. Özşahin et al.

𝜙(𝑟) =

{
log(𝑟) ± ∫ 𝑟

𝑟+
d𝑢 𝐿

𝑢

|𝑘|√
𝐿2+𝑘𝑢2𝑓 (𝑢)

, 𝐷 = 5,6

log(𝑟). 𝐷 = 3,4
(3.1)

In 𝐷 = 4, the solution exists only with a planar horizon (𝑘 = 0). When the cubic term is discarded (�̃�3 = 0), then non-planar horizons 
(𝑘 = +1, −1) are also allowed with the scalar field given by [26,28]

𝜙(𝑟) = log(𝑟) ±

𝑟

∫
𝑟+

d𝑢 𝐿

𝑢

|𝑘|√
𝐿2 + 𝑘𝑢2𝑓 (𝑢)

, 𝐷 = 4, �̃�3 = 0. (3.2)

Thermodynamical properties of these hairy black hole solutions can be found from the reduced action as we presented in the previous 
section. However; as will be seen, the reduced action for the scalar-tensor theories described by the Lagrangians (1.5), (1.6) does not 
possess a scaling symmetry. As shown in [51], one can proceed by defining a charge function 𝑄(𝑟). If we write the Lagrangian of the 
reduced action 𝐿red as a sum of terms with different scaling weights 𝐿[Δ]

red
as

𝐿red =
∑
Δ

𝐿
[Δ]
red

, �̃�
[Δ]
red

=Λ−Δ𝐿[Δ]
red

, (3.3)

then the charge function 𝑄(𝑟) is defined as

𝑄 =
∑
𝐴

𝜕𝐿red

𝜕Φ′
𝐴

𝛿Φ𝐴 − 𝑟𝐿red, Φ𝐴 =
{
𝑁,𝑓, 𝜉 = 𝜙′} , (3.4)

and it satisfies

d𝑄
d𝑟

=
∑
Δ

(Δ − 1)𝐿[Δ]
red

||||on-shell
. (3.5)

Note that when there is no term with a scaling weight other than 1, i.e. 𝐿[Δ≠1]
red

= 0, we obtain the usual Noether charge 𝑄. When 
the right-hand-side of the eqn. (3.5) is non-zero, there is a radial evolution of the charge function 𝑄(𝑟), which can be handled by 
integrating from the event horizon radius 𝑟+ to infinity. We find

𝑄
||||∞ −𝑄

||||𝑟+ =

∞

∫
𝑟+

d𝑟
∑
Δ

(Δ − 1)𝐿[Δ]
red

||||on-shell
. (3.6)

By relating the charge function evaluated at infinity and at the horizon to the mass and the entropy respectively, one can still derive 
the Smarr(-like) relation. However; we will see that, although there are terms in the reduced action with a scaling dimension different 
than 1 when the scaling weights (Δ𝑁, Δ𝑓 , Δ𝜉) = (𝐷− 1, 0, 1) that ensures the invariance for the planar black holes are assigned, they 
vanish on-shell for the solutions with 𝑁(𝑟) = 1 and 𝜙(𝑟) given in (3.1) and (3.2). As a result, the charge function defined in (3.4) is 
still conserved. To our knowledge, these are the first examples of hairy black holes with this property. Using the conserved charge, 
it is straightforward to derive the Smarr(-like) relation. After the discussion of these general features, we can now move on to the 
details in different dimensions.

3.1. 𝐷 = 6

In 𝐷 = 6, while 1st- and 2nd-order Lovelock Lagrangians L1 =𝑅 and L2 exist, the 3rd-order Lagrangian L3 is a boundary term. 
Therefore, in order to have a nontrivial contribution to field equations, it should be replaced by the 3-rd order scalar-tensor version 
LST
3 given in (1.6). The action is as follows

𝐼 = ∫ d6𝑥
√
−𝑔

[ 20
𝐿2 𝜁 +𝑅+ 𝛼2𝐿

2L2 + 𝛼3𝐿
4LST

3

]
. (3.7)

For 𝑁(𝑟) = 1 and the scalar field given in (3.1), the equation satisfied by the metric function 𝑓 (𝑟) is the algebraic equation (2.41)
with �̃�2,3 given in Table 1, i.e.,

𝜁 − 𝑓 + 6𝛼2𝑓 2 − 6𝛼3𝑓 3 = 𝑤

𝑟5
, 𝜔 = constant. (3.8)

In order to study the thermodynamics of this solution, using the metric ansatz (2.37) in 𝐷 = 6 and assuming 𝜙 = 𝜙(𝑟), we find the 
reduced action as

𝐼E =

∞

∫
𝑟+

d𝑟𝐿red +

∞

∫
𝑟+

d𝑟 d𝐵
d𝑟

, 𝐿red =
∑
Δ

𝐿
[Δ]
red

, (3.9)
9

where the parts of the reduced Lagrangian with different scaling weights are given by
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𝐿
[1]
red

=
4𝛽Σ4𝑁𝑟4

𝐿2

[
− 6𝑓 2 [5𝛼2 − 3𝛼3𝑟6𝜉5𝑓 ′ + 15𝛼3𝑟5𝜉4𝑓 ′ − 30𝛼3𝑟4𝜉3𝑓 ′

+30𝛼3𝑟3𝜉2𝑓 ′ − 15𝛼3𝑟2𝜉𝑓 ′]+ 𝑓
(
5 − 12𝛼2𝑟𝑓 ′)

+ 𝑟𝑓 ′ + 6𝛼3𝑟𝑓 3 [𝑟5𝜉6 + 6𝑟4𝜉5 + 𝜉2
(
36𝑟3𝜉′ − 69𝑟

)
−6𝜉

(
4𝑟2𝜉′ − 5

)
+ 𝜉4

(
6𝑟5𝜉′ − 39𝑟3

)
+𝜉3

(
76𝑟2 − 24𝑟4𝜉′

)
+ 6𝑟𝜉′

]
− 5𝜁

]
,

𝐿
[3]
red

=72𝛽Σ4𝛼3𝑘𝑟
3𝑁(𝑟𝜉 − 1)2𝑓

[
2𝑟𝜉

(
𝑟2𝜉2 − 3𝑟𝜉 + 2

)
𝑓 ′

+ 𝑓
(
𝑟3𝜉4 + 𝑟𝜉2

(
6𝑟2𝜉′ − 19

)
+ 𝜉

(
8 − 12𝑟2𝜉′

)
+ 6𝑟2𝜉3 + 2𝑟𝜉′

) ]
,

𝐿
[5]
red

=72𝛽Σ4𝛼3𝑘
2𝐿2𝑟2𝑁𝜉(𝑟𝜉 − 2)

[
𝑟𝜉

(
𝑟2𝜉2 − 3𝑟𝜉 + 2

)
𝑓 ′

+ 𝑓
(
𝑟3𝜉4 + 𝑟𝜉2

(
6𝑟2𝜉′ − 13

)
+ 𝜉

(
6 − 12𝑟2𝜉′

)
+ 4𝑟2𝜉3 + 4𝑟𝜉′

) ]
,

𝐿
[7]
red

= 24𝛽Σ4𝛼3𝑘
3𝐿4𝑟𝑁𝜉2(𝑟𝜉 − 2)2

(
6𝑟𝜉′ + 𝑟𝜉2 + 4𝜉

)
.

(3.10)

Note that we have defined a new variable 𝜉 = 𝜙′. Since the scalar field 𝜙 appears in the reduced action only with 1st- and 2nd-
derivatives, we proceed with this variable such that the expression for the charge function (3.4) is still valid. Otherwise, it has to be 
modified for a reduced Lagrangian 𝐿red that depends on the 2nd derivatives of the fields. As we see, for a general case where no 
choice for the function 𝑁(𝑟) is made, the global scaling symmetry is broken due to the terms with scaling weight different than 1 
that arise from the 3rd-order scalar-tensor Lagrangian LST

3 .

The variation of the boundary term that follows from the condition 𝛿𝐼E
||on-shell = 0 reads

𝛿𝐵 =
144𝛽Σ4𝑁𝑟2

𝐿2 𝛼3(𝑘𝐿2 + 𝑟2𝑓 )
[
𝑘𝐿2𝜉(𝑟𝜉 − 2) + 𝑟𝑓 (𝑟𝜉 − 1)2

]2
𝛿𝜉

+
4𝛽Σ4𝑁𝑟3

𝐿2

[
𝑟2 − 12𝛼2𝑟2𝑓 + 18𝛼3𝜉

{
𝑘2𝐿4𝜉(𝑟𝜉 − 2)2(𝑟𝜉 − 1)

+ 2𝑘𝐿2𝑟𝑓 (𝑟𝜉 − 2)(𝑟𝜉 − 1)3 + 𝑟3𝑓 2(5 − 10𝑟𝜉 + 10𝑟2𝜉2 − 5𝑟3𝜉3 + 𝑟4𝜉4
)}]

𝛿𝑓 ,

(3.11)

which can be used to study the thermodynamics of a solution with 𝑁(𝑟) ≠ 1 if it exists. When we concentrate on the case 𝑁(𝑟) = 1
where the scalar field 𝜙 satisfies (3.1) and the metric function 𝑓 (𝑟) satisfies (3.8), the variation of the boundary term becomes

𝛿𝐵 = −
4𝛽Σ4𝑟

5

𝐿2

[
1 − 12𝛼2𝑓 + 18𝛼3𝑓 2

]
𝛿𝑓 . (3.12)

Note that there remains no contribution from the variation of the scalar field (no terms with 𝛿𝜉). Additionally, the on-shell Euclidean 
action still obeys the eqn. (2.16). As a result, we just need to follow the same steps in the higher-dimensional case and this will be 
the case for all the lower-dimensional cases that we will consider in the rest of the paper. The results for the integration constant 𝜔, 
the inverse temperature 𝛽, the mass 𝑀 and the entropy 𝑆 are as follows

𝜔 =𝐿2𝑟3+

[
𝜁
𝑟2+

𝐿2 + 𝑘+ 6𝛼2𝑘2
𝐿2

𝑟2+
+ 6𝛼3𝑘3

𝐿4

𝑟4+

]
, (3.13)

𝛽 = 4𝜋𝑟+

⎡⎢⎢⎢⎣
1 + 12𝛼2𝑘

𝐿2

𝑟2+
+ 18𝛼3𝑘2

𝐿4

𝑟4+

5𝜁 𝑟2+
𝐿2 + 3𝑘+ 6𝛼2𝑘2

𝐿2

𝑟2+
− 6𝛼3𝑘3

𝐿4

𝑟4+

⎤⎥⎥⎥⎦ , (3.14)

𝑀 = 4Σ4𝑟
3
+

[
𝜁
𝑟2+

𝐿2 + 𝑘+ 6𝛼2𝑘2
𝐿2

𝑟2+
+ 6𝛼3𝑘3

𝐿4

𝑟4+

]
, (3.15)

𝑆 = 4𝜋Σ4𝑟
4
+

[
1 + 24𝛼2𝑘

𝐿2

𝑟2+
+ 72𝛼3𝑘2

𝐿4

𝑟4+
log

(
𝑟+
)]

. (3.16)

Having obtained the mass 𝑀 = 𝑀(𝑟+, 𝜁, 𝛼2, 𝛼3) and the entropy 𝑆 = 𝑆(𝑟+, 𝛼2, 𝛼3), one can attempt to use the Euler’s theorem to 
obtain the Smarr relation as we did before. However; the entropy 𝑆 in (3.16) is not a homogoneous function due to the log

(
𝑟+
)

contribution from the 3rd-order scalar-tensor Lagrangian LST
3 . By a careful examination, one finds the following Smarr-like relation[ ]
10

3𝛽𝑀 = 4𝑆 + 2𝛽 − 𝜁A0 + 𝛼2A2 + 2𝛼3Ā3 , (3.17)
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where

A0 =
4Σ4𝑟

5
+

𝐿2 , (3.18)

A2 =
24Σ4𝑘𝐿

2𝑟5+

𝑟4+ + 12𝛼2𝑘𝐿2𝑟2+ + 18𝛼3𝑘2𝐿4

[
− 5𝜁

𝑟2+

𝐿2 − 2𝑘+ 6𝛼2𝑘2
𝐿2

𝑟2+
+ 24𝛼3𝑘3

𝐿4

𝑟4+

]
, (3.19)

Ā3 =
6Σ4𝑘

2𝐿4𝑟3+

𝑟4+ + 12𝛼2𝑘𝐿2𝑟2+ + 18𝛼3𝑘2𝐿4

[
15𝜁

𝑟2+

𝐿2

(
1 − 4 log

(
𝑟+
))

+ 𝑘
(
13 − 36 log

(
𝑟+
))

+ 6𝛼2𝑘2
𝐿2

𝑟2+

(
11 − 12 log

(
𝑟+
))

+ 18𝛼3𝑘3
𝐿4

𝑟4+

(
3 + 4 log

(
𝑟+
))]

. (3.20)

While A0 and A2 are the potentials that appear in the extended first law, Ā3 is related to the potential A3 by

Ā3 =A3 +
72𝜋Σ4𝑘

2𝐿4

𝛽
, (3.21)

and the extended first law takes the following form

𝛽𝛿𝑀 = 𝛿𝑆 + 𝛽
(
A0𝛿𝜁 +A2𝛿𝛼2 +A3𝛿𝛼3

)
. (3.22)

Since we have a modified potential Ā3 in (3.17) which is related to the potential A3 in the extended first law (3.22), we prefer to 
call it a Smarr-like relation.

For this solution, one can calculate the charge function from (3.4). Remarkably, it leads to the following conserved charge

𝑄 =
20𝛽Σ4𝑁𝑟5

𝐿2

[
𝜁 − 𝑓 + 6𝛼2𝑓 2 − 6𝛼3𝑓 3

]
, (3.23)

whose derivative vanish due to (3.8). We have a case where the charge function 𝑄(𝑟) does not evolve in the radial direction, and its 
value at infinity and at the horizon can be written as

𝑄
||||∞ = 5𝛽𝑀, 𝑄

||||𝑟+ = 5
3
[
4𝑆 + 2𝛽

(
−𝜁A0 + 𝛼2A2 + 2𝛼3Ā3

)]
, (3.24)

which just implies our Smarr-like relation given in (3.17).

3.2. 𝐷 = 5

In 𝐷 = 5, the action we consider is

𝐼 = ∫ d5𝑥
√
−𝑔

[ 12
𝐿2 𝜁 +𝑅+ 𝛼2𝐿

2L2 + 𝛼3𝐿
4LST

3

]
, (3.25)

where L3 in higher dimensions is replaced by the scalar-tensor Lagrangian LST
3 since it vanishes in 𝐷 = 5. In LST

3 given in (1.6), the 
first term vanishes and as a result of that there will be no log-type contribution to the entropy as in 𝐷 = 6. Hence, we will be able to 
obtain the Smarr relation in the standard form.

We study the solution with 𝑁(𝑟) = 1 and the scalar field 𝜙 given in (3.1), for which the metric function satisfies

𝜁 − 𝑓 + 2𝛼2𝑓 2 + 2𝛼3𝑓 3 = 𝜔

𝑟4
, 𝜔 = constant. (3.26)

The integration constant 𝜔 and the inverse temperature 𝛽 are

𝜔 =𝐿2𝑟2+

[
𝜁
𝑟2+

𝐿2 + 𝑘+ 2𝛼2𝑘2
𝐿2

𝑟2+
− 2𝛼3𝑘3

𝐿4

𝑟4+

]
, (3.27)

𝛽 = 2𝜋𝑟+

⎡⎢⎢⎢
1 + 4𝛼2𝑘

𝐿2

𝑟2+
− 6𝛼3𝑘2

𝐿4

𝑟4+

2𝜁 𝑟2+ + 𝑘+ 2𝛼 𝑘3 𝐿4

⎤⎥⎥⎥ . (3.28)
11

⎣ 𝐿2 3 𝑟4+ ⎦
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The Lagrangian for the reduced action 𝐿red can be decomposed with respect to the scaling weights as follows

𝐿
[1]
red

=
3Σ3𝛽𝑟

3𝑁

𝐿2

[
− 2𝑓 2 [4𝛼2 − 12𝛼3𝑟6𝜉5𝑓 ′ + 45𝛼3𝑟5𝜉4𝑓 ′ − 60𝛼3𝑟4𝜉3𝑓 ′]
+ 30𝛼3𝑟3𝜉2𝑓 ′ + 4𝑓

(
1 − 𝛼2𝑟𝑓

′)+ 𝑟𝑓 ′

+ 8𝛼3𝑟2𝜉𝑓 3[𝑟4𝜉5 + 𝜉2
(
34𝑟− 18𝑟3𝜉′

)
+ 6𝑟3𝜉4 + 3𝑟2𝜉3

(
2𝑟2𝜉′ − 9

)
+ 3𝜉

(
6𝑟2𝜉′ − 5

)
− 6𝑟𝜉′

]
− 4𝜁

]
,

𝐿
[3]
red

= 36Σ3𝛽𝛼3𝑘𝑟
3𝑁𝜉(𝑟𝜉 − 1)𝑓

[
𝑟𝜉

(
4𝑟2𝜉2 − 11𝑟𝜉 + 7

)
𝑓 ′

+ 2𝑓
[
𝑟3𝜉4 + 3𝑟𝜉2

(
2𝑟2𝜉′ − 5

)
+ 𝜉

(
7 − 12𝑟2𝜉′

)
+ 5𝑟2𝜉3 + 4𝑟𝜉′

] ]
,

𝐿
[5]
red

= 18Σ3𝛽𝛼3𝑘
2𝐿2𝑟𝑁𝜉

[
𝑟𝜉

(
4𝑟3𝜉3 − 15𝑟2𝜉2 + 16𝑟𝜉 − 4

)
𝑓 ′

+ 4(𝑟𝜉 − 1)𝑓
(
𝑟3𝜉4 + 2𝑟𝜉2

(
3𝑟2𝜉′ − 5

)
+ 𝜉

(
2 − 12𝑟2𝜉′

)
+ 3𝑟2𝜉3 + 2𝑟𝜉′

) ]
,

𝐿
[7]
red

= 24Σ3𝛽𝛼3𝑘
3𝐿4𝑁𝜉2(𝑟𝜉 − 2)

[
𝜉
(
6𝑟2𝜉′ − 2

)
+ 𝑟2𝜉3 − 6𝑟𝜉′ + 2𝑟𝜉2

]
.

(3.29)

For a general solution, the variation of the boundary term should be taken as

𝛿𝐵 =
144𝛽Σ3𝑁𝑟

𝐿2 𝛼3𝜉(𝑘𝐿2 + 𝑟2𝑓 )(𝑟𝜉 − 1)
[
𝑘𝐿2𝜉(𝑟𝜉 − 2) + 𝑟𝑓 (𝑟𝜉 − 1)2

]
𝛿𝜉

+
3𝛽Σ3𝑁𝑟2

𝐿2

[
𝑟3 − 4𝛼2𝑓𝑟3 + 𝛼3

{
− 24𝑘2𝐿4𝜉2 − 84𝑘𝐿2𝑟2𝑓𝜉2 + 96𝑘2𝐿4𝑟𝜉3

+ 216𝑘𝐿2𝑟3𝑓𝜉3 − 90𝑘2𝐿4𝑟2𝜉4 − 180𝑘𝐿2𝑟4𝜉4 + 24𝑘2𝐿4𝑟3𝜉5 + 48𝑘𝐿2𝑟5𝑓𝜉5

+ 6𝑟4𝑓 2𝜉2(−10 + 20𝑟𝜉 − 15𝑟2𝜉2 + 4𝑟3𝜉3)
}]

𝛿𝑓 ,

(3.30)

which again simplifies for our solution significantly and becomes

𝛿𝐵 = −
3𝛽Σ3𝑟

4

𝐿2

[
1 − 4𝛼2𝑓 − 6𝛼3𝑓 2

]
𝛿𝑓 . (3.31)

From this, as explained before, it is straightforward to find the mass, the entropy and the Smarr relation as

𝑀 =3Σ3𝑟
2
+

[
𝜁
𝑟2+

𝐿2 + 𝑘+ 2𝛼2𝑘2
𝐿2

𝑟2+
− 2𝛼3𝑘3

𝐿4

𝑟4+

]
, (3.32)

𝑆 =4𝜋Σ3𝑟
3
+

[
1 + 12𝛼2𝑘

𝐿2

𝑟2+
+ 18𝛼3𝑘2

𝐿4

𝑟4+

]
, (3.33)

2𝛽𝑀 =3𝑆 + 2𝛽
[
− 𝜁A0 + 𝛼2A2 + 2𝛼3A3

]
, (3.34)

where the potentials are given by

A0 =
3Σ3𝑟

4
+

𝐿2 , (3.35)

A2 =
3Σ3𝑘𝐿

2𝑟4+

𝑟4+ + 4𝛼2𝑘𝐿2𝑟2+ − 6𝛼3𝑘2𝐿4

[
−8𝜁

𝑟2+

𝐿2 − 3𝑘+ 4𝛼2𝑘2
𝐿2

𝑟2+
− 14𝛼3𝑘3

𝐿4

𝑟4+

]
, (3.36)

A3 =
6Σ3𝑘

2𝐿4𝑟4+

𝑟6+ + 4𝛼2𝑘𝐿2𝑟4+ − 6𝛼3𝑘2𝐿4𝑟2+

[
12𝜁

𝑟2+

𝐿2 + 7𝑘+ 4𝛼2𝑘2
𝐿2

𝑟2+
+ 6𝛼3𝑘3

𝐿4

𝑟4+

]
, (3.37)

and the extended first law (3.22) is satisfied with these potentials.
The expression for the charge function (3.4) leads to the following Noether charge

𝑄 =
12Σ3𝛽𝑟

4

𝐿2

[
𝜁 − 𝑓 + 2𝛼2𝑓 2 + 2𝛼3𝑓 3

]
, (3.38)

which is conserved due to (3.26) and gives a derivation of the Smarr relation (3.34) with its values at infinity and the horizon given 
12

as
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𝑄
||||∞ = 4𝛽𝑀, 𝑄

||||𝑟+ = 6𝑆 + 4𝛽
(
−𝜁A0 + 𝛼2A2 + 2𝛼3A3

)
. (3.39)

3.3. 𝐷 = 4

In 𝐷 = 4, L3 vanishes and L2 is a boundary term. Therefore, we replace them by the scalar-tensor Lagrangians LST
2,3 given in 

(1.5)-(1.6) and consider the action

𝐼 = ∫ d4𝑥
√
−𝑔

[ 6
𝐿2 𝜁 +𝑅+ 𝛼2𝐿

2LST
2 + 𝛼3𝐿

4LST
3

]
. (3.40)

As mentioned at the beginning of this section, black hole solutions with non-planar horizons exist only when 𝛼3 = 0. Before we 
distinguish different cases, it is useful to study the reduced action and the boundary term for a general solution described by the 
ansatz (2.37) in 𝐷 = 5 and 𝜙 = 𝜙(𝑟). The Lagrangian of the reduced action with different scaling weights are

𝐿
[1]
red

=
2Σ2𝛽𝑟

2𝑁

𝐿2

[
𝑟𝑓 2[36𝛼3𝑟5𝜉5𝑓 ′ − 𝑟3𝜉4

(
𝛼2 + 90𝛼3𝑟𝑓 ′)

+ 4𝑟2𝜉3
(
15𝛼3𝑟𝑓 ′ − 𝛼2

) ]
+ 𝑟𝑓 2[2𝛼2𝑟𝜉2 (7 − 2𝑟2𝜉′

)
+ 4𝛼2𝜉

(
2𝑟2𝜉′ − 3

)
− 4𝛼2𝑟𝜉′

]
+ 𝑟𝑓 ′

+ 𝑓
[
3 − 2𝛼2𝑟4𝜉3𝑓 ′ + 6𝛼2𝑟3𝜉2𝑓 ′ − 6𝛼2𝑟2𝜉𝑓 ′]

+ 6𝛼3𝑟3𝜉2𝑓 3 [2𝑟3𝜉4 + 3𝑟𝜉2
(
4𝑟2𝜉′ − 11

)
− 4𝜉

(
6𝑟2𝜉′ − 5

)]
+ 72𝛼3𝑓 3𝑟4𝜉2

(
𝑟𝜉3 + 𝜉′

)
− 3𝜁

]
,

𝐿
[3]
red

= 4Σ2𝛽𝑟𝑘𝑁
[
− 𝛼2𝑟𝜉𝑓

′ (𝑟2𝜉2 − 3𝑟𝜉 + 2
)
− 36𝛼3𝑟5𝜉5𝑓𝑓 ′

+ 2𝑟2𝜉3𝑓
(
𝛼2 − 27𝛼3𝑟𝑓 ′)+ 𝛼2𝑟𝜉

2𝑓
(
4𝑟2𝜉′ − 9

)
+ 2𝛼2𝑟𝜉′𝑓

+ 𝜉𝑓
(
4𝛼2 − 8𝛼2𝑟2𝜉′

)
+ 6𝑓 2𝑟3𝛼3𝜉

4 (−35 + 3𝑟2𝜉2 + 18𝑟2𝜉′
)

+ 12𝑓 2𝑟2𝛼3𝜉
2 [9𝜉 + 6𝑟2𝜉3 + 2𝑟(4 − 9𝑟𝜉)𝜉′

]
+ 𝑟3𝜉4𝑓

(
𝛼2 + 90𝛼3𝑟𝑓 ′)],

𝐿
[5]
red

= 2Σ2𝛽𝐿
2𝑘2𝑁𝜉

[
36𝛼3𝑟3𝜉4

(
𝑟𝑓 ′ + 2𝑓

)
− 48𝛼3𝑟𝜉2

[
𝑓
(
9𝑟2𝜉′ − 2

)
− 𝑟𝑓 ′]

+ 𝑟2𝜉3
(
−𝛼2 − 90𝛼3𝑟𝑓 ′ + 6𝛼3𝑓

(
36𝑟2𝜉′ − 41

))
+ 36𝛼3𝑟4𝜉5𝑓 + 4𝜉

(
𝛼2 − 𝑟2𝜉′(𝛼2 − 42𝛼3𝑓 )

)
+ 8𝛼2𝑟𝜉′

]
,

𝐿
[7]
red

= 24Σ2𝛽𝛼3𝑘
3𝐿4𝑁𝜉2

[
𝜉2

(
6𝑟2𝜉′ − 2

)
+ 𝑟2𝜉4 − 12𝑟𝜉𝜉′ + 4𝜉′

]
.

(3.41)

As we see, terms breaking the scaling symmetry arise from the scalar-tensor Lagrangians LST
𝑚=2,3 (when 𝑘 ≠ 0). The variation of the 

boundary term should be given by

𝛿𝐵 = −
2𝛽Σ2𝑁

𝐿2

[
𝛼2

{
− 4𝑟2𝑓 (𝑘𝐿2 + 𝑟2𝑓 ) + 8𝑘𝐿2𝑟(𝑘𝐿2 + 𝑟2𝑓 )𝜉

+ 8𝑟3𝑓 (𝑘𝐿2 + 𝑟2𝑓 )𝜉 − 4𝑘𝐿2𝑟2(𝑘𝐿2 + 𝑟2𝑓 )𝜉2 − 4𝑟4𝑓 (𝑘𝐿2 + 𝑟2𝑓 )𝜉2
}

+ 𝛼3

{
48𝑘2𝐿4(𝑘𝐿2 + 𝑟2𝑓 )𝜉2 + 120𝑘𝐿2𝑟2𝑓 (𝑘𝐿2 + 𝑟2𝑓 )𝜉2

− 144𝑘2𝐿4𝑟(𝑘𝐿2 + 𝑟2𝑓 )𝜉3 − 288𝑘𝐿2𝑟3𝑓 (𝑘𝐿2 + 𝑟2𝑓 )𝜉3

+ 72𝑘2𝐿4𝑟2(𝑘𝐿2 + 𝑟2𝑓 )𝜉4 + 144𝑘𝐿2𝑟4𝑓 (𝑘𝐿2 + 𝑟2𝑓 )𝜉4

+ 72𝑟4𝑓 2(𝑘𝐿2 + 𝑟2𝑓 )𝜉2(𝑟𝜉 − 1)2
}]

𝛿𝜉

−
2𝑁Σ2𝛽

𝐿2

[
𝑟3 + 𝛼2

{
− 2𝑟2(2𝑘𝐿2 + 3𝑟2𝑓 )𝜉 + 6𝑟3(𝑘𝐿2 + 𝑟2𝑓 )𝜉2

− 2𝑟4(𝑘𝐿2 + 𝑟2𝑓 )𝜉3
}
+ 𝛼3

{
48𝑘𝐿2𝑟2(𝑘𝐿2 + 𝑟2𝑓 )𝜉3 + 60𝑟2𝑓 (𝑘𝐿2 + 𝑟2𝑓 )𝜉3

− 90𝑟3(𝑘𝐿2 + 𝑟2𝑓 )𝜉4 + 36𝑟2(𝑘𝐿2𝑟+ 𝑟3𝑓 )2𝜉5
}]

𝛿𝑓 ,

(3.42)
13

which can be used to study the thermodynamics of a solution.
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3.3.1. 𝐷 = 4, 𝛼3 ≠ 0, 𝑘 = 0
When 𝛼3 ≠ 0, only a black hole with a planar horizon (𝑘 = 0) is allowed with the scalar field given in (3.1) and the metric function 

𝑓 (𝑟) satisfies

𝜁 − 𝑓 + 𝛼2𝑓
2 − 2𝛼3𝑓 3 = 𝜔

𝑟3
, 𝜔 = constant. (3.43)

The integration constant 𝜔 and the inverse temperature 𝛽 take particularly simple forms as follows

𝜔 = 𝜁𝑟3+, 𝛽 = 4𝜋𝐿2

3𝜁𝑟+
. (3.44)

Together with the variation of the boundary term

𝛿𝐵 = −
2𝛽Σ2𝑟

3

𝐿2

[
1 − 2𝛼2𝑓 + 6𝛼3𝑓 2

]
, (3.45)

which simplifies into 𝛿𝐵 = 8𝜋Σ2𝑟+𝛿𝑟+, they yield the thermodynamical relations

𝑀 = 2𝜁Σ2
𝑟3+

𝐿2 , 𝑆 = 4𝜋Σ2𝑟
2
+, 𝛽𝑀 = 2𝑆 − 2𝛽𝜁A0 (3.46)

𝛽 𝛿𝑀 = 𝛿𝑆 + 𝛽A0 𝛿𝜁 , A0 =
2Σ2𝑟

3
+

𝐿2 . (3.47)

The Smarr relation in (3.46) can be easily derived from the Noether charge

𝑄 =
6Σ2𝛽𝑟

3

𝐿2

[
𝜁 − 𝑓 + 𝛼2𝑓

2 − 2𝛼3𝑓 3] , (3.48)

which is conserved from (3.43), and whose values at infinity and the horizon are given as

𝑄
||||∞ = 3𝛽𝑀, 𝑄

||||𝑟+ = 6𝑆 − 6𝛽𝜁A0. (3.49)

3.3.2. 𝐷 = 4, 𝛼3 = 0, 𝑘 = +1, 0, −1
For 𝛼3 = 0, non-planar horizons are also admitted provided that the scalar field is given by (3.2). For this case, with the addition 

of the conformal coupling of the scalar, the mass and the entropy were computed in [66] by Euclidean methods. Here, we reproduce 
them to discuss the scaling properties, Smarr relation and the extended first law.

The metric function satisfies the eqn. (3.43) with 𝛼3 = 0. The integration constant 𝜔 and the inverse temperature 𝛽 are more 
complicated due to the 𝑘-dependent terms as follows

𝜔 =𝐿2𝑟+

[
𝜁
𝑟2+

𝐿2 + 𝑘+ 𝛼2𝑘
2𝐿

2

𝑟2+

]
, (3.50)

𝛽 = 4𝜋𝑟+

⎡⎢⎢⎢⎣
1 + 2𝛼2𝑘

𝐿2

𝑟2+

3𝜁 𝑟2+
𝐿2 + 𝑘− 𝛼2𝑘

2 𝐿2

𝑟2+

⎤⎥⎥⎥⎦ . (3.51)

For this solution, although it follows from a different scalar field configuration, the variation of the boundary term is given by (3.45)
with 𝛼3 = 0. Using this, the thermodynamics of the solution follows straightforwardly:

𝑀 = 2Σ2𝑟+

[
𝜁
𝑟2+

𝐿2 + 𝑘+ 2𝛼2𝑘2
𝐿2

𝑟2+

]
, 𝑆 = 4𝜋Σ2𝑟

2
+

[
1 + 4𝛼2𝑘

𝐿2

𝑟2+
log

(
𝑟+
)]

, (3.52)

𝛽𝑀 = 2𝑆 + 2𝛽
[
−𝜁A0 + 𝛼2Ā2

]
, 𝛽 𝛿𝑀 = 𝛿𝑆 + 𝛽

(
A0 𝛿𝜁 +A2 𝛿𝛼2

)
, (3.53)

A0 =
2Σ2𝑟

3
+

𝐿2 , A2 =
2Σ2𝑘𝐿

2

𝑟+

[
𝑘−

2(3𝜁𝑟4+ + 𝑘𝐿2 − 𝛼2𝑘
2𝐿4) log

(
𝑟+
)

𝑟2+ + 2𝛼2𝑘𝐿2

]
, (3.54)

Ā2 =A2 +
8𝜋Σ2𝑘𝐿

2

𝛽
. (3.55)

As in 𝐷 = 6 where L3 is a boundary term, the entropy in (3.52) is not a homogeneous function and in the Smarr-like relation in 
(3.53) we have a modification to the potential A2 that appear in the extended first law in (3.53). The Noether charge is given by 
the expression in (3.48) with 𝛼3 = 0 and produces the Smarr-like relation (3.52) with its values at the event horizon radius 𝑟+ and 
infinity, which are given by|| || [

̄
]

14

𝑄 ||∞ = 3𝛽𝑀, 𝑄 ||𝑟+ = 6𝑆 + 6𝛽 −𝜁A0 + 𝛼2A2 . (3.56)
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3.4. 𝐷 = 3

Since both L2,3 vanish in 𝐷 = 3, we consider the following action

𝐼 = ∫ d3𝑥
√
−𝑔

[ 2
𝐿2 𝜁 +𝑅+ 𝛼2𝐿

2LST
2 + 𝛼3𝐿

4LST
3

]
, (3.57)

where the first term in (1.6) vanishes.
𝐷 = 3 is a special case for two reasons. First, since the event horizon is one-dimensional, it cannot have any curvature. Therefore, 

one should take 𝑘 = 0 in the metric ansatz (2.37). Second, in addition to the solution (2.41) discussed at the beginning of this section, 
the static Banados-Teitelboim-Zanelli (BTZ) black hole [67] is also a solution.

We can start by considering the general form of the Lagrangian of the reduced action and the variation of the boundary term that 
is required to study the thermodynamics of a solution. They are given by

𝐿
[1]
red

=
Σ1𝛽𝑟

𝐿2

[
2𝑓

(
1 − 2𝛼2𝑟4𝜉3𝑓 ′ + 3𝛼2𝑟3𝜉2𝑓 ′)+ 𝑟𝑓 ′ − 8𝛼2𝑟3𝑓 2𝜉

(
𝜉2 − 𝜉′

)
+ 2𝑟2𝑓 2𝜉

[
36𝛼3𝑟4𝜉4𝑓 ′ − 𝑟2𝜉3

(
𝛼2 + 45𝛼3𝑟𝑓 ′)+ 𝜉

(
6𝛼2 − 4𝛼2𝑟2𝜉′

)]
(3.58)

+ 12𝛼3𝑟4𝑓 3𝜉3
[
3𝜉

(
4𝑟2𝜉′ − 5

)
+ 2𝑟2𝜉3 − 12𝑟𝜉′ + 12𝑟𝜉2

]
− 2𝜁

]
,

𝛿𝐵 = −
𝛽Σ1𝑁

𝐿2

[
𝑟2
{
1 + 2𝛼2𝑟2𝑓 (3 − 2𝑟𝜉)𝜉2 + 18𝛼3𝑟4𝑓 2(4𝑟𝜉 − 5)𝜉4

}
𝛿𝑓

+ 8𝑟4𝑓 2𝜉(𝑟𝜉 − 1)(−𝛼2 + 18𝛼3𝑟2𝑓𝜉2)𝛿𝜉
]
. (3.59)

Note that terms that break the scaling symmetry 𝐿[Δ≠1]
red

in 𝐷 = 6, 5, 4 always come with a 𝑘 factor. In 𝐷 = 3, we see that, despite 
the scalar hair, the Lagrangian of the reduced action has no symmetry-breaking terms. Since we need to take 𝑘 = 0 to derive the 
solutions, this is completely parallel to these higher dimensional cases where the event horizon might have curvature.

3.4.1. Solution that satisfies the polynomial equation
For the scalar field given in (3.1), the metric function 𝑓 (𝑟) satisfies the following polynomial equation

𝜁 − 𝑓 − 𝛼2𝑓
2 + 6𝛼3𝑓 3 = 𝜔

𝑟2
, 𝜔 = constant. (3.60)

From this equation and the variation of the boundary term (3.59), the thermodynamics of the solution can be obtained as follows:

𝜔 = 𝜁𝑟2+, 𝛽 = 2𝜋𝐿2

𝜁𝑟+
, (3.61)

𝛿𝐵 = −
𝛽Σ1𝑟

2

𝐿2

(
1 + 2𝛼2𝑓 − 18𝛼3𝑓 2)𝛿𝑓 , (3.62)

𝑀 =
𝜁Σ1𝑟

2
+

𝐿2 , 𝑆 = 4𝜋Σ1𝑟+, (3.63)

0 = 𝑆 + 2𝛽
[
−𝜁A0 + 𝛼2A2 + 2𝛼3A3

]
, (3.64)

A0 =
Σ1𝑟

2
+

𝐿2 , A2 = 0, A3 = 0, (3.65)

𝛽𝛿𝑀 = 𝛿𝑆 + 𝛽
(
A0𝛿𝜁 +A2𝛿𝛼2 +A3𝛿𝛼3

)
. (3.66)

The Smarr relation (3.64) has an alternative form in 𝐷 = 3 that is given by

𝛽𝑀 = 1
2
𝑆, (3.67)

and this form of it can be derived from the Noether charge. For this solution, it reads

𝑄 =
2𝛽Σ1𝑟

2

𝐿2

[
𝜁 − 𝑓 − 𝛼2𝑓

2 + 6𝛼3𝑓 3] , (3.68)

whose conservation is obvious from (3.60). Its values at infinity and at the horizon are|| ||

15

𝑄 ||∞ = 2𝛽𝑀, 𝑄 ||𝑟+ = 𝑆 = 2𝛽𝜁A0. (3.69)
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3.4.2. Static BTZ black hole
The static BTZ black hole with the line element

d𝑠2 = −
[
𝑟2

𝓁2 −𝑚

]
d𝑡2 + 1

𝑟2

𝓁2 −𝑚

d𝑟2 + 𝑟2 d𝜑2 , (3.70)

where the event horizon is located at 𝑟+ =
√

𝑚𝓁, is a solution of the theory described by the action (3.57) provided that the scalar 
field is given by [29]

𝜙(𝑟) =
√

𝛼2
18𝛼3

𝑟

∫
𝑟+

d𝑢
𝑢
√

𝑓 (𝑢)
, (3.71)

for which the metric function 𝑓 (𝑟) becomes

𝑓 (𝑟) =
𝛼32 + 972𝜁𝛼23

54𝛼22𝛼3 + 972𝛼3
− 𝑚𝐿2

𝑟2
, (3.72)

which corresponds to the line element (3.70) with

𝓁2

𝐿2 =
54𝛼22𝛼3 + 972𝛼23
𝛼32 + 972𝜁𝛼23

. (3.73)

Similar to our previous computations, we can write the metric function 𝑓 (𝑟) in terms of an integration constant 𝜔 as

𝜁 +
𝛼32

972𝛼23
−

[
1 +

𝛼22
18𝛼3

]
𝑓 = 𝜔

𝑟2
, 𝜔 = 𝑟2+

[
𝜁 +

𝛼32

972𝛼23

]
= constant. (3.74)

The inverse temperature 𝛽 in this case takes the following form

𝛽 = 2𝜋𝐿2

𝑟+

[
54𝛼22𝛼3 + 972𝛼23
𝛼32 + 972𝜁𝛼23

]
. (3.75)

The variation of the boundary term (3.59) becomes

𝛿𝐵 = −
𝛽Σ1𝑟

2

𝐿2

[
1 +

𝛼22
18𝛼3

]
𝛿𝑓 =

𝛽Σ1
𝐿2 𝛿𝜔 , (3.76)

and we have the following thermodynamics

𝑀 =
Σ1𝑟

2
+

𝐿2

[
𝜁 +

𝛼32

972𝛼23

]
, 𝑆 = 4𝜋Σ1𝑟+

[
1 +

𝛼22
18𝛼3

]
, (3.77)

0 = 𝑆 + 2𝛽
[
−𝜁A0 + 𝛼2A2 + 2𝛼3A3

]
, A0 =

Σ1𝑟
2
+

𝐿2 , A2 =A3 = 0, (3.78)

𝛽𝛿𝑀 = 𝛿𝑆 + 𝛽
(
A0𝛿𝜁 +A2𝛿𝛼2 +A3𝛿𝛼3

)
. (3.79)

The Smarr relation in the form (3.67) follows from the following Noether charge

𝑄 =
𝛽Σ1𝑟

2

486𝛼23𝐿
2

[
972𝜁𝛼23 + 𝛼22 − 54𝛼3(𝛼22 + 18𝛼3)𝑓

]
. (3.80)

For 𝛼3 = 0 in the action (3.57), the only solution for the scalar field is 𝜙(𝑟) = constant and one obtains the usual thermody-
namics of the BTZ black hole in 3D GR with a negative cosmological constant [31] which can be obtained by setting 𝛼2 = 0 in the 
thermodynamical relations above.

4. Summary and discussions

In this paper, we have studied the thermodynamics of the static black hole solutions satisfying 𝑔𝑡𝑡𝑔𝑟𝑟 = −1 in lower-dimensional 
Lovelock gravity up to cubic term. For a comparison with the higher-dimensional case, we derived the previous results in higher 
dimensions where the Lovelock gravity is a pure gravity theory and shed light on a new feature. Without directly solving for the 
metric function, it is possible to deduce the following properties:

• For planar black holes (𝑘 = 0), the thermodynamics takes a universal form that one has the same relations as in GR [11].
• In 𝐷 = 4, 6 where the 2nd- and the 3rd-order Lovelock Lagrangians L2,3 are boundary terms respectively, the metric function 
16

does not get modified due to these terms but the entropy gets a contribution from the boundary terms (when 𝑘 ≠ 0) [11].
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• By considering the variation of the couplings, one can establish an extended first law with potentials conjugate to the couplings 
and it is possible to obtain a Smarr relation containing these potentials [19].

• The reduced action that gives rise to the solutions that we consider consistently possesses a global scaling symmetry, from which 
it is possible to derive the Smarr relation which is compatible with the extended first law. To our knowledge, the fact that this 
is true for solutions with non-planar horizons (𝑘 ≠ 0) (beyond GR) has not been noticed before.

After a detailed examination of the lower-dimensional case, we reach the following conclusions:

• The universality of the thermodynamics of planar black holes still holds.
• In 𝐷 = 4, 6, both the metric function and the entropy get modified.
• The extended first law still holds.
• The reduced action in lower dimensions is not invariant under the global scaling symmetry (when 𝑘 ≠ 0). However; following 

the procedure described in [51] to deal with such cases, we have shown that, for the solutions that we consider, there is a 
conserved Noether charge giving rise to the Smarr relation in 𝐷 = 3, 5. In 𝐷 = 4, 6, the contribution to the entropy from the 
Lagrangians LST

2,3 comes with a log
(
𝑟+
)

term, which breaks the homogeneity. As a result, one obtains a Smarr-like relation which 
can still be obtained from the Noether charge but contains modified potentials that are related to the potentials in the extended 
first law.

The derivation of the Smarr(-like) relation from a conserved Noether charge despite the scaling-symmetry-breaking terms in 
the reduced action in lower-dimensions is quite an interesting property inherited from higher-dimensions where no such terms are 
present and one might wonder whether it survives when the curvature of the internal space is not set to zero. The Lagrangians up 
to cubic order can be found in [29], but unfortunately, the resulting field equations are too complicated to solve in the cubic case. 
However; this question can be easily answered for the quadratic theory in 𝐷 = 4. It was shown in [26] that the modifications that 
arise due to the curvature of the internal space only modifies the behavior of the scalar field and the equation satisfied by the metric 
function remains the same. This means that when the solution for the scalar field is inserted into the reduced action, one would have

𝐼E = −2𝛽Σ2

∞

∫
𝑟+

d𝑟𝑁 d
d𝑟

[
𝑟3

𝐿2

[
𝜁 − 𝑓 + 𝛼2𝑓

2]]+ ∞

∫
𝑟+

d𝑟 d𝐵
d𝑟

, (4.1)

which is invariant with the scaling weights (Δ𝑁, Δ𝑓 ) = (3, 0). Therefore, the Smarr relation still follows from the scaling symmetry. 
For the quadratic theory in 𝐷 = 3, a more detailed analysis is required since the modifications from the curvature of the internal 
space changes the solution space significantly3 (see Section 2.2 of [30]). We plan to study this case by considering also the rotating 
generalization of the BTZ black hole together with the dual conformal field theory (CFT) interpretation in a separate work.

We would like to emphasize that, as first noted in [29], the Lagrangians that we study in 𝐷 = 3, 4, 5, 6 are scalar-tensor theories 
with second-order field equations also in the critical dimension and beyond (𝐷 ≥ 2𝑚). However; when the static field configurations 
are studied in these dimensions, they do not admit black hole solutions, which is just another indication of that the solutions and 
their properties presented here are inherited from the higher-dimensional origins.

Having revealed the basic thermodynamical properties of static black hole solutions in lower-dimensional Lovelock theories, our 
work opens up quite a few possibilities for future work. For example, thanks to the extended phase space, the phase diagrams in 
the higher-dimensional versions possess quite interesting features depending on the dimension of the spacetime and the topology 
of the event horizon such as the appearance of the van der Waals liquid-gas system discovered first in [68], multiple reentrant 
phase transitions and tricritical points (see e.g. [69,70]). Our results suggest that similar results, and may be novel ones, can also be 
obtained in lower-dimensions.

Furthermore, since an exact black hole solution is admitted, one can also study the non-perturbative effect of the lower-
dimensional Lovelock couplings on the well-known Kovtun-Son-Starinets bound on the ratio of the shear viscosity to the entropy 
density for the strongly coupled plasma (𝜂∕𝑠 ≥ 1

4𝜋 ) [71]. For the quadratic theory, an analysis was given in [72] by also considering 
the linear and the non-linear charged generalization of the 4D planar black hole obtained in [73]. Apart from the non-perturbative 
violation of the bound which has been realized in many other different models (see references of [72]), this work is an example 
where one can see the efficiency of a technical tool for the calculation of the transport properties of the strongly coupled plasma 
described by the dual CFT that was recently developed in [74]. In this method, the shear viscosity is calculated from the Noether 
charge corresponding to a spacelike Killing vector and it seems to be particularly useful in the analysis of the perturbations on the 
hairy black hole backgrounds arising from scalar-tensor theories and their charged generalizations. The planar black hole solution in 
the cubic theory would be a useful arena to test the efficiency of the method.

We believe that the most important applications of our results would be in the microscopic derivation of the semi-classical entropy 
of hairy black holes along the lines of [75], where Strominger gave a derivation of the entropy of the BTZ black hole solution of 
general relativity in 𝐷 = 3 with a negative cosmological constant by using the Cardy formula for the asymptotic growth of the number 
of states in the dual 2D CFT [76]. Thanks to the investigations in [77,78], it is now well-established that a microscopic derivation 

3 The solution with the metric function satisfying a quadratic equation disappears when the curvature is zero and one has only the BTZ black hole as a static black 
17
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of the entropy can be given by expressing the Cardy formula in terms of the ground state energy instead of the central charges, and 
identifying the negative mass soliton, which is obtained by a double Wick rotation and a redefinition of the radial coordinate in the 
static black hole solution, as the ground state configuration. Note that this does not contradict with the arguments of [75] since the 
ground state there is assumed to be the thermal AdS3 spacetime, which can be obtained by the same procedure. If the Newton’s 
constant is introduced at the action level as 𝐼 = 1

16𝜋𝐺 ∫ d3𝑥
√
−𝑔L, the microscopic derivation amounts to checking the following 

relation

𝑆 = 4𝜋
√
−𝑀sol 𝑀, (4.2)

where 𝑀sol and 𝑀 are the mass of the soliton and the static black hole respectively. In the 3D Lovelock theory, there are two distinct 
hairy black hole solutions with different entropies. It would be instructive to check whether and how a microscopic derivation can 
be given in this case. If the formula (4.2) is still applicable, this might imply that there are two different sectors of the dual 2D 
CFT characterized by different soliton configurations. To our knowledge, this would be the first such example in the literature. In 
principle, it might be also the case that the ground state is described by a single soliton solution describing a single ground state 
since, in general, integration constants disappear while redefining the radial coordinate. Therefore, an in-depth analysis should be 
performed.

Considering the fact that the application of the Verlinde-Cardy formula [79], which is the higher-dimensional generalization of 
the Cardy formula, fails to yield the entropy of AdS black holes in higher-dimensional Lovelock gravity [80], one might think that 
there is also no hope for the lower-dimensional Lovelock gravity other than in 𝐷 = 3. However; provided that the entropy scales as 
a power of the temperature as 𝑆 ∼ 𝑇 𝛼 (𝛼: positive constant), by considering a generalization of the modular invariance of 2D CFTs 
that plays a crucial role in the derivation of the Cardy formula as Z[𝛽] = Z

[
(2𝜋)1+𝛼𝛽−𝛼

]
, the following Cardy-like formula can be 

obtained

𝑆 = 2(𝛼 + 1)𝜋

𝛼
𝛼

𝛼+1

(
−𝑀sol 𝑀

) 1
𝛼+1 , (4.3)

which reduces to (4.2) for 𝛼 = 1, which is the usual behavior of 3D AdS black holes. For a review of the derivation of this Cardy-like 
formula and its extension to negative values of 𝛼, which admits the application of it to the black holes with positive heat capacity 
whose most important example is the Schwarzschild black hole, we refer the reader to [81]. Its generalization to charged, hyper-
scaling violating planar black holes is also possible and it has been already successfully applied in a wide-ranging scenarious [82]. 
From our results, we see that the static black hole solutions also obey the scaling condition of the entropy with 𝛼 =𝐷−2 if the event 
horizon is planar (𝑘 = 0). Therefore, we expect the higher-dimensional Cardy-formula to hold in these cases even when 𝐷 > 3, which 
would be a non-trivial check.

Note added After we submitted our paper to arXiv, it was argued in [83] that the logarithmic correction to the entropy in the 
𝐷 = 4, 𝛼3 = 0, 𝑘 ≠ 1 case discussed in Subsection 3.3 originate from ignoring the shift symmetry of the scalar in the field equations 
of the theory, which can be recovered at the action level by adding a certain boundary term. With this modification of the action, 
while the entropy simply obeys the area law, the first law and Smarr relation are satisfied with the same potentials but with a 
modified temperature that deviates from the usual relation to the surface gravity. This procedure might yield similar results for 
the 𝐷 = 6, 𝑘 ≠ 1 case discussed in Subsection 3.1. Additionally, the authors observe that the entropy obeys the area law in higher-
dimensional Lovelock theories if the temperature is modified similar to the 4D case. In our work, the Euclidean reduced actions that 
we have used to study 𝐷 = 4, 6 cases possess shift symmetry after integration by parts and we find the above-mentioned results with 
the usual relation between the temperature and the surface gravity. We refer the reader to [83,84] for a detailed comparison.
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