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Abstract: Unpredictable strings are sequences of data with complex and erratic behavior, which
makes them an object of interest in various scientific fields. Unpredictable strings related to chaos
theory was investigated using a genetic algorithm. This paper presents a new genetic algorithm for
converting large binary sequences into their periodic form. The MakePeriod method is also presented,
which is aimed at optimizing the search for such periodic sequences, which significantly reduces the
number of generations to achieve the result of the problem under consideration. The analysis of the
deviation of a nonperiodic sequence from its considered periodic transformation was carried out, and
methods of crossover and mutation were investigated. The proposed algorithm and its associated
conclusions can be applied to processing large sequences and different values of the period, and also
emphasize the importance of choosing the right methods of crossover and mutation when applying
genetic algorithms to this task.

Keywords: unpredictable strings; unpredictable sequence; genetic algorithm; chaos theory; periodic
sequences; logistic mapping

1. Introduction

Unpredictable strings, often associated with chaos theory, represent data sequences
that exhibit complex and disorderly behavior, making them an intriguing subject of study
in various scientific disciplines. In chaos theory, unpredictable strings are characterized by
their sensitivity to initial conditions, where even small changes in the initial values can lead
to entirely different outcomes, emphasizing the nonlinear nature of chaotic systems [1].

Research on unpredictable strings and randomly determined unpredictable functions
has significant potential advantages in various domains today. Specifically, this research
field plays a significant role in cryptography and information security for generating
reliable encryption keys, random initialization vectors, and secure random numbers. It
also plays a crucial role in ensuring the confidentiality and integrity of communication
channels, which can enhance communication protocols protecting confidential data from
interception and tampering.

For example, in [2], a method for synchronizing two fast random bit generators (RBG),
based on coupled chaotic lasers, was developed. This research addresses the issue of
ensuring security in synchronizing RBGs in fast physical systems, where predictability is
eliminated. Furthermore, the study of unpredictable strings has introduced a new concept
of unpredictable sequences of a finite number of symbols [3]. The first and second laws of
large sequences for random processes in discrete time were proven, with the latter being
closely related to Bernoulli’s theorem.
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If we consider an infinite sequence ai, then an unpredictable string of length k is
defined as a finite array as, as+i, . . . as+k, where s and k are positive integers, subject to the
following conditions: ai = as+i for k = 0, 1, 2, . . . , k− 1, and ai ̸= as+i. In other words, we
consider a section of a sequence of length k, starting from position s, where the values
are repeated in increments of k, but the next element after this section differs from the
element standing at the position of the first element of the repeating sequence. This
definition allows you to identify a part of the sequence with predictable repetition and
the unpredictable part following it. These unpredictable strings play an important role
in defining unpredictable sequences with a limited number of characters. The sequence
ai itself is considered unpredictable if it allows the existence of unpredictable strings of
arbitrary length.

This definition describes an array with a repeating sequence of length k, starting at
position s, and it is considered unpredictable if the element following the repeated sequence
ak is different from the element at the same position as the first element of the sequence
as+k. This means that the array has a predictable part followed by an unpredictable part.
Unpredictable strings are used to define unpredictable sequences of a finite number of
symbols. A sequence ai is unpredictable if it allows unpredictable strings of arbitrarily
large length. Stochastic processes with discrete time and finite state spaces allow for a
countable set of realizations that are unpredictable sequences [3].

Researching this topic will allow for a better understanding of fundamental con-
cepts related to chaos in statistics, random processes, probability theory, and dynamic
processes [4].

In the paper [5], the application and evaluation of a cryptosystem based on chaotic
mappings are investigated. An analysis was conducted to assess the impact of the chosen
chaotic mapping on the properties of messages and the security of the cryptosystem using
methods from statistical mechanics and information theory.

The paper [6] explores a synchronization scheme for complex networks of chaotic sys-
tems. Chaotic systems, including Rössler, Chen, Lorenz, and Lü, are considered as complex
chaotic systems within complex networks. This work specifically focuses on the application
of the control law obtained for synchronizing an irregular network consisting of six differ-
ent chaotic systems. The paper underscores the utility and advantages of the proposed
synchronization scheme through numerical simulations of complex chaotic networks.

In another work [7], the possibility of creating a secure optoelectronic communica-
tion system using chaotic Rössler oscillators and semiconductor lasers is investigated.
The results confirm that the system is viable.

In the paper [3], a numerical analysis of the Bernoulli process with periodic realizations
is carried out. Overall, the study of periodic sequences allows for a deeper understanding
and analysis of the structure and characteristics of unpredictable sequences, as well as the
identification of regular patterns and other key aspects [8].

This paper represents the first step in exploring unpredictability through deep learning
methods. The research focuses on the periodicity of random symbolic sequences, which is
one of the elements of chaos [9]. Therefore, the investigation of this problem serves as a
prerequisite for further delving into the subject matter. In this paper, the object of the study
was a binary sequence.

The study of periodic sequence is due to a wide range of applications in science and
practice. For example, in signal processing, periodic sequences are important. The study of
their properties will allow you to gain a good understanding in the generation and control
of signals, as well as in solving problems related to filtering and signal processing. It can
also be useful in the field of data encoding and decoding. They can be used as part of a
code system that monitors the need to transmit information [10].

The advantages and disadvantages of the aforementioned papers in this section are
outlined in the following Table 1.
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Table 1. Advantages and disadvantages of the used papers.

Title Features Advantages Disadvantages

[1]

The complex and
disorderly behavior of
unpredictable strings in the
context of chaos theory.

Reflection of sensitivity to
initial conditions.

The nonlinear nature of
chaotic systems.

[2]

Synchronization of physical
random bit generators
based on chaotic lasers and
their ç application.

Solving the security
problem of RBG
synchronization in fast
physical systems.
Generation of
unpredictable bit strings for
cryptography and
stochastic simulations.

It requires complex
technologies and
equipment, which can lead
to difficulties in
implementation in
real conditions.

[3]

The introduction of a new
concept of unpredictable
strings and the definition of
deterministic unpredictable
sequences on a finite
number of characters.
Numerical analysis of the
Bernoulli process with
periodic realizations.

The development of a new
concept of unpredictable
sequences. Proof of the first
law of large strings for
random processes in
discrete time.

A limit on the length
of sequences.

[4]

An introduction to
probability theory and
stochastic processes with
applications.

Providing a clear and
understandable approach
to probability theory and
stochastic processes.

No significant deficiencies
have been identified.

[5]

Implementation and
evaluation of a block
cryptosystem based on
chaotic mappings using
high-precision
approximation methods.

The use of chaotic
mappings to ensure
security in block
cryptosystems.

There may be difficulties in
assessing the randomness
of cryptograms.

[6]

Synchronization of complex
networks of chaotic
systems through control
corresponding to the
model.

The application of a
synchronization scheme for
complex networks from
chaotic systems of Rössler,
Chen, Lorenz, and Lü.
Special attention is paid to
the application of the
governing law to
synchronize an irregular
network of six different
chaotic systems.
Emphasizes the usefulness
and advantages of the
proposed synchronization
scheme by conducting
numerical simulations of
chaotic complex networks.

Possible difficulties in
real-world implementation.

[7]

Creation of a secure optical
communication system
using Rössler chaotic
oscillators and
semiconductor lasers.

Investigation of the
possibility of secure optical
communication using
chaotic oscillators and
lasers.

Limitation on specific
applications in
real-world scenarios.
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Table 1. Cont.

Title Features Advantages Disadvantages

[8]

It opens up opportunities
for deep understanding
and analysis of random
character sequences in the
context of chaos.

The development of a
randomly defined
unpredictable function.
Analysis of the Bernoulli
process with periodic
implementations. The
possibility of numerical
analysis and investigation
of periodic sequences.
Simulation of a randomly
defined unpredictable
function.

The text mentions
conducting numerical
simulations, but there is no
detailed description of the
experiments themselves.

[9]
The study of
unpredictability by deep
learning methods.

An extensive consideration
of chaos in dynamical
systems. An excellent
source for understanding
and analyzing chaotic
dynamical systems.
Application of chaotic
systems concepts in various
fields of science and
practice.

Possible difficulties for
beginners in the topic
of chaos.

[10]

Search for hidden
periodicity in amino acid
sequences using a genetic
algorithm and dynamic
programming.

The study of amino acid
sequences in order to find
hidden periodicity. The use
of a genetic algorithm and
dynamic programming to
search for hidden
periodicity. Determining
the importance of
periodicity in amino acid
sequences. The research has
potential applications in the
field of genetics and
molecular biology.

Possible limitations in the
field of generalization
of results.

2. Related Work and the Current Contribution

The main goal of this paper is to investigate and develop an efficient method for
transforming binary nonperiodic sequences into their periodic analogs using a genetic
algorithm. The research aims to enhance algorithms, especially in the context of their
dependence on unpredictable input data. As a specific contribution, the paper introduces
the concept of error for nonperiodic sequences, develops an efficient genetic algorithm,
and proposes a new method called “MakePeriod”, significantly improving the algorithm’s
convergence. The described approach is an innovative method that combines aspects of
unpredictability and artificial intelligence. The use of logistic mapping to construct the test
sequence adds a dynamic element to the research, opening new possibilities in applying
artificial intelligence methods for analyzing periodicity in chaotic systems.

2.1. Summary of Contributions

1. Introduction of the error concept for nonperiodic sequences: A new approach to
evaluating the transformation of nonperiodic sequences into periodic ones by defining
an error measuring the differences between them.

2. Development of an efficient genetic algorithm: The paper presents a genetic algo-
rithm for transforming nonperiodic sequences using a heuristic approach and a state
enumeration method for optimization.
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3. Introduction of the “MakePeriod” method: The paper introduces the “MakePeriod”
method, significantly reducing the number of generations needed to obtain a solution,
significantly contributing to the algorithm’s efficiency.

4. Analysis of crossover and mutation methods: Comparative analysis of various
crossover and mutation methods, highlighting optimal combinations for achieving
the best results in the specific task.

5. Providing perspectives for application in large sequences: The research emphasizes
the prospects of applying the proposed method for processing large sequences and
period values.

2.2. Applications

The paper’s contribution lies in proposing a new method for efficiently transforming
nonperiodic sequences into their periodic analogs using a genetic algorithm, which can have
wide applications in various fields such as data approximation and algorithm optimization.
More specifically,

1. Chaos and Dynamic Systems Research: Understanding and analyzing chaotic
systems using periodicity processing methods.

2. Bioinformatics: Analyzing genetic sequences where periodicity may be related to
specific genetic patterns or structures. Investigating periodicity in biological data,
such as amino acid sequences, to identify patterns.

3. Cryptography and Information Security: Generating secure encryption keys, random
initialization vectors, and secure random numbers for cryptographic applications.

4. Signal Processing and Telecommunications: Analyzing periodicity in signals to
improve filtering, modulation, and decoding processes in telecommunication systems.

5. Medical Diagnostics: Researching periodicity in biomedical data to detect regular
patterns associated with diseases or physiological processes.

6. Financial Analytics: Analyzing time series of financial data to identify periodic trends
and patterns in the market.

3. Problem Statement

Studying unpredictable strings and functions will enable the improvement of specific
algorithms in terms of enhancing their efficiency because many of these types of algorithms
heavily rely on the unpredictability of input data. Researching the role of unpredictability
allows for the optimization of these algorithms and the enhancement of quality assurance.
This is particularly significant as the quality and unpredictability of generated sequences
hold key importance in many applications [11].

Our task is to obtain all possible periodicity options for a given sequence. A new
genetic algorithm is used to solve the problem. In turn, the development of this genetic
algorithm consists in finding optimal solutions in a finite set of objects that will meet
certain criteria.

A logistic mapping is used to construct the sequence under test. This is a discrete
mapping that is often used to model dynamic systems with limited resources or to generate
binary sequences [12]. Despite the simplicity of the logistic mapping, it allows you to
model very complex processes. Our choice to use the logistic mapping is justified by the
desire to take advantage of the simplicity of the formula, but we also emphasize that the
logistic mapping is, in fact, a special case of a more general class of chaotic maps. Chaotic
mappings, including logistic mappings, provide important tools for creating dynamic and
complex sequences with interesting characteristics. Although we used a specific logistic
mapping to create a sequence, it is also important in our study to further consider more
general concepts of chaos. The logistic equation has the form

xn+1 = µxn(1− xn), x ∈ R, (1)
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where xn is the current value, and xn+1 is the next value. The parameter µ controls the
behavior of the system.

The choice of the parameter µ and the initial value x0 in the equation strongly affect the
generation of the binary sequence. It is convenient to take the parameter µ in the interval
[0, 4] [13]. Two areas, F1 and F2, are also selected, which, depending on its value, will relate
to x. An element of a binary sequence will have the value 0 or 1 if it belongs to the domains
F1 and F2, respectively:

si =

{
0, xi ∈ F1

1, xi ∈ F2
(2)

Thus, to construct a binary sequence, the value of the parameter µ = 3.91, and the
initial value x0 = 0.4. Since we needed to obtain the sequence sn, which will consist of 0
and 1, the regions were chosen as follows, respectively: F1 = [0, 0.5] and F2 = [0.5, 1].

For a computational program, a sequence consisting of 0 and 1 is considered as input
data. A genetic algorithm is applied to it, which solves the problem by methodically
iterating through states and state transitions in order to find a solution from the initial state
to the final one. The task of the algorithm is to make a calculation based on a heuristic
approach, which, for the initial length of the considered (input) sequence sn, checks it for
periodicity P, after which it outputs all its received variants converted into a periodic form.
The process of checking the sequence sn for periodicity P occurs by comparing si = si+P
the value of each element with i ≤ N − P, where N is the length of the sequence.

Heuristic algorithms are widely used to solve problems of high computational com-
plexity. The idea is that instead of a complete search of options, which takes a time-
consuming process, a relatively easy approach is used. The main disadvantage of this
approach is an insufficiently theoretically sound algorithm [14].

4. Genetic Algorithm

Genetic algorithms belong to a family of search algorithms whose ideas are suggested
by the principles of evolution in nature (Figure 1). The main task of such algorithms is
to simulate the processes of natural selection and find high-quality solutions to problems.
At the same time, the analogy with natural selection allows these algorithms to overcome
some obstacles that stand in the way of traditional search and optimization algorithms, es-
pecially in problems with big data. Just as Darwinian evolution promotes the development
of individual organisms in a population, genetic algorithms contribute to the development
of a population of potential solutions to this problem, which are called “individuals”. These
solutions are periodically evaluated and used to form a new generation of solutions. Those
individuals who have shown the best results in solving the problem are more likely to be
selected and pass on their positive characteristics to the next generation. Thus, gradually
potential solutions become more perfect in solving this problem [15].

In the natural environment, crossover, reproduction, and mutation are realized with
the help of a genotype—a set of genes ordered in chromosomes. When two individuals are
crossed and offspring arise, each chromosome of the offspring carries a mixture of genes
from both parents. In the course of its work, a genetic algorithm always contains a set of
individual solutions, which is called a population. Each of these individuals is represented
by its own chromosome, which allows us to consider the population as a collection of
chromosomes. For a software implementation, of course, this analogue will be like a set of
arrays that store certain bit values created randomly at the beginning.

At each step of the algorithm execution, individual solutions are evaluated through
the objective function. This function evaluates the quality of the solution of the considered
problem of the genetic algorithm. All individuals in a generation receive their personal as-
sessments from the fitness function. The most suitable individuals with a higher probability
of their decision will be selected for reproduction and integration into the next generation.
However, this does not deny that individuals with low fitness will not be selected. This
allows their genetic material not to disappear, but their probability of selection will be low.
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After that, a crossover operation takes place, which simulates biological crossover with
the preservation of the genes of the parents’ heredity. This operation is used to combine
the genetic information of two individual parents in the process of creating offspring.
Crossover is not always used, but is applied with a certain probability. If the crossover is
not performed, the genetic images of both parents are transmitted to the next generation
without changes.

Figure 1. The scheme of the genetic algorithm.

In the end, a mutation operator is executed, the task of which is to periodically randomly
update information in the population. This will allow the introduction of new combinations
of genes into individuals, which in turn will allow the exploration of unexplored areas of
the solution space. A mutation can manifest itself as a random change in a single gene [16].

4.1. Genotype and Population

In this problem, we will consider the genotype as a binary string in which each element
corresponds to one of the characters 0 and 1. Then, for the problem under consideration,
the population will have the form.

As can be seen from the Figure 2, an area of sequences is considered as input data,
the initial values of which will be randomly generated.
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Figure 2. Illustration of genotypes in a population for the problem under consideration.

In the genotype of each individual of the population under consideration, a digital
value of 0 or 1 is encoded. That is, we represent periodic structures in the form of a
sequence of bits in the genotype. A population includes a set of such genotypes, where
each genotype represents a potential solution to the problem. The genetic algorithm is
focused on solving the problem of finding the periodicity in a binary sequence. The input
data are a binary sequence of 0 and 1. The purpose of the genetic algorithm is to solve
the problem of methodically iterating through states and transitions between states in
order to find a solution from the initial state to the final one. The genetic algorithm uses a
heuristic approach to effectively check the frequency of the input sequence. The verification
process is based on comparing the values of each element of the sequence with the previous
elements. The frequency checking algorithm compares the value of each element with the
previous values for a possible period. This process helps to identify periodic sequences.
The found periodic sequences are presented in the form of various variants in a periodic
form. The search space is determined by the length of the input sequence, and the genetic
algorithm goes through various combinations and state transitions in order to find periodic
structures. The assessment of the fitness function includes a periodicity check to ensure
that the sequence does not consist only of the values 0 and 1. This is done to prevent
monotonous solutions with low adaptability. Defining the feature search space: The feature
search space is defined through the genotype configuration.

4.2. Fitness Function

To evaluate the fitness function at each iteration for the problem under consideration,
it was necessary to make a periodicity check so that the sequence did not consist of only the
value 0 or 1.

The work of the function to determine the periodicity of each individual has the
following pseudocode (Algorithm 1):

Algorithm 1 Function CheckPeriodOrNo(individual, Period)

for index← 0 to (N − Period) do
if individual[index] = individual[index + Period] then

checker← True
else

checker← False
end if

end for
if checker = True then

return True
end if

It is known that even sequences consisting of a single value of 0 or 1 are periodic.
Therefore, we will not consider this solution. Thus, it was necessary to create two additional
auxiliary functions: CheckSameOrNo and ExistOrNo. The CheckSameOrNo function just
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checks the above, and the second ExistOrNo function checks for the identity of the found
solution in the solution area.

CheckPeriodOrNo(indiv., Period) =

{
True, ∀idx∈[0,N−Period−1]:

indiv.[idx]=indiv.[idx + Period],

False, otherwise.

CheckSameOrNo(indiv.) =

{
True, ∀idx1, ∀idx2 ∈ [0, N − 1] : indiv.[idx1] = indiv.[idx2],
False, otherwise.

ExistOrNo(solutions, indiv.) =

{
True, indiv. ∈ solutions,
False, otherwise.

CalculateFitness(indiv.) =


True, CheckPeriodOrNo(indiv., Period) = True

CheckSameOrNo(indiv.) = False
ExistOrNo(solutions, indiv.) = False,

False, otherwise.

Thus, the objective function itself has the following pseudocode (Algorithm 2):

Algorithm 2 Function CalculateFitness(individual)

fitness← 0
if CheckPeriodOrNo(individual, Period) = True then

if CheckSameOrNo(individual) = False then
if ExistOrNo(solutions, individual) = False then

fitness← fitness + 1
end if

end if
end if
return fitness

4.3. Crossover and Mutation

The operations of crossover and mutation are the main operators for finding a solution
to the problem under consideration. Crossover is necessary to combine the genetic infor-
mation of two individuals acting as parents in the process of generating offspring. As a
rule, the crossover operator is not always used, but with some probability. If crossover is
not applied, then copies of both parents pass into the next generation without modification.
For our task, we will consider three types of crossover: single-point, two-point or k-point,
and uniform.

In the book [17], the single-point crossover operator is considered as one of the most
common methods for breeding in binary encoding. Single-point crossover is a method
where two parental chromosomes selected from the population are cut at a random point
known as the crossover point. The genetic information located to the left (or right) of this
point is exchanged between the two parents, forming two new offspring. Figure 3 shows an
example of a single-point crossover of two pairs of individuals as parents and the creation
of their new offspring:
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Figure 3. Example of single-point crossover.

In the paper [18], operators of the k-point crossover type are investigated, along with
their combinatorial, graphical, and topological properties. The authors demonstrated that
k-point crossover operators have a more complex nature and correspond to objects of higher
dimensionality, whereas single-point crossover operators correspond to circles, which are
relatively simple two-dimensional objects [19]. The principle of operation of a two-point
crossover is similar to that of a single-point one, only two or more crossover points in each
chromosome are randomly selected. Thus, information from one chromosome located
between these points is exchanged by similarly located genes of another chromosome
(Figure 4).

Figure 4. Example of two-point crossover.

In the paper [20], a genetic algorithm is proposed to solve the problem of ordering
and scheduling the arrival of aircraft in systems with multiple runways, using uniform
crossover. In this paper, the uniform crossover operator ensures efficient identification,
transmission, and protection of common traffic subsequences, while preserving the ability
to diversify chromosomes. With uniform crossover, each gene in the offspring is selected
with the same probability either from the corresponding gene of the first parent or from
the second. The bottom line is that for each gene, there is a 50% chance of choosing it from
one parent and a 50% chance of choosing it from another parent. This method allows for a
more diverse exploration of the solution space compared with other crossover methods,
such as single-point or two-point crossover. Uniform crossover can be especially useful
when solving a problem may require optimal mixing of different characteristics from both
parents. Uniform crossover allows for maintaining genetic diversity in the population [21].
An example of an illustration of the work of uniform crossover is shown in Figure 5:
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Figure 5. Example of uniform crossover.

Child 1: 10110001 (1 from parent 1, 0 from parent 2, 1 from parent 1, 1 from parent 2, 0
from parent 1, 0 from parent 2, 0 from parent 1, 1 from parent 2).

Child 2: 11001110 (1 from parent 2, 1 from parent 2, 0 from parent 1, 0 from parent 1, 1
from parent 2, 1 from parent 1, 1 from parent 2, 0 from parent 1). Thus, each information
from the genes of a descendant is selected from one parent with the same probability. A
mutation for the binary chromosome in question consists in changing a random bit or
several bits in the chromosome with some probability. Mutation introduces randomness
into the genetic algorithm, helping to avoid getting stuck in local optima and ensuring
diversity in the population.

Mutation is a genetic operator applied to the offspring resulting from selection and
crossover. The mutation operation is probabilistic and is employed to prevent stagnation
and ensure diversity in the population. In the problem under consideration, three types of
mutation were selected: bit inversion, mutation by exchange, mutation by reversion.

Inversion of bits is a mutation method proposed in the original genetic algorithm by
Holland [22]. This method is simple and effective for working with binary chromosomes.
Inverting a bit means changing the value of the bit to the opposite: if the bit was equal to
0, then after inverting it, it becomes equal to 1, and vice versa (Figure 6). In our task, we
will apply as part of the mutation operator for diversity in the population and search for a
wider solution space.

Figure 6. Example of bit inversion.

Swap mutation is a mutation method applicable to both binary and integer chromo-
somes. It involves randomly selecting two genes in the chromosome and exchanging their
values. This mutation operation is suitable for chromosomes representing ordered lists
since, after the mutation, the set of genes in the new chromosome remains the same as
in the original, except for the random change in the positions of the two specific genes
(Figure 7).
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Figure 7. Example of mutation by exchange.

Reverse mutation is a mutation method applied to both binary and integer chromo-
somes. In this method, a random sequence of genes is selected, and their order within
the chromosome is reversed. Similar to the swap mutation, this method is suitable for
chromosomes representing ordered lists since, after the mutation, the set of genes in the
new chromosome remains the same as in the original, except for the reversal of the order of
the selected genes (Figure 8).

Figure 8. Example of mutation by reversion.

4.4. MakePeriod Method

Finding all the periodicity variations for a larger sequence size did not show a very
good result in time. More specifically, for the sequence size n > 30, the algorithm did not
find solutions for more than 30% of the total and got stuck for a very long time. In this
regard, it was decided to optimize the algorithm. Thus, an additional MakePeriod method
(Algorithm 3) was created, which performs a modification operation of a binary list in
order to provide a certain periodic behavior inside this list. This method is used to create
a periodic structure, ensuring that the elements of the list correspond to an alternating
pattern in a given period P.

Algorithm 3 Function MakePeriod(sequence, Period)

for index← 0 to (N − Period) do
if sequence[index] ̸= sequence[index + Period] then

if sequence[index] = 1 then
sequence[index + Period]← 1

else
sequence[index + Period]← 0

end if
end if

end for
return sequence
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As a result of executing this method, the elements of the sequence list will be modified
in such a way as to provide a given sequence periodic for a certain P. That is, this operation
will allow the algorithm to change individuals who are nonperiodic to periodic ones, which
significantly reduces the search time for a solution.

Example 1. Let the sequence be nonperiodic, and we will check it for the value of period 3, that is,
sn = 1001010, P = 3.

Starting from the third element, we see that the periodicity rule for 3 is not fulfilled for this
sequence (the values of the elements in indexes 3 and 5 are different). However, we can change the
value in index 5 to the opposite one, which has index 3 (Figure 9).

Figure 9. Example of the MakePeriod method.

This will avoid generating additional individuals and their checks, because without
the MakePeriod method, our algorithm would simply not consider this sequence, since it is
nonperiodic. Thus, a new sequence will be added to the area of potential solutions, which
will allow us to narrow the search area of the solution and reduce the time.

The proposed algorithm is iterative; then it is known that a breakpoint must be
determined to stop it. We need to find the number of possible sequences that are periodic.
Experimentally, for the initial values of the periods, we obtained a pattern that these are
two to the power of the period value under consideration (2p). Given the fact that we will
not consider the sequence as a solution that consists of identical elements (such sequences
are 2), we have the following formula:

k = 2p − 2 (3)

This Formula (4) determines the breakpoint; that is, if the number of solutions found
is equal to this value, then the genetic algorithm stops working. It is important to note that
determining the specific value of the breakpoint is one of the reasons for further research in
this direction. The complete scheme of operation of the algorithm in question is indicated
in the form of a block diagram (Figure 10).

As can be seen from the diagram, each individual is checked for periodicity during
selection; those that are really periodic are added to the list of solutions, and for those that
are not periodic, the MakePeriod operation is performed. When executing the MakePeriod
operation for a given sequence, if it meets the periodicity condition and is distinct within
the list of solutions, it is also added to the list of solutions. If the above conditions are not
met, then the crossover and mutation operations occur sequentially. After that, the stop
condition is checked. If the number of solutions is equal to k, which is determined by
Formula (1), then the algorithm stops working; if not, a selection operation is performed
for already-changed individuals.
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Figure 10. Algorithm operation scheme.

4.5. The Concept of Error for Nonperiodic Sequences

After we have received a certain amount of variation to transform nonperiodic se-
quences into periodic ones, we need to choose one of them for further research. Thus,
the concept of error was defined for such sequences. We will call an error the deviation
of a nonperiodic sequence from its considered periodic transformation. The error in con-
verting a nonperiodic sequence into a periodic sequence can be defined as the difference
between the original nonperiodic sequence and the best periodic approximation of the
same sequence. This error is measured by a value that can be called an “error” between
the original and approximated sequences. For each resulting solution (variation), we will
compare it with the input periodic sequence and the number of its modified elements:

E =
N

∑
i=1

δ(ai, ti)

2i (4)



Algorithms 2024, 17, 101 15 of 20

where
N = the size of the sequence in question
ai = an element of the input nonperiodic sequence at the position i
ti = the element of the periodic sequence at the position i

δ(ai, ti) =

{
1, if ai is not equal to ti

0, otherwise
This formula is the sum of the values of the function δ for each pair of elements of two

sequences, ai and ti, which will calculate the number of modified elements between them.
In the end, we divide by the value 2i, since this is a convergent series, i.e., the contribution to
the error of those elements that are far away is small. In the beginning, the error values will
be relatively significant. After calculating all the error values, the one that best approximates
the original nonperiodic sequence to its periodic approximation is selected. Choosing the
option with the smallest error is standard practice when optimizing and approximating
data. It allows us to find the best solution for the problem of converting a nonperiodic
sequence into a periodic form in terms of minimizing the differences between them.

5. Results and Analysis
5.1. Results of the MakePeriod Method

To identify the effectiveness of the result of the algorithm, we first checked without the
MakePeriod method (from the diagram in Figure 1) and with its addition on the following
simple input data:

The sequence s15, obtained with the help of the logistic map, i.e., with the size n = 15 el-
ements, is considered. It was necessary to find all variants of its transformation from this
sequence to obtain periodicities at p = 2, 3, 4. In the population, the number of individuals
was selected to be 50, and the probability of their mutation was 0.5.

s15 = 0 1 0 1 1 1 1 0 0 1 1 1 0 0 1 0
If, for p = 4, the algorithm without adding the MakePeriod method found all 14

solutions in 2314 generations, then it coped with the addition in 2 generations:
From the Figure 11, it is evident that the introduced method significantly improves

the optimization of the search for the desired solutions.

Figure 11. The results of the algorithm without the addition of MakePeriod and with the addition.

5.2. Crossover and Mutation

To evaluate the work of the genetic algorithm, we tested three types of crossover and
three types of mutation for each in order to identify their optimality.

First of all, using the logistic map, a binary sequence was also obtained, but already
consisting of n = 100,000 elements. This sequence is nonperiodic. Our task was to identify
an effective algorithm from the above. Therefore, we decided to calculate all the variants of
its transformation in order to obtain a periodicity at p = 7.

Single-Point Crossover:
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The best search outcome for this specific type of crossover was achieved through bit
inversion, as illustrated in the Figure 12. In the 5th generation, a solution to this problem
was successfully discovered. The second favorable result was accomplished using mutation
with swapping, which was resolved by the 7th generation. The final mutation approach
required 11 generations to yield results.

Figure 12. Results of the algorithm of single-point crossover with mutations: (a) bit inversion,
(b) exchange, (c) reversion.

K-Point Crossover:
In the case of K = 3 point crossover, the mutation with exchange in the 9th generation,

the mutation of bit inversion in the 10th generation, and the mutation with reversal in the
13th generation gave the best result (Figure 13).

The results of uniform crossover are as follows (Figure 14): the mutation was handled
in the 9th generation, the mutation with bit inversion in the 253rd generation, and the
mutation with exchange in the 399th generation. In this case, it can be seen that for this
type of crossover, a mutation with an appeal copes very well for this task.
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Figure 13. Results of the algorithm of K = 3 point crossover with mutations: (a) bit inversion,
(b) reversion, (c) exchange.

Figure 14. Results of the algorithm of uniform crossover with mutations: (a) bit inversion, (b) ex-
change, (c) reversion.
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5.3. Error Calculation

After we determined the most optimal of all the considered algorithms for finding
variations, it was necessary to calculate the errors. We will investigate the previously
obtained sequence sn (n = 100,000) using the logistic map for periodicity. To do this, we
will use Formulas (1) and (2) and calculate the error. As mentioned earlier, the minimum
calculated error is selected for each period value. Table 2 calculates all the minimum errors
for each value of the period from 2 to 11:

Table 2. The results of transforming the previously obtained sequence into a periodic form using the
logistic map.

Period Solutions (n = 15)

2 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

3 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0
0 1 1 0 1 1 0 1 1 0 1 1 0 1 1
0 0 1 0 0 1 0 0 1 0 0 1 0 0 1
1 0 1 1 0 1 1 0 1 1 0 1 1 0 1
0 1 0 0 1 0 0 1 0 0 1 0 0 1 0
1 1 0 1 1 0 1 1 0 1 1 0 1 1 0

4 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
0 1 0 0 0 1 0 0 0 1 0 0 0 1 0
1 0 0 1 1 0 0 1 1 0 0 1 1 0 0
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1
1 0 1 1 1 0 1 1 1 0 1 1 1 0 1
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
0 0 1 0 0 0 1 0 0 0 1 0 0 0 1
0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 0 0 0 1 0 0 0 1 0 0 0 1 0 0
1 1 1 0 1 1 1 0 1 1 1 0 1 1 1
0 1 1 1 0 1 1 1 0 1 1 1 0 1 1
1 1 0 1 1 1 0 1 1 1 0 1 1 1 0

As can be seen from Table 3, in general, the error values decrease with increasing
period values. This is due to the property of unpredictability [3]. It is important to note
that the error values for periods 2 and 4 are identical.

Table 3. The results of calculating all minimum errors for each period value ranging from 2 to 11.

Period MinError

2 0.04357534482380826
3 0.09115647632270596
4 0.04357534482380826
5 0.018129348944227353
6 0.011829551497279324
7 0.0031728354084733235
8 0.0006835432479136291
9 0.001426824949332663
10 0.0005645921357144535
11 0.00038676431381845375

6. Conclusions

During the research, an efficient method utilizing a genetic algorithm was developed
for transforming binary sequences with a size of over 100,000 elements into their periodic
counterparts. This method allows for extracting all possible variations of transformation
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from the original sequence to its periodic form for a specific chosen period value. An analy-
sis was conducted on all obtained variations using sequences generated with the logistic
map. As a result of error calculations for a sequence of size n = 100,000 using a logistic
map for periodicity, minimum errors were obtained for each value of the period from
2 to 11. For example, for period 7, the minimum error was 0.0031728354084733235. To
optimize the genetic algorithm process, an algorithm called MakePeriod was developed,
which yielded results in just 2 generations, as opposed to 2314 previously. The use of the
MakePeriod method reduced the number of generations from 2314 to 2, which represents
an improvement of 99.91%. The concept of error for nonperiodic sequences was introduced,
and these errors were analyzed within the period values ranging from 2 to 11 for sequences
with a size of 100,000. As the period value increases, the error value decreases, which in
turn is due to the unpredictability property. The study of errors in the interval of period
values can also be key to understanding which parameters and conditions can affect the
accuracy of the approximation. Furthermore, a comparative analysis of three different
crossover methods and three mutation methods was performed. The best results were
achieved using single-point crossover with bit inversion, where a solution for a period of
7 was found in just 5 generations. As a result of analyzing the operation of the algorithm of
single-point crossover with mutations, it can be noted that all three mutation variants (bit
inversion, exchange, reversion) lead to a maximum value of 128. Single-point crossover
with bit inversion reached the optimal solution with a period of 7 over 5 generations.
This indicates the effectiveness of the algorithm when using these mutation methods in
combination with single-point crossover. Crossover with uniform distribution showed
the lowest performance, requiring 399 generations to reach a solution. The developed
algorithm offers significant potential for application in cases involving large sequences and
period values. This research approach presents significant potential for solving complex
problems related to the approximation of nonperiodic sequences. The study in this work
demonstrates that with an increase in the period value, the accuracy of approximation
improves, making this method particularly useful for sequences with long periods. It is
also important to note that this work emphasizes the importance of the correct selection of
crossover and mutation methods when applying genetic algorithms to this problem, which,
in turn, affects the convergence speed and efficiency of the algorithms.
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