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ABSTRACT 
In response to the growing demand for enhanced integration of 
implicit measurements in Human-Robot Interaction (HRI) research, 
the need for studies involving physically present robots, and the 
calls for a transition from lab experiments to more naturalistic 
investigations, we introduce the Real-World Implicit Association 
Task (RW-IAT). This report outlines the versatile methodology of 
the RW-IAT; emphasizing its allowance to present real-life stimuli 
and capture behavioral data, including response times and mouse 
tracking metrics in a controlled manner. Sample analyses focusing 
on communicative and noncommunicative actions between a hu-
man actor and the Pepper robot reveal signifcant efects on the 
Agency and Experience dimensions of the mind perception. We 
believe the methodology we proposed will contribute to conducting 
ecologically valid research in the feld of HRI in real-world contexts. 
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• Human-centered computing → Laboratory experiments. 
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1 INTRODUCTION 
In Human-Robot Interaction (HRI) research, the widely-used Wizard-
of-Oz (WoZ) experimental methodology [23] involves participants 
interacting with a robot, unaware of human operator control [41]. 
Beyond its functional inspiration, analyzing characters such as the 
Scarecrow and Tin Woodman from this iconic novel [2] reveals 
nuanced aspects of how our observations infuence our perception 
of others - a core aspect of mind perception discussions in HRI. 
Despite the Scarecrow’s "apparent" lack of a brain, their consistent 
displays of wisdom challenge conventional notions, prompting at-
tributions of mental capacities, such as rationality. Similarly, the Tin 
Woodman, with a metallic exterior and no physical heart, embod-
ies emotional intelligence, leading to attributions, such as empathy. 
These characters exemplify our human capacity to attribute cog-
nitive and emotional abilities, transcending anatomical structures 
and emphasizing the multifaceted nature of mind perception [7]. 

Associating the brain with cognitive functions and the heart with 
emotional capabilities are recurring themes in literature and re-
search. Gray et al. [16] proposed two main dimensions of mind per-
ception: Agency, the ability to do, and Experience, the ability to feel. 
While further studies exploring the possible dimensions of mind per-
ception [29, 48] ofer valuable insights, their reliance on self-reports 
can make their results challenging to reconcile. Acknowledging 
the limitations of explicit measurements highlights the need for ex-
tending the use of implicit measurements [10, 17, 32, 45], grounded 
in behavioral or neuroimaging data, for in-depth explorations of 
complex cognitive processes, such as mind perception. 

Similarly, attributing mental states to entities, adopting the in-
tentional stance [4, 5], is not limited to fction; mind perception can 
arise from the need to understand and predict others’ behavior [7]. 
Consistent with causes and consequences outlined by Waytz et al. 
[47], prior research demonstrated that robots’ expressions of social 
behavior [12, 44], or gestures [42] infuence mental state attribu-
tions. However, these studies primarily utilized texts, images, or a 
combination, as discussed in a recent comprehensive review [45]. 
Notably, humans tend to anthropomorphize a robot more strongly 
when it is physically present [24, 27, 44]. 
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Figure 1: Real-World Implicit Association Task (RW-IAT) setup overview. (A, B, C) The RW-IAT from the experimenter’s view. 
(D) The naturalistic laboratory setup from top-down view. 

Among its counterparts, the original Implicit Association Test 
(IAT) by Greenwald et al. [19], stands out as the most widely used 
psychological tool assessing implicit attitudes. Participants’ reac-
tion times to two conditions of target stimuli indicate their implicit 
attitudes toward the targets based on attribute stimuli. For example, 
in the gender-science IAT [33], participants categorize Male and 
Female attributes under Science and Liberal Arts. Faster and more 
accurate categorization in the initial condition (Male = Science) im-
plies stronger associations between science and male attributes. In a 
recent study, Li et al. [28] introduced the Mind Perception IAT (MP-
IAT) to examine mind perception in human-robot interaction. This 
test measures mental attributions on Agency and Experience di-
mensions, utilizing attributes from the High and Low ends of these 
dimensions and using images of humans and humanoid robots as 
targets. While the MP-IAT is a valuable method with the potential 
to test concepts, images, or videos as target stimuli, it remains a 
computerized task, limiting its ability to present real-world stimuli. 

The scarcity of studies on how individuals perceive the phys-
ically present and active robots, coupled with the necessity for 
real-world investigations outside controlled labs to enhance eco-
logical validity [21, 45], underscores the need for conducting WoZ 
studies with actual robots [6]. In this report, we address these gaps 
as well as the need for implicit measurements by introducing the 
Real-World Implicit Association Test (RW-IAT) to implicitly study 
mind perception in real-time with physically present robots and 
humans and live actions, while capturing participants’ response 
times and mouse trajectories in a controlled manner. RW-IAT is a 
WoZ experiment in a lab environment, yet it uses real-life social 
stimuli, corresponding to the last level before the fully naturalistic 
studies [9], serving as a further step towards "HRI in the real world." 

2 METHODS AND MATERIALS 

2.1 Participants 
As part of a broader social robotics project [35], we collected in-
person data from 160 participants from four generations (ages 18 to 
73). Since this report aims to introduce RW-IAT details, for aligning 
with prior research [28] (N = 53) and facilitating comparisons with 
studies representing conventional age ranges, we present data from 
55 participants (ages 18-35, M = 25.93, SD = 5.59, 33 females). This 
study was approved by the Human Research Ethics Committee of 
Bilkent University. All participants provided informed consent and 
they received approximately 3 USD in compensation. 

2.2 Materials 
Target (Action) Stimuli: Following IAT best practices [18], we 
selected "easy stimuli" systematically via norming. Using Android 
Studio and Pepper SDK’s Animation Editor IDE [8], we created 
40 animations based on action clusters [34] and datasets of com-
municative and noncommunicative actions [30, 50]. We shot stan-
dardized videos, consistent in length, aspect ratio, trajectories, and 
repetitions, with both the Pepper robot and the human actor. 438 
participants tested them in two separate online studies [36], in 
which they identifed actions, rated confdence levels, and catego-
rized them as communicative or noncommunicative. We annotated 
the open-ended answers and calculated the H entropy [43], and 
the k-means clustering algorithm [20, 46] yielded the four most 
straightforward communicative (peek-a-boo, saluting, throwing a 
kiss, hand-waving) and noncommunicative (shooting an arrow, jog-
ging, drinking, driving) actions across human and robot conditions. 
Attribute (Lexical) Stimuli: The target stimuli were live actions, 
the attribute stimuli were verbal concepts: High Agency, Low Agency, 
High Experience, and Low Experience. Following IAT best practices 
[18], participants underwent training to familiarize themselves with 
the Agency and Experience dimensions and their High and Low 
ends. Training concepts were validated in an online norming study 
with 274 participants, as documented in our previous work [37]. 

2.3 Procedure 
To prevent any familiarity- or interaction-related biases, the par-
ticipants provided demographic data and consent and underwent 
additional tests in a separate room. Only after these procedures, 
they entered the main experiment room where the human and 
robot actors were positioned behind a curtain and an experimenter 
was waiting to supervise the session. The Lexical Training involved 
detailed descriptions of Agency and Experience concepts. Partic-
ipants evaluated twelve concepts for each dimension, receiving 
feedback until reaching 80% accuracy. Subsequently, participants 
learned the High and Low ends of Agency and Experience dimen-
sions, evaluating six concepts for each until achieving 80% accuracy. 
Following Lexical Training, participants moved to Action Identifca-
tion, observing eight actions performed by human and robot actors, 
respectively. They verbally identifed each action, serving as famil-
iarization and manipulation checks. After these steps, participants 
started the RW-IAT. 
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2.4 Real-World IAT (RW-IAT) 
The RW-IAT utilizes a 55" OLED display, depicted in Figure 1, that 
functions as both a standard monitor and a transparent screen for 
presenting real-life stimuli. It transitions between an opaque state 
for instructions and prompts (Figure 1.A) or evaluations (Figure 1.C) 
and a transparent state during stimulus presentations (Figure 1.B). 
The RW-IAT uniquely features real-time, live stimuli, distinguishing 
it from existing computerized IATs. The use of the OLED screen 
maintains strict experimental control, setting it apart from fully 
naturalistic experiments that involve sacrifcing control. The use 
of a single platform for stimuli presentation and evaluations in the 
RW-IAT aims for a seamless transition between tasks, minimizing 
potential disruptions in behavioral data crucial for precise response 
times and mouse trajectories [39]. 

With inspiration from the Single Category IAT [22], in RW-IAT, 
we tested the human and robot actor in four separate blocks to ad-
dress the non-complementary nature of these categories. Block con-
tents included Robot-Agency, Robot-Experience, Human-Agency, 
and Human-Experience, and their order was counterbalanced across 
participants while each actor performed the eight actions in a ran-
domized order within the blocks. Participants were instructed to 
observe each action and actor on a transparent screen carefully 
and then evaluate what they saw in terms of the required capacity. 
For instance, in the Robot-Experience Block, participants watched 
the live "peek-a-boo" action performed by the robot actor. After six 
seconds —the duration of all actions—, the screen turned opaque, 
revealing "High Experience" and "Low Experience" choices in the 
upper left and right corners. Participants clicked on one, deciding 
whether what they saw required High or Low Experience capacity. 
Although the participants were encouraged to keep the defnitions 
and examples in the training session in mind during their evalu-
ations, the experimenter also emphasized the need for quick and 
instinctive responses. Both human and robot actors executed all 
actions identically to observe potential variations in participants’ 
judgments based on the actor or action or both. After evaluating 
each of the eight actions in one block, participants waited for the 
actors to replace, marking the start of the next block. 

Figure 1.D illustrates the lab setup with a curtain system dividing 
participant and actor areas. The participant area includes tables and 
devices for the experimenter and participants, while the actor area 
features a cabinet for the actors to wait between blocks and a laptop, 
positioned on top of a table, displaying the next action to inform 
the human actor. Ceiling LEDs enhance the transparency or the 
opaqueness of the screen. Background music is used during actor 
replacements, and the experimenter observes backstage through a 
security camera. The task was implemented using Psychtoolbox-
3 [3, 25, 40] on MATLAB R2022a. Full details of the laboratory 
setup, including hardware, software, and materials, are extensively 
documented in our prior work [38]. 

The RW-IAT involved two independent variables: Actor type: 
robot or human and Action type: communicative or noncommu-
nicative. Participants assessed each actor and action combination 
in both Agency and Experience dimensions. Dependent variables 
included Response Time (RT), the elapsed time in seconds between 
the end of an action and the occurrence of a mouse click on one 
of the response alternatives, Maximum Deviation of a Trajectory 

(MD), and Area Under the Curve (AUC) for mouse trajectories, calcu-
lated following the original work [14] and interpreted as indicators 
of participant hesitations [13, 49]. The fourth dependent variable, 
Response, was categorical, categorized as either High or Low. 

3 RESULTS 
We processed and visualized data with MATLAB 2023b and per-
formed analyses using RStudio 2023.09.1. After identifying outliers 
(eight trials), we categorized the dataset (1750 trials) into Agency 
and Experience blocks and calculated participants’ average scores 
for each dependent variable. Since the Shapiro-Wilk test revealed 
signifcant departures from normal distribution (p < .001) for both 
actor and action types in both block dimensions, we used Fried-
man’s ANOVA [15] as a nonparametric alternative [11] and con-
ducted post hoc analyses using the Nemenyi test [31] to identify 
diferences between data groups. We present the results separately 
for each dependent variable in the Agency and Experience blocks. 

3.1 Agency Dimension 
3.1.1 Actor Type. The RTs (�2(1) = 2.20, p = .14), MDs (�2(1) = 
0.16, p = .69), and AUCs values (�2(1) = 0.16, p = .69) showed no 
signifcant changes across actor types. However, the ratio of High 
responses signifcantly varied by actor type, �2(1) = 5.49, p = .02 (see 
Actor Type in Figure 2.C). Pairwise comparisons indicated that the 
ratio of High Agency responses for the robot actor was signifcantly 
higher than for the human actor, p = .04. 

Figure 2: Mean response times (RT) and High response ratios 
across conditions. 
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Figure 3: Mean maximum deviation (MD) and area under the 
curve (AUC) values across conditions. 

3.1.2 Action Type. There was a main efect of action type on the 
RTs, �2(1) = 8.02, p = .005 (see Action Type in 2.A); MDs, �2(1) 
= 6.56, p = .01 (see Action Type in 3.A); and AUC values, �2(1) 
= 6.56, p = .01 (see Action Type in 3.C), but not on the ratio of 
the High responses (�2(1) = .022, p = .88). Pairwise comparisons 
revealed that the RT, p = .005; MD, p = .01; and AUC values, p = 
.01 were signifcantly longer, higher, and larger, respectively, for 
communicative actions compared to noncommunicative actions. 

3.2 Experience Dimension 
3.2.1 Actor Type. The type of the actor signifcantly afected the 
RTs, �2(1) = 11.36, p < .001 (see Actor Type in Figure 2.B); MDs, 
�2(1) = 4.09, p = .04 (see Actor Type in Figure 3.B); AUC values, 
�2(1) = 5.25, p = .02 (see Actor Type in Figure 3.D), and the ratios of 
the High responses, �2(1) = 7.11, p = .008 (see Actor Type in Figure 
2.D). Pairwise comparisons revealed that the robot actor elicited 
signifcantly longer RT, p < .001; higher MD, p = .04; and larger AUC 
values, p = .02, but a signifcantly lower ratio of High Experience 
responses compared to the human actor, p = .03. 

3.2.2 Action Type. The RTs (�2(1) = 0.45, p = .50), MDs (�2(1) = 0.02, 
p = .89), and AUC values (�2(1) = 0.45, p = .50) did not signifcantly 
change across action types. However, there was a signifcant efect 
of the action type on the ratio of High responses of the participants, 
�2(1) = 15.87, p < .001 (see Action Type in Figure 2.D). Pairwise 
comparisons revealed that the ratio of High Experience responses 
for the communicative actions was signifcantly higher compared 
to the ratio for the noncommunicative actions, p < .001. 

4 DISCUSSION 
We introduced the RW-IAT, which we designed by following the 
best practices of creating an IAT [18], to explore mind perception 
implicitly, using real-world stimuli performed by both human and 
robot actors. With the RW-IAT, we investigated how attributions of 
mental capacity on the Agency and Experience dimensions of mind 
perception change across diferent actor and action types. In addi-
tion to traditional IAT metrics such as responses and response times, 
we also tracked participants’ mouse trajectories. This additional 
data enables further investigations into the cognitive processes 
involved [13], aligning with discussions [49] and recommendations 
in previous work [45]. 

In the results, action type notably afected behavioral metrics 
in the Agency dimension, with communicative actions leading to 
longer response times and increased hesitations. The robot actor 
showed a signifcantly higher response ratio in the Agency di-
mension, possibly due to participants’ lowered expectations of its 
capabilities, as refected in their surprised comments while they 
watched the actions such as "The robot can do everything a hu-
man can do!" or "They perform almost the same!", refecting the 
infuence of the live-action performance of the robot. In contrast, a 
human performing similar actions might have stayed within or be-
low participants’ agency thresholds. Previous studies also suggest 
a reduced diference in mental state attributions between robots 
and humans when their behaviors are tested [1, 26]. 

On the contrary, in the Experience dimension, the efect of the 
actor type prevails, with the robot actor eliciting longer decision 
times and more hesitations, yet leading to signifcantly lower Expe-
rience scores compared to the human actor. Notably, action type 
signifcantly afected response ratios, with communicative actions 
yielding higher rates than noncommunicative ones. The observed 
hesitation diferences between human and robot actors may be 
attributed to the nature of communicative actions. Previous stud-
ies have suggested that when robots engage in social behaviors, 
people’s judgments can change [12, 42, 44]. However, robots still 
received lower attributions, as indicated in most prior work [45]. 

In conclusion, the RW-IAT shows promise based on observed 
outcomes in the sample data. While the investigations in applied 
domains of HRI often extend into real-world scenarios, investiga-
tions regarding the dynamics of cognitive processes, such as mind 
perception, may still require experimental control for behavioral 
data accuracy. While initially designed for studying mind percep-
tion in HRI, RW-IAT’s methodology could be adapted to the studies 
from various domains deploying neuroimaging or eye-tracking 
methodology and using real-life stimuli with precise timing and 
pre-defned conditions. Future directions include further validation 
of this methodology, and we view this naturalistic yet controlled 
approach as a signifcant step towards increased ecological validity, 
embracing investigations into HRI in real-world scenarios. 
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