
1

Eliminating Media Noise While Preserving Storage
Capacity: Reconfigurable Constrained Codes for

Two-Dimensional Magnetic Recording
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Abstract

Magnetic recording devices are still competitive in the storage density race with solid-state devices thanks to new technologies
such as two-dimensional magnetic recording (TDMR). TDMR offers remarkable storage density increase without the need for
new magnetic materials; however, advanced data processing schemes are needed to guarantee reliability. Data patterns where a bit
is surrounded by complementary bits at the four positions with Manhattan distance 1 on the TDMR grid are called plus isolation
(PIS) patterns, and they are error-prone. Recently, we introduced lexicographically-ordered constrained (LOCO) codes, namely
optimal plus LOCO (OP-LOCO) codes, with minimal redundancy that prevent these patterns from being written in a TDMR
device. However, in the high-density regime or the low-energy regime (as the device ages), additional error-prone patterns emerge,
specifically data patterns where a bit is surrounded by complementary bits at only three positions with Manhattan distance 1, and
we call them incomplete plus isolation (IPIS) patterns. In this paper, we present capacity-achieving codes that forbid both PIS
and IPIS patterns in TDMR systems with wide read heads. Because of their shape, we collectively call the PIS and IPIS patterns
rotated T isolation (RTIS) patterns, and we call the new codes optimal T LOCO (OT-LOCO) codes. We analyze OT-LOCO codes
and derive their simple encoding-decoding rule that allows reconfigurability. We also present a novel bridging idea for these codes
to further increase the rate. Our simulation results demonstrate that OT-LOCO codes not only remarkably outperform OP-LOCO
codes, but also entirely eliminate media noise effects at practical TD densities in the range [0.6, 0.8) with high rates in the range
[0.81, 0.83]. To further preserve the storage capacity, we suggest using OP-LOCO codes, which have higher rates than OT-LOCO
codes, early in the device lifetime, then employing the reconfiguration property to switch to OT-LOCO codes later in the device
lifetime. While the point of reconfiguration on the density/energy axis is decided manually at the moment, the next step is to
use machine learning to make that decision based on the TDMR device status. Moreover, we introduce another coding scheme
to remove RTIS patterns in TDMR systems which offers lower complexity, lower error propagation, and track separation, at the
expense of a limited rate loss.

Index Terms

Two-dimensional magnetic recording, media noise, data storage, storage capacity, isolation patterns, constrained codes, lexi-
cographic ordering, LOCO codes, reconfigurable codes.

I. INTRODUCTION

The fierce storage density race between magnetic products and solid-state products has motivated creativity in a variety of
areas, such as physics, architecture, and data processing, in order to invent new storage technologies. One of the cutting-edge
magnetic technologies is two-dimensional magnetic recording (TDMR) [1], [2]. Since its introduction, the TDMR technology
has promised storage densities of up to 10 terabits per square inch [1], [3], [4]. What makes TDMR specifically attractive is
that the additional density increase compared with one-dimensional magnetic recording products emerges through architectural
ideas, such as track squeezing and shingled writing [2], [5], along with advanced data processing schemes [6], [7], i.e., without
the need for new magnetic materials.

Constrained codes prevent errors from happening in data storage and transmission systems. Since Shannon discussed
constrained systems in 1948 [8], these codes have found a wide range of applications in various technologies. In early one-
dimensional magnetic recording (ODMR) devices, constrained codes were used to control transition separation, remarkably
contributing to the density increase [9], [10], and they are still used to improve reliability in modern ODMR devices [11],
[12]. In Flash memory devices, constrained codes are used to mitigate inter-cell interference due to charge propagation [13],
which can extend the device lifetime [14], [15]. These codes also find application in optical recording devices [16] as well as
multiple data-transmission computer standards [17]. A recent study of the power spectral density for some of these codes in
data storage systems can be found in [18].
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The scientific debate on whether to use finite-state machines (FSMs) or lexicographic indexing to design constrained codes
started more than 50 years ago. While Franaszek among others designed various FSM-based constrained codes in the 1960s and
the 1970s [19], the first design of run-length-limited (RLL) constrained codes, presented by Tang and Bahl in 1970, was based
on lexicographic indexing [9]. In 1983, Adler, Coppersmith, and Hassner introduced a systematic method to design FSM-based
constrained codes [20], and many researchers adopted their method afterwards [10], [11]. While a variety of constrained codes
based on lexicographic indexing (also called enumerative codes) were introduced [21]–[23], including our recent work [12], [15],
[15], a systematic method for such design was missing. In 2022, we introduced a general method to design lexicographically-
ordered constrained (LOCO) codes [24] based on the 1973 result of Cover [25], and we used this method to design different
LOCO codes for various applications [26]. LOCO codes are capacity-achieving, systematic, reconfigurable, and offer simplicity
of encoding-decoding [12], [24].

In TDMR, data patterns involving a bit surrounded by complementary bits, i.e., isolated, horizontally and vertically are
error-prone [5], [27]. Since the discretized TD channel impulse response is typically 3 × 3, grids of such size are typically
considered. These isolation patterns can take the shape of a square, where the bit at the center is surrounded by 8 complementary
bits on the 3 × 3 grid [28], and these are called square isolation (SIS) patterns, or can take the shape of a plus sign, where
the bit at the center is surrounded by 4 complementary bits at Manhattan distance 1 [5], [27], [29], and these are called plus
isolation (PIS) patterns [24]. Research works studying the capacity of TD constrained codes and suggesting TD bit-stuffing
techniques include [29], [30], and [31]. When the TDMR system adopts a wide read head, which accesses 3 adjacent down
tracks at the same time [2], [6], the TD binary constraints can be converted into one-dimensional 8-ary constraints, allowing
systematic constrained (LOCO) coding schemes designed via the general method. In particular, we introduced optimal plus
LOCO (OP-LOCO) codes to eliminate PIS patterns [24].1

Our contribution in this paper is threefold:
1) We show that a new set of error-prone patterns emerges at higher-interference and/or lower-energy stages of the TDMR

device lifetime. In particular, these are data patterns where a bit is surrounded by only 3 complementary bits at Manhattan
distance 1 on the 3 × 3 grid, and they are called incomplete PIS (IPIS) patterns. We focus on IPIS patterns where the
victim bit is on the middle down track. Collectively, PIS and IPIS patterns have a T shape that can be rotated, and
that is why we call them rotated T isolation (RTIS) patterns. Consequently, we design optimal T LOCO (OT-LOCO)
codes to eliminate RTIS patterns. OT-LOCO codes incur limited capacity loss compared with OP-LOCO codes, despite
adding many new patterns to forbid. We enumerate OT-LOCO codewords, then develop their simple encoding-decoding
rule step-by-step mathematically via the aforementioned general method. We also suggest a novel bridging scheme that
allows encoding bits within bridging intervals.

2) We demonstrate the effectiveness of the proposed codes via simulation results performed on a practical TDMR model
[5]. We show that OT-LOCO codes notably outperform OP-LOCO codes at various densities, where the energy per input
bit is fixed. At TD densities in the range from 0.6 to just below 0.8, we show that OT-LOCO codes can entirely eliminate
media noise, i.e., interference, remarkably improving the performance while preserving the TDMR storage capacity by
requiring a rate only between 0.81 and 0.83. Moreover, we exploit the reconfigurability feature offered by LOCO codes
to switch between OP-LOCO and OT-LOCO codes depending on the performance/capacity. In particular, when the device
is fresh (low interference or high energy), OP-LOCO codes are used to increase storage capacity, and we reconfigure
to OT-LOCO codes as the performance worsens. Reconfiguration decisions are made based on our assessment at the
moment, but machine learning can be used to make such decisions instead based on online identification of device status
and/or offline channel modeling.

3) We devise a new constrained coding scheme to eliminate RTIS patterns in TDMR systems at lower complexity and lower
error propagation, at the expense of a limited rate loss, compared with OT-LOCO codes. We call the new coding scheme
simple T LOCO (ST-LOCO) coding scheme, and it comprises leaving the lower down track in each group of 3 down
tracks uncoded and designing a LOCO code for the upper and middle tracks only. This coding scheme also allows lower
track data to be passed immediately to the next data processing stage without waiting for data on the other two tracks.
We provide the mathematical analysis of the new coding scheme.

The rest of the paper is organized as follows. In Section II, we present the practical TDMR system model we are using and
motivate the need for new constrained codes. In Section III, we define the proposed OT-LOCO codes, enumerate the codewords,
and derive the encoding-decoding rule. We also show how to bridge and find the code rate. In Section IV, we present our
simulation results, demonstrating performance gains, and suggest how to reconfigure the used LOCO code. In Section V, we
introduce and analyze the ST-LOCO coding scheme and show its advantages. In Section VI, we conclude the paper and state
some future work.

II. TDMR SYSTEM MODEL AND MOTIVATION

In this section, we describe the practical TDMR system we are adopting, we provide error profiles for the uncoded TDMR
system that demonstrate the need for new constrained codes in the high-density regime or the low-energy regime (older device),
and we compute the capacity of such codes.

1Throughout the paper, optimality is rate-wise (minimal redundancy).
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(a) The detrimental square isolation or SIS patterns (shaped as
a square).

· 0 ·

0 1 0

· 0 ·

· 1 ·

1 0 1

· 1 ·

(b) The detrimental plus isolation or PIS patterns, (shaped as a
plus sign).

Fig. 1. The detrimental SIS and PIS patterns. An error is highly likely to occur on the circled bit at the center even if the device is relatively fresh.

Now, we describe the practical TDMR model used in the experiments and define channel parameters. Each bit in the TD
system is considered to be a rectangular cell or grid entry characterized by the track width TW and the bit period BP , which
are defined as the bit length in the cross-track direction (or equivalently, the width of the down track) and the bit length in the
down-track direction (or equivalently, the width of the cross track), respectively.

In the read procedure, 3 adjacent down tracks are read at the same time by the wide read head the TDMR model adopts [2],
[6], [28]. The TD read-head impulse response duration at half the amplitude in the cross-track and the down-track directions
are defined as PW50,CT and PW50,DT, respectively.

The TD channel density DTD is then [6]:

DTD =
PW50,CT × PW50,DT

TW ×BP
. (1)

Moreover, the TD energy metric ETD we are using is the area of a bit (a cell) on the TD grid, i.e.,

ETD = TW ×BP (2)

Increasing the TD channel density DTD in (1) results in degraded system performance as it intensifies interference in both
down and cross track directions. Decreasing the TD energy metric ETD in (2) results in degraded system performance due to
higher impact of media noise.

Let the number of down tracks in the TD grid be D, and let the indices of down tracks be 0, 1, 2, 3, . . . , D − 1, where
3 | D. Then, considering the wide read head adopted by our TDMR model, the down tracks can be partitioned into groups
of 3 adjacent tracks to be read simultaneously as (0, 1, 2), (3, 4, 5), (6, 7, 8), . . . , (D − 3, D − 2, D − 1). Interference in the
cross-track direction from a group into another group is negligible [2], [28]. Consequently, we have the discretized TD channel
(read-head) impulse response as a 3× 3 matrix representing the intersection of 3 adjacent down tracks in the same group with
3 consecutive cross tracks.

Since level-based signaling is adopted here, a 0 is converted into level −A indexed by 0, and a 1 is converted into level +A
indexed by 1 upon writing. Interference on the same down track (inter-symbol interference or ISI) and on the same cross track
(inter-track interference or ITI) can result in the level at the central position of any 3 × 3 TD grid changing its sign, which
results in an error upon reading if this level is isolated. This means the level at the central position is surrounded on the TD
grid by 8 levels, by 4 levels at Manhattan distance 1, or by 3 levels at Manhattan distance 1 with the complementary sign,
and the sets of equivalent 3× 3 binary patterns resulting in such isolation are the set of square isolation (SIS) patterns, the set
of plus isolation (PIS) patterns, and the set of incomplete plus isolation (IPIS) patterns, respectively. The set of PIS and IPIS
patterns collectively is the set of rotated T isolation (RTIS) patterns. RTIS patterns subsume PIS patterns, and PIS patterns in
turn subsume SIS patterns.

SIS, PIS, and RTIS patterns earn their names from their shapes, as shown in Fig. 1(a), Fig. 1(b), and Fig. 2, respectively.
Consider the bit at the center of the 3× 3 TD grid. There are only 2 SIS patterns as shown in Fig. 1(a). There are 2× 24 = 32
PIS patterns as shown in Fig. 1(b) since a “·” in Fig. 1(b) or Fig. 2 means 0 or 1. For an IPIS pattern to occur, exactly 3 bits
at Manhattan distance 1 has to be the complements of the bit at the grid central position as shown in Fig. 2. Thus, there are
2×

(
4
3

)
× 24 = 128 IPIS patterns, which results in a total of 32 + 128 = 160 RTIS patterns.
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SIS patterns are the most detrimental patterns. However, they are less likely to occur under random writing [24], [28]. PIS
patterns were introduced since bits at the corners cause less interference than bits at positions with Manhattan distance 1 with
respect to the center [5], [27]. PIS patterns are 32/2 = 16 times more likely to occur compared with SIS patterns under random
writing. IPIS patterns are less detrimental than PIS patterns, but they are 128/32 = 4 times more likely to occur on the middle
track in each group of down tracks. We show in this section that IPIS patterns dominate the error profile at high density or
low energy, motivating the need for new constrained codes that eliminate RTIS patterns.

· 0 ·

· 1 0

· 0 ·

· 0 ·

0 1 ·

· 0 ·

(a) The symbol α forms error-prone patterns when it is adjacent
to any symbol β1 ∈ {0, 1, α3, α4}.

· 1 ·

· 0 1

· 1 ·

· 1 ·

1 0 ·

· 1 ·

(b) The symbol α4 forms error-prone patterns when it is
adjacent to any symbol β2 ∈ {α, α2, α5, α6}.

· 0 ·

0 1 0

· · ·

· · ·

0 1 0

· 0 ·

(c) Any two symbols β̄1, β1 ∈ {0, 1, α3, α4} form error prone
patterns when a symbol βt

3 ∈ {α, α2, α5} is in between them.

· 1 ·

1 0 1

· · ·

· · ·

1 0 1

· 1 ·

(d) Any two symbols β̄2, β2 ∈ {α, α2, α5, α6} form error
prone patterns when a symbol βt

4 ∈ {1, α3, α4} is in between
them.

Fig. 2. The detrimental rotated T isolation or RTIS patterns (shaped as the letter T rotated). The likelihood of an error on the circled bit at the center if an
RTIS pattern is an IPIS pattern increases as the device ages.

Next, we discuss our uncoded TDMR system setup. We have the writing setup, the channel setup, and the reading setup.
Writing setup: We generate random binary data. Before writing to the tracks, level-based signaling is applied, which converts

each 0 into −1 and each 1 into +1. Upon writing, these −1 and +1 values will be updated to values depending on TW and
BP , i.e., the TD bit energy.

Channel setup: Our baseline channel model is the TDMR model in [5], which is a Voronoi model. Here, we only consider
media noise/interference. We modify this model such that it is suitable for a wide read head that reads data from 3 adjacent
down tracks simultaneously. In particular, the upper and lower tracks of each group of 3 adjacent down tracks have additional
protection from interference in the cross track direction [24]. Thus, the middle down track in each group suffers from the
highest level of interference compared with the upper and lower down tracks [2], [28].

In the simulations, we have two sweep setups. First, we sweep the TD channel density DTD given in (1). This is performed
as follows. The parameters PW50,CT and PW50,DT are fixed at 20.00 nm and 14.00 nm, respectively. The parameter TW is
swept between 15.81 nm and 22.36 nm, while the parameter BP is swept between 11.07 nm and 15.65 nm. We keep the ratio
TW/BP the same at all sweep points according to:

TW

BP
=

PW50,CT

PW50,DT
=

10

7
. (3)

Thus, and using (1), the TD density DTD is swept between 1.60 and 0.80. Observe that the range of the TD density simulated
could be higher in a TDMR system with equalization, detection, and low-density parity-check (LDPC) coding customized for
magnetic recording [6].

Second, we sweep the TD bit energy metric ETD = TW ×BP . This is performed as follows. The parameters PW50,DT and
BP are both fixed at 7.0 nm. The parameters PW50,CT and TW are both swept between 11.14 nm and 428.57 nm. We keep
the ratio PW50,CT/TW the same at all sweep points according to:

PW50,CT

TW
=

PW50,DT

BP
= 1.00. (4)

Thus, and using (1), the TD density DTD is fixed at 1.00, while ETD is swept between 78.0 and 3000.0.
The channel input here is grids of random uncoded data with 3 rows each after signaling is applied. The channel output

is created by applying Voronoi media noise/interference to these input grids. Here, we take the aforementioned protection of
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Fig. 3. The evolution of TDMR error profile with TD density. PIS (IPIS) error percentage decreases (increases) as TD density increases.

Fig. 4. The evolution of TDMR error profile with TD energy. PIS (IPIS) error percentage decreases (increases) as TD energy decreases.

the upper and lower tracks in each group of 3 down tracks into account. The channel effect is equivalent to applying the TD
convolution between the input grids and the 3× 3 discretized read-head impulse response with media noise.

Reading setup: For each grid with 3 rows generated from the channel, hard decision is performed based on the value at each
position; if the value is less than or equal to zero, the bit is read as 0, while if the value is greater than zero, the bit is read as
1. If the read bit differs from the corresponding one at the relevant input grid, a bit error is counted. An error is characterized
according to the input grid corresponding to the 3× 3 grid having the read bit at its center as either PIS error, IPIS error, or
random error. Because of adopting a wide read head in the TDMR system, the probability that interference causes an error on
the upper or the lower track in each group of 3 adjacent down tracks is notably lower than that on the middle track in the
same group.

We are now ready to discuss the error profiles at the output of the TDMR channel for the uncoded case. Both Fig. 3 and
Fig. 4 confirm the observations that the error profile at low interference levels (limited media noise and fresh device status) is
dominated by errors resulting from PIS patterns, or in short PIS errors. In particular, Fig. 3 shows that at the low TD density
DTD = 0.8, 95.1% of the errors are PIS errors. Moreover, Fig. 4 shows that at the high TD energy metric ETD ≈ 2000 nm2,
98.0% of the errors are PIS errors. Observe that the lower the TD density or the higher the TD energy, the lower the interference
and media noise [6]. This observation is not surprising, as it is consistent with the findings in, for example, [5] and [24].

What is unique about these error profile plots we present is they demonstrate that the profile dynamics change as the density
increases or as the energy decreases, i.e., as the device gets older. The growth of media noise increases the share of IPIS errors,
making it possible for only 3 complementary bits at Manhattan distance 1 from the center to cause an error at the center. In
particular, Fig. 3 shows that at the moderate TD density DTD = 1.1, the share of PIS errors reduces to 78.5%, while the share
of IPIS errors increases to 21.5%. Moreover, Fig. 4 shows that at the moderate TD energy metric ETD ≈ 395, the share of
PIS errors reduces to 65.9%, while the share of IPIS errors increases to 32.5%. More intriguingly, there is a cross-point on
both plots where the share of IPIS errors exceeds that of PIS errors. In particular, Fig. 3 shows that at the high TD density
DTD = 1.6, the share of PIS errors drops to 47.2%, while the share of IPIS errors soars to 50.6%. Moreover, Fig. 4 shows that
at the low TD energy metric ETD = 78, the share of PIS errors drops to 26.4%, while the share of IPIS errors soars to 49.9%.

Both the density and the energy performance plots we discussed motivate the need for new constrained codes. These new
codes should be capable of preventing both PIS and IPIS patterns, and should also be reconfigurable. The reconfigurability
property allows us to use constrained codes preventing only PIS patterns, namely OP-LOCO codes, at the early and intermediate
stages of the TDMR device lifetime, then switch to constrained codes preventing both PIS and IPIS patterns, namely OT-LOCO
codes that prevent collectively RTIS patterns, as the device gets older. The experimental results in this section are the main
motivation behind this work.
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Systematic efficient TD constrained codes, which are codes that prevent specific data patterns both horizontally and vertically,
are notoriously hard to design. They are even quite difficult to study asymptotically [30], [31]. Here, we make use of a property
in the TDMR system, the wide read head as discussed above, to convert the two-dimensional binary constrained coding
problem into a one-dimensional non-binary constrained coding problem. This makes the constrained codes we design for
TDMR systematic and more efficient than the ones in the literature. Let GF(2) = {0, 1} and GF(8) = {0, 1, α, α2, . . . , α6},
where GF refers to Galois field and α is a primitive element of GF(8). In the new problem, a symbol in GF(8) represents
a column with 3 bits to be written on 3 adjacent down tracks in the same group. We use the following standard mapping-
demapping:

0←→ [0 0 0]T, 1←→ [0 0 1]T,

α←→ [0 1 0]T, α2 ←→ [0 1 1]T,

α3 ←→ [1 0 0]T, α4 ←→ [1 0 1]T,

α5 ←→ [1 1 0]T, α6 ←→ [1 1 1]T. (5)

Next, we mathematically formulate the sets of patterns to forbid in various optimal LOCO codes for TDMR. As discussed
above, the reconfigurability feature of LOCO codes can be exploited to prolong the reliability of the TDMR device without
trading off storage capacity.

We introduce the sets of GF(8) patterns equivalent to the SIS, PIS, and RTIS 3 × 3 error-prone patterns described above.
There are only 2 SIS patterns, shown in Fig. 1(a), which map to the 2 GF(8) patterns in the set:

OS8 ≜ {0α0, α6α4α6}. (6)

There are 32 PIS patterns, shown in Fig. 1(b). PIS patterns subsume SIS patterns and map to the 32 GF(8) patterns given by
the set:

OP8 ≜ {β̄1αβ1, β̄2α
4β2, ∀β̄1, β1 ∈ {0, 1, α3, α4}, ∀β̄2, β2 ∈ {α, α2, α5, α6}}. (7)

In [24], optimal square LOCO (OS-LOCO) and optimal plus LOCO (OP-LOCO) codes, which are optimal with respect to
the rate, were proposed to prevent SIS and PIS patterns, respectively. Although SIS patterns are the most detrimental subclass
of PIS patterns, it should be noted that the bits at the corners of the 3× 3 grid cause less interference than the bits at positions
with Manhattan distance 1 from the center. Also, PIS patterns are 16 times more likely to occur compared with SIS patterns
under unbiased writing. However, preventing PIS patterns for higher reliability incurs some rate loss compared with preventing
SIS patterns. Consequently, the normalized capacity Cn, for OS-LOCO codes is Cn = 0.9981 [28], whereas it is Cn = 0.9710
for OP-LOCO codes.

In this work and under the reconfigurability setup, we utilize OP-LOCO codes, defined below, to eliminate SIS and PIS
patterns at the low-density or the high-energy regime (fresh device).

Definition 1 (OP-LOCO Code). An OP-LOCO code, OPC8m, is defined by the following properties:
1) Codewords in OPC8m are defined over GF(8), the code alphabet, and are of length m symbols.
2) Codewords in OPC8m are lexicographically ordered.
3) Codewords in OPC8m do not contain any patterns from the set OP8.
4) Any codeword satisfying the above properties is included in OPC8m .

A set of sequences defined over GF(q), where q is the field order/size, is said to be lexicographically ordered if its sequences
are sorted in ascending order following the rule 0 < 1 < α < α2 < · · · < αq−2 and the symbol significance gets smaller from
left to right.

As per the motivation of the work detailed above, a new set of error-prone patterns emerges as the density increases or the
energy decreases (older device), namely the set of IPIS patterns, resulting in a new set of interest, namely the set of RTIS
patterns. There are 160 RTIS patterns (32 PIS and 128 IPIS). While discussing RTIS patterns, we ignore the “·” bits. The set
of RTIS patterns can be viewed as the expansion of OP8 in (7) into the following four sets of detrimental patterns. T1 and
T2, illustrated in Fig. 2(a) and 2(b), respectively, are the sets of patterns where two of the complementary bits are in the same
column as the isolated bit at the center:

T1 ≜ {αβ1, β1α, ∀β1 ∈ {0, 1, α3, α4}},

T2 ≜ {α4β2, β2α
4, ∀β2 ∈ {α, α2, α5, α6}}.

T3 and T4, illustrated in Fig. 2(c) and 2(d), respectively are the sets of patterns where two of the complementary bits are in
the same row as the isolated bit at the center (complementary bits surrounding the isolated bit are in 3 columns):

T3 ≜ {β̄′
1β

t
3β

′
1,∀β̄1, β1 ∈ {0, 1, α3, α4},∀βt

3 ∈ {α, α2, α5}},

T4 ≜ {β̄′
2β

t
4β

′
2,∀β̄2, β2 ∈ {α, α2, α5, α6},∀βt

4 ∈ {1, α, α3}}.
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F1

F2

F3

F4
0, 1,
α3

α2, α5

α6

α4

α

α 2
, α 5

, α 6

α

α2, α5,
α6

1, α3

0

α4

0, 1, α 3

Fig. 5. An FSTD representing an infinite OT 8-constrained sequence where patterns in OT 8 are prevented.

We merge these sets of forbidden patterns in a way that the union is minimal, i.e., every pattern in the final set of forbidden
patterns OT 8 is a first offender:

OT 8 ≜ {αβ1, β1α, α4β2, β2α
4, β̄′

1β3β
′
1, β̄′

2β4β
′
2, ∀β1 ∈ {0, 1, α3, α4}, ∀β̄′

1, β
′
1 ∈ {0, 1, α3},

∀β2 ∈ {α, α2, α5, α6}, ∀β̄′
2, β

′
2 ∈ {α2, α5, α6}, ∀β3 ∈ {α2, α5}, ∀β4 ∈ {1, α3}}. (8)

Although the set of forbidden patterns OT 8 covers 160 patterns out of 29 = 512 possible ones for the 3×3 TDMR grid of bits,
as it turns out, the capacity, i.e., the highest achievable rate, of a constrained code preventing these patterns is surprisingly high,
which preserves storage capacity. Here, the unique reconfigurability feature of LOCO codes is quite advantageous in prolonging
the device lifetime as it enables the same hardware to support multiple LOCO codes. Thus, we introduce new optimal LOCO
codes, named optimal T LOCO (OT-LOCO) codes, to improve the reliability of TDMR systems at moderate/long lifetimes by
preventing RTIS patterns.

Remark 1. The highest achievable rate of a given T -constrained code Cq
m, with alphabet GF(q), length m, set T of forbidden

patterns, and cardinality Nq(m), is the graph entropy of the finite-state transition diagram (FSTD) representing the constraint.
Let the adjacency matrix of the FSTD be F and the maximum real positive eigenvalue of the characteristic polynomial of F
be λmax(F). Then, the capacity is [8], [10]:

C = lim
m→∞

log2 Nq(m)

m
= log2(λmax(F)). (9)

The FSTD of an infinite OT 8-constrained sequence where the patterns in OT 8 are prevented is given in Fig. 5. The
corresponding adjacency matrix is:

F1 =


3 2 1 1
0 1 0 3
3 0 1 0
1 1 2 3

 . (10)

The characteristic polynomial of F1 is:

det(xI− F1) = x4 − 8x3 + 15x2 − 10x− 25 = (x2 − 3x+ 5)(x2 − 5x− 5). (11)

Using (9), the capacity C, in input bits per coded symbol, and the normalized capacity Cn of OT-LOCO codes are:

C = log2(λmax(F1)) = log2(5.8541) = 2.5494, (12)

Cn =
1

3
C = 0.8498. (13)

Observe that x = λmax(F1) is a root of the irreducible factor (x2− 5x− 5) of the characteristic polynomial, which means this
factor also verifies the final OT-LOCO cardinality formula (14).
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III. OPTIMAL T LOCO (OT-LOCO) CODES

In this section, we design the OT-LOCO codes following the general method proposed in [24] for designing constrained
codes based on lexicographic indexing. We begin by formally defining OT-LOCO codes:

Definition 2 (OT-LOCO Code). An OT-LOCO code, OT C8m, is defined by the following properties:
1) Codewords in OT C8m are defined over GF(8), the code alphabet, and are of length m symbols.
2) Codewords in OT C8m are lexicographically ordered.
3) Codewords in OT C8m do not contain any patterns from the set OT 8 in (8).
4) Any codeword satisfying the above properties is included in OT C8m .

Now, we apply the steps of the aforementioned general method to develop the encoding and decoding schemes that are
based on the encoding-decoding function g(c), which gives the lexicographic index of any codeword c ≜ cm−1cm−2 . . . c0
in OT C8m. The main purpose of these steps is to find a formula for the lexicographic index g(c) as a function of codeword
symbols and code cardinalities at various lengths.

First, we specify the group structure. Using the forbidden patterns in OT 8, we determine the initial groups of OT C8m as
explained below. Observe that some group merging is applied during the procedure for convenience. Moreover, initial groups
of sequences starting with forbidden subsequences according to OT 8 in (8), e.g., 0α2α4, are directly omitted for brevity.

• For the patterns 0α2β′
1, β′

1 ∈ {0, 1, α3}, there is an initial group having all the codewords starting with 0α2β2, β2 ∈
{α, α2, α5, α6}, from the left. There are six more initial groups having all the codewords starting with 0β5, a group for
each symbol β5 ∈ GF(8) \ {α, α2}, from the left. There are seven more initial groups for codewords starting with each
element in GF(8) \ {0} from the left. Since all of the initial groups having prefixes of length 1 are to be eliminated later
as there are initial groups with prefixes of length 2 starting with each element in GF(8), we skip these initial groups for
the rest of the patterns. We do the same for the patterns 1α2β′

1 and the patterns α3α2β′
1, β′

1 ∈ {0, 1, α3}.
• For the patterns 0α5β′

1, β′
1 ∈ {0, 1, α3}, there is an initial group having all the codewords starting with 0α5β2, β2 ∈

{α, α2, α5, α6}, from the left. There are six more initial groups having all the codewords starting with 0β6, a group for
each symbol β6 ∈ GF(8) \ {α, α5}, from the left. We do the same for the patterns 1α5β′

1 and the patterns α3α5β′
1,

β′
1 ∈ {0, 1, α3}.

• Similarly, for the patterns α21β′
2 (α2α3β′

2), β′
2 ∈ {α2, α5, α6}, there is an initial group having all the codewords starting

with α21β1 (α2α3β1), β1 ∈ {0, 1, α3, α4}, and six more initial groups having all the codewords starting with α2β7 (α2β8),
a group for each symbol β7 ∈ GF(8) \ {1, α4} (β8 ∈ GF(8) \ {α3, α4}), from the left. We do the same for the patterns
α51β′

2, (α5α3β′
2) and the patterns α61β′

2, (α6α3β′
2), β′

2 ∈ {α2, α5, α6}.
• For the patterns αβ1, there is an initial group having all the codewords starting with αβ2, β2 ∈ {α, α2, α5, α6}, from the left.

Similarly, for the patterns, α4β2, there is an initial group having all the codewords starting with α4β1, β1 ∈ {0, 1, α3, α4},
from the left.

• For the patterns 0α, 1α, and α3α, there exist seven initial groups per pattern having all the codewords starting with 0β9,
1β9, and α3β9, one for each symbol β9 ∈ GF(8)\{α}, from the left. For the pattern α4α, there is an initial group having
all the codewords starting with α4β1, β1 ∈ {0, 1, α3, α4}. Observe that the patterns β2α are complements of the patterns
β1α

4, and thus, the initial groups for the latter are also complements of the initial groups of the former.
Two GF(q) symbols are said to be complements over GF(q) if their integer level-equivalents sum to q− 1. If c ∈ GF(q), its

integer level-equivalent is L(c) ≜ gflogα(c) + 1 if c ̸= 0, and L(c) ≜ 0 if c = 0. Thus, c1 and c2 are complements over GF(q)
if L(c1) + L(c2) = q − 1. For example, α and α4 are complements over GF(8).

After performing group merging on these initial groups, we end up with 8 final groups covering all the codewords in OT C8m:
• Group 1 contains all the codewords starting with 0 from the left.
• Group 2 contains all the codewords starting with 1 from the left.
• Group 3 contains all the codewords starting with αβ2, β2 ∈ {α, α2, α5, α6}, from the left.
• Group 4 contains all the codewords starting with α2 from the left.
• Group 5 contains all the codewords starting with α3 from the left.
• Group 6 contains all the codewords starting with α4β1, β1 ∈ {0, 1, α3, α4}, from the left.
• Group 7 contains all the codewords starting with α5 from the left.
• Group 8 contains all the codewords starting with α6 from the left.
Group 1 is further partitioned into 7 subgroups:
• Subgroup 1.1 contains all the codewords starting with 00 from the left.
• Subgroup 1.2 contains all the codewords starting with 01 from the left.
• Subgroup 1.3 contains all the codewords starting with 0α2β2 from the left.
• Subgroup 1.4 contains all the codewords starting with 0α3 from the left.
• Subgroup 1.5 contains all the codewords starting with 0α4 from the left.
• Subgroup 1.6 contains all the codewords starting with 0α5β2 from the left.
• Subgroup 1.7 contains all the codewords starting with 0α6 from the left.
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The same partitioning applies to Group 2 and Group 5.
Similarly, Group 8 is further partitioned into 7 subgroups:
• Subgroup 8.1 contains all the codewords starting with α60 from the left.
• Subgroup 8.2 contains all the codewords starting with α61β1 from the left.
• Subgroup 8.3 contains all the codewords starting with α6α from the left.
• Subgroup 8.4 contains all the codewords starting with α6α2 from the left.
• Subgroup 8.5 contains all the codewords starting with α6α3β1 from the left.
• Subgroup 8.6 contains all the codewords starting with α6α5 from the left.
• Subgroup 8.7 contains all the codewords starting with α6α6 from the left.

The same partitioning applies to Group 4 and Group 7.
Second, we enumerate the codewords. Now, we use the final group structure determined in the first step to derive the

cardinality (size) of the code OT C8m, which is N8(m). Theorem 1 gives the cardinality of an OT-LOCO code.

Theorem 1. The cardinality N8(m) of an OT-LOCO code OT C8m is given by:

N8(m) = 5N8(m− 1) + 5N8(m− 2), m ≥ 2, (14)

where the defined cardinalities are N8(1) ≜ 8 and N8(0) ≜ 2.

Proof. Let the cardinality of a codeword group indexed by i in OT C8m be N8,i(m). Before we derive the formulae for
N8,i(m), i = 1, 2, . . . , 8, notice the symmetry between certain groups by observing their subgroup structures. Group 3 and
Group 6 are symmetric, which means the cardinalities of these groups are the same. Similarly, the remaining groups are
symmetric and they share the same group cardinality. Thus,

N8,3(m) = N8,6(m), (15)
N8,i(m) = N8,1(m), i = 2, 4, 5, 7, 8. (16)

Consequently, the cardinality of OT C8m is:

N8(m) = 6N8,1(m) + 2N8,3(m). (17)

Moreover, combined cardinalities of the groups starting with β1 ∈ {0, 1, α3, α4} and the groups starting with β2 ∈ {α, α2, α5, α6}
from the left are the same, and each equals half of the code cardinality due to symmetry:∑

i∈{1,2,5,6}

N8,i(m) =
∑

i∈{3,4,7,8}

N8,i(m) =
1

2
N8(m). (18)

As for Group 1, notice that concatenating 0 to a codeword in OT C8m−1 from the left causes forbidden patterns if the left
most symbol (LMS) or symbols of the codeword in OT C8m−1 are α or β3β1, where β1 ∈ {0, 1, α3, α4}, β3 ∈ {α2, α5}.
Thus, each codeword in OT C8m starting with 0γ, where γ ∈ GF(8) \ {α, α2, α5}, from the left corresponds to a codeword in
OT C8m−1 starting with the same symbol γ and they share the m − 2 right most symbols (RMSs). This relation is bijective.
Moreover, each codeword in OT C8m starting with 0α2β2 or 0α5β2, where β2 ∈ {α, α2, α5, α6}, from the left corresponds to
a codeword in OT C8m−2 starting with the same β2 and they share the m − 3 RMSs. This relation is bijective as well. Here,
we have γ ∈ {0, 1, α3, α4, α6} and β2 ∈ {α, α2, α5, α6}. Thus, the cardinality of Group 1 is:

N8,1(m) =
∑

i∈{1,2,5,6,8}

N8,i(m− 1) +
∑

i∈{3,4,7,8}

2N8,i(m− 2). (19)

As for Group 6, each codeword in OT C8m starting with α4β1 is related to a codeword in OT C8m−1 starting with the same
β1 from the left and sharing the m− 2 RMSs. Due to the symmetry and using (18), the cardinality of Group 6 is

N8,6(m) = N8,3(m) =
1

2
N8(m− 1), (20)

Utilizing the group symmetries via (15), (16), and (18), Group 1 cardinality in (19) becomes:

N8,1(m) = 4N8,1(m− 1) +N8,3(m− 1) +N8(m− 2). (21)

Plugging (20) into (21) yields:

N8,1(m) = 4N8,1(m− 1) +
3

2
N8(m− 2). (22)

The only remaining step before finding the code cardinality using (17) is to find N8,1(m− 1). Plugging (20) into (17) gives
the recursive formula for the Group 1 cardinality in terms of code cardinalities:

N8,1(m) =
1

6
(N8(m)−N8(m− 1)) . (23)
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TABLE I
FINAL SPECIAL CASES FOR OT-LOCO CODES GROUPED ACCORDING TO THE LEFT-MOST SYMBOL(S).

1
β′
1β3α

β′
1β3α2

β′
1β3γ1, γ1 ∈ {α5, α6}

4
β′
2α

β′
2γ3, γ3 ∈ {α2, α3}

β′
2γ1, γ1 ∈ {α5, α6}

2 β′
2β4γ2, γ2 ∈ {α3, α4} 5

αα
αα2

αγ1, γ1 ∈ {α5, α6}

3

β′
1α

2

β′
1γ2, γ2 ∈ {α3, α4}

β′
1α

5

β′
1α

6

6 α4γ2, γ2 ∈ {α3, α4}

Thus, substituting (20), (22), and (23) in (17) gives:

N8(m) = 6

(
4N8,1(m− 1) +

3

2
N8(m− 2)

)
+N8(m− 1)

= 5N8(m− 1) + 5N8(m− 2). (24)

As for the defined cardinalities, it is clear that N8(1) ≜ 8. Furthermore, once the 14 forbidden sequences of length 2 in OT 8

are removed from the 82 possible 2-tuple GF(8) sequences, we get N8(2) = 50. Next, N8(0) is derived from the recursive
formula in (14) as follows:

N8(0) =
N8(2)

5
−N8(1) = 2. (25)

■

Third, we determine the special cases. The contribution of a symbol ci in codeword c ≜ cm−1cm−2 . . . c0 in OT C8m to the
overall codeword index g(c) depends on ci and its preceding symbols. For given a codeword c = cm−1cm−2 . . . ci+1cici−1 . . . c0,
the symbol ci undertakes a special case if there exists a codeword c′ici−1 . . . c0 in OT C8i+1 with c′i < ci that forms a forbidden
pattern when concatenated from the right to cm−1cm−2 . . . ci+1. Thus, the contribution of ci to the codeword index g(c) should
be separately calculated. On the other hand, a typical case of existence for ci means all codewords starting with any c′i < ci
from the left in OT C8i+1 are allowed to be concatenated from the right to the symbols preceding ci.

We now specify the initial special cases for the OT-LOCO code using the patterns in OT 8. Note that some special case
merging is also performed here as it is more convenient.

• For the patterns β̄′
1α

2β′
1, β̄

′
1, β

′
1 ∈ {0, 1, α3}, two initial special cases of length 3 are ci+2ci+1ci = β̄′

1α
2α and ci+2ci+1ci =

β̄′
1α

2α2. Note that ci+2ci+1ci = β̄′
1α

2α3 and ci+2ci+1ci = β̄′
1α

2α4 are eliminated since they are forbidden patterns.
Finally, ci+2ci+1ci = β̄′

1α
2γ1, γ1 ∈ {α5, α6} form another initial special case. Although α and α2 are consecutive

symbols in GF(8), the first two of these initial special cases are not processed together. The reason is that while calculating
the contribution of ci = α and ci = α2, symbols c′i ∈ {0, 1} and c′i ∈ {0, 1, α} are considered, respectively. Here, we
refer the reader to final group descriptions in the first step, where cardinalities of groups consisting of codewords starting
with α (Group 3) and α4 (Group 6) are different from the rest of the group cardinalities. Other initial special cases are
ci+1ci = β̄′

1γ2, γ2 ∈ {α3, α4}, ci+1ci = β̄′
1α

5, and ci+1ci = β̄′
1α

6. Similarly, these initial special cases are treated
separately considering which subgroups starting with ci+1c

′
i, c

′
i < ci, are relevant. This processing logic is going to be

further illustrated in the fourth step.
• For the patterns β̄′

1α
5β′

1, initial special cases of length 3 are β̄′
1α

5α, β̄′
1α

5α2, and β̄′
1α

5γ1, γ1 ∈ {α5, α6}. Moreover, an
initial special case of length 2 is ci+1ci = β̄′

1α
6.

• For the patterns β̄′
21β

′
2, β̄′

2, β
′
2 ∈ {α2, α5, α6}, the first special case is ci+2ci+1ci = β̄′

21γ2, γ2 ∈ {α3, α4}. Initial special
cases of length 2 are ci+1ci = β̄′

2α, ci+1ci = β̄′
2γ3, γ3 ∈ {α2, α3}, and ci+1ci = β̄′

2γ1, γ1 ∈ {α5, α6}.
• For the patterns β̄′

2α
3β′

2, there are only two initial special cases where ci+2ci+1ci = β̄′
2α

3γ2, γ2 ∈ {α3, α4} and
ci+1ci = β̄′

2γ1, γ1 ∈ {α5, α6}.
• For the patterns αβ1, β1 ∈ {0, 1, α3, α4}, there are three initial special cases: ci+1ci = αα, ci+1ci = αα2, and ci+1ci =

αγ1, γ1 ∈ {α5, α6}.
• For the patterns β1α, β1 ∈ {0, 1, α3, α4}, we first investigate the patterns β′

1α, β′
1 ∈ {0, 1, α3}. There is an initial special

case that is ci+1ci = β′
1α

2. Other initial special cases starting with β′
1 are ci+1ci = β′

1γ2, γ2 ∈ {α3, α4}, ci+1ci = β′
1α

5,
and ci+1ci = β′

1α
6. There is another initial special case for the pattern α4α, which is ci+1ci = α4γ2, γ2 ∈ {α3, α4}.

• For the patterns α4β2, β2 ∈ {α, α2, α5, α6}, the only initial special case is ci+1ci = α4γ2, γ2 ∈ {α3, α4}.
• For the patterns β2α

4, we investigate the pattern αα4 first. There is an initial special case that is ci+1ci = αγ1, γ1 ∈
{α5, α6}. There is another initial special case for patterns β′

2α
4, β′

2 ∈ {α2, α5, α6}, which is ci+1ci = β′
2γ1, γ1 ∈ {α5, α6}.

Denote the total number of final cases by nc and the index of the ith final case by ic, 1 ≤ ic ≤ nc. After further processing,
we end up with nc = 16 final cases, including the typical case, for ci based on ci and its preceding symbols. The 15 final
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special cases are further lumped together in 6 groups based on the similarity between their left most symbols in Table I. To
simplify the notation, we drop the overline (β̄′) in the final cases, as shown in Table I, and in the following analysis.

Fourth, we derive the symbol contribution. Denote the contribution of each symbol ci of c ≜ cm−1cm−2 . . . ci+1ci . . . c0 to
the LOCO codeword index g(c) by gi(ci). According to Cover in [25], gi(ci) is the number of codewords in OT C8m starting
with the same m − (i + 1) symbols of c from the left and having c′i < ci at the ith index, i.e., the number of codewords
starting with cm−1cm−2 . . . ci+1c

′
i, for all c′i < ci, according to the lexicographic ordering definition. Equivalently, according

to the general method of constructing LOCO codes, gi(ci) is the number of codewords in OT C8i+1 that start with c′i < ci and
can be concatenated from the right to cm−1cm−2 . . . ci+1 without forming any of the forbidden patterns in OT 8.

Let us denote the contribution of ci in the case indexed by ic by gi,ic(ci). Then, gi(ci) = gi,ic(ci) for one of the final cases
indexed by 1 ≤ ic ≤ nc, which is satisfied by ci and its preceding symbols. Moreover, gi,ic(ci) can be expressed as a linear
combination of cardinalities of OT-LOCO codes having lengths at most i+ 1.

Let ai ≜ L(ci), where L(c) is the integer level-equivalent of a symbol in GF(8). Recall that if c ∈ GF(q), L(c) ≜ gflogα(c)+1
if c ̸= 0, and L(c) ≜ 0 if c = 0. Note that the contribution of ci = 0 is gi(0) = 0 in all cases since 0 is the first symbol in
the lexicographic order. We start off with the typical case, indexed by ic = 1. The symbol contribution gi(ci) in this case is
the number of codewords in OT C8m starting with cm−1cm−2 . . . ci+1c

′
i such that c′i < ci. Equivalently, gi(ci) in this case is

the number of all codewords in OT C8i+1 starting with c′i, c
′
i < ci, since the typical case is the unrestricted case. Thus, gi,1(ci)

can be calculated as follows:
• If ci ∈ {1, α},

gi,1(ci) =

ai∑
j=1

N8,1(i+ 1)

=
ai
6
(N8(i+ 1)−N8(i)) , (26)

where the second equality in (26) follows from (23).
• If ci ∈ {α2, α3, α4},

gi,1(ci) =

ai−1∑
j=1

N8,1(i+ 1) +N8,3(i+ 1)

=
ai − 1

6
(N8(i+ 1)−N8(i)) +

1

2
N8(i), (27)

where the second term in (27) follows from (20).
• If ci ∈ {α5, α6},

gi,1(ci) =

ai−2∑
j=1

N8,1(i+ 1) + 2N8,3(i+ 1)

=
ai − 2

6
(N8(i+ 1)−N8(i)) +N8(i). (28)

Now, we analyze the first group of the special cases in Table I, characterized by ci+2ci+1 = β′
1β3, β

′
1 ∈ {0, 1, α3}, β3 ∈

{α2, α5}. The special cases in this group are indexed by ic ∈ {2, 3, 4} (ordering is always as shown in Table I):
• If ci+2ci+1ci = β′

1β3α, the contribution of ci to g(c) in this case is the number of codewords in OT C8m starting with
cm−1cm−2 . . . ci+3β

′
1β3c

′
i from the left such that c′i < ci = α. This number equals the number of codewords in OT C8i+1

starting with c′i < ci = α that are allowed to be concatenated to cm−1cm−2 . . . ci+3β
′
1β3 from the right. Thus, the symbol

contribution of ci in this case is 0 since β′
1β3c

′
i, c′i ∈ {0, 1} is a forbidden pattern:

gi,2(ci) = 0. (29)

• If ci+2ci+1ci = β′
1β3α

2, the contribution of ci to g(c) in this case is the number of codewords in OT C8i+1 starting with
c′i < ci = α2 such that c′i /∈ {0, 1} because only c′i = α that can be concatenated to cm−1cm−2 . . . ci+3β

′
1β3 from the

right. Consequently, and using (20), we derive gi,3(ci) as follows:

gi,3(ci) = N8,3(i+ 1) =
1

2
N8(i). (30)

• For the case characterized by ci+2ci+1ci = β′
1β3γ1, γ1 ∈ {α5, α6}, when ci = α5, only c′i ∈ {α, α2}, c′i < ci = α5, are

possible starting symbols for the codewords in OT C8i+1 that are allowed to be concatenated to cm−1cm−2 . . . ci+3β
′
1β3

from the right. Similarly, when ci = α6, possible symbols for c′i < ci = α6 are c′i ∈ {α, α2, α5}. Therefore, gi,4(ci) is:

gi,4(ci) =

{
N8,1(i+ 1) +N8,3(i+ 1), if ci = α5,

2N8,1(i+ 1) +N8,3(i+ 1), if ci = α6.
(31)
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Equivalently, and through using (20) and (23), we can derive gi,4(ci) as follows:

gi,4(ci) =
ai − 5

6
(N8(i+ 1)−N8(i)) +

1

2
N8(i). (32)

Next, we proceed with the special case indexed by ic = 5 and characterized by ci+2ci+1ci = β′
2β4γ2, β

′
2 ∈ {α2, α5, α6}, β4 ∈

{1, α3}, γ2 ∈ {α3, α4}. The contribution of ci to g(c) in this case is the number of codewords in OT C8m starting with
cm−1cm−2 . . . ci+3β

′
2β4c

′
i from the left such that c′i < ci = γ2. This number equals the number of codewords in OT C8i+1

starting with c′i < ci and c′i ∈ {0, 1, α3} because β′
2β4c

′
i for c′i ∈ {α, α2} are forbidden. Following the same steps leading to

(31) and (32) for ci = γ2 ∈ {α3, α4} gives:

gi,5(ci) =

{
2N8,1(i+ 1), if ci = α3,

3N8,1(i+ 1), if ci = α4.
(33)

Thus, gi,5(ci) is:

gi,5(ci) =
ai − 2

6
(N8(i+ 1)−N8(i)) . (34)

Now, we analyze the third group of the special cases in Table I, characterized by ci+1 = β′
1, β′

1 ∈ {0, 1, α3}. The special
cases in this group are indexed by ic ∈ {6, 7, 8, 9}:

• If ci+1ci = β′
1α

2, the contribution of ci to g(c) in this case is the number of codewords in OT C8i+1 starting with c′i < ci
except for those starting with α from the left. Therefore, gi,6(ci) can be derived as follows (ai = 3):

gi,6(ci) =

ai−1∑
j=1

N8,1(i+ 1) =
ai − 1

6
(N8(i+ 1)−N8(i)) . (35)

• If ci+1ci = β′
1γ2, γ2 ∈ {α3, α4}, the contribution of ci to g(c) in this case is the number of codewords in OT C8m starting

with cm−1cm−2 . . . ci+2β
′
1c

′
i from the left such that c′i < ci = γ2. This number is also the number of codewords in

OT C8i+1 starting with c′i < ci except for those starting with α or α2β1 from the left. Consequently, and via the symmetry
in (18), gi,7(ci) is:

gi,7(ci) =

ai−2∑
j=1

N8,1(i+ 1) +
1

2
N8(i)

=
ai − 2

6
(N8(i+ 1)−N8(i)) +

1

2
N8(i). (36)

• If ci+1ci = β′
1α

5, the contribution of ci to g(c) in this case is the number of codewords in OT C8i+1 starting with c′i < ci
except for those starting with α or α2β1 from the left. Thus, we compute gi,8(ci) in (37) by utilizing (18) and (20):

gi,8(ci) =

ai−3∑
j=1

N8,1(i+ 1) +
1

2
N8(i) +N8,3(i+ 1)

=
ai − 3

6
(N8(i+ 1)−N8(i)) +N8(i). (37)

• Similarly, if ci+1ci = β′
1α

6, the contribution of ci to g(c) in this case is the number of codewords in OT C8i+1 starting
with c′i < ci except for those starting with α and β3β1, β3 ∈ {α2, α5}, from the left:

gi,9(ci) =

ai−4∑
j=1

N8,1(i+ 1) +N8(i) +N8,3(i+ 1)

=
ai − 4

6
(N8(i+ 1)−N8(i)) +

3

2
N8(i). (38)

Observe that in cases where ci is a specific GF(8) symbol, ai is known. However, we still write some equations in terms of
ai for the ease of merging the contributions in the fifth step.

Next, we study the fourth group of special cases in Table I, characterized by ci+1 = β′
2, β′

2 ∈ {α2, α5, α6}. Special cases
in this group are indexed by ic ∈ {10, 11, 12} (ordered as in Table I). Symbol contributions gi,10(ci), gi,11(ci), gi,12(ci) are
derived following an approach similar to the one we applied for the third group of special cases:

• If ci+1ci = β′
2α, the symbol contribution in this case gi,10(ci) equals the number of codewords in OT C8i+1 starting with

c′i < ci except for those starting with 1β2 from the left:

gi,10(ci) =

ai−1∑
j=1

N8,1(i+ 1) +
1

2
N8(i)

=
ai − 1

6
(N8(i+ 1)−N8(i)) +

1

2
N8(i). (39)
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• If ci+1ci = β′
2γ3, γ3 ∈ {α2, α3}, the symbol contribution in this case gi,11(ci) equals the number of codewords in OT C8i+1

starting with c′i < ci except for those starting with 1β2 from the left:

gi,11(ci) =

ai−2∑
j=1

N8,1(i+ 1) +
1

2
N8(i) +N8,3(i+ 1)

=
ai − 2

6
(N8(i+ 1)−N8(i)) +N8(i). (40)

• If ci+1ci = β′
2γ1, γ1 ∈ {α5, α6}, the symbol contribution in this case gi,12(ci) equals the number of codewords in OT C8i+1

starting with c′i < ci except for those starting with β4β2, β4 ∈ {1, α3}, or α4 from the left:

gi,12(ci) =

ai−4∑
j=1

N8,1(i+ 1) +N8(i) +N8,3(i+ 1)

=
ai − 4

6
(N8(i+ 1)−N8(i)) +

3

2
N8(i). (41)

As for the fifth group of special cases in Table I, which is characterized by ci+1 = α and indexed by ic ∈ {13, 14, 15}:
• If ci+1ci = αα, none of the codewords in OT C8i+1 starting with c′i < ci can be concatenated to ci+1 = α from the right.

Hence, gi,13(ci) is:
gi,13(ci) = 0. (42)

• If ci+1ci = αα2, gi,14(ci) is the number of codewords in OT C8i+1 starting with α. Thus,

gi,14(ci) = N8,3(i+ 1) =
1

2
N8(i). (43)

• If ci+1ci = αγ1, γ1 ∈ {α5, α6}, gi,15(ci) is the number of codewords in OT C8i+1 starting with c′i < ci such that
c′i ∈ {α, α2, α5} from the left:

gi,15(ci) =

ai−5∑
j=1

N8,1(i+ 1) +N8,3(i+ 1)

=
ai − 5

6
(N8(i+ 1)−N8(i)) +

1

2
N8(i). (44)

Finally, for the special case characterized by ci+1ci = α4γ2, γ2 ∈ {α3, α4}, gi,16(ci) is the number of codewords in OT C8i+1

starting with c′i < ci except for those starting with α or α2 from the left:

gi,16(ci) =

ai−2∑
j=1

N8,1(i+ 1)

=
ai − 2

6
(N8(i+ 1)−N8(i)) . (45)

Fifth, we formulate the encoding-decoding rule. The lexicographic index g(c) of the codeword c ∈ OT C8m can be obtained
by the sum of symbol contributions of all symbols constituting c:

g(c) =

m−1∑
i=0

gi(ci). (46)

Equation (46) requires the different expressions of gi,ic(ci), 1 ≤ ic ≤ 16, to be merged into a single expression of gi(ci). To
this end, we define merging variables yi,1, yi,2, . . . , yi,ny such that ny ≤ nc for the symbol ci to switch on the contribution of
a specific case out of nc cases from Steps 3 and 4. Moreover, we define merging functions, fmer

ℓ (·), to relate the cardinality
N8((i + 1) − ℓ) to gi(ci) in the unified expression. Finally, we note that fmer

ℓ (·) has to be function of the merging variables
for ci and ai = L(ci) for the bijection between the codeword and its index g(c) to be preserved. Theorem 2 gives the
encoding-decoding rule of an OT-LOCO code OT C8m. The proof of this theorem is also the fifth step of the general method.

Theorem 2. Let c be an OT-LOCO codeword in OT C8m. The relation between the lexicographic index g(c) of this codeword
and the codeword itself is given by:

g(c) =

m−1∑
i=0

[(
ai − θi,1

6

)
N8(i+ 1) +

(
θi,1 + 3θi,2 − ai

6

)
N8(i)

]
, (47)

where θi,1 = 4yi,1 + 2yi,2 + yi,3, θi,2 = 2yi,4 + yi,5, and the vector yi of merging variables yi,1, yi,2, yi,3, yi,4, yi,5 such
that yi = [yi,1 yi,2 yi,3 yi,4 yi,5] is specified as follows:
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yi = [01000] if ci+2ci+1ci = β′
1β3α (ic = 2), else,

yi = [01101] if ci+2ci+1ci = β′
1β3α

2 (ic = 3), else,
yi = [10101] if ci+2ci+1ci = β′

1β3γ1 (ic = 4), else,
yi = [01000] if ci+2ci+1ci = β′

2β4γ2 (ic = 5), else,
yi = [00100] if ci+1ci = β′

1α
2 (ic = 6), else,

yi = [01001] if ci+1ci = β′
1γ2 (ic = 7), else,

yi = [01110] if ci+1ci = β′
1α

5 (ic = 8), else,
yi = [10011] if ci+1ci = β′

1α
6 (ic = 9), else,

yi = [00101] if ci+1ci = β′
2α (ic = 10), else,

yi = [01010] if ci+1ci = β′
2γ3 (ic = 11), else,

yi = [10011] if ci+1ci = β′
2γ1 (ic = 12), else,

yi = [01000] if ci+1ci = αα (ic = 13), else,
yi = [01101] if ci+1ci = αα2 (ic = 14), else,
yi = [10101] if ci+1ci = αγ1 (ic = 15), else,
yi = [01000] if ci+1ci = α4γ2 (ic = 16), else,
yi = [00000] if ci ∈ {0, 1, α} (ic = 1), else,
yi = [00101] if ci ∈ {α2, α3, α4} (ic = 1), else,
yi = [01010] if ci ∈ {α5, α6} (ic = 1).

The sets β′
1, β

′
2, β3, β4 and γ1, γ2, γ3 are defined as β′

1 ∈ {0, 1, α3}, β′
2 ∈ {α2, α5, α6}, β3 ∈ {α2, α5}, β4 ∈ {1, α3} and

γ1 ∈ {α5, α6}, γ2 ∈ {α3, α4}, γ3 ∈ {α2, α3}.

Proof. Observe that all the equations of gi,ic(ci), (26)–(45), conform with the form given by (48) for some nonnegative integers
θi,1 and θi,2 such that θi,1 ≤ ai and θi,2 ≤ 3. Therefore, we can write:

gi,ic(ci) =
ai − θi,1

6
(N8(i+ 1)−N8(i)) +

θi,2
2

N8(i). (48)

Since θi,1 ≤ ai ≤ L(α6) = 7, we need only three merging variables yi,1, yi,2, yi,3 to express θi,1. From (26)–(45):

θi,1 = 4yi,1 + 2yi,2 + yi,3. (49)

Similarly, since θi,2 ≤ 3, we use two more merging variables yi,4, yi,5 to express θi,2. From (26)–(45):

θi,2 = 2yi,4 + yi,5. (50)

Noting that (48) includes only the cardinalities N8(i + 1) and N8(i), we utilize the merging functions fmer
0 (·) and fmer

1 (·)
with the cardinalities N8(i + 1) and N8(i), respectively. The unified expression representing the contribution of a symbol ci
to the codeword index can be written as:

gi(ci) = fmer
0 (·)N8(i+ 1) + fmer

1 (·)N8(i). (51)

Using (49) and (50), (48) can be written in the form of (51), and the contribution of a symbol ci to the codeword index g(c)
in Theorem 2 is obtained:

gi(ci) =

(
ai − θi,1

6

)
N8(i+ 1) +

(
θi,1 + 3θi,2 − ai

6

)
N8(i) (52)

Finally, observe that (52) is consistent with all cases of gi,ic(ci) given by (26)–(45) once the correct merging variable vector
yi is selected following the rules in Theorem 2. ■

IV. SIMULATION RESULTS AND RECONFIGURABILITY

In this section, we introduce the finite-length rates of OT-LOCO codes. Then, we discuss the necessary modifications on
the TDMR model in Section II to perform simulations of the coded system. We introduce and discuss performance plots that
demonstrate the gains achieved by OT-LOCO codes, and we also show plots describing the process of reconfigurability between
OP-LOCO and OT-LOCO codes in a TDMR system.

Before discussing finite-length rates, we need to first address bridging and self-clocking in the proposed codes.
OT-LOCO bridging: In fixed-length constrained codes, bridging is required to prevent forbidden patterns from appearing at

the transition between consecutive codewords in a stream [12], [24]. Bridging in any LOCO code does not affect the asymptotic
rate since the number of bridging symbols does not grow with the code length m. However, care should be taken while choosing
or devising a bridging scheme since it affects finite-length rates.

Recall the set of forbidden patterns:

OT 8 ≜ {αβ1, β1α, α4β2, β2α
4, β̄′

1β3β
′
1, β̄′

2β4β
′
2, ∀β1 ∈ {0, 1, α3, α4}, ∀β̄′

1, β
′
1 ∈ {0, 1, α3},

∀β2 ∈ {α, α2, α5, α6}, ∀β̄′
2, β

′
2 ∈ {α2, α5, α6}, ∀β3 ∈ {α2, α5}, ∀β4 ∈ {1, α3}}.
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TABLE II
ALL BRIDGING SCENARIOS OF OT-LOCO CODES. SCENARIOS ARE SEPARATED BY TWO HORIZONTAL LINES. SCENARIO PRIORITY REDUCES FROM

TOP TO BOTTOM. SYMBOL xj REFERS TO “DOES NOT MATTER”.

Scenario 1

x1α− β̄′
2β̄

′
1 − β1x2 x1β1 − β̄′

1β̄
′
2 − αx2

x1α4 − β̄′
1β̄

′
2 − β2x2 x1β2 − β̄′

2β̄
′
1 − α4x2

β′
1β3 − β̄′

2β̄
′
1 − β′

1x1 x1β′
1 − β̄′

1β̄
′
2 − β3β′

1

β′
2β4 − β̄′

1β̄
′
2 − β′

2x1 x1β′
2 − β̄′

2β̄
′
1 − β4β′

2

Else
Scenario 2

x1α− β̄′
2β̄

′
2 − x2x3 x1x2 − β̄′

2β̄
′
2 − αx3

x1α4 − β̄′
1β̄

′
1 − x2x3 x1x2 − β̄′

1β̄
′
1 − α4x3

β′
1β3 − β̄′

2β̄
′
2 − x1x2 x1x2 − β̄′

2β̄
′
2 − β3β′

1

β′
2β4 − β̄′

1β̄
′
1 − x1x2 x1x2 − β̄′

1β̄
′
1 − β4β′

2

Else
Scenario 3

x1β′
1 − β̄′

2β̄
′
2 − β′

1x2 x1β′
2 − β̄′

1β̄
′
1 − β′

2x2

x1β′
1 − β̄′

1β̄
′
2 − β′

2x2 x1β′
2 − β̄′

2β̄
′
1 − β′

1x2

Otherwise
Scenario 4 x1x2 − β̄′

1β̄
′
2 − x3x4

For the sake of brevity, we here use the following format when studying the bridging between two consecutive OT-LOCO
codewords in OT C8m “right-most symbols of codeword at t – bridging pattern – left-most symbols of codeword at t + 1”.
Denote the bridging sequence by d, whose length is unspecified yet. Note that the length of d has to be fixed for all possible
cases since our coding scheme is of fixed-length.

Consider the following case:
β′
1β3 − d− β4β

′
2. (53)

We first examine the situation of d of length 1. Because of the right-most symbols of the codeword at t, d cannot be in
{0, 1, α3, α4}. Moreover, because of the left-most symbols of the codeword at t+1, d cannot be in {α, α2, α5, α6}. Therefore,
d cannot be of length 1. Next, we examine the situation of d of length 2, i.e., d = d1d0. Because of the right-most symbols
of the codeword at t, d1 must be in {α, α2, α5, α6}. Moreover, because of the left-most symbols of the codeword at t + 1,
d0 must be in {0, 1, α3, α4}. To be able to concatenate d1 and d0 without creating a 2-tuple forbidden pattern, d1 ̸= α and
d0 ̸= α4. Therefore,

d = d1d0 = β̄′
2β̄

′
1,

β̄′
2 ∈ {α2, α5, α6} and β̄′

1 ∈ {0, 1, α3}. (54)

It can be shown in a similar way that for the case:

β′
2β4 − d− β3β

′
1, (55)

we will have:

d = d1d0 = β̄′
1β̄

′
2,

β̄′
1 ∈ {0, 1, α3} and β̄′

2 ∈ {α2, α5, α6}. (56)

By checking all the possible cases for the right-most symbols of the codeword at t and the left-most symbols of the codeword
at t+ 1, one can conclude that the aforementioned two cases result in the highest level of restrictions on d; that is, d has to
be of length 2 and there are only 3 × 3 = 9 possible options for it as shown in (54) and (56). Because OT-LOCO codes are
fixed-length codes, we have to always abide by these restrictions. Thus, we specify all bridging patterns to use for all cases
based on the rules:

1) Each case has 9 possible bridging patterns out of which, we will use only 8.
2) Bridging patterns must prevent forbidden patterns from appearing at the transition between codewords.
3) Each bridging pattern d is of length 2, i.e., d = d1d0.
4) Each of d1 and d0 is either β̄′

1 or β̄′
2.

Table II details all bridging scenarios of OT-LOCO codes. Furthermore, there is an additional idea we apply in OT-LOCO
bridging, which is to use bridging symbols to encode binary input message bits in order to increase the finite-length rate (see
also [26]). In particular, since we have 9 possible bridging patterns for every case, we can encode up to 3 additional input
message bits via these bridging symbols. We encode 3 additional bits in our setup, and that is why we only save and use
23 = 8 bridging patterns for each case within the above four scenarios. It is important to highlight that the impact of such a
simple idea on the finite-length rate is remarkable.

OT-LOCO self-clocking: Self-clocking is needed in magnetic recording systems in order that the read head keeps track of
grain boundaries (cross track boundaries in TDMR), which allows the system to have self-calibration [10], [12].
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TABLE III
RATES, NORMALIZED RATES, AND ADDER SIZES OF OT-LOCO CODES OT C8

m FOR DIFFERENT VALUES OF m. THE CAPACITY IS 2.5494, AND THE
NORMALIZED CAPACITY IS 0.8498.

m ROT-LOCO Rn
OT-LOCO Adder size

10 2.4167 0.8056 26 bits
14 2.4375 0.8125 36 bits
21 2.4783 0.8261 54 bits
30 2.5000 0.8333 77 bits
50 2.5192 0.8397 128 bits
81 2.5301 0.8434 207 bits

In order to achieve self-clocking, very long same-symbol sequences should not be allowed. Typically, we eliminate some
same-symbol codewords, e.g., 0m and αm (all 0 and all α codewords), from OT C8m to achieve self-clocking [9], [12]. However,
we do not need to do that here. The reason is that our bridging in Table II is devised such that a transition from a symbol to a
different symbol occurs within the bridging interval or/and directly before/after the bridging interval. This makes our OT-LOCO
codes intrinsically self-clocked. Denote the maximum number of consecutive GF(8) symbols (3-bit columns) that are identical
in an OT-LOCO stream coded via OT C8m and stored in a TDMR device by kot

eff. Then,

kot
eff = m+ 4. (57)

OT-LOCO rates: The rate of an OT-LOCO code OT C8m is the number of message bits divided by the number of coded
symbols. We have two types of messages bits; the ones converted into an OT-LOCO codeword and the ones encoded within
bridging. The number of bits converted into an OT-LOCO codeword is given by:

s = ⌊log2(N8(m))⌋ , (58)

while we encode 3 bits for each bridging pattern as illustrated above. Observe that s is also the size of the adder that executes
the encoding-decoding rule, and therefore, it dictates the complexity of encoding-decoding. We also have two types of coded
symbols; m symbols for an OT-LOCO codeword and two more symbols for the following bridging pattern. Combining that
with (58) gives the rate of an OT-LOCO code OT C8m as follows:

ROT-LOCO =
s+ 3

m+ 2
=
⌊log2(N8(m))⌋+ 3

m+ 2
. (59)

The normalized rate of an OT-LOCO code OT C8m is then:

Rn
OT-LOCO =

s+ 3

3(m+ 2)
=
⌊log2(N8(m))⌋+ 3

3(m+ 2)
. (60)

Observe that all codewords satisfying the constraint are included in OT C8m. Moreover, the number of bridging symbols does
not grow with m. Therefore,

lim
m→∞

ROT-LOCO = lim
m→∞

⌊log2(N8(m))⌋+ 3

m+ 2
= C = 2.5494. (61)

This means OT-LOCO codes are capacity-achieving constrained codes. Table III gives the rates, normalized rates, and adder
sizes of OT-LOCO codes OT C8m for different values of m. Observe how finite-length rates approach capacity.

Bridging, self-clocking, and finite-length rates are all part of the sixth step of the general method in [24]. We skip the
remainder of the sixth step of the general method and refer the reader to our previous work to see how the encoding-decoding
algorithms are derived from the encoding-decoding rule. Having said that, we have implemented, tested, and used such OT-
LOCO encoding-decoding algorithms as discussed below.

Next, we discuss our coded TDMR system setup. We have the writing setup, the channel setup, and the reading setup. For
brevity, we omit some details that are already clarified for the uncoded TDMR system setup in Section II.

Writing setup: We generate random binary input messages. Then, we encode each message b of length s into the
corresponding 8-ary OT-LOCO codeword c of length m. After each message, 3 free input message bits are used to specify 2
bridging symbols d. Each GF(8) symbol in the OT-LOCO codeword is converted into a 3× 1 column of binary bits according
to the mapping-demapping in (5). Consequently, a codeword of length m will be written over a grid of size 3 × m. Two
bridging columns separate each two consecutive OT-LOCO codewords. Before writing, level-based signaling is applied, which
converts each 0 into −1, each 1 into +1. Upon writing, these −1 and +1 values will be updated to values depending on TW
and BP .

We use the following OT-LOCO codes in the simulations:
• The code OT C823 with codeword length m = 23, message length s = 59 plus 3 free input bits, and normalized rate

Rn
OT-LOCO = 0.8267.
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• The code OT C814 with codeword length m = 14, message length s = 36 plus 3 free input bits, and normalized rate
Rn

OT-LOCO = 0.8125.
We also use the following OP-LOCO codes in the simulations (see [24] for more details):

• The code OPC823 with codeword length m = 23, message length s = 67, and normalized rate Rn
OP-LOCO = 0.9306.

• The code OPC814 with codeword length m = 14, message length s = 40, and normalized rate Rn
OP-LOCO = 0.8889.

It is important to perform fair comparisons between the OT-LOCO coded and the uncoded settings, and this will not happen
if we use in the coded setting the same TW and BP of the uncoded setting. In order to fix the energy, i.e., keep the energy
per input message bit in the coded setting the same as it is in the uncoded setting, we obtain TW and BP of the coded setting
via scaling both TW and BP of the uncoded setting by

√
Rn

OT-LOCO, respectively. The same is also done for the OP-LOCO
coded setting. This scaling is skipped in the reconfigurability plots since the system switches between two coded settings. In
particular, we switch from OP-LOCO to OT-LOCO coding as the TDMR device gets older.

Channel setup: Our baseline channel model is the TDMR model in [5], which is a Voronoi model. Here, we only consider
media noise/interference. We modify this model such that it is suitable for a wide read head that reads data from 3 adjacent
down tracks simultaneously. In particular, in each group of 3 adjacent down tracks, the upper and lower tracks in our model
have additional protection from interference in the cross track direction. Thus, the middle down track in each group suffers
from the highest level of interference [2], [28].

In the simulations, we have two sweep setups. First, we sweep the TD channel density DTD given in (1). The details of the
sweep are illustrated in Section II. Second, we sweep the TD bit energy metric ETD = TW × BP . The sweep is done such
that the TD density DTD is fixed at 1.00, and the details of the sweep are also illustrated in Section II.

The input to the channel is 3×m grids of coded bits along with their 2 bridging columns after signaling is applied.2 The
output from the channel is these 3×m grids along with the bridging columns after Voronoi media noise/interference is applied,
taking into account the aforementioned protection of the upper and lower tracks in each group of 3 down tracks. Mathematically,
the channel effect is equivalent to applying the TD convolution between the 3×m input grids with their bridging columns and
the 3× 3 read-head impulse response with media noise.

Reading setup: Outputs of the channel, which are 3×m grids, are read based on hard decision applied to the value of each
entry. If the value of the entry is less than or equal to zero, the corresponding bit is read as 0. In contrast, if the value of the
entry is greater than zero, the corresponding bit is read as 1. The same applies to the two bridging columns. We then convert
coded columns of 3 bits each into GF(8) symbols according to (5). Each coded 8-ary sequence of length m is then checked
for constraint violation. Whenever the constraint is violated, a frame error is counted. Otherwise, the OT-LOCO codeword ĉ
passes through the decoding algorithm to obtain the corresponding binary message b̂. If g(ĉ) ≥ 2s, a frame error is counted.
If b̂ ̸= b, which is implied by ĉ ̸= c, a frame error is counted. Each two 8-ary bridging symbols are decoded into 3 binary
bits according to our bridging rules. If these bits do not match the original ones, a frame error is also counted.

We have frame error rate (FER) and bit error rate (BER) plots. Bit errors, as the name tells, are just counted when the hard-
decision value of the channel output does not match the input value to the channel (+1 or −1). Observe that the additional
protection on the upper and lower tracks makes the average amount of interference required to cause an error on these tracks
higher than that of the middle track. That is why in our plots, we show the performance on all 3 tracks as well as the
performance on the middle track only.

Fig. 6 and Fig. 7 demonstrate the gains achieved by OT-LOCO codes compared with the uncoded setting in TDMR upon
sweeping the TD channel density DTD. In particular, the figures compare the system coded via the OT-LOCO code OT C823
with the uncoded system at fixed energy per input message bit. Fig. 6 introduces the FER performance for all tracks and for
the middle track, while Fig. 7 introduces the BER performance for all tracks and for the middle track.

We first discuss Fig. 6. At FER ≈ 2.0× 10−2, the OT-LOCO code achieves a TD density gain of about 15% for all tracks.
At the same FER, the OT-LOCO code achieves a TD density gain of about 50% for the middle track. At DTD = 0.8, the OT-
LOCO code achieves an FER performance gain of about 1.15 orders of magnitude for all tracks. At DTD = 0.9, the OT-LOCO
code achieves an FER performance gain of about 2.44 orders of magnitude for the middle track. Next, we discuss Fig. 7. At
BER ≈ 3.6× 10−4, the OT-LOCO code achieves a TD density gain of about 17% for all tracks. At BER ≈ 1.0× 10−3, the
OT-LOCO code achieves a TD density gain of about 50% for the middle track. At DTD = 0.8, the OT-LOCO code achieves a
BER performance gain of about 1.23 orders of magnitude for all tracks. At DTD = 0.9, the OT-LOCO code achieves a BER
performance gain of about 2.53 orders of magnitude for the middle track.

A major observation from Fig. 6 and Fig. 7 is that we could not collect any frame errors nor any bit errors at TD densities
below 0.8 out of 10,000 frames simulated. This demonstrates the elimination of media noise and interference effects at
practical TD densities in the TDMR system via OT-LOCO codes with the acceptable rate of 0.8267. Another pivotal observation
from Fig. 6 and Fig. 7 is that OT-LOCO codes remarkably outperform OP-LOCO codes at the same density and the same
setup. At DTD = 0.9, the OT-LOCO code achieves an FER performance gain of about 1.90 orders of magnitude for the middle
track compared with the OP-LOCO code. At the same density, the OT-LOCO code achieves a BER performance gain of about
1.92 orders of magnitude for the middle track compared with the OP-LOCO code.

2The word “coded” in this section means “OT-LOCO coded” unless otherwise explicitly stated (OP-LOCO for reconfigurability).
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Fig. 6. FER versus TD density comparisons between OT C8
23-coded setting and uncoded setting for all tracks, between OT C8

23-coded setting and uncoded
setting for middle track, and between OT C8

23-coded setting and OPC8
23-coded setting for middle track.

Fig. 7. BER versus TD density comparisons between OT C8
23-coded setting and uncoded setting for all tracks, between OT C8

23-coded setting and uncoded
setting for middle track, and between OT C8

23-coded setting and OPC8
23-coded setting for middle track.

Fig. 8 and Fig. 9 demonstrate the gains achieved by OT-LOCO codes compared with the uncoded setting in TDMR upon
sweeping the TD channel energy metric ETD. In particular, the figures compare the system coded via the OT-LOCO code OT C814
with the uncoded system at fixed energy per input message bit and at DTD = 1.0. Fig. 8 introduces the FER performance for
all tracks and for the middle track, while Fig. 9 introduces the BER performance for all tracks and for the middle track.

We first discuss Fig. 8. At FER ≈ 2.8× 10−1, the OT-LOCO code achieves a TD energy gain of about 38% for all tracks.
At FER ≈ 2.0 × 10−1, the OT-LOCO code achieves a TD energy gain of about 87% for the middle track. At ETD = 888.6,
the OT-LOCO code achieves an FER performance gain of about 0.30 of an order of magnitude for all tracks. At the same
ETD, the OT-LOCO code achieves an FER performance gain of about 1.30 orders of magnitude for the middle track. Next,
we discuss Fig. 9. At BER ≈ 9.2 × 10−3, the OT-LOCO code achieves a TD energy gain of about 52% for all tracks. At

Fig. 8. FER versus TD energy metric comparisons between OT C8
14-coded setting and uncoded setting for all tracks, between OT C8

14-coded setting and
uncoded setting for middle track, and between OT C8

14-coded setting and OPC8
14-coded setting for middle track.
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Fig. 9. BER versus TD energy metric comparisons between OT C8
14-coded setting and uncoded setting for all tracks, between OT C8

14-coded setting and
uncoded setting for middle track, and between OT C8

14-coded setting and OPC8
14-coded setting for middle track.

Fig. 10. FER/BER reconfiguration plots using OPC8
23 for low density and OT C8

23 for high density.

BER ≈ 1.8× 10−2, the OT-LOCO code achieves a TD energy gain of about 83% for the middle track. At ETD = 888.6, the
OT-LOCO code achieves a BER performance gain of about 0.46 of an order of magnitude for all tracks. At the same ETD, the
OT-LOCO code achieves a BER performance gain of about 1.43 orders of magnitude for the middle track.

Another pivotal observation from Fig. 8 and Fig. 9 is that OT-LOCO codes remarkably outperform OP-LOCO codes at the
same energy and the same setup. At ETD = 888.6, the OT-LOCO code achieves an FER performance gain of about 1.28
orders of magnitude for the middle track compared with the OP-LOCO code. At the same energy metric, the OT-LOCO code
achieves a BER performance gain of about 1.32 orders of magnitude for the middle track compared with the OP-LOCO code.
An intriguing observation is that OP-LOCO codes achieve almost no FER/BER gain compared with the uncoded setting in the
low energy regime, unlike OT-LOCO codes.

Remark 2. Note that Fig. 6 and Fig. 8 show that the uncoded FER performance for the middle track is a little better than that
for all tracks. The reason is that a frame error is counted if a bit error occurs on any of the 3 down tracks. On the contrary,
Fig. 7 and Fig. 9 show that the uncoded BER performance for the middle track is worse than that for all tracks. The reason
is that media noise and interference affect the middle track the most compared with the upper and lower tracks.

Fig. 10 and Fig. 11 demonstrate the concept of reconfigurability in the TDMR system. The idea is that reconfiguring LOCO
codes is as easy as reprogramming an adder since their encoding and decoding follow a simple rule that links the codeword to
its index (for OT-LOCO codes, it is (47)). In order to further preserve storage capacity, we can use an OP-LOCO code when
the device is relatively fresh, then switch to an OT-LOCO code as the device gets older. Note that OP-LOCO codes require
less redundancy, and note also that PIS patterns dominate the error profile of the TDMR device at low density and/or high
energy as shown in Section II.

We sweep the TD channel density DTD in Fig. 10. The two codes we use are the OP-LOCO code OPC823 of rate 0.9306
and the OT-LOCO code OT C823 of rate 0.8267. The reconfiguration criteria is that the BER has to stay below 10−3 for the
TD density range [1.0, 1.1]. That is why we switch from 6.9% OP-LOCO redundancy to 17.3% OT-LOCO redundancy only
at DTD = 1.1. On the other hand, we sweep the TD channel energy metric ETD in Fig. 11. The two codes we use are the
OP-LOCO code OPC814 of rate 0.8889 and the OT-LOCO code OT C814 of rate 0.8125. The reconfiguration criteria is that the
BER has to stay below 5 × 10−3 for the TD energy metric range [400, 600]. That is why we switch from 11.1% OP-LOCO
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Fig. 11. FER/BER reconfiguration plots using OPC8
14 for high energy and OT C8

14 for low energy.

redundancy to 18.8% OT-LOCO redundancy only at ETD = 400. Observe that the reconfiguration criteria is based on the
assumption that an LDPC coding framework is part of the TDMR system to correct remaining errors.

While we are performing the reconfiguration here in a predetermined or a “hard” manner, one of our current research
directions is about how to specify the reconfiguration point based on an online machine learning module that identifies the
device status and/or an offline machine learning module that helps us reach a near-optimal compromise between storage
capacity and performance. Another future research direction is about combining OP-LOCO and OT-LOCO codes effectively
and efficiently with high performance modern spatially-coupled LDPC codes [32] and multi-dimensional LDPC codes [33]
suitable for such multi-dimensional storage systems.

Remark 3. Additional FER/BER performance gains can be achieved if IPIS patterns where the target bit is stored on the upper
or the lower tracks in each pack of 3 down tracks are also forbidden in addition to all RTIS patterns we forbid via OT-LOCO
codes. However, the capacity of a constrained code performing such a task is 0.7518, which would result in additional storage
capacity reduction compared with OT-LOCO codes. Another future research question is to investigate the need for such codes
through performance analysis.

V. SIMPLE T LOCO (ST-LOCO) CODES

In this section, we discuss the advantages of constrained coding schemes for TDMR where codes are defined over an alphabet
of size smaller than 8. We then devise a new coding scheme to eliminate RTIS patterns at lower complexity and lower error
propagation. We provide the mathematical analysis of this coding scheme and show what else it offers.

Since the encoding and decoding of any LOCO code are performed via the encoding-decoding rule, they become a sequence
of subtractions and additions. Therefore, the encoding-decoding complexity of a LOCO code is governed by the size of the adder
that executes the rule (see Table III). Typically, constrained codes defined over alphabets of higher sizes, such as OT-LOCO
codes that are defined over GF(8), require higher adder sizes, and thus incur relatively higher complexity.

Remark 4. Recall that OT-LOCO codes are optimal rate-wise and are encoded-decoded via the simple rule in (47). The phrase
“higher complexity” for these codes in this section is always relative to other LOCO coding solutions that trade-off some rate
for some complexity gain.

Another aspect of constrained codes to discuss is error propagation [12]. Since LOCO codes are fixed-length codes, they
do not suffer from any codeword-to-codeword error propagation. However, codeword-to-message error propagation is possible.
That is, a single error in a LOCO codeword may result in multiple errors in the corresponding message upon decoding. Such
error propagation does not impact FER, but it may impact message BER in case the message length is quite long.

Observe that the adder size is itself the message length. Therefore, to further reduce both complexity and error propagation
while removing RTIS patterns, it is natural to think of coding solutions defined over alphabets of smaller sizes to limit the
message length. In particular, we are seeking a coding solution that comprises all or some of the following: GF(4) codes,
GF(2) codes, and uncoded setting. The cost will be a capacity/rate penalty.

There is also another perspective we considered while devising the simpler coding scheme, which is track separation. The
concept is inspired by page separation in Flash memory systems, where access speed is preserved by constrained coding
solutions that do not combine all pages together in encoding-decoding [26]. In a TDMR system that adopts a wide read head,
3 down tracks are always read together. When an OT-LOCO code is applied, all 3 tracks have to be processed together since
each column with 3 bits is a coded GF(8) symbol. Constrained coding solutions that do not adopt codes defined over GF(8)
can allow some tracks to be processed separately, which increases the reading speed in the TDMR system.

The idea of the proposed simple T LOCO (ST-LOCO) coding scheme, which achieves the aforementioned goals (lower
complexity, lower error propagation, and track separation) in the TDMR system, is summarized in the following two steps. For
each group of 3 down tracks:
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1) Apply a GF(4) constrained code on the upper and middle tracks such that all RTIS patterns are eliminated.
2) Leave the data on the lower track uncoded.
Let GF(4) = {0, 1, α, α2} and consider the following mapping-demapping:

0←→ [0 0]T, 1←→ [0 1]T,

α←→ [1 0]T, α2 ←→ [1 1]T. (62)

We want to eliminate all RTIS patterns in Fig. 2 by coding only on the upper and middle tracks. Therefore, RTIS patterns are
eliminated by forbidding the following GF(4) 2-tuple and 3-tuple patterns:

• 1 followed by 0 or α, and 0 or α followed by 1.
• α followed by 1 or α2, and 1 or α2 followed by α.
• 0 or α followed by 1 or α2 followed by 0 or α.
• 1 or α2 followed by 0 or α followed by 1 or α2.

When all of these patterns are combined to form a minimal set of first offenders, we get:

ST 4 ≜ {01, 10, 1α, α1, αα2, α2α, 0α20, α20α2}. (63)

The FSTD of an infinite ST 4-constrained sequence where the patterns in ST 4 are prevented is given in Fig. 12. The
corresponding adjacency matrix is:

F2 =


1 1 1 0
0 1 0 1
1 0 1 0
0 1 1 1

 . (64)

The characteristic polynomial of F2 is:

det(xI− F2) = x4 − 4x3 + 4x2 − 1 = (x2 − 2x− 1)(x− 1)(x− 1). (65)

Again using (9), the capacity C, in input bits per coded symbol, of ST-LOCO codes is:

C = log2(λmax(F2)) = log2(2.4142) = 1.2715. (66)

Observe that x = λmax(F2) is a root of the irreducible factor (x2− 2x− 1) of the characteristic polynomial, which means this
factor also verifies the final ST-LOCO cardinality formula (68). Since coding is applied only on the upper and middle tracks
while no coding is applied for the lower track, the normalized capacity Cn of the proposed ST-LOCO coding scheme is:

Cn =
1.2715 + 1

3
= 0.7572. (67)

The capacity loss compared with OT-LOCO codes is because of forbidding more patterns than needed.

F1 F2

F3 F4

0

α2

α

1

α2

α

0

α2

1

0

Fig. 12. An FSTD representing an infinite ST 4-constrained sequence where patterns in ST 4 are prevented.

For simplicity, we call a LOCO code that forbids all patterns in ST 4 also an ST-LOCO code. An ST-LOCO code is then
formally defined as follows:

Definition 3 (ST-LOCO Code). An ST-LOCO code, ST C4m, is defined by the following properties:
1) Codewords in ST C4m are defined over GF(4), the code alphabet, and are of length m symbols.
2) Codewords in ST C4m are lexicographically ordered.
3) Codewords in ST C4m do not contain any patterns from the set ST 4.
4) Any codeword satisfying the above properties is included in ST C4m .
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After illustrating all the derivations related to OT-LOCO codes, the reader is now more familiar with the procedure we follow
to design a LOCO code [24]. Therefore, we will be more brief regarding the steps of designing ST-LOCO codes.

First, we specify the group structure. Let ζ1 be in {0, α} and ζ2 be in {1, α2}. We partition the codewords of ST C4m
according to ST 4 into the following six final groups:

• Group 1 contains all the codewords starting with 0ζ1 from the left.
• Group 2 contains all the codewords starting with 1ζ2 from the left.
• Group 3 contains all the codewords starting with αζ1 from the left.
• Group 4 contains all the codewords starting with α2ζ2 from the left.
• Group 5 contains all the codewords starting with 0α2ζ2 from the left.
• Group 6 contains all the codewords starting with α20ζ1 from the left.
Second, we enumerate the codewords. The following theorem determines how to recursively enumerate the codewords of an

ST-LOCO code ST C4m.

Theorem 3. The cardinality N4(m) of an ST-LOCO code ST C4m is given by:

N4(m) = 2N4(m− 1) +N4(m− 2), m ≥ 2, (68)

where the defined cardinalities are N4(0) ≜ 2 and N4(1) ≜ 4.

Proof. First of all, we note that an ST-LOCO code ST C4m is symmetric in the sense that the number of codewords starting with
0 (1) from the left equals the number of codewords starting with α2 (α) from the left. We denote the cardinality of Group i
in ST C4m by N4,i(m).

Codewords in Group 1 in ST C4m correspond bijectively to codewords starting with ζ1, ζ1 ∈ {0, α}, from the left in ST C4m−1.
Therefore and using symmetry:

N4,1(m) =
1

2
N4(m− 1) = N4,4(m). (69)

Codewords in Group 2 in ST C4m correspond bijectively to codewords starting with ζ2, ζ2 ∈ {1, α2}, from the left in
ST C4m−1. Therefore and using symmetry:

N4,2(m) =
1

2
N4(m− 1) = N4,3(m). (70)

Codewords in Group 5 in ST C4m correspond bijectively to codewords starting with ζ2, ζ2 ∈ {1, α2}, from the left in
ST C4m−2. Therefore and using symmetry:

N4,5(m) =
1

2
N4(m− 2) = N4,6(m). (71)

Collectively, we get:

N4(m) =

6∑
i=1

N4,i(m) = 2N4(m− 1) +N4(m− 2). (72)

Regarding the defined cardinalities, it is natural to set N4(1) ≜ 4. Then, we know that N4(2) = 16 − 6 = 10 directly from
ST 4. Therefore, (72) for N4(2) gives N4(0) ≜ 2. ■

Third, we determine the special cases. The final cases derived from ST 4 are:
• Case 1.a: i = m− 1 and ci = 1.
• Case 1.b: i = m− 1 and ci = α.
• Case 1.c: i = m− 1 and ci = α2.
• Case 2: ci+1ci = 0α.
• Case 3: ci+1ci = 0α2.
• Case 4: ci+1ci = 11.
• Case 5: ci+1ci = 1α2.
• Case 6: ci+1ci = αα.
• Case 7: ci+2ci+1ci = 0α21.
• Case 8: ci+2ci+1ci = 0α2α2.
• Case 9: ci+1ci = α21 and ci+2 ̸= 0.
• Case 10: ci+1ci = α2α2 and ci+2 ̸= 0.

Observe that Case 1, with all its subcases, is the typical case.
Fourth, we derive the symbol contribution. We denote the contribution of ci in the case indexed by ic by gi,ic(ci). Let

ai ≜ L(ci), where L(c) ≜ gflogα(c) + 1 if c ̸= 0, and L(c) ≜ 0 if c = 0.
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For Case 1.a, the contribution of ci is the number of codewords starting with 0 from the left in ST C4i+1. Observe that the
possible prefixes to start with are 00, 0α, 0α21, and 0α2α2. Thus, the number we are seeking is the number of codewords
starting with ζ1, ζ1 ∈ {0, α}, in ST C4i plus the number of codewords starting with ζ2, ζ2 ∈ {1, α2}, in ST C4i−1. This means:

gi,1.a(ci) =
1

2
(N4(i) +N4(i− 1)). (73)

For Case 1.b, the contribution of ci is the number of codewords starting with 0 or 1 from the left in ST C4i+1. Using code
symmetry and (68):

gi,1.b(ci) =
1

2
N4(i+ 1) = N4(i) +

1

2
N4(i− 1). (74)

For Case 1.c, the contribution of ci is the number of codewords starting with 0, 1, or α from the left in ST C4i+1. Using (74)
and (70) gives:

gi,1.c(ci) =
1

2
(3N4(i) +N4(i− 1)). (75)

For Case 2, the contribution of ci is the number of codewords starting with 00 from the left in ST C4i+2, which is the number
of codewords starting with 0 from the left in ST C4i+1. From (73):

gi,2(ci) =
1

2
(N4(i) +N4(i− 1)). (76)

For Case 3, the contribution of ci is the number of codewords starting with 0ζ1, ζ1 ∈ {0, α}, from the left in ST C4i+2,
which is the number of codewords starting with ζ1 from the left in ST C4i+1. Therefore,

gi,3(ci) =
1

2
N4(i+ 1) = N4(i) +

1

2
N4(i− 1). (77)

For Case 4, the contribution of ci is the number of codewords starting with 10 from the left in ST C4i+2. However, 10 is a
forbidden pattern. Therefore,

gi,4(ci) = 0. (78)

For Case 5, the contribution of ci is the number of codewords starting with 11 from the left in ST C4i+2, which is the number
of codewords starting with 1 from the left in ST C4i+1. From (70):

gi,5(ci) =
1

2
N4(i). (79)

For Case 6, the contribution of ci is the number of codewords starting with α0 from the left in ST C4i+2, which is the number
of codewords starting with 0 from the left in ST C4i+1. From (73):

gi,6(ci) =
1

2
(N4(i) +N4(i− 1)). (80)

For Case 7, the contribution of ci is the number of codewords starting with 0α20 from the left in ST C4i+3. However, 0α20
is a forbidden pattern. Therefore,

gi,7(ci) = 0. (81)

For Case 8, the contribution of ci is the number of codewords starting with 0α21 from the left in ST C4i+3, which is the
number of codewords starting with ζ2, ζ2 ∈ {1, α2}, from the left in ST C4i . Therefore,

gi,8(ci) =
1

2
N4(i). (82)

For Case 9, the contribution of ci is the number of codewords starting with α20 from the left in ST C4i+2, which is the
number of codewords starting with ζ1, ζ1 ∈ {0, α}, from the left in ST C4i . Therefore,

gi,9(ci) =
1

2
N4(i). (83)

For Case 10, the contribution of ci is the number of codewords starting with α20ζ1, ζ1 ∈ {0, α}, or α21ζ2, ζ2 ∈ {1, α2},
from the left in ST C4i+2, which is the number of all codewords in ST C4i . Therefore,

gi,10(ci) = N4(i). (84)

Fifth, we formulate the encoding-decoding rule. The following theorem states a bijective index-codeword relation, which is
the base of ST-LOCO encoding-decoding algorithms.
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Theorem 4. Let c be an ST-LOCO codeword in ST C4m. The relation between the lexicographic index g(c) of this codeword
and the codeword itself is given by:

g(c) =

m−1∑
i=0

[(
1

2
θi,1 + θi,2

)
N4(i) +

1

2
θi,3N4(i− 1)

]
, (85)

where θi,1 = yi,1 + yi,3 + yi,4, θi,2 = yi,2 + yi,3 + yi,5, and θi,3 = yi,1 + yi,2 + yi,3. Moreover,
yi,1 = 1 if ci = cm−1 = 1 or ci+1ci = 0α or ci+1ci = αα (Case 1.a or 2 or 6), and yi,1 = 0 otherwise,
yi,2 = 1 if ci = cm−1 = α or ci+1ci = 0α2 (Case 1.b or 3), and yi,2 = 0 otherwise,
yi,3 = 1 if ci = cm−1 = α2 (Case 1.c), and yi,3 = 0 otherwise,
yi,4 = 1 if ci+1ci = 1α2 or ci+2ci+1ci = 0α2α2 or ci+1ci = α21 while ci+2 ̸= 0 (Case 5 or 8 or 9), and yi,4 = 0 otherwise,
yi,5 = 1 if ci+1ci = α2α2 while ci+2 ̸= 0 (Case 10), and yi,5 = 0 otherwise.

Proof. We have already computed symbol contributions for all final cases in the fourth step above. Now, we will merge them
into one relation for gi(ci). Since every non-zero contribution in the equations (73)–(84) is function of N4(i) and/or N4(i−1),
we need two merging functions fmer

1 (·) and fmer
2 (·), respectively. That is:

gi(ci) = fmer
1 (·)N4(i) + fmer

2 (·)N4(i− 1). (86)

Using the definition of yi,j , for all j ∈ {1, 2, . . . , 5}, θi,k, for all k ∈ {1, 2, 3}, as well as (73)–(84), the first merging function
can be written as follows:

fmer
1 (·) = 1

2
yi,1 + yi,2 +

3

2
yi,3 +

1

2
yi,4 + yi,5

=
1

2
θi,1 + θi,2. (87)

Moreover, using the definition of yi,j , for all j ∈ {1, 2, . . . , 5}, θi,k, for all k ∈ {1, 2, 3}, as well as (73)–(84), the second
merging function can be written as follows:

fmer
2 (·) = 1

2
yi,1 +

1

2
yi,2 +

1

2
yi,3

=
1

2
θi,3. (88)

Substituting (87) and (88) in (86) leads to:

g(c) =

m−1∑
i=0

gi(ci) =

m−1∑
i=0

[fmer
1 (·)N4(i) + fmer

2 (·)N4(i− 1)]

=

m−1∑
i=0

[(
1

2
θi,1 + θi,2

)
N4(i) +

1

2
θi,3N4(i− 1)

]
, (89)

which completes the proof of the encoding-decoding rule of ST-LOCO codes. ■

Example 1. Consider the ST-LOCO code ST C45. Using Theorem 3,

N4(0) ≜ 2, N4(1) ≜ 4, N4(2) = 10, N4(3) = 24, N4(4) = 58, and N4(5) = 140. (90)

Suppose that we want to compute the index of the codeword c = α2α2α2α2α2. Observe that this codeword has to be the last
codeword in ST C45 according to the lexicographic order. Therefore, we already know that:

g(c = α2α2α2α2α2) = N4(5)− 1 = 139. (91)

Now, we verify this via the encoding-decoding rule of ST-LOCO codes. Using Theorem 4 we conclude the following:
• For c4, y4,3 = 1. Thus, θ4,1 = θ4,2 = θ4,3 = 1.
• For ci, i ∈ {0, 1, 2, 3}, yi,5 = 1. Thus, θi,1 = θi,3 = 0 and θi,2 = 1, for all i ∈ {0, 1, 2, 3}.

Next, we directly substitute in (85) to compute the index:

g(c = α2α2α2α2α2) =

[
3

2
N4(4) +

1

2
N4(3)

]
+N4(3) +N4(2) +N4(1) +N4(0)

= [87 + 12] + 24 + 10 + 4 + 2 = 139, (92)

which is perfectly consistent with what we know in this case from (91).

As usual, we will not discuss the sixth step in detail. Instead, we will discuss bridging, self-clocking, and finite-length rates
of ST-LOCO codes.
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ST-LOCO bridging: Recall the set of forbidden patterns:

ST 4 ≜ {01, 10, 1α, α1, αα2, α2α, 0α20, α20α2}.

For the sake of brevity, we again use the following format when studying the bridging between two consecutive ST-LOCO
codewords in ST C4m “right-most symbols of codeword at t – bridging pattern – left-most symbols of codeword at t + 1”.
Denote the bridging sequence by d, whose fixed length is unspecified yet.

Consider the following case:
1− d− α. (93)

We first examine the situation of d of length 1. Because of the right-most symbol of the codeword at t, d cannot be in {0, α}.
Moreover, because of the left-most symbol of the codeword at t + 1, d cannot be in {1, α2}. Thus, d cannot be of length
1. Next, we examine the situation of d of length 2, i.e., d = d1d0. By examining all possible 16 bridging patterns, we can
conclude that the only possible bridging pattern of length 2, which does not create any pattern in ST 4, is:

d = d1d0 = α20. (94)

Note that such bridging will result in encoding log2 1 = 0 input message bits within the bridging interval.
Because of the above analysis, we move on to the situation of d of length 3, i.e., d = d2d1d0. We are still studying the case

in (93). Because of the right-most symbol of the codeword at t, d2 has to be in {1, α2}. Moreover, because of the left-most
symbol of the codeword at t+ 1, d0 has to be in {0, α}. Given the options for d2 and d0, d1 has to be in {0, α2}. While this
implies 8 options for d = d2d1d0, not all of them are possible to use. For example, we cannot use d = 100. However, all

d = d2d1d0 ∈ {1α20, α200, α20α, α2α20} (95)

are possible to use as bridging patterns.
By checking all the possible cases for the right-most symbols of the codeword at t and the left-most symbols of the codeword

at t+ 1, one can conclude that the aforementioned case results in the highest level of restrictions on 3-tuple d; that is, d has
only 4 possible options. We abide by these restrictions in all cases and thus, we specify all bridging patterns to use based on
the rules:

1) Each case has at least 4 possible bridging patterns out of which, we will use only 4.
2) Bridging patterns must prevent forbidden patterns from appearing at the transition between codewords.
3) Each bridging pattern d is of length 3, i.e., d = d2d1d0.
For brevity, we skip listing all bridging patterns for all cases. Moreover, in ST-LOCO bridging, we again use bridging symbols

to encode binary input message bits in order to increase the finite-length rate. In particular, since we use 4 possible bridging
patterns for every case, we encode 2 additional input message bits via these bridging symbols. It is important to highlight that
the impact of such a simple idea on the finite-length rate is significant.

ST-LOCO self-clocking: In order to achieve self-clocking, very long same-symbol sequences should not be allowed. We do
not need to eliminate any codewords to achieve that here. The reason is that our aforementioned bridging is devised such that
a transition from a symbol to a different symbol occurs within the bridging interval or/and directly before/after the bridging
interval. This makes our ST-LOCO codes intrinsically self-clocked. Denote the maximum number of consecutive GF(4) symbols
(2-bit columns) that are identical in an ST-LOCO stream coded via ST C4m and stored in a TDMR device by kst

eff. Then,

kst
eff = m+ 4. (96)

Observe that this self-clocking discussion applies as is for the whole group of 3 down tracks since the data on the lower track
in the ST-LOCO coding scheme is random (uncoded) and cannot be controlled.

ST-LOCO rates: The rate of an ST-LOCO code ST C4m is the number of message bits divided by the number of coded
symbols. We have s = ⌊log2(N4(m))⌋ message bits converted into an ST-LOCO codeword and 2 message bits encoded within
bridging. Observe that s is also the adder size, and therefore, it dictates the complexity of encoding-decoding. Moreover, we
have m+ 3 coded symbols. Therefore, the rate of an ST-LOCO code ST C4m is:

RST-LOCO =
s+ 2

m+ 3
=
⌊log2(N4(m))⌋+ 2

m+ 3
. (97)

Observe that what matters more is the normalized rate of the ST-LOCO coding scheme, i.e., the rate including the uncoded
lower track data. The normalized rate of an ST-LOCO coding scheme is:

Rn
ST-LOCO =

1

3

[
s+ 2

m+ 3
+ 1

]
=

1

3

[
⌊log2(N4(m))⌋+ 2

m+ 3
+ 1

]
. (98)

We also note that our ST-LOCO coding scheme is capacity-achieving.
Table IV gives the normalized rates and adder sizes of the ST-LOCO coding scheme for different values of m. Observe

how finite-length rates approach capacity. More importantly, observe that capacity-approaching rates can be achieved with
quite small adder sizes. In particular, we can achieve a normalized rate within 6.46% (4.62% and 3.16%) from the normalized
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TABLE IV
NORMALIZED RATES AND ADDER SIZES OF THE ST-LOCO CODING SCHEME COMPRISING ST C4

m FOR DIFFERENT VALUES OF m. THE NORMALIZED
CAPACITY IS 0.7572.

m Rn
ST-LOCO Adder size

5 0.7083 7 bits
9 0.7222 12 bits
12 0.7333 16 bits
23 0.7436 30 bits
34 0.7477 44 bits
49 0.7500 63 bits

capacity using an adder of size only 7 (12 and 16) bits. These quite small adder sizes result in remarkably lower complexity
and remarkably lower error propagation on the upper and middle down tracks. Recall that in our ST-LOCO coding scheme,
there does not exist any error propagation on the lower track in each group of 3 down tracks.

VI. CONCLUSION

We experimentally showed that as the media noise impact increases because of high TD density and/or low TD energy,
new error-prone data patterns, namely IPIS patterns, emerge in TDMR systems. We characterized the set of all error-prone
patterns in TDMR, namely RTIS patterns, and we showed that the capacity of a constrained code that forbids all RTIS patterns
is surprisingly high. We analyzed and designed constrained codes, namely OT-LOCO codes, that forbid all RTIS patterns.
In particular, we derived a recursive relation that gives the cardinality of OT-LOCO codes. Moreover, we devised a simple
encoding-decoding rule for these codes, which relates each OT-LOCO codeword to its lexicographic index bijectively. This
encoding-decoding rule allows simple reconfiguration of the proposed codes. We introduced a novel bridging technique for these
codes and discussed their capacity achievability. We presented simulation results that demonstrate remarkable performance and
density/energy gains achieved by OT-LOCO codes in TDMR systems compared with both OP-LOCO codes and the uncoded
setting. We also showed how to reconfigure the constrained code to further preserve storage capacity while having a strict
performance criterion. We proposed ST-LOCO coding to remove RTIS patterns at lower complexity and error propagation, but
with some rate penalty, and showed how ST-LOCO codes can increase reading speed. We suggest that OT-LOCO codes and
the concept of reconfiguration could help the evolution of the TDMR technology.
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