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Abstract. We obtain a minimal generating set of involutions for the level 2

subgroup of the mapping class group of a closed nonorientable surface.

1. Introduction

Let Ng be a closed nonorientable surface of genus g ≥ 2. The mapping class
group Mod(Ng) is defined to be the group of isotopy classes of all diffeomorphisms
of Ng. The first homology group H1(Ng;Z) is generated by {x1, x2, . . . , xg}, where
xi for 1 ≤ i ≤ g are the homology classes of one-sided curves as depicted in Figure 1.

Figure 1. Generators of H1(Ng;Z).

The Z2-homology classes xi of these curves form a basis for H1(Ng;Z/2Z). The
Z2-valued intersection pairing is a symmetric bilinear form 〈 , 〉 onH1(Ng;Z/2Z) sat-
isfying 〈xi, xj〉 = δij for 1 ≤ i, j ≤ g. For more on automorphisms of H1(Ng;Z/2Z)
and Z2-valued intersection pairings we refer the reader to [2]. Let Iso(H1(Ng;Z/2Z)
be the group of automorphisms of H1(Ng;Z/2Z) which preserve 〈 , 〉. The level 2
subgroup Γ2(Ng) of Mod(Ng) is the group of isotopy classes of diffeomorphisms
which act trivially on H1(Ng;Z/2Z). It fits into the following short exact sequence:

1 −→ Γ2(Ng)) −→ Mod(Ng) −→ Iso(H1(Ng;Z/2Z) −→ 1.

For a two-sided simple closed curve α and a one-sided simple closed curve µ
which intersect in one point, let K denote a regular neighborhood of µ ∪ α that is
homeomorphic to the Klein bottle with a hole. Let M ⊂ K be a regular neigh-
bourhood of µ, which is a Möbius strip. We define the crosscap slide (also called
Y -homeomorphism) Yµ,α as the self-diffeomorphism of Ng obtained from sliding M
once along α and fixing each point of the boundary of K (Figure 2).

For I = {i1, i2, . . . , ik} a subset of {1, 2, . . . , g}, let αI be the simple closed curve
shown in Figure 3. Throughout the paper, we introduce the following notations:

• Yi1;i2,...,ik = Yαi1 ;α{i1,i2,...,ik}
,
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Figure 2. The crosscap slide Yµ,α.

• Ti1,i2,...,ik = Tα{i1,i2,...,ik}
,

• αi = α{i,i}.

Figure 3. The curves αI and αI for I = {i1, i2, . . . , ik}.

Szepietowski proved that Γ2(Ng) is equal to the subgroup of Mod(Ng) generated
by all crosscap slides [3, Theorem 5.5]. Moreover, he proved that Γ2(Ng) can be
generated by (infinitely many) involutions [3, Theorem 3.7]. In [4], Szepietowski
also gave a finite set of generators for Γ2(Ng). Later, Hirose and Sato reduced the
number of generators of Γ2(Ng), their generating set is as follows [1, Theorem 1.2].

Theorem 1.1. For g ≥ 4, the level 2 subgroup Γ2(Ng) is generated by the following
two types of elements:

(1) Yi;j for i ∈ {1, 2, . . . , g − 1}, j ∈ {1, 2, . . . , g} and i 6= j;
(2) T 2

1,j,k,l for 1 < j < k < l.

Note that when g = 3, the group Γ2(N3) is generated only by the elements of
type (1). Hirose and Sato [1, Theorem 1.4] also showed that for g ≥ 4

H1(Γ2(Ng);Z) ∼= (Z/2Z)(
g
2)+(g

3),

which in turn implies that the above generating set is minimal.
In this paper, our purpose is to give a minimal generating set of involutions for

the level 2 subgroup Γ2(Ng).
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2. A generating set for Γ2(Ng)

Let us start this section by introducing bar notation for two-sided simple closed
curves. In the remainder of this paper, let α1,i,j,k and αi,j be two sided simple
closed curves depicted in Figure 4. Observe that when we put a bar over a two-
sided simple closed curve it passes below the in-between crosscaps. For the ease of
notation, we also use the following notations:

• Y i,j = Yαi;αi,j ,

• T 1,i,j,k = Tα1,i,j,k
.

Recall that Γ2(Ng) is generated by all crosscap slides [3, Theorem 5.5]. Let Y
and Y be the subgroups of Γ2(Ng) generated by elements of the form Yi,j and Y i,j ,
for i ∈ {1, 2, . . . , g − 1}, j ∈ {1, 2, . . . , g} and i 6= j, respectively.

Figure 4. The curves αi,j and αi,j for 1 < j < k < l.

Lemma 2.1. The subgroups Y and Y are equal to each other.

Proof. Let us first show that Y ⊆ Y. For Y i,j ∈ Y, if we assume that | i− j |= 1,
since

Y i,i+1 = Yi,i+1 and Y i+1,i = Yi+1,i

for all i = 1, 2, . . . , g − 1, we have Y i,j ∈ Y. Assume now that | i − j |> 1: For
i < j, let us first consider the case j − i = 2. It is easy to verify that

Y
−1

i+1,i+2(αi, αi,i+2) = (αi, αi,i+2),

for all i = 1, . . . , g − 2 (see Figure 5). Using Y i+1,i+2 = Yi+1,i+2 ∈ Y, we have

Y i,i+2 = Y
−1

i+1,i+2Yi,i+2Y i+1,i+2 ∈ Y.

For the case j − i = 3, one can see that (see Figure 6)

Y
−1

i+1,i+3Y
−1

i+2,i+3(αi, αi,i+3) = (αi, αi,i+3).

Now, since Y i+2,i+3 and Y i+1,i+3 are all contained in Y we have

Y i,i+3 = (Y
−1

i+1,i+3Y
−1

i+2,i+3)Yi,i+2(Y
−1

i+1,i+3Y
−1

i+2,i+3)−1 ∈ Y
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Figure 5. Y
−1

i+1,i+2(αi, αi,i+2) = (αi, αi,i+2).

Figure 6. Y
−1

i+1,i+3Y
−1

i+2,i+3(αi, αi,i+3) = (αi, αi,i+3).

for i = 1, . . . , g − 3. For the remaining i < j cases, one can see that

Y i,j = (Y
−1

i+1,jY
−1

i+2,j · · ·Y
−1

j−1,j)Yi,j(Y
−1

i+1,jY
−1

i+2,j · · ·Y
−1

j−1,j)
−1 ∈ Y

for all i = 1, . . . , g − 1, j = 1, . . . , g.
Now, we consider the cases where i > j. For i− j > 2, we have (see Figure 7)

Y i+1,i(αi+2, αi,i+2) = (αi+2, αi,i+2).

Figure 7. Y i+1,i(αi+2, αi,i+2) = (αi+2, αi,i+2).

Using Y i+1,i ∈ Y for i = 1, . . . , g − 3, we get

Y i+2,i = Y i+1,iYi+2,iY
−1

i+1,i ∈ Y.

As before, for all i = 1, . . . , g − 1 and j = 1, . . . , g − 2, we have

Y i,j = (Y i,j−1 · · ·Y i,i+1)Yi,j(Y i,j−1 · · ·Y i,i+1)−1 ∈ Y.
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Thus, Y i,j ∈ Y for 1 ≤ i < j ≤ g. Since we cover all the cases, we have shown

Y ⊆ Y. For the reverse inclusion, note that we have the following equalities

(1) Yi,j =

{
(Y
−1

i+1,j · · ·Y
−1

j−1,j)
−1Y i,j(Y

−1

i+1,j · · ·Y
−1

j−1,j), if i < j,

(Y
−1

i,j−1 · · ·Y
−1

i,i+1)−1Y i,j(Y
−1

i,j−1 · · ·Y
−1

i,i+1), if i > j,

which immediately imply that Y ⊆ Y.

Next, we present a minimal generating set for the level 2 subgroup Γ2(Ng) (cf. [1,
Theorem 1.2]).

Theorem 2.2. For g ≥ 4, the level 2 subgroup Γ2(Ng) can be generated by

(1) Y i,j for i ∈ {1, . . . , g − 1}, j ∈ {1, . . . , g} and i 6= j,

(2) T
2

1,i,j,k for 1 < i < j < k.

Proof. Let G be the subgroup of Γ2(Ng) generated by the elements given in (1)

and (2). Since by Lemma 2.1 we have Y = Y, it is enough to prove that T 2
1,i,j,k is

contained in the subgroup G for 1 < i < j < k.
It is easy to check that

Y
−1

i+1,j · · ·Y
−1

j−2,jY
−1

j−1,j(α1,i,j,k) = α1,i,j,k.

Thus

T
2

1,i,j,k = (Y
−1

i+1,j · · ·Y
−1

j−2,jY
−1

j−1,j)T
2
1,i,j,k(Y

−1

i+1,j · · ·Y
−1

j−2,jY
−1

j−1,j)
−1,

which implies that

T 2
1,i,j,k = (Y

−1

i+1,j · · ·Y
−1

j−2,jY
−1

j−1,j)
−1T

2

1,i,j,k(Y
−1

i+1,j · · ·Y
−1

j−2,jY
−1

j−1,j) ∈ G

for 1 < i < j < k. This completes the proof.

3. Involution generators for Γ2(Ng)

In this section, we give a generating set of involutions for Γ2(Ng). Throughout
this section, consider the surface Ng as shown in Figure 8 so that it is invariant
under the reflection R about the indicated plane. Note that, R acts trivially on
H1(Ng;Z/2Z), which implies that it is an element of the subgroup Γ2(Ng).

Figure 8. The reflection R.

Proposition 3.1. For g ≥ 4, the group Γ2(Ng) can be generated by

(1) R,
(2) RY i,j for i ∈ {1, . . . , g − 1}, j ∈ {1, . . . , g} and i 6= j,

(3) RY 1,iYαk,αj,k
T

2

1,i,j,k for 1 < i < j < k.
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Proof. Let G be the subgroup generated by the elements listed in the statement of
the proposition. Since the subgroup G contains R and RY i,j , it also contains

Y i,j = R(RY i,j)

for i ∈ {1, . . . , g − 1}, j ∈ {1, . . . , g} and i 6= j. Recall that Y is generated by such

elements, hence Y ⊆ G. By Theorem 2.2, it remains to prove that T
2

1,i,j,k also
belongs to G. Now, it is easy to see that G contains

Y 1,iYαk,αj,k
T

2

1,i,j,k = R(RY 1,iYαk,αj,k
T

2

1,i,j,k).

The elements Yαk,αj,k
are contained in Y = Y by [4, Lemma 3.5] and Lemma 2.1.

Since the elements Y 1,i are also contained in G, one can conclude that T
2

1,i,j,k ∈ G
for 1 < i < j < k, which finishes the proof.

Lemma 3.2. The reflection R can be expressed as a product of finitely Y -homeomorphisms.
In particular

R = Y g−1,gY g−2,g · · ·Y 1,g.

Proof. It follows from the proof of [3, Lemma 3.4] that R can be written as

R = Yg−1,gT
−1
αg−1,g

Yg−2,g−1Tαg−1,g
(Tαi+1,i+2

Tαi+2,i+3
· · ·Tαg−1,g

)−1

Yi,i+1(Tαi+1,i+2Tαi+2,i+3 · · ·Tαg−1,g ) · · · (Tα2,3 · · ·Tαg−1,g )−1Y1,2(Tα2,3 · · ·Tαg−1,g ).

It is easy to see that

(Tαi+1,i+2
Tαi+2,i+3

· · ·Tαg−1,g
)−1(αi, αi,i+1) = (αi, α1,g),

from which we obtain

Y i,g = (Tαi+1,i+2
Tαi+2,i+3

· · ·Tαg−1,g
)−1Yi,i+1(Tαi+1,i+2

Tαi+2,i+3
· · ·Tαg−1,g

),

for i ∈ {1, . . . , g − 1}. This completes the proof.

Next, we show that the elements mentioned in Theorem 3.1 are all involutions.
We already know that the reflection R is an involution.

Lemma 3.3. If g ≥ 4, then the elements RY
±1

i,j are all involutions for i ∈ {1, . . . , g−
1}, j ∈ {1, . . . , g} and i 6= j.

Proof. It is enough to see that R(αi, αi,j) = (α−1
i , α−1

i,j ).

Lemma 3.4. If g ≥ 4, then the elements RY 1,iYαk,αj,k
T

2

1,i,j,k are all involutions
for 1 < i < j < k.

Proof. First of all, it is easy verify that

R(α1,i, αj,k) = (α−1
1,i , α

−1
j,k) and R(αi, αk) = (α−1

i , α−1
k ).

Then we have the following:

RY 1,iY
−1
αk,αj,k

R−1 = Y
−1

1,iYαk,αj,k

= Yαk,αj,k
Y
−1

1,i ,

where the last identity follows from the commutativity of crosscap slides Y 1,i and

Yαk,αj,k
. Observe that, this implies RY 1,iY

−1
αk,αj,k

is an involution. Moreover, since

RY 1,iY
−1
αk,αj,k

(α1,i,j,k) = α−1
1,i,j,k
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it follows that RY 1,iYαk,αj,k
T

2

1,i,j,k is also an involution.

Finally, we present our involution generators. Note that in the following, the
number of involution generators is equal to

(
g
2

)
+
(
g
3

)
which is the minimal possible

number of generators for Γ2(Ng).

Theorem 3.5. For g ≥ 5 and odd, Γ2(Ng) is generated by the following involutions:

(1) RY 1,g, RY
−1

2,g, . . . , RY g−2,g, RY
−1

g−1,g,

(2) RY i,j for i, j ∈ {1, 2, . . . , g − 1} and i 6= j,

(3) RY 1,iY
−1
αk,αj,k

T
2

1,i,j,k for 1 < i < j < k.

For g ≥ 4 and even, Γ2(Ng) is generated by the following involutions:

(1) R,RY 1,g, RY
−1

2,g, . . . , RY g−2,g,

(2) RY i,j for i, j ∈ {1, 2, . . . , g − 1} and i 6= j,

(3) RY 1,iY
−1
αk,αj,k

T
2

1,i,j,k for 1 < i < j < k.

Proof. Let G denote the subgroup of Γ2(Ng) generated by the elements listed in
Theorem 3.5. It follows from lemmata 3.3 and 3.4 that the generators of the group
G are involutions.

Let us first assume that g ≥ 5 and odd. By Proposition 3.1, it is enough to prove
that R is contained in the subgroup G. It follows from Lemma 3.2 the reflection R
can be expresses as

R = Y g−1,gY g−2,g · · ·Y 1,g

= R2Y g−1,gY g−2,gR
2Y
−1

g−3,g · · ·R2Y 2,gY 1,g

= RY
−1

g−1,gRY g−2,gRY
−1

g−3,gR · · ·RY
−1

2,gRY 1,g,

which is contained in the subgroup G using RY
−1

i,gR = Y i,g.
Assume now that g ≥ 4 and even. In this case, by Proposition 3.1, it suffices to

show that the subgroup G contains the element Y g−1,g. The following element is
contained in the subgroup G:

R(RY g−2,gRY
−1

g−3,gRY g−4,gR · · ·RY
−1

2,gRY 1,g)

= R(RY g−2,gR
2Y g−3,gY g−4,g · · ·R2Y 2,gY 1,g)

= Y g−2,gY g−3,gY g−4,g · · ·Y 2,gY 1,g,

using again RY
−1

i,gR = Y i,g. One can conclude that Y g−1,g ∈ G since R ∈ G by
Lemma 3.2, which finishes the proof.

References

[1] S. Hirose, M. Sato: A minimal generating set of the level 2 mapping class group of a

non-orientable surface, Math. Proc. Cambridge Philos. Soc. 157, (2) (2014), 345–355.
[2] J. D. McCarthy, U. Pinkall: Representing homology automorphisms of nonorientable sur-

faces, Max Planc Inst. preprint MPI/SFB 85–11, revised version written in 2004. Available
at http://www.math.msu. edu/ mccarthy (2004)

[3] B. Szepietowski: Crosscap slides and the level 2 mapping class group of a nonorientable

surface, Geom. Dedicata 160 (2012), 169–183.
[4] B. Szepietowski: A finite generating set for the level 2 mapping class group of a nonori-

entable surface, Kodai Mathematical Journal 36 (2013), 1–14.
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