GENERATING THE LEVEL 2 SUBGROUP BY INVOLUTIONS

TÜLİN ALTUNÖZ, NAOYUKI MONDEN, MEHMETCİK PAMUK, AND OĞUZ YILDIZ

Abstract

We obtain a minimal generating set of involutions for the level 2 subgroup of the mapping class group of a closed nonorientable surface.

1. Introduction

Let N_{g} be a closed nonorientable surface of genus $g \geq 2$. The mapping class group $\operatorname{Mod}\left(N_{g}\right)$ is defined to be the group of isotopy classes of all diffeomorphisms of N_{g}. The first homology group $H_{1}\left(N_{g} ; \mathbb{Z}\right)$ is generated by $\left\{x_{1}, x_{2}, \ldots, x_{g}\right\}$, where x_{i} for $1 \leq i \leq g$ are the homology classes of one-sided curves as depicted in Figure 1.

Figure 1. Generators of $H_{1}\left(N_{g} ; \mathbb{Z}\right)$.

The \mathbb{Z}_{2}-homology classes \bar{x}_{i} of these curves form a basis for $H_{1}\left(N_{g} ; \mathbb{Z} / 2 \mathbb{Z}\right)$. The \mathbb{Z}_{2}-valued intersection pairing is a symmetric bilinear form \langle,$\rangle on H_{1}\left(N_{g} ; \mathbb{Z} / 2 \mathbb{Z}\right)$ satisfying $\left\langle\bar{x}_{i}, \bar{x}_{j}\right\rangle=\delta_{i j}$ for $1 \leq i, j \leq g$. For more on automorphisms of $H_{1}\left(N_{g} ; \mathbb{Z} / 2 \mathbb{Z}\right)$ and \mathbb{Z}_{2}-valued intersection pairings we refer the reader to [2]. Let Iso $\left(\mathrm{H}_{1}\left(\mathrm{~N}_{\mathrm{g}} ; \mathbb{Z} / 2 \mathbb{Z}\right)\right.$ be the group of automorphisms of $H_{1}\left(N_{g} ; \mathbb{Z} / 2 \mathbb{Z}\right)$ which preserve \langle,$\rangle . The level 2$ subgroup $\Gamma_{2}\left(N_{g}\right)$ of $\operatorname{Mod}\left(N_{g}\right)$ is the group of isotopy classes of diffeomorphisms which act trivially on $H_{1}\left(N_{g} ; \mathbb{Z} / 2 \mathbb{Z}\right)$. It fits into the following short exact sequence:

$$
\left.1 \longrightarrow \Gamma_{2}\left(N_{g}\right)\right) \longrightarrow \operatorname{Mod}\left(N_{g}\right) \longrightarrow \operatorname{Iso}\left(\mathrm{H}_{1}\left(\mathrm{~N}_{\mathrm{g}} ; \mathbb{Z} / 2 \mathbb{Z}\right) \longrightarrow 1 .\right.
$$

For a two-sided simple closed curve α and a one-sided simple closed curve μ which intersect in one point, let K denote a regular neighborhood of $\mu \cup \alpha$ that is homeomorphic to the Klein bottle with a hole. Let $M \subset K$ be a regular neighbourhood of μ, which is a Möbius strip. We define the crosscap slide (also called Y-homeomorphism) $Y_{\mu, \alpha}$ as the self-diffeomorphism of N_{g} obtained from sliding M once along α and fixing each point of the boundary of K (Figure 2).

For $I=\left\{i_{1}, i_{2}, \ldots, i_{k}\right\}$ a subset of $\{1,2, \ldots, g\}$, let α_{I} be the simple closed curve shown in Figure 3. Throughout the paper, we introduce the following notations:

- $Y_{i_{1} ; i_{2}, \ldots, i_{k}}=Y_{\left.\alpha_{i_{1}} ; \alpha_{\left\{i_{1}, i_{2}\right.}, \ldots, i_{k}\right\}}$,

[^0]

Figure 2. The crosscap slide $Y_{\mu, \alpha}$.

- $T_{i_{1}, i_{2}, \ldots, i_{k}}=T_{\alpha_{\left\{i_{1}, i_{2}, \ldots, i_{k}\right\}}}$,
- $\alpha_{i}=\alpha_{\{i, i\}}$.

Figure 3. The curves α_{I} and $\bar{\alpha}_{I}$ for $I=\left\{i_{1}, i_{2}, \ldots, i_{k}\right\}$.

Szepietowski proved that $\Gamma_{2}\left(N_{g}\right)$ is equal to the subgroup of $\operatorname{Mod}\left(N_{g}\right)$ generated by all crosscap slides [3, Theorem 5.5]. Moreover, he proved that $\Gamma_{2}\left(N_{g}\right)$ can be generated by (infinitely many) involutions [3, Theorem 3.7]. In [4], Szepietowski also gave a finite set of generators for $\Gamma_{2}\left(N_{g}\right)$. Later, Hirose and Sato reduced the number of generators of $\Gamma_{2}\left(N_{g}\right)$, their generating set is as follows [1, Theorem 1.2].

Theorem 1.1. For $g \geq 4$, the level 2 subgroup $\Gamma_{2}\left(N_{g}\right)$ is generated by the following two types of elements:
(1) $Y_{i ; j}$ for $i \in\{1,2, \ldots, g-1\}, j \in\{1,2, \ldots, g\}$ and $i \neq j$;
(2) $T_{1, j, k, l}^{2}$ for $1<j<k<l$.

Note that when $g=3$, the group $\Gamma_{2}\left(N_{3}\right)$ is generated only by the elements of type (1). Hirose and Sato [1, Theorem 1.4] also showed that for $g \geq 4$

$$
H_{1}\left(\Gamma_{2}\left(N_{g}\right) ; \mathbb{Z}\right) \cong(\mathbb{Z} / 2 \mathbb{Z})^{\binom{g}{2}+\binom{g}{3}}
$$

which in turn implies that the above generating set is minimal.
In this paper, our purpose is to give a minimal generating set of involutions for the level 2 subgroup $\Gamma_{2}\left(N_{g}\right)$.

2. A generating set for $\Gamma_{2}\left(N_{g}\right)$

Let us start this section by introducing bar notation for two-sided simple closed curves. In the remainder of this paper, let $\bar{\alpha}_{1, i, j, k}$ and $\bar{\alpha}_{i, j}$ be two sided simple closed curves depicted in Figure 4. Observe that when we put a bar over a twosided simple closed curve it passes below the in-between crosscaps. For the ease of notation, we also use the following notations:

- $\bar{Y}_{i, j}=Y_{\alpha_{i} ; \bar{\alpha}_{i, j}}$,
- $\bar{T}_{1, i, j, k}=T_{\bar{\alpha}_{1, i, j, k}}$.

Recall that $\Gamma_{2}\left(N_{g}\right)$ is generated by all crosscap slides [3, Theorem 5.5]. Let \mathcal{Y} and $\overline{\mathcal{Y}}$ be the subgroups of $\Gamma_{2}\left(N_{g}\right)$ generated by elements of the form $Y_{i, j}$ and $\bar{Y}_{i, j}$, for $i \in\{1,2, \ldots, g-1\}, j \in\{1,2, \ldots, g\}$ and $i \neq j$, respectively.

Figure 4. The curves $\bar{\alpha}_{i, j}$ and $\alpha_{i, j}$ for $1<j<k<l$.

Lemma 2.1. The subgroups \mathcal{Y} and $\overline{\mathcal{Y}}$ are equal to each other.
Proof. Let us first show that $\overline{\mathcal{Y}} \subseteq \mathcal{Y}$. For $\bar{Y}_{i, j} \in \overline{\mathcal{Y}}$, if we assume that $|i-j|=1$, since

$$
\bar{Y}_{i, i+1}=Y_{i, i+1} \text { and } \bar{Y}_{i+1, i}=Y_{i+1, i}
$$

for all $i=1,2, \ldots, g-1$, we have $\bar{Y}_{i, j} \in \mathcal{Y}$. Assume now that $|i-j|>1$: For $i<j$, let us first consider the case $j-i=2$. It is easy to verify that

$$
\bar{Y}_{i+1, i+2}^{-1}\left(\alpha_{i}, \alpha_{i, i+2}\right)=\left(\alpha_{i}, \bar{\alpha}_{i, i+2}\right),
$$

for all $i=1, \ldots, g-2$ (see Figure 5). Using $\bar{Y}_{i+1, i+2}=Y_{i+1, i+2} \in \mathcal{Y}$, we have

$$
\bar{Y}_{i, i+2}=\bar{Y}_{i+1, i+2}^{-1} Y_{i, i+2} \bar{Y}_{i+1, i+2} \in \mathcal{Y}
$$

For the case $j-i=3$, one can see that (see Figure 6)

$$
\bar{Y}_{i+1, i+3}^{-1} \bar{Y}_{i+2, i+3}^{-1}\left(\alpha_{i}, \alpha_{i, i+3}\right)=\left(\alpha_{i}, \bar{\alpha}_{i, i+3}\right)
$$

Now, since $\bar{Y}_{i+2, i+3}$ and $\bar{Y}_{i+1, i+3}$ are all contained in \mathcal{Y} we have

$$
\bar{Y}_{i, i+3}=\left(\bar{Y}_{i+1, i+3}^{-1} \bar{Y}_{i+2, i+3}^{-1}\right) Y_{i, i+2}\left(\bar{Y}_{i+1, i+3}^{-1} \bar{Y}_{i+2, i+3}^{-1}\right)^{-1} \in \mathcal{Y}
$$

Figure 5. $\bar{Y}_{i+1, i+2}^{-1}\left(\alpha_{i}, \alpha_{i, i+2}\right)=\left(\alpha_{i}, \bar{\alpha}_{i, i+2}\right)$.

FIGURE 6. $\bar{Y}_{i+1, i+3}^{-1} \bar{Y}_{i+2, i+3}^{-1}\left(\alpha_{i}, \alpha_{i, i+3}\right)=\left(\alpha_{i}, \bar{\alpha}_{i, i+3}\right)$.
for $i=1, \ldots, g-3$. For the remaining $i<j$ cases, one can see that

$$
\bar{Y}_{i, j}=\left(\bar{Y}_{i+1, j}^{-1} \bar{Y}_{i+2, j}^{-1} \cdots \bar{Y}_{j-1, j}^{-1}\right) Y_{i, j}\left(\bar{Y}_{i+1, j}^{-1} \bar{Y}_{i+2, j}^{-1} \cdots \bar{Y}_{j-1, j}^{-1}\right)^{-1} \in \mathcal{Y}
$$

for all $i=1, \ldots, g-1, j=1, \ldots, g$.
Now, we consider the cases where $i>j$. For $i-j>2$, we have (see Figure 7)

$$
\bar{Y}_{i+1, i}\left(\alpha_{i+2}, \alpha_{i, i+2}\right)=\left(\alpha_{i+2}, \bar{\alpha}_{i, i+2}\right)
$$

Figure 7. $\bar{Y}_{i+1, i}\left(\alpha_{i+2}, \alpha_{i, i+2}\right)=\left(\alpha_{i+2}, \bar{\alpha}_{i, i+2}\right)$.

Using $\bar{Y}_{i+1, i} \in \mathcal{Y}$ for $i=1, \ldots, g-3$, we get

$$
\bar{Y}_{i+2, i}=\bar{Y}_{i+1, i} Y_{i+2, i} \bar{Y}_{i+1, i}^{-1} \in \mathcal{Y}
$$

As before, for all $i=1, \ldots, g-1$ and $j=1, \ldots, g-2$, we have

$$
\bar{Y}_{i, j}=\left(\bar{Y}_{i, j-1} \cdots \bar{Y}_{i, i+1}\right) Y_{i, j}\left(\bar{Y}_{i, j-1} \cdots \bar{Y}_{i, i+1}\right)^{-1} \in \mathcal{Y}
$$

Thus, $\bar{Y}_{i, j} \in \mathcal{Y}$ for $1 \leq i<j \leq g$. Since we cover all the cases, we have shown $\overline{\mathcal{Y}} \subseteq \mathcal{Y}$. For the reverse inclusion, note that we have the following equalities

$$
Y_{i, j}= \begin{cases}\left(\bar{Y}_{i+1, j}^{-1} \cdots \bar{Y}_{j-1, j}^{-1}\right)^{-1} \bar{Y}_{i, j}\left(\bar{Y}_{i+1, j}^{-1} \cdots \bar{Y}_{j-1, j}^{-1}\right), & \text { if } i<j \tag{1}\\ \left(\bar{Y}_{i, j-1}^{-1} \cdots \bar{Y}_{i, i+1}^{-1}\right)^{-1} \bar{Y}_{i, j}\left(\bar{Y}_{i, j-1}^{-1} \cdots \bar{Y}_{i, i+1}^{-1}\right), & \text { if } i>j\end{cases}
$$

which immediately imply that $\mathcal{Y} \subseteq \overline{\mathcal{Y}}$.
Next, we present a minimal generating set for the level 2 subgroup $\Gamma_{2}\left(N_{g}\right)$ (cf. [1, Theorem 1.2]).

Theorem 2.2. For $g \geq 4$, the level 2 subgroup $\Gamma_{2}\left(N_{g}\right)$ can be generated by
(1) $\bar{Y}_{i, j}$ for $i \in\{1, \ldots, g-1\}, j \in\{1, \ldots, g\}$ and $i \neq j$,
(2) $\bar{T}_{1, i, j, k}^{2}$ for $1<i<j<k$.

Proof. Let G be the subgroup of $\Gamma_{2}\left(N_{g}\right)$ generated by the elements given in (1) and (2). Since by Lemma 2.1 we have $\mathcal{Y}=\overline{\mathcal{Y}}$, it is enough to prove that $T_{1, i, j, k}^{2}$ is contained in the subgroup G for $1<i<j<k$.

It is easy to check that

$$
\bar{Y}_{i+1, j}^{-1} \cdots \bar{Y}_{j-2, j}^{-1} \bar{Y}_{j-1, j}^{-1}\left(\alpha_{1, i, j, k}\right)=\bar{\alpha}_{1, i, j, k}
$$

Thus

$$
\bar{T}_{1, i, j, k}^{2}=\left(\bar{Y}_{i+1, j}^{-1} \cdots \bar{Y}_{j-2, j}^{-1} \bar{Y}_{j-1, j}^{-1}\right) T_{1, i, j, k}^{2}\left(\bar{Y}_{i+1, j}^{-1} \cdots \bar{Y}_{j-2, j}^{-1} \bar{Y}_{j-1, j}^{-1}\right)^{-1}
$$

which implies that

$$
T_{1, i, j, k}^{2}=\left(\bar{Y}_{i+1, j}^{-1} \cdots \bar{Y}_{j-2, j}^{-1} \bar{Y}_{j-1, j}^{-1}\right)^{-1} \bar{T}_{1, i, j, k}^{2}\left(\bar{Y}_{i+1, j}^{-1} \cdots \bar{Y}_{j-2, j}^{-1} \bar{Y}_{j-1, j}^{-1}\right) \in G
$$

for $1<i<j<k$. This completes the proof.

3. Involution generators for $\Gamma_{2}\left(N_{g}\right)$

In this section, we give a generating set of involutions for $\Gamma_{2}\left(N_{g}\right)$. Throughout this section, consider the surface N_{g} as shown in Figure 8 so that it is invariant under the reflection R about the indicated plane. Note that, R acts trivially on $H_{1}\left(N_{g} ; \mathbb{Z} / 2 \mathbb{Z}\right)$, which implies that it is an element of the subgroup $\Gamma_{2}\left(N_{g}\right)$.

Figure 8. The reflection R.

Proposition 3.1. For $g \geq 4$, the group $\Gamma_{2}\left(N_{g}\right)$ can be generated by
(1) R,
(2) $R \bar{Y}_{i, j}$ for $i \in\{1, \ldots, g-1\}, j \in\{1, \ldots, g\}$ and $i \neq j$,
(3) $R \bar{Y}_{1, i} Y_{\alpha_{k}, \bar{\alpha}_{j, k}} \bar{T}_{1, i, j, k}^{2}$ for $1<i<j<k$.

Proof. Let G be the subgroup generated by the elements listed in the statement of the proposition. Since the subgroup G contains R and $R \bar{Y}_{i, j}$, it also contains

$$
\bar{Y}_{i, j}=R\left(R \bar{Y}_{i, j}\right)
$$

for $i \in\{1, \ldots, g-1\}, j \in\{1, \ldots, g\}$ and $i \neq j$. Recall that $\overline{\mathcal{Y}}$ is generated by such elements, hence $\overline{\mathcal{Y}} \subseteq G$. By Theorem 2.2, it remains to prove that $\bar{T}_{1, i, j, k}^{2}$ also belongs to G. Now, it is easy to see that G contains

$$
\bar{Y}_{1, i} Y_{\alpha_{k}, \bar{\alpha}_{j, k}} \bar{T}_{1, i, j, k}^{2}=R\left(R \bar{Y}_{1, i} Y_{\alpha_{k}, \bar{\alpha}_{j, k}} \bar{T}_{1, i, j, k}^{2}\right) .
$$

The elements $Y_{\alpha_{k}, \bar{\alpha}_{j, k}}$ are contained in $\mathcal{Y}=\overline{\mathcal{Y}}$ by [4, Lemma 3.5] and Lemma 2.1. Since the elements $\bar{Y}_{1, i}$ are also contained in G, one can conclude that $\bar{T}_{1, i, j, k}^{2} \in G$ for $1<i<j<k$, which finishes the proof.

Lemma 3.2. The reflection R can be expressed as a product of finitely Y-homeomorphisms.
In particular

$$
R=\bar{Y}_{g-1, g} \bar{Y}_{g-2, g} \cdots \bar{Y}_{1, g}
$$

Proof. It follows from the proof of [3, Lemma 3.4] that R can be written as

$$
\begin{aligned}
R= & Y_{g-1, g} T_{\alpha_{g-1, g}}^{-1} Y_{g-2, g-1} T_{\alpha_{g-1, g}}\left(T_{\alpha_{i+1, i+2}} T_{\alpha_{i+2, i+3}} \cdots T_{\alpha_{g-1, g}}\right)^{-1} \\
& Y_{i, i+1}\left(T_{\alpha_{i+1, i+2}} T_{\alpha_{i+2, i+3}} \cdots T_{\alpha_{g-1, g}}\right) \cdots\left(T_{\alpha_{2,3}} \cdots T_{\alpha_{g-1, g}}\right)^{-1} Y_{1,2}\left(T_{\alpha_{2,3}} \cdots T_{\alpha_{g-1, g}}\right) .
\end{aligned}
$$

It is easy to see that

$$
\left(T_{\alpha_{i+1, i+2}} T_{\alpha_{i+2, i+3}} \cdots T_{\alpha_{g-1, g}}\right)^{-1}\left(\alpha_{i}, \alpha_{i, i+1}\right)=\left(\alpha_{i}, \bar{\alpha}_{1, g}\right),
$$

from which we obtain
$\bar{Y}_{i, g}=\left(T_{\alpha_{i+1, i+2}} T_{\alpha_{i+2, i+3}} \cdots T_{\alpha_{g-1, g}}\right)^{-1} Y_{i, i+1}\left(T_{\alpha_{i+1, i+2}} T_{\alpha_{i+2, i+3}} \cdots T_{\alpha_{g-1, g}}\right)$, for $i \in\{1, \ldots, g-1\}$. This completes the proof.

Next, we show that the elements mentioned in Theorem 3.1 are all involutions. We already know that the reflection R is an involution.

Lemma 3.3. If $g \geq 4$, then the elements $R \bar{Y}_{i, j}^{ \pm 1}$ are all involutions for $i \in\{1, \ldots, g-$ $1\}, j \in\{1, \ldots, g\}$ and $i \neq j$.
Proof. It is enough to see that $R\left(\alpha_{i}, \bar{\alpha}_{i, j}\right)=\left(\alpha_{i}^{-1}, \bar{\alpha}_{i, j}^{-1}\right)$.
Lemma 3.4. If $g \geq 4$, then the elements $R \bar{Y}_{1, i} Y_{\alpha_{k}, \bar{\alpha}_{j, k}} \bar{T}_{1, i, j, k}^{2}$ are all involutions for $1<i<j<k$.

Proof. First of all, it is easy verify that

$$
R\left(\bar{\alpha}_{1, i}, \bar{\alpha}_{j, k}\right)=\left(\bar{\alpha}_{1, i}^{-1}, \bar{\alpha}_{j, k}^{-1}\right) \text { and } R\left(\alpha_{i}, \alpha_{k}\right)=\left(\alpha_{i}^{-1}, \alpha_{k}^{-1}\right)
$$

Then we have the following:

$$
\begin{aligned}
R \bar{Y}_{1, i} Y_{\alpha_{k}, \bar{\alpha}_{j, k}}^{-1} R^{-1} & =\bar{Y}_{1, i}^{-1} Y_{\alpha_{k}, \bar{\alpha}_{j, k}} \\
& =Y_{\alpha_{k}, \bar{\alpha}_{j, k}} \bar{Y}_{1, i}^{-1}
\end{aligned}
$$

where the last identity follows from the commutativity of crosscap slides $\bar{Y}_{1, i}$ and $Y_{\alpha_{k}, \bar{\alpha}_{j, k}}$. Observe that, this implies $R \bar{Y}_{1, i} Y_{\alpha_{k}, \bar{\alpha}_{j, k}}^{-1}$ is an involution. Moreover, since

$$
R \bar{Y}_{1, i} Y_{\alpha_{k}, \bar{\alpha}_{j, k}}^{-1}\left(\bar{\alpha}_{1, i, j, k}\right)=\bar{\alpha}_{1, i, j, k}^{-1}
$$

it follows that $R \bar{Y}_{1, i} Y_{\alpha_{k}, \bar{\alpha}_{j, k}} \bar{T}_{1, i, j, k}^{2}$ is also an involution.
Finally, we present our involution generators. Note that in the following, the number of involution generators is equal to $\binom{g}{2}+\binom{g}{3}$ which is the minimal possible number of generators for $\Gamma_{2}\left(N_{g}\right)$.

Theorem 3.5. For $g \geq 5$ and odd, $\Gamma_{2}\left(N_{g}\right)$ is generated by the following involutions:
(1) $R \bar{Y}_{1, g}, R \bar{Y}_{2, g}^{-1}, \ldots, R \bar{Y}_{g-2, g}, R \bar{Y}_{g-1, g}^{-1}$,
(2) $R \bar{Y}_{i, j}$ for $i, j \in\{1,2, \ldots, g-1\}$ and $i \neq j$,
(3) $R \bar{Y}_{1, i} Y_{\alpha_{k}, \bar{\alpha}_{j, k}}^{-1} \bar{T}_{1, i, j, k}^{2}$ for $1<i<j<k$.

For $g \geq 4$ and even, $\Gamma_{2}\left(N_{g}\right)$ is generated by the following involutions:
(1) $R, R \bar{Y}_{1, g}, R \bar{Y}_{2, g}^{-1}, \ldots, R \bar{Y}_{g-2, g}$,
(2) $R \bar{Y}_{i, j}$ for $i, j \in\{1,2, \ldots, g-1\}$ and $i \neq j$,
(3) $R \bar{Y}_{1, i} Y_{\alpha_{k}, \bar{\alpha}_{j, k}}^{-1} \bar{T}_{1, i, j, k}^{2}$ for $1<i<j<k$.

Proof. Let G denote the subgroup of $\Gamma_{2}\left(N_{g}\right)$ generated by the elements listed in Theorem 3.5. It follows from lemmata 3.3 and 3.4 that the generators of the group G are involutions.

Let us first assume that $g \geq 5$ and odd. By Proposition 3.1, it is enough to prove that R is contained in the subgroup G. It follows from Lemma 3.2 the reflection R can be expresses as

$$
\begin{aligned}
R & =\bar{Y}_{g-1, g} \bar{Y}_{g-2, g} \cdots \bar{Y}_{1, g} \\
& =R^{2} \bar{Y}_{g-1, g} \bar{Y}_{g-2, g} R^{2} \bar{Y}_{g-3, g}^{-1} \cdots R^{2} \bar{Y}_{2, g} \bar{Y}_{1, g} \\
& =R \bar{Y}_{g-1, g}^{-1} R \bar{Y}_{g-2, g} R \bar{Y}_{g-3, g}^{-1} R \cdots R \bar{Y}_{2, g}^{-1} R \bar{Y}_{1, g}
\end{aligned}
$$

which is contained in the subgroup G using $R \bar{Y}_{i, g}^{-1} R=\bar{Y}_{i, g}$.
Assume now that $g \geq 4$ and even. In this case, by Proposition 3.1, it suffices to show that the subgroup G contains the element $\bar{Y}_{g-1, g}$. The following element is contained in the subgroup G :

$$
\begin{array}{r}
R\left(R \bar{Y}_{g-2, g} R \bar{Y}_{g-3, g}^{-1} R \bar{Y}_{g-4, g} R \cdots R \bar{Y}_{2, g}^{-1} R \bar{Y}_{1, g}\right) \\
=R\left(R \bar{Y}_{g-2, g} R^{2} \bar{Y}_{g-3, g} \bar{Y}_{g-4, g} \cdots R^{2} \bar{Y}_{2, g} \bar{Y}_{1, g}\right) \\
=\bar{Y}_{g-2, g} \bar{Y}_{g-3, g} \bar{Y}_{g-4, g} \cdots \bar{Y}_{2, g} \bar{Y}_{1, g}
\end{array}
$$

using again $R \bar{Y}_{i, g}^{-1} R=\bar{Y}_{i, g}$. One can conclude that $\bar{Y}_{g-1, g} \in G$ since $R \in G$ by Lemma 3.2, which finishes the proof.

References

[1] S. Hirose, M. Sato: A minimal generating set of the level 2 mapping class group of a non-orientable surface, Math. Proc. Cambridge Philos. Soc. 157, (2) (2014), 345-355.
[2] J. D. McCarthy, U. Pinkall: Representing homology automorphisms of nonorientable surfaces, Max Planc Inst. preprint MPI/SFB 85-11, revised version written in 2004. Available at http://www.math.msu. edu/ mccarthy (2004)
[3] B. Szepietowski: Crosscap slides and the level 2 mapping class group of a nonorientable surface, Geom. Dedicata 160 (2012), 169-183.
[4] B. Szepietowski: A finite generating set for the level 2 mapping class group of a nonorientable surface, Kodai Mathematical Journal 36 (2013), 1-14.

Department of Mathematics, Middle East Technical University, Ankara, Turkey
Email address: atulin@metu.edu.tr
Email address: mpamuk@metu.edu.tr
Email address: e171987@metu.edu.tr
Department of Mathematics, Faculty of Science, Okayama University, Okayama, JAPAN

Email address: n-monden@okayama-u.ac.jp

[^0]: 2000 Mathematics Subject Classification: 57N05, 20F38, 20F05
 Keywords: Mapping class groups, nonorientable surfaces, crosscap slide, Y-homeomorphism, involutions

