GENERATING THE LEVEL 2 SUBGROUP BY INVOLUTIONS

TÜLİN ALTUNÖZ, NAOYUKI MONDEN, MEHMETCİK PAMUK, AND OĞUZ YILDIZ

ABSTRACT. We obtain a minimal generating set of involutions for the level 2 subgroup of the mapping class group of a closed nonorientable surface.

1. INTRODUCTION

Let N_g be a closed nonorientable surface of genus $g \ge 2$. The mapping class group $Mod(N_g)$ is defined to be the group of isotopy classes of all diffeomorphisms of N_g . The first homology group $H_1(N_g; \mathbb{Z})$ is generated by $\{x_1, x_2, \ldots, x_g\}$, where x_i for $1 \le i \le g$ are the homology classes of one-sided curves as depicted in Figure 1.

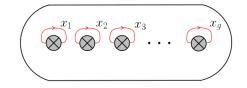


FIGURE 1. Generators of $H_1(N_q; \mathbb{Z})$.

The \mathbb{Z}_2 -homology classes \overline{x}_i of these curves form a basis for $H_1(N_g; \mathbb{Z}/2\mathbb{Z})$. The \mathbb{Z}_2 -valued intersection pairing is a symmetric bilinear form \langle , \rangle on $H_1(N_g; \mathbb{Z}/2\mathbb{Z})$ satisfying $\langle \overline{x}_i, \overline{x}_j \rangle = \delta_{ij}$ for $1 \leq i, j \leq g$. For more on automorphisms of $H_1(N_g; \mathbb{Z}/2\mathbb{Z})$ and \mathbb{Z}_2 -valued intersection pairings we refer the reader to [2]. Let Iso(H₁(N_g; $\mathbb{Z}/2\mathbb{Z}))$ be the group of automorphisms of $H_1(N_g; \mathbb{Z}/2\mathbb{Z})$ which preserve \langle , \rangle . The level 2 subgroup $\Gamma_2(N_g)$ of Mod (N_g) is the group of isotopy classes of diffeomorphisms which act trivially on $H_1(N_g; \mathbb{Z}/2\mathbb{Z})$. It fits into the following short exact sequence:

$$1 \longrightarrow \Gamma_2(N_q) \longrightarrow \operatorname{Mod}(N_q) \longrightarrow \operatorname{Iso}(\operatorname{H}_1(\operatorname{N}_g; \mathbb{Z}/2\mathbb{Z}) \longrightarrow 1.$$

For a two-sided simple closed curve α and a one-sided simple closed curve μ which intersect in one point, let K denote a regular neighborhood of $\mu \cup \alpha$ that is homeomorphic to the Klein bottle with a hole. Let $M \subset K$ be a regular neighbourhood of μ , which is a Möbius strip. We define the *crosscap slide* (also called Y-homeomorphism) $Y_{\mu,\alpha}$ as the self-diffeomorphism of N_g obtained from sliding Monce along α and fixing each point of the boundary of K (Figure 2).

For $I = \{i_1, i_2, \ldots, i_k\}$ a subset of $\{1, 2, \ldots, g\}$, let α_I be the simple closed curve shown in Figure 3. Throughout the paper, we introduce the following notations:

• $Y_{i_1;i_2,\ldots,i_k} = Y_{\alpha_{i_1};\alpha_{\{i_1,i_2,\ldots,i_k\}}},$

²⁰⁰⁰ Mathematics Subject Classification: 57N05, 20F38, 20F05

 $Keywords\colon$ Mapping class groups, nonorientable surfaces, crosscap slide, $Y\text{-}\mathrm{homeomorphism},$ involutions

TÜLİN ALTUNÖZ, NAOYUKI MONDEN, MEHMETCİK PAMUK, AND OĞUZ YILDIZ $\mathbf{2}$

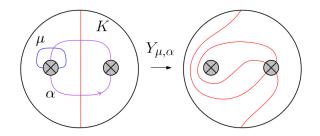


FIGURE 2. The crosscap slide $Y_{\mu,\alpha}$.

- $T_{i_1,i_2,...,i_k} = T_{\alpha_{\{i_1,i_2,...,i_k\}}},$ $\alpha_i = \alpha_{\{i,i\}}.$

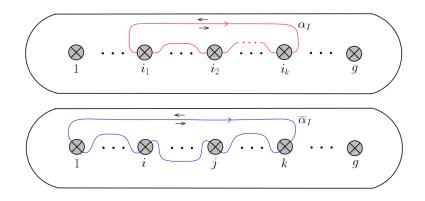


FIGURE 3. The curves α_I and $\overline{\alpha}_I$ for $I = \{i_1, i_2, \dots, i_k\}$.

Szepietowski proved that $\Gamma_2(N_g)$ is equal to the subgroup of $Mod(N_g)$ generated by all crosscap slides [3, Theorem 5.5]. Moreover, he proved that $\Gamma_2(N_g)$ can be generated by (infinitely many) involutions [3, Theorem 3.7]. In [4], Szepietowski also gave a finite set of generators for $\Gamma_2(N_q)$. Later, Hirose and Sato reduced the number of generators of $\Gamma_2(N_q)$, their generating set is as follows [1, Theorem 1.2].

Theorem 1.1. For $g \ge 4$, the level 2 subgroup $\Gamma_2(N_g)$ is generated by the following two types of elements:

(1) $Y_{i;j}$ for $i \in \{1, 2, ..., g-1\}$, $j \in \{1, 2, ..., g\}$ and $i \neq j$; (2) $T^2_{1,j,k,l}$ for 1 < j < k < l.

Note that when g = 3, the group $\Gamma_2(N_3)$ is generated only by the elements of type (1). Hirose and Sato [1, Theorem 1.4] also showed that for $g \ge 4$

$$H_1(\Gamma_2(N_q);\mathbb{Z}) \cong (\mathbb{Z}/2\mathbb{Z})^{\binom{g}{2} + \binom{g}{3}}$$

which in turn implies that the above generating set is minimal.

In this paper, our purpose is to give a minimal generating set of involutions for the level 2 subgroup $\Gamma_2(N_g)$.

2. A GENERATING SET FOR $\Gamma_2(N_q)$

Let us start this section by introducing bar notation for two-sided simple closed curves. In the remainder of this paper, let $\overline{\alpha}_{1,i,j,k}$ and $\overline{\alpha}_{i,j}$ be two sided simple closed curves depicted in Figure 4. Observe that when we put a bar over a two-sided simple closed curve it passes below the in-between crosscaps. For the ease of notation, we also use the following notations:

- $\overline{Y}_{i,j} = Y_{\alpha_i;\overline{\alpha}_{i,j}},$
- $\overline{T}_{1,i,j,k}^{i,j} = T_{\overline{\alpha}_{1,i,j,k}}.$

Recall that $\Gamma_2(N_g)$ is generated by all crosscap slides [3, Theorem 5.5]. Let \mathcal{Y} and $\overline{\mathcal{Y}}$ be the subgroups of $\Gamma_2(N_g)$ generated by elements of the form $Y_{i,j}$ and $\overline{Y}_{i,j}$, for $i \in \{1, 2, \ldots, g-1\}$, $j \in \{1, 2, \ldots, g\}$ and $i \neq j$, respectively.

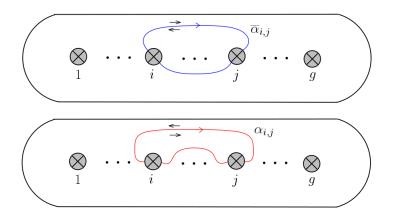


FIGURE 4. The curves $\overline{\alpha}_{i,j}$ and $\alpha_{i,j}$ for 1 < j < k < l.

Lemma 2.1. The subgroups \mathcal{Y} and $\overline{\mathcal{Y}}$ are equal to each other.

Proof. Let us first show that $\overline{\mathcal{Y}} \subseteq \mathcal{Y}$. For $\overline{Y}_{i,j} \in \overline{\mathcal{Y}}$, if we assume that |i-j|=1, since

$$\overline{Y}_{i,i+1} = Y_{i,i+1}$$
 and $\overline{Y}_{i+1,i} = Y_{i+1,i}$

for all i = 1, 2, ..., g - 1, we have $\overline{Y}_{i,j} \in \mathcal{Y}$. Assume now that |i - j| > 1: For i < j, let us first consider the case j - i = 2. It is easy to verify that

$$\overline{Y}_{i+1,i+2}^{-1}(\alpha_i,\alpha_{i,i+2}) = (\alpha_i,\overline{\alpha}_{i,i+2}),$$

for all $i = 1, \ldots, g - 2$ (see Figure 5). Using $\overline{Y}_{i+1,i+2} = Y_{i+1,i+2} \in \mathcal{Y}$, we have

$$\overline{Y}_{i,i+2} = \overline{Y}_{i+1,i+2}^{-1} Y_{i,i+2} \overline{Y}_{i+1,i+2} \in \mathcal{Y}.$$

For the case j - i = 3, one can see that (see Figure 6)

$$\overline{Y}_{i+1,i+3}^{-1}\overline{Y}_{i+2,i+3}^{-1}(\alpha_i,\alpha_{i,i+3}) = (\alpha_i,\overline{\alpha}_{i,i+3}).$$

Now, since $\overline{Y}_{i+2,i+3}$ and $\overline{Y}_{i+1,i+3}$ are all contained in \mathcal{Y} we have

$$\overline{Y}_{i,i+3} = (\overline{Y}_{i+1,i+3}^{-1} \overline{Y}_{i+2,i+3}^{-1}) Y_{i,i+2} (\overline{Y}_{i+1,i+3}^{-1} \overline{Y}_{i+2,i+3}^{-1})^{-1} \in \mathcal{Y}$$

TÜLİN ALTUNÖZ, NAOYUKI MONDEN, MEHMETCİK PAMUK, AND OĞUZ YILDIZ 4

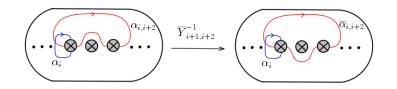


FIGURE 5. $\overline{Y}_{i+1,i+2}^{-1}(\alpha_i,\alpha_{i,i+2}) = (\alpha_i,\overline{\alpha}_{i,i+2}).$

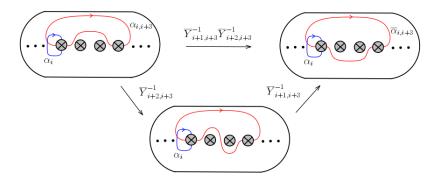


FIGURE 6. $\overline{Y}_{i+1,i+3}^{-1}\overline{Y}_{i+2,i+3}^{-1}(\alpha_i,\alpha_{i,i+3}) = (\alpha_i,\overline{\alpha}_{i,i+3}).$

for $i = 1, \ldots, g - 3$. For the remaining i < j cases, one can see that $\overline{Y}_{i,j} = (\overline{Y}_{i+1,j}^{-1} \overline{Y}_{i+2,j}^{-1} \cdots \overline{Y}_{j-1,j}^{-1}) Y_{i,j} (\overline{Y}_{i+1,j}^{-1} \overline{Y}_{i+2,j}^{-1} \cdots \overline{Y}_{j-1,j}^{-1})^{-1} \in \mathcal{Y}$

for all i = 1, ..., g - 1, j = 1, ..., g. Now, we consider the cases where i > j. For i - j > 2, we have (see Figure 7)

 $\overline{Y}_{i+1,i}(\alpha_{i+2},\alpha_{i,i+2}) = (\alpha_{i+2},\overline{\alpha}_{i,i+2}).$

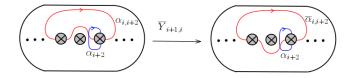


FIGURE 7. $\overline{Y}_{i+1,i}(\alpha_{i+2}, \alpha_{i,i+2}) = (\alpha_{i+2}, \overline{\alpha}_{i,i+2}).$

Using $\overline{Y}_{i+1,i} \in \mathcal{Y}$ for $i = 1, \ldots, g - 3$, we get

$$\overline{Y}_{i+2,i} = \overline{Y}_{i+1,i} Y_{i+2,i} \overline{Y}_{i+1,i}^{-1} \in \mathcal{Y}.$$

As before, for all $i = 1, \ldots, g - 1$ and $j = 1, \ldots, g - 2$, we have

$$\overline{Y}_{i,j} = (\overline{Y}_{i,j-1} \cdots \overline{Y}_{i,i+1}) Y_{i,j} (\overline{Y}_{i,j-1} \cdots \overline{Y}_{i,i+1})^{-1} \in \mathcal{Y}.$$

Thus, $\overline{Y}_{i,j} \in \mathcal{Y}$ for $1 \leq i < j \leq g$. Since we cover all the cases, we have shown $\overline{\mathcal{Y}} \subseteq \mathcal{Y}$. For the reverse inclusion, note that we have the following equalities

(1)
$$Y_{i,j} = \begin{cases} (\overline{Y}_{i+1,j}^{-1} \cdots \overline{Y}_{j-1,j}^{-1})^{-1} \overline{Y}_{i,j} (\overline{Y}_{i+1,j}^{-1} \cdots \overline{Y}_{j-1,j}^{-1}), & \text{if } i < j, \\ (\overline{Y}_{i,j-1}^{-1} \cdots \overline{Y}_{i,i+1}^{-1})^{-1} \overline{Y}_{i,j} (\overline{Y}_{i,j-1}^{-1} \cdots \overline{Y}_{i,i+1}^{-1}), & \text{if } i > j, \end{cases}$$

which immediately imply that $\mathcal{Y} \subseteq \overline{\mathcal{Y}}$.

Next, we present a minimal generating set for the level 2 subgroup $\Gamma_2(N_q)$ (cf. [1, Theorem 1.2]).

Theorem 2.2. For $g \ge 4$, the level 2 subgroup $\Gamma_2(N_g)$ can be generated by

(1)
$$\overline{Y}_{i,j}$$
 for $i \in \{1, \dots, g-1\}$, $j \in \{1, \dots, g\}$ and $i \neq j$,
(2) $\overline{T}^2_{1,i,i,k}$ for $1 < i < j < k$.

Proof. Let G be the subgroup of $\Gamma_2(N_q)$ generated by the elements given in (1) and (2). Since by Lemma 2.1 we have $\mathcal{Y} = \overline{\mathcal{Y}}$, it is enough to prove that $T^2_{1,i,i,k}$ is contained in the subgroup G for 1 < i < j < k.

It is easy to check that

$$\overline{Y}_{i+1,j}^{-1}\cdots\overline{Y}_{j-2,j}^{-1}\overline{Y}_{j-1,j}^{-1}(\alpha_{1,i,j,k})=\overline{\alpha}_{1,i,j,k}$$

Thus

$$\overline{T}_{1,i,j,k}^2 = (\overline{Y}_{i+1,j}^{-1} \cdots \overline{Y}_{j-2,j}^{-1} \overline{Y}_{j-1,j}^{-1}) T_{1,i,j,k}^2 (\overline{Y}_{i+1,j}^{-1} \cdots \overline{Y}_{j-2,j}^{-1} \overline{Y}_{j-1,j}^{-1})^{-1},$$

which implies that

$$T_{1,i,j,k}^{2} = (\overline{Y}_{i+1,j}^{-1} \cdots \overline{Y}_{j-2,j}^{-1} \overline{Y}_{j-1,j}^{-1})^{-1} \overline{T}_{1,i,j,k}^{2} (\overline{Y}_{i+1,j}^{-1} \cdots \overline{Y}_{j-2,j}^{-1} \overline{Y}_{j-1,j}^{-1}) \in G$$

for 1 < i < j < k. This completes the proof.

3. Involution generators for $\Gamma_2(N_q)$

In this section, we give a generating set of involutions for $\Gamma_2(N_q)$. Throughout this section, consider the surface N_g as shown in Figure 8 so that it is invariant under the reflection R about the indicated plane. Note that, R acts trivially on $H_1(N_q; \mathbb{Z}/2\mathbb{Z})$, which implies that it is an element of the subgroup $\Gamma_2(N_q)$.

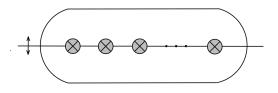


FIGURE 8. The reflection R.

Proposition 3.1. For $g \ge 4$, the group $\Gamma_2(N_g)$ can be generated by

- (1) R,
- (1) $R\overline{Y}_{i,j}$ for $i \in \{1, ..., g-1\}$, $j \in \{1, ..., g\}$ and $i \neq j$, (3) $R\overline{Y}_{1,i}Y_{\alpha_k,\overline{\alpha}_{j,k}}\overline{T}_{1,i,j,k}^2$ for 1 < i < j < k.

Proof. Let G be the subgroup generated by the elements listed in the statement of the proposition. Since the subgroup G contains R and $R\overline{Y}_{i,j}$, it also contains

$$\overline{Y}_{i,j} = R(R\overline{Y}_{i,j})$$

for $i \in \{1, \ldots, g-1\}$, $j \in \{1, \ldots, g\}$ and $i \neq j$. Recall that $\overline{\mathcal{Y}}$ is generated by such elements, hence $\overline{\mathcal{Y}} \subseteq G$. By Theorem 2.2, it remains to prove that $\overline{T}_{1,i,j,k}^2$ also belongs to G. Now, it is easy to see that G contains

$$\overline{Y}_{1,i}Y_{\alpha_k,\overline{\alpha}_{j,k}}\overline{T}_{1,i,j,k}^2 = R(R\overline{Y}_{1,i}Y_{\alpha_k,\overline{\alpha}_{j,k}}\overline{T}_{1,i,j,k}^2).$$

The elements $Y_{\alpha_k,\overline{\alpha}_{j,k}}$ are contained in $\mathcal{Y} = \overline{\mathcal{Y}}$ by [4, Lemma 3.5] and Lemma 2.1. Since the elements $\overline{Y}_{1,i}$ are also contained in G, one can conclude that $\overline{T}_{1,i,j,k}^2 \in G$ for 1 < i < j < k, which finishes the proof.

Lemma 3.2. The reflection R can be expressed as a product of finitely Y-homeomorphisms. In particular

$$R = \overline{Y}_{g-1,g}\overline{Y}_{g-2,g}\cdots\overline{Y}_{1,g}$$

Proof. It follows from the proof of [3, Lemma 3.4] that R can be written as

$$R = Y_{g-1,g} T_{\alpha_{g-1,g}}^{-1} Y_{g-2,g-1} T_{\alpha_{g-1,g}} (T_{\alpha_{i+1,i+2}} T_{\alpha_{i+2,i+3}} \cdots T_{\alpha_{g-1,g}})^{-1} Y_{i,i+1} (T_{\alpha_{i+1,i+2}} T_{\alpha_{i+2,i+3}} \cdots T_{\alpha_{g-1,g}}) \cdots (T_{\alpha_{2,3}} \cdots T_{\alpha_{g-1,g}})^{-1} Y_{1,2} (T_{\alpha_{2,3}} \cdots T_{\alpha_{g-1,g}}).$$

It is easy to see that

$$(T_{\alpha_{i+1,i+2}}T_{\alpha_{i+2,i+3}}\cdots T_{\alpha_{g-1,g}})^{-1}(\alpha_i,\alpha_{i,i+1})=(\alpha_i,\overline{\alpha}_{1,g}),$$

from which we obtain

$$\overline{Y}_{i,g} = (T_{\alpha_{i+1,i+2}} T_{\alpha_{i+2,i+3}} \cdots T_{\alpha_{g-1,g}})^{-1} Y_{i,i+1} (T_{\alpha_{i+1,i+2}} T_{\alpha_{i+2,i+3}} \cdots T_{\alpha_{g-1,g}}),$$

for $i \in \{1, \dots, g-1\}$. This completes the proof.

Next, we show that the elements mentioned in Theorem 3.1 are all involutions. We already know that the reflection R is an involution.

Lemma 3.3. If $g \ge 4$, then the elements $R\overline{Y}_{i,j}^{\pm 1}$ are all involutions for $i \in \{1, \ldots, g-1\}$, $j \in \{1, \ldots, g\}$ and $i \ne j$.

Proof. It is enough to see that $R(\alpha_i, \overline{\alpha}_{i,j}) = (\alpha_i^{-1}, \overline{\alpha}_{i,j}^{-1}).$

Lemma 3.4. If $g \ge 4$, then the elements $R\overline{Y}_{1,i}Y_{\alpha_k,\overline{\alpha}_{j,k}}\overline{T}_{1,i,j,k}^2$ are all involutions for 1 < i < j < k.

Proof. First of all, it is easy verify that

$$R(\overline{\alpha}_{1,i},\overline{\alpha}_{j,k}) = (\overline{\alpha}_{1,i}^{-1},\overline{\alpha}_{j,k}^{-1}) \text{ and } R(\alpha_i,\alpha_k) = (\alpha_i^{-1},\alpha_k^{-1}).$$

Then we have the following:

$$R\overline{Y}_{1,i}Y_{\alpha_k,\overline{\alpha}_{j,k}}^{-1}R^{-1} = \overline{Y}_{1,i}^{-1}Y_{\alpha_k,\overline{\alpha}_{j,k}}$$
$$= Y_{\alpha_k,\overline{\alpha}_{j,k}}\overline{Y}_{1,i}^{-1},$$

where the last identity follows from the commutativity of crosscap slides $\overline{Y}_{1,i}$ and $Y_{\alpha_k,\overline{\alpha}_{j,k}}$. Observe that, this implies $R\overline{Y}_{1,i}Y_{\alpha_k,\overline{\alpha}_{j,k}}^{-1}$ is an involution. Moreover, since

$$R\overline{Y}_{1,i}Y_{\alpha_k,\overline{\alpha}_{j,k}}^{-1}(\overline{\alpha}_{1,i,j,k}) = \overline{\alpha}_{1,i,j,k}^{-1}$$

it follows that $R\overline{Y}_{1,i}Y_{\alpha_k,\overline{\alpha}_{i,k}}\overline{T}_{1,i,j,k}^2$ is also an involution.

Finally, we present our involution generators. Note that in the following, the number of involution generators is equal to $\binom{g}{2} + \binom{g}{3}$ which is the minimal possible number of generators for $\Gamma_2(N_q)$.

Theorem 3.5. For $g \geq 5$ and odd, $\Gamma_2(N_q)$ is generated by the following involutions:

- $\begin{array}{ll} (1) & R\overline{Y}_{1,g}, R\overline{Y}_{2,g}^{-1}, \dots, R\overline{Y}_{g-2,g}, R\overline{Y}_{g-1,g}^{-1}, \\ (2) & R\overline{Y}_{i,j} \mbox{ for } i, j \in \{1, 2, \dots, g-1\} \mbox{ and } i \neq j, \\ (3) & R\overline{Y}_{1,i}Y_{\alpha_k,\overline{\alpha}_{j,k}}^{-1}\overline{T}_{1,i,j,k}^2 \mbox{ for } 1 < i < j < k. \end{array}$

For $g \geq 4$ and even, $\Gamma_2(N_q)$ is generated by the following involutions:

- $\begin{array}{ll} (1) & R, R\overline{Y}_{1,g}, R\overline{Y}_{2,g}^{-1}, \dots, R\overline{Y}_{g-2,g}, \\ (2) & R\overline{Y}_{i,j} \ for \ i, j \in \{1, 2, \dots, g-1\} \ and \ i \neq j, \\ (3) & R\overline{Y}_{1,i}Y_{\alpha_k,\overline{\alpha}_{j,k}}^{-1}\overline{T}_{1,i,j,k}^2 \ for \ 1 < i < j < k. \end{array}$

Proof. Let G denote the subgroup of $\Gamma_2(N_g)$ generated by the elements listed in Theorem 3.5. It follows from lemmata 3.3 and 3.4 that the generators of the group G are involutions.

Let us first assume that $g \ge 5$ and odd. By Proposition 3.1, it is enough to prove that R is contained in the subgroup G. It follows from Lemma 3.2 the reflection Rcan be expresses as

$$\begin{split} R &= \overline{Y}_{g-1,g}\overline{Y}_{g-2,g}\cdots\overline{Y}_{1,g} \\ &= R^2\overline{Y}_{g-1,g}\overline{Y}_{g-2,g}R^2\overline{Y}_{g-3,g}^{-1}\cdots R^2\overline{Y}_{2,g}\overline{Y}_{1,g} \\ &= R\overline{Y}_{g-1,g}^{-1}R\overline{Y}_{g-2,g}R\overline{Y}_{g-3,g}^{-1}R\cdots R\overline{Y}_{2,g}^{-1}R\overline{Y}_{1,g}, \end{split}$$

which is contained in the subgroup G using $R\overline{Y}_{i,g}^{-1}R = \overline{Y}_{i,g}$.

Assume now that $g \ge 4$ and even. In this case, by Proposition 3.1, it suffices to show that the subgroup G contains the element $\overline{Y}_{q-1,q}$. The following element is contained in the subgroup G:

$$\begin{split} R(R\overline{Y}_{g-2,g}R\overline{Y}_{g-3,g}^{-1}R\overline{Y}_{g-4,g}R\cdots R\overline{Y}_{2,g}^{-1}R\overline{Y}_{1,g}) \\ = R(R\overline{Y}_{g-2,g}R^2\overline{Y}_{g-3,g}\overline{Y}_{g-4,g}\cdots R^2\overline{Y}_{2,g}\overline{Y}_{1,g}) \\ = \overline{Y}_{g-2,g}\overline{Y}_{g-3,g}\overline{Y}_{g-4,g}\cdots \overline{Y}_{2,g}\overline{Y}_{1,g}, \end{split}$$

using again $R\overline{Y}_{i,g}^{-1}R = \overline{Y}_{i,g}$. One can conclude that $\overline{Y}_{g-1,g} \in G$ since $R \in G$ by Lemma 3.2, which finishes the proof.

References

- [1] S. Hirose, M. Sato: A minimal generating set of the level 2 mapping class group of a non-orientable surface, Math. Proc. Cambridge Philos. Soc. 157, (2) (2014), 345-355.
- [2] J. D. McCarthy, U. Pinkall: Representing homology automorphisms of nonorientable surfaces, Max Planc Inst. preprint MPI/SFB 85–11, revised version written in 2004. Available at http://www.math.msu. edu/ mccarthy (2004)
- [3] B. Szepietowski: Crosscap slides and the level 2 mapping class group of a nonorientable surface, Geom. Dedicata 160 (2012), 169-183.
- [4] B. Szepietowski: A finite generating set for the level 2 mapping class group of a nonorientable surface, Kodai Mathematical Journal 36 (2013), 1-14.

8 TÜLİN ALTUNÖZ, NAOYUKI MONDEN, MEHMETCİK PAMUK, AND OĞUZ YILDIZ

DEPARTMENT OF MATHEMATICS, MIDDLE EAST TECHNICAL UNIVERSITY, ANKARA, TURKEY Email address: atulin@metu.edu.tr Email address: mpamuk@metu.edu.tr Email address: e171987@metu.edu.tr

Department of Mathematics, Faculty of Science, Okayama University, Okayama, Japan

 $Email \ address: \ {\tt n-monden@okayama-u.ac.jp}$