
GRAPH-BASED HIERARCHICAL TRACKLET MERGE FOR MULTIPLE
OBJECT TRACKING

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

HALIL ÇAĞRI BILGI

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

ELECTRICAL AND ELECTRONICS ENGINEERING

APRIL 2024

Approval of the thesis:

GRAPH-BASED HIERARCHICAL TRACKLET MERGE FOR MULTIPLE
OBJECT TRACKING

submitted by HALIL ÇAĞRI BILGI in partial fulfillment of the requirements for
the degree of Master of Science in Electrical and Electronics Engineering De-
partment, Middle East Technical University by,

Prof. Dr. Naci Emre Altun
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. İlkay Ulusoy
Head of Department, Electrical and Electronics Engineering

Prof. Dr. A. Aydın Alatan
Supervisor, Electrical and Electronics Engineering, METU

Examining Committee Members:

Prof. Dr. Umut Orguner
Electrical and Electronics Eng., METU

Prof. Dr. A. Aydın Alatan
Electrical and Electronics Eng., METU

Prof. Dr. Hakan Çevikalp
Electrical and Electronics Eng., Osmangazi University

Assist. Prof. Dr. Elif Vural
Electrical and Electronics Eng., METU

Assist. Prof. Dr. Aykut Koç
Electrical and Electronics Eng., Bilkent University

Date:05.04.2024

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Surname: Halil Çağrı Bilgi

Signature :

iv

ABSTRACT

GRAPH-BASED HIERARCHICAL TRACKLET MERGE FOR MULTIPLE
OBJECT TRACKING

Bilgi, Halil Çağrı

M.S., Department of Electrical and Electronics Engineering

Supervisor: Prof. Dr. A. Aydın Alatan

April 2024, 82 pages

The past decade has seen significant advancements in multi-object tracking, particu-

larly with the rise of deep learning. However, many studies in online tracking have

primarily focused on enhancing track management or extracting visual features, of-

ten leading to hybrid approaches with limited effectiveness, especially in scenarios

with severe occlusions or crowded scenes. Conversely, in offline tracking, there has

been a lack of emphasis on robust motion cues. This thesis proposes a novel solution

to offline tracking by hierarchically merging tracklets, leveraging recent promising

learning-based architectures. Our approach integrates motion cues and social inter-

actions among targets using a joint Transformer and Graph Neural Network (GNN)

encoder. The proposed solution is an end-to-end trainable model that does not require

any handcrafted short-term or long-term matching processes. By representing track-

lets across multiple frames using a graph structure, we enable collective reasoning

of targets across different timestamps, leveraging advancements in graph representa-

tion learning. Furthermore, the Transformer encoder effectively captures the motion

of each tracklet. By enabling bi-directional information propagation between these

modalities, namely Transformer and GNN, we allow motion modeling to depend on

v

interactions and, conversely, interaction modeling to depend on the motion of each

target. Experimental results demonstrate the effectiveness of our approach, indicating

that graph representation learning equipped with a joint Transformer encoder achieves

results comparable to the state-of-the-art algorithms. These promising results empha-

size the potential of the joint Transformer-GNN encoder architecture in multi-object

tracking.

Keywords: Multi-object Tracking, Offline Tracking, Graph Representation Learning,

Graph Neural Networks, Transformer

vi

ÖZ

ÇOKLU HEDEF TAKİBİ İÇİN ÇİZGE TABANLI HİYERARŞİK İZ
BİRLEŞTİRME

Bilgi, Halil Çağrı

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. A. Aydın Alatan

Nisan 2024 , 82 sayfa

Geçtiğimiz on yılda, özellikle derin öğrenmenin yükselişiyle birlikte çoklu nesne ta-

kibinde önemli ilerlemeler görüldü. Bununla birlikte, çevrimiçi izlemeyle ilgili birçok

çalışma öncelikli olarak iz yönetimini geliştirmeye veya daha etkin görsel özellikleri

çıkarmaya odaklanmıştır; bu da özellikle yoğun görsel örtmelerin veya kalabalık sah-

nelerin olduğu senaryolarda genellikle sınırlı etkililiğe sahip hibrit yaklaşımlara yol

açmaktadır. Bunun yanında, çevrimdışı izleme metodları etkin iz yönetimine genel-

likle gereken önemi vermemiştir. Bu tez, son zamanlarda etkili olduğu gözlemlenen

öğrenmeye dayalı mimarilerden yararlanarak, hedef izlerini hiyerarşik olarak birleşti-

rerek çevrimdışı çoklu hedef takibine yeni bir çözüm önermektedir. Yaklaşımımız, or-

tak bir Transformer ve Çizge Sinir Ağı (Graph Neural Network) kodlayıcı kullanarak

hedefler arasındaki hareket ipuçlarını ve sosyal etkileşimleri entegre eder. Herhangi

bir varsayıma dayalı kısa veya uzun vadeli eşleştirme süreci gerektirmeyen, uçtan uca

eğitilebilir bir modeldir. Önerdiğimiz model bir çizge yapısı kullanarak çoklu çerçe-

velerdeki hedef izlerini temsil eder, ve farklı zaman damgalarındaki hedeflerin kolek-

tif olarak ele alınmasına olanak tanır. Ayrıca Transformer kodlayıcı, her bir hedefin

vii

hareket karakteristiğini etkili bir şekilde modellenmesine olanak tanır. Transformer

ve GNN mimarileri arasında çift yönlü bilgi akışını etkinleştirerek, hareket model-

lemenin etkileşimlere bağlı olmasına ve bunun tersine etkileşim modellemenin de

her hedefin hareketine bağlı olmasını sağlıyoruz. Deneysel sonuçlar, yaklaşımımızın

etkinliğini ortaya koymakta ve ortak bir Transformer kodlayıcı ile donatılmış GNN

mimarisinin, en son teknoloji algoritmalarla karşılaştırılabilir sonuçlar elde ettiğini

göstermektedir. Bu umut verici sonuçlar, çoklu nesne takibinde ortak Transformer-

GNN kodlayıcı mimarisinin potansiyelini vurgulamaktadır.

Anahtar Kelimeler: Çoklu Hedef Takibi, Çevrimdışı Hedef Takibi, Çizge Temsili Öğ-

renme, Çizge Gerin Öğrenme

viii

to my family

ix

ACKNOWLEDGMENTS

I am profoundly grateful to my advisor, A. Aydın Alatan, for consistently standing

by my side, dedicating his time, and providing unwavering support throughout the

entirety of this thesis. Our discussions at every step of the way have been invaluable

in shaping the course of this work.

I would like to extend my gratitude to all the researchers at OGAM for their fruitful

discussions and assistance. It has been a privilege to learn and grow together.

The numerical calculations reported in this paper were fully performed at TUBITAK

ULAKBIM, High Performance and Grid Computing Center (TRUBA resources).

Special thanks to my parents, Mehmet and Fadime, for their unwavering support,

understanding, and encouragement during this journey. Their belief in me has been

a constant source of strength. I would also like to express my heartfelt gratitude

to my brother, Alp Giray, for being an exceptional sibling and for his continuous

encouragement in every aspect of my life.

Last but certainly not least, I extend my utmost gratitude to my beloved wife, Ebrar.

Throughout this journey, her exceptional patience, presence, and support have been

priceless. I feel incredibly fortunate to have you by my side, growing, learning and

exploring the world together.

x

TABLE OF CONTENTS

ABSTRACT . v

ÖZ . vii

ACKNOWLEDGMENTS . x

TABLE OF CONTENTS . xi

LIST OF TABLES . xiv

LIST OF FIGURES . xv

LIST OF ABBREVIATIONS . xvii

CHAPTERS

1 INTRODUCTION . 1

1.1 Motivation and Problem Definition 1

1.2 The Outline of the Thesis . 3

2 AN OVERVIEW OF GRAPH REPRESENTATION LEARNING 5

2.1 Introduction . 5

2.2 Message Passing Neural Networks 6

2.2.1 GCN . 8

2.2.2 GAT . 8

2.2.3 GraphSAGE . 10

2.3 Transformers . 11

xi

2.3.1 Review of Vanilla Transformer Architecture 12

2.3.2 Analogy between Transformer and Graph Neural Networks . . 14

2.4 Graph Level Tasks . 16

2.4.1 Node/Edge Classification . 17

2.4.2 Link Prediction . 17

3 VISUAL MULTI-OBJECT TRACKING 19

3.1 Introduction . 19

3.2 Preliminaries . 21

3.2.1 Kalman Filter-based Approaches 21

3.2.2 Deep Learning-based MOT Approaches 23

3.2.2.1 Appearance-based MOT 24

3.2.2.2 Motion-based MOT 27

3.2.2.3 Graph-based MOT . 31

3.3 Revisiting the Baseline Methods . 34

3.3.1 SUSHI . 34

3.3.2 GreaseLM . 36

3.4 Discussion . 38

4 PROPOSED BI-DIRECTIONAL MOTION ENCODER FOR MOT 39

4.1 Introduction . 39

4.2 Motivation . 40

4.3 Proposed Bi-Directional Motion Encoder 41

4.3.1 Joint Transformer and GNN Encoder 43

4.3.2 GNN Model . 46

xii

4.3.3 Tracklet Association . 47

4.4 Experiments . 48

4.4.1 Ablation Studies . 49

4.4.2 Benchmark Results . 51

4.5 Discussion . 53

5 CONCLUSION . 55

5.1 Summary . 55

5.2 Conclusions . 56

REFERENCES . 59

APPENDICES

A REVIEW OF SPECTRAL AND SPATIAL GRAPH THEORY 69

A.1 Spectral Graph Theory . 69

A.2 Spectral Graph Neural Networks . 70

A.3 Spatial Graph Neural Networks . 72

B MOTIVATION OF GEOMETRIC DEEP LEARNING AND RELATION
TO GRAPHS . 75

B.1 EdgeConv . 77

C MULTI-OBJECT TRACKING PERFORMANCE METRICS 79

C.1 MOTA . 79

C.2 IDF1 . 80

C.3 HOTA . 80

xiii

LIST OF TABLES

TABLES

Table 4.1 Ablation of the single parts of our method in MOT17 validation set. 50

Table 4.2 Ablation of the number of Transformer-GNN layers 50

Table 4.3 Test set results on MOT17 benchmark on private detections. The

SUSHI model published their results with varying maximum temporal

edge distances. In SUSHI† and SUSHI, the maximum temporal edge dis-

tances are 150 and 512, respectively. 51

Table B.1 Different choices of architecture, domain and symmetry groups for

GDL [1] . 77

Table C.1 Metric definitions for assessing multi-object tracking performance. . 79

xiv

LIST OF FIGURES

FIGURES

Figure 2.1 Graph Convolutional Network illustration [2] 6

Figure 2.2 Example of Message Passing Scheme. 7

Figure 2.3 Graph Attention Network illustration [3] 9

Figure 2.4 The vanilla transformer architecture [4]. 12

Figure 2.5 Fully-connected graph example. 15

Figure 2.6 Training pipeline for Graph Neural Network models. 16

Figure 3.1 Kalman Filter based online tracking example. Colored bounding-

boxes depict active tracks at frame t, dashed bounding-boxes represent

the predicted positions of the tracklet at frame t+T , and black bounding

boxes indicate the detections at frame t+ T 21

Figure 3.2 Online tracking pipeline of BoT-SORT [5]. 22

Figure 3.3 Taxonomy of Deep Learning-based MOT approaches. 24

Figure 3.4 Person re-identification example. 25

Figure 3.5 Triplet-loss objective. 26

Figure 3.6 LSTM module [6]. 28

Figure 3.7 The flowchart of the local-global motion tracker. [7] 29

Figure 3.8 Reconstruct-to-embed strategy in the tracklet embedding. [7] . . 30

xv

Figure 3.9 Graph representation of tracking sequences; nodes represent de-

tections, edges represent trajectory hypotheses. 31

Figure 3.10 Overview of MPNTrack from Brasó and Leal-Taixé [8]. 32

Figure 3.11 Recursive partitioning of a video clip into hierarchy of graphs [9]. 35

Figure 3.12 SUSHI block overview. Each SUSHI block processes a graph

composed of tracklets from a sub-clip, utilizing neural message passing

to merge nodes into longer tracks. [9] 35

Figure 3.13 An example of Knowledge Graph [10]. 36

Figure 3.14 GreaseLM architecture [11]. 37

Figure 4.1 Feature encoding of input graph. 42

Figure 4.2 Interaction token representation 43

Figure 4.3 Tr-GNN architecture overview. Joint Transformer-GNN encoder

processes a bipartite graph, and all the weights of Transformer and

GNN layer are shared across all hierarchy and sub-graphs. 44

Figure 4.4 Appearance-based similarity calculation. 47

Figure 4.5 Results of visualizations of selected tracking examples. Blue

lines indicates the query tracklet, red lines indicate the rejected matches,

green line indicates the matched tracklet by the model. 52

Figure A.1 Cubic splines. 71

Figure A.2 Example of 1-hop and 2-hop neighborhoods [12]. 72

xvi

LIST OF ABBREVIATIONS

2D 2 Dimensional

3D 3 Dimensional

MOT Multiple Object Tracking

GNN Graph Neural Networks

GCN Graph Convolutional Networks

MPNN Message Passing Neural Networks

CNN Convolutional Neural Networks

RNN Recurrent Neural Networks

MLP Multi-Layer Perceptron

GDL Geometric Deep Learning

LLM Large Language Model

IoU Intersection over Union

ReLU Rectified Linear Unit

NLP Natural Language Processing

xvii

xviii

CHAPTER 1

INTRODUCTION

1.1 Motivation and Problem Definition

The Multi-object tracking (MOT) involves the joint localization and tracking of each

object in a scene, assigning each object a unique ID. The recent decade has witnessed

significant development and advancement in multi-object tracking, especially with

the advent of the deep learning. The methods and algorithms developed during this

time have become exceptionally powerful. With the increasing availability of com-

puting resources, these algorithms have found extensive applications in diverse fields,

including autonomous driving, surveillance systems, sports analytics, and numerous

others.

Most state-of-the-art multi-object tracking algorithms [13, 9, 14, 15, 16] have adopted

the tracking-by-detection paradigm to address the multi-object tracking problem, es-

pecially with the advent of powerful object detectors [17]. In the tracking-by-detection

approach, the initial step involves detecting every object in each frame of the scene

using a robust, pre-trained object detector. Subsequently, the tracking process focuses

on associating these detected bounding boxes across the temporal domain to extract

plausible target trajectories. This temporal association is performed either online, on

a frame-by-frame basis in real-time, or offline, where the entire video sequence is

available from the beginning. In both cases, the problem of MOT involves data asso-

ciation, where multiple observations (or tracks) need to be assigned to multiple active

object tracks to optimize some global criterion of choice. The task is challenging

on its own due to missing or false detections, occlusions, and interactions between

objects. In order to overcome those challenges, strong motion and visual models are

1

required for long-term tracking.

To develop robust motion models, recent studies have embraced Kalman-filter-based

approaches [18, 14, 5, 19]. These models are employed for real-time tracking of mul-

tiple objects, optimizing the matching cost between observations and the predicted

positions of each object on a frame-by-frame basis. Nevertheless, in crowded scenes,

these models often encounter challenges, particularly when faced with severe occlu-

sions or arbitrary movements resulting from interactions among objects. In order

to address some of these challenges, researchers have equipped these models with

learned visual cues. This involves utilizing pre-trained CNN architectures to extract

visual descriptors of the target [20], or employing Siamese networks trained to cap-

ture similarities between different poses of the same target [21] to recover the lost

tracks. Notably, a recent study [22] suggests that even a simple linear motion model

can perform comparably to state-of-the-art trackers, especially when equipped with

robust visual cues which signifies the importance of the visual ques. On the other

hand, the research also implies that using complex motion models (Kalman-filters)

independently for each target in the scene does not lead to improved results. This

is because such models lack the capability to capture the interactions between the

targets in the scene.

Apart from those real-time online trackers, there is another line of research where

the data association is formulated as a graph partitioning problem [23, 24, 8, 9]. In

this graph formulation the detections are represented as nodes and the connections

between nodes are represented as edges of the graph. The graph partitioning task

can be described as classifying edges as active or inactive where former means the

nodes (detections) connected by that edge belongs to the same target hence forms a

trajectory, later means they belong to different targets. In previous methods, the graph

partitioning problem is typically addressed using complex optimization methods that

aim to minimize the global cost of matching [23] and [24]. However, in recent ap-

proaches, GNN models are employed to solve the optimization problem, introducing

the use of learnable models [8].

In literature there are also some algorithms which jointly perform the detection and

multi-object tracking where some of them use tracking-by-regression by altering the

2

detection heads and regressing them in an online manner [25], some of them formu-

late MOT as a set prediction problem [26].

In light of this background, our study proposes a novel approach for modeling target

motion. We utilize a joint transformer and Graph Neural Network (GNN) encoder to

incorporate both the motion of individual targets and the interactions between targets

in the scene. The model is inspired from a recent work on large language models

(LLMs) fine-tuning [11], where they fine-tune the LLM model using two different

data modalities such as text and knowledge graph. By allowing bidirectional infor-

mation propagation between the transformer encoder and GNN they argue that the

text can reason with structured information given the knowledge graph and also the

knowledge graph can reason with rich context given the text data. With the adaptation

of the joint encoder formulation, the dynamics of multi-object tracking are learned di-

rectly from the data using a hierarchical approach, as proposed in works such as [9]

and [16].

1.2 The Outline of the Thesis

The goal of this thesis is to model the motion of the targets in the scene using a joint

encoder comprising a transformer and a GNN. The transformer handles the motion

of each trajectory independently, while the GNN facilitates communication among

different targets to collectively understand their motion patterns.

For this purpose, we first review the preliminaries of the graph representation learn-

ing in Chapter 2 in order to familiarize the reader with the GNN model used in the

proposed framework. We introduce the general GNN formulation within the Message

Passing Framework to demonstrate how information propagation on graph- structured

data can be formalized through neighborhood aggregation. Moreover, in Chapter 2,

the formulation of the Transformer architecture is presented, drawing an analogy be-

tween fully connected graphs and Transformers. At the end of that section, examples

of downstream tasks are presented to illustrate how those learned representations are

utilized.

In Chapter 3, a thorough and up-to-date review of the literature on Multiple Object

3

Tracking (MOT) methods is conducted. The shortcomings of the existing methods

are analyzed and discussed. In Chapter 4, we introduce a new framework based on

joint transformer and GNN architecture. We justify the contributions of the proposed

method through experimentation on real-world datasets, comparing our model with

state-of-the-art multi-object trackers.

Finally, in Chapter 5, the thesis is summarized by discussing the contributions and

comparisons revealed through the experimental results.

4

CHAPTER 2

AN OVERVIEW OF GRAPH REPRESENTATION LEARNING

2.1 Introduction

This chapter aims to provide a brief overview of recent machine learning techniques

and methods developed for graph-structured data by introducing fundamental con-

cepts and preliminaries. In recent years, a growing interest in graph representation

learning has led to the emergence of numerous methods and algorithms designed to

exploit the inherent relational structure within certain data modalities. With convolu-

tional neural networks marking significant milestones in machine learning, the next

significant leap forward is occurring in graph representation learning. This shift is

propelled by the recognition that graphs, unlike ordered data structures such as grids

or sequences, abound in many datasets we generate or consume. As a result, various

types of data can be reduced to simple entities connected by relationships, allow-

ing them to be represented as graphs. This approach has made learning distinctive

features from these graph structures a key focus in machine learning research.

While certain data modalities may not naturally form a graph in their underlying

structure, leveraging the dynamic and flexible nature of graph structures through the

use of heuristics and distance-based methodologies allows the creation of connections

among different entities within the underlying data manifold, effectively forming a

graph. This approach enables the exploitation of information propagation between

entities, thereby aiding in the discovery of an appropriate structure to represent the

underlying data manifold and apply machine learning methods effectively.

Similar to any other deep learning architecture, the primary objective of Graph Neural

Networks (GNN) is to ingest and derive useful high-level representations of the infor-

5

Figure 2.1: Graph Convolutional Network illustration [2]

mation contained in the raw features of graph-structured data given as input. These

learned features are then utilized in downstream tasks. An illustration is provided in

Figure 2.1.

In this chapter, we begin by introducing the general GNN formulation within the

Message Passing Framework to demonstrate how information propagation on graph-

structured data can be formalized through neighborhood aggregation. The theoretical

foundations of such models are emphasized in Appendix A. As we approach the end

of the chapter, we draw a comparison between graph representation learning and the

transformer architecture. Finally, we explore the practical applications of the acquired

discriminative features in tasks such as node classification and edge prediction.

2.2 Message Passing Neural Networks

Gilmer [27] introduced a general framework for designing GNNs, unifying existing

GNN models into a single common framework called Message Passing Neural Net-

works (MPNNs). MPNNs offer a flexible formulation capable of generating various

models based on two key components: (1) the message function and (2) the aggrega-

tion function (vertex update function). These MPNN models are applicable to graphs

with node and even edge features, without significantly increasing computation and

memory complexity.

Let G(V , E) is a undirected graph, with node features hi ∈ Rd and edge features

6

eij ∈ Rk, during each message passing phase the hidden states h(t)
i of each node are

updated based on the messages m(t)
i of its neighboring nodes [27].

m
(t+1)
i = {Mt(h

(t)
i , h

(t)
j , e

(t)
ij) | j ∈ N (i)}

h
(t+1)
i = Ut(h

(t)
i ,m

(t+1)
i)

(2.1)

The message function Mt is a learnable and differentiable function, while the aggre-

gation function Ut operates over multi-sets since messages coming from neighboring

nodes form a multi-set. Consequently, permutation-invariant functions—such as sum,

mean, and max— are preferred as an aggregation function to preserve the inductive

bias of the model [28], ensuring that the order of neighbors does not affect the out-

come. However, learned differentiable functions can also be utilized in this context.

The design of both functions can be adjusted according to the specific task require-

ments. Additionally, in Equation 2.1, the utilization of edge features is limited to

the message computation. However, this formulation can be expanded to update the

hidden states of the edge features as well.

Figure 2.2: Example of Message Passing Scheme.

An illustrative example, depicted in Figure 2.2, clarifies this concept. On the left side,

we observe a simple input graph, and the aim is to propagate information throughout

the graph and subsequently updating the hidden states of individual nodes. This up-

date process is demonstrated for the target node C in the right-hand figure. In Figure

2.2, neighboring nodes of C transmit messages with message function, which are then

aggregated with aggregate function, resulting in the update of vertex C. Note that in

each message passing phase, both functions, Mt and Ut, are shared across the entire

graph. Just like in CNNs, the filters are shared across locations but also well localized

7

in the graph domain.

In the following subsections, we will review some of the most widely utilized models,

exploring their contributions and delving into their formulations.

2.2.1 GCN

In this subsection, the formulation of the Graph Convolutional Network (GCN) [2]

model in the MPNN framework is provided. In this formulation the convolutional

filters are well localized across the graph, and shared among different locations.

m
(t+1)
i = {h(t)

j W(t) | j ∈ N (i) ∪ i}

h
(t+1)
i = σ

(∑
j∈N (i)∪i

1√
di
√

dj
m

(t+1)
j

) (2.2)

where W(t) is the learned differentiable weight matrix of tth message passing phase,

and di is the degree of node i. Equation 2.2 shows how the state of a node is updated

in one GCN layer. The convolutional filters used are well localized and shared across

the graph.

2.2.2 GAT

Graph Attention Network (GAT) [3] represents an extension of the attention mecha-

nism into message-passing neural networks designed for graph-structured data. Since

its initial proposal in the machine translation domain by [29], the attention mecha-

nism has played a dominant role in various fields, yielding successful applications.

The transformer architecture, as introduced by [4], exclusively employs attention in

each layer, marking its significance not only in natural language processing but also

in various other application domains [30, 31, 32, 33].

GAT [3] proposes to compute the hidden states of each node in the graph by attending

to its 1-hop neighbors, employing a self-attention strategy. An illustration of one GAT

layer is provided in Figure 2.3. During the message-passing phase, the node update

8

Figure 2.3: Graph Attention Network illustration [3]

is executed for each node through a weighted sum of messages from its neighbors in

the graph. The message and aggregation functions are formulated as follows:

m
(t+1)
i = {h(t)

j W(t) | j ∈ N (i) ∪ i}

h
(t+1)
i = σ

(∑
j∈N (i)∪i

α
(t)
ij m

(t+1)
j

) (2.3)

In Equation 2.3, the node aggregation function updates the state of the node through

a weighted sum of the messages received from its neighbors. The attention weights

for these messages are calculated in each message-passing phase (the subscript (t) is

omitted for simplification) as follows:

αij =

exp

(
σ

(
aT [Whi||Whj]

))
∑

k∈N (i) exp

(
σ

(
aT [Whi||Whk]

)) (2.4)

where || is concatenation operation, the attention mechanism is a single-layer feedfor-

ward neural network, parametrized by a weight vector a ∈ R2d′ . The attention coeffi-

cient is computed exclusively for node pairs connected within their 1-hop neighbors.

These attention coefficients are normalized among the neighbors for each node using

the softmax function. This formulation can also be extended to multi-head attention,

9

as presented in [4], where K independent attention mechanisms execute the transfor-

mation of (2.3), an illustration of multi-head attention (with K = 3 heads) is given in

the right hand side of Figure 2.3.

However, one of the shortcomings of this formulation is that for any query node, the

attention function is monotonic with respect to the neighbor (key) scores, as discussed

in [34]. The main problem that limits the expressive power of the GAT model is that

the layers W and a are applied consecutively, and thus can be collapsed into a single

layer.

αij =

exp

(
aTσ

(
W[hi||hj]

))
∑

k∈N (i) exp

(
aTσ

(
W[hi||hk]

)) (2.5)

Brody et al. [34] proposed that changing the order of operations in the original GAT

formulation, Equation 2.5, allows for a more expressive model representation, lever-

aging the universal approximation theorem of multi-layer perceptrons. This new

model is known as GATv2 [34]. In our proposed method, presented in Chapter 4,

we opted to use a similar formulation to GATv2 model.

2.2.3 GraphSAGE

The models discussed in the previous subsections, require all nodes of the graph to

be present during the forward pass. However, these formulations are impractical for

real-world large graphs as they might not fit into the GPU memory. Additionally,

since they operate on complete graphs, they inherently exhibit transductive behavior.

This results in a drop in performance when new nodes are added to the graph or when

the model is applied to previously unseen graphs. Moreover, to compute the hidden

states of newly added nodes, the entire graph needs to be fed to the model, leading to

excessive computations each time a new node is introduced.

To overcome the aforementioned limitations Hamilton [12] proposed a general in-

ductive framework that utilizes node feature information to efficiently generate node

10

embeddings for previously unseen data by learning a function that samples and aggre-

gates features from a node’s local neighborhood. Therefore, instead of using the full

graph to train the model, they perform neighborhood sampling by selecting a fixed-

size neighborhood around each target node during the training process. Specifically,

for each node in the graph, a fixed-size sample of its neighbors is randomly selected.

The model then aggregates the features from this sampled neighborhood to generate

embeddings for the target node. Since model do not dependent on the whole graph

to be present at the forward pass, the embeddings of the newly added nodes can be

calculated with the same sampling approach. The formulation of the GraphSAGE

[12] model is given below,

m
(t+1)
i = {h(t)

j | j ∈ N (i) ∪ i}

h
(t+1)
i = σ

(∑
j∈N (i)∪i

W(t) [h
(t)
i ||m(t+1)

j]
) (2.6)

where the symbol || is the concatenation operation.

2.3 Transformers

Since the introduction of the widely recognized Transformer architecture by Vaswani

in their seminal paper [4], nearly every subfield of deep learning has attempted to in-

corporate this architecture into their designs. Subsequently, not only natural language

processing but also other domains, such as computer vision [30, 33, 15], multi-model

processing [35], etc., have witnessed successful applications of the Transformer ar-

chitecture. In this section, our aim is to introduce the Transformer architecture and

explain its fundamental working principles.

Transformers are neural network models initially designed to process sequential data

in machine translation, such as sentences. With the self-attention mechanism, model

can effectively capture long-range dependencies among its inputs by assigning rel-

ative importance weights to different inputs. Beyond this significant capability, the

Transformer architecture is highly parallelizable, enabling the model to be scaled to

extensive sizes.

11

Figure 2.4: The vanilla transformer architecture [4].

In this section, we will introduce the original Transformer architecture as shown in

Figure 2.4 proposed by Vaswani [4] and then we will make an analogy about the

formulation of Transformers and GNNs.

2.3.1 Review of Vanilla Transformer Architecture

The model proposed by Vaswani [4] was specifically designed for machine translation

tasks, featuring both encoder and decoder blocks as shown in Figure 2.4. For instance,

the encoder receives inputs in English, while the decoder generates translations into

French, producing one word at a time as an autoregressive model.

The architecture comprises three essential components: (1) dot-product attention, (2)

12

feed-forward layers and (3) positional embeddings. Additionally, normalization lay-

ers follow both the attention and feed-forward layers. In the encoder, the inputs are

the sequences, with each element of the sequence at each timestamp referred to as a

token. These tokens can be conceptualized as feature vectors.

Dot-Product Attention: Various methods for calculating attention scores exist in

the literature, including multiplicative or additive approaches. However, the authors

opted for dot-product attention calculation as it can be calculated with only matrix

multiplications, making it highly parallelizable and scalable.

Attention(Q,K, V) = softmax(
QKT

√
dk

)V (2.7)

In Equation 2.7, Q, K, and V represent matrices formed by linear transformations of

the input sequence, where dk is the dimension of the features. The term softmax(QKT
√
dk

)

computes the relative importance between input tokens, referred to as attention weights.

Subsequently, information propagation occurs between tokens through a weighted

sum of their neighboring tokens. Normalizing the attention weights with
√
dk stabi-

lizes the training process by smoothing the output of the softmax function.

The attention calculation provided in Equation 2.7 is based on a single head, but it can

be extended to multiple heads, enabling each token to attend to different tokens across

various heads. This approach enhances the flexibility of the model to assign different

attention weights to multiple tokens simultaneously within the same layer. Addition-

ally, since attention is computed using dot-product attention, the initial iteration of

training may result in meaningless attention calculations due to random initialization,

which can lead to unstable and challenging training. Utilizing multi-head attention

addresses this issue of poor initialization, contributing to more stable training. After

multi-head attention, values are normalized with layer normalization [36] to ensure

consistent scaling of the feature representations across tokens.

Feed-Forward Layer: At each position, the feature vectors are independently pro-

cessed through a fully connected feed-forward network, which consists of two linear

transformations with a ReLU activation function in between. This layer serves two

main purposes: firstly, it increases the model capacity by further propagating features

13

through the network; secondly, it addresses the scaling issue of the features. The di-

mensions of the two-layer multi-layer perceptrons (MLPs) are initially increased to

four times the dimension of each token’s features and then reduced back to the orig-

inal token dimension. Throughout various implementations of Transformer architec-

tures across different domains, this choice of hyper-parameter often proves effective

without requiring additional tuning. Although not explicitly mentioned in the paper,

it can be argued that the scaling problem of the features persists even after the normal-

ization layers. Therefore, the feed-forward layer serves to further mitigate the scaling

problem and enable stable training.

Positional Encoding: Given that the model processes all tokens simultaneously with-

out inherent positional understanding during information propagation and attention

calculation, tokens lack awareness of their order or semantic positioning relative to

others. Thus, additional information regarding absolute or relative positions is nec-

essary to be injected into the tokens in the sequence. To address this, sin and cosine

positional encodings are created, each with the same length as the token feature di-

mension, and subsequently summed to incorporate positional information into the

tokens.

PEpos,2i = sin(pos/100002i/dmodel)

PEpos,2i+1 = cos(pos/100002i/dmodel)
(2.8)

where pos is the position and i is the dimension. That is, each dimension of the

positional encoding corresponds to a sinusoid. The authors [4] hypothesized that

this selection of positional encodings would enable the model to effectively learn to

attend by relative positions. This is because, for any fixed offset k, PEpos+k can be

represented as a linear function of PEpos.

2.3.2 Analogy between Transformer and Graph Neural Networks

The positional encoding is essential for injecting positional information into the input

sequence. Without these positional encodings, there is no notion of order or position

among the tokens within the sequence. Therefore, it can be inferred that the input

14

tokens form a fully-connected graph structure, where each word is connected to every

other word, as illustrated in Figure 2.5.

Figure 2.5: Fully-connected graph example.

We have previously discussed the formulation of Graph Attention Networks (GAT)

in Section 2.2.2. Now, we can apply a similar framework to describe the architecture

of the Transformer. In this message passing framework, the message function and

update functions of the Transformer can be expressed as follows:

m
(t+1)
i = {h(t)

j V(t) | j ∈ S}

h
(t+1)
i = σ

(∑
j∈S

α
(t)
ij m

(t+1)
j

) (2.9)

where S represents the entire sequence, given that each node is connected to every

other node in the sequence. The attention calculation is also formalized in a similar

manner as follows:

αij =

exp

(
Qhi ·Khj/

√
dk

)
∑

k∈S exp

(
Qhi ·Khk/

√
dk

) (2.10)

In Equation 2.10, the superscript (t) is omitted for simplicity. Equations 2.9 and 2.10

depict the attention-based message passing process in the Transformer architecture.

The attention calculation can also be transformed to multi-head.

15

In graph terminology, Transformers aggregate messages from all nodes (words) in the

graph (sequence) to propagate information in each layer. In addition to this, Trans-

formers are equipped with layer normalizations, feed-forward layers, and most impor-

tantly, positional encodings. Moreover, training Transformer architecture is harder in

general, since in real-world graphs are mostly sparse. However, it can be observed

that Transformers, in essence, are a special type of graph neural networks where the

neighborhood definition includes the entirety of the graph.

2.4 Graph Level Tasks

Up to this point, the review of graph neural networks has been provided. Addition-

ally, an analogy drawn between the most successful architecture of the recent decade,

Transformers, and the newly emerging models of graph neural networks. The main

objective of these architectures is to extract better features from raw data and uti-

lize them in task-specific downstream tasks to achieve high performance. Therefore,

in this section, two types of downstream tasks in the graph structure data, utilizing

learned representations from graph neural networks will be discussed.

Figure 2.6: Training pipeline for Graph Neural Network models.

The training pipeline of graph neural network models is illustrated in Figure 2.6. Ini-

tially, the input graph (G(V , E)) is provided to the model, assuming that only node

features are present for simplicity. Subsequently, a series of message passing op-

erations are conducted. Following the message passing process, the features of the

nodes are updated to incorporate higher-level representations. These learned repre-

sentations are then utilized in downstream tasks, such as (1) node/edge classification,

and (2) link prediction.

16

2.4.1 Node/Edge Classification

Learned node features can be directly utilized for making predictions, which may

involve classification or regression depending on the task at hand. For example, each

node can independently undergo processing through a linear layer to predict k labels.

Similarly, predictions regarding edges can also be made by utilizing node features. In

Equation 2.11, we illustrate this process, where the features of the nodes connected

by a particular edge are leveraged for edge classification or regression.

{h(L)
i ∈ Rd,∀v ∈ G}

{[h(L)
i , h

(L)
j],∀(i, j) ∈ E}

(2.11)

In our research, we will utilize the edge prediction objective. The edges between

nodes indicate potential connections, and our aim is to classify them as active or

inactive. Active edges connect nodes belonging to the same target.

2.4.2 Link Prediction

Unlike edge classification, where existing edges in the input graph are predicted to

belong to k classes, link prediction typically involves predicting non-existing edges.

For instance, in social networks, individual nodes represent accounts and edges rep-

resent friendship connections between accounts. Link prediction is commonly used

in friend recommendation systems. While this aspect is specific to the design choice,

assuming we have node features as shown in Equation 2.11, we can proceed with the

link prediction task.

HL = {[h1 h2 . . . hn]}, HL ∈ Rd×n (2.12)

We can perform a matrix multiplication (HTH) of the node features, which yields the

probability of having an edge between unconnected nodes.

17

18

CHAPTER 3

VISUAL MULTI-OBJECT TRACKING

In this chapter, we present a background theory of the components that are frequently

used in visual MOT research and literature review of recent works relevant to the

thesis. Since the groundbreaking paper by Krizhevsky et al. [37] and the subsequent

advancements in deep neural networks, particularly in computer vision, progress in

virtually every subfield, including multi-object tracking, has been rapid. Our aim is

to comprehensively review studies relevant to our research.

In the first section, we provide an introduction to multi-object tracking, offering back-

ground information and highlighting its significance. Next, in the section of Prelim-

inaries, we examine different components frequently used in MOT algorithms. Fol-

lowing this, we introduce deep learning-based approaches, where we further segment

this section into subsections focusing on re-identification networks, deep Siamese net-

works, and graph-based MOT. We then revisit the baseline methods relevant to our

research and provide a comprehensive review of the papers upon which our research

is built. Finally, we conclude with a discussion, synthesizing key findings from the

literature review and providing insights into potential avenues for future research.

3.1 Introduction

Multi-object tracking is a subset of object tracking that involves tracking multiple ob-

jects simultaneously within a given scene. It stands as one of the most extensively

researched areas in computer vision due to its crucial role in understanding the mo-

tion patterns of dynamic objects. This field finds application in diverse areas such

as surveillance, scene understanding, and autonomous driving. For instance, in au-

19

tonomous driving, an autonomous driving agent must be capable of detecting and

following other nearby objects to safely navigate on the road.

In recent years, with the advent of powerful object detectors [17, 33], the tracking-

by-detection paradigm has become the common approach for designing multi-object

tracking models. In this paradigm, tracking occurs in two stages: first, every object

in each frame is detected, and then the tracking process involves assigning the same

IDs to detections across different temporal axes that belong to the same object. While

there are also works [25, 31] that perform joint detection and tracking, they face chal-

lenges in training due to simultaneously handling two tasks. Additionally, their larger

model sizes require substantial training data. In this thesis, our research also follows

the tracking-by-detection paradigm. With the availability of powerful detectors, er-

rors due to missed detections or background detections are rare. Therefore, tracking

primarily involves associating objects across frames.

In the MOT literature, trackers are often classified as online or offline. The former

refers to models that are causal, meaning that the tracker can only utilize the infor-

mation from current and past frames to make associations; future information from

subsequent frames is not considered. Conversely, in the latter approach, a batch of

frames can be used as input, allowing the utilization of future information from sub-

sequent frames to predict the result of the current frame. However, offline tracking

may not be practical in some applications, particularly those requiring real-time pro-

cessing.

In this thesis, we avoid creating sections specifically dedicated to online tracking

or offline tracking while reviewing the MOT literature. This decision is based on

the understanding that the suitability of tracking methods often depends on the spe-

cific application and design considerations. Instead, our sections focus on general

approaches commonly utilized in MOT research, such as Kalman Filter-based Ap-

proaches, Deep Learning-based Approaches, etc. While discussing these methods,

we might address their applicability to online or offline tracking as relevant.

20

Figure 3.1: Kalman Filter based online tracking example. Colored bounding-boxes

depict active tracks at frame t, dashed bounding-boxes represent the predicted posi-

tions of the tracklet at frame t+ T , and black bounding boxes indicate the detections

at frame t+ T .

3.2 Preliminaries

3.2.1 Kalman Filter-based Approaches

Kalman filter-based tracking methods are widely used in real-time tracking scenar-

ios due to their simplicity and effectiveness in modeling object motion. While many

approaches leverage Kalman filters for object tracking, we will focus on more re-

cent methods that employ the tracking-by-detection paradigm. An exemplary work

demonstrating high performance with fast inference using Kalman filters is the SORT

(Simple Online and Real-time Tracking) model proposed by Bewley et al. [18]. In

this method, when assigning detections to existing targets, each target’s state(position

and size) in the current frame are estimated by looking at their previous states. The

assignment cost matrix is then computed based on the intersection-over-union (IOU)

distance, or different distance metric of choice, between each detection in the current

frame and all predicted bounding boxes, in the current frame, from the existing targets

as shown in Figure 3.1. Finally, this assignment problem is optimally solved using

the Hungarian algorithm.

21

Figure 3.2: Online tracking pipeline of BoT-SORT [5].

The state of each target is represented by [x, y, s, r, ẋ, ẏ, ṡ], where x and y denote the

center position, s represents the scale (area), and r represents the aspect ratio of the

bounding box. To simplify forward propagation, a linear constant velocity model is

utilized.

Despite achieving state-of-the-art results at the time of its publication, the method has

several limitations. Most notably, the association is solely based on the IoU distance

as the cost, resulting in frequent ID switches between targets that closely interact

with each other. Additionally, the authors do not incorporate mechanisms to recover

occluded objects upon reappearing in the scene, nor do they address the non-rigid

motions of the target. Furthermore, the method does not handle interactions and

associations between numerous objects in crowded scenes.

Wojke [20] proposed a solution to address the issue of occlusion handling by equip-

ping the model with an appearance model, which is a convolutional neural network

trained to discriminate pedestrians on a large-scale person re-identification dataset.

Instead of performing matching only on consecutive frames, they retain the history of

the tracked object. The trajectory of the object is preserved and propagated to the cur-

rent frame, allowing matching to be performed with distant frames. However, relying

solely on the IoU distance becomes problematic as the occlusion time increases, since

the linear motion assumption does not hold. Therefore, they also utilize the cosine

distance of the visual features extracted with a pre-trained CNN, and the final distance

is the weighted sum of the two.

22

Zhang [14] introduced ByteTrack, a Kalman-filter based tracker designed to address

identity switches and occlusion issues using a novel approach. While their method

shares similarities with Wojke’s approach, in the tracking-by-detection paradigm,

they enhance performance by employing a superior object detector. Additionally,

they broaden the scope of association by considering both high and low score de-

tections. ByteTrack implements a two-stage matching process: initially, high score

detections are matched with trajectories, followed by matching low score detections,

which often correspond to partly occluded objects.

In addition to the approaches aimed at improving data association, numerous methods

[5, 19, 38, 39] attempt to mitigate the effects of camera motion, error accumulation,

or poor visual features caused by occlusions. The authors of BoT-SORT model [5]

equipped their model with camera motion compensation algorithms by image reg-

istration between two adjacent frames. Their online tracking pipeline, illustrated in

Figure 3.2, closely resembles other Kalman-filter based online tracking approaches,

with the addition of camera motion compensation. On the other hand in [39] the au-

thors view the camera motion on the scene as a source of noise, and model that as

a system motion model and inject this noise as process noise in to the Kalman-filter

to increase the tracking performance. Although these methods propose elegant solu-

tions to existing challenges, their designs are mostly handcrafted and rely on heuristic

choices.

In the studies presented in this section, deep learning methods are typically employed

solely for feature extraction from the detected bounding boxes, rather than in the data

association step. However, in the era of deep learning, designing methods equipped

with appropriate inductive biases for a given problem often yields more effective

solutions than heuristic approaches. In the coming sections, we will delve into the

approaches which rely on deep learning methods.

3.2.2 Deep Learning-based MOT Approaches

In multi-object tracking, deep learning finds application across various stages of the

tracking process. As noted in the preceding section, deep learning models are pre-

dominantly employed in the initial stage for detection and extracting high-level fea-

23

tures from the detected bounding boxes. However, deep learning methods can also

be utilized to determine globally or locally optimal associations, model social in-

teractions, capture target motion, perform similarity calculations, and more. In this

section, we will examine studies in the MOT literature by categorizing them into dif-

ferent components as shown in Figure 3.3. It is important to note that the intention

is not to classify models, but rather to familiarize the reader with the various compo-

nents of MOT research that utilize deep learning architectures and discuss their utility

and limitations.

Figure 3.3: Taxonomy of Deep Learning-based MOT approaches.

3.2.2.1 Appearance-based MOT

One of the primary challenges in visual tracking lies in accurately representing the

appearance features of objects, enabling their distinction from one another. Unlike

single-object tracking, where appearance models are pivotal for discriminating the

object of interest from the background, recent methods utilize discriminative corre-

lation filtering models [40] to locate the target object in subsequent frames. How-

ever, they differ from multiple object tracking (MOT) in that the semantic class of

the tracked object is not known a priori; the target is given at inference in the first

frame. Consequently, these models require strong motion models. In contrast, in

MOT, the semantic class of the target objects is known a priori, and in each frame,

they can be detected by pre-trained object detectors, making object localization rela-

tively straightforward. Therefore, appearance features serve as additional information

representing the detections, and tracking can be performed even without them, albeit

sub-optimally. Since depending solely on motion models frequently results in track-

ing failures, especially in crowded scenes. Additionally, in the case of long-term

24

occlusion, objects must be re-tracked with the same ID to prevent tracking loss. This

necessitates robust appearance models capable of withstanding changes in illumina-

tion or pose, as targets within a scene may undergo such changes during extended

periods of absence before reappearing.

ReID Networks: To overcome the previously discussed challenges, pre-trained per-

son re-identification (ReID) networks are utilized to extract appearance features from

bounding boxes. The primary reason for using pre-trained ReID models is that ob-

jects in the scene are subject to illumination changes, background variations, and pose

alterations throughout their trajectories. As a result, features extracted using a sim-

ple CNN might yield different embeddings for the same object in different locations

within the scene. To accurately identify and recover the tracks of the same target,

appearance features are obtained from person re-identification networks trained to

produce consistent embeddings for the same objects under different poses or lighting

conditions.

Figure 3.4: Person re-identification example.

Person re-identification involves identifying the same individual across non-overlapp-

ing cameras or across different time instances from the same camera as shown in

Figure 3.4. This task is primarily utilized for identity retrieval, where the goal is

to find instances of a queried person appearing in different frames. The pipeline of

person re-identification includes image pre-processing, feature extraction backbone,

prediction head and loss function.

25

Figure 3.5: Triplet-loss objective.

Although there are different approaches solving this problem, in MOT research most

of the models follows the same pipeline with different backbone architectures or loss

functions. One of the most popular backbone used in MOT research that utilizes

ReID networks [14, 8, 9, 41, 42] is ResNet50 [43] and ResNet-IBN [44]. For the loss

functions either cross-entropy loss or triplet-loss in 3.5 is utilized; however, in some

studies [45, 46, 47] contrastive loss is also used which also allows models to train in

an unsupervised way as in [47].

Person re-identification networks are typically pre-trained on large-scale datasets such

as Market-1501 [48] or CUHK03 [49], specifically designed for person re-identifica-

tion tasks. Some models directly utilize pre-trained ReID networks in multi-object

tracking, while others may fine-tune the pre-trained ReID model on MOT-specific

datasets to reduce the domain gap between the two tasks. In a recent paper by Sei-

denschwarz et al. [22], they demonstrated that pre-trained ReID networks often ex-

hibit domain shift when applied to MOT. As a solution, they proposed an on-the-fly

domain adaptation scheme to mitigate the domain gap issue.

After obtaining the ReID features of the bounding boxes, they can be considered as

visual descriptors for the detected bounding boxes. In downstream tasks, the utiliza-

tion of these features is design-specific. Some works opt to directly employ metrics

such as Euclidean distance or cosine similarity of these features, while others utilize

more advanced algorithms, such as deep affinity networks [21, 13] to measure the

similarity between the appearances of the targets.

Deep Siamese Networks: Siamese networks are neural network models designed to

measure the similarity between two different objects, outputting a probability score of

26

their similarity. Leal-Taixé et al. [13] utilize Siamese networks to measure the visual

similarities of two detections, determining whether they belong to the same trajectory.

The Siamese network comprises a CNN-based backbone that takes pairs of images

as stacked tensors and outputs their similarity score. To obtain the pairwise data

association score, a graph is constructed linking all available detections, and tracking

is performed by solving the graph optimally with Linear Programming. In [21], the

authors utilize an online tracking algorithm where the appearance similarity between

tracks and detections is measured using a Siamese network, and optimal associations

are determined using the Hungarian algorithm.

ReID networks are a special subclass of Siamese networks. The main distinction

between the two lies in how they handle input and output. In ReID networks, appear-

ance information is embedded into a feature vector, whereas in Siamese networks, the

model takes pairs of detections as input and directly outputs their similarity scores.

3.2.2.2 Motion-based MOT

As discussed in Section 3.2.1, motion can be modeled using traditional approaches,

assuming that the target motion between consecutive frames is linear, especially in

high frame rate videos. However, this assumption does not always hold true, par-

ticularly in scenarios involving camera motion, the rapid and arbitrary movement of

objects in the scene. Modeling motion with the constant velocity assumption can

hinder the performance of trackers.

In the literature, there are methods that explicitly or implicitly model motion. Some

utilize RNNs [50, 51, 52, 16] to capture the non-linear motion of trajectories, while

others implicitly model motion through tracklet embedding [7] or by considering in-

teractions among targets [7, 53] in the scene.

Recurrent Neural Networks: RNNs are neural network models capable of process-

ing sequential data and making predictions at each time step by considering previous

states. They utilize a hidden state, which is a vector that encapsulates previous in-

formation in the sequence. As RNNs process sequences one step at a time through

their gating mechanisms, they continuously update the hidden state based on the in-

27

Figure 3.6: LSTM module [6].

put at each time stamp. Upon completing the sequence processing, the hidden state

effectively summarizes the information contained within the sequence, representing

a higher-level representation of the input sequence. In Figure 3.6 a special kind of

RNN, Long Short Term Memory Network (LSTM) is shown, which is a more com-

plex model that better captures the long-term dependencies in the input data.

Milan et al. [50] introduced an online multi-object tracking model employing LSTM

networks. Unlike traditional approaches that use Kalman filters to model target mo-

tion, they utilize LSTM to learn the nonlinear motions of targets directly from data.

The prediction of the state of the tracked object for the next frame depends solely on

the current state of the object and the network’s hidden state. The model is trained

to minimize the mean square error between the predicted state and the ground truth.

Apart from motion modeling, the method is also equipped with different RNN blocks

to perform data association and track management, making it end-to-end trainable.

Sadeghian et al. [51] also employed the LSTM network to model target motion. How-

ever, unlike previous approaches, their model does not utilize the LSTM network as

a state estimator. Instead, it takes the velocities of each trajectory independently and

produces a fixed-size vector at the output. These features are then used in similarity

calculation in the data association step. Additionally, apart from motion modeling,

the authors include another LSTM block to model the appearances of the targets, as

well as another one to model the interactions among the targets in the scene. How-

ever, in recent works, there are more appropriate model choices than LSTM networks

for interaction modeling or appearance embeddings, such as GNNs or transformers.

28

There is another line of research called Trajectory Forecasting [16, 52], which aims

to forecast the short-term spatial coordinates of objects in a scene based on their pre-

vious spatial coordinates. Auto-regressive generative models are commonly used for

this purpose. Some MOT methods incorporate advancements in Trajectory Forecast-

ing into their frameworks. For instance, Girbau [16] proposed a trajectory estimator

based on recurrent mixture density networks, which learns the underlying distribution

of an object trajectory. By sampling from this distribution, multiple hypotheses for the

object’s most likely position can be generated, providing the tracker with a prior on

the object’s future position. Learning the underlying distribution of object trajectories

offers several advantages over state estimators. Unlike state estimators, this approach

allows for the sampling of multiple trajectories, which aligns well with the arbitrary

and stochastic nature of pedestrian movement. Moreover, in scenarios involving oc-

clusions, the state estimators might accumulate errors due to a lack of observations.

In contrast, learning the distribution of trajectories helps mitigate challenges such as

occlusion handling, re-identification, and ID switches.

Dendorfer [52] also proposed a method to leverage trajectory forecasting in multi-

object tracking. They employ a recurrent neural network-based autoregressive gener-

ative model to predict the future coordinates of targets. However, instead of operating

in the image coordinate frame, they utilize homography transformation to transform

still images into a bird’s-eye view representation. This transformation enables better

localization of the targets in 3D world coordinates. However, the idea requires heavy

image pre-processing. Even though the authors only calculate the transformation pa-

rameters from the initial frame, it creates sub-optimal results if there is camera motion

or if there are illumination changes in the scene.

Figure 3.7: The flowchart of the local-global motion tracker. [7]

In addition to the previously mentioned methods that explicitly model the dynamic

motions of targets in the scene, there are also approaches that implicitly model target

29

Figure 3.8: Reconstruct-to-embed strategy in the tracklet embedding. [7]

motions by creating embeddings of tracklets, which are temporal sequences of detec-

tions or observations corresponding to the same object or target. Wang [7] proposed

a local-global motion tracker , employing a two-stage offline tracking approach. The

pipeline of the proposed method is given in 3.7. In the first stage, individual detec-

tions are associated, forming short tracklets, while in the second stage, tracklets are

merged to obtain longer trajectories of the targets. The details of the embedding gen-

eration model based on Graph Neural Networks (GNNs) will be further elaborated in

Section 3.2.2.3. We mention this study under motion modeling because by creating

embeddings of either individual detections or collections of detections (tracklets), the

motion dynamics can be learned and summarized in the created embeddings. Then

in the inference time, depending on the distance metrics and loss functions, greedy

methods can be employed to perform data association between the embeddings of the

detections/tracklets.

In Wang et al.’s work [7], the tracklets contain only information about the position

and size of the bounding boxes within them. Given that tracklets belonging to the

same target exist in different frames and often have varying temporal lengths, it is

nontrivial to find a common latent space where their embeddings are close to each

other. Therefore, the authors employed a reconstruct-the-embed strategy, as depicted

in Figure 3.8, to ensure that tracklets belonging to the same target share similar feature

embeddings. The idea of embedding motion of the tracklets into fixed sized feature

vectors enables further fusing those features with additional information’s such as

appearance, or utilizing those embeddings in more complex neural network models.

30

3.2.2.3 Graph-based MOT

Graph representation learning is a recently emerging field that attracts increasing at-

tention. The background theory and effectiveness of graph representation learning are

reviewed in Chapter 2. Along with the theoretical foundation, the most famous GNN

architectures are examined in detail. In this subsection, we will begin with methods in

the MOT literature that utilize graph-structured data and optimally solve the tracking

problem with global optimizations. Then, we will move on to more recent end-to-end

trainable networks that include graph neural networks in multi-object tracking.

Figure 3.9: Graph representation of tracking sequences; nodes represent detections,

edges represent trajectory hypotheses.

Graphs are a commonly used framework for data association in multi-object track-

ing, where nodes represent detections (or tracklets) and edges represent the possi-

ble matching hypotheses, as shown in Figure 3.9. Bold edges represent active con-

nections, indicating that the nodes are connected, while transparent edges represent

initially hypothesized matches. The colors represent the unique IDs of the trajecto-

ries. Graph structures are predominantly used in offline tracking scenarios, processing

batches of frames instead of consecutive ones, allowing them to search for globally

optimal solutions to data association. As it can be observed in Figure 3.9, edges are

not constrained to formed between consecutive detections; in this way, missing de-

31

tections due to occlusions can be recovered by finding the correct edges for distant

frames.

Numerous studies have utilized various optimization strategies, including multi-cuts

[54] and network flow [23, 24, 55], to address the challenge of object association in

multi-object tracking. These studies treat this problem as a global combinatorial op-

timization task using generic graph-based approaches. However, these models lack

end-to-end trainability as they rely on solving the optimization problem through lin-

ear programming, which is not differentiable. Recognizing this limitation, Brasó and

Leal-Taixé (2020) [8] introduced an end-to-end trainable graph neural network model.

This model adapts a simplified minimum cost network flow formulation [23]. How-

ever, this section will not delve into the specifics of generic graph-based approaches;

instead, it will concentrate on reviewing learning-based graph approaches.

Figure 3.10: Overview of MPNTrack from Brasó and Leal-Taixé [8].

The simplified minimum cost network flow formulation proposed by Brasó and Leal-

Taixé (2020) [8] involves a straightforward edge classification task on the graph. The

pipeline of the approach is illustrated in Figure 3.10. Steps (a) and (b) are common

in generic graph-based approaches. However, in step (c), they conduct a series of

message-passing operations on the graph to enhance representations on the nodes

(detections). Subsequently, in step (d), a simple two-layer MLP is applied to per-

form binary classification, classifying edges as active (1) or inactive (0) to indicate

that the connected detections belong to the same object, hence forming the trajec-

tory. After post-processing, the final results are obtained. This formulation offers

32

the utilization of the advancements in the GNN literature, since the framework is

end-to-end trainable. However, the method has shortcomings; as the number of ob-

jects increases in the scene, the model size dramatically increases because the formed

edges between detections increase exponentially with the number of nodes. There-

fore, sparser graphs must be formed in the second step (b). Even with sparse graphs,

the model does not fit into a single GPU, hence the temporal axis is processed with a

sliding window fashion with overlap between those windows. Post-processing is then

required to extract the trajectories

Apart from performing edge classification to find the trajectories Dai [41] proposed

iterative graph clustering which is similar to two-stage object detector Faster RCNN,

i.e., proposal generation, proposal scoring and proposal pruning. In their model, they

employ a GCN model to calculate the purity scores of each cluster. This GCN model

takes visual and spatio-temporal cues as input and produces the purity probability, in-

dicating whether there are any distinct identities within the detections inside the pro-

posed cluster. This formulation reduces computation costs, as they iteratively cluster

nodes, with the number of vertices in the graph decreasing at each iterations.

In addition to the previously mentioned models that utilize GNN models in offline

tracking scenarios, there are also models in the literature designed for online tracking

on a frame-by-frame basis [56, 57, 53]. Papakis introduced GCNMatch [57], operat-

ing on bipartite graphs, aiming to incorporate both spatial and visual cues from tracks

in past frames and the current frame. This incorporation is achieved through message

passing on a bipartite graph where current detections and previously created tracks

interact, making them aware of each other’s visual and geometric cues. Optimal asso-

ciation is performed with Hungarian algorithm. Due to its online nature, GCNMatch

cannot effectively model the long-term interactions of objects in scenarios involving

severe occlusions without increasing memory usage.

In both [56, 53], GNN models are employed to capture interactions between objects

within the scene. This allows the models to enhance awareness of surrounding objects

and create more discriminative features by effectively modeling these interactions.

Rangesh et al. proposed TrackMPNN [58], which is a framework based on dynamic

undirected graphs representing the data association problem over multiple timesteps.

33

They utilize a message passing graph neural network (MPNN) that operates on these

graphs to generate the desired likelihood for each association. Their work provides

insights into designing an MPNN model tailored for multi-object tracking research.

3.3 Revisiting the Baseline Methods

In this section, we revisit the baseline methods that form the foundation of our re-

search. Our work builds upon the insights and methodologies presented in prior

studies, namely SUSHI [9] from Cetintas and GREASELM [11] [11] from Zhang.

By revisiting these approaches, we aim to provide a comprehensive understanding

of the underlying principles and techniques that have shaped our research direction.

This review will serve as a crucial framework for clarifying the advancements and

innovations introduced in our work

3.3.1 SUSHI

The SUSHI model, proposed by Cetintas et al. [9], serves as a graph-based hier-

archical multi-object tracker. In contrast to previous MOT techniques, which often

treat short-term and long-term associations differently, this method employs a GNN

architecture to address both types of associations in a unified way. It achieves data

association across various time frames through a hierarchy of smaller graphs. At the

lowest hierarchy level, nodes represent object detections in nearby frames. Leverag-

ing the GNN, these nodes are processed into short tracklets, and subsequent graphs

are formed to extend trajectories at each level of the hierarchy. This unified approach

is facilitated by the consistent use of the same GNN architecture with identical pa-

rameters at each hierarchical level, eliminating the need to assume optimal cues for

individual time frames.

The approach follows the tracking-by-detection paradigm and is an offline tracking

method. In the first step, each object in every frame is detected, and then their ReID

features are extracted [59]. The video clip is then recursively partitioned into smaller

sub-clips, forming a binary-tree-like structure, as illustrated in Figure 3.11. In each

sub-clip, graph-structured data is formed by representing detections/tracklets in the

34

Figure 3.11: Recursive partitioning of a video clip into hierarchy of graphs [9].

nodes and creating edges between nodes that are in non-overlapping frames, follow-

ing certain distance heuristics, such as Euclidean distance on the image plane or l2

norm distances of the extracted ReID features, to obtain a sparser graph. Subse-

quently, starting from the lowest level of the hierarchy, each graph is solved indepen-

dently, meaning that data association in each sub-clip is performed. Associated nodes

are then merged, and a new graph is created at the next higher level of the hierarchy.

This process continues until the highest hierarchy level spans the entire clip duration,

at which point the trajectories formed in this last hierarchy are returned.

Figure 3.12: SUSHI block overview. Each SUSHI block processes a graph composed

of tracklets from a sub-clip, utilizing neural message passing to merge nodes into

longer tracks. [9]

Each SUSHI block, shown in Figure 3.12, processes a graph representing a sub-clip,

35

where nodes are equipped with ReID features and edges carry geometric cues such

as relative distance and size. These features are transformed into more representative

features through a series of neural message passing operations using a shared GNN

model. The weights of this GNN model are shared across all sub-clips and hierar-

chy levels. After obtaining more representative features, edges are classified as active

or inactive to indicate which nodes are to be merged into the subsequent hierarchy.

For the merged nodes, ReID features are averaged, and positional features are rep-

resented only by the first and last detection nodes in the time frame, which discards

the intermediate positional information of the tracklets. This approach is not ideal

for modeling the motion of the tracklets, as the movement of objects in the scene

is more complex and cannot be inferred from only the start and end positions. For

implementation details please refer to the original work [9].

3.3.2 GreaseLM

With the advancements in deep learning, researchers often draw inspiration from var-

ious application fields for their studies. This interdisciplinary approach is valuable

because many fundamental concepts and algorithms across different fields share un-

derlying principles or can be adapted to suit different needs. Therefore, we are inves-

tigating the potential application of the GreaseLM [11] method, despite it not being

directly related to multi-object tracking.

Figure 3.13: An example of Knowledge Graph [10].

GreaseLM is proposed to enhance the reasoning capabilities of pre-trained Large Lan-

guage Models (LLMs) by incorporating structured knowledge graphs (KG) alongside

36

Figure 3.14: GreaseLM architecture [11].

textual context. The knowledge graph represents a network of real-world entities,

such as objects, events, situations, or concepts and illustrates the relationships be-

tween them, an example is shown in Figure 3.13. The model takes two inputs: textual

content, similar to any other LLMs, and a knowledge graph. The textual content is

processed using Transformer architecture, while the knowledge graph is processed

with a GNN. After each layer of Transformer and GNN, a modality interaction mod-

ule bi-directionally transfers information from each modality to the other. Conse-

quently, all tokens in the language context receive information from the KG entities,

and the KG entities receive information from the text tokens.

The bi-directional information propagation occurs between the interaction token ĥl
int

and an interaction node êlint. The interaction token is a learnable embedding token

that is pre-pended to the input sequence, whereas the interaction node is an artificial

node (learnable embedding) placed in the knowledge graph and only connected to

a subset of the nodes in the knowledge graph. These interaction tokens and nodes

first interact with text and the knowledge graph respectively, then are fed into the

interaction module, which performs the following:

37

[hl
int; e

l
int] = MLP ([ĥl

int; ê
l
int]) (3.1)

In Equation 3.1, [·; ·] represents concatenation, and MLP denotes a basic two-layer

MLP. The interaction token and node are then extracted and fed into the subsequent

layers, as illustrated in Figure 3.14.

For further details on the model, please refer to [11]. In this thesis, our work is

inspired by the bi-directional interaction between two different modalities. Section 4

will discuss how this proposed architecture could be leveraged in MOT.

3.4 Discussion

As discussed in previous sections of this chapter, learning-based methods for data

association exhibit superior tracking performance compared to heuristic approaches.

Learning optimal cues for data association from data proves more powerful than re-

lying on hand-crafted heuristics. Additionally, offline models outperform their online

counterparts. Offline models have access to both previous and future frames, allow-

ing for optimal batch-wise association by globally minimizing association costs. In

contrast, online methods operate on a frame-by-frame basis and are prone to losing

track identity in ambiguous scenarios, particularly when faced with severe occlusion

or missed detections.

In offline tracking, graph-based approaches show promise due to the ease with which

tracking data can be represented using graph structures in tracking-by-detection para-

digm. This parardigm allows for the utilization of recent powerful methods reviewed

in Section 2. For this reason, we have chosen to adopt an offline tracking approach

that utilizes graph-structured data. In the next section, we will propose a bi-directional

motion encoder in a hierarchical setting for multi-object tracking.

38

CHAPTER 4

PROPOSED BI-DIRECTIONAL MOTION ENCODER FOR MOT

4.1 Introduction

Multi-Object Tracking (MOT) involves the simultaneous detection and tracking of

each object within a scene, assigning a unique ID to each object throughout the entire

video duration. MOT has extensive applications in diverse fields, such as autonomous

driving, robotics and video analytics. In recent years, MOT is widely studied and

significant progress has been made; however, MOT still remains as a challenging

problem due to severe occlusions, similar appearances and interactions and complex

motions between objects.

By the advent of powerful object detectors [17, 33], the tracking-by-detection parad-

igm has become a common approach. To establish associations between detections

in different frames, spatial and temporal priors, such as motion and appearance are

utilized. In recent studies, the association is either performed online with motion

models and local appearance cues [18, 19, 14, 5, 20, 13, 21], or offline, mostly utiliz-

ing graph-structured data with global matching costs [9, 8, 41]. In both cases, object

motion is modeled with either Kalman filters or simple linear-motion assumptions.

These methods often fall short, when there are interactions among targets. Even

though graph-based methods implicitly model interactions, they often lack a strong

motion model.

In this chapter, we propose a novel solution for tracklet merging using some recent

promising learning based architectures. We propose a novel method to explicitly

model both the motions and interactions among targets. Our approach involves a

simple model that does not require any handcrafted short-term or long-term matching

39

processes. We achieve this goal by leveraging a joint Transformer and GNN encoder.

In the former, the individual detection of each tracklet can attend to each other via

self-attention; thus, modeling motion of individual targets. While the latter captures

the interactions among them via Message Passing. A fundamental challenge remains

in combining GNN with Transformer while leveraging the advantages of both archi-

tectures. Although there are numerous works on how to combine GNN and Trans-

former architectures mostly in NLP domain such as [60, 61, 62], they are mostly

utilizing the pre-trained transformer architecture (BERT) to produce the embeddings

for the nodes of the subsequent GNN layer, and they do not allow for bi-directional

information propagation between these two modalities. Recently, a new approach,

namely GreaseLM [11], has been proposed to efficiently combine all the information

input to both Transformer and GNN. This solution enables bi-directional information

propagation between these two modalities. Moreover, adopting this approach in our

study allows motion modeling to depend on interactions, and conversely, interaction

modeling to depend on the motions of each target.

4.2 Motivation

We propose a novel architecture, namely Tr-GNN, which models object motion while

still being aware of social interactions. Tr-GNN utilizes a joint Transformer and GNN

encoder in a hierarchical setting (Figure 3.11) and follows the tracking-by-detection

paradigm; hence, moving object bounding boxes are assumed to be available by any

pre-trained object detector [17]. The ultimate goal is to find optimal associations

across detections (or tracklets in higher hierarchies).

A tracklet refers to a grouping of N detections {di1, di2, ..., diN} associated with the

same object (target) i. Each detection included in a tracklet belongs exclusively to that

tracklet, ensuring that there are no overlapping detections between different tracklets

representing distinct targets. These detections contain information about the detected

object, which includes the bounding-box position and size normalized relative to the

image dimensions. Additionally, visual features, ReID, are extracted from the cor-

responding portion of the image frame and presented alongside with the positional

information of the each detections.

40

We drew inspiration from the hierarchical solution approach of SUSHI method [9].

SUSHI is an offline MOT model that proposes a hierarchical solution to multiple ob-

ject tracking by partitioning the input video with a binary-tree-like hierarchical struc-

ture, where each leaf corresponds to individual frames and the root nodes correspond

to tracklets covering the entire temporal dimension, as shown in Figure 3.11. Track-

ing is performed by recursively merging detections (tracklets in the upper hierarchies)

in the leaf nodes via GNNs, thereby forming longer tracklets in the subsequent hier-

archies until the tracklets in the root nodes cover the entire temporal dimension of

the input video. However, in SUSHI model the tracklets formed in the upper hierar-

chies only consider the start and end detections of the object, (di1, d
i
N), instead of N

detections, which might discard valuable information that could be utilized to model

the motion characteristics of each tracklet, especially when the object has a complex

motion. Our aim is to utilize all detections of the individual tracklets to better model

their motion characteristics with a joint Transformer and GNN encoder.

Another inspiration for our proposed method comes from another line of research

in Natural Language Processing. GreaseLM [11] model introduces bi-directional in-

formation propagation between two different modalities: GNN and Transformer to

improve performance. Details of this work are provided in Section 3.3.2.

Therefore, in our work, we aim to utilize this bi-directional information propagation

in such a way that motion modeling depends on interactions, and conversely, interac-

tion modeling depends on the motions of each target.

4.3 Proposed Bi-Directional Motion Encoder

Ours proposed model follows the commonly used graph formulation in MOT [8]. Al-

though the graph structures model more irregular relations, in this particular problem

consecutive time instances or tracklets that follow each other, provides a more regu-

lar interconnection. Hence, for such regular relations, bipartite graphs can be used to

determine different connection hypotheses at different time instances. In each parti-

tion of each hierarchy, an undirected bipartite graph G(V , E) is formed. The edges

E ⊂ {(vi, vj) ∈ V × V|ti ̸= tj} are formed between nodes which have a possibil-

41

Figure 4.1: Feature encoding of input graph.

ity of matching, determined by simple distance heuristics, such as IoU or GIoU, as

proposed in [9]. Subsequently, our proposed model independently identifies the opti-

mal associations within each bipartite graph, by performing binary classifications on

the edges, in which the predicted probability indicates the likelihood that the nodes

connected by that edge belong to the same object.

Our key distinctions from SUSHI model [9] include the use of a bipartite graph for-

mulation and the incorporation of a joint Transformer and GNN encoder for optimal

association. We utilize the bipartite graph structure to limit the number of detections

in each tracklet at different hierarchy levels. Specifically, in the first hierarchy, nodes

have a single object detection (i.e. bounding box); in the second, they have two de-

tections, and this pattern continues with powers of 2.

Each resulting bipartite graph is illustrated in Figure 4.1, which serves as the input

to the joint Transformer and GNN encoder. The provided bipartite graph example

in Figure 4.1 demonstrates the features utilized by our model. We only utilize the

positional information of the detections, such as bounding box coordinates (top-left

corner, width, and height), center location, aspect ratio, and the frame number. These

features are stored in the nodes of the graphs, representing individual tracklets.

In addition to the formed bipartite graph, an interaction token is also included as

input to our model. This token is appended to all tracklet sequences and is aimed to

42

model the motion characteristics of the tracklets, which they belong, by relating all

individual detections. As depicted in Figure 4.2, the interaction token is a learnable

embedding that remains the same within the same hierarchy level for all tracklets but

differs for different hierarchy levels.

Figure 4.2: Interaction token representation

4.3.1 Joint Transformer and GNN Encoder

One can conceptualize each detection in a tracklet as a token in a text. Instead of

utilizing a KG as in GreaseLM [11], our approach leverages a dynamically formed

bipartite graph at each hierarchy level. This structure enables different tracklets to ex-

change information, allowing them to take into account the social interactions among

them. In the Transformer encoder illustrated in Figure 4.3, we prepend the same

interaction token - identical only within the same hierarchy level - to all tracklets.

Through masked self-attention, each interaction token learns the motion pattern of its

corresponding tracklet by attending to all its positions. Consequently, each interac-

tion token within each tracklet learns the motion embedding of the tracklet it belongs

to. These interaction tokens are then extracted and stored in the nodes of the bipartite

graph. Message passing is performed, enabling each interaction token belonging to

distinct tracklets to exchange information.

More specifically, for each graph Gl = (V l, E l) at hierarchy level l, each node repre-

sents a tracklet, which is a set of detections T l
i = {vlint, di1, di2, ..., din} (as shown in

Figure 4.1) merged from previous hierarchies. Here, dk ∈ Rdv denotes an embedding

for each detection and vlint denotes the prepended interaction token (as shown in Fig-

43

Figure 4.3: Tr-GNN architecture overview. Joint Transformer-GNN encoder pro-

cesses a bipartite graph, and all the weights of Transformer and GNN layer are shared

across all hierarchy and sub-graphs.

ure 4.2) to the tracklet sequence which is same for every tracklet in the same hierarchy

level l initially; moreover, we consider embeddings ei,j for each edge (i, j) ∈ E l. De-

tection dk contains positional information, such as bounding-box position and size,

and the frame number to which the detection belongs, as shown in Figure 4.1. In the

edges formed between two tracklets, relative position and size information are uti-

lized based on the closest detections of the both following [8]. The formed tracklets,

which are sets of detections, are input into a Transformer encoder, as illustrated in

Figure 4.3. Masked self-attention is performed, and embeddings for each token are

propagated and interaction tokens attend to all detections of the tracklets that they

44

are belong to. Then, to enhance model efficiency, only the interaction tokens of each

tracklet are extracted and stored as the node features of the graph Gl = (V l, E l), de-

noted as vi. Message passing occurs solely among these interaction tokens, thereby

learning interactions among tracklets within the bipartite graph. The propagated inter-

action tokens are then prepended to the tracklet sequences and once again input into

the Transformer encoder. This procedure is repeated M times, allowing each interac-

tion token to interact with both individual detections within each tracklet and other

interaction tokens from different tracklets. This design creates a bottleneck for infor-

mation propagation, ensuring a focused mechanism for capturing relations between

tracklets. An overview of the proposed method is presented in Figure 4.3.

Reversed Tracklets: Since our goal is to match tracklets with similar motion pat-

terns, obtaining similar embeddings for tracklets belonging to the same target is not

straightforward. This is due to the tracklets’ nature of existing in different temporal

positions and the varying size of their bounding boxes in the image plane as they move

closer to or farther away from the camera. In our bipartite formulation, to simplify

the model’s task, we flip the positions of the tracklets on the right side of the bipartite

graph. This intuitively allows the model to perceive those tracklets as moving towards

each other, rather than moving further apart.

Masked Self-Attention: In the tracking-by-detection paradigm, due to detection er-

rors or severe occlusions, some detections may be missing, resulting in empty posi-

tions within formed tracklets. It is important to note that the length of each track-

let remains consistent within the same hierarchy level. Starting from a length one

tracklet, subsequent hierarchies see an increase in tracklet length in powers of two.

Consequently, certain positions within formed tracklets may be empty, which we fill

with zeros to maintain consistent sequence length. However, including these empty

positions in self-attention can negatively impact motion modeling. To address this,

we employ a masked self-attention strategy to prevent attending towards the empty

tokens.

Weight Sharing: In our architecture, all weights of the Transformer and GNN en-

coder are shared across all hierarchy levels to reduce the number of learnable param-

eters of the model. At the lower levels of the hierarchy, detections that are closer

45

in time are merged for short-term tracking, while at higher levels, tracklets spanning

longer temporal ranges are merged for long-term tracking. To enable the model to

distinguish between short and long-term tracking scenarios, learnable interaction to-

kens are different for each hierarchy l, as shown in Figure 4.2. This differentiation

injects the information about the hierarchy level at which the model operates.

4.3.2 GNN Model

In a GNN model, a message passing framework is employed, wherein the features of

nodes, denoted as v, and edges, denoted as e, are updated in each message passing

phase based on the graph connectivity. The formulation for these updates can be

expressed as follows

v̂i = fn

([∑
j∈Ni

αijeij||vi
])

êij = gn

([
eij||vj − vi

]) (4.1)

where gn and fn update functions parametrized by one-layer MLPs, Ni is the neigh-

bors of node i. This GNN formulation is a variant of Graph Attention Networks [3].

The attention coefficients are calculated as follows.

αij =

exp

(
aT

(
σ(Wvi −Wvj)

))
∑

k∈N (i) exp

(
aT

(
σ(Wvi −Wvk)

)) (4.2)

The rationale behind the utilization of the differences between pair of node features

in both attention calculation and message calculation, presented in Equations 4.1 and

4.2, is based on findings from previous works, and theoretical foundation is indicated

in Appendix B.1. In [63], it is demonstrated that employing edge update functions,

as described in Equation 4.1, provides the model with a partial translation-invariance

property. This property serves as an effective geometric prior, enabling the model to

consider local patch geometry while retaining global shape information. Additionally,

46

Figure 4.4: Appearance-based similarity calculation.

in the MOT literature, Rangesh et al. [58] showed that incorporating the difference

of node features in the message calculation, as illustrated in Equation 4.1, leads to a

substantial increase in tracker performance in their design. Hence, we opted with a

similar message computation formulation.

4.3.3 Tracklet Association

After propagating information between each position and different tracklets in the

scene, the embeddings of each tracklet are formed in the interaction tokens. These

embeddings effectively capture high-level features, facilitating both motion informa-

tion and awareness of the social interactions. To compute the positional similarities

of distinct tracklets along each edge of the bipartite graph, the nodes connected by

that edge subtracted and fed into a Multi-Layer Perceptron (MLP) with a sigmoid

activation.

pposij = MLP ([eij||vi − vj])

This process produces the likelihood of connected tracklets belonging to the same

target. However, when severe occlusion occurs in the scene, relying solely on motion

information may not be sufficient; hence, visual cues must also be utilized. Currently,

our model does not incorporate visual cues directly. Instead, we obtain them from a

pre-trained Re-Identification (Re-ID) network, similar to the approach described in

[14]. Without further training, we calculate the cosine distance between the visual

47

embeddings as shown in Figure 4.4, hi ∈ Rdh , of pairs of tracklets,

pvisij =
< hi · hj >

||hi|| ||hj||

To account for both motion and visual cues, we compute the weighted sum of these

two similarities, as below:

pij = λ · pvisij + (1− λ) · pposij
(4.3)

After calculating the similarity measures between every pair of nodes in a bipartite

graph, a greedy matching strategy is utilized, prioritizing the highest probabilities of

matches. The entire model can be trained using the Binary Cross Entropy loss, which

aims to maximize the similarity between pairs of nodes belonging to the same target

4.4 Experiments

Dataset: The proposed method is tested on MOT17 [64] public benchmark. MOT17

contains 7 training sequences and 7 test sequences. The videos were captured by sta-

tionary cameras mounted in high-density scenes with heavy occlusion. Only pedes-

trians are annotated and evaluated. The video frame rate is 25-30 FPS. The MOT

dataset does not provide an official validation split. For ablation experiments, we re-

serve 5 training sequence for training and 2 of them for validation. Our main results

are reported on the test set.

It is important to understand the performance metrics of the MOT research, as it is not

straight forward to measure the quality of a tracker with a single score. Our results are

given in MOTA, IDF1 and HOTA metrics, and they are defined in the Appendix-C.

Implementation Details: Our implementation is based on SUSHI [9] model. For

our ReID feature extractor we use a pretrained ResNet50-IBN following [41], and

this ReID model is not further trained. Following [9], all hierarchy levels are trained

jointly with a learning rate 3 · 10−4, ADAM optimizer [65] is used.

48

We construct hierarchies spanning a maximum temporal edge distance of 128 frames.

Our hierarchy consists of seven levels, each processing sub-clips of 2, 4, 8, 16, 32,

64 and 128 frames, respectively. For each graph, following [9] we connect each node

to its top 10 nearest neighbors based on geometry, appearance, and motion similarity.

We process entire videos by feeding overlapping clips of 128 frames to our method in

a sliding window fashion. We then merge per-clip tracks into trajectories of arbitrary

length with a simple stitching scheme, similarly to [8]. During inference, we fill

trajectory gaps by linear interpolation similar to [9].

4.4.1 Ablation Studies

We first ablate the two main aspects of our design: one is the bidirectional information

propagation and the heuristic choices that we follow in our design. The second aspect

is the effect of the number of joint Transformer GNN encoder layers. In the first

ablation study, we compare our full model with five baselines.

Appearance Only performs matching in a hierarchical manner by utilizing only the

cosine distance between pre-trained Re-ID visual features, without any training or

fine-tuning.

Without Transformer does not utilize bi-directional tracklet embedding; it exclu-

sively employs the GNN model for making optimal associations. While it shares

similarities with the SUSHI model, no fine-tuning of hyper-parameters is conducted.

Moreover, our GNN model differs from the SUSHI model.

Without Masked-attention does not employ any masking on self-attention calcula-

tion in the Transformer encoder. At certain timestamps, due to missing detections or

occlusions, some positions might be absent. We zero-fill those positions, however, we

do not prevent the model to attend those zero-filled positions in self-attention layer in

Tr-GNN.

Without Reversed-tracklet, in the bipartite graph, tracklets located on the right side

are not reversed along their temporal axis.

Without Appearance, does not utilize appearance based similarity scores in tracklet

association. The parameter λ in Equation 4.3 is set to zero. So the associations are

performed with only positional ques processed by our model Tr-GNN.

49

Table 4.1: Ablation of the single parts of our method in MOT17 validation set.

HOTA↑ IDF1↑ MOTA↑

Appearance Only 67.63 68.84 87.27

w/o Transformer 86.3 92.4 96.7

w/o Masked-attention 87.93 94.93 97.51

w/o Reversed-tracklet 89.07 96.72 97.68

w/o Appearance 89.32 96.85 98.08

Tr-GNN (ours) 89.61 97.25 98.00

Table 4.1 presents the results of our ablation experiments. Based on the results tab-

ulated in this table, the proposed full Tr-GNN model significantly outperforms over

the baselines across all metrics. The importance of bidirectional tracklet embedding

in data association is clearly highlighted by the results, showcasing an approximate

3% enhancement in both HOTA and IDF1 scores. Additionally, attending to empty

position tokens hinders the model’s performance by potentially introducing noisy em-

beddings. Furthermore, although the impact of reversed tracklets may be subtle, it still

contributes to improved results without any additional computational overhead. Our

model effectively captures target motion characteristics, performing just 0.3% worse

when relying solely on positional features, showcasing its robustness.

Table 4.2: Ablation of the number of Transformer-GNN layers

Number of Layers

1 2 3 4 5 6

HOTA↑ 88.68 89.11 89.61 89.35 89.36 89.37

IDF1↑ 96.01 96.64 97.25 97.11 97.08 97.10

MOTA↑ 97.78 97.87 98.00 97.96 97.84 98.02

In the second ablation study, we analyze the effect of the number of joint Transformer-

GNN encoder layers. By iteratively applying the joint encoder, our model facilitates

more bi-directional information propagation between two modalities. Increasing the

50

bi-directional information propagation improves results up to a certain point and the

best results are achieved when the number of layers is equal to three as shown in Table

4.2. However, increasing number of layers also drastically increases the number of

learnable parameters which leads to degradation in performance. This result is due to

insufficient training data to effectively train large Transformer-GNN encoders.

4.4.2 Benchmark Results

We compare Tr-GNN to the current state-of-the-art results in MOT17 under the pri-

vate detection setting, where, instead of using publicly available detections provided

by the challenge, we opted to use a more advanced object detector [17] to obtain the

detections, following the approach outlined in [14].

Table 4.3: Test set results on MOT17 benchmark on private detections. The SUSHI

model published their results with varying maximum temporal edge distances. In

SUSHI† and SUSHI, the maximum temporal edge distances are 150 and 512, respec-

tively.

Method IDF1↑ HOTA↑ MOTA↑ IDSW↓

QDTrack [46] 66.3 53.9 68.7 3378

MeMOT[66] 69.0 56.9 72.3 2724

GTR [15] 71.5 59.1 75.3 2859

FairMOT [42] 72.3 59.3 73.7 3303

GHOST [22] 77.1 62.8 78.7 2325

ByteTrack [14] 77.3 63.1 80.3 2363

FCG [16] 77.7 62.6 76.7 1737

MotionTrack[53] 80.1 65.1 81.1 1140

Deep OCSORT [67] 80.6 64.9 79.4 1023

UMCTrack [39] 81.0 65.7 80.6 1689

SUSHI† [9] 80.5 65.2 80.7 1335

SUSHI [9] 83.1 66.5 81.1 1149

Tr-GNN (ours) 80.8 65.4 80.5 1347

51

Table 4.3 presents the benchmark results of Tr-GNN, as well as other state-of-the-art

approaches. Since the aim of our method is to establish correct data associations,

the primary metric for us is the IDF1. Our work produces results on par with the

state-of-the-art methods. When comparing our results to those of our base method,

SUSHI† , we observe improvements in IDF1 and HOTA metrics, particularly when

the maximum temporal edge distances are comparable. Specifically, with a maximum

temporal edge distance of 150 for the SUSHI model, we outperform their results with

our own maximum temporal edge distance set to 128. However, it’s worth noting

that SUSHI performs better when their maximum temporal distance is set to 512.

Unfortunately, we were unable to train our model with such a high temporal distance

due to computational constraints.

Figure 4.5: Results of visualizations of selected tracking examples. Blue lines indi-

cates the query tracklet, red lines indicate the rejected matches, green line indicates

the matched tracklet by the model.

In Figure 4.5, we present a visualization of our model’s operation. Specifically, we

illustrate the scenario where a query tracklet (depicted in blue) exists in time frames

t to t + τ , and we aim to predict its corresponding tracklet in time frames t + τ to

t + 2τ . Matched tracklets in future frames are represented in green, while tracklets

connected to the blue tracklet in the bipartite graph but not matched by the model are

shown in red.

52

4.5 Discussion

In this chapter, we introduced Tr-GNN, a joint Transformer-GNN encoder architec-

ture designed for multi-object tracking. Inspired by recent works such as SUSHI,

our model adopts a hierarchical approach and incorporates a novel joint Transformer

and GNN encoder to effectively capture both motion and social interactions among

tracklets. Through comprehensive ablation studies, we demonstrated the importance

of bidirectional motion modeling, masked self-attention, and the reversal of tracklets

in enhancing overall tracking performance. A key strength of our approach lies in

its capability to model intricate interactions between objects, enabling more accurate

data association even in challenging scenarios characterized by heavy occlusions or

crowded environments. By simultaneously learning motion patterns and social inter-

actions, Tr-GNN achieves performance on par with state-of-the-art methods on the

MOT17 benchmark, demonstrating competitive efficacy.

However, there are notable limitations and potential areas for future improvement

that warrant consideration. For instance, our reliance on pre-trained Re-Identification

(Re-ID) features for visual information may limit the model’s ability to fully exploit

available visual cues in the data. Incorporating a dedicated visual feature extractor

trained jointly with the tracking model could potentially enhance performance in this

regard. Additionally, the computational complexity associated with the joint Trans-

former and GNN encoder may pose challenges in scaling the model to larger datasets

or longer temporal sequences.

In conclusion, Tr-GNN represents a significant advancement in multi-object tracking,

leveraging hierarchical modeling and joint Transformer-GNN encoders to effectively

capture both motion and social interactions among objects. While the model achieves

competitive performance on benchmark datasets, incorporating richer visual infor-

mation and developing efficient pre-training strategies for transformer layers hold

promise for further improving its efficacy and applicability in real-world scenarios.

53

54

CHAPTER 5

CONCLUSION

5.1 Summary

In this thesis, we have addressed the problem of multi-object tracking using an offline

method based on the tracking-by-detection paradigm. To represent the regular inter-

connections among detections in each frame, we have leveraged graph representation,

as graphs offer high flexibility in representing entities and their relations. Specifically,

we have utilized recent advancements in graph representation learning to propagate

information between different entities and extract high-level, more complex features.

We first explored the fundamental concepts and recent advancements in graph repre-

sentation learning. We began by reviewing GNN architectures in MPNN framework

which offer a flexible formulation for incorporating both node and edge features.

We reviewed prominent models such as GCN, GAT, and GraphSAGE, each offer-

ing unique approaches to information propagation and feature aggregation. In the

same chapter, we drew an analogy between the renowned Transformer architecture

and GNNs, demonstrating that Transformers are a special type of GNNs where the

underlying graph is fully connected. To this end, we reviewed Graph Representation

Learning from various point of views.

Next, a comprehensive overview of multi-object tracking is provided in the thesis.

MOT is a crucial field in computer vision with applications ranging from autonomous

driving to surveillance systems. The chapter reviews various approaches used in

MOT research, starting from general methods and progressing to the utilization of

deep learning architectures. It discusses how motion and appearance ques are learned

and utilized in MOT. Particularly in offline tracking, we focus on graph-based meth-

55

ods. These graph-based approaches offer enhanced performance compared to online

frame-by-frame methods by minimizing association costs globally. By leveraging

advancements in graph representation learning, these methods utilize deep networks

not only for feature extraction but also for data association and modeling relationships

between targets. Additionally, these models are predominantly end-to-end trainable,

eliminating the need for assumptions or heuristics regarding short and long-term as-

sociations. Graph-based state-of-the-art tracking methods are thoroughly reviewed,

their advantages and shortcomings are stated.

We utilize a joint Transformer-GNN architecture to generate embeddings of the track-

lets, which are subsequently matched hierarchically. Our observations reveal that en-

abling bi-directional information propagation between two modalities significantly

enhances tracking performance. Both motion and social interactions are implicitly

modeled through tracklet embeddings. Experimental results are presented for the

MOT17 dataset, which is specifically curated for the MOT challenge. Notably, par-

ticipants are unable to access annotations for the test sequences, ensuring a fair evalu-

ation environment for testing the developed methods. The dataset encompasses chal-

lenging scenarios including occlusions, camera motion, and similar appearances of

targets. In the challenge, our model ranks 11th among all participants (approximately

200), showcasing its competitive performance in a diverse and complex tracking en-

vironment.

As a concluding remark for this summary, it can be stated that the thesis provides

an extensive review of state-of-the-art techniques addressing the MOT problem. Fur-

thermore, a novel approach is proposed and explored to tackle this challenge. The

experimental results underscore the promising future of graph representation learn-

ing, not only in MOT but also in other data fields characterized by high-dimensional

geometry and irregular structures.

5.2 Conclusions

In the MOT literature, we observed that graph-based methods often overlook the mod-

eling of target motions, which is crucial for long-term tracking. Previous methods

56

either disregard this aspect [8, 57, 9] or devise overly complex architectures [56, 7]

and training schemes that deviate from the primary objective. In this thesis, our aim

is to address this limitation by incorporating motion modeling through tracklet em-

bedding, inspired by the recent successes of language models in handling sequential

data. Additionally, to leverage the inherent symmetries in tracking data, we opted to

utilize a graph structure and exploit advancements in Graph Representation Learning.

The novel contribution of our method lies in effectively combining these two archi-

tectures to tackle the challenges of multi-object tracking. Specifically, we propose a

bi-directional information propagation scheme between two modalities, enabling mo-

tion modeling through a Transformer encoder to be informed by social interactions

among targets, and vice versa.

Our experimental results demonstrate advancements in identity preservation of trac-

ked targets through our proposed Tr-GNN method. Through comprehensive ablation

studies, we elucidate the usefulness of critical components of our approach, high-

lighting the pivotal role of bidirectional tracklet embedding. This is evidenced by

an approximate 3% increase in both the HOTA and IDF1 scores, validating the effec-

tiveness of utilizing bi-directional information propagation between motion and social

interaction modeling. Furthermore, we identify the optimal number of Transformer-

GNN layers crucial for achieving superior tracking accuracy.

Moreover, our method demonstrates competitive performance when compared to

state-of-the-art approaches on the MOT17 benchmark, particularly excelling in the

IDF1 metric. In IDF1 metric, our method achieves a score of 80.8%, surpassing the

score of 80.5% achieved by the SUSHI† method, which our implementation is based

on. This improvement is notable given comparable maximum temporal edge dis-

tances (ours: 128, theirs: 150), underscoring the efficacy of our approach in handling

complex tracking scenarios characterized by heavy occlusion and crowded scenes.

However, it is worth noting that the full model of SUSHI, operating with a maxi-

mum temporal length of 512, currently stands as the state-of-the-art method among

all MOT trackers. Despite our attempts to increase our maximum temporal length, the

use of a transformer encoder for every tracklet presented computational constraints,

preventing us from training the model as desired.

57

Nevertheless, our experimental findings underscore the significance of our proposed

Tr-GNN method, performing on par with state-of-the-art methods. In future research,

we believe our approach could be further enhanced, especially by pre-training the

transformer encoder with fragmented trajectories from various MOT datasets, akin

to recent advancements in language models. For instance, in [68], authors demon-

strate that the bidirectional language-knowledge model proposed in [11] significantly

improves over baselines in the NLP domain when used in pre-training. A similar

approach could be adopted in multi-object tracking to achieve a better-performing

tracker.

As a final conclusion, this thesis provides experimental validation of the effectiveness

of recent learnable deep neural network models and their interactions in addressing

the challenges of multi-object tracking

58

REFERENCES

[1] M. M. Bronstein, J. Bruna, T. Cohen, and P. Veličković, “Geometric deep

learning: Grids, groups, graphs, geodesics, and gauges,” arXiv preprint

arXiv:2104.13478, 2021.

[2] T. N. Kipf and M. Welling, “Semi-supervised classification with graph convo-

lutional networks,” in International Conference on Learning Representations,

2017.

[3] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio,

“Graph attention networks,” in International Conference on Learning Repre-

sentations, 2018.

[4] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,

L. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances in Neural

Information Processing Systems, vol. 30, 2017.

[5] N. Aharon, R. Orfaig, and B.-Z. Bobrovsky, “Bot-sort: Robust associations

multi-pedestrian tracking,” arXiv preprint arXiv:2206.14651, 2022.

[6] C. Olah, “Understanding lstm networks,” 2015. https://colah.github.

io/posts/2015-08-Understanding-LSTMs/.

[7] G. Wang, R. Gu, Z. Liu, W. Hu, M. Song, and J.-N. Hwang, “Track without

appearance: Learn box and tracklet embedding with local and global motion

patterns for vehicle tracking,” in 2021 IEEE/CVF International Conference on

Computer Vision (ICCV), pp. 9856–9866, 2021.

[8] G. Brasó and L. Leal-Taixé, “Learning a neural solver for multiple object track-

ing,” in The IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), June 2020.

[9] O. Cetintas, G. Braso, and L. Leal-Taixe, “Unifying short and long-term tracking

59

https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

with graph hierarchies,” in IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), March 2023.

[10] A. Wood, “W3c working group note 24 june 2014,” 2014. https://www.

w3.org/TR/rdf11-primer/.

[11] X. Zhang, A. Bosselut, M. Yasunaga, H. Ren, P. Liang, C. D. Manning, and

J. Leskovec, “GreaseLM: Graph REASoning enhanced language models,” in

International Conference on Learning Representations, 2022.

[12] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation learning on

large graphs,” in Advances in Neural Information Processing Systems (I. Guyon,

U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-

nett, eds.), vol. 30, Curran Associates, Inc., 2017.

[13] L. Leal-Taixé, C. Canton-Ferrer, and K. Schindler, “Learning by tracking:

Siamese cnn for robust target association,” in 2016 IEEE Conference on Com-

puter Vision and Pattern Recognition Workshops (CVPRW), pp. 418–425, 2016.

[14] Y. Zhang, P. Sun, Y. Jiang, D. Yu, F. Weng, Z. Yuan, P. Luo, W. Liu, and

X. Wang, “Bytetrack: Multi-object tracking by associating every detection box,”

in Computer Vision – ECCV 2022: 17th European Conference, Tel Aviv, Israel,

October 23–27, 2022, Proceedings, Part XXII, (Berlin, Heidelberg), p. 1–21,

Springer-Verlag, 2022.

[15] X. Zhou, T. Yin, V. Koltun, and P. Krähenbühl, “Global tracking transformers,”

in 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition

(CVPR), pp. 8761–8770, 2022.

[16] A. Girbau, F. Marqués, and S. Satoh, “Multiple object tracking from appear-

ance by hierarchically clustering tracklets,” in In 33rd British Machine Vision

Conference, 2022.

[17] Z. Ge, S. Liu, F. Wang, Z. Li, and J. Sun, “Yolox: Exceeding yolo series in

2021,” arXiv preprint arXiv:2107.08430, 2021.

[18] A. Bewley, Z. Ge, L. Ott, F. Ramos, and B. Upcroft, “Simple online and realtime

tracking,” in 2016 IEEE International Conference on Image Processing (ICIP),

IEEE, Sept. 2016.

60

https://www.w3.org/TR/rdf11-primer/
https://www.w3.org/TR/rdf11-primer/

[19] J. Cao, J. Pang, X. Weng, R. Khirodkar, and K. Kitani, “Observation-centric

sort: Rethinking sort for robust multi-object tracking,” in 2023 IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition (CVPR), pp. 9686–9696,

2023.

[20] N. Wojke, A. Bewley, and D. Paulus, “Simple online and realtime tracking with

a deep association metric,” in 2017 IEEE International Conference on Image

Processing (ICIP), pp. 3645–3649, 2017.

[21] Y.-H. Wang, J.-W. Hsieh, P.-Y. Chen, M.-C. Chang, H.-H. So, and X. Li, “Smile-

track: Similarity learning for occlusion-aware multiple object tracking,” in AAAI

Conference on Artificial Intelligence, pp. 5740–5748, Mar. 2024.

[22] J. Seidenschwarz, G. Brasó, V. C. Serrano, I. Elezi, and L. Leal-Taixé, “Simple

cues lead to a strong multi-object tracker,” in 2023 IEEE/CVF Conference on

Computer Vision and Pattern Recognition (CVPR), pp. 13813–13823, 2023.

[23] L. Zhang, Y. Li, and R. Nevatia, “Global data association for multi-object track-

ing using network flows,” in 2008 IEEE Conference on Computer Vision and

Pattern Recognition, pp. 1–8, 2008.

[24] L. Leal-Taixé, G. Pons-Moll, and B. Rosenhahn, “Everybody needs somebody:

Modeling social and grouping behavior on a linear programming multiple peo-

ple tracker,” in 2011 IEEE International Conference on Computer Vision Work-

shops (ICCV Workshops), pp. 120–127, 2011.

[25] P. Bergmann, T. Meinhardt, and L. Leal-Taixe, “Tracking without bells and

whistles,” in 2019 IEEE/CVF International Conference on Computer Vision

(ICCV), IEEE, Oct. 2019.

[26] X. Zhou, V. Koltun, and P. Krähenbühl, “Tracking objects as points,” in Com-

puter Vision – ECCV 2020: 16th European Conference, Glasgow, UK, August

23–28, 2020, Proceedings, Part IV, p. 474–490, 2020.

[27] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl, “Neural

message passing for quantum chemistry,” in Proceedings of the 34th Interna-

tional Conference on Machine Learning - Volume 70, ICML’17, p. 1263–1272,

JMLR.org, 2017.

61

[28] P. W. Battaglia, J. B. Hamrick, V. Bapst, A. Sanchez-Gonzalez, V. Zambaldi,

M. Malinowski, A. Tacchetti, D. Raposo, A. Santoro, R. Faulkner, C. Gul-

cehre, F. Song, A. Ballard, J. Gilmer, G. Dahl, A. Vaswani, K. Allen, C. Nash,

V. Langston, C. Dyer, N. Heess, D. Wierstra, P. Kohli, M. Botvinick, O. Vinyals,

Y. Li, and R. Pascanu, “Relational inductive biases, deep learning, and graph

networks,” 2018.

[29] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by jointly

learning to align and translate,” in International Conference on Learning Rep-

resentations, 2015.

[30] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Un-

terthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and

N. Houlsby, “An image is worth 16x16 words: Transformers for image recogni-

tion at scale,” in International Conference on Learning Representations, 2021.

[31] T. Meinhardt, A. Kirillov, L. Leal-Taixé, and C. Feichtenhofer, “Trackformer:

Multi-object tracking with transformers,” in 2022 IEEE/CVF Conference on

Computer Vision and Pattern Recognition (CVPR), pp. 8834–8844, 2022.

[32] Y. Jiang, S. Chang, and Z. Wang, “Transgan: Two pure transformers can make

one strong gan, and that can scale up,” in Advances in Neural Information Pro-

cessing Systems (M. Ranzato, A. Beygelzimer, Y. Dauphin, P. Liang, and J. W.

Vaughan, eds.), vol. 34, pp. 14745–14758, Curran Associates, Inc., 2021.

[33] N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and S. Zagoruyko,

“End-to-end object detection with transformers,” in Computer Vision – ECCV

2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceed-

ings, Part I, (Berlin, Heidelberg), p. 213–229, Springer-Verlag, 2020.

[34] S. Brody, U. Alon, and E. Yahav, “How attentive are graph attention networks?,”

in International Conference on Learning Representations, 2022.

[35] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sas-

try, A. Askell, P. Mishkin, J. Clark, G. Krueger, and I. Sutskever, “Learning

transferable visual models from natural language supervision,” in International

Conference on Machine Learning, vol. 139, pp. 8748–8763, July 2021.

62

[36] J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,” arXiv preprint

arXiv:1607.06450, 2016.

[37] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with

deep convolutional neural networks,” in Advances in Neural Information Pro-

cessing Systems, vol. 25, 2012.

[38] Y. Du, Z. Zhao, Y. Song, Y. Zhao, F. Su, T. Gong, and H. Meng, “Strong-

sort: Make deepsort great again,” IEEE Transactions on Multimedia, vol. 25,

pp. 8725–8737, 2023.

[39] K. Yi, K. Luo, X. Luo, J. Huang, H. Wu, R. Hu, and W. Hao, “Ucmctrack:

Multi-object tracking with uniform camera motion compensation,” Proceedings

of the AAAI Conference on Artificial Intelligence, vol. 38, pp. 6702–6710, Mar.

2024.

[40] G. Bhat, M. Danelljan, L. Van Gool, and R. Timofte, “Learning discrimina-

tive model prediction for tracking,” in IEEE/CVF International Conference on

Computer Vision (ICCV), pp. 6181–6190, 2019.

[41] P. Dai, R. Weng, W. Choi, C. Zhang, Z. He, and W. Ding, “Learning a pro-

posal classifier for multiple object tracking,” in 2021 IEEE/CVF Conference on

Computer Vision and Pattern Recognition (CVPR), pp. 2443–2452, 2021.

[42] Y. Zhang, C. Wang, X. Wang, W. Zeng, and W. Liu, “Fairmot: On the fairness of

detection and re-identification in multiple object tracking,” International Jour-

nal of Computer Vision, vol. 129, pp. 3069–3087, 2021.

[43] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recogni-

tion,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR),

pp. 770–778, 2016.

[44] X. Pan, P. Luo, J. Shi, and X. Tang, “Two at once: Enhancing learning and gen-

eralization capacities via ibn-net,” in Computer Vision – ECCV 2018 (V. Ferrari,

M. Hebert, C. Sminchisescu, and Y. Weiss, eds.), pp. 484–500, Springer Inter-

national Publishing, 2018.

63

[45] J. Pang, L. Qiu, X. Li, H. Chen, Q. Li, T. Darrell, and F. Yu, “Quasi-dense

similarity learning for multiple object tracking,” in IEEE/CVF Conference on

Computer Vision and Pattern Recognition (CVPR), pp. 164–173, 2021.

[46] T. Fischer, T. E. Huang, J. Pang, L. Qiu, H. Chen, T. Darrell, and F. Yu,

“Qdtrack: Quasi-dense similarity learning for appearance-only multiple object

tracking,” IEEE Transactions on Pattern Analysis and Machine Intelligence,

vol. 45, no. 12, pp. 15380–15393, 2023.

[47] W. Li, Y. Xiong, S. Yang, M. Xu, Y. Wang, and W. Xia, “Semi-tcl:

Semi-supervised track contrastive representation learning,” arXiv preprint

arXiv:2107.02396, 2021.

[48] L. Zheng, L. Shen, L. Tian, S. Wang, J. Wang, and Q. Tian, “Scalable person re-

identification: A benchmark,” in IEEE International Conference on Computer

Vision (ICCV), pp. 1116–1124, 2015.

[49] W. Li, R. Zhao, T. Xiao, and X. Wang, “Deepreid: Deep filter pairing neural

network for person re-identification,” in IEEE Conference on Computer Vision

and Pattern Recognition, pp. 152–159, 2014.

[50] A. Milan, S. H. Rezatofighi, A. Dick, I. Reid, and K. Schindler, “Online multi-

target tracking using recurrent neural networks,” in Proceedings of the Thirty-

First AAAI Conference on Artificial Intelligence, AAAI’17, p. 4225–4232, 2017.

[51] A. Sadeghian, A. Alahi, and S. Savarese, “Tracking the untrackable: Learn-

ing to track multiple cues with long-term dependencies,” in IEEE International

Conference on Computer Vision (ICCV), pp. 300–311, 2017.

[52] P. Dendorfer, V. Yugay, A. Ošep, and L. Leal-Taixé, “Quo vadis: Is trajectory

forecasting the key towards long-term multi-object tracking?,” in Conference on

Neural Information Processing Systems, 2022.

[53] Z. Qin, S. Zhou, L. Wang, J. Duan, G. Hua, and W. Tang, “Motiontrack: Learn-

ing robust short-term and long-term motions for multi-object tracking,” in 2023

IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),

pp. 17939–17948, 2023.

64

[54] S. Tang, M. Andriluka, B. Andres, and B. Schiele, “Multiple people tracking

by lifted multicut and person re-identification,” in 2017 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), pp. 3701–3710, 2017.

[55] S. Schulter, P. Vernaza, W. Choi, and M. Chandraker, “Deep network flow for

multi-object tracking,” in IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pp. 2730–2739, 2017.

[56] P. Chu, J. Wang, Q. You, H. Ling, and Z. Liu, “Transmot: Spatial-temporal

graph transformer for multiple object tracking,” in IEEE/CVF Winter Confer-

ence on Applications of Computer Vision (WACV), pp. 4859–4869, 2023.

[57] I. Papakis, A. Sarkar, and A. Karpatne, “Gcnnmatch: Graph convolutional

neural networks for multi-object tracking via sinkhorn normalization,” arXiv

preprint arXiv:2010.00067, 2020.

[58] A. Rangesh, P. Maheshwari, M. Gebre, S. Mhatre, V. Ramezani, and M. M.

Trivedi, “Trackmpnn: A message passing graph neural architecture for multi-

object tracking,” arXiv preprint arXiv:2010.00067, 2021.

[59] L. He, X. Liao, W. Liu, X. Liu, P. Cheng, and T. Mei, “Fastreid: A pytorch

toolbox for general instance re-identification,” in Proceedings of the 31st ACM

International Conference on Multimedia, MM ’23, (New York, NY, USA),

p. 9664–9667, Association for Computing Machinery, 2023.

[60] A. C. Aras, T. Alikaşifoğlu, and A. Koç, “Graph receptive transformer encoder

for text classification,” IEEE Transactions on Signal and Information Process-

ing over Networks, vol. 10, pp. 347–359, 2024.

[61] Y. Lin, Y. Meng, X. Sun, Q. Han, K. Kuang, J. Li, and F. Wu, “BertGCN:

Transductive text classification by combining GNN and BERT,” in Findings of

the Association for Computational Linguistics: ACL-IJCNLP 2021, (Online),

pp. 1456–1462, Association for Computational Linguistics, Aug. 2021.

[62] X. She, J. Chen, and G. Chen, “Joint learning with bert-gcn and multi-attention

for event text classification and event assignment,” IEEE Access, vol. 10,

pp. 27031–27040, 2022.

65

[63] Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and J. M. Solomon, “Dy-

namic graph cnn for learning on point clouds,” ACM Transactions on Graphics

(TOG), 2019.

[64] A. Milan, L. Leal-Taixé, I. Reid, S. Roth, and K. Schindler, “Mot16: A bench-

mark for multi-object tracking,” arXiv preprint arXiv:1603.00831, 2016.

[65] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in In-

ternational Conference on Learning Representations (ICLR), (San Diega, CA,

USA), 2015.

[66] J. Cai, M. Xu, W. Li, Y. Xiong, W. Xia, Z. Tu, and S. Soatto, “Memot: Multi-

object tracking with memory,” 2022.

[67] G. Maggiolino, A. Ahmad, J. Cao, and K. Kitani, “Deep oc-sort: Multi-

pedestrian tracking by adaptive re-identification,” in 2023 IEEE International

Conference on Image Processing (ICIP), pp. 3025–3029, 2023.

[68] M. Yasunaga, A. Bosselut, H. Ren, X. Zhang, C. D. Manning, P. Liang, and

J. Leskovec, “Deep bidirectional language-knowledge graph pretraining,” in

Neural Information Processing Systems (NeurIPS), 2022.

[69] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Vandergheynst, “The

emerging field of signal processing on graphs: Extending high-dimensional

data analysis to networks and other irregular domains,” IEEE Signal Process-

ing Magazine, vol. 30, p. 83–98, May 2013.

[70] F. Monti, D. Boscaini, J. Masci, E. Rodolà, J. Svoboda, and M. M. Bronstein,

“Geometric deep learning on graphs and manifolds using mixture model cnns,”

in 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),

pp. 5425–5434, 2017.

[71] D. K. Hammond, P. Vandergheynst, and R. Gribonval, “Wavelets on graphs

via spectral graph theory,” in Applied and Computational Harmonic Analysis,

pp. 129–150, 2011.

[72] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun, “Spectral networks and locally

connected networks on graphs,” in 2nd International Conference on Learning

66

Representations, Banff, AB, Canada, April 14-16, 2014, Conference Track Pro-

ceedings (Y. Bengio and Y. LeCun, eds.), 2014.

[73] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural net-

works on graphs with fast localized spectral filtering,” in Proceedings of the 30th

International Conference on Neural Information Processing Systems, NIPS’16,

(Red Hook, NY, USA), p. 3844–3852, Curran Associates Inc., 2016.

[74] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst, “Geo-

metric deep learning: Going beyond euclidean data,” IEEE Signal Processing

Magazine, vol. 34, no. 4, pp. 18–42, 2017.

[75] K. Bernardin and R. Stiefelhagen, “Evaluating multiple object tracking perfor-

mance: The clear mot metrics,” EURASIP Journal on Image and Video Process-

ing, vol. 2008, no. 1, p. 246309, 2008.

[76] J. Luiten, A. Osep, P. Dendorfer, P. Torr, A. Geiger, L. Leal-Taixe, and B. Leibe,

“Hota: A higher order metric for evaluating multi-object tracking,” Interna-

tional Journal of Computer Vision, vol. 129, p. 548–578, Oct. 2020.

[77] J. Luiten, “How to evaluate tracking with the hota metrics,” 2021.

https://jonathonluiten.medium.com/how-to-evaluate-tracking-with-the-hota-

metrics-754036d183e1.

67

68

APPENDIX A

REVIEW OF SPECTRAL AND SPATIAL GRAPH THEORY

A.1 Spectral Graph Theory

In this appendix, we will review the graph spectral domain by drawing an analogy

between the classical frequency domain in signal processing. Classical signal pro-

cessing techniques cannot be directly applied here due to the irregular structure of the

graph domain [69], so we will define the Fourier transform and frequency notion in

the graph spectral domain.

Consider an undirected, weighted graph G = (V , E ,W) which consists of a finite set

of vertices V := {1, ..., n}, a set of edges (i, j) ∈ E(G) and represented by adjacency

matrix W = (wij) where wij = 0 if (i, j) /∈ E(G) and wij > 0 if (i, j) ∈ E(G). The

(unnormalized) graph Laplacian is defined as

L := D −W (A.1)

D is the degree matrix; it is a diagonal matrix where the diagonal element Dii =∑
j∈N(i) wij which is the sum of the weights of all the edges incident to vertex i.

The graph Laplacian is a symmetric, positive semi-definite matrix; thus it is always

diagonalizable,

L = ΦTΛΦ (A.2)

In the eigendecomposition of the Laplacian, Φ = {ϕ1, ..., ϕn} are the eigenvectors

and they form an orthonormal set, Λ = diag(λ1, ...λn) is the diagonal matrix of

corresponding eigenvalues. The eigenvectors play the role of Fourier basis in classical

69

signal processing and the eigenvalues can be interpreted as frequencies [70]. Let a

signal f = {f1, ..., fn|fi ∈ Rd} is defined on the vertices of the graph.

f =
n∑

k=1

< ϕk, f > ϕk

=
n∑

k=1

f̂kϕk

= Φf̂︸︷︷︸
F−1(f̂)

(A.3)

Equation (A.3) shows the decomposition of function f with Fourier functions [71].

Thus the Fourier transform is defined on the graph as ΦT f . Given two signals f ,g

on graph, their convolution is equivalent to the element-wise multiplication of their

Fourier transforms.

f ⊛ g = Φ
(
(ΦT f)⊙ (ΦTg)

)
(A.4)

Hence Equation (A.4) defines the convolution theorem on the graph domain so that

operators like filtering on the graph can be defined.

A.2 Spectral Graph Neural Networks

Spectral CNN [72]

The spectral filters introduced in Appendix A.1 can be learned through backpropa-

gation. The pioneering work by Bruna et al. [72] introduced the concept of learning

spectral filters on graphs, termed as Spectral Graph Neural Networks. This work is

the generalization of CNNs to signals defined on more general domain such as graphs.

Spectral convolution layer is defined as,

foutj =
d∑

i=1

ΦkGj,iΦ
T
k f

in
i (A.5)

70

Figure A.1: Cubic splines.

Equation A.5, Fin ∈ Rn×d = (f in1 |...|f ind) represents a d-dimensional input signal,

and Fout ∈ Rn×d′ = (fout1|...|foutd′) represents a d′-dimensional output signal de-

fined on the graph. Φk represents the first k eigenvectors of the graph Laplacian, and

Gj, i is a k×k diagonal matrix of spectral learnable filters. With this formulation, the

convolution is performed in the frequency domain, enabling filters similar to those in

CNNs to be established in the graph domain. However, this formulation has some

drawbacks: (i) the filters are dependent on the Fourier basis of the graph Laplacian,

and (ii) there is no guarantee that those filters defined in the frequency domain are

localized in the spatial domain, since they are learnable and arbitrary.

To address the latter issue, the authors [72] enforced smooth spectral filters such that,

according to Parseval’s Identity, smoothness in the frequency domain corresponds to

localization in the spatial domain. This approach allows for the learning of filters that

are shared across locations but also well localized in the original graph domain. They

used parametric filters of the form,

gi =
r∑

l=1

αlβl(λi) (A.6)

In Equation A.6, βl(λ) represents the fixed cubic spline kernels as shown in Figure

A.1, and αl’s are the interpolation coefficients. Therefore, in each layer of the spec-

tral convolution, it is sufficient to learn r interpolation coefficients for each filter.

Enforcing smoothness in the frequency domain and reducing the number of learnable

parameters to r, independent of the input size |V|, the number of vertices, is achieved

through this approach.

71

Figure A.2: Example of 1-hop and 2-hop neighborhoods [12].

ChebNet [73]

The spectral graph convolution operation tends to be computationally expensive be-

cause it necessitates eigendecomposition, resulting in a complexity that scales quad-

ratically in the number of vertices |V|. Defferrard et. al. [73] proposed a method that

constructs filters directly on the Laplacian matrix which does not require the explicit

computation of the Laplacian eigenvectors by using recurrent Chebyshev polynomi-

als. This approach not only accelerates the convolution operation but also ensures that

the filters are precisely localized in the k-hop neighborhood. This is due to the fact

that the Laplacian is a local operator that only affects the 1-hop neighborhood of the

graph. Leveraging the advantageous property of the graph Laplacian, the application

of n powers of the graph Laplacian extends the influence to n-hop neighborhoods.

A.3 Spatial Graph Neural Networks

Spectral GNN methods have a significant drawback: they are inherently transductive;

learned spectral features on one graph cannot be trivially applied to another graph,

since they directly apply filters to the graph Laplacian or utilize the graph dependent

Fourier basis. Given that the same graph can be represented through permutations of

its nodes, numerous isomorphic graph representations exist even for a single graph.

To address these limitations hindering the generalizability of the model, researchers

have pursued the implementation of spatial filters instead of localized spectral filters.

This adaptation aims to enhance GNN models, enabling them to better generalize

to unseen graphs. The seminal paper by Kipf and Welling [2] employs the first-

72

order approximation of localized spectral filters on graphs [73]. This approximation

confines the convolutional filters to be localized within 1-hop neighborhoods. The

authors [2] construct a multi-layer Graph Convolutional Network (GCN) with the

following layer-wise propagation rule:

f (l+1) = σ(D̃− 1
2W̃D̃− 1

2 f (l)g(l)) (A.7)

where W̃ represents the adjacency matrix of the undirected graph with self-loops,

defined as W̃ = W + I . In Equation A.7, Dii signifies
∑

j∈N(i) w̃ij , and g(l) ∈
Rd×k stands as our spatial filter for layer (l), constituting a learnable weight matrix.

Meanwhile, f (l) ∈ RN×d represents the signal or features defined on the graph at layer

(l). The function σ(·) denotes any activation function, such as ReLU or Sigmoid.

In this formulation, the filter parameters are shared across graphs. Successive applica-

tion of this layer-wise propagation k times enables reaching k-hop neighbors, similar

to the receptive field concept in CNNs. An anchor node can gather information from

all of its k-hop neighbors. Thus, by stacking multiple layers, deep GNN models can

be constructed. GCN partially mitigates the inherent transductivity of spectral GNN

methods by not relying directly on the graph Laplacian and instead using localized fil-

ters that operate within the 1-hop neighborhood of each node. This approach lessens

the dependence on eigenbasis and enables the model to be more flexible and adaptable

to varying graph structures.

73

74

APPENDIX B

MOTIVATION OF GEOMETRIC DEEP LEARNING AND RELATION TO

GRAPHS

Geometric Deep Learning (GDL) [74, 1] is a recently emerged field whose main

purpose is to generalize deep learning models to operate on both Euclidean and non-

Euclidean domains. It provides a common mathematical framework to study neural

network models such as CNNs, RNNs, GNNs, and Transformers, while exploiting

the inductive biases inherent in the symmetries of the data.

The inherent symmetries present in deep learning models have been pivotal since

the introduction of convolutional neural networks. These symmetries leverage the

translation equivariance property of the convolution operation, which operates on

a grid. This property not only exploits local correlations within natural image do-

mains but also introduces a localized weight sharing schema to effectively construct

filters. Moreover, the stacking of layers in CNNs establishes hierarchical feature

spaces, transitioning naturally from fine-grained to coarse representations of the do-

main. Additionally, pooling layers in these models introduce translation invariance

within patches, greatly benefiting downstream tasks such as image classification, as

the outcome is independent of the object’s specific position. On the other hand, multi-

layer perceptrons, which can approximate any smooth function according to the uni-

versal approximation theorem, cannot achieve the same performance levels as CNNs

due to the lack of shift-invariance property. Thus, GDL offers a constructive approach

to integrating symmetry priors into neural network architectures, resembling the ap-

proach observed in CNNs.

At this point, it is essential to provide simple definitions to lay the groundwork for an

introductory understanding of GDL. Informally, as per [1], a symmetry of an object

75

or system refers to a transformation that preserves a specific property of that object or

system, keeping it unchanged or invariant. Symmetries are defined within symmetry

groups O, characterized by a binary operation ◦ : O × O → O, satisfying proper-

ties such as Associativity, Identity, Inverse, and Closure for all elements h, l of the

group. For example, in computer vision, object categories exhibit invariance to shifts,

while in social networks, community structures maintain invariance under permuta-

tions of node ordering. Selecting network models that leverage these symmetry priors

is crucial; in CNNs, for instance, the convolution operation is shift-equivariant, thus

incorporating an inductive bias aligned with inherent symmetries.

Hence according to Bronstein [1], considering a data domain Ω, some metric C in the

domain and signal defined on that domain Xj(Ωj, Cj) := {xj : Ωj → Cj} the neural

network architectures can be constructed with simple building blocks defined as,

• Linear O-equivariant Layer B : X (Ω, C) → X (Ω′, C ′) satisfying

B(g.x) = g.B(x) for all g ∈ O and x ∈ X (Ω, C)

• Non-linearity σ : C → C ′ applied element-wise as (σ(x))(u) = σ(x(u))

• Local Pooling P : X (Ω, C) → X (Ω′, C ′)

• O-invariant Layer (global pooling) A : X (Ω, C) → Y satisfying A(g.x) =

A(x) for all g ∈ O and x ∈ X (Ω, C)

Using these blocks allows constructing O − invariant functions f : X (Ω, C) → Y of

the form,

A ◦ σj ◦Bj ◦ Pj−1 ◦ P1 ◦ σ1 ◦B1

By selecting a suitable symmetry group O, one can effectively employ these foun-

dational elements to design neural architectures that closely align with the inherent

inductive biases of the domain Ω.

In our research, we will leverage permutation invariance and other geometric pri-

ors apparent in the underlying data domain, which in this case involves tracking

sequences. As we represent these sequences using graph structures, considerations

extend to both the ordering of nodes and the relative positioning of bounding boxes

across different temporal axes in the image plane.

76

Table B.1: Different choices of architecture, domain and symmetry groups for GDL

[1]

Architecture Domain Ω Symmetry Group O

CNN Grid Translation

Spherical CNN Sphere / SO(3) Rotation SO(3)

GNN Graph Permutation

Transformer Complete Graph Permutation

LSTM 1D Grid Time Warping

Different GDL methods differ in their choice of domain, symmetric group and spe-

cific architectural designs. For widely used and famous neural network architectures,

the design choices can be summarized as in the Table B.1.

In the subsequent section, we will provide an example architecture that is designed

with geometric considerations for point cloud classification and segmentation.

B.1 EdgeConv

The EdgeConv neural network architecture, proposed by Wang et al. [63], is designed

for point cloud classification and segmentation. The primary goal of the EdgeConv

architecture is to construct a model capable of effectively leveraging both local and

global geometric priors inherent in point clouds. The model must maintain permu-

tation invariance, which is essential for handling unordered point clouds. However,

achieving permutation invariance solely by operating on individual points would dis-

regard the local geometric relationships among them. EdgeConv addresses this issue

by capturing local geometric structures while preserving permutation invariance. Fur-

thermore, an important property of the proposed method [63] is translation invariance,

which will be elaborated on later.

To implement EdgeConv, the authors construct a undirected graph G(V , E) with node

features X = {x1, ..., xn}, xi ∈ RF of the point cloud, where each point is con-

nected to its k-nearest neighbors. Importantly, the set of k-nearest neighbors varies

77

from layer to layer, corresponding to dynamic graph construction in each layer. This

adaptive approach allows the model to capture varying degrees of local geometric

information across different layers, enhancing its ability to discern complex patterns

within the point cloud. The message passing equation of the proposed method is

given as,

x′
i = max{hθ(xi||xj − xi)} for j ∈ Nxi

where max is an element-wise maximum in the neighborhood dimension, and || in-

dicates the concatenation, Nxi
is the neighbors of the node xi and hθ is a learnable

function. The author argues that this asymmetric message function explicitly cap-

tures global shape structure with local neighborhood information. This is achieved

by leveraging not only the central node xi but also the relative distances of the neigh-

bors with respect to the central node. Furthermore, the inclusion of relative distances

on the edges (xj − xi) offers a degree of partial translation invariance. Through the

incorporation of such right inductive biases tailored to the underlying data domain,

the model achieves state-of-the-art results in the classification task on point clouds.

The effectiveness of the partial translation-invariance property of message passing

networks in multi-object tracking has also been investigated in a recent paper by

Rangesh et al. [58]. In the ablation studies examining the choice of message func-

tion, it was found that the asymmetric message function significantly outperformed

other alternative. Hence, even though the research is relatively new on constructing

deep learning models considering geometric priors in the underlying data domain, it

is possible to explain such heuristic choices in other studies with GDL. The reason

of making the introduction to GDL in this appendix is because we used a a similar

massage passing operation in our work, as described in Chapter 4.3.2.

78

APPENDIX C

MULTI-OBJECT TRACKING PERFORMANCE METRICS

In this appendix, we provide a detailed explanation of performance metrics commonly

used in multi-object tracking research. Understanding these metrics is essential for

interpreting and assessing the results presented in Chapter 4.

Table C.1: Metric definitions for assessing multi-object tracking performance.

True Positive : Predicted detection matched with ground-truth detection

False Negative : Ground truth detection exists but predicted detection was

missed

False Positive : Predicted detection exists for no ground-truth detection

ID Switch : Tracker wrongfully swaps object identities or when a track

was lost and reinitialised with a different identity

C.1 MOTA

In Multi-Object Tracking Accuracy (MOTA) [75], matching conducted at the detec-

tion level. A bijective (one-to-one) mapping is established between predicted detec-

tions and ground-truth detections in each frame. True Positives (TP), False Negatives

(FN), False Positives (FP), and ID switc-hes (IDSW) are defined in Table C.1.

MOTA = 1− |FN|+ |FP|+ |IDSW|
|gtDets|

(C.1)

MOTA does not include a measure of localization error, and detection performance

79

significantly outweighs association performance, as discussed in [76]

C.2 IDF1

In [76], the importance of IDF1 is emphasized, which prioritizes the accuracy of

associations over detections. IDF1 establishes a one-to-one mapping between ground

truth trajectories and predicted trajectories to determine their presence, unlike MOTA,

which associates them based on object detection at each time step.

IDF1 defines Identity True Positives (IDTPs) as occurrences when a predicted identity

matches a ground truth identity when a similarity threshold (S) is met for a certain per-

centage (α) of trajectories. The metric calculates the ratio of correctly identified de-

tections to the average number of ground truth and predicted detections. Furthermore,

the Hungarian algorithm is employed in IDF1 to select trajectories to be matched,

aiming to minimize the sum of the number of Identity False Positives (IDFP) and

Identity False Negatives (IDFN).

The ID-recall, ID-precision and IDF1 are calculated as follows:

ID− recall =
|IDTP|

|IDTP|+ |IDFN|

ID− precision =
|IDTP|

|IDTP|+ |IDFP|

(C.2)

IDF1 =
|IDTP|

|IDTP|+ 0.5|IDFN|+ 0.5|IDFP| (C.3)

C.3 HOTA

Higher Order Tracking Accuracy (HOTA) [76] is proposed to mitigate the deficien-

cies of mostly used MOTA [75] metric. HOTA provides a single score for tracker

evaluation which fairly combines all different aspects of tracking evaluation, it is the

combination of three IoU scores (detection, association and localization) [77].

80

Localization IoU: measures the spatial alignment (IoU) between a single predicted

detection and a corresponding ground-truth detection. Therefore, the overall local-

ization accuracy is calculated as the average of the Localization IoU scores across all

pairs of matches between predicted and ground-truth detections in the entire dataset.

LocA =
1

|TP|
∑
c∈TP

Loc-IoU(c) (C.4)

Detection IoU: evaluates how well the set of all predicted detections align with

the set of all ground-truth detection. The intersection of predicted and ground-truth

detection should exceed a certain threshold, e.g. Loc-IoU > 0.5. Since it is possible

for a single predicted detection to overlap with multiple ground-truth detections, the

Hungarian algorithm is employed to establish a one-to-one correspondence between

predicted and ground-truth detections. These paired detections, termed True Positives

(TP), represent instances of intersection between the two detection sets. Predicted

detections lacking a corresponding match are categorized as False Positives (FP),

while ground-truth detections without a match are classified as False Negatives (FN).

Consequently, the detection IoU is computed as follows,

Det-IoU =
|TP|

|TP|+ |FN|+ |FP| (C.5)

The overall detection accuracy DetA can be defined as Det-IoU of the whole dataset.

Association-IoU: measures the effectiveness of a tracker in connecting detections

across consecutive frames to form consistent identities, with respect to the known

identity links provided by ground-truth tracks. The overlap between two tracks is

quantified by counting the number of correct matches, termed True Positive Asso-

ciations (TPA). Detections in the predicted track that aren’t matched to any ground-

truth tracks, or are matched incorrectly, are categorized as False Positive Associations

(FPA). Similarly, detections in the ground-truth track that aren’t matched to any pre-

dicted detections are labeled False Negative Associations (FNA). The Association

IoU can be computed as,

81

Ass-IoU =
|TPA|

|TPA|+ |FNA|+ |FPA| (C.6)

The overall Association Accuracy in the entire dataset is calculated as,

AssA =
1

|TP|
∑
c∈TP

Ass-IoU(c) (C.7)

Given the definitions of the three IoU metrics, the HOTA score combines these three

metrics. It is calculated as:

HOTAα =
√

DetAα · AssAα

HOTA =
1

19

0.95∑
α=0.05

HOTAα

(C.8)

Previously, both DetA and AssA were defined based on a Hungarian matching proce-

dure using a specific Loc-IoU threshold (α). As DetA and AssA scores are influenced

by Loc-IoU values, these scores are computed across various α thresholds. For each

threshold value, the final score is calculated as the geometric mean of the detection

score and the association score. By integrating over different α thresholds, local-

ization accuracy is incorporated into the final score. For in-depth explanation and

analysis of HOTA metric, please refer to [76, 77].

82

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	Introduction
	Motivation and Problem Definition
	The Outline of the Thesis

	An overview of Graph Representation Learning
	Introduction
	Message Passing Neural Networks
	GCN
	GAT
	GraphSAGE

	Transformers
	Review of Vanilla Transformer Architecture
	Analogy between Transformer and Graph Neural Networks

	Graph Level Tasks
	Node/Edge Classification
	Link Prediction

	Visual Multi-Object Tracking
	Introduction
	Preliminaries
	Kalman Filter-based Approaches
	Deep Learning-based MOT Approaches
	Appearance-based MOT
	Motion-based MOT
	Graph-based MOT

	Revisiting the Baseline Methods
	SUSHI
	GreaseLM

	Discussion

	Proposed Bi-directional Motion Encoder for MOT
	Introduction
	Motivation
	Proposed Bi-Directional Motion Encoder
	Joint Transformer and GNN Encoder
	GNN Model
	Tracklet Association

	Experiments
	Ablation Studies
	Benchmark Results

	Discussion

	Conclusion
	Summary
	Conclusions

	REFERENCES
	Review of Spectral and Spatial Graph Theory
	Spectral Graph Theory
	Spectral Graph Neural Networks
	Spatial Graph Neural Networks

	Motivation of Geometric Deep Learning and Relation to Graphs
	EdgeConv

	Multi-object Tracking Performance Metrics
	MOTA
	IDF1
	HOTA

