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ABSTRACT

SHAPE COMPLEXITY: RELATIVE AND EMERGENT, WITH
APPLICATIONS IN DEEP LEARNING

Arslan, Mazlum Ferhat
Ph.D., Department of Computer Engineering

Supervisor: Prof. Dr. Sibel Tarı

March 2024, 124 pages

Quantifying shape complexity is useful for a variety of applications including medi-

cal imaging and measuring the difficulty of samples in image datasets. However, the

subject is underexplored, mostly due to its multifaceted nature. In this thesis, we start

by proposing a benchmark dataset, subsets of which aim to account for the different

aspects of the phenomenon. We compare a variety of shape complexity-related mea-

sures on the proposed dataset. Next, we propose a novel method that emphasizes the

relative and emergent nature of shape complexity. The method operates in both con-

tinuous and discrete spaces of arbitrary dimensions. We demonstrate the properties of

the method through extensive experiments and theoretical analysis. In the last part of

the thesis, we turn to applications of the proposed measure. We obtain state-of-the-art

results in domain generalization for prostate segmentation. As a separate application,

we employ the proposed measure for curriculum learning on instance segmentation

and image classification tasks on PASCAL VOC 2012 and CIFAR-10 datasets. We

hypothesize the quantified shape complexity is an indicator of sample difficulties.

Leveraging the estimated sample complexities, we devise curriculum strategies that

lead to statistically significant performance increases on both tasks.
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Keywords: shape complexity, morphological differential equations, medical image

segmentation, domain generalization, curriculum learning
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ÖZ

DERİN ÖĞRENMEDE UYGULAMALARIYLA GÖRELİ VE BELİRGEN
ŞEKİL KARMAŞIKLIĞI

Arslan, Mazlum Ferhat
Doktora, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Sibel Tarı

Mart 2024 , 124 sayfa

Şekil karmaşıklığının nicelenmesi tıbbi görüntüleme ve görsel veri kümelerindeki ör-

neklerin zorluklarının ölçülmesi gibi uygulama alanlarında kullanım bulur. Ancak bu

konudaki araştırmalar konunun çok yönlü yapısını kapsayıcı değildir. Bu tez kap-

samındaki çalışmalarımız, şekil karmaşıklığının çeşitli yönlerini sınamayı hedefle-

yen bir değerlendirme veri kümesi önererek başlıyor. Önerilen veri kümesinde şe-

kil karmaşıklığı ölçen metotları karşılaştırıyoruz. Çalışmalarımız kapsamında şekil

karmaşıklığının göreceli ve belirgen olma özelliklerini hedefleyen yeni bir yöntem

öneriyoruz. Bu yöntem çok boyutlu sürekli ve süreksiz uzaylarda geçerlidir. Öne-

rilen yöntemin özelliklerini kapsamlı deneyler ve kuramsal incelemeler aracılığıyla

gösteriyoruz. Tezin son bölümünde, önerilen ölçümün uygulamalarını ele alıyoruz.

Prostat bölütlemesi için alan genelleştirmesi uygulamalarında alandaki en iyi sonuç-

ları elde ediyoruz. Ayrı bir uygulama olarak, önerilen ölçümü PASCAL VOC 2012 ve

CIFAR-10 veri kümelerinde örnek bölütleme ve görüntü sınıflandırma görevlerinde

müfredat öğrenme için kullanıyoruz. Nicelenen şekil karmaşıklığının örnek zorluk-

larının bir göstergesi olduğu varsayımına dayanarak tahmin edilen karmaşıklıkları
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geliştirdiğimiz müfredat yöntemleriyle kullanıyoruz. Bu yaklaşımla, her iki görevde

de istatistiksel olarak anlamlı performans artışları elde ediyoruz.

Anahtar Kelimeler: şekil karmaşıklığı, morfolojik diferansiyel denklemler, tıbbi gö-

rüntü bölütleme, alan genelleştirme, müfredatla öğrenme
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CHAPTER 1

INTRODUCTION

Science seeks explanation to complex phenomena, making complexity itself a sub-

ject of scientific interest. By this nature, complexity studies span various disciplines.

However, despite our ability to perceive complexity, its formal definition remains elu-

sive ([1, 2, 3], or more recently [4]). Thus, the modus operandi for complexity studies

are discipline dependent. For example, in computer science the scaling of optimal al-

gorithms with input size is a relevant inquiry, whereas for biology whether complex-

ity increases during evolution, or, in case of dynamical system studies, understanding

chaos, are of interest.

The generic nature of complexity studies allows for the exploration of a wide range

of objects, including shapes, problems (e.g. sorting), complex wholes (e.g. biological

organisms), and processes (e.g. dynamics of a double pendulum). In this thesis, we

focus on shapes.

1.1 Motivation and Research Questions

The exploration of complexity in shapes is desirable for several reasons. Firstly,

shapes serve as a bridge between the abstract and applied subjects since they can

be situated between the formal and the physical. Compared to the formal (canoni-

cally, bit strings1) shapes are semantically richer: they come equipped with a sense

of topology allowing for multi-dimensional analysis, and their discrete and contin-

uous representations have clear correspondence. Compared to the physical they are

1 It can be argued that bit strings are one-dimensional shapes with multiple components. However, we consider
the topological structure in higher dimensions non-trivial, thus, make a distinction between the two.
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more manageable: they are not temporal, and for digital shapes, they are finitely rep-

resentable. Secondly, owing to their geometric nature, shapes and their relations are

intuitively interpretable. Given the exploratory nature of the current study, we find

this valuable. Last but not least, shape complexity is useful on its own. It finds appli-

cations in clinical neuroscience [5], analysis of neural networks in terms of decision

hypersurfaces [6], and data encryption [7].

Despite the existence of a variety of shape complexity measures, to the best of our

knowledge, a comparison of the methods is missing in the literature. However, such

comparisons help the accumulation of methodological improvements and findings in

the field. This leads us to our first research question:

1. How do different shape complexity measures compare to each other in terms of

different aspects of complexity?

We address this question in Chapter 2.

“The whole is something beside the parts” [8]. Similarly, the building blocks of a

complex whole do not explicitly manifest the complexity of the whole. Rather, com-

plexity emerges from interactions among the building blocks. Therefore, explanations

of complexity in terms of only local quantities fail to capture it, though, correlations

may exist. Seeking a measure of shape complexity that considers both local and

global interaction of shape parts and that encodes each part’s contribution towards

the overall complexity, we pose the following question:

2. How can the emergent aspect of complexity be addressed to yield a feasible and

consistent shape complexity encoding?

Here, the feasibility is in the sense that the measure quantifies shapes that are implic-

itly assumed as simplest as indeed so. Consistency is with respect to the perceptual

expectations under several controlled deformations of arbitrary shapes. This question

is addressed in Chapter 3 and Appendix A.

As we will argue in detail in Chapter 4, complexity is relative. Therefore, we address:

3. How can we incorporate the relative aspect of complexity in addition to the

concerns in the previous research question?
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Our final research question considers the practical applications of the proposed shape

complexity measure:

4. How can shape complexity be used in machine learning applications?

Chapter 5 and Chapter 6 report our efforts in answering this question.

1.2 Scope of the Thesis

In this thesis our focus is on the quantifications of shape complexity, addressing its

relative and emergent aspects, and its applications.

For quantifications of shape complexity, the proposed benchmark dataset is comprised

of three collections that measures the correlations of methods with the noise present

in shapes, expert-rankings of design object, and segmentations of 3D shapes. We

provide ground truth labels for each. Further, we compare both 2D and 3D methods

which include shape complexity and other related measures, such as those quantify-

ing convexity or circularity. Our evaluations are in terms of pairwise agreement with

ground truth.

In our own considerations, shapes are bounded, connected, binary objects of arbi-

trary dimensionality. Complexity is taken to be a measurable quantity indicating the

deviation of an object from simple, where simple is an object, defined implicitly or

explicitly. The relative aspect is accounted for when simple is an explicit parame-

ter. The emergent aspect is addressed by using both local and global shape features

through a partial or morphological differential equation formulation.

Our focus is on structural complexity [9]; thus, a time-like dimension of objects is left

out. Further, the existence of an underlying space-like structure in which the object

information is carried is assumed. Nonetheless, we try to keep our framework general

enough so that extensions to more general objects (such as graphs) are possible with

minimal effort in future work. Also, since we are after a measure of complexity,

computability is of concern. This leads the work to be more focused on objects in

computational grids, i.e., the digital shapes.
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Complexity measures can be broadly classified into three categories [10]: those re-

lated to difficulty of description, difficulty of creation, and degree of organization.

The proposed complexity measure relates the most to the last category. Notably,

Gell-Mann [2] considers measures of ‘something like complexity’ and not of ‘com-

plexity’, stressing that a single measure would be incapable of capturing all aspects

of complexity. Inevitably, in an attempt to explore certain aspects, our considerations

result in a measure of something like complexity as well.

We attempt to establish the relevance of our method to complexity by both quantita-

tive and qualitative analyses on two and three dimensional shapes (Chapter 2, 3, 4,

and Appendix A), and also, by means of medical imaging and computer vision appli-

cations that serve as proxy tasks relating to current scientific interests (Chapter 5 and

6). In medical imaging, we consider the task of single domain generalization for 3D

prostate MRI segmentation with a UNet-like segmentation backbone. We show that

our measure can be effectively integrated to increase performance in terms of Dice

score compared to the baseline and two state-of-the-art methods.

For computer vision applications, we consider instance segmentation and image clas-

sification tasks. We incorporate our measure via curriculum learning. Compared with

the baseline method, curriculum strategies based on the sample complexities acquired

by our method yield statistically significant performance increases.

1.3 Contributions and Novelties

Our contributions are as follows:

• We propose a benchmark dataset for shape complexity and compare 18 two and

three dimensional methods on three different tasks.

• We propose a semantically rich relative shape complexity measure. The frame-

work for the proposed measure is valid in both continuous and discrete, arbi-

trary dimensional spaces.

• We propose a novel application of shape complexity to medical image seg-

mentation using the proposed relative shape complexity measure. We achieve
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state-of-the art results on the single source domain generalization setting by

emphasizing the learning on the low complexity regions.

• We further demonstrate the relevance of the proposed measure to complexity

by means of estimating the sample image difficulties which are then used for

curriculum learning in two different tasks, instance segmentation and classifi-

cation.

The outcomes of the thesis are materialized in the following publications:

• M. F. Arslan, A. Haridis, P. L. Rosin, S. Tari, C. Brassey, J. D. Gardiner, A.

Genctav, and M. Genctav, “SHREC’21: Quantifying Shape Complexity,” Com-

puters & Graphics, vol. 102, pp. 144–153, 2022,

• M. F. Arslan and S. Tari, “Local Culprits of Shape Complexity,” in International

Conference on Scale Space and Variational Methods in Computer Vision, pp.

91–99, Springer, 2021.

The following paper is in preparation:

• M. F. Arslan and S. Tari, “Measuring relative shape complexity,” (in prepara-

tion)

1.4 The Outline of the Thesis

In Chapter 2, we start with a review of the literature on shape complexity. We propose

a benchmark dataset that is composed of three separate collections. Each collection

aims to account for a different aspect of shape complexity. A comparison of 18 meth-

ods of shape complexity on this benchmark is given.

Chapter 3, together with the associated Appendix A, aims at addressing the emergent

aspect of shape complexity. We propose a measure that is formulated for continuous

domains of arbitrary dimensions. The properties of the proposed measure is discussed

in detail via illustrative examples.
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A measure of shape complexity, accounting for the phenomenon’s relative nature, is

presented in Chapter 4. We start with a discussion on the relativity of complexity and

proceed with defining the notion of simplicity with respect to an arbitrary prototype

shape, discussing its relevance to compressibility. Our considerations are valid for

both continuous and discrete domains. The chapter is concluded by presenting proof-

of-concept results.

In Chapter 5, we propose a novel application of the relative shape complexity measure

for domain generalization in medical image segmentation. The application showcases

the use of the proposed measure in the three-dimensional setting and also supports the

claim that the complexity-encoding field is semantically rich. The proposed method

achieves state-of-the-art results without introducing additional parameters to the seg-

mentation backbone and with negligible computational cost during training.

To further demonstrate the relevance of the proposed measure’s relation to complexity

and deep learning applications, in Chapter 6 we consider curriculum learning on two

computer vision tasks. After quantifying the shape complexity associated with the

images in the PASCAL VOC 2012 and CIFAR-10 datasets, we experiment with two

network architectures, Mask R-CNN for the former for instance segmentation and a

modified ResNet-18 for the latter for image classification, using curricula based on the

quantified sample complexities. In each case, we observe significant improvements

in the in-domain generalization performance of the networks.

Finally, to ease the readability of the thesis, Chapter 7 gathers the mathematical and

numerical considerations related to the proposed measures. These include analytical

solutions to the considered nonlinear partial differential equations, some mathemat-

ical properties of the solutions, numerical schemes, and fast solvers using multigrid

methods for constructing the scalar fields.
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CHAPTER 2

SHAPE COMPLEXITY AND A PROPOSED BENCHMARK

This chapter is based on our paper [11]. In order to maintain the integrity of the thesis,

modifications are made to the content of the published paper.

The main contributions of the work are as follows:

• The creation of two novel shape collections, each accompanied by its ground

truth (GT). Additionally, a previous segmentation benchmark has been repur-

posed for evaluating complexity measures.

• A systematic evaluation of the performance of various two-dimensional (2D)

and three-dimensional (3D) classical and recent shape complexity measures.

• Assessment of the similarities and differences among various measures through

pairwise correlations and clustering. This analysis is based on their perfor-

mance with respect to multiple GTs.

Figure 2.1 presents a graphical illustration of the overview of the proposed bench-

mark.

2.1 Related Work on Shape Complexity

Shape complexity has been studied in various fields including psychology [12, 13,

14], computer vision [15, 16], mathematical morphology [17], and design [18, 19].

It finds applications in shape retrieval [20, 21], measuring neurological development

[22, 23], and computer-aided design (CAD) [24, 25, 26]. The perspectives on shape
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Figure 2.1: Graphical abstract for the proposed benchmark dataset and methodology.

complexity differ dramatically between disciplines due to their respective methodolo-

gies and objectives. For example, works in psychology rely on human experiments

while in computer vision, quantification of Euclidean notions such as curvature are of

interest.

Early work on shape complexity appears in the literature of experimental psychology.

One of the first measures of complexity for polygonal shapes can be found in [27].

Attneave [12] conducted human experiments to seek correlations of shape complexity

with scale, curvedness, symmetry and number of turns. Due to diverse responses

from human subjects, Attneave concluded that shape complexity is not well-defined.

Considering circles as the simplest shapes, P 2/A emerged as a natural measure for

shape complexity and was used in several works [12, 18], either as a direct measure

or alongside other indicators. In most other works [28, 17, 29, 30, 31, 32], tools from

information theory applied on various geometric features are used to quantify shape

complexity. Rossignac [33] provides a classification of shape complexity that focuses

on measuring different aspects of computer representations for 3D shapes.

The variety of approaches to quantifying shape complexity further supports the claim

that complexity can have various meanings depending on the chosen approach in a

particular research area and for the specific task at hand.
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Despite the wide range of perspectives and applications, a pattern can be identified in

the works on shape complexity: shape complexity is related to the local and/or global

regularity of some feature of the shape. For example, Page et al. [28], Chen and

Sundaram [16], and Matsumoto et al. [34] considered curvature, Gardiner et al. [35]

and Brinkhoff et al. [36] considered convexity, and Saleem et al. [15] considered

view similarity as an indicator of shape complexity. In [32, 37], emergent features

of rectangularity are used to quantify shape complexity. For measuring regularity,

Shannon entropy, correlates of Kolmogorov complexity, or the mean of the feature

distribution are common options.

The works [32, 31, 30] construct scalar fields over a shape via screened-Poisson-like

differential equations, each with distinct approaches. In [32], the authors consider(
∆∞ −

1

ρ2

)
f = −1 subject to f

∣∣∣
∂S

= 0

for a shape S and quantify the level set overlap between the solution f and the dis-

tance transform of S. Here, ∆∞ is the infinity Laplacian which is the minimizer of∫
|∇f |p as p → ∞. The targeted level sets determine the trade-off between bound-

ary details and global shape properties. This allows for multi-scale measurements of

shape complexity.

In Discrepancy, [31], the equation(
∆− 1

A2

)
f = 0 subject to f

∣∣∣
∂S

= 1

is deployed as a measure of local circularity in 2D, where ∆ = ∂2

∂x2 +
∂2

∂y2
is the Lapla-

cian operator. In order to measure shape complexity, the authors use entropy on the

probability density functions (PDF) acquired from the constructed field’s histogram.

In PARCELLIN distance, [30], a family of equations are considered

(∆− α) Φi = −fi

where fi are the source functions with i ∈ [1, 2, · · · , N ]. The source functions stand

for separating the volume bounded by the shape boundary into central and outer re-

gions, and vary smoothly with the level sets of the distance transform of the shape.

After acquiring the fields {Φi}Ni=1, the fields are aggregated by assigning each shape

location the number of solutions in which the location falls into the outer region, i.e.,

9



attains a negative value. The entropy of the PDF arising from the aggregated field

near shape boundary is used for measuring the shape complexity.

In [36], a heuristic measure of shape complexity is defined for polygons as a com-

bination of frequency and amplitude of the boundary vibration, and deviation of the

shape from its convex hull. The suitability of the approach is shown on maps of geo-

graphical objects. By using a discrete approximation for the curvature, [28] measure

the shape complexity as the entropy of the PDF derived from the histogram of the

approximated curvature. We also define an alternative version that uses cumulative

residual entropy [38] CCRE instead of Shannon entropy. More recently, a similar mea-

sure of complexity that leverages curvature is proposed by [34].

Fractal dimension [39] of shape boundaries are used in [40] to quantify the regularity

of shapes. In their approach, the scale parameter determines the trade-off between

local and global information. Two other methods, [41] and [42], that use fractal di-

mensions are also treated as shape complexity measures.

In addition to fractal dimensions, measures of convexity can serve as indicators of

shape complexity. Here, we consider some convexity measures. Two standard con-

vexity measures involve the ratio of areas C1 and ℓ2 perimeters C∈ of a shape S with

its convex hull [S],

C1 =
Area(S)

Area([S])
, C2 =

| ∂[S] |2
|∂S|2

|∂S|p denotes the ℓp perimeter length of shape S. A more involved measure of con-

vexity, [43], applies polygonal convexification by flipping the concavities of a shape

about their corresponding edges. An alternative scheme can be defined by applying

flipturns, i.e., reversing the order of vertices while applying a flip to the concavity.

The processes result in a convex polygon in a finite number of steps. Two mea-

surements of convexity are then defined as the ratio of the areas of the original and

convexified polygon for the two scenarios, which are denote as [43]-1, and [43]-2 in

the following. Another measure that relates to convexity is that of [44], given by

C(S) = min
θ∈[0,2π]

|∂R(Sθ)|2
|∂Sθ|1
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where Sθ refers to the shape rotated by angle θ, andR is the minimum area bounding

rectangle of its parameter.

In [35], alpha-shapes [45] with N different α parameters are acquired to account for

the shape at various scales. For each α, the ratios of the volumes of the original shape

and the alpha-shape are obtained, which represent the shape in RN . Finally, the PCA

scores corresponding to the first two principal components are used as indicators of

shape complexity.

2.2 Proposed Benchmark Dataset

The lack of benchmark datasets for shape complexity poses a significant challenge in

the current state of the field. This causes works in the literature to opt for suboptimal

analyses, relying only on visual results. Thus, it is our aim in proposing a benchmark

dataset to address and explore various aspects of shape complexity which can help

researchers to test and compare their methods against others in the literature.

Due to the lack of a canonical definition for shape complexity, expecting the meth-

ods to correctly guess pre-defined linear relationships between shapes may not make

sense. Thus, we propose to explore complexity using multiple tasks and multiple

shape collections.

The proposed benchmark dataset is composed of three collections. The first col-

lection is composed of shapes obtained by introducing additive or subtractive noise

to two basic shapes: sphere and cube. The purpose is to investigate the relation of

complexity to the noise level. The second collection is composed of artificial three-

dimensional shapes constructed by transforming and combining multiple elements,

and evaluated by experts to provide GT. The purpose of this collection is to inves-

tigate the shape complexity measures in relation to perceptual categories. The final

collection is an existing three-dimensional shape dataset which was originally devel-

oped as a segmentation benchmark. We repurpose this data and use the segmentation

GT as a means to investigate 3D shape complexity via a proxy task.

Each collection in the dataset is a set of three-dimensional objects with different char-

acteristics. Similarly, the GTs for each collections are defined and obtained through
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distinct methods. In this way, we aim to account for the different aspects of shape

complexity.

2.2.1 Dataset

The proposed benchmark dataset consists of three collections each aiming to account

for a different aspect of shape complexity. The first two collections are created syn-

thetically, whereas the third is an existing collection consisting of natural shapes. The

GT for the first collection is based on the parameters used in creating the collection.

For the second collection, the GT is provided by two design experts on the final design

object. The purpose of the third collection is to investigate how estimated complex-

ity is related to the number of parts perceived by humans, which we hypothesize is

related to shape complexity.

2.2.1.1 Collection 1 – Perturbed basic shapes

In this collection, we aim to explore the correlation between shape complexity and

noise. Specifically, we consider two base shapes, cube and sphere, and introduce

perturbations to each shape with three control parameters, explained in detail in the

following.

A cube of side length 199 voxels and a sphere of radius 100 voxels are stochastically

perturbed additively and subtractively, separately. This forms four families (additive-

ly/subtractively perturbed cubes/spheres). The algorithm used in adding noise to a

shape introduces a perturbation at a random location on the shape’s boundary at each

application. The algorithm has two parameters: i) width (w) determining the area

of effect of the perturbations and ii) number of times of application (c) determining

how many times a local perturbation is introduced. Both parameters are set to three

different values, w ∈ {3, 4, 5} and c ∈ {25, 50, 75}. This results in a group of nine

shapes. A sample group for an additively perturbed cube is displayed in Figure 2.2.

Fifty such groups form a family.
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w=3

w=4

w=5

Figure 2.2: Sample groups of additively perturbed cubes and spheres.

2.2.1.2 Collection 2

Collection 2 consist of fifty shapes, equally divided into two families. The shapes are

designed in a way to resemble abstract architectural models. The building blocks are

cuboids that form a connected aggregate for each shape.

In the first family, cuboids are stacked to have a constant total height. The underlying

parameters are the number, height and rotation of the cuboids. In Figure 2.3, samples

from the first family are shown (the colors are for the purposes of visualization only).

Figure 2.3: Sample shapes from the first family of Collection 2.

The second family is generated by varying the spatial organization of a number of

cuboids. The number of cuboids (n ∈ {3, 4, 5}), their relative locations, and the

height of each cuboid are the used parameters. The cuboids are allowed to have

overlapping regions, as exemplified in Figure 2.4.
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Figure 2.4: Sample shapes from the second family of Collection 2.

2.2.1.3 Collection 3

Collection 3 is composed of the shapes in Princeton mesh segmentation benchmark

dataset [46]. We use this set with the primary objective of exploring how shape com-

plexity measures correlate with the uniformity of the number of segments of the seg-

mentations of the shape. The benchmark consists of 380 shapes across 19 categories

and their human-generated segmentations. As opposed to the synthetic shapes in the

first two collections, the shapes in the benchmark are natural. As such, they have

a particular semantic content, which may affect the perception of complexity. The

availability of manual segmentations for this collection makes it a fitting candidate

for exploring complexity by using segmentation as a proxy task.

2.2.1.4 2D Collections

Most of the shape quantifying methods in the literature work exclusively in 2D. To

include such methods into this study, we create the 2D analogues of the shapes. We

generate twelve 2D silhouettes of each shape in the above collections from the views

determined by the azimuthal angles ({0◦, 30◦, 60◦, . . . 330◦}) and the elevation angle

(30◦). The resulting silhouettes of a shape are kept similar in size so that the collec-

tions do not pose a challenge in terms of scale-invariance. The compared 2D methods

report the averaged score over the twelve silhouettes as the measure of complexity for

the corresponding 3D shape.

We exclude the families consisting of subtractively perturbed spheres and cubes be-

cause the resulting silhouettes highly depend on whether the perturbations appear on

the 2D boundary of a given view or not, rather than the controlling parameters.
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2.2.2 Ground truths and evaluation methods

Collection 1. For the first collection, the two parameters w and c used in creating the

shapes constitute the GT. We expect the complexity scores to increase as either of the

parameters increase. The performance of the methods are measured in a controlled

experiment manner: we keep one of the parameters fixed and let the other vary. The

performance of a method is then measured by averaging the Kendall rank correlation

coefficient over the groups. This results in six measures of performance (one for each

value of the parameters) for a family.

Collection 2. In Collection 2, the GT is provided manually by two experts on CAD

and 3D shape modeling.

For the first family, the evaluation produced the following five groups in which shapes

are listed in increasing order of complexity:

Group 1: (16, 14, 12, 17, 18, 19, 20)

Group 2: (15, 13, 24, 22)

Group 3: (23, 21, 25)

Group 4: (11, 10, 7, 1, 2)

Group 5: (9, 8, 4, 5, 3)

For the second family, the evaluation produced the following six groups in which

shapes are considered to be of equal complexity:

Group 1: (18, 24, 17, 20)

Group 2: (25, 21, 22, 19)

Group 3: (5, 3, 2)

Group 4: (23, 16, 15)

Group 5: (6, 4, 14, 12, 13)

Group 6: (7, 9, 10, 1, 11, 8)

As the shapes from different groups are incommensurate, GT is provided only for

the shapes in the same group. We measure the performance of the methods using the
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Kendall rank correlation coefficient since we have a total order on the groups of the

first family. For the second collection, we measure the uniformity of in-group scores.

The scores are first normalized to the range [0, 1]. The pairwise absolute differences

of the normalized scores are summed to yield the performance measure of a group.

Note that scores closer to zero indicate a better performance, in contrast to the rest of

the performance measures.

Collection 3. The shapes in the third collection are segmented by both humans and

computer algorithms in [46]. We interpret the data collected from humans as an

indicator of a shape’s complexity. For each shape, there are 11 human-generated

segmentations and 7.9 segments, on average. The fact that the human annotations

differ is consistent with the ill-posed natures of both complexity and the segmentation

task.

For this collection, we use two GT: one is the mean (µ) and the other is the standard

deviation (σ) of the number of segments. For each GT, we calculate i) Kendall rank

correlation coefficient over all the shapes in the collection which we refer to as τµall

and τσall in Table 2.4 ii) the averaged coefficients 1
N

∑
i τi where τi is the correlation

coefficient for the ith category, referred to as τµcat and τσcat .

2.3 Results

Since our GTs provide the order information and not complexity quantifications, we

compare the methods in terms of the orderings they suggest. Hence, we use only

Kendall rank correlation as a robust rank correlation measure. We report Kendall

rank correlation coefficients between the participating methods and the GTs in Ta-

bles 2.1-2.4. In the tables, we mark the scores of the best performing methods with

red, the second best performers with green, and the third best performers with blue.

2.3.1 Collection 1

Additive perturbations. The Kendall rank correlation coefficient (τ ) for the addi-

tively perturbed cubes and spheres are given in Table 2.1. The method proposed by
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[32] effectively orders all pairs for cubes, i.e. τ = 1.00, while the method by [31]

achieves the same for spheres. In both cases, [30] and [35]-1 follow very closely.

Some of the methods ([28], [40], CCRE , [44], [43]-1, [43]-2 and C2) achieve strong

correlations with the GT when the parameter c is varied, yet the correlations weaken

when the varying parameter is w. This suggests that it is easier to account for the

number of perturbations than it is for the magnitude of perturbations.

Additionally, we observe that the performance of some methods varies significantly

when the base shape is changed, particularly for [31], [41], [42] and C1. Notably, all

of these methods achieve better scores on the spheres.

Comparing 3D methods with 2D ones, we see that 3D methods [32], [30] and [35]-1

consistently perform well whereas the best performing 2D methods are inconsistent.

For example, [31] only achieves high scores for the sphere-related tasks and [36],

[28], CCRE , CPC , and so on, attain high scores only when the width parameter w is

kept fixed.

Subtractive perturbations. Four methods have been tested on the subtractively per-

turbed cubes and spheres. The performances of these are reported in Table 2.2. Three

of the methods perform consistently well in all cases. For the cubes, [30] ranks the

first in all measurements, and for the spheres, there is no clear winner.

In the last rows of Tables 2.1 & 2.2 we provide the mean of the absolute scores,

denoted as MA. The mean absolute scores show that the most challenging case is

the cubes with c = 25 for both perturbation types. We also note that, for additive

perturbations, it appears significantly harder for the considered methods to correlate

with the GT when the parameter w is varied compared with the case when c is the

varying parameter.

2.3.2 Collection 2

The results for both families of Collection 2 are presented in Table 2.3. For the first

family of shapes in the collection, higher absolute values indicate better performance.

Conversely, for the second family, values near zero are preferred.
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Table 2.1: The averaged Kendall τ for the additively perturbed cubes (the first value)

and spheres (the second value).

Method w = 3 w = 4 w = 5 c = 25 c = 50 c = 75

[32] 1.00 / 1.00 1.00 / 1.00 1.00 / 0.99 1.00 / 1.00 1.00 / 1.00 1.00 / 1.00
[30] 0.87 / 0.93 0.95 / 0.97 0.93 / 1.00 0.89 / 0.93 0.92 / 1.00 0.96 / 1.00

[35]-1 0.99 / 0.97 0.99 / 1.00 0.99 / 1.00 1.00 / 0.99 1.00 / 1.00 1.00 / 1.00
[35]-2 0.17 / 0.57 0.24 / 0.80 0.52 / 0.88 -0.09 / 0.35 0.03 / 0.69 0.39 / 0.69

[31] 0.25 / 1.00 0.31 / 1.00 0.68 / 1.00 0.13 / 1.00 0.39 / 1.00 0.52 / 1.00
[42] 0.67 / 0.91 0.84 / 0.99 0.80 / 0.97 0.84 / 0.68 0.95 / 0.71 0.93 / 0.68
[41] 0.45 / 0.97 0.65 / 0.99 -0.11 / 0.96 0.44 / 0.83 0.43 / 0.89 0.04 / 0.84
[40] -0.97 /-1.00 -0.96 /-1.00 -0.97 /-1.00 -0.29 /-0.08 -0.29 / 0.05 -0.24 / 0.28
CCRE 0.97 / 1.00 0.95 / 1.00 0.96 / 1.00 0.33 / 0.12 0.47 /-0.07 0.47 /-0.35
[28] 0.93 / 1.00 0.96 / 1.00 0.96 / 1.00 0.20 / 0.28 0.39 / 0.17 0.32 /-0.21
[34] 0.79 / 0.87 0.87 / 0.93 0.87 / 0.93 0.83 / 0.83 0.88 / 0.83 0.88 / 0.79
Cσ 0.51 / 0.72 0.60 / 0.80 0.64 / 0.87 0.68 / 0.60 0.68 / 0.63 0.69 / 0.64
C1 -0.73 /-0.97 -0.83 /-0.97 -0.76 /-0.95 -0.77 /-0.89 -0.81 /-0.95 -0.93 /-0.96
CPC 0.93 / 0.96 0.91 / 0.93 0.88 / 0.97 0.61 / 0.53 0.71 / 0.51 0.64 / 0.36
[36] 0.93 / 1.00 0.95 / 0.99 0.91 / 0.99 0.73 / 0.69 0.83 / 0.77 0.79 / 0.64
[44] -1.00 /-0.99 -0.96 /-0.99 -0.91 /-0.96 -0.68 /-0.59 -0.77 /-0.68 -0.76 /-0.61
C2 -0.95 /-0.99 -0.96 /-0.99 -0.93 /-0.99 -0.67 /-0.53 -0.80 /-0.63 -0.77 /-0.51

[43]-1 -0.96 /-0.99 -0.93 /-0.99 -0.92 /-0.99 -0.59 /-0.68 -0.76 /-0.76 -0.76 /-0.64
[43]-2 -0.96 /-0.99 -0.95 /-0.99 -0.92 /-0.99 -0.65 /-0.68 -0.76 /-0.76 -0.75 /-0.63

MA 0.79 / 0.94 0.83 / 0.96 0.82 / 0.97 0.60 / 0.65 0.68 / 0.69 0.68 / 0.68

The first family of shapes. For the first family of Collection 2, based on the summed

scores, the top five methods are CCRE , CPC , [40], [28] and C2. Note that all of these are

2D methods, three of which are convexity measures. The best performing 3D method

is [30] and places the sixth. [34] and [35]-2 perform the poorest on this family both

having almost no correlations with the GT considering all of the groups.

For each group except the fifth, there is at least one method that completely agrees (or

disagrees) with GT. For Group 5, none of the considered methods is able to capture

the notion of complexity that exactly agrees with GT. The MA scores are in alignment

with this, indicating that Group 5 (MA = 0.49) is indeed the most challenging group.

Lastly, we observe that some of the methods ([41], [42], [31] and [35]-2) have both

strongly positive and strongly negative correlations with GT.

The second family of shapes. For the second family of Collection 2, we start by
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Table 2.2: The averaged Kendall τ for the subtractively perturbed cubes (the first

value) and spheres (the second value).

Method w = 3 w = 4 w = 5 c = 25 c = 50 c = 75

[32] 1.00 / 0.99 1.00 / 0.99 1.00 / 1.00 0.67 / 0.92 0.89 / 1.00 0.91 / 0.97
[30] 1.00 / 0.89 1.00 / 0.88 1.00 / 0.93 0.97 / 0.97 0.97 / 1.00 0.99 / 1.00

[35]-1 0.68 / 0.81 0.81 / 0.95 1.00 / 1.00 0.77 / 0.83 0.91 / 1.00 0.97 / 1.00
[35]-2 0.21 / 0.48 0.48 / 0.83 0.87 / 0.96 0.37 / 0.61 0.69 / 0.80 0.81 / 0.95

MA 0.72 / 0.79 0.82 / 0.91 0.97 / 0.97 0.70 / 0.83 0.87 / 0.95 0.92 / 0.98

remarking that the reported scores indicate better performances when they are close to

0, in contrast with the other reported scores. Similar to the case in the first family, 2D

methods take the lead (listed from best to worst: [43]-1, [36], C2, C1, [34]), with the

best performing 3D method ([35]-1) placing the 8th. The worst performing method

is [28]. This is interesting because it is also the third best performing method in the

first family. In a similar manner, we note that there is no overlap between the top

five performers of the two families except for C2. This indicates that the two families

indeed account for different aspects of shape complexity.

Based on the overall scores, the top three performers for both families are 2D meth-

ods. The highest scoring 3D method for the first family is [30], and [35]-1 for the

second family.

2.3.3 Collection 3

The Kendall rank correlation coefficients computed for Collection 3 are reported in

Table 2.4. First, we note that, even for the best-performing methods, all correlations

exhibit considerably weaker values when compared to the scores obtained from the

other two collections. The best performers are [35]-2, [34], [28] and [28] for τµcat , τµall ,

τσcat and τσall , respectively. We observe that all of the methods, except [35]-1, perform

better when the correlations are computed over the whole collection, regardless of

GT.

For the tasks of this collection we observe that [35]-2 outperforms [35]-1. This is in-

teresting because [35]-1 is a better performer for the majority of tasks on the other two
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Table 2.3: The Kendall τ for the first family and the non-uniformity measurements for

the second family of Collection 2 reported as the first and second scores, respectively.

Method Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Sum

[32] 0.33 / 2.91 0.67 / 2.08 0.00 / 0.16 1.00 / 0.66 0.47 / 2.53 – / 2.75 2.47 / 11.09
[30] 0.81 / 1.82 1.00 / 1.31 0.00 / 0.02 0.80 / 0.28 0.33 / 2.78 – / 0.52 2.94 / 6.73

[35]-1 -0.52 / 0.88 -0.33 / 1.65 -1.00 / 0.41 0.80 / 0.06 0.60 / 0.75 – / 1.05 -0.46 / 4.79
[35]-2 0.62 / 0.87 0.33 / 1.83 -1.00 / 0.53 -0.60 / 0.09 0.73 / 0.49 – / 1.46 0.09 / 5.27

[31] -0.81 / 0.86 0.33 / 1.60 1.00 / 0.38 -0.20 / 0.63 -0.60 / 0.67 – / 3.33 -0.28 / 7.47
[42] -0.81 / 1.37 0.67 / 1.91 1.00 / 0.31 0.40 / 0.35 0.47 / 1.00 – / 1.62 1.72 / 6.56
[41] -0.43 / 1.57 -0.67 / 0.71 1.00 / 1.93 0.00 / 0.08 0.33 / 0.12 – / 0.24 0.24 / 4.65
[40] -1.00 / 1.75 -1.00 / 2.15 -1.00 / 1.08 -0.40 / 0.34 -0.47 / 1.43 – / 5.55 -3.87 / 12.31
CCRE 0.90 / 1.72 1.00 / 2.10 1.00 / 0.99 0.60 / 0.26 0.47 / 0.86 – / 4.28 3.97 / 10.21
[28] 0.81 / 2.01 0.67 / 2.98 1.00 / 1.76 0.80 / 1.63 0.47 / 0.80 – / 6.04 3.74 / 15.23
[34] -0.71 / 1.06 -0.33 / 0.84 0.33 / 0.24 0.40 / 0.21 0.33 / 0.80 – / 1.33 0.02 / 4.47
Cσ -0.81 / 1.44 0.00 / 1.29 0.33 / 0.17 0.40 / 0.17 0.33 / 0.61 – / 1.19 0.26 / 4.87
C1 0.05 / 1.31 -0.33 / 1.88 -0.33 / 0.10 -0.80 / 0.09 -0.73 / 0.45 – / 0.59 -2.15 / 4.41
CPC 0.62 / 1.19 0.67 / 1.49 1.00 / 0.20 1.00 / 0.14 0.60 / 1.13 – / 0.62 3.89 / 4.78
[36] 0.43 / 1.17 0.33 / 1.66 1.00 / 0.16 0.60 / 0.10 0.47 / 0.33 – / 0.92 2.83 / 4.33
[44] -0.52 / 0.98 -0.33 / 1.37 -1.00 / 0.10 -0.60 / 0.25 -0.47 / 0.75 – / 1.42 -2.92 / 4.88
C2 -0.43 / 1.28 -0.33 / 1.41 -1.00 / 0.19 -0.80 / 0.18 -0.47 / 0.29 – / 1.02 -3.03 / 4.37

[43]-1 0.14 / 0.93 -0.33 / 1.59 -1.00 / 0.11 -0.80 / 0.20 -0.47 / 0.43 – / 1.00 -2.46 / 4.27
[43]-2 -0.05 / 1.12 -0.33 / 1.85 -1.00 / 0.13 -0.80 / 0.16 -0.60 / 0.43 – / 0.82 -2.78 / 4.51

MA 0.57 / 1.38 0.51 / 1.67 0.79 / 0.47 0.62 / 0.31 0.49 / 0.88 – / 1.88 2.11 / 6.59

collections. Considering that both [35]-1 and [35]-2 stem from the first two principal

components of the same method, this discrepancy suggests that the segmentation task

relates to shape complexity in a different manner than the GT considerations of the

other collections.

2.4 Discussions

Three out of the four 3D methods, [32, 30] and [35]-1, perform consistently well,

regardless of the base shape and noise type, and surpass any of the 2D methods for

Collection 1, whereas, in the remaining two collections, 2D methods overtake. The

performance of 2D measures are unexpected given that they do not make use of the

full shape information. Though, we note that, the considered 3D methods did not

make use of the full shape information either; some of them ([30, 35]) downsample

the shapes in Collection 1 and all of them used voxelized shapes in processing Col-
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Table 2.4: Kendall τ when the GT is the mean and the standard deviation of the

number of segments of the human segmentations.

Method τµcat τµall τσcat τσall

[32] 0.148 0.346 0.072 0.234
[30] 0.041 0.354 0.018 0.203

[35]-1 0.110 0.105 0.055 -0.006
[35]-2 0.151 0.417 0.065 0.262

[31] -0.022 0.251 0.013 0.138
[42] 0.061 0.401 0.027 0.202
[41] 0.140 0.375 0.087 0.167
[40] -0.082 -0.458 -0.089 -0.282
CCRE 0.110 0.585 0.083 0.331
[28] 0.132 0.600 0.117 0.350
[34] 0.131 0.671 0.066 0.283
Cσ 0.075 0.540 0.077 0.244
C1 -0.037 -0.255 -0.037 -0.078
CPC 0.099 0.464 0.078 0.217
[36] 0.041 0.326 0.029 0.123
[44] -0.105 -0.486 -0.056 -0.219
C2 -0.112 -0.501 -0.084 -0.227

[43]-1 -0.069 -0.372 -0.085 -0.168
[43]-2 -0.079 -0.395 -0.090 -0.188

MA 0.092 0.416 0.065 0.206

lection 2 and 3. Nevertheless, it’s worth emphasizing that the leading 2D methods

vary across different tasks within Collections 2 and 3, with none excelling across all

tasks.

An interesting observation is that [28], [40] and [34] perform poorly under the changes

of the parameter w despite their high scores under the changes of the parameter c. We

believe this could be because adjusting the width parameter w has a greater impact on

the local changes in curvature than the parameter c, suggesting that these methods are

inherently curvature-dependent. Similar results for the methods that measure convex-

ity can be explained in a similar manner since convexity can be related to curvature

for the examples in our datasets.

The results for Collection 1 suggest the use of different methods for different use
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cases. For example, [32], [35]-1 can be used in applications involving additive per-

turbations and [31] can be used in applications involving noisy spheres. Provided one

has information about the type of the noise present in their use cases, one can settle

for [28], [40], C2, [43], or [44]. For overall robustness, [30] can be preferred.

The results for Collection 2 suggest that classical measures supported by psychology

experiments are better alternatives for quantifying perceptual complexity as judged

from the final product of the design process (i.e. ignoring the complexity in the gen-

eration process).

For Collection 3, we observe that the performances of the methods improve signif-

icantly when the entire collection is considered. In this sense, we can say that, for

shapes from the same category, it is harder to correlate the shape complexity with the

standard deviation or number of segments.
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Figure 2.5: Clustering of the methods in τ -based feature space: 2D embedding ap-

plied to 17 (left) and 21 (right) τ -values

In Figure 2.5, two 2D embeddings of the evaluated complexity measures using Stochas-

tic Neighborhood Embedding (t-SNE) [47] are depicted. For each measure, a feature

vector is formed using the Kendall rank correlation coefficients reported in Tables 2.1-

2.4. For the plot on the left, 17-dimensional feature vectors (whose components are

the twelve τ scores from Table 2.1 and five τ scores from Table 2.3) are used. For

the plot on the right 21-dimensional feature vectors are used by augmenting the 17-

dimensional vectors with four additional τ scores from Table 2.4. We considered the

scores from Collection 3 as optional as we consider the nature of this collection to be
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different from the other two based on interpretation of the results. While acquiring

the t-SNE plot, we negate the τ scores of the methods, [40], C1, [44], C2, [43]-1 and

[43]-2 as they serve as measures of simplicity rather than complexity. The perplexity

parameter is set to 2 for both plots. Nevertheless, we observed that doubling or even

quadrupling the perplexity parameter does not make a significant qualitative change

except that the spread gets larger.

Notice that [28], [40] and [34] form a distinct cluster. An interesting observation from

Figure 2.5 is that the two methods [31] and [32], both employing real valued fields

computed using a common partial differential equation, are not close in the τ -based

feature space. This can be due to the difference of the methods in the metric spaces

they each employ (L2 vs. L∞). The choice of the metric makes [32] an ideal method

for noisy cubes whereas [31] is better suited for noisy spheres.

In addition to the correlations between GT and the measures, we find that the cor-
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Figure 2.6: Correlations between pairs of methods

relations among the measures convey insight into the shape complexity. Thus, we

compute and report in Figure 2.6 the Kendall rank correlation coefficients (τ ) for

each method pair. Specifically, for Collection 1 we compute the mean of τi (i ∈
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{1, 2, . . . , 50}) for the groups of each family, for Collection 2, we compute τ over

the families (i.e. disregarding the groups), and for Collection 3 we compute both the

mean of τcat over the categories and τall over the whole collection. Here also we

negate the scores of the methods, [40], C1, [44], C2, [43]-1 and [43]-2. The results

show that the methods correlate the most with each other on the additively perturbed

spheres. One possible explanation is that the diverse approaches to measuring shape

complexity, such as uniformity of curvature, convexity, or the agreement of the shape

with the underlying grid, more or less align for this family. Similar clusters to the

ones seen to emerge in Figure 2.5 can be identified, such as the cluster composed of

[28], [40] and CCRE , or the cluster consisting of the convexity-based measures. Yet,

for example, the second family of Collection 2 provides a means of distinguishing

[28] from CCRE and [40]. The same family also allows us to differentiate between

the behaviors of the 3D methods. Similarly, the within-category results acquired on

Collection 3 show that [44] and C2 are closer to each other than they are to [43]-1 and

[43]-2, and vice versa. Taken together, these provide further support for our claim

that the three collections account for different aspects of shape complexity.

The correlations for Collection 3 are generally lower than those for Collections 1 and

2. This could be a consequence of either the data being more challenging, or that the

proxy task does not relate strongly to complexity. This needs further study, and can

be explored in future work.
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CHAPTER 3

ENCODING SHAPE COMPLEXITY VIA SCALAR FIELDS

This chapter is based on our paper [37]. In order to maintain the integrity of the

thesis, slight modifications are made to the content of the published paper. With

similar concerns, some parts of the paper are moved to Chapter 7 and our further

experimentations with the proposed method are presented in Appendix A.

Our aim in this work is to show how complexity can be encoded in a distributed man-

ner, i.e., as a scalar field, over a shape. We further attempt to convey the semantical

meaning of the complexity-encoding field by means of quantitative and qualitative

considerations.

3.1 Introduction

Given an 8-connected digital binary pattern representing a digital shape as a mapping

Z2 → {0, 1}, we are interested in quantifying, at each point on the pattern, the like-

lihood that the point belongs to a maximal prototype shape that fits the digital shape

represented by the binary pattern in question. For the prototype shape themselves,

the constructed scalar field is expected to be uniformly zero over the shape. The

prototype shape serves as the simplest shape in a certain context.

The practical use of such a measure is two fold: First, if integrated over the pattern,

the resulting number can be used as a measure of the tileability of the shape by the

maximal prototype shape, which in turn can be used to quantify shape’s complexity.

Second, directly as a local measure, it can be useful in identifying the locations to

cut the shape so that the resulting pieces represent an unrefined segmentation with
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respect to the prototype. A perfectly tileable shape can be digitally represented with

maximum compression. By local culprits, we mean the points where the value of the

field deviates significantly from zero, as they are the points causing non-tileability.

In this work, we focus on the case where the reference shape is a rectangle. Nev-

ertheless, by changing the underlying metric, the method naturally extends to the

case where the prototype is a diamond (cf. Figure 3.9). The further extension of the

method to much more general reference shapes is established in Chapter 4. We illus-

trate the method on 2D shapes which are not necessarily simply connected. Yet, all

discussions are valid in higher dimensions.

3.1.1 Measures of rectangularity

Quantifying rectangularity has practical uses in several applications e.g. urban plan-

ning and landscape ecology [48]. Rectangularity measures are also used to improve

over-segmented images [49]. In the literature, there are several global measures for

quantifying the conformity of a shape to a simple prototype [50, 51, 32]. These global

measures do not convey point-wise information. For circular shapes defined in R2,

the method in [52] provide local information for quantifying conformity to circles.

A related problem of recent interest is quantifying the complexity of high-dimensional

datasets for estimating their classification difficulty. Varshney and Willsky [6] mea-

sured their classifiers in terms of level sets of the decision hypersurfaces’ geometrical

complexity using ϵ-entropy. A growing number of works emphasize the role of the

shape of the decision hypersurface as a determinant of either how complex the data is

or how robust its classification by a certain classifier. An interesting claim by Fawzi

et al. [53] is that vulnerability to adversarial attacks is related to positive curvature

of the decision boundary. Fawzi et al. further attributed the robustness of the popular

deep networks to the flatness of the shape of the produced decision boundaries.

Our numerical construction relies on the connection between differential operators

and shape sets Chapter 7. Specifically, we resort to applying morphological deriva-

tives to numerically approximate the infinity-Laplacian as in [54]. Proper numerical

realizations of PDEs mimicking morphological process is an important issue. Among
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the recent works is [55] where the flux-corrected transport scheme to the PDE imple-

mentation of erosions and dilations with arbitrary structuring elements is considered.

3.2 Method

For a shape S, we consider the following PDE with the infinity Laplacian:

(
∆∞ −

1

ρ2

)
fS = −1 subject to fS

∣∣∣
∂S

= 0. (3.1)

While acquiring solutions to (3.1), ρ is chosen to be equal to the shape radius, i.e.

the maximal value of ℓ∞ (chessboard) distance transform. After obtaining fS , it is

normalized such that the maximum value of the field is 1. These ensure the scale in-

variance of fS . To acquire numerical solutions, the approximation to Laplace operator

in L∞ [54],

∆∞fS(x) ≈ max
y∈B(x)

fS(y) + min
y∈B(x)

fS(y)− 2fS(x) (3.2)

is used where B(x) denotes a unit ball centered at x,. The numerical solution to (3.1)

can be acquired by using the scheme proposed in [32].

The equation (3.1) is favorable because the level curves of fS roughly serve as gradual

transformation of the shape boundary ∂S towards a square under the influence of

the diffusion governed by the ℓ∞ metric. The points at a system governed by (3.1)

generate and cumulate the values of the field, fS . For squares, due to their isotropy

in ℓ∞, the total accumulated values of points equidistant from the boundaries are the

same. Therefore, for a square S, the value of the field at x depends only on the

minimum distance of x to boundary (equivalently, on its distance to the shape center,

by which we mean the points attaining the maximum distance transform value). The

equidistant points form an equivalence class. As a result, the problem of acquiring

an analytic solution reduces to disjoint one dimensional problems over regions of the

square, which are continuous on the intersection of the regions.

In view of these, analytical solutions to Eq. (3.1) for up-right squares are acquired as
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explained in Chapter 7. The analytical solution can be described as

fS(x, y) = ρ2 − ρ2
e

e2 + 1
×(

exp

{
max {|x|, |y|}

ρ

}
+ exp

{
−max {|x|, |y|}

ρ

})
.

(3.3)

Although the solution is derived for a square, it naturally extends to rectangles. This

is because the equivalence classes of a square, which are again squares, deform to

rectangles: the distances to boundary and the shape center still add up to ρ since

the shape center is a line for a rectangle rather than a single point. The validity of

the acquired solution for the elongated unit-circle (rectangle in this case) is due to

ℓ∞ norm, and in the general scheme does not hold. For example, in the case of

ℓ2, an analytical solution for which is given in [52], circles are the corresponding

equivalence classes, yet, the solution for circles does not apply for ellipses.

In the present form the solution is not translation invariant. To make it so, implicit

reference to the origin should be removed. This can be done by reformulating (3.3)

in terms of ℓ∞ distance transform since max {|x|, |y|} = ∥(x, y)∥∞. We acquire:

fS = ρ2 − ρ2
e

e2 + 1
(exp{t′∞}+ exp{−t′∞}) (3.4)

where t′∞ = 1− t∞/ρ, and t∞ refers to ℓ∞ distance transform of S.

In Figure 3.1 (b), the difference between the normalized (i.e., has 1 as its maxi-

mum value) numerical solution f̂S,numerical and the normalized analytical solution

f̂S,analytical for a square of side length 256 is displayed.

(a) f̂S,numerical (b) f̂S,numerical − f̂S,analytical

Figure 3.1: Field illustrations on a square of 256× 256 pixels.

The maxima of the non-normalized fields are 5766.3 and 5797.8, respectively. The

point-wise mean error between the normalized fields is

E =

∫
|f̂S,numerical − f̂S,analytical|

|S|
= 0.001
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This is an acceptable deviation, taking into account that numerical solution is acquired

up to a first order approximation of ∆∞.

To construct a measure valid for all shapes, we need (3.4) to extend beyond rectangles.

Thankfully, the solution is in terms of the distance transform of the shape and can be

deployed as is as an extension of the field. Then for any shape S,

fS,assumed := ρ2 − ρ2
e

e2 + 1
(exp{t′∞}+ exp{−t′∞}) .

With this choice, we can assign scores of contribution to complexity to each point in

the shape by simply subtracting the assumed extension from the numerically acquired

solution. Thus we define the complexity encoding field dS as

dS := f̂S,numerical − f̂S,assumed.

This corresponds to measuring the error in assuming each point is coming from a

square of radius ρ in which the point is located ρ t′∞ away from the center.

Acquired fields, f̂A,numerical and dS , for a square with an appendage of size 64× 128

on one side are shown in Figure 3.2.

(a) f̂A,numerical (b) dS

Figure 3.2: Field illustrations for a square with a rectangular appendage.

The introduced protrusion, being one of the simplest ways of increasing complex-

ity, is informative in understanding the behavior of the proposed field. Looking at

Figure 3.2 (b), we observe that the negative values occur around the rectangular ap-

pendage. Pixels near boundary, be them of base square or appendage, attain smaller

values and would be disregarded in a thresholded treatment of the field. The extrema

is attained exactly at the two center pixels in the vertical direction along the edge of

the square.
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3.3 Illustrative Experiments

In all the experimental results depicting dSs, if a color bar is not shown, we use a

color scale is between 0 and −0.446 where the zero is denoted by yellow. In the first

experiment, we demonstrate the method on composite rectangles of constant width.

The size of the square is 64 × 64, i.e., one quarter of the previous square used in

Figure 3.1. As shown in Figure 3.3, these shapes have no pixels that increase the

complexity. Again, slight fluctuations in dS are due to the first order approximation

to the infinity Laplacian operator.

Figure 3.3: Composite rectangles of constant width

In the second experiment, we apply the method to floor plans of increasing com-

plexity. Results are depicted in Figure 3.4. The first floor plan is composed of four

identical rooms. This plan has no pixels that increase the complexity. As we intro-

duce missing or extra segments, respective locations start to attain negative dS values.

The last floor plan consists of multiple rooms of varying sizes. The two rooms of

the largest size are deemed as the simplest with dS values near zero. dS attain higher

negative values inside the smaller rooms.

Note that the scalar field dS is parameterless. As such, it implicitly measures the

deviation from the rectangle that maximally fits into the shape due to the choice of

ρ (§ 3.2). Hence, smaller rooms are identified as parts of the plan that increase the

plan’s complexity.

For specific purposes, however, one might be tolerant of the size or interested in

identifying complexity with reference to a prototype shape of certain size rather than

the maximal size. To this end, ρ can be treated as a parameter of dS . In that case,

30



Figure 3.4: dSs (top row) for some floor plans (bottom row)

positive values for dS arise in the central parts of larger rectangles. This is illustrated

in Figure 3.5. The rightmost figure shows the original result from Figure 3.4, i.e.,

ρ′ = ρ. In the remaining two results, notice that dSs take both negative and positive

values as indicated by the color bars. In the leftmost figure, ρ′ = 8ρ/9 coinciding

with the width of the two identical square-shaped rooms on the right-side of the plan.

Inside these two rooms dS is almost uniformly zero as indicated by the color bar.

Furthermore, the number of pixels where dS is negative decreases.

ρ′ = 8ρ/9 ρ′ = 4ρ/9 ρ′ = ρ

Figure 3.5: When the critical width ρ′ is treated as a parameter

In the third experiment, we explore quantifying the shape complexity with a single

value by using mean(|dS|) as the complexity indicator. Some illustrative results are

shown in Figure 3.6.

In the final experiment we explore how we can simplify a complex shape towards a

rectangle. We had observed that the local extrema of dS are near the centers of regions

that increase complexity. Furthermore, at the extrema, the gradient of fS,numerical
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2 4 16 24

26 31 66 132

Figure 3.6: Sample complexity quantifications for shapes.

indicates the position of such regions relative to the shape body. Thus, the orthogonal

direction to the gradient reveals the directions for cuts that lead to a more rectangular

shape.

As a proof-of-concept, we used a greedy iterative algorithm. It leverages both fields

at each iteration step, dS providing information on the cut location and fS,numerical

providing information on the cut direction. For example, for the square with an ap-

pendage (Figure 3.2), the mean gradient of fS,numerical at the two neighboring extrema

of dS has no component in y direction. Therefore, the shape is cut along the y direc-

tion from these extrema, separating the base square and the appendage.

Figure 3.7: Iterative simplifications of various shapes towards a rectangle (best

viewed in digital).

Illustrative cuts are shown in Figure 3.7. When determining the direction normal

to the gradient, the numerically computed direction is replaced with the direction of
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closest axis if the angle between them is lesser than 2.86 degrees (≈ arctan 0.05).

In Fig. 3.8 the mean absolute value and maximum absolute value of the proposed

fields for squares with increasing appendage sizes are shown. The appendage sizes

are k × 2k pixels for k ∈ {0, 4, . . . 128} where the base square is of 256 × 256

pixels. Note that this means the initial shape is a square and the final shape is a rect-

angle. Hence, the two ends of the scores attain the same mean and maximum scores

as expected. The extremum of the maximum absolute value plot is attained for the

appendage of size 60 × 120. The mean absolute value plot is skewed due to the in-

creasing number of non-zeros present in the constructed fields, which in turn is due

to the increasing area of the appendages.

0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256
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Figure 3.8: Mean absolute values and maximum absolute values of the complexity-

encoding fields for squares with increasing appendage sizes

Throughout the chapter, we assumed that the prototype is a rectangle (or hyper-cuboid

in higher dimensions). Yet, similar results can be obtained by using the unit balls of

ℓ1 and the corresponding distance transform; the analytical solution Eq. (3.4) extends

seamlessly to that case. See Figure 3.9 for sample results where we demonstrate

measuring rhombicity.

We proposed a new measure dS for distributed coding of the shape complexity. Each

pixel on the shape is assigned a value dS quantifying the pixel’s contribution to over-

all complexity where the simplicity is understood as the expressibility of the shape

in terms of an assumed prototype. We performed proof-of-concept experiments to

demonstrate the practical applicability of the method. In the next chapter, we extend

our method to be compatible with more general prototypes.
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Figure 3.9: Extending the method to measure rhombicity
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CHAPTER 4

RELATIVE SHAPE COMPLEXITY

In this chapter, to the question of “what is the complexity of a given shape?”, i.e., the

problem of quantification of shape complexity, we answer with a question:

What is considered as the simplest shape?

Our point in this answer is that complexity is intrinsically relative, and it is challeng-

ing to discuss the term without a reference point.

Consequently, we propose a measure of relative shape complexity. Proof-of-concept

results are presented in this chapter. Applications for deep learning are presented

in Chapter 5, where we achieve state-of-the-art-results, and Chapter 6, where sta-

tistically significant improvements on several computer vision tasks are acquired, to

further establish the use of the proposed method. But first, a discussion about the

relative aspect of complexity is in order.

4.1 The Relative Aspect of Complexity

The lack of a canonical definition of complexity is mentioned often in the literature.

We attribute a part of why this is so to the relative aspect of complexity. Gell-Mann,

in [2], states that measures that relate to complexity are relative as they are depen-

dent on i) the previous knowledge, ii) the idealization of the deployed computational

model’s capabilities, iii) the language of description, and iv) the level of detail used

in describing the object. The following argumentation is based on several different

examples of complexity, by means of which, we elaborate particularly on the first two

factors. Thereby, we attempt to confine what we mean by the word “relative" in our
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context.

In linguistics, the complexity of a language, as in the level of intricacy or difficulty

of that language, can be quantified in different ways [56]. The measures are broadly

referred to as measures of linguistic complexity. The complexity of a sentence can be

perceived differently depending on the observer’s linguistic background. For exam-

ple, in [57], researchers show that the first language (L1) background of participants

contributes to the complexity of the second language (L2), and in [58], the morpho-

logical complexity of L1 of the participants is found to play a crucial role in estimating

their difficulty while acquiring Dutch as L2. Similarly, [59] reports that the syntactic

complexity of English writings of non-native speakers (NNS) differentiate from those

of native speakers when the L1 background of NNS are taken into account. Thus, the

previous knowledge is an important factor while quantifying complexity.

Limiting ourselves to the theory of computation for mathematical rigor, we consider

the complexity of computable problems [60, 61]. Each computable problem, denoted

as P , admits a class of computable solutions that can be represented as algorithms

({AP
i }i∈N). It is common convention in the theory of computation to consider the

scaling of the needed resources of an algorithm under changes of problem’s input size

as the algorithm’s complexity. For example, when the resource under consideration

is time, we are talking about computational complexity (CoC(Ai)), when it is space,

space-complexity (SpC(Ai)). In a similar vein, we can talk about the complexity of

a problem as the complexity of the optimal algorithm that solves it, i.e., CoC(P ) =

mini{CoC(AP
i )}, SpC(P ) = mini{SpC(AP

i )}.

With these established, we consider a specific problem. Our interest in this problem is

that it demonstrates a change of complexity classes with a change in the assumptions

about the nature of the allowed operations on data.

Example 4.1.1. (the Deutsch-Jozsa problem [62]) Let f : {0, 1}n → {0, 1} be a

function such that is either constant or balanced (for exactly half of the inputs it

evaluates to 0). Determine whether f is constant or balanced.

Any classical solution to this problem has to evaluate the function 2n−1+1 times in the
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worst case scenario, i.e., in exponential time. However, the Deutsch-Jozsa algorithm

solves this problem in polynomial time (in fact, using a single evaluation of f [63]),

demonstrating that the mathematically rigorous notion of computational complexity

is relative to the allowed operations on data.

Another example conveys the message more clearly: with a compass, it is easier to

draw a circle than a triangle; with a ruler, vice versa. Thus, more generally, we say

complexity is relative to the available tools.

Returning back to shape complexity, we argue that it is also relative. Our notion

of relativeness is with respect to the prior knowledge represented via predetermined

simple shapes. As mentioned before, most measures of shape complexity implicitly

takes circles as the simplest shapes. The measure P 2/4πA is a canonical example.

Our aim is to make this implicit assumption explicit. In the next section, we start by

defining a mathematically rigorous and sensible notion of a family of simplest shapes

determined by what we refer to as prototype shapes.

4.2 Defining Simplest Shapes

A common theme in complexity studies is the notion of compressibility. If the object

at hand is highly compressible, it is considered simple, otherwise, more complex.

Example 4.2.1. (Complexity and compressibility)

1. Kolmogorov-Chaitin complexity [64, 65]: One can measure the complexity of

a given object as the length of the shortest algorithm, written in a predetermined

programming language, that precisely reproduces it. This complexity measure

incurs that the more compressible an object is, the lower its complexity. For

example, a compressible string has low Kolmogorov-Chaitin complexity due

to the availability of a short description for it.

2. Linguistic complexity: The structural complexity of a language [66] can be

measured by the number of grammatical structures/rules in it. In a sense, the

37



number of different structures supported by a language indicates its compress-

ibility.

We follow a similar logic by letting a shape in an embedding space be a prototype1

and defining the shapes acquired by a certain operation to be the corresponding family

of the simplest shapes 2. The operation we consider is the successive morphological

dilations of a single point with this prototype. In this way, the prototype acts as a com-

pressed representation of this family with respect to morphological dilation (cf. § 4.5).

Ideally, our definition of simplest shapes is generic enough to hold for shapes of

arbitrary dimensionality in both continuous and discrete domains.

Example 4.2.2. (Simplest shapes in Rn)

In the following, we indicate the names of the corresponding boundaries in parenthe-

ses.

1. (Hypercubes) Let Cϵ = {x = (x1, x2, · · · , xn) ∈ Rn : ∥x∥∞ ≤ ϵ} denote

a closed n-cube of side length 2ϵ > 0 in Rn. Then, all n-cubes Ckϵ, where

k ∈ Z+, are included in the family of simplest shapes with respect to Cϵ in

view of

C(k+1)ϵ = Ckϵ ⊕ Cϵ.

2. (Hyperspheres) In the same grounding as the n-cubes, the closed n-ball of ra-

dius ϵ > 0, Bϵ = {x ∈ Rn : ∥x∥2 ≤ ϵ}, admits all n-balls Bkϵ where k ∈ Z+

in its family of simplest shapes.

3. (Hyperellipsoids) More generally, the closed n-ellipsoid with a = (a1, a2, · · · , an),
Eϵ,a = {x ∈ Rn : ∥ (xi/ai)

n
i=1 ∥2 ≤ ϵ}, admits all n-ellipsoids Ekϵ,a in its fam-

ily of simplest shapes.

In the discrete setting, such as the infinite rectangular grid, similar, yet, different fami-

lies of simplest shapes can be defined. The main point of difference is that some shape
1 These are the structuring elements in mathematical morphology, cf. § 4.5. We prefer to use the word

“prototype" instead, to emphasize the semantic context we assign to these objects.
2 We consider shapes to form an equivalence class under spatial translations.
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families that can be encoded with an arbitrarily small prototype can no longer be en-

coded in a discrete domain due to the finite representation capability. Most notably,

objects that require arbitrary precision, such as hyperellipsoids, do not constitute a

family of simplest shapes in the discrete domain3

Example 4.2.3. (Simplest shapes in Zn)

1. (Hypercubes) Let Cm = {x = (x1, x2, · · · , xn) ∈ Zn : ∥x∥∞ ≤ m} denote

an n-cube in Zn of side length 2m + 1 ≥ 0 where m is an integer. Then, all

n-cubes Ckm, where k ∈ Z+, are included in the family of simplest shapes with

respect to Cm.

2. (Hyper-diamonds) Similarly, Dm = {x = (x1, x2, · · · , xn) ∈ Zn : ∥x∥1 ≤ m}
admits all n-diamonds Dkm in its family of simplest shapes.

3. Denote by Lm the n-cubic lattice in Zn of length m in each direction and index

the lattice sites by n numbers, each in the closed interval [1,m], in increasing

order. Then we define a regular n-checkerboard of diagonal length (2m + 1)

(denoted H2m+1) as a binary pattern on L2m+1 for which all the lattice sites with

all of its coordinates being an odd number are 1, and the rest of the sites are 0.

The family of simplest shapes of H2m+1 contains all n-checkerboards H2km+1.
4

Sample discrete shapes in two and three-dimensions are demonstrated in Figure 4.1.

In practice, prototype shapes of desired size can be attained from a given sample of a

shape by means of rescaling. Figure 4.2 exemplifies this scenario. We acquire a mean

prostate shape from the NCI-ISBI13 dataset, and obtain a prototype by rescaling it

by 1/12 in each direction via nearest-neighbor interpolation. This approach can be

considered as a lossy compression scheme. In the case depicted in Figure 4.2, a com-

pression rate of 1.7× 103 ≈ 123 is achieved. The corresponding lossy reconstruction
3 This is not due to our choice of definition for simplest shapes but is due to the discrete space structure. As

shown by Rosenfeld [67], the same pathological situation occurs for the measure P 2/4πA. See [68] for a more
elaborate discussion.

4 The checkerboard in three-dimensions relates closely to the face-centered cubic crystalline structure in
crystallography.
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Figure 4.1: Simplest shapes in Z2 and Z3: (left) n-cubes, (middle) n-diamonds,

(right) n-checkerboards.

is depicted in Figure 4.2 (c). Note that the lossy reconstruction can be considered as

a polygonal approximation to the original shape.

(a) Mean prostate shape (b) Prototype (1/12) (c) Lossy reconstruction

(≈365.000 voxels) (213 voxels) (≈350.000 voxels)

Figure 4.2: Prototypes can be acquired from a given shape by means of rescaling.

This defines a lossy compression approach for shapes.

4.3 Measuring Relative Shape Complexity

So far, we have established the notion of the family of simplest shapes relative to

a prototype. Our aim now is to construct a measure of shape complexity that is i)

compatible with the defined notion of simplest shapes, i.e., relative, ii) extends con-

sistently under incremental deformations to other shapes, and iii) exactly computable

in discrete domains.
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Before introducing our measure, we first define the notion of a generalized distance

transform (DT) that will be helpful in the following explanations.

Definition 4.3.1. (Generalized distance transform) The generalized distance trans-

form (DT) tS,s of a shape S with respect to the prototype s encodes the distance of

each point in S from the boundary and is acquired as the sum of successive erosions

(cf. § 4.5) of S by s.

For prototypes such as a square or a diamond, the underlying metric spaces ℓ∞ and

ℓ1 along with the corresponding DTs are well-known. However, an analytic expres-

sion of the DT for an arbitrary prototype is in general not available. Therefore, we

construct the generalized DT tS,s as given in Alg. 1. Note that the generalized DT is

an integer-valued function. We refer to the set {x ∈ S : tS,s(x) = max tS,s} as the

shape center.

Algorithm 1 Generalized DT of a shape w.r.t. a given prototype
Ensure: S and s are binary images

tS,s ← S

while S is not empty do

S ← S ⊖ s

tS,s ← tS,s + S

end while

4.3.1 Governing equation

We consider (
∆s −

1

ρ2

)
fS,s = −1, subject to fS,s

∣∣∣
∂S

= 0 (4.1)

where s is the prototype and ∆s denotes the corresponding morphological Laplacian

operator (cf. § 4.5). We choose the parameter ρ to be the maximum of the generalized

DT of S with respect to s.

Note that, to a first order approximation, the infinity Laplacian ∆∞ deployed in Chap-
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ter 3 and the morphological Laplacian ∆s are equivalent since [69]

∆∞v(x) ≈ max
y∈B(x)

v(y) + min
y∈B(x)

v(y)− 2v(x)

on a regular grid where s is a square of unit diameter and B(x) is the unit ball centered

around x.

Migration from the infinity Laplacian to the morphological Laplacian reflects a change

of perspective on digital shape complexity. Specifically, for exact computability, the

deployed mathematical framework should have exact digital representations since the

underlying space is digital. With this in mind, the morphological Laplacian is a natu-

ral choice, as it has a discrete representation that is compatible with the digital space.

In contrast, the infinity Laplacian is a continuous operator by definition. Thus, in a

discrete setting one can only approximate it. Therefore, by switching to the morpho-

logical Laplacian, we use tools that are well-suited to the space in which the objects

of interest are embodied.

In Chapter 7, we show that analytical solutions to Eq. (4.1) can be obtained as a

function of the generalized DT for the simplest shapes with respect to a prototype s

as:
fr = Aλr

1 +Bλr
2 + ρ2,

λ1,2 =
1±

√
1− 4γ2

2γ
,

A =
ρ2

(
λρ
2 −

ρ2

ρ2+1
λρ−1
2

)
λρ
1 − λρ

2 −
ρ2

ρ2+1

(
λρ−1
1 − λρ−1

2

) ,
B = −A− ρ2

(4.2)

where γ = ρ2

2ρ2+1
and fr denotes the value attained by the elements of the set {x ∈ S :

min dist(x, ∂S) = r}, that is, the points that are r away from the nearest boundary.

4.3.2 Complexity-encoding field and measuring complexity

The solution given by Eq. (4.2) is exact only for the simplest shapes of the prototype.

Nevertheless, interpreted purely as a function of the generalized DT, it can be gener-

alized to arbitrary shapes, albeit no longer exact. Interpreted in this way, the function

hypothesizes a form for the solution. We denote this function as f h
S,s = f h

S,s(tS,s), “h"
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standing for hypothesized. If S is a shape in the family of simplest shapes of s, then

f h
S,s coincides with the actual solution fS,s. Otherwise, it only approximately satisfies

Eq. (4.1). The disagreement between the hypothesized solution and fS,s increases as

S becomes less regular with respect to the prototype. Therefore, we propose

CS,s = 1− fS,s
f h
S,s

as a relative shape complexity-encoding field.

Semantically, this field measures the error of fS,s(x) at each point x ∈ S compared to

the field value when x comes from a simplest shape of radius ρ in which x is located

ρ− tS,s(x) away from the shape center.

We encode complexity not through a statistical tool, such as entropy, but rather through

a hypothesis about what is simple. Hence, it is possible to use any measure of devia-

tion between the hypothesized and constructed field as a single number indicating the

complexity of a field. We opt for relative error:

c =
∥f h

S,s − fS,s∥2
∥f h

S,s∥2
.

We also use d = round (c× 103) when precision is not of primary concern.

In practice, fS,s is constructed using one of the numerical solution strategies outlined

in Chapter 7.

4.4 Proof-of-Concept Results

In this section, we present our results that serve as a proof-of-concept. Initially, we

consider results pertaining to the feasibility of the proposed method by showing that

the theoretical simplest shapes are in fact quantified as such. Further, we show that

the method passes this feasibility test for most non-convex prototypes. Next, we sep-

arately consider two directions for quantifying the complexity of arbitrary shapes: i)

complexity with respect to a probe, ii) complexity in the sense of self-similarity. The

former is useful when we are interested in quantifying the complexity of a collection

of shapes given a building block. The latter relates the complexity of a shape to itself
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and provides an absolute measure of complexity. In both instances, our experiments

consistently yield meaningful results.

4.4.1 Feasibility of the proposed method

To establish the feasibility of the proposed method, we focus on the validity of the

hypothesized solution for simplest shapes under changes of shape and size of the

prototype. The only restriction we impose on prototypes is that each point belongs to

its own neighborhood, i.e. the center element of prototype is nonzero.

Convex prototypes. Let Ss,k, k ∈ Z+, denote a simplest shape with respect to the

prototype s such that Ss,1 = s and Ss,k+1 = Ss,k ⊕ s. For prototypes fitting into

2 × 2, 2 × 3, 3 × 3, and 3 × 4 grids, we tested the agreement between the hypothe-

sized solution and the numerically acquired solution for Ss,k, k ∈ {1, 2, 10, 50} for

all possible prototypes. For all convex prototypes5, the maximum complexity score

is approximately 8 × 10−9 when the numerical field is initialized as zero. It’s im-

portant to note that this non-zero value results from the convergence threshold of the

numerical scheme, set to 10−8 in these experiments. In fact, if we initialize the field

while acquiring the numerical approximation f n
S,s with f h

S,s, the iterations converge

at the 0-th step with c = 0. We report c for f n
S,s initialized from zero to account for

imprecisions arising from the numerical scheme.

Non-convex prototypes. For prototypes represented in 2 × 2, 2 × 3, and 3 × 3

grids, f h
S,s and f n

S,s agree for all possible non-convex shapes as well. This includes

prototypes such as the checkerboard pattern 6. We observed that for some non-

convex shapes in 4× 3 grid, the two fields agreed less; e.g. for prototypes with holes

such as (c = 4.7× 10−6 for Ss,50) and most notably for disconnected prototypes

such as (c = 1.29 for Ss,50). For prototypes in larger grids, we performed non-

5 Although trivial, there is one exception: prototypes which encode a point as its only neighbor. In this case,
Ss,k = s for all k. Corresponding solutions can be acquired by changing the expression for fρ to take itself as its
both minimum and maximum neighbor.

6 We represent prototypes in the grid form where white squares corresponds to the points included in the
neighborhood of the center element of grid. The center element of an n×m grid is the element with coordinates
(⌊(n+ 1)/2⌋, ⌊(m+ 1)/2⌋) in a coordinate system where the top left element has coordinates (1, 1).
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exhaustive tests and observed similar results.

(a) c = 7.54× 10−9 (b) c = 7.49× 10−9

Figure 4.3: The solutions to Eq. (4.1) constructed on two unusual simplest shapes –

f n
S,s for Ss,10 of (a) s = and (b) s =

Our findings suggest that f h
S,s applies well beyond the prototypes chosen as the unit

balls of the usual metrics, ℓ∞ and ℓ1. Feasible results might be expected even for

non-convex prototypes (as in Figure 4.3), though disconnected prototypes should be

approached cautiously.

4.4.2 Complexity with respect to a probe

Two-dimensional probes. Figure 4.4 displays the set of probes we use. We mea-

sure the complexity of a collection of shapes from MPEG7 dataset [70]. The complexity-

encoding fields and complexity scores is shown in Figure 4.5 where within each quar-

ter of the figure the used probe corresponds to the one in Figure 4.4. Each field is

shown at its own scale, hence the used color map is to give only a sense of the high

complexity parts within a shape. When comparing different shapes the reported d

scores should be kept in mind.

(a) (b) (c) (d)

Figure 4.4: 2D prototypes used as probes.
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The first probe is a digitized ellipse. The complexity measurements with respect to

it yields the face and jar shapes as the simplest two, Figure 4.5 (a). The second

probe mimics the rounded triangle shape which, indeed, attains the minimum score,

Figure 4.5 (b). We include the third probe especially for its behavior on the star

shape: it identifies the regions of the star with similar inclination to its simplest shape,

Figure 4.5 (c). The fourth probe is acquired randomly as a sparse pattern in a 7×7 grid

to demonstrate the behavior of the constructed field for different shapes for a random

disconnected prototype, Figure 4.5 (d). Note that despite being disconnected and not

including points in their own neighborhoods, the probe yields consistent results with

respect to a scheme where the simplest shape is the convex hull of the probe.

For the first three probes, in each shape, an area roughly corresponding to the max-

imally fitting up-right ellipse/triangle/inclined region is considered to be the least

contributor to the complexity. For the fourth probe we observe a similar behavior

not with respect to the probe itself, but to its convex hull. We emphasize that this is

despite not only the non-convex but also the disconnected nature of the fourth probe.

197 57 35 282 87 183 89 116 245 16

(a) (b)

183 120 83 158 57 203 83 96 181 57

(c) (d)

Figure 4.5: Five shapes probed with prototypes from Figure 4.4. The numbers on top

of each shape is its complexity score (d value).

Three-dimensional probes. For our experiments in three dimensions, we first con-

sider a selection of shapes from the QSC dataset [11]. The used probe and its simplest
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shape (Ss,10) are shown in Figure 4.6. The collection of shapes along with their d

Probe c = 7.29× 10−9

Figure 4.6: A 3D probe s and its corresponding isotropic shape Ss,10.

scores with respect to the probe are displayed in Figure 4.7. We observe that the more

convex the shape gets, the more similar it becomes to the simplest shape of the probe,

hence, attaining lower complexity scores.

d = 24 d = 29 d = 32 d = 35 d = 44

Figure 4.7: Sample results on shapes from the QSC dataset.

Secondly, we consider shapes from Princeton segmentation benchmark [46]. Each

shape displayed in Figure 4.8 is voxelized to have approximately 1.6 × 106 voxels.

We probe each shape in Figure 4.8 with a sphere prototype fitting into a 7 × 7 × 7

grid. Corresponding complexity scores are reported in the figure as d2.

d1 = 46 d1 = 73 d1 = 127 d1 = 160 d1 = 246 d1 = 300

d2 = 97 d2 = 73 d2 = 129 d2 = 133 d2 = 172 d2 = 224

Figure 4.8: Sample results in 3D. d1 is the complexity score in the sense of self-

similarity at the scale 1/20, d2 is the complexity score with respect to a spherical

prototype.
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4.4.3 Self-similarity

To measure complexity in the sense of self-similarity, we acquire a prototype from

each shape by rescaling the shape. The prototype is used as a probe for the shape

itself. At a given scale this serves as an absolute measure of complexity.

In Figure 4.9 we present results for two collections from the MPEG7 dataset. The

prototype for each shape is acquired by rescaling the shape by 1/35. Note that for

(a) (b)

Figure 4.9: The complexity-ordered collections (a) device3 and (b) device9 from

MPEG7 with respect to prototypes acquired by re-scaling the original images.

both basic shapes, fairly low complexity scores (d = 1 for a square and d = 11 for

a circle) are acquired. Further, we observe that structural differences such as those in

boundary curvature or number of spikes are accounted for by our measure. Finally,

we notice that the highest increases in the complexity of shapes in these collections

are due to indentations, and that closer they are to the center of the shape, the more

impactful they get.

The reported d1 scores in Figure 4.8 reflect the complexities when the scale parameter

is 1/20. Here, we observe that the simplest shape in the sense of self-similarity is the

cube with an appendage and the most complex is the ant shape owing to its high

non-convexity.
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4.5 Some Definitions in Mathematical Morphology

Definition 4.5.1. (Morphological dilation and erosion) The morphological dilation,

v⊕ s, of a set (or function) v with respect to the structuring element s is the operation

⊕ such that

(v ⊕ s)(x) = sup
y∈s

v(x− y).

The dual transformation, morphological erosion, v ⊖ s is given by

(v ⊖ s)(x) = inf
y∈s

v(x+ y).

Morphological dilation and erosion are dual operators in the sense that, for binary

sets v,

v ⊕ s = (vc ⊖ s)c , v ⊖ s = (vc ⊕ s)c ,

where the superscript c denotes the set complement operation.

Definition 4.5.2. (First-order morphological differential operators) The internal gra-

dient operator, denoted ∇−
s , is defined by its action as

∇−
s f(x) = f(x)− (f ⊖ s)(x).

Similarly, the external gradient operator, denoted ∇+
s , is defined as

∇+
s f(x) = (f ⊕ s)(x)− f(x).

Definition 4.5.3. (Morphological Laplacian) The morphological Laplacian, denoted

∆s, is a second-order morphological differential operator, that can be expressed con-

veniently as a combination of the external and internal gradients,

∆sf(x) = (∇+
s −∇−

s )f(x) = (f ⊕ s)(x) + (f ⊖ s)(x)− 2f(x).

The action of the morphological differential operators are exemplified in Figure 4.10.

Notice the change in the edge thickness and detected edges (for example, around the

sideburns) when the structuring element is altered.

Development of mathematical morphology started with the works of Matheron and

Serra. A chronological and insightful first-hand account of the birth of mathemat-

ical morphology is given in [71]. Matheron and Serra’s works on binary sets was
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Figure 4.10: The effect of morphological differential operators (internal gradient∇−
s ,

external gradient∇+
s and the morphological Laplacian ∆s = ∇+−∇−) with respect

to two different structuring elements (s1 and s2) on the image “Cameraman".

followed by the development of gray-scale morphology. Nakagawa and Rosenfeld

[72] are the first to consider such a generalization. This is followed by the works of

Sternberg [73] and Serra [74]. Heijmans [75] studied the gray-scale morphological

operators in detail. Morphological differential operators such as external/internal gra-

dients (also called sup/inf-derivatives in 1D [76]) and morphological gradient [77],

and morphological Laplacian [78] have been introduced and found applications in

image segmentation [79], image coding [80], processing tensor-valued data [81].
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CHAPTER 5

APPLICATION: GENERALIZABLE MEDICAL IMAGE SEGMENTATION

VIA THE RELATIVE COMPLEXITY ENCODING FIELD

In this chapter, we propose a novel application for shape complexity. We build upon

our earlier claim that the proposed shape complexity-encoding field is semantically

rich, and demonstrate one way it can be employed in deep learning. The specific

problem we consider is single-source domain generalization for prostate segmenta-

tion.

In the domain generalization (DG) scenario, a model is trained on a set of data from

source domain(s), and tested on previously unseen data from target domains. The

case when the model is trained on a single source domain is called as the single-

source DG scenario.

In medical imaging, training data is scarce (due to privacy policies and costly annota-

tion processes) and of highly heterogeneous characteristics (due to different protocols,

magnetic field strengths, etc.). Thus, neural networks with large number of param-

eters, whose performance is highly dependent on the diversity of training data, are

trained by multiple passes over a small set of data. Consequently, despite achieving

decent performance on the source domain, models trained in this manner tend to over-

fit to the training set, and, when tested on target domains, the performance decreases

drastically.

Our initial results are very promising, achieving state-of-the-art performance in prostate

segmentation.
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5.1 Related Work

We briefly review domain generalization, domain adaptation, and explicit usage of

shapes in deep learning.

5.1.1 Domain generalization and adaptation

DG methods can be broadly classified into three main categories: data-based, learning-

based, and representation-based approaches.

Data-based approaches aim to ensure generalizability by means of careful aug-

mentation of the data to span a larger distribution during training. In BigAug [82],

the authors take a pipelined approach and show that transformations relating to im-

age quality, appearance, and spatial configuration can be applied in a stochastic and

stacked manner to obtain models that are robust under domain shifts. This simple yet

effective approach constitutes a strong baseline for DG methods. More recently, [83]

considered nonlinear filtering and transformations for augmentation with the aim of

disentangling image content from image style. The works [84, 85] target augmen-

tations using intensity shifts. While [84] achieves this via global intensity nonlinear

augmentations (GIN), [85] formulates the intensity transformation as a mapping that

can be learned using adversarial training to produce samples that challenge the net-

work. In a similar vein, adversarial domain synthesizer (ADS) [86] employs two

adversarial branches that integrate the approach of the GIN and introduces a sepa-

rate branch to ensure the synthesized images do not alter the semantics of the source

image.

Descriptive statistics of available data can also be considered as a means for DG.

For instance, in the training phase of [87], adaptive instance normalization (AdaIN,

[88]) is employed to counteract the bias towards global statistics. The authors adopt

a stochastic application of AdaIN at the batch level in this approach. In the context

of federated learning, [89] incorporates AdaIN, allowing clients to share descriptive

statistics of their individual data, effectively tackling privacy concerns. An alterna-

tive perspective involves treating feature statistics as non-deterministic values derived
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from an underlying probability density function (PDF). This is exemplified in [90],

where the authors assume that feature statistics follow a Gaussian distribution.

The spectral properties of available data is also utilized for data augmentation. In [91]

and [92] explore generalizable learning based on the phase spectrum of data. Their

approach is based on the observation that the amplitude and phase spectra of the

the Fourier transform reflect features with distinct semantic levels. Specifically, the

amplitude spectrum is associated with low-level features like style, while the phase

spectrum carries higher-level semantics, such as the shape of an object. To exploit

this property, they employ amplitude spectrum mixing which aims at training models

that are robust under changes of features with low-level semantics.

Learning-based approaches, on the other hand, explore different learning strate-

gies that warrant generalizable feature learning. Meta-learning is used by [93, 94]

assuming the existence of data from multiple source domains. In their framework,

the realistic domain shift scenario is mimicked during training by treating some of the

source domains as meta-test and the rest as meta-train sets. EpiFCR [95], with more

training costs, proposes to leverage dedicated feature-extracting and task-specific net-

works for each domain that facilitate in training the main network. The auxiliary net-

works are utilized only during training and discarded afterwards. This is similar to

[96] where additional classifiers are used for entropy regularization.

In addition to these approaches, the gradient vectors during training are also utilized

to acquire generalizable models via favoring the learning of features with lower gra-

dients [88], or inter-domain gradient matching [97].

Representation-based approaches explicitly focus on the extraction of domain-

invariant features. In DICA [98], the authors propose a kernel-based optimization

algorithm maximizing the across-domain similarity while retaining the data-label re-

lations. This approach shares similarities with dimensionality reduction algorithms

such as kernel PCA [99], transfer component analysis [100], and covariance operator

inverse regression [101]. For DA and DG, scatter component analysis (SCA) is pro-

posed in [102] which combines the ideas from DICA, KPCA and kernel FDA [103].
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SCA quantifies separability of data and classes, and across-domain dissimilarity in

terms of a geometrical measure that they name as scatter in reproducing kernel Hilbert

space. Representing the feature data with X and the labels with Y , the assumption

that the marginal distribution P (X) changes while the conditional probability distri-

bution P (Y |X) remains intact, shared by the methods mentioned so far, is subop-

timal. Based on causality, a more realistic assumption can be made in which both

P (Y ) and P (X|Y ) changes, where Y is assumed to be the cause of X . For example,

[104] extracts conditional transferable components for which P (h(X)|Y ) is invariant

where h is a transformation of data. Similarly, with both the marginal and condi-

tional probability distributions changing, [105] proposes learning domain-invariant

class conditional distributions. This is achieved by maximizing the between-class

scatter while minimizing the scatter of class prior-normalized marginal distributions,

total scatter of class-conditional distributions, and within-class scatter. In a similar

spirit, [93], aims at retaining global inter-class relationships by aligning confusion

matrices while locally, sample clustering is leveraged to ensure the compactness of

extracted features. Some overarching ideas in [105] are implemented via adversarial

learning in the deep learning setting in [106].

If data from multiple domains are available, requiring that domains cannot be iden-

tified looking at the latent representations alone effectively implies domain-invariant

feature extraction. Two works that take this approach are [96] and [107]. Both works

employ a domain discriminator. In the case of the former the model is trained in an

adversarial manner, whereas in the latter work, domain discriminator is trained with

randomized or wrongly-assigned labels.

UndoBias [108] explicitly addresses dataset bias by introducing a model that learns

both a domain-invariant weight vector and a set of domain-specific bias vectors.

MTAE [109] uses auto-encoders to account for inter-domain variability of object ap-

pearances, facilitating the learning of robust features. In a similar setting, [110] intro-

duces a low-rank constraint on latent representations to ensure domain invariance of

extracted features. Building on the observation that input data from different domains

should share the same representation if derived from the same object, [111] proposes

an object-conditional (as opposed to class-conditional) objective via matching-based

algorithms.
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Domain adaptation (DA), similar to DG, aims at increasing the performance of mod-

els on target domains. It differs from DG in that, during or following the training

on source domain, the target domain data is leveraged to reduce the effect of distri-

bution shift. For medical imaging, a comprehensive review of DA methods is [112].

Roughly, we can divide DA methods into two categories as latent space [113, 114,

115, 116, 117, 118, 119, 120, 121] and image space DA methods [122, 123, 124].

The latent space methods aim at aligning latent representations of source and target

domains, whereas the image space methods aim at image translation from source to

target domains. Making use of task-specific decision boundaries, [114] tries to align

source and target domains. In [115], cross-domain feature matching via adversarial

training is proposed. Addressing a shortcoming of adversarial learning, [119] takes

category-level joint distributions into account for feature alignment. Hybrid meth-

ods, such as [125, 126, 127], utilize from both feature and image space alignment

approaches. For example, in [127], the proposed method for DA is composed of a

generation stage and an adaptation stage. In the generation stage image space data is

utilized while in the adaptation stage feature-level adaptation is used.

5.1.2 Shapes in deep learning

Shape of an object is a domain-invariant feature. Hence, shape learning is appeal-

ing for both DG and DA, and utilized by many works [94, 128, 129, 130, 131]. In

the context of DG, shape dictionaries and a shape coefficient predictor are utilized in

[128] for segmentation. The study [94] proposes a shape-aware approach that aims

at ensuring compact shape predictions while also enforcing accurate predictions near

boundaries. BayeSeg [129] uses shape information by modeling shapes in terms of

their spatial dependencies. In [130], the learning of structural properties are high-

lighted by means of structured edges. In the DA setting, [131] explores the usage of

evolving shape priors (ESP). In their approach, using self-supervised learning, gradu-

ally refined labels for target domain data are generated. ESP is initialized as the mean

shape of the source labels.

While CNNs excel at learning textures, they may not optimally utilize shape informa-

tion [132, 133]. Therefore, leveraging auxiliary mechanisms to help CNNs in learn-
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ing shape information is not limited to DG and DA, but of broader interest. Explicit

methods, such as those using active shape or contour models, shape dictionaries, or

Markov/conditional random fields, are reviewed in [134]. Methods that implicitly in-

tegrate shape information into end-to-end network training include those using shape

transforms, variational autoencoders, and topological constraints. The most relevant

to us among these are the methods that use shape transforms.

In the segmentation literature [135, 136, 137, 138, 139, 140, 141, 142], the most

commonly used shape transforms are distance transform (DT) and signed distance

transform (SDT). DT and SDT, despite encoding redundant information (in the sense

that they can be acquired trivially from shape boundary alone), provides a means

for forcing the networks to learn spatial relations within shapes. For the unbal-

anced segmentation problem, [135] defines a loss term based on SDT given by L =

1
|Ω|

∑
Ω SDT (y) ⊗ ŷ where Ω is the volume, y, ŷ are the GT label and network pre-

diction, respectively, and⊗ denotes the Hadamard product. In [136], minimization of

Hausdorff distance is considered where the loss termL = 1
|Ω|

∑
Ω(y−ŷ)2⊗(DT 2(y)+

DT 2(ŷ)) is employed. On top of segmenting the target organ, DT/SDT prediction can

be leveraged as a related task to ensure learning of spatial shape features more explic-

itly [138]. An additional prediction head is introduced to the segmentation network

in [140, 141] to predict DT. Introducing more parameters, [142] proposes using a

reconstruction branch for DT that shares only the encoding layers.

5.2 Proposed Approach

By their design, CNNs are better at learning texture rather than shape, as highlighted

in [132, 143, 133]. Therefore, the success of a CNN crucially relies on guaranteeing

that the correct texture is learned. However, two main issues in prevent this:

1. inaccurately annotated segmentations may force networks to learn incorrect

textures,

2. the tissue of a patient may have atypical textures.

In both cases, the generalizability of the model is compromised when attempting to
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learn incorrect or exceptional textures.

To address these issues, we propose a novel approach: weighting the importance

of different parts of the GT label based on their contribution to the overall shape

complexity. Our underlying assumption is twofold. First, we assume that the irregular

parts of a patient’s organ are more likely to have atypical textures. Second, we assume

that the mislabelled boundaries increase shape complexity over that region.

To this end, after constructing complexity-encoding fields, we define importance

masks as a linear function of the former. We use these importance masks to define an

importance weighted Dice loss, DiceIW, described in detail in the following.

5.2.1 Importance masks from complexity-encoding fields

Given that the complexity-encoding field C(S) of a shape S attain larger values on

complexity increasing parts whereas simple parts attain a value near 0, we seek a

function that weighs these regions otherwise. We opt for a simple choice and formu-

late f as a linear function of C:

Definition 5.2.1. Let C(d)max be defined as C(d)max := maxS∈D{maxx∈S C(S)(x)}, i.e.,

the maximum value of the complexity-encoding fields across all shapes in domain D.

Then, we call

fα(C) := (1− α)× C(d)max − C
maxx∈S{C(d)max − C}

+ α1, α ∈ [0, 1]

as the importance mask of shape S in domain D relative to the prototype acquired

from D, where 1 is a constant field of 1s of appropriate dimensionality and size.

The parameter α controls the impact of complexity field on the importance mask; for

α = 0, C contributes maximally, and for α = 1, C does not contribute at all. Although

it is possible to update this parameter during training based on training progress or

current loss, we prefer simplicity and use it as a constant. In our experiments, α = 0

led to performance decrease on the test of the source domain. As a result, we used

α = 0.1.
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5.2.2 Dice loss with importance weighting

Dice loss is a popular loss function for segmentation tasks, given as

Dice(ŷ, y) = 1−
2
∑

x∈Ω ŷ(x) y(x)∑
x∈Ω ŷ(x) +

∑
x∈Ω y(x)

.

Formulated in this way, the loss function does not prioritize any pixels; all pixels are

considered equally important.

To prioritize the learning of pixels that do not increase the complexity of the shape,

we propose a modified Dice loss. Our modified Dice loss can be written as

DiceIW(ŷ, y, C(S); fα) = 1−
2
∑

x∈Ω ŷ(x) y(x) fα(C)(x) + ε∑
x∈Ω ŷ(x) fα(C)(x) +

∑
x∈Ω y(x) fα(C)(x) + ε

or, more compactly,

DiceIW(ŷ, y, C(S); fα) = 1− 2 ŷi yi f
α
i (C) + ε

ŷi fα
i (C) + yi fα

i (C) + ε

where we use Einstein’s summation convention, i.e., repeated indices are summed

over. The variable ε is used following the common practice of “smoothing" the Dice

loss. We use ε = 10−5.

The modified Dice loss weighs the contribution of each voxel (pixel in the 2D case)

of the shape based on the value of fα(C) there. Effectively, this means that parts

that are deemed to be complexity-increasing contribute less to the loss function. The

gradient of DiceIW with respect to the predicted variables

∂

∂ŷj
DiceIW =

−2 yj fα
j (C)

ŷi fα
i (C) + yi fα

i (C) + ε

+ fα
j (C)

2 ŷi yi f
α
i (C) + ε

(ŷi fα
i (C) + yi fα

i (C) + ε)2
, j fixed

showcases the effect of fα(C) during optimization explicitly.

Example 5.2.2. In the one-dimensional setting, let y = {yi}4i=1 = (0, 1, 1, 0) be

the GT, ŷ = {ŷi}4i=1 = (0, 0.6, 1, 0.4) be a prediction, and f(C) = {fi(C)}4i=1 =

(0, 1, 0.5, 1) be the corresponding importance weights. In this example, f(C) indi-

cates that the first parameter can be ignored and the third parameter is less important

than the remaining two. In this case, whereas the conventional Dice loss yields

Dice(ŷ, y) = 0.2,
∂

∂ŷi
Dice(ŷ, y) = (0.2, −0.3, −0.3, 0.2),
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the modified Dice loss gives

DiceIW(ŷ, y) = 0.27,
∂

∂ŷi
DiceIW(ŷ, y) = (0, −0.42, −0.21, 0.24).

The loss increased since the prediction on the more important y2 is wrong. Similarly,

gradient vectors have changed according to the relative importance of each parameter.

The modified Dice loss is very similar to the that employed in [144]:

1− 1

C

∑
c

2
∑

i wciyciŷci + ϵ∑
iwci (yci + ŷci) + ϵ

.

In their case, wci are determined by the network’s performance during training as

wci = α|ŷci − yci| + (1 − α) where the subscript ci denotes corresponding quanti-

ties relating to the class c for voxel i. Their loss aims at emphasizing the learning of

hard-to-guess voxels. Our method differs in that the importance weights are prede-

termined and introduce complementary information to the network. This additional

information aids in reducing the learning of ungeneralizable features.

We mark that the design of the importance mask implies unequal treatment of patient

data during prostate segmentation predictions. Prostates with more complex shapes

(with respect to the prototype) receive less attention overall.

As described in §5.3, the network we employ makes background and prostate seg-

mentation predictions simultaneously. Of these, the importance mask is utilized only

in the calculation of the loss of prostate predictions. That is, we treat all background

information as equally important, regardless of the prostate shape.

5.3 Experimental Setup

In our experiments, we use T2-weighted prostate MRI data from different sources fol-

lowing previous works [94, 86, 129]. The sources, RUNMC and BMC, are from NCI-

ISBI13 dataset [145], HCRUDB is from I2CVB dataset [146], and UCL, BIDMC and

HK are from PROMISE12 dataset [147]. The data specification of each is given in

Table 5.1.

In Figure 5.1, the spectral properties of each domain is shown, demonstrating the

inhomogeneity across the considered datasets.
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Table 5.1: Specifications about the employed prostate MRI data from public datasets.

Dataset Institution Number of

patients

Field

strength

Resolution (in-

/through plane)

(mm)

Endorectal

coil

Manufacturer

Site A RUNMC 30 3T 0.6-0.625/3.6-4 Surface Siemens

Site B BMC 30 1.5T 0.4 /3 Endorectal Philips

Site C HCRUDB 19 3T 0.67-0.79 /1.25 No Siemens

Site D UCL 13 1.5T or 3T 0.325-0.625 /3-3.6 No Siemens

Site E BIDMC 12 3T 0.25 /2.2-3 Endorectal GE

Site F HK 12 1.5T 0.625 /3.6 Endorectal Siemens

Figure 5.1: Amplitude (log-scale) versus frequency for prostate MRIs from three

datasets and a total of six domains

5.3.1 Constructing the complexity fields

As a relative measure of shape complexity, our method has to be supplied with a

reference shape, i.e., a prototype. We acquire prototypes from the mean shapes by

means of rescaling (as in Chapter 4). For completeness, we re-present the related

visuals in Figure 5.2. In acquiring mean shapes, we first resample each patient’s GT

label to have isotropic spacing in all dimensions (each voxel represents a volume of

0.52083mm3) and center-align each. Then, we select for the mean shape the voxels
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that contribute to at least 60 percent of the samples.

(a) Mean prostate shape (b) Prototype (1/12) (c) Lossy reconstruction

(≈365.000 voxels) (213 voxels) (≈350.000 voxels)

Figure 5.2: (a) Mean prostate shape acquired from training samples of RUNMC

dataset (see § 5.3) (b) Prototype shape acquired by rescaling via nearest-neighbor

interpolation (c) Lossy reconstruction of the mean prostate shape.

After the prototypes are acquired, we construct the 3D complexity-encoding fields as

described in Chapter 4. It is worth to repeat that during the scalar field construction

we only make use of the prototype and GT labels, and not the MRI data. In Fig-

ure 5.3, some slices from the constructed complexity encoding fields are shown. We

observe that the constructed field attains large values mostly near the boundaries. Ad-

ditionally, our observations indicate that regions of GT with atypical prostate texture

appear to coincide with parts that contribute to an increase in complexity, supporting

our initial assumption.

5.3.2 Training details

In the following, when applicable, the used method for interpolations of the MRI

data and complexity-encoding fields is bilinear interpolation, and for the GT label,

nearest-neighbor interpolation.

Preprocessing. We perform data preprocessing through the following pipeline: each

volumetric data is oriented to posterior left superior (PLS) orientation, rescaled to

have isotropic spacing in all dimensions (each voxel represents a volume of 0.52083mm3),

rescaled to have dimensions 384 × 384 in the axial plane. Following [94, 129], we

remove the empty slices where no prostate marking appears. Each volume is then

padded with zeros to have 96 pixels. We use the central crop of each sample of size

256× 256× 80 (rescaled down to 192× 192× 80 for more manageable data size) to
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Figure 5.3: Sample slices from MRI data, GT labels, and constructed complexity-

encoding fields. The images in the last column are acquired simply as a weighted

sum of the complexity fields and the corresponding image slices.

train our networks. Finally, we clip out the top 0.5% of the histograms of each image

slice [129].

Augmentations. In [82] researchers have shown that applying deep stacked trans-

formations constitute a strong baseline for generalizable deep learning models in

medical image segmentation tasks. Following their approach, during training, we ap-

ply the following set of augmentations both for the baseline and our proposed method:
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1. Randomized translations in three dimensions where maximum displacements

are (30, 30, 10) voxels in respective directions (p = 0.95)

2. Randomized rotations in the axial plane where the rotation range is between

−30 and 30 degrees (p = 0.95)

3. Randomized scaling in the axial coordinates where the scaling range is between

0.8 and 1.2 (p = 0.95)

4. Randomized elastic deformations where sigma is in range [5, 7], and the mag-

nitude is in range [10, 50] (p = 0.5)

5. Randomized Gaussian noise addition where σ = 0.5 (p = 0.5)

6. Randomized contrast adjustments where γ is in range [0.5, 4.5] (p = 0.5)

Model. We employ 3D UNet [148, 149] enhanced with residual units [150] using

the implementation of MONAI [151, 152] with parameters channels = (16, 32, 64,

128, 256), number of residual units set to 2, instance normalization as the normaliza-

tion method, and the number of output channels set to 2; one for the background and

one for the target organ.

Model training. We train the networks for both baseline and the proposed method

for 1000 epochs with batch size set to 4. Adam optimizer is used with the initial

learning rate set to 1e − 3 and weight decay to 1e − 4. For learning rate scheduling,

we use linear warm-up scheduling for 60 iterations (min. 1e − 4). We further tested

whether learning rate scheduling via cosine annealing throughout the training helps

baseline and the proposed method. Based on our experiments, the baseline yielded

better generalizable models with cosine annealing while the proposed method yielded

better results without it. Thus, for fair comparison, we report results using the suiting

approach for each.

Since our interest is in single domain generalization, we select one of the sites (Site

A–RUNMC) for training, i.e., as our source domain. The dataset consists of MRI

scans of 30 patients. Following [129], we split 21 of these for training, 3 for valida-
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tion, and 6 for testing. The models trained and selected based on the data from this

site are deployed for use in the unseen/target domains.

Model selection. For both the baseline and the proposed approach, we train mul-

tiple (five) models. The best performing model on the validation set of the source

domain during each training session is selected. Among the selected models, mim-

icking the practical scenario, we deploy the model that performs the best on the source

domain’s test set to unseen/target domains.

5.3.3 Compared methods

The methods we compare to, i.e. ADS [86] and BayeSeg [129], use adversarial data

augmentation and statistical modelling, respectively.

In more detail, ADS employs adversarial training to enrich the training data to guar-

antee sufficient coverage of target domains. To this end, the method integrates two

convolutional branches, each taking the source image and random noise sample as

inputs and outputs two randomly synthesized images. The two branches aim at cap-

turing more possible variations of the source images by means of an adversarial loss:

ℓ(X̂1, X̂2) = KL(S(X̂1)∥S(X̂2)) where X̂1 and X̂2 are the outputs of the domain

synthesizers for a single image X , S is the segmentation branch and KL denotes

the Kullback-Leibler divergence. The domain synthesizers try to maximize this loss

whereas the segmentation branch attempts to minimize it. The method integrates an

additional mutual information branch in order to ensure that the synthesized images

do not alter the semantics of the image. This branch attempts to minimize the dis-

crepancy between the features of the real image X and the synthesized images X̂i.

BayeSeg takes a two-staged approach. The input image y first goes through a network

that decomposes the image into its shape x and appearance a components. Both the

shape and appearance components are modelled so that each follow a probability dis-

tribution through elaborate modelling and y = x+ a. More specifically, a is assumed

to follow a Gaussian distribution with mean m (Gamma distribution) and a covariance

ρ (Gamma distribution) while x is modelled to be a spatial-correlated simultaneous
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autoregressive (SAR) model that depends on the edges of the shape (Gamma distribu-

tion) and the segmented region (SAR) that depends on segmentation boundaries and

class probabilities. After extracting the shape and appearance components, only the

shape component is fed through the segmentation network. Both stages are trained

simultaneously, where a variational loss term that regularizes the appearance, shape,

and segmentation is used along with cross-entropy loss.

5.4 Results and Discussion

We present our results in Table 5.2.

Our method achieves the same Dice score as the baseline on the source domain. For

the target domains, the proposed method drastically improves over the baseline on the

BIDMC dataset (+30.7%) and in terms of minimum Dice score on targets (+29.5%).

For the HK dataset, which differs from the source dataset mainly in field strength

(1.5T versus source’s 3T), we observe an increase of 7.7% in Dice score. The im-

provement over baseline in terms of average on targets is +7.9% which is compatible

with the state-of-the-art BayeSeg (ours: 77.3%, BayeSeg: 77.5%, ∆: 0.2%).

Our method achieves a state-of-the-art performance in terms of the minimum Dice

score on target domains (ours: 68.3%, BayeSeg: 62.9%, ∆ = 5.4%). Whereas

BayeSeg performs the worst on the BIDMC dataset, our method performs the worst

on the HCRUDB dataset. Considering the dataset specifications (cf. Table 5.1), we

argue that this is likely due to the difference in slice thickness of HCRUDB (1.25mm)

from RUNMC (3.6 − 4mm) which is a more challenging issue for 3D segmentation

networks. BayeSeg processes MRI data using 2D slices, therefore, it is more likely

to be less sensitive to the slice thickness.

We train one extra model for each of baseline and the proposed method, tracking

the performance of the model on BIDMC dataset during training. The results are

presented in Figure 5.4.

As can be seen, the model trained with our method performs mostly between the

50% − 70% range in Dice score on the target domain BIDMC, whereas the baseline
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Table 5.2: We train the networks on RUNMC dataset. The best model on the valida-

tion set is used on the test set of RUNMC and the target domains.

RUNMC BIDMC HK UCL BMC HCRUDB Avg.

on

Min.

on

(source) (targets) targets targets

Baseline 89.2 38.8 74.4 85.2 80.7 67.9 69.4 38.8

ADS [86] – – – – – – 71.4 –

BayeSeg [129] 87.3 62.9 83.2 81.2 80.9 79.1 77.5 62.9

Ours 89.2 69.5 82.1 86.3 80.3 68.3 77.3 68.3

Change over

baseline

+0.0 +30.7 +7.7 +1.1 -0.4 +0.4 +7.9 +29.5

Figure 5.4: Sample training sessions for (left) the proposed method, (right) the base-

line where we track the performance of each on one of the target domains (BIDMC).

model oscillates between 20%− 40% and settles at around 30%. We argue that this is

because the baseline model, after the early stages of learning, starts overfitting to the

source domain by means of learning ungeneralizable features, whereas the model for

proposed method appears to keep on learning generalizable features.
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CHAPTER 6

APPLICATION: CURRICULUM LEARNING VIA QUANTIFIED

RELATIVE SHAPE COMPLEXITY

Showing that a measure relates to complexity is a non-trivial task due to the lack of a

well-defined notion of complexity. Thus, to further demonstrate the relevance of our

measure, we employ it on the task of curriculum learning (CL) for neural networks.In

this application, we leverage the shape complexity quantifications acquired from the

different from shape complexity-encoding fields.

In CL, the objective is to plan the training schedule of a neural network according

to the complexity or difficulty of examples, aiming to enhance the network’s per-

formance. Given the focus of our method on shape complexity, we apply CL on

two computer vision tasks: instance segmentation (utilizing the PASCAL VOC 2012

dataset [153]) and image classification (utilizing the CIFAR-10 dataset [154]). Our

proposed approach for the image classification scenario is particularly noteworthy,

where we explore the application of shape complexity even in the absence of ground

truth (GT) object shape masks.

6.1 Related Work

Inspired by how humans and animals learn better when the learning examples are

introduced in an organized manner, Bengio et al. [155] introduced CL. As a proof-of-

concept, they conduct toy experiments on shape recognition using 2D shapes. They

consider the task of classifying shapes into three categories: rectangles, ellipses and

triangles. The training data is artificially generated as two different datasets. In one,

only regular examples (squares, circles and equilateral triangles) reside, in the other,
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the more generic examples of each category. In this setting, they obtain the best

generalization when the models are first trained on the dataset with easier examples.

Since its inception, CL has found application across a diverse range of tasks, owing to

the idea’s independence from specific architectures and applications. In their survey,

Wang et al. [156] divides existing methods into predefined CL, where both the sample

difficulties and training schedule are fixed and independent of model’s learning state,

and automatic CL, which is characterized by decisions based on the feedback of the

model.

In general, a CL method needs a difficulty measurer, to quantify the easiness of the

training data, and a training scheduler, which decides on from what difficulty level

should the model learn from throughout the training. A variety of difficulty measurers

for predefined CL methods are available. For example, [157] uses data from human

experiments, [158] uses image intensity levels, [159] uses number of objects to esti-

mate sample difficulty. Common training schedulers include Baby Step [155, 160],

One-Pass [155], root-p [161] schedulers. In Baby Step, the data are divided into

clusters based on the difficulty score and the training data, initialized using a small

number of these clusters, is gradually expanded while the training progresses. Mod-

ifications to Baby Step are considered in [162, 163]. One-Pass is similar, with the

difference that chunks used on earlier stages are not utilized in late stages of training.

For this reason, One-Pass scheduler is prone to catastrophic forgetting; as a result, is

less popular than Baby Step. Continuous scheduling, by means of a pacing function,

provides a flexible alternative to Baby Step. In the case of root-p scheduler [161], the

chunks with which to expand the training data are determined by the pacing function,

given as

croot−p(t) = min

(
1, p

√
cp0 + (1− cp0)× t/Tgrow

)
where Tgrow denotes the epoch after which the learner uses whole data, c0 denotes the

initial proportion of easy examples used in training, and croot−p(t) denotes the propor-

tion of data used at the t-th epoch. Although root-p is found more useful than Baby

Step or One-Pass schedulers [161, 164], in general, finding the optimal scheduler de-

pends on the properties of the training data, difficulty measurer and the architecture

of the deployed network [156, 165].

68



The initial studies on CL were focused on learning from the easier samples first.

However, further studies [166, 167] report that learning by prioritizing harder ex-

amples can also be beneficial. Additionally, [165] proposes two more alternatives:

medium-first and two-ends-first. In these alternatives, the easy and hard samples are

treated equally whereas the samples with medium difficulty are handled separately.

6.2 In the Presence of Segmentation Labels

In the first scenario for CL, we consider the object detection and instance segmenta-

tion problems. We choose PASCAL VOC 2012 [153] as our target dataset. In this

dataset there are 20 object classes, including animate objects such as people, cats,

dogs, as well as inanimate objects including trains, cars, tables. Each image in the

dataset may include multiple instances from these categories. The images are anno-

tated finely in the sense that, for example, occluding objects are removed from the

GT label of the relevant object.

6.2.1 Quantification of relative shape complexity

In order to quantify the relative shape complexity of the objects in the dataset, we

first extract mean shapes using k-means [168, 169] clustering. We achieve this à la

Procrustes: for objects in each category, the convex hulls of GT labels are scaled to

have approximately the same area, center-aligned with each other, and, when needed,

horizontally flipped to ensure a consistent and standardized representation across dif-

ferent instances. We use convex hulls of GT labels since the occluding objects often

interfere with the shape of the object. We avoid applying rotations and vertical flips

for further alignment, as we believe these have a larger impact on distorting the recog-

nition of objects [170]. We vectorize the masks and apply k-means clustering with

k = 5, and use the (de-vectorized) cluster centroids as mean shapes (threshold=0.6).

In the first rows of Figures 6.1 and 6.2 such acquired mean shapes can be seen for the

train and person categories, respectively.

We acquire shape prototypes by rescaling the mean shapes by 1/15 in each direc-

tion via nearest-neighbor interpolation. With shape prototypes and normalized shape
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Figure 6.1: Cluster means, the simplest and most complex objects for the train cate-

gory. When presenting the most complex objects, we exclude those objects with an

extremely low pixel count and with masks that are unintelligible.

masks acquired, we construct the complexity-encoding fields over the masks with re-

spect to the corresponding prototypes. Then, we assign each sample a complexity

score as described in Chapter 4. Example simplest and most complex objects of each

cluster are presented in the second and third rows of Figures 6.1 and 6.2.

Image complexity and image difficulty. We determine the overall complexity of

a given image in the dataset by summing the measured complexities of the objects

present in that image. It is important to note that this implies images with a greater

number of objects are more likely to be considered complex.

To test the feasibility of the image complexity quantifications, we compare our results

with a human study conducted by Ionescu et al. [157]. In their study, participants

were asked “Is there an {object class} in the next image?". Response times were col-

lected as indicators of image difficulty. Our measurements agree with the collected

data on≈ 65% of image pairs on which image is more complex (averaged over multi-

ple k-means runs and complexity quantifications). We remark that our measurements

rely solely on the shapes of objects, discarding image-related information, such as

brightness, contrast, texture. For comparison, in the scope of the same study [157],

the authors report the average inter-human agreement on a subset of image pairs as
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Figure 6.2: Cluster means, the simplest and most complex objects for the person

category. When presenting the most complex objects, we exclude those objects with

an extremely low pixel count and with masks that are unintelligible.

≈ 78% and their prediction model (trained on 50% of the collected data, validated on

25%) to agree on ≈ 72% image pairs.

6.2.2 Curriculum learning strategies

We condition the model’s curriculum on the training progress and implement cur-

riculum strategies via probabilistic sampling. Our experiments with straightforward

implementations of Baby Step, One-Pass, and root-p curricula did not yield convinc-

ing results. Thus, we devise two different curricula:

1. from low complexity examples to high complexity examples (L2H)

2. from low complexity examples to all examples (L2A)

For both, the corresponding probability density functions (PDF) use the beta distri-

bution, f(x; α, β), given as

f(x; α, β) =
xα−1 (1− x)β−1

Beta(α, β)
where Beta(α, β) =

Γ(α) Γ(β)

Γ(α + β)
,

and Γ denotes the Gamma function.
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Then, we define the equation of the PDF we use for the L2H as:

PL2H(x; t) = c(t)× (f(x; 1 + 6t, 7− 6t))1/2

where c(t) is a normalization function that depends on the parameter t to ensure∫ 1

0
PL2H(x; t) = 1. Basically, we keep the sum of the shape parameters α and β as a

constant and smoothly pass from right-skewed distributions to left-skewed distribu-

tions.

For L2A, we design the PDF equation as:

PL2A(x; t) = (1− t)
(
c(t)× (f(x; 1, 6))1/2

)
+ tU(x),

where c(t) is as before, and U is the uniform distribution. In practice, we use the

rankings of the samples (divided by the total number) in place of x. In Figure 6.3, we

visualize both of the PDFs at different stages of the training.

Figure 6.3: The PDFs for low-to-all (L2A, left) and low-to-high (L2H) curriculum

strategies at different stages of the training.

6.2.3 Model and training details

In our experiments, we use the PyTorch [171] implementation of the Mask R-CNN

[172] model with ResNet-50 [150] backbone. Given the substantial number of pa-

rameters in the model, we opt not to train it from scratch; rather, we leverage the

pretrained weights from the COCO dataset. We replace the bounding box predictor
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of the pretrained network with a randomly initialized Fast R-CNN predictor, and the

mask predictor with a randomly initialized Mask R-CNN predictor.

The models are trained on the training split of the PASCAL VOC 2012 dataset for 30

epochs with stochastic gradient descent (momentum set to 0.9, and weight decay set

to 10−4). The initial learning rate is 10−3. At epochs 16 and 22 the learning rate is

multiplied by 0.1. We use random rotations (rotation angle in range (−30, 30)) and

horizontal flips for data augmentation.

6.2.4 Results and discussions

We use COCO evaluation metrics to evaluate the models. Following common prac-

tice, the maximum detection numbers is set to 100 in all reported results.

In Figure 6.4 we present the average performances of the models on the test set during

training. For each method (baseline and two curriculum strategies) we train 5 separate

models. We consider both the segmentation and bounding box prediction tasks where

both average precision and average recall metrics are used. In the plots, for the sake

of better presentation, the results from the initial 4 epochs are omitted.

As evident from the plots, the baseline model, benefiting from fine-tuning on the

entire dataset simultaneously, achieves better results on the early epochs. However,

its improvement is marginal as the training progresses. In contrast, both curriculum

learning methods yield modest results in the initial stages of learning. As the training

progresses, so does the learning, and eventually, both curriculum learning methods

outperform the baseline.

We separately tabulate the performance of the best models in Table 6.1 and 6.2 since

the performance on validation set of each model peaks at a different epoch. We ob-

serve that in almost all cases (with the exception of L2H for bounding box prediction

with AP@IoU=0.5:0.95 metric), both curricula surpass the baseline. In all cases,

the curriculum strategy L2A introduces greater improvements than L2H with lower

standard deviations.

PASCAL VOC is an imbalanced dataset. For example, it includes 4,194 instances of
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Figure 6.4: Averaged segmentation (left column) and bounding box prediction (right

column) performances of the baseline and proposed curriculum learning methods.

the person class spread over 1,994 images in the training set, while only 281 samples

from the sofa category (in 257 separate images) exist. Thus, our results are likely

improvable by using curriculum learning that also accounts for the imbalance prob-

lem. An example of such work is [173]. We did not follow this path because our

interest in this chapter is solely to support our claim that the proposed method relates

to complexity in the sense of sample difficulty.
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Table 6.1: Segmentation performances with respect to Average Precision and Average

Recall percentages.

AP@IoU= 0.5 : 0.95 AP@IoU= 0.75 AR@IoU= 0.5 : 0.95

Baseline 49.97± 0.10 54.54± 0.31 60.66± 0.10

L2H 50.35± 0.29 55.03± 0.49 61.18± 0.28

(change) +0.38 +0.49 +0.52

L2A 50.60± 0.27 55.46± 0.30 61.28± 0.19

(change) +0.63 +0.98 +0.62

Table 6.2: Bounding box prediction performances with respect to Average Precision

and Average Recall percentages.

AP@IoU= 0.5 : 0.95 AP@IoU= 0.75 AR@IoU= 0.5 : 0.95

Baseline 60.97± 0.23 68.81± 0.31 71.95± 0.28

L2H 60.95± 0.22 68.93± 0.47 72.28± 0.19

(change) -0.02 +0.12 +0.33

L2A 61.31± 0.32 69.41± 0.42 72.61± 0.08

(change) +0.34 +0.60 +0.66

6.3 When the Segmentation Labels are Missing

Our next scenario is the image classification problem on the CIFAR-10 dataset [154].

The CIFAR-10 dataset is comprised of 60, 000 images of size 32×32 distributed over

10 categories. The dataset lacks GT segmentation labels, thus, we extract approxi-

mate shape masks as will be described in § 6.3.1. For each category, we manually

provide a set of prototypes, resembling the common shapes pertaining to the cate-

gory, represented inside a 5 × 5 grid. After extracting shape masks, we measure the

complexity using the prototypes of the corresponding category. We return the mini-

mum value (over different prototypes) as the complexity indicator of an image. The

simplest and most complex samples from each category as quantified by our relative

shape complexity measure are presented in Figure 6.5.
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Figure 6.5: Simplest and most complex samples from each category as quantified by

our measure of shape complexity.

6.3.1 Extracting approximate shape masks

As noted, the shape masks are not readily available for the CIFAR-10 dataset. In order

to apply our method, we use a modified ResNet-18 architecture [174, 175] where we

transpose the problem into instance segmentation. The final layer of ResNet-18 is

replaced with a 2D convolutional layer that yields predictions of size 32 × 32 × 10.

The class prediction logits are acquired using a smooth-max aggregation over the

image domain (32× 32).

Using ImageNet1K [176] pretrained ResnNet-18 (the newly introduced layer is ini-

tialized with Kaiming normal initialization [177]), we fine-tune the model for 15

epochs. Building on the premise that accurate image classification requires the model

to focus on regions occupied by the object itself, we extract pixel-wise confident and

correct predictions as a representation of the shape’s mask. Note that this is akin to

extracting regions where the model attends the most.

76



6.3.2 Curriculum learning strategy

Since our complexity measurements are less precise due to the absence of shape

masks, we broadly classify samples into three subsets as low (L), medium (M) and

high (H) complexity images. These subsets are approximately equal in size with no

overlaps, (1/3rd of all training data in each).

As noted in [156, 165], the correct curriculum strategy depends on the dataset and the

difficulty predictor. We acquire results supporting this when we try the curriculum

strategies we used in § 6.2 on CIFAR-10 dataset; they do not work. In our experi-

ments, we also find One-Pass scheduler to perform worse than the baseline, possibly

due to forgetting the earlier seen samples (catastrophic forgetting). Thus, we cycle

through the subsets during training.

Empirically, we find that exposing models to medium complexity samples results in

lower accuracies. Therefore, we settle for a curriculum strategy in which both low and

high complexity samples are encountered twice as often as the medium complexity

ones. This is similar to the “two-ends-first” curriculum of [165].

One cycle of our curriculum strategy involves two passes over L, one pass over M,

followed by two passes over H, which we abbreviate as LLMHH. This corresponds

to 5/3 epochs of a network that is trained on all training data.

6.3.3 Model and training details

We use the same modified ResNet-18 model as described in § 6.3.1 with the exception

that, this time, we do not use pretrained weights. For the baseline model, we do not

use CL, and train the model for 200 epochs. The proposed model is trained for 600

mini-epochs (equivalently, for 120 LLMHH cycles) to ensure that each model learns

from the same number of total examples. Both models are trained from scratch with

stochastic gradient descent (momentum set to 0.9, and weight decay set to 10−4) with

a batch size of 128. We experiment with two different initial learning rates, 10−1

(optimal) and 10−2. In both cases, the learning rate is scheduled via cosine annealing

(min. 0). The models are trained with binary cross-entropy with logits loss. The used

77



data augmentations include random crops and spatial transformations.

6.3.4 Results and discussions

We present our results (each averaged over 8 models) in Table 6.3. The accuracy

improvements when the curriculum learning is used for both learning rates are statis-

tically significant (p < 0.01).

Table 6.3: Averaged accuracy results of the modified ResNet-18 network with and

without our proposed curriculum learning strategy for suboptimal (lr = 10−2) and

optimal (lr = 10−1) learning rates.

Method Initial lr Accuracy

Modified ResNet-18 10−2 91.10± 0.21

+ curriculum (ours) 10−2 92.19± 0.11

Modified ResNet-18 10−1 94.60± 0.09

+ curriculum (ours) 10−1 95.03± 0.12

The improvement in accuracy for the optimal learning rate (+0.43) is notably lower

than suboptimal case (+1.19). One possible reason for this discrepancy could be

reaching the capacity limit of the modified network architecture: the best performing

(unmodified) ResNet-18 model according to Papers With Code [178], as reported in

[179], achieves 95.55% accuracy.
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CHAPTER 7

MATHEMATICAL AND NUMERICAL CONSIDERATIONS

7.1 Screened-Poisson Equation and the Laplacian in L∞

We refer to the equation(
∆∞ −

1

ρ2

)
fS = −1 subject to fS

∣∣∣
∂S

= 0. (7.1)

as the screened-Poisson equation in L∞ subject to homogeneous Dirichlet boundary

conditions due to the replacement of the usual Laplacian with the infinity Laplacian

∆∞. The infinity Laplacian operator in Euclidean space of arbitrary dimensions is

given by

∆∞u =
1

|∇u|2
n∑

i,j=1

∂2u

∂xixj

∂u

∂xi

∂u

∂xj

. (7.2)

The operator is the minimizer of
∫
|∇f |p as p→∞.

In terms of the usual L2 Laplacian and the level set mean curvature operator ∆1, i.e.,

the 1-Laplacian, ∆∞ = ∆−∆1 where

∆1u = |∇u|∇ ·
(
∇u
|∇u|

)
.

7.2 Analytical Solutions of the Screened-Poisson Equation in L∞

Consider the points P1 and P2 as given in Figure 7.1. Since they are equidistant

from the boundaries, fS attains the same values at these two points by the above

reasoning. Furthermore, this is true for all points having the same y coordinates in the

shaded region R1. In this region, fS changes in the y direction only, i.e. ∂fS/∂x =
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0. Analogous arguments apply for points in R2 where instead of y, x coordinates

determine the equivalence classes. By the continuity of the field on the intersection

of R1 and R2, the equivalence classes span both regions, and each is a square by itself.

Figure 7.1: Square with sides aligned with grid axes

With these, (7.1) reduces to

∂2fS
∂y2

− 1

ρ2
fS = −1, for |y| ≥ |x|

∂2fS
∂x2

− 1

ρ2
fS = −1, for |y| ≤ |x|

subject to fS

∣∣∣
∂S

= 0.

(7.3)

In R1, for the homogeneous part fS,h = A exp{y/ρ} + B exp{−y/ρ}, and for the

inhomogeneous part fS,p = ρ2. Due to the symmetry of the boundary conditions, the

acquired solution is invariant under y 7→ −y changes. This dictates A = B. Applying

the boundary condition we acquire

fS

∣∣∣
R1

= ρ2 − ρ2
e

e2 + 1

(
exp

{
y

ρ

}
+ exp

{
−y

ρ

})
.

Following the same steps, the solution in R2 is acquired. The joint solution is given

in the closed form as

fS(x, y) = ρ2 − ρ2
e

e2 + 1
×(

exp

{
max {|x|, |y|}

ρ

}
+ exp

{
−max {|x|, |y|}

ρ

})
.

(7.4)
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7.3 Analytical Solutions of the Morphological Laplacian-driven Equation in a

Discrete Space

We consider the equation we use in Chapter 4, i.e.,(
∆s −

1

ρ2

)
fS,s = −1, subject to fS,s

∣∣∣
∂S

= 0, (7.5)

where ∆s is the morphological Laplacian operator with respect to the structuring

element (SE) s, as defined in Chapter 4.

In a discrete space we can rewrite (7.5) as

min
y∈s

fS(x+ y) + max
y∈s

fS(x− y)−
(
2 +

1

ρ2

)
fS(x) = −1. (7.6)

The properties of fS allow it to be expressed analytically for the family of simplest

shapes as shown below. The argumentation is very similar to that in § 7.2, yet, due

to the much more generic nature of the neighborhoods, some properties have to be

established first.

In the following, we denote miny∈s fS(x + y) as mx and maxy∈s fS(x − y) as Mx

for brevity. We remark that all arguments of locality are with respect to the SE under

consideration.

Lemma 7.3.1. fS < ρ2 on S.

Proof. Assume a point x′ ∈ S exists such that fS(x′) ≥ ρ2. Then there must exist

a local maximum at a point x̄ ∈ S with fS(x̄) ≥ ρ2. At that point Mx̄ ≤ fS(x̄) and

mx̄ ≤ fS(x̄), and we have

Mx̄ +mx̄ −
(
2 +

1

ρ2

)
fS(x̄) ≤ −

fS(x̄)

ρ2
≤ −1.

The equality holds only when Mx̄ = mx̄ = fS(x̄) = ρ2. Then, if a point x ∈ S attains

the value ρ2, by repeated application of the above reasoning, fS(R) = ρ2 where

R ⊆ S is the connected region including x. However, for the points xb neighboring

∂R, mxb
= 0, hence, (7.6) would be violated.

Lemma 7.3.2. fS has no local minimum in S.
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Proof. Assume fS has a local minimum at a point x ∈ S\∂S implying Mx ≥ fS(x)

and mx ≥ fS(x). But at x we have

Mx = fS(x) +
fS(x)− ρ2

ρ2
+ fS(x)−mx < fS(x)

where the inequality follows from Lemma 7.3.1.

Corollary 7.3.2.1. fS > 0 on S.

Let the notions of a simplest shape, generalized distance transform tS,s with respect

to a prototype s, and shape center be as defined in Chapter 4.

Lemma 7.3.3. For a simplest shape S with respect to a SE s, fS is an increasing

function of tS,s.

Proof. That fS is a function of the distance from the boundary follows from the sym-

metry of the domain with respect to s and the homogeneity of the boundary condi-

tions. To show that fS is increasing, we note that the contrary would mean a local

minimum of fS exists on S which contradicts with Lemma 7.3.2.

Corollary 7.3.3.1. For a simplest shape S, fS attains its maximum at the shape center.

With these established, we can considerably simplify Eq. (7.6) for a member S of

the family of simplest shapes of a prototype s, leading to a second order difference

equation, given as

fr =
ρ2

2ρ2 + 1
(fr−1 + fr+1 + 1) , 0 < r < ρ

f0 = 0 and fρ =
ρ2

ρ2 + 1
(fρ−1 + 1)

(7.7)

where we denote the f ’s image at the points {x ∈ S : dist(x, ∂S) = r} as fr since fS

attains the same value on all members of this set, in view of Lemma 7.3.3. This sim-

plification is very powerful. As shown in Chapter 4, it holds for arbitrary structuring

elements of any size, so long as SE itself is connected. The solution to the difference

82



equation Eq. (7.7) can be obtained as

fr = Aλr
1 +Bλr

2 + ρ2,

λ1,2 =
1±

√
1− 4γ2

2γ
,

A =

ρ2
(
λρ
2 −

ρ2

ρ2 + 1
λρ−1
2

)
λρ
1 − λρ

2 −
ρ2

ρ2 + 1

(
λρ−1
1 − λρ−1

2

) ,
B = −A− ρ2

(7.8)

where γ =
ρ2

2ρ2 + 1
.

The discrete solution Eq. (7.8) is very closely related to the solution acquired in the

continuous case Eq. (7.4). To illustrate this, we show both solutions for a diamond

in Figure 7.2 where in the continuous case instead of the ℓ∞ DT we use ℓ1 DT. We

observe that the disagreement between the two fields increase with the distance from

boundary. The relative error of the two fields is 4.9× 10−3.
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Figure 7.2: Analytical solutions in (a) the discrete space, (b) continuous space, and

(c) their difference. Note that, in the depicted fields, the maximum value for both

analytical solutions (a) and (b) is around 2,800 whereas at approximately 22 for their

difference (c).

In obtaining (7.7) we have assumed that the SE is nonzero at its center, in line with the

usual definition of a neighborhood. This choice affects the expression for fρ which

would otherwise become

fρ =
ρ2

2ρ2 + 1
(2fρ−1 + 1)
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and a solution very similar to (7.8) can be formulated where the only difference is in

the expression for the coefficient A which would become

A =

ρ2
(
λρ
2 −

2ρ2

2ρ2 + 1
λρ−1
2

)
λρ
1 − λρ

2 −
2ρ2

2ρ2 + 1

(
λρ−1
1 − λρ−1

2

) .

7.4 Numerical Solutions

7.4.1 Explicit Euler iteration scheme

We acquire the numerical solutions to Eq. (7.6) via the explicit Euler scheme that

follows from the discretization of

∂t =

(
∆s −

1

ρ2

)
fS,s + 1.

The iterative scheme is then given as

fk+1
S,s (x) = fk

S,s(x)+

∆k

(
Mk

x +mk
x −

(
2 +

1

ρ2

)
fk
S,s(x) + 1

) (7.9)

where fk
S,s(x) is the value of the numerically constructed field at x at time k and

f 0
S,s ≡ 0. The iterations stop whenever maximum point-wise change is less than

10−8.

We identify Fk[fS,s](x) = fk
S,s(x) − Mk

x + fk
S,s(x) − mk

x + 1
ρ2
fk
S,s(x) − 1 in the

notation of [180]. Accordingly, F is an elliptic finite difference scheme, and thus, is

monotone and stable. Since F is strictly increasing in the variable fk
S,s(x) it is also

proper. Therefore, the comparison principle holds and solutions are unique. Also, as

F is Lipschitz, the explicit Euler scheme is convergent for ∆k > 0 small enough.

We remark that since the Euler scheme converges to a unique solution, one possible

way to speed up the iteration process is to start with f 0
S,s ≡ f h

S,s.

The iterative scheme we use do not address the complications arising from the size

of the SE. Thus, complexity-encoding fields constructed with respect to SEs of same

shape but different size demonstrate what we may refer to as an aliasing effect. An
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Figure 7.3: Size of the SE affects the complexity-encoding fields (top row). This

can be mostly overcome, both in the quantitative and qualitative sense, by diffusion

filtering (bottom row).

example is shown on the top row of Figure 7.3. The three fields, from left to right, are

acquired using square-shaped SEs encoded in 3×3, 5×5, and 7×7 grids, respectively.

This effect does not pose a critical problem; it can be overcome by diffusion filtering.

In this case, the diffusion strength is determined by the number of nonzeros of SE.

At the bottom row of Figure 7.3, we visualize the diffused fields. Empirically, we find

that nonlinear diffusion with k iterations, where 2k+1 is the largest dimension of SE,

yields both qualitatively and quantitatively plausible results across different SEs.

7.4.2 Interlude: Multigrid methods

Multigrid (MG) methods are iterative methods that use a grid (or mesh) hierarchy

to obtain numerical solution to a partial differential equation problem. [181] identi-

fies the two key ideas of MG methods as the smoothing principle (iterations smooth

the error) and the coarse grid principle (smoothed errors are well-represented in the

coarser grids). The smoothing principle is based on the observation that classical it-

eration methods smooth high frequency error components efficiently, but fail to do
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so for low frequency error components. The second principle relates to the observa-

tion that half of the low frequency error components when transferred to a coarser

grid become high frequency components. Hence, they can be efficiently removed by

the classical iterations on the coarser grid. Taking these two observations together, a

recursive strategy can be constructed.

Although the early work in the MG methods were developed for linear problems,

they can be used for solving nonlinear problems using the full-approximation scheme

(FAS, [182]) or nonlinear multigrid (NLMG, [183]). The structure of a generic FAS-

cycle looks as in Alg. 2. The parameter γ determines the cycling strategy. The case

γ = 1 is referred to as V -cycles and γ = 2 as W -cycles.

Algorithm 2 Structure of a generic FAS cycle
Input: Initial guess U0, right hand side f, grid level t, post- and pre-smoothing
iteration numbers ν1, ν2
Output: Approximate solution U

1: procedure FAS(U0,f,t,ν1,ν2)
2: U← Smooth (U0,f,ν1) ▷ Pre-smoothing
3: r← Restrict (Residual (U))
4: u← Restrict (U) ▷ Restricted approximation
5: rhs← r + Residual (u)
6: if t>T then
7: v← u

8: for γ = 1, 2 do
9: v← FAS (v,rhs,t−1,ν1,ν2) ▷ Recursive approximation

10: end for
11: else
12: v← solve (u,rhs) ▷ Recursion bottom
13: end if
14: E← Interpolate (v−u)
15: U← U + E ▷ Correct the approximation
16: U← Smooth (U0,f,ν2) ▷ Post-smoothing
17: return U
18: end procedure

When an initial approximation for the field is not present, the full multigrid (FMG)

can be used together with FAS. In FMG, instead of only correcting the error in the

initial approximation, the aim is also to get better initial approximations for all the

grids in the grid hierarchy. The pseudocode of FMG is presented in Alg. 3.
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Algorithm 3 FMG with FAS
Input: Initial guess U0, right hand side f, grid level t, post- and pre-smoothing
iteration numbers ν1, ν2 for FMG, post- and pre-smoothing iteration numbers ν3, ν4
for FAS
Output: Approximate solution U

1: procedure FMFAS(U0,f,t,ν1,ν2,ν3,ν4)
2: if t>T then rhs
3: U← FMFAS (U0,f,t−1,ν1,ν2) ▷ Recursive approximation
4: else
5: v← solve (u,rhs) ▷ Recursion bottom
6: end if
7: E← Interpolate (v−u)
8: U← U + E ▷ Correct the approximation
9: U← Smooth (U0,f,ν2) ▷ Post-smoothing

10: return U
11: end procedure

In general, to obtain an MG method, one should decide at the least on the following:

1. Coarsening of the grids

2. Coarsening of the differential operator

3. Restriction operator

4. Interpolation operator

5. Cycling strategy

6. Smoother

7. Pre-smoothing and post-smoothing iteration numbers

7.4.3 Multigrid implementation and some results

While implementing the multigrid method, we use

1. standard coarsening of the grids (every other pixel is discarded in each direc-

tion),

2. the same differential operator for all grids,
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3. injection as the restriction operator,

4. both bilinear (for FAS) and bicubic (for FMG) interpolation as interpolation

operator,

5. both W -cycles and V -cycles as the cycling strategy,

6. the explicit Euler scheme (§ 7.4.1) for both FMG and FAS cycles,

7. ν1 = 2, ν2 = 1 for FAS ν1 = 0, ν2 = 4 for FMG with FAS.

In addition to these, we use a scaling factor s = 1000 for the restricted defect r

(proposed by [183]) which yields a more robust method. These are chosen via ex-

haustive experimentation with many shapes and structuring elements. The resulting

algorithmic procedure to get a solution with arbitrary accuracy is as follows:

Procedure I

1. Apply 1 iteration of FMG with FAS on a uniformly zero field (ν1 = 0, ν2 = 4)

to acquire an initial approximation.

2. Apply 50 iterations of FAS with W -cycle (ν1 = 2, ν2 = 1).

3. Apply FAS with V -cycle (ν1 = 2, ν2 = 1) until the desired precision is

achieved.

If instead, we are interested in fast approximations, the following algorithmic proce-

dure can be used:

Procedure II

1. Apply 1 iteration of FMG with FAS on a uniformly zero field (ν1 = 0, ν2 = 20)

to acquire an initial approximation.

2. Apply 100 iterations of FAS with W -cycle (ν1 = 2, ν2 = 1).

In Figure 7.4 we report results for two selected shapes and the corresponding relative

errors of the explicit Euler iterations, Procedure I, and Procedure II. The GT for fields

are calculated via explicit Euler iterations that take around an hour and a half each

due to the size of the selected shapes. Each method is implemented at the same
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optimization level in MATLAB. For the bat figure, Euler scheme (10,000 iterations)

took 88 seconds (relative error: 3.8e-2), Procedure I (1 iteration of FMG with FAS,

50 iterations of FAS with W -cycle, 1400 iterations of FAS with V -cycle) took 89

seconds (relative error: 5.8e-5), Procedure II took 18 seconds (relative error: 6.1e-3).

For the horse figure, Euler scheme took 90 seconds (relative error: 4.5e-2), Procedure

I took 88 seconds (relative error: 2.2e-4), Procedure II took 18 seconds (relative error:

4.9e-2).
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Figure 7.4: The comparison of relative errors between Euler iterations (10,000), Pro-

cedure I, and Procedure II (b)&(d) for the shapes (a)&(c)
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CHAPTER 8

SUMMARY

In this thesis, shape complexity is investigated. The considerations included a com-

parison of shape complexity-related measures on a novel benchmark dataset, propos-

ing a method for quantifying relative shape complexity, and applications to medical

image segmentation and computer vision tasks using deep learning.

The proposed benchmark dataset consists of multiple collections of 3D shapes, ac-

counting for different dimensions of shape complexity. Comparing 18 shape com-

plexity measures, we observed that no method excels in all facets. We analyzed the

similarities and differences of measures through pairwise correlations and clustering.

The proposed shape complexity measure addresses the phenomenon’s relative and

emergent aspects. The local and global interaction between a shape’s parts are ac-

counted for via a partial differential equation-based formalism. The method en-

codes the deviation from a simplicity assumption determined by a reference prototype

shape. This way, regions that contribute to the overall shape complexity are identified.

The proposed method is compatible with arbitrary prototype shapes so long as they

have a single connected component. The method is compatible with both continuous

and discrete spaces of arbitrary (integer) dimensions. It is comprehensively examined

through both empirical investigation and theoretical analysis. Fast numerical solution

strategies using multigrid methods are discussed.

In the application of the proposed method to medical imaging segmentation, the sin-

gle source domain generalization scenario is considered. In this scenario, the models

are trained on a single source domain and tested on previously unseen, yet related,

target domains which spans a diverse range of variations, including different device
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manufacturers, imaging protocols and acquisition conditions.

In the proposed approach, since the convolutional neural networks excel at learn-

ing textures, rather than shapes, the focus is on learning generalizable textures. Two

main issues prevent this: i) inaccurately annotated segmentations may force networks

to learn incorrect textures, ii) the tissue of a patient may have atypical textures. Both

are addressed by leveraging three-dimensional complexity-encoding fields. For each

patient, the fields are constructed with respect to the prototype shape which is ac-

quired as the mean shape of the source domain labels. The generalizable texture

locations are assumed to correspond to low complexity regions. Thus, the importance

of complexity increasing regions are lowered during training. This approach has led

to state-of-the-art results on prostate segmentation.

Lastly, through curriculum learning on computer vision tasks, the relevance of the

proposed measure to complexity and deep learning applications is further under-

scored. The image complexities from PASCAL VOC 2012 dataset are predicted via

quantifying the complexity of each object in the image. On around 71% of image

pairs, the complexity estimations agree with difficulty predictions from human ex-

periments. Curriculum strategies are devised and used in training a Mask R-CNN

network. Improved average precision and average recall scores are attained on both

bounding box prediction and instance segmentation when the model is trained with

the proposed curriculum. In the CIFAR-10 dataset, which is missing segmentation

labels, curriculum learning on a modified ResNet-18 model is experimented with.

The modified model predicts the class of each pixel in the image. Approximate shape

masks are extracted after fine-tuning a pretrained model. Shape complexities are cal-

culated based on these masks. Training the same model from scratch with curriculum

learning improved the classification accuracies.
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APPENDIX A

EXPERIMENTS WITH THE SHAPE COMPLEXITY-ENCODING FIELD

In this appendix, we present our further experimentations with the field proposed in

Chapter 3. The experiments pertain to the behavior of the complexity field under a

variety of deformations. Similar properties hold for the relative shape complexity

measure presented in Chapter 4. We present the results for the former only to avoid

repetition.

For the notation in the following material, please see Chapter 3. The "s-score" is

calculated as s = ⌊1000×mean|dS|⌋.

A.1 Scale

We start experimenting with the scale of the shapes. It is known beforehand that

dS is scale invariant. This follows from the scale invariancy of both f̂S,numerical and

f̂S,assumed. We test how scale invariance manifests in discrete space. Based on this

we get a sense of the amount that we can regard as an acceptable deviation in s scores

in the following results.

In Fig. A.1 we present two hats, where one is the scaled version of the other. The

constructed fields behave similarly and s scores differ by 1, indicating that a deviation

in s scores by this amount is acceptable. Mean difference in their s scores is 935 ×
10−4 ≈ 0.001.
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(a) s = 26 (b) s = 25

Figure A.1: dS fields for two hat figures differing in scale.

A.2 Rotation

In L∞, rotation in the sense of L2 is not a continuous symmetry. Consequently, dS is

not invariant under rotations.

First, we report results for two pairs of rotated shapes from MPEG7 in Fig A.2. The

s scores suggest preserved global similarity of fields under rotation. Yet, they are

locally quite different. Observe, for example, the change in dS around the end of

the abdomen of beetle: when rotated, the region becomes aligned with grid axes and

leads to significant increase in values of dS there.

(a) s = 45 (b) s = 46 (c) s = 66 (d) s = 65

Figure A.2: s scores are robust under rotation whereas local properties of dS change

for the presented shapes.

To investigate further, we consider eighteen of the shapes presented in this section

in Fig. A.3. Although dS is not continuously invariant under rotations, it is invariant
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under π/2 rotations, for there is no bias toward x or y directions in its construction.

Therefore we rotate each shape by 5k degrees for k ∈ {0, 1, . . . , 18}. It is seen that

s scores are not stable in general, albeit robust for shapes with circular bodies, such

as apples, and shapes with roughly isotropically distributed nonrectangularities, such

as beetles. The most varying s scores, in terms of difference in magnitude, are those

of shapes acquired by rotating bat2, where a difference of 37 is attained between

the extrema. Scores from rotated cup1, with a maximum of 35 and a minimum of

16, mark the highest extrema ratio. Lastly, remark that rotated shapes acquired from

perceptually similar ones go through similar changes in their s scores.
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Figure A.3: Plot of s scores versus angle of rotation in degrees. Shapes are enumer-

ated based on their order of appearance in the respective figures.

A.3 Occlusions

More often in real-life applications the acquired shapes are occluded. Therefore,

robustness under occlusion for a shape descriptor is desired.

In Fig. A.4 we present an apple, before and after being bitten, where the bite plays

the role of occlusion. The ratio of missing pixels in this case to the whole is 7.8%.

Qualitatively, we see that the field changes near the bite and is left mostly unaffected

elsewhere. To quantify this, we report the percentage of points with a change lesser
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than or equal to 0.001, which is 79%. Letting S1 denote the apple in Fig. A.4(a), and

S2 denote the other, the mean absolute error on S2 is calculated as

MAE =
1

|S2|

∫
S2

|dS1 − dS2| = 0.007.

Note also that S2 is assigned a lower score of nonrectangularity as expected since the

bite serves to reduce the curviness of the apple.

(a) s = 23 (b) s = 21

Figure A.4: (a) dS1 and (b) dS2 for an apple before and after being bitten. The bite

serves to reduce nonrectangularity as measured by s score.

The above robustness-under-occlusion scenario is extended to using eighteen of other

shapes. To this end, we synthetically occlude shapes with a circular mask centered

near boundary, i.e., at points t∞ < 0.2. This set is further divided into two categories:

away from center g > 0.6, and near center g ≤ 0.6, where g denotes the geodesic

distance transform calculated from the subset of the shape with t∞ ≥ 0.6. In each

category, center of occluding circle is chosen randomly. The area of occluding circle,

is chosen to be at a ratio of r = 10%, 20% or 30% of the area of shape. For each

shape, we create 100 occluded shapes, a sample of which is presented in Fig. A.5.

Percentage of removed points (R%), percentage of points with a change lesser than or

equal to 0.001 (U%), mean absolute error, and change in s score (∆s), averaged over

100 shapes is reported in Table A.1. The significant differences between the effects

of occlusions away from center and near center justify the division of occlusions into

two categories. Position of the occluding mask has a decisive role in MAEs, even

disregarding the effective amount occluded. In fact, except for bat1, all shapes

attain higher MAEs for occlusion near center with r = 10% than occlusion away

from center with r = 30%, despite R%s are higher for the latter. One reason for

this is that near center occlusions a have higher chance of changing the shape radius,
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hence resulting in a change in the governing equation. Another is that introducing new

boundaries near the center causes substantial differences in the structure of solutions

due to the applied boundary condition and continuity of fS . It is seen from the results

that more convex shapes, such as apples in comparison to beetles, attain higher error

rates under occlusions away from center, and vice versa under occlusions near center.

Perceptually similar shapes are observed to attain similar error rates, which, together

with the results for rotation, indicate consistency of the method.

(a) away from shape center (b) near shape center

Figure A.5: Sample occluded shapes with r = 20%.

A.4 Topological changes

Tests on occlusion occasionally included topological changes. Here, we deploy two

sets to directly experiment with topological changes.

The first set consists of the two cups displayed in Fig. A.6. The discrepancy between

the two is at where the handles meet the body and creates a difference in the number

of present holes. For both, maximum contribution to nonrectangularity comes from

the handles. The nonzero scores attained at bodies of the cups are caused by the curvy

bottom and the angled sides. We see that both dS and s scores are robust in this case.

The second set contains four pocket watches, displayed in Fig. A.7. In the figure,

each field is depicted on its own color scale due to the large difference in the s scores

between different shapes. We refer to the presented shapes as P1, P2, P3, and P4,

respectively, in the order they are presented in.
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(a) s = 17 (b) s = 18

Figure A.6: dSs for two cups with different topologies and slight differences in form.

P1 and P2 differ in the existing number of holes and boundary detail. Correspond-

ing dPi
s behave similarly in the circular body (cf. Fig. A.4) and differ at the bows,

where P1 attains higher scores due to the present hole there. Consequently, P1 attains

a lower, though relatively close, s score. The second two, P3 and P4, are signifi-

cantly different from P1 and P2 topologically: P3 has eleven holes and two different

connected components, and P4 has ten holes and twenty-nine different connected

components in the case of 8-connected neighborhoods. This is reflected by the differ-

ence in s scores between the two pairs, demonstrating that the positioning of a hole

plays a distinctive role as was also observed for the occlusions. For P3 and P4, the

most rectangular region is found to be crown of the watch. Despite the differences

in topological properties, dP3 and dP4 are observed to be similar to each other, and

attained s scores are relatively similar.

A.5 Slight changes

We consider changes that can occur between shapes from same categories that are not

accounted for in other subsections. To this end, we present three cases each consisting

of perceptually similar shapes.

The first case is bats (Fig. A.8(a) and (b)), differing in various disconnected regions,

namely, ears, upper wings and lower body. The effect of these differences on s scores

and dS are observed to be negligible. The second case, the two dogs Fig. A.8(c) and

(d), have different tails and agree with each other elsewhere. Similar to the first case,

dSs remain mostly unchanged (except for the tails) and s scores differ only slightly.
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(a) s = 31 (b) s = 39 (c) s = 132 (d) s = 142

Figure A.7: dPi
s for pocket watches with H(P1) = 1 and N(P1) = 1, H(P2) = 0

and N(P2) = 1, H(P3) = 11 and N(P3) = 2, and H(P4) = 10 and N(P4) = 29,

where H(.) denotes the number of holes and N(.) denotes the number of connected

components measured by using 8-connectivity.

(a) s = 78 (b) s = 79 (c) s = 76 (d) s = 75

Figure A.8: dSs for two pairs of slightly differing shapes.

The last case consists of twenty human face silhouettes differing in pose and around

hair, ears, and neck, presented in Fig. A.9. The lowest s score is 26 and the highest

is 35 with thirteen of shapes attaining scores between 30 and 32. In all of the shapes,

highest contribution toward nonrectangularity is due to necks, whose lengths account

for most of the changes in s scores. Ordering by s scores divide the set into two groups

based on the poses except for an outlier (fourth shape from left in the second row).

The relatively higher s score of the outlier is caused by the introduced deformation in

the hair.

A.6 Increasing the nonrectangularity

So far, we tested the robustness of the proposed measure under deformations. Another

important aspect of a shape descriptor is to yield consistent results on a sequence of
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Figure A.9: dSs for twenty human faces differing in pose, and around hair, ears, and

neck.

shapes for which the order is known beforehand. Here, we consider two sets address-

ing the consistency of s scores for increasing deviations from rectangularity.

Four octopuses with increasing arm sizes, dSs for which are displayed in Fig. A.10,

are considered first. The most contribution toward nonrectangularity for all is from

the arms. dSs at the bodies are the same and very similar to those constructed for

other circular bodies. The s scores increase with increasing arms lengths as expected.

The octopuses in MPEG7 dataset consists of five tetrads of octopuses, each tetrad

composed of shapes differing in the same vein as the ones in Fig. A.10. For the

remaining tetrads the s scores increase with increasing arm lengths too.

(a) s = 50 (b) s = 78 (c) s = 94 (d) s = 103

Figure A.10: dSs for four octopuses with differing arm lengths.

Next we consider six square-like shapes (S1 through S6) with different forms of de-

formations, displayed in Fig. A.11. S1 has a small amount of noise on the boundary

and S2 has a higher amount. The noise is seen to be attenuated quickly and does not
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cause a change in the s score of S1 and affects the s score of S2 by 1. S3 and S4

are both rounded on the edges, the latter is more so, and the former has boundary

noise added. Here the rounded edges are observed to cause the structure of fields to

become more like those of circular bodies. In this case as well the noise is attenu-

ated near boundary. dS5 is rather interesting: the effect of convex parts is observed to

propagate inside whereas that of concave parts does not. Observe that the response

of field is proportional to the amount of present deformation. S6 is considered the

most nonrectangular, for which spikes attain the highest scores of nonrectangularity

and effect of both spikes and bulges are local.

The assigned s scores induce a plausible linear order on this set.

(a) s = 1 (b) s = 2 (c) s = 4 (d) s = 8 (e) s = 9 (f) s = 16

Figure A.11: A sequence of square-like shapes with increasing amount of various

deformations.
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