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ABSTRACT 

 

TRANSFORMER MODELS FOR TRANSLATING NATURAL LANGUAGE 

SENTENCES INTO FORMAL LOGICAL EXPRESSIONS 

 

Deveci, İbrahim Ethem 

MSc., Department of Cognitive Science 

Supervisor: Assoc. Prof. Dr. Aziz F. Zambak 

Co-supervisor: Dr. Ceyhan Temürcü 

 

April 2024, 81 pages 

 

 

Translating natural language sentences into logical expressions has been challenging due 

to contextual information and the variational complexity of sentences. The task is not 

straightforward to handle using rule-based and statistical methods. In recent years, a new 

deep learning architecture, namely the Transformer architecture, has provided new ways 

to handle what was hard or seemed impossible in natural language processing tasks. The 

Transformer architecture and language models that are based on it revolutionized the 

artificial intelligence field of research and changed how we approach natural language 

processing tasks. In this thesis, we conduct experiments to see whether successful results 

can be achieved using Transformer models in translating sentences into first-order logic 

expressions. We evaluate our models in terms of capturing the formal aspects of the 

expressions, generating well-formed expressions, and generalizability over unseen 

sentences. 

Keywords: first-order logic, large language models, natural language processing, 

semantic parsing, transformer architecture 
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ÖZ 

 

DOĞAL DİL CÜMLELERİNİ FORMEL MANTIK İFADELERİNE 

ÇEVİRMEK İÇİN TRANSFORMER MODELLERİ 

 

Deveci, İbrahim Ethem 

Yüksek Lisans, Bilişsel Bilim Bölümü 

Tez Yöneticisi: Doç. Dr. Aziz F. Zambak 

Eş Danışman: Dr. Ceyhan Temürcü 

 

Nisan 2024, 81 sayfa 

 

Doğal dil cümlelerini mantıksal ifadelere çevirmek, bağlamsal bilgi ve cümlelerin 

değişken karmaşıklığı nedeniyle zorlu bir görev olmuştur. Bu görevin kural tabanlı ve 

istatistiksel yöntemler kullanılarak ele alınması kolay değildir. Son yıllarda yeni bir 

derin öğrenme mimarisi olan Transformer mimarisi doğal dil işleme görevlerinde zor 

veya imkansız gibi görünen görevleri ele almanın yeni yollarını sunmuştur. Transformer 

mimarisi ve ona dayanan dil modelleri yapay zeka araştırma alanını ve doğal dil işleme 

görevlerine yaklaşımımızı değiştirmiştir. Bu tezde Transformer modelleri kullanılarak 

cümlelerin birinci dereceden mantık ifadelerine çevrilmesinde başarılı sonuçlar elde 

edilip edilemeyeceğini görmek için deneyler gerçekleştiriyoruz. Modellerimizi ifadelerin 

formel yönlerini yakalama, iyi biçimlendirilmiş ifadeler üretme ve görülmeyen cümleler 

üzerinden genellenebilirlik açısından değerlendiriyoruz. 

Anahtar Sözcükler: birinci dereceden mantık, büyük dil modelleri, doğal dil işleme, 

semantik ayrıştırma, transformer mimarisi 
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1. INTRODUCTION 

Translating natural language sentences into logical expressions has been challenging due 

to contextual information and the variational complexity of sentences. The task is not a 

straightforward process to be handled by rule-based and statistical methods in artificial 

intelligence since it requires an ability to understand the variational complexity of 

natural language sentences and an ability to interpret how different expressions can play 

the same roles and how the same expressions can play various roles in different contexts. 

While translating a natural language sentence into its logical expression, one must rely 

on their sense of natural language; one must understand what the sentence is meant to 

convey and judge whether any suggested expression captures the meaning of the original 

sentence (Goldfarb, 2003). Another issue is that sometimes linguistic cues do not exist in 

sentences for one to decide how the sentence should be translated. In “All humans are 

mortal”, it can be easily seen that the predicates are universally quantified by “All”. 

However, sometimes this is not evident (Goldfarb, 2003). Consider “Human is mortal” 

and “Ethem is mortal”. While the former’s logical expression must be universally 

quantified (∀x (Human(x) → Mortal(x))), the latter’s logical expression does not need to 

be quantified at all: It is an instantiation of the consequent predicate of the former 

sentence’s logical expression (Mortal(ethem)). Although these sentences are 

syntactically similar, there is a difference between the meanings of the concept “human” 

and the object “Ethem”; this difference determines whether the expression must be 

quantified. Detecting these differences requires recognizing the semantic differences 

between linguistic elements. Such semantic differences and the requirement for 

contextual information make the translation process difficult for rule-based and 

statistical approaches. 

In recent years, a new deep learning architecture, namely the Transformer architecture, 

has provided new ways to handle what was hard or seemed impossible in natural 

language processing tasks. The Transformer architecture and language models that are 

based on it revolutionized the artificial intelligence field of research and changed how 

we approach natural language processing tasks. Vaswani et al. (2017) showed that, for 

sequence-to-sequence translation tasks, dispensing with recurrence and convolution and 

using only attention mechanisms in an encoder-decoder architecture show superior 

results than using recurrent and convolutional neural networks together with attention 

mechanisms. Since then, many variants of Transformers have been used for several 

natural language processing tasks or fine-tuned to perform specific tasks, such as 

machine translation, summary generation, and image generation (Phuong & Hutter, 

2022). Transformer architectures’ ability to handle long dependencies, their self-

attention mechanisms that provide relational and contextual information, and their 

versatility and generalization capabilities make them powerful candidates for translating 

natural language sentences into logical expressions. 

In this thesis, we conduct experiments to see whether successful results can be achieved 

using Transformer models in translating sentences into first-order logic expressions. For 
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the experiments, first, we fine-tune two Transformer-based language models for the task 

and evaluate their performances. Then, we conduct an additional experiment to see 

whether these models’ knowledge can be generalized over sentences that require more 

complex logical expressions. The reason we are conducting experiments for 

generalization capacity is that if a model is fine-tuned with data and can translate various 

natural language sentences into first-order logic expressions, it would be possible to 

integrate this model into a larger pipeline that can extract argumentative structures from 

texts that are written in the scientific domain and translate each sentence in the 

argumentative structure to first-order logic expressions. Such a system can be used for 

several tasks, including natural language reasoning in machines, evaluation of logical 

aspects of argumentations, making inferences to possible implications that logically 

follow from the existing sentences, and finding enthymemes or possible grounders of 

existing sentences to provide a complete argumentation structure if there are missing 

premises or conclusions. 

Before proceeding into the fine-tuning process and the experiments section, we provide 

a literature review of the models developed for translating natural language sentences 

into first-order logic expressions. We present and evaluate methods from the literature, 

focusing on approaches and modeling strategies utilized, datasets on which the models 

were trained, and metrics used to evaluate these models. While inspecting the literature, 

we observed that most of the models focused on extracting accurate predicates for the 

logical forms and were evaluated for this ability. Our primary focus is not predicate 

extraction but the models’ ability to predict the correct logical form. Therefore, we 

evaluated the models primarily for this task. To focus on and train the models for 

predicting correct logical forms, we developed a new dataset, the WillowNLtoFOL 

dataset, consisting of pairs of natural language sentences and first-order logic 

expressions with diverse logical forms. We evaluated the models’ performances for 

predicting correct logical forms using four metrics: well-formedness, exact match, 

formal match, and equivalence. Formal match and equivalence enabled us to focus 

directly on evaluating the logical forms rather than the contents of the expressions. With 

the results we gain, we discuss the effectiveness of Transformer-based language models 

in the translation task and whether these models are generalizable without additional 

methods other than fine-tuning. 
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2. BACKGROUND 

In this chapter, we provide a brief introduction to logic, with a focus on truth-functional 

logic. We will present a method from Warren Goldfarb’s (2003) Deductive Logic for 

translating natural language sentences into propositional and first-order logic. 

Considering that method, we will explain why the translation process is complicated and 

why the translation of natural language into logical expressions in an automated fashion 

is challenging. 

After the first section, we will briefly introduce argumentation theory and computational 

argumentation. Specifically, we will focus on argumentation mining and present how 

argumentation theorists’ critiques of formal logic and several developments in artificial 

intelligence led to the development of the computational studies of argumentation. 

Finally, we will present the Transformer architecture. We will discuss how this 

architecture differs from rule-based and statistical methods in artificial intelligence. We 

will also explain why this architecture and language models based on it can be beneficial 

for translating natural language sentences into first-order logic expressions. 

2.1 Logic 

Logic has been the study of the principles of reasoning since Aristotle. The principles of 

logic are the ones that yield correct reasoning, meaning that it is not about how people 

actually think but how they ought to think (Goldfarb, 2003). In that sense, logic is the 

study of differentiating correct reasoning from incorrect reasoning (Copi et al., 2014). 

What is common between correct and incorrect reasoning, and what distinguishes them? 

Concerning what is common, we face with the notions of statement, argument, and 

inference, and for the distinction, we must focus on the notion of validity.  

Statements are declarative sentences that can either be true or false. An argument, on the 

other hand, consists of a conclusion and one or more premises that are linked together by 

inference rules (Copi et al., 2014). It is important to note that the study of logic is not 

concerned with determining the truth or falsehood of a statement, but rather with the 

relationship between statements and conclusion within an argument. The main object of 

the study of logic lies in determining whether the inference link between the premises 

and conclusion is necessary. 

Some forms of arguments are valid. The general characterization of the valid forms of 

arguments is that they are the arguments that, once the premises are true, the conclusion 

cannot be false. Another expression of validity is that the conclusion statement follows 

logically or necessarily from the premise statements (Goldfarb, 2003). Philosophers 

generally differentiate two types of arguments. The first one is deductive arguments. 

Deductive arguments are the arguments that logicians are generally interested in since 

arguments in the deductive form are the only arguments that can be valid. Since the 
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premises support the conclusion conclusively, deductive arguments are either valid or 

invalid; if a deductive argument is valid, it cannot be invalid, and vice versa. Inductive 

arguments do not make such a strong claim; their premises do not support the conclusion 

conclusively but attempt to make the case acceptable. Therefore, validity, in the sense 

that there is a necessary logical connection between the premises and the conclusion, 

does not apply to inductive arguments; deciding whether an inductive argument is 

persuasive is outside the scope of logic. An inductive argument may be deductively 

invalid but strong. Whether it is a strong or weak inductive argument, however, requires 

different logical assessments (Haack, 1978).  

What does it mean to assess an argument in terms of validity and its formal structure? 

Consider the argument: 

All fishes are humans. 

All humans are birds. 

∴ All fishes are birds. 

It can be said that although each statement’s falsity is apparent to anyone who can 

recognize and know how to use the concepts that are used in the statements, the form of 

this argument is deductively valid: 

All x’s are y’s. 

All y’s are z’s. 

∴ All x’s are z’s. 

The premises logically necessitate the conclusion: if all fishes are humans and all 

humans are birds, then all fishes are birds. Logicians study the formal aspects of 

arguments and inferences in this sense by disregarding the actual cases and abstracting 

the general form of the statements and arguments (Goldfarb, 2001). In short, to 

differentiate valid argument forms from invalid ones, logicians study inferences between 

statements from an abstract and formal point of view (Copi et al., 2014). It is also worth 

noting that, since these structures are abstract and formal, they can be applied to any 

context independently of the utterer, the audience, or the time it is uttered (Goldfarb, 

2003). Therefore, two characteristics of logic have been the main reasons for situating it 

as the study of the correct principles of reasoning: generality and necessity. Logic deals 

with logical forms and deductive inferences by focusing on the logical properties of 

sentences and logical relations among sentences that can be abstracted (Goldfarb, 2001). 

The development of logic’s formalization and symbolization, which includes the 

quantification theory that allows for the generalization of individual statements to a set 

of individuals sharing the predicate’s characteristic, as well as the formalization of 

relational predicates to make valid inferences, can be traced back to the contributions of 
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Gottlob Frege (Beaney, 1997). The formalization of logic, as pursued by Frege, aimed to 

provide precise means to analyze mathematical statements rigorously and establish a 

solid foundation for justification rooted in a formal logical system. Since then, Frege’s 

advancements in mathematical logic have been widely built upon and extended by many 

philosophers and logicians to examine and analyze arguments conveyed in natural 

languages. From the development of propositional logic, which represents statements as 

symbols and analyzes the roles and workings of the truth-functional connectives, and 

predicate or first-order logic, which quantifies the individuals and provides a detailed 

analysis of the statement, many more systems of logic were proposed, such as modal 

logic, fuzzy logic, epistemic logic, and deontic logic (Sowa, 1999). These systems of 

logic provide different representational methods to analyze statements. For example, 

while modal logic focuses on the modality of the statements based on their necessity and 

possibility, fuzzy logic differentiates itself from first-order logic by assigning continuous 

truth values from 0 to 1 rather than true or false. Since this thesis is about translating 

natural language sentences into first-order logic expressions, we will focus on first-order 

logic. 

In the field of logic, there are two main areas of study: pure logic and applied logic 

(Goldfarb, 2001). Pure logic involves examining the logical properties and relations of 

logical forms and demonstrating general logical laws for making inferences between 

statements. This branch of logic is concerned with the theoretical underpinnings of 

logical reasoning and the principles that govern it. On the other hand, applied logic deals 

with the symbolization of sentences or constructing sentences with logical signs, which 

are quantifiers and truth-functional connectives, and symbols that represent the 

sentences and predicates. Later, this symbolization is interpreted when applied to a 

specific knowledge domain. After this interpretation, one can assign truth values and 

inspect whether a conclusion follows from its premises. Given the focus of this thesis, 

our attention will be directed towards applied logic and the translation of sentences into 

first-order logic expressions. 

2.1.1 Benefits of Translation 

Before introducing how to translate natural language sentences into first-order logic 

expressions, it would be helpful to state the benefits of investigating arguments in their 

logical forms. By symbolization, we can determine whether the premises necessitate the 

conclusion through formal analysis. This can help us identify gaps in the argument, 

clarify ambiguities, and reveal fallacies if there are any (Saeed, 2003). Two of such 

examples were provided by G.E.M. Anscombe (1965). Anscombe argues that 

quantification is not just a technical device in logic but has philosophical importance as 

well. In her first example, she discusses Descartes’ Ontological Argument and states the 

premise on which the argument relies:  

“Just as if anything is a triangle, it has those properties, so if anything is God, it must 

possess eternal existence.” 
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However, Anscombe states that the argument’s conclusion, “God exists” or “There is a 

God,” cannot be logically inferred from the premise. We can see this through the logical 

form of the premise and the conclusion: from the premise “For all x, if P(x), then Q(x),” 

the conclusion “There is an x such that Q(x)” cannot be inferred. The argument itself 

only conveys that if there is an x such that x is P, then x is Q and does not mention about 

anything whether such an x exists or not. Such an example may be considered simple, 

and it can be claimed the symbolization is not necessary to argue that the argument has a 

fallacy. However, rather than having an intuition of why the argument is fallacious, 

symbolization shows conclusively that the argument is faulty. 

Another benefit of symbolizing is eliminating certain ambiguities that may arise in 

natural language sentences. An example, again provided by Anscombe, concerns 

Aristotle’s argument to show there is a final end that is supreme good. The argument is 

presented as follows: “All chains of means to ends must terminate in a final end. This 

final end will be the supreme good.” (Anscombe, 1965, p. 15). According to Anscombe, 

the fallacy of this argument rests on the fact that it assumes the premise has shown there 

is one final end. However, there can be two interpretations of the premise, which have 

different meanings, and the difference between meanings may not be evident without an 

explicit representation of the argument using quantification (Anscombe, 1965, p. 16): 

1) “For all x, if x is a chain of means to ends, there is a y such that y is a final end and x 

terminates in y”, and 

2) “There is a y such that y is a final end, and for all x, if x is a chain of means to ends, x 

terminates in y.” 

Here, the argument rests upon the fact that it has shown there is one final end, as it is 

stated in the second symbolization. However, it does not. By providing and assessing 

arguments logically, symbolization reveals possible interpretations and meanings of 

statements and reveals certain ambiguities. 

2.1.2 Applied Logic 

Applied logic, focusing on applying logical principles and methods to specific domains 

of studies of knowledge, deals with which sentences can be symbolized and how they 

are symbolized. Depending on which logic system is considered, different logical signs 

can be used during the symbolization process. Here, we will focus on how sentences can 

be symbolized in propositional logic and first-order logic. 

Propositional logic concerns how statements can be compounded to form more complex 

statements. Since the complex compound of statements is compounded via truth-

functional connectives, their truth value depends upon the truth values of the 

compounded statements. The truth-functional connectives used in propositional logic are 

conjunction (∧), negation (¬), disjunction (∨), material conditional (→), biconditional 
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(↔), and disjunction in the exclusive sense (⊕). In the following table, names, symbols, 

and definitions of the connectives are stated following from Goldfarb (2003): 

Table 1: Truth-functional connectives’ names, symbols, and definitions 

 

Considering “p” and “q” are statements and “T” and “F” represent the truth values truth 

and falsity, respectively, we can show the truth values of the compounds in truth tables 

as follows: 

 

Table 2: Truth table of conjunction 
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Table 3: Truth table of negation 

 

 

Table 4: Truth table of disjunction 

 

 

Table 5: Truth table of material conditional 
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Table 6: Truth table of biconditional 

 

 

Table 7: Truth table of disjunction in the exclusive sense 

 

 

Since these connectives are truth-functional, any compound obtained by combining 

statements via these connectives is truth-functional. 

In propositional logic, we leverage truth tables to determine the compounds’ truth value 

for possible interpretations of their simple constituents. These truth tables also help us to 

determine whether a statement implies another statement, meaning whether a statement 

logically follows from another statement. In propositional logic, the implication is 

checked by the validity of the conditional between the two statements (Goldfarb, 2003). 

The definition of implication is that the statement “x” implies “y” if and only if every 

interpretation of the sentence letters they contain that makes “x” true also makes “y” 

true. Implication between statements is the concern in logical argumentation or 

inference, and it is an essential task of logic to show whether a statement logically 

follows from another. In this sense of inference, we show whether a premise follows a 

conclusion logically. Given the definition and importance of implication, we can define 
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the equivalence of two statements. Two statements are equivalent if and only if they 

imply each other (Goldfarb, 2003). The implication and equivalence will be helpful in 

our further inquiries in the following chapters of this thesis. 

Considering English, general representatives in the natural language of each connective 

are the following: 

Conjunction: “and” 

Negation: “not” 

Disjunction: “or” 

The material conditional: “if-then” 

Biconditional: “if and only if” 

Disjunction (Exclusive): “either-or” 

In natural languages, many words and phrases can serve as truth-functional connectives. 

For example, “although” and “but” can also serve as a conjunction in a compound 

statement. Identifying these words or phrases in natural languages is one of the main 

tasks in applied logic. Another concern of applied logic is that sometimes even the 

general representatives of truth-functional connectives may not serve as truth-functional 

but as rhetorical. To differentiate such uses of words and phrases, one needs to consider 

the context of the statement and how they are used to compound statements. 

One final important topic we must consider before moving on to the first-order logic is 

grouping. In propositional logic, the organization of compounds is of high importance 

since the truth value of the compound may change in different groupings, as stated in 

parentheses. For example, consider the examples “p ∨ (q ∧ r)” and “(p ∨ q) ∧ r”. To 

demonstrate both the importance of grouping and how truth tables can be used to 

compare different compounds, we present the truth table for these expressions: 
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Table 8: Truth table for the expressions “p ∨ (q ∧ r)” and “(p ∨ q) ∧ r” 

 

From this truth table, all possible truth value combinations are considered for the 

possible truth value assignments for “p”, “q”, and “r”. Considering the last two columns 

and the second and fourth rows, it is evident that there can be different truth values for 

the considered expressions. Even from this simple example, we can see that it is crucial 

to consider the grouping of the statements when symbolizing a compound of statements 

into propositional logic. 

First-order logic extends propositional logic by introducing statements’ predicate-

argument structure and quantifying the predicates over their arguments. Consider the 

example: 

All students are lazy. 

Ethem is a student. 

∴ Ethem is lazy. 

In propositional logic, the form of the argument can be expressed as: 

p 

q 

∴ r 

if “p”, “q”, and “r” stand for the statements “All students are lazy”, “Ethem is a student”, 

and “Ethem is lazy” respectively. However, in first-order logic, the analysis of the 

statements goes further. In first-order logic, this argument can be represented as: 
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∀x (Student(x) → Lazy(x)) 

Student(ethem) 

∴ Lazy(ethem) 

In first-order logic, we have predicates, variables, and quantifiers to provide more 

information about the internal structure of the statement. An essential distinction 

between statements in propositional logic and predicates in first-order logic is that while 

statements can be true or false, predicates are true or false of particular objects 

(Goldfarb, 2003). For example, the statement “a is a P”, represented as “P(a)” is true if a 

is a P and false if a is not a P. “Student(ethem)” is an instantiation of the open sentence 

“Student(x)”; it contains a particular name of an object instead of a variable. The 

predicates can have more than one variable. If the open sentence “P(x, y)” takes two 

names for its variables “x” and “y”, it becomes a statement. It is the convention that 

predicates are represented by capital letters, such as “P” and “Q”, the variables are 

represented by lower-case letters, such as “x” and “y”, and the names are represented by 

lower-case letters, such as “a” and “b” (Blackburn & Bos, 2005). The predicates can be 

compounded together using truth-functional connectives, and the truth value of the 

compound is determined by the truth value of the predicates. For example, the statement 

“a is a student and b is not lazy” can be symbolized in first-order logic as “Student(a) ∧ 

¬Lazy(b)”. 

With predicates, variables, and names of particular objects, we have quantifiers that 

range over objects: the universal quantifier (∀) and the existential quantifier (∃). 

Considering “P(x)” stands for an open sentence containing the free variable “x”, “∀x 

(P(x))” is true if and only if every assignment of a name to “x” makes “P(x)” true and 

“∃x (P(x))” is true if and only if there exists at least one name for “x” that makes “P(x)” 

true. In English, the words “all” and “every” can serve as the universal quantifier, and 

“exists” and “some” can serve as the existential quantifier. The general structure of the 

statements that are quantified with a universal quantifier is “∀x (P(x) → Q(x))”, 

meaning that “For every x, if x is a P, then x is a Q”, and the general structure of the 

statements that are quantified with an existential quantifier is “∃x (P(x) ∧ Q(x))”, 

meaning that “There is at least one x such that x is a P and x is a Q”.  

Any open sentence or statement can be more complex by compounding predicates via 

truth-functional connectives, 

“∀x (P(x) → Q(x) ∧ R(x))” or “∃x (P(x) ∧ Q(x) ∧ ¬ R(x))” 

using nested quantifiers to quantify more than one variable,  

“∀x ∀y (P(x) ∧ Q(x) → R(x, y))” 

and compounding the universal quantifications and existential quantifications using 

truth-functional connectives, 
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“∀x (P(x) → Q(x) ∧ R(x)) ∨ ∃y (P(y) ∧ Q(y) ∧ ¬ R(y))”. 

In all these expressions, the truth value of the compound is determined by the truth 

values of their simple constituents. 

Finally, parentheses have also an essential use in first-order logic. They are used to 

determine the scope of the quantifiers. For example, 

“∀x (P(x) ∧ (∃y (P(y) ∧ Q(y) ∧ ¬ R(x, y))) → Q(x) ∧ S(x))” 

In this example, while the universal quantifier’s scope is the entire expression, the 

existential quantifier’s scope is limited by the parenthesis that comes right after it. This 

is an essential feature of first-order logic expressions since parentheses or the scope of 

expressions, together with the place of the predicates and truth-functional connectives, 

determine the syntactical adequacy of the expression. 

The syntactical adequacy of the first-order logic expressions is named as well-formed 

expressions in formal logic. The well-formedness of a first-order logic expression is 

determined by a bottom-up process using rules to construct complex expressions from 

simple expressions (Blackburn & Bos, 2005). The simplest expressions can be 

expressions like “P(x)” or “Q(a, b)”, where “P” and “Q” are predicates, “x” is a variable, 

and “a” and “b” are names of objects. The predicates can be n-place, meaning that they 

can take more than one variable and name. Considering T and R are names for 

expressions, then ¬T, (T ∧ R), (T ∨ R), (T → R), (T ↔ R), and (T ⊕ R) are expressions. 

Finally, if T is an expression and “x” is a variable, then ∀x (T) and ∃x (T) are 

expressions. We can construct any well-formed expression using these syntactic rules 

and ensure that our expressions are well-formed if they can be generated by applying 

these rules, starting from the simplest expressions. 

Before we proceed to the challenges of symbolization or translation, three concepts in 

first-order logic must be stated. These are the universe of discourse, implication, and 

equivalence.  

Many of our statements in natural language need not range over all objects in the 

universe; sometimes, we rely on our common knowledge of things and make statements 

in a limited domain of objects. This is called the universe of discourse or the range of the 

quantifiers (Goldfarb, 2003). For example, the statement “All students are lazy” can be 

symbolized in two different universes of discourses: 

1) “∀x (Person(x) ∧ Student(x) → Lazy(x))” 

2) “∀x (Student(x) → Lazy(x))” 

We can say that both statements convey the meaning of the statement “All students are 

lazy”, if we accept the fact that the universe of discourse of the first expression ranges 

over all objects in the universe and an implicit common-sense knowledge, which is “All 
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students are persons” is accepted in the second one. The domain of discourse is not 

explicitly stated in expressions. However, it is important that while symbolizing a 

statement or a group of statements, the universe of discourse must be kept the same. 

As stated, we leverage truth tables to check for implication and equivalence in 

propositional logic. However, this is not the case for first-order logic. Since predicates in 

first-order logic can be true or false for objects, there can be endless interpretations of 

even a single predicate in an expression, which makes creating truth tables for different 

interpretations impossible. To see whether a first-order logic expression implies another, 

in the sense that the possible interpretations that make the first expression true also make 

the second expression true, or whether two expressions are equal, in the sense that they 

are true of the same interpretations, we rely on general laws, such as substitution and 

interchange, and the formal system of first-order logic (Goldfarb, 2003). Examples of 

such general laws can be stated as the following: 

1) “P(a)” implies “∃x P(x)” and is implied by “∀x P(x)” 

2) “∀x ¬ P(x)” is equivalent to “¬∃y P(y)” and “∃x ¬ P(x)” is equivalent to “¬∀y P(y)” 

Since the general laws and the formal system that makes inferences possible in first-

order logic is the main subject of pure logic, we will not go into detail and list all the 

general laws of first-order logic. We will continue our subject with the challenges of 

symbolizing of translating natural language sentences into first-order logic expressions. 

2.1.3 Translating Sentences into First-order Logic Expressions 

When we translate a sentence into its logical expression, we want the expression to 

convey the meaning of the sentence. In Deductive Logic, Warren Goldfarb (2003) gives 

a method to translate a sentence into a first-order logic. 

Concerning propositional logic, the translation task proceeds in three steps (Goldfarb, 

2003, p.28): 

1) Words or phrases that serve as truth-functional connectives must be identified and 

translated into logical signs, 

2) The constituents of the statements must be identified and rephrased, 

3) Grouping must be determined. 

Consider the statement “Ethem studied and wrote his thesis” to provide a simple 

example. The first step is the identification of the connective. In the statement, the word 

that serves as the truth-functional connective is “and”, which is a conjunction. The 

constituents of this statement are the two statements, which can be rephrased: “Ethem 

studied” and “Ethem wrote his thesis”. These are the simplest constituents of the 
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compound statement. We will represent “Ethem studied” as “p” and “Ethem wrote his 

thesis” as “q” in our expression. Finally, concerning grouping, there is only one way to 

group these constituents, hence, our expression will be “(p ∧ q)”. 

The translation of statements into first-order logic expressions will be built upon this 

process. Concerning first-order logic expressions, we need to deal with quantifications 

and their scope. 

1) If we are dealing with nested quantifiers, we will decide which quantifier has a scope 

that includes the other quantifier; that is, we will decide whether a statement as a whole 

should be universally or existentially quantified. 

2) If we are dealing with a statement that requires treating with a universal 

quantification, we will put it in the form “Every object x such that …” and if it requires 

treating with an existential quantifier, we will put it in the form “There is at least one 

object x such that …” where “…” represents an open sentence. 

3) Then, we will formulate the open sentence using a free variable “x”. 

4) Finally, we will analyze the open sentence truth-functionally. 

For example, consider the statement, “All students like some professors”. Here, we are 

dealing with nested quantifiers since the students are quantified by “all” and the 

professors are quantified by “some”. We can see that the universal quantifier has a scope 

that includes the existential quantifier, so our whole expression will be universally 

quantified. Once we decide on the quantifier of the whole expression, we will write it as 

the following: 

“∀x (x is a student → x like some professors)” 

After symbolizing the universal quantification, we will symbolize the existential 

quantification: 

“∃y (y is a professor ∧ x likes y)” 

Then, we place it into the whole expression: 

“∀x (x is a student → ∃y (y is a professor ∧ x likes y))” 

Finally, we will assign capital letters “S” for being a student, “P” for being a professor, 

and “L” for representing the relation of liking. Our final expression is the following: 

“∀x (S(x) → ∃y (P(y) ∧ L(x, y)))” 

It is important to note that we proceed inward in this translation process. First, we 

decided on the structure of the whole expression and constructed its inner structure truth-
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functionally step by step. The meaning of the final expression can be stated as “Every 

object x such that if x is an S, then there is at least one y such that y is a P and x has a 

relation L to y”. It can be easily seen that there can be various interpretations of such a 

structure if we assign different meanings to the predicate letters. For example, if we 

assigned being a professor to the predicate “S” and being a student to “P”, the statement 

would be “Every professor likes some students”. We captured its logical form by 

symbolizing and translating the sentence into first-order logic. Since implication and 

equivalence are defined in terms of the formal structure of sentences, only after 

capturing this logical form, we pursue logical argumentation or inference and whether 

such a sentence implies any other sentence or is equivalent to any other sentence.  

2.1.4 Challenges of Translation 

Although translating natural language sentences into first-order logic expressions has 

several benefits, some of which were stated before, there are also several difficulties in 

translation. The first and most crucial difficulty regarding the subject of this thesis is that 

the translation task is not a purely mechanical process; no general algorithmic process 

can take any natural language sentence and give its corresponding first-order logic 

expression as an output. Two important reasons for this impossibility, as stated by 

Goldfarb (2003), are that: 

1) Understanding what the sentence meant to convey and judging whether any suggested 

translation does justice to the original sentence requires an understanding and relying 

principally on a sense of everyday language. 

2) Linguistic cues that help to identify the truth-functional connectives and quantifiers 

sometimes do not exist in the sentence. 

Deciding whether an expression should be quantified with a universal or existential 

quantifier requires identifying the words or phrases that serve as quantifications in the 

natural language. This is also true for the identification of truth-functional connectives. 

Many words or phrases can serve as quantifications and connectives in a natural 

language, and identification of them requires an understanding of the language. It is also 

important to note that identifying truth-functional connectives cannot rely on listing the 

words and phrases that can serve as the connectives and directly translating them. For 

example, such words and phrases may sometimes be used rhetorically rather than 

logically or express a temporal order between sentences. Consider the sentence, “The 

student entered the room, and everyone became silent.” Here, the word “and” does not 

express a conjunction of the two sentences “The student entered the room” and 

“Everyone became silent”. It expresses the temporal order between those statements; 

therefore, the whole sentence’s truth value cannot be determined by the conjunction of 

the two sentences’ truth values. One cannot rely on general rules to differentiate the 

roles of the words and phrases in compound sentences since there can be no general rule 

to differentiate such uses. One must rely on their ability to understand the language. This 
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requirement is also evident when there is no linguistic cue to determine how the 

sentence should be quantified. Consider the sentence “Human is animal.” The words 

used in this sentence are not plural, but we know they refer to concepts, and we also 

know this sentence is a universal statement due to our knowledge of language. To be 

able to symbolize this sentence as “∀x (Human(x) → Animal(x))”, one needs to 

recognize and understand the meaning of the words “human” and “animal” and know 

how these concepts operate in this sentence. 

Another main challenge is due to ambiguity. Translating natural language sentences into 

first-order logic expressions helps us to see possible interpretations and meanings, as we 

saw in Anscombe’s analysis of Aristotle’s argument. However, deciding which 

translation conveys the meaning of the original sentence cannot be determined on its 

own. This choice between possible interpretations requires a more detailed analysis of 

not just the sentence alone but also the context in which the sentence occurs and its 

relationship with the other sentences of the argument or the text. To resolve such 

ambiguities and decide on the proper interpretation of the sentence, one needs to extend 

their analysis beyond the sentence itself to the context of the sentence in which it occurs. 

In this section, we have provided an overview of propositional logic and first-order 

logic, and how natural language sentences can be translated into logical expressions. 

While translation has many benefits such as identifying gaps in arguments and detecting 

ambiguities in natural language sentences, it is challenging since there is no general 

algorithm for translating any given natural language sentence into a first-order logic 

expression. The translation process requires an understanding of the meaning of words 

and phrases in a sentence and the context in which the sentence is expressed.  

Before discussing how we can leverage the Transformer architecture and the models 

based on it to automate the translation process, we will give a brief introduction to 

argumentation theory, computational argumentation, and argumentation mining. This 

introduction will show how the argumentations in texts have been studied in a 

computational and automated manner, starting with the argumentation theorists’ 

critiques of formal logic and the advancements in artificial intelligence. 

2.2.  From Argumentation Theory to Computational Argumentation 

In this section, we will give a brief introduction to argumentation theory, argumentation 

theorists’ critiques of formal logic in analyzing and evaluating arguments, and the main 

concepts of argumentation theory. Then, we will introducr computational argumentation, 

which uses resources from both argumentation theory and formal logic. Here, we will 

exemplify the works in computational argumentation by focusing on argumentation 

mining. The purpose of this section is to exemplify how argumentation can be studied 

computationally and give an idea of how argumentations in texts can be extracted in an 

automated fashion.  
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2.2.1. Argumentation Theory 

In the previous section, we presented first-order logic and exemplified the benefits of 

translating natural language sentences into first-order logic expressions. However, 

logicians are primarily interested in deductive arguments as they are the only ones that 

can be valid. Does this mean that there are no credible non-deductive arguments? Are 

we confined to solely using deductive arguments when we argue? Starting from the 

1950s, various philosophers and researchers began to argue that the methods of logic 

alone are insufficient to analyze and understand how people argue in real-life situations 

(van Eemeren et al., 2013). They argue that logic alone cannot capture the full 

complexity of the nature of argumentation. In this section, we will present three 

influential critiques that have significantly contributed to the development of 

argumentation theory. These critiques were put forward by Stephen Toulmin (2003), 

Chaïm Perelman and Lucie Olbrechts-Tyteca (1957), and Douglas Walton (2009). 

According to Stephen Toulmin (2003), traditional logic models are insufficient for 

capturing the complexity of argumentation in real-life contexts. Toulmin wanted to 

overcome this insufficiency and developed a model of argumentation that considers the 

various steps involved in arguing: claim, grounds, warrant, qualifier, rebuttal, and 

backing. Grounds refer to the evidence and facts supporting the argument’s conclusion, 

which is the claim the arguer wants their audience to accept. Warrant and backing 

connect the grounds and claim, with the former explaining the links between them and 

the latter providing domain knowledge to support these links. A qualifier, such as 

“probably” or “certainly”, conveys the strength of the arguer’s conviction. Finally, 

rebuttal accounts for exceptions or counterarguments that may arise and aims to defend 

against potential attacks from the audience. Because it provides reasons to accept a 

specific claim rather than proving it, Toulmin’s argumentation model is beneficial for 

analyzing and understanding argumentations in real-world situations. 

In their 1957 work, Perelman and Olbrechts-Tyteca proposed that the true objective of 

argumentation is to influence the beliefs and values of the audience, rather than simply 

proving the truth of a claim through formal logical proofs. They recognized that 

argumentation is a dynamic interaction between the arguer and the audience, intending 

to persuade the audience by impacting their beliefs and values. Perelman and Olbrechts-

Tyteca argued that this essential aspect of argumentation cannot be fully understood by 

relying solely on formal logic, but rather requires a thorough examination of the 

rhetorical and dialectical elements at play. 

The third critique belongs to Douglas Walton. Walton (2009) argued that, since the 

ancient Greek philosophers and rhetoricians, errors of reasoning or fallacies have been a 

central investigation of the object in logic. However, Walton contended that deductive 

logic or any formal structure has failed to identify these fallacies, which are complex and 

prevalent in real-world argumentations. To better capture and handle such reasoning and 

the identification of fallacies, Walton promoted informal logic as a movement proposed 

by C. L. Hamblin, who argued that argumentations are not arbitrarily designated sets of 
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entities but rather processes of offering premises in dialogues to make acceptable claims 

for arguments in doubt (Walton, 2009).  

Walton identified and offered argumentation schemes to assess the fallacies and the 

process of argumentation in real contexts. These structured argument forms are 

commonly used in dialogues in everyday situations, from scientific inquiries to casual 

conversations (Walton et al., 2008). Argument schemes are not meant to prove a claim 

but rather forms of plausible reasoning. Walton also provided critical questions for each 

argument scheme to offer a standard way of critically engaging an argument.  

An example of an argument scheme is the argument from expert opinion, which has the 

following structure, where A is a proposition, E is an expert, and D is a domain of 

knowledge: 

Major premise: Source E is an expert in subject domain S containing proposition A. 

Minor premise: E asserts that A is true. 

Conclusion: A is true. 

This kind of argumentation does not entail a conclusive conclusion but instead increases 

the acceptability of that conclusion, which is considered plausible reasoning in real-life 

contexts. Walton identified over 60 argument schemes and their corresponding critical 

questions to assess and evaluate the arguments (Walton et al., 2008). 

These critiques of logic led researchers to develop new methods and approaches to deal 

with argumentations in real contexts, which led the way to argumentation theory, an area 

of research whose object of investigation is argumentations that occur in real contexts 

(van Eemeren, 2001). Argumentation theorists do not just focus on the formal aspects of 

argumentation but also investigate how context, background knowledge, the domain of 

argumentation, and the audience to whom the argumentation is presented affect the 

process and acceptability of argumentation; therefore, they argue how the arguments are 

presented, discussed, and used in everyday discourse are essential aspects of 

argumentation (van Eemeren et al., 2013). For argumentation theorists, the informal and 

pragmatic aspects of argumentation must be examined to understand how arguments are 

rationally constructed to persuade others in real life. From the argumentation theory 

point of view, the definition of argumentation that reflects what argumentation is can be 

defined as the following: 

“Argumentation is a verbal and social activity of reason aimed at increasing (or 

decreasing) the acceptability of a controversial standpoint for the listener or reader, by 

putting forward a constellation of propositions intended to justify (or refute) the 

standpoint before a rational judge (van Eemeren et al., 2013, p. 5).” 

According to argumentation theorists, argumentation is a process of reasoning that 

involves social and verbal interactions. The person making an argument presents a 
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particular viewpoint that needs to be rationally justified to persuade the listener or 

reader. Argumentation is always contextual and should be analyzed and evaluated 

accordingly. Although there is no consensus between the schools of thought on the 

nature and structure of argumentation in argumentation theory, they all agree on its main 

aspects and the main concepts that any theory of argumentation must account for, which 

include standpoints, unexpressed elements, argumentation structures, argumentation 

schemes, and fallacies (Lewiński & Mohammed, 2016; van Eemeren et al., 2013). Now, 

we will explain what these concepts are and what their place in argumentation is. 

Standpoints within an argumentative discussion are the various viewpoints being 

debated. It is commonly held that those who present a standpoint must be prepared to 

justify or support their position. Presenting a standpoint and offering reasons to support 

it is the foundation of any argumentative discussion.  

Recognizing the elements of an argument is crucial for maintaining a rational discourse. 

Typically, these elements can be found in indicators within the discourse that reveal the 

structure of the argument and the premises and conclusions being made. However, these 

indicators may sometimes be missing from the discourse and must be identified 

implicitly. As a result, a comprehensive argumentation theory should guide how to 

identify and organize these missing elements. While logical analysis is one method for 

finding these elements, it is insufficient. Argumentation theorists argue that it is also 

important to consider contextual and informal factors, such as the personality of the 

arguer and the circumstances surrounding the argumentation, to assess and understand 

the argument being made entirely.  

Argument structures and schemes are two interrelated concepts. Argument structures 

pertain to the external organization of arguments, while argument schemes refer to their 

internal organization. The complexity of the external organization of arguments depends 

on how the arguers present their arguments in the discourse. The simplest argument 

structure is a single argument for or against a standpoint. However, complex argument 

structures consist of possible relations between arguments for or against the same 

standpoint. These possible structures include multiple argumentations, coordinated 

compound argumentation, and subordinate compound argumentation. 

On the other hand, the internal organization of arguments deals with how the premises 

are linked to the conclusions, characterizing the justification of standpoints via premises. 

In logic, inference relations between premises and conclusion must be logical or 

necessary for the argument form to be valid. However, argumentation theory aims to 

make a standpoint more acceptable or refutable, making the transfer of acceptance 

inclusive of practical and informal aspects. The ultimate goal is to make the case 

plausible rather than proving the conclusion. 

The last essential concept in argumentation theory pertains to fallacy. The definition of 

a fallacious argument from a logical point of view is an argument that appears valid but 

is not. However, this limited definition fails to encompass the scope of fallacies fully. In 
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argumentation theory, fallacies are viewed as discussion moves that diminish the quality 

of argumentative discourse. Consequently, they are considered rhetorical elements rather 

than logical structures and play specific roles in discussions. This perspective highlights 

the importance of pragmatic elements when fallacies arise in a conversation. The role of 

an argumentation theorist is to establish standards for discerning acceptable and 

unacceptable discussion tactics to ensure a high-quality argumentation process.  

Based on these discussions and the goals of argumentation theorists, Frans H. van 

Eemeren et al. (2013) argue that the main objective of studying argumentation is to 

create criteria that can determine the validity of an argument based on its points of 

departure and presentation, and then apply these criteria in the production, analysis, and 

evaluation of argumentative discourse. The main challenge for an argumentation theorist 

can also be conceptualized as extending the limits of validity from deductive arguments 

to any argumentation. 

We can now provide an overview of the key distinctions between logic and 

argumentation theory. The crucial characteristics that differentiate logic and 

argumentation theory include their main aspects, the types of inferences they analyze, 

the nature of their conclusions, and the connectives they employ to present the links 

between premises and conclusions. A summary of these differences can be found in the 

table below.  

Table 9: Main differences between formal logic and argumentation theory 

 
Logic Argumentation Theory 

Important Aspects Necessity, Generality Context, Activity 

Inference Deductive Defeasible 

Conclusion Conclusive Probable, Persuasive 

Connectives Truth-functional connectives Argument markers 

 

There are two important aspects of logic, namely, necessity and generality. In a 

deductive argument, the conclusion logically follows from the premises, and logic’s 

methods can be applied to any knowledge domain. However, argumentation theorists 

argue that argumentation is an activity that occurs in a particular context. Therefore, 

neglecting the context in which the argumentation occurs leads to disregarding essential 

aspects of argumentation, which are rhetorical and dialectical. 

In logic, the inferences between the conclusion and the premises are deductive, meaning 

that the conclusion follows logically from the premises. However, in argumentation 
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theory, the inference links between the premises and the conclusion are defeasible, 

meaning that the premises may provide good reasons to accept a conclusion. However, 

the conclusion does not follow from the premises conclusively. When additional 

information or new premises are added to the argumentation, the conclusion may be 

refuted or be less acceptable (Pollock, 1987). The nature of conclusions from logic and 

argumentation theory can also be understood from the differences between inferences. In 

deductive logic, a conclusion reached from the premises is conclusive. However, in 

argumentation theory, a conclusion is something persuasive or probable concerning the 

provided premises. 

Finally, we can mention the differences between the connectives in logic and 

argumentation theory. In logic, we use truth-functional connectives to determine a 

compound’s truth value based on its constituents’ truth value. Additionally, when 

examining an argument, we can use conjunctions to combine premises and assess 

whether the resulting compound implies a conclusion. In argumentation theory, 

connectives’ rhetorical and dialectical components are also considered. These argument 

markers assist us in identifying the elements of an argument, what is being argued, and 

the evidence provided to support or oppose it. 

In the following section, we will discuss computational argumentation, a field of 

research that employs argumentation theory and artificial intelligence methods to 

examine the nature of argumentation. 

2.2.2. Computational Argumentation and Argumentation Mining 

During the 1990s, advancements in computational methods and artificial intelligence led 

to the formalization of argumentations. This development proved to be a valuable tool 

for investigating argumentations from a computational perspective and started the 

research area of computational argumentation (van Eemeren and Verheij, 2017). 

Computational argumentation is a significant research area in natural language 

processing, which entails the identification, analysis, evaluation, and invention of 

argumentations using computational and data-driven approaches. (Lauscher et al., 2022). 

The four subareas of research in computational argumentation include argument mining, 

argument assessment, argument reasoning, and argument generation, corresponding to 

the identification, analysis, evaluation, and invention of argumentations via 

computational resources, respectively. The identification of argumentative structures, 

evaluation of the quality of argumentations, and analysis of how different 

argumentations relate to each other, as well as the detection of fallacies and missing 

elements in argumentations in natural language texts, are among the research areas in 

argumentation theory that can be studied in computational argumentation today. 

We want to focus on argument or argumentation mining here to provide an example of 

computational argumentation studies. Argumentation mining is a subfield of 

computational argumentation that utilizes natural language processing, computational 
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linguistics, and argumentation theory to automatically extract argumentative structures 

and relations from natural language texts (Lippi & Torroni, 2016). This field has become 

an important research area in natural language processing, and there is a vast amount of 

literature on making progress and developing better systems to extract argumentation 

structures and relations from texts automatically. Although it is a relatively young field, 

much work has been done in recent years to make argumentation mining systems more 

efficient and successful by developing new methods and systems. (Galassi et al., 2023). 

Although it could involve more components concerning what is wanted to be achieved, 

an argument mining pipeline typically involves three main stages, as explained by Janier 

and Saint-Dizier (2019). The first stage involves identifying the argumentation units, 

which are the atoms of argumentation. The identification is done by classifying each 

sentence in the text as either argumentative or non-argumentative. In the second stage, 

the structures of the argumentation units are identified. This process involves connecting 

the argumentation units and finding the boundaries of argumentations. Finally, in the 

third stage, the types or meanings of the connections between the argumentation units 

are identified by determining whether an argumentation unit supports or attacks a claim. 

All argumentation mining models or systems are developed to provide an acceptable 

method for conducting at least one of these main stages (Stede & Schneider, 2019). 

 

Figure 1: A representation of the argumentation mining pipeline 

Argumentation mining systems can be categorized in many ways, including which 

domain they are developed for or whether they are domain-independent, which main 

stage or stages they can carry, which argumentation structure model they are adopting, 

and whether they are developed to search for the main claim of the given text or not 

(Janier & Saint-Dizier, 2019). 
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2.2.3. Challenges of Argumentation Extraction 

Identifying and extracting an argumentation within a text in an automated fashion is 

challenging. This is due to the exact requirement of the necessity of understanding 

language in the translation of natural language sentences into first-order logic 

expressions. In The Logic of Real Arguments, Alec Fisher (2004) describes the steps of 

extracting argumentations from texts as the following: 

1) While reading the text, circle all the inference indicators. 

2) Underline clearly indicated conclusions and bracket clearly indicated reasons. 

3) Identify and mark the main conclusion. 

4) Starting from the main conclusion, the reader must ask what immediate reasons are 

presented in the text for accepting the main conclusion or why one should believe 

the main conclusion. Suppose the question cannot be answered because the author’s 

intentions are not transparent. In that case, the reader must ask the assertibility 

question: “What argument or evidence would justify me in asserting the main 

conclusion?” 

5) If the author asserts or assumes these reasons, it is reasonable to construe him as 

having intended the same argument. Otherwise, there is no rational way to 

reconstruct the author’s intended argumentation. 

6) If the reasons are presented in the text, then step 4 can be applied for each reason 

until the basic reasons are reached. 

7) Once all the reasons are linked with each other and the main conclusion, the 

extraction of argumentation is done. 

Although the process seems mechanical, Fisher argues that this is not a mechanical 

process that can yield an argumentation automatically. He stresses that this method 

requires imagination and judgment: it requires understanding the language of the text. 

Understanding the propositions that constitute the argument requires providing an 

account of how the proposition is decided to be true or not and what kind of evidence 

would make them so. Finally, sometimes, indicators may not be found in the text, 

although the argumentation with its conclusion and reasons is there; without clear 

indicators or context, one needs to understand and decide how the reasons are linked to 

the conclusion and each other without using linguistic cues, but trusting their capability 

for understanding language and knowing what argumentation is. 

Argumentation mining is also a complex task that faces several challenges. Lippi and 

Torroni (2016), together with providing a history of the development of argument 

mining models and evaluating them, provide the main objectives and challenges in this 

field as follows: 

1) The detection of argument structure types or schemes in an automated manner. 
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2) The detection of the relationship between claims and justifications, known as The 

Relatedness Problem. Finding the relationship types between argumentative units is 

especially challenging when justifications support opposite claims or when opposite 

justifications justify the same claim. 

3) Finding presuppositions or enthymemes that are not explicitly stated in the text. 

4) Extracting argumentative components from text in the absence of argument markers. 

5) The lack of representation of background knowledge in texts and arguments. 

6) The requirement for different definitions and annotated datasets for different tasks. 

Since different knowledge domains require different types of justifications to support a 

claim, domain-specific conceptualizations become relevant for individual models. 

Together with accomplishing these challenges, for an argumentation mining model to be 

successful, it must possess the ability to accurately extract any argumentative structure 

present within a given text while considering the domain of knowledge and contextual 

factors at play within the argument. 

The main challenge in developing a successful argumentation mining model is the need 

for a model that can consider the sentences or text beyond their syntax; it must be able to 

consider the various roles that words may play in different contexts. Like the translation 

task, this requires a model that can consider contextual differences at play while 

determining the role of the words and deal with the possible variations in natural 

language sentences. In the next section, we will explore the Transformer architecture 

and its position within the field of artificial intelligence. We will compare it to other 

models and evaluate its potential for translating natural language sentences into first-

order logic expressions. If models based on this architecture can be useful for the 

translation task, they may also provide ways to accomplish argumentation mining tasks, 

eventually leading us to a new method of argumentation analysis that takes advantage of 

both the translation model and the argumentation mining model. 

2.3.  The Transformer Architecture and Language Models 

In this section, we will introduce the Transformer architecture and its significance in 

artificial intelligence research. We will focus on its distinctive characteristics, 

considering how it operates and differs from other architectures, and present its strengths 

and weaknesses in natural language processing tasks. Then, we will discuss the potential 

benefits of leveraging the Transformer architecture and language models based on it for 

translating natural language sentences into first-order logic expressions from a modeling 

perspective. We will discuss what to consider when developing a model for the 

translation task, what requirements the developed models should meet, and what the 

criteria are for evaluating the success of a model. 
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2.3.1. Artificial Intelligence Systems 

To understand the Transformer architecture, it is crucial to differentiate and categorize 

different artificial intelligence approaches concerning their mode of operation. This 

classification will serve as a crucial foundation for recognizing the role of the 

Transformer architecture and language models based on it within the field of artificial 

intelligence. Therefore, we will briefly introduce artificial intelligence methods before 

introducing the Transformer architecture. 

The definition of artificial intelligence varies depending on the research domain and the 

researchers’ intention. The phrase was coined by a group of researchers including John 

McCarthy and Marvin L. Minsky in the 1950’s, and since then, researchers have had 

differing interpretations of what artificial systems and their purpose are. Some 

researchers view artificial intelligence only as a tool for modeling and simulating human 

cognitive abilities to make scientific progress while some others define the area of 

research as the creation of systems that can realize cognitive abilities like language 

acquisition and language use (Boden, 1996; Russell & Norvig, 2016). There are also 

researchers who conceptualize artificial intelligence as the mechanization and 

automation of work (Reed, 1987). Rather than exploring whether there is a true 

definition of artificial intelligence, in this section, we will focus on the main distinctions 

between proposed artificial intelligence systems and methods found in literature, 

emphasizing what they do and how they do it. 

Artificial intelligence systems can be classified into two main categories: rule-based 

systems and machine-learning systems (Russell & Norvig, 2016). These two types of 

categories differ in terms of their design. Rule-based systems are designed to perform 

tasks by following pre-defined rules that govern how an input is transformed into an 

output. In contrast, machine learning systems rely on data and learning algorithms, as 

their operation of transforming input into output is learned and shaped by the data they 

are trained. Through this distinction, we can say that both types of artificial intelligence 

systems function as a mapping from inputs to outputs, but the mode of mapping differs. 

While rule-based systems rely on the designer’s knowledge and handcrafted rules to 

determine the input-output mapping, machine learning systems rely on the data they are 

exposed to during training to learn the mapping with learning algorithms. 

While it is true that rule-based and machine learning systems are differentiated by their 

approach, this does not reject the importance of design in machine learning. 

Conventional machine learning systems rely on hand-crafted feature extractors, which 

help narrow the focus of the system to relevant attributes and variables within the 

training data. These feature extractors are designed to transform the raw input data into 

an internal representation or feature vector for the system to detect and learn the patterns 

that are exhibited in the input data (LeCun et al., 2015). However, this approach limits 

the system to a specific domain and requires expertise in the specific tasks.  
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Deep learning techniques were developed to address the limitations of feature extraction, 

and two essential concepts must be mentioned to understand how the limitations are 

addressed: representation learning and distributed representations. Here, we will briefly 

introduce deep learning architectures and then explain these two important concepts. 

Deep learning techniques leverage artificial neural network architectures that consist of 

multiple layers of organization (Bishop & Bishop, 2024). The multiple layers contain 

many nodes that are called neurons of the architecture. The interrelated connections and 

the computation strategies of these neurons in different layers allow deep learning 

systems to learn different levels of features at different hierarchies from the input by 

using general-purpose learning procedures, which allows the system not to rely on hand-

crafted feature extractors for specific domains or types of data. This learning procedure 

in neural network architecture involves optimizing the internal weights and biases of the 

neurons and their connections. The multiple layers of organization allow the systems to 

extract the low-level features from the data and then, by combining and processing 

through the subsequent layers, construct higher-level features hierarchically. The method 

of constructing features from low to high levels only through processing the training 

data is called representation learning in the deep learning literature, and it allows the 

system to learn more complex functions without creating and constructing feature 

extractors by hand (LeCun et al., 2015). The learned representations or features in the 

representation learning process are called distributed representations, meaning that the 

multiple features of information gained by representation learning are distributed over 

and spread across multiple neurons in the architecture. This type of architecture allows 

the system to learn non-linear input-output mappings by only exposing it to large 

training data without a designer’s specification. Therefore, by changing the architecture 

and the mode of representation, we can say that deep-learning techniques overcome the 

problems of crafting feature extractors by hand, allowing the system to be generalizable 

over multiple domains of information.  

Now, we have arrived at a position to distinguish the artificial intelligence systems 

clearly. Rule-based systems differ from machine learning systems in terms of their 

reliance on design over data, and machine learning systems can be categorized as 

conventional machine learning systems and deep learning systems. Conventional 

machine learning systems rely on feature extractors designed to extract relevant features 

from data. On the other hand, deep learning systems that leverage artificial neural 

network architectures do not require such designed feature extractors. Instead, in deep 

learning systems, representation learning methods are used to extract both low-level and 

high-level features hierarchically and distribute the information from data over and 

spread across multiple neurons. These systems are differentiated in the figure below.  
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Figure 2: Categorization of artificial intelligence systems 

Although deep learning techniques allow the models to not rely on hand-crafted rules 

and feature extractors to learn patterns and structures in multiple abstraction levels from 

data, and although they show remarkable success in various tasks, including natural 

language processing, image recognition, and speech recognition, this does not mean that 

they perform optimally and reached the peak of what artificial intelligence systems can 

do. Many researchers criticize deep learning systems mainly for their incapability to 

capture several essential aspects of languages and grammars, which rule-based systems 

can easily exhibit. Earlier critiques of architectures like artificial neural networks go 

back to the seminal work of Jerry Fodor and Zenon W. Pylyshyn (1988), in which they 

argued that connectionist systems cannot capture the properties of systematicity and 

productivity, which classical architectures can capture since they are committed to 

representational states that have combinatorial syntactic and semantic structures. While 

systematicity refers to the systematic structural organization of languages, productivity 

refers to the ability to generate potentially infinite meaningful and novel sentences using 

a finite set of linguistic elements. These two properties can be captured by context-

sensitive grammars in a rule-based manner for natural language sentences. However, 

since connectionist architectures do not commit to representational states that have 

combinatorial syntactic and semantic structure or inherent grammars that define how a 

sentence can be constructed using a finite set of linguistic elements but rely on learning 

the exhibited statistical patterns in data, it is argued that even if connectionist systems 

show success on tasks that require rules concerning recursive and hierarchical structures, 

this would only show their correlational success of generalization, which is not 

guaranteed to be shown for unseen data. 

There were several responses to Fodor and Pylyshyn’s critique, and this debate is still 

one of the main topics in the artificial intelligence field of research (Chalmers, 1990, 

July; Smolensky, 1991). The same debate between classical and connectionist 

architectures continues today between rule-based and deep learning systems. The 

question is whether artificial neural networks and deep learning systems can demonstrate 

recursive and hierarchical structures that are not predefined by rules or grammars but 

rather through the learning of generalizations and hierarchical representations from 
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statistical patterns in data. (Adger, 2018; Marcus, 2018; Piantadosi, 2023; Millière & 

Buckner, 2024). 

While there have been numerous suggestions advocating for a combination of various 

architectures, such as hybrid and neuro-symbolic architectures, to be used for the tasks 

that necessitate both learning from data and rule-based governance, a noteworthy deep 

learning architecture has emerged in 2017 as the focus of these discussions due to its 

remarkable successes in natural language processing. This architecture is known as the 

Transformer architecture. In the next section, we will introduce this architecture. 

2.3.2. The Transformer Architecture 

The Transformer architecture revolutionized the artificial intelligence field of research 

and changed how natural language processing tasks are approached. Vaswani et al. 

(2017) showed that eliminating the need for convolutional and recurrent layers, which 

are methods employed in deep learning systems, and relying solely on attention 

mechanisms in an encoder-decoder structure show results that are superior to using 

recurrent and convolutional neural networks together with attention mechanisms for 

sequence-to-sequence translation tasks. Since then, many variants of Transformers have 

been used for several natural language processing tasks or fine-tuned to perform specific 

tasks, such as machine translation, summary generation, and image generation (Phuong 

& Hutter, 2022). Transformer architectures’ ability to handle long dependencies, self-

attention mechanisms that enable the architecture to use relational and contextual 

information, and their versatility and generalization capabilities make them powerful 

candidates for natural language processing tasks. 

The variants of the Transformer architecture either change one or more components of 

the original architecture or employ attention weight calculation functions or 

normalizations that differ from the original architecture. Here, we will summarize the 

architectural components of the original architecture proposed by Vaswani et al. (2017) 

and then exemplify how different architectures are developed and how this architecture 

is used for developing language models. 
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Figure 3: The original Transformer architecture, retrieved from Vaswani et al. (2017) 

The original Transformer architecture adopts an encoder-decoder structure, where the 

encoder and the decoder are composed of stacks of 6 identical layers that process 

sequences in parallel. Each layer in the encoder and decoder residual connections is 

followed by layer normalization. The encoder layers have two sub-layers: a multi-head 

self-attention mechanism and a position-wise fully connected feed-forward network, 

which is applied to each position separately and identically. On the other hand, the 

decoder includes an additional sub-layer that performs multi-head attention over the 

encoder’s output, allowing each position in the decoder to attend all positions in the 

input sequence. Another difference between the decoder and the encoder is that a 

masking mechanism is employed in the self-attention layers of the decoder, which 

ensures predictions for a position can depend only on known outputs at positions that are 

before the current position. To convert the input tokens and output tokens to vectors of a 

specified dimension, learned embeddings were used, and to convert the decoder output 

to predicted next-token probabilities, learned linear transformation and softmax function 

were used in the architecture. To better capture how the Transformer architecture differs 

from other architectures, two components of its architecture must be understood: multi-

head attention and positional encoding. 
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The attention function is the principal aspect of the Transformer architecture, and it 

computes the output as a weighted sum of the inputs. This function maps a query vector 

and a set of key-value vector pairs to an output vector. The particular attention function 

employed in the original Transformer architecture is called scaled dot-product attention, 

where the input consists of queries, keys, and values. The dot products of the query with 

all keys are computed. Then, each is divided by the square root of the dimension of the 

keys. Finally, a softmax function is applied to obtain the weights of the values. Another 

essential aspect of the Transformer architecture is that several attention functions are 

performed in parallel. This parallel processing is achieved by projecting the queries, 

keys, and values multiple times with different, learned linear projections, which is called 

multi-head attention, and it allows the architecture two main benefits: using it in 

encoder-decoder layers allows every position in the decoder to attend all positions in the 

input sequence, and using it in the self-attention layers in the encoder and decoder 

allows each position in the encoder and decoder to attend to all positions in the previous 

layer of the encoder and the decoder. 

Vaswani et al. (2017) state that using self-attention layers provides several benefits 

instead of recurrent and convolutional layers. The main benefits they state are that this 

new architecture can be trained faster, parallelize more computation, and handle long 

dependencies more efficiently. However, since the Transformer architecture does not 

use recurrence and convolution, which provide information about the position of the 

tokens in sequences, there needs to be something that informs the architecture about the 

order of the tokens. In the Transformer architecture, this is achieved by adding positional 

encodings to the input embeddings at the bottoms of the encoder and decoder stacks. 

Although the positional encodings can vary, in the original architecture, sine and cosine 

functions of different frequencies are used to inform the architecture about the position 

of the tokens in sequences. 

Vaswani et al. (2017) evaluated their architecture by training it to perform machine 

translation. They showed that their trained model outperformed the best previously 

reported models regarding BLEU score, a metric to evaluate the models on machine 

translation tasks. To test if their model can generalize to other tasks, they tested it on 

English constituency parsing, which is challenging due to the structural constraints of 

the required output. It is shown that their model also outperformed almost all previously 

reported models.  

Ultimately, Vaswani et al. (2017) developed the Transformer architecture, the first 

sequence transduction model that relies entirely on attention, specifically, multi-head 

self-attention. Based on its success on specific tasks, the requirement of less training 

time and higher efficiency than other deep learning approaches, and generalizability and 

scalability across various tasks, the Transformer architecture and attention-based models 

opened new ways of approaching natural language processing tasks.  

One influential type of model that relies on the Transformer architecture is the language 

model or large language model. Language models demonstrated remarkable proficiency 
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in a wide range of language-based tasks. In the next section, we will introduce language 

models, focusing on how they employ the Transformer architecture, in what terms they 

differ from each other, and their capabilities in and impact on natural language 

processing tasks. 

2.3.3. Language Models 

Language or large language models are deep learning systems that adopt the 

Transformer architecture. They are developed for a wide range of tasks, including 

natural language processing, machine translation, question answering, mathematical 

problem solving, and text generation and summarization (Phuong & Hutter, 2022; Zhao 

et al., 2023; Millière & Buckner, 2024). These models are trained on large amounts and 

diverse text sources. They have massive numbers of parameters to capture statistical 

patterns and relations within texts and memorize vast amounts of information, allowing 

them to learn a wide variety of linguistic content and structure. Although they rely on 

the Transformer architecture to capture linguistic patterns and relations effectively, they 

rarely preserve the original architecture proposed by Vaswani et al. (2017). These 

variations can occur with the employed type of tokenization, attention function to 

calculate the weighted attention of each token, and even sometimes employing only an 

encoder or a decoder but not both within the architecture. Considering the variations in 

the architecture, their type of training and inference may also vary. For example, most 

prominent language models employ the autoregressive method of next token prediction, 

which predicts which token is statistically most likely to follow, given a sequence of 

tokens (Bengio et al., 2000; Millière & Buckner, 2024). 

The advantage of training a language model is that once they are trained with a vast 

amount of text from diverse sources, they can also be trained to perform specific tasks 

via fine-tuning. We can separate language models into foundation models and fine-tuned 

models (Amatriain et al., 2023). Foundation models are trained on vast amounts of text 

data, and their training aims to capture linguistic patterns and relations. On the other 

hand, fine-tuned models are trained for specific down tasks, such as machine translation 

from a specific language to another, mathematical problem solving, or even any machine 

learning tasks, including sentiment analysis or argumentation mining. The benefit of 

fine-tuning a language model to perform a language-related task rather than training any 

machine learning system is that the linguistic patterns and relations that were learned by 

the training of the fundamental models can be used and applied for the fine-tuned task, 

which is called transfer learning in the deep learning literature. A language model can be 

fine-tuned for a new task with less training data and still capture linguistic patterns and 

relations using existing information about linguistic patterns and relations. Applying 

existing information on new tasks allows several techniques to be used in language 

models to adapt them for new tasks for which they were not explicitly trained. These 

learning techniques include “zero-shot” and “few-shot” learning, in which, rather than 

training, the model user exemplifies the task by giving instructions or examples. 
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Adaptability for new tasks without explicit training makes language models preferable 

for various tasks. 

The advantages of adopting language models, of course, cannot hide the disadvantages 

of these models. There are several disadvantages concerning the training of foundational 

models due to their requirement of extensive training data, significant computational 

resources with powerful hardware, and several ethical concerns related to privacy and 

potential misuse (Millière & Buckner, 2024). These topics are debated and investigated 

in artificial intelligence communities and ethics research areas. Rather than providing 

why such concerns exist and whether they can be addressed, we want to focus on two 

disadvantages, which are related to semantics and explanation. 

One of the most critical disadvantages of adapting a language model for a task is its 

potential to generate inaccurate or misleading information (Millière & Buckner, 2024). 

These models are trained on a vast amount of data that exists mainly on the web, and 

currently, there is no automated way to separate what is accurate from what is 

inaccurate. Generating biased and harmful content is also another disadvantage, 

considering these models’ way of training and the available training data. However, 

many artificial intelligence researchers try to overcome this risk by taking several 

measures, including further training with more test data and human feedback 

mechanisms. These disadvantages affect these models’ way of generating textual output 

and make them able to produce misinformation due to their training data. Considering 

this potential to produce misinformation, despite their apparent success in creating 

relevant and structured text, the discussion of whether these models capture the semantic 

aspects of language become a highly debated topic in both the artificial intelligence 

community and philosophers of artificial intelligence. 

Another significant problem is about explanation. When an artificial intelligence system 

is developed to conduct a task, it is essential to know how an input is mapped to an 

output. Although the mode of operation and the architecture are known, it is almost 

impossible for language models and machine learning systems to decide how a specific 

output is generated from a given input. This problem of learning-based models makes it 

difficult to interpret what is learned and how these learned features are used for specific 

outputs. To overcome this problem, several post hoc analyses were proposed (Carvalho 

et al., 2019). These analyses include visualizing attention weights, designing task-

specific metrics, and conducting counterfactual analysis to inspect the models’ behavior. 

However, it is still a discussion whether these approaches provide explanations 

(Bastings & Filippova, 2020). 

Although the capabilities and successes of language models challenge several views and 

assumptions that can be found in cognitive science and linguistics, many researchers and 

philosophers argue that training on a vast amount of data and relying on a next-token 

prediction function do not guarantee the essential features of language, semantic 

competence, and compositionality. We can see that the old debates frontiered by 

philosophers such as Jerry Fodor against data-based approaches to artificial intelligence 
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systems are still echoed and alive in today’s atmosphere. Several researchers argue that 

whether deep learning systems can capture such essential features is an empirical issue, 

while several others claim that even if new artificial intelligence systems show successes 

that were not possible before, the issue is conceptual rather than empirical, and 

therefore, without explicitly employing structural and recursive features of languages, 

any artificial intelligence that relies solely on the learned statistical regularities that can 

be found within training data is not enough to capture what is essential for languages 

(Marcus, 2018; Millière & Buckner, 2024). In summary, language models have shown 

several successes, and using them for various linguistic tasks is advantageous. However, 

it is still debated whether the structural properties of languages and semantic 

competence necessary to understand a language can be achieved by the language models 

that rely on the Transformer architecture and autoregression methods. 

In the next section, we will discuss why adopting language models to translate natural 

language sentences into first-order logic expressions can be advantageous and must be 

investigated. We will focus on what is required to translate natural language sentences 

into first-order logic expressions and discuss whether language models can handle such 

requirements. We will perform this discussion based on a modeling perspective, in 

which we try to explain what we assume of the task at hand when using a language 

model. 

2.3.4. Approaching Translation Using Transformer-based Language Models 

At the beginning of this chapter, we introduced first-order logic. We explained why 

translating natural language sentences into first-order logic expressions is a challenging 

task. This is due to three important reasons: the requirement of an understanding and 

relying on a sense of language, possible non-existence of linguistic cues, and 

ambiguities that may arise in determining the intended meaning of sentences. The 

variational complexities a natural language sentence may exhibit can also be added to 

why this task is challenging for artificial intelligence systems. Once we think about how 

a sentence can be as complex as possible, it is evident that it would become much more 

complicated to translate it into a formal language, especially for rule-based systems. 

Considering the advantages of the Transformer-based language models, these models 

may be suitable for the translation task. In the previous sections, we introduced the 

Transformer architecture. We stated that they have several advantages in natural 

language processing tasks, including their ability to handle long dependencies, capture 

relational and contextual information in input sequences, and their versatility and 

generalization capabilities. Then we introduced language models, which possess the 

advantages of the Transformer architecture, together with transfer learning, which 

enables them to use the learned linguistic patterns and relations to new fine-tuned 

specific tasks, and the less requirement of training data while fine-tuning. Such 

advantages provide good reasons to adapt them and make them beneficial for the 

translation task. While transfer learning ability can be beneficial for the requirement of 
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having a sense of everyday language by leveraging the learned linguistic structures and 

relations, these models’ versatility and their generalization capabilities can provide 

efficient means to easily train these models for translating various sentences into logical 

forms. This task may also serve to determine whether Transformer-based language 

models can generalize over the training data and make accurate predictions that have a 

compositional structure. First-order logic expressions have a compositional structure and 

can be extended productively by applying rules of well-formedness. After fine-tuning a 

language model, the results may give us reasons to claim that these models may or may 

not exhibit structural and hierarchical properties without predefined rules. We believe 

these are good reasons to use language models for the translation task. Now, we will 

introduce several challenges that must be addressed when developing a model for the 

translation task from a modeling perspective. These challenges are generating well-

formed structures, differentiating form from content, many-to-one and one-to-many 

mappings, and generalizability. 

2.3.4.1.  Generating Well-formed Expressions 

We stated that first-order logic expressions are well-formed formulas that are syntactic 

objects that have meaning under interpretation. The structure of the well-formed 

formulas determines the quantifiers’ scope, how quantifiers bind the variables, and the 

relations of the predicates in terms of truth-functional connectives. One crucial aspect of 

constructing a well-formed formula is that it can be considered a bottom-up process; to 

determine whether an expression is well-formed, we start from the atomic formulas and 

check whether we can get the complex expressions by checking whether the complex 

expression can be gained by recursively applying the rules of creating complex formulas 

from the atomic formulas. However, the translation method we adapted from Goldfarb 

starts from the whole expression and proceeds inwards; first, we decide on the entire 

expression and then construct its inner structure step by step. There is an apparent 

opposite relation between translation and determining whether the translated expression 

is well-formed. Of course, determining whether an expression is well-formed can be 

decided if we believe we applied the translation process correctly. However, translating 

a sentence into a logical expression and determining its well-formedness seem separate 

tasks. Any model developed for translation must be checked to see whether its generated 

expressions for sentences are well-formed. Only after that can we check whether the 

expressions convey the meaning of sentences. We cannot even interpret and check 

whether the generated expression conveys the sentence’s meaning if they are not well-

formed. Therefore, this aspect must be one of the main goals of any model developed for 

the translation task. 

2.3.4.2.  Differentiating Form from Content 

Another important topic is whether the trained models for the translation task can 

successfully separate the content from the form. That is, whether they can capture the 
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formal relations exhibited by the truth-functional connectives, quantifiers, and 

parentheses in logical expressions. As we stated before, well-formed first-order logic 

formulas are syntactical objects and can be meaningful only under interpretation. 

Consider the sentences “All humans are animals” and “All animals are living beings”. 

Although they express different meanings, they exhibit the same form, which is “∀x 

(P(x) → R(x))”. This logical form can be interpreted as the first sentence if we interpret 

“P” as human and “R” as animal, and it can be interpreted as the second if we interpret 

“P” as animal and “R” as living being. When dealing with the translation task, we must 

check whether our model can capture the formal aspects of sentences and expressions. 

2.3.4.3.  Many-to-One and One-to-Many Mappings 

Another critical challenge of developing models for translating natural language 

sentences into first-order logic expressions is that the relation between a sentence and its 

formal expression is usually not a one-to-one mapping. As we stated before, a sentence 

can be translated into more than one formal expression, and a logical form can be 

mapped to more than one sentence. The latter relation can be seen from the previous 

challenge of modeling the translation task; the logical form “∀x (P(x) → R(x))” can be 

interpreted as both “All humans are animals” and “All animals are living beings”. 

However, this mapping relation can be eased if we directly use the parts of sentences 

that must be represented as predicates in the logical expression. For example, if we write 

the logical expression of the sentence “All humans are animals” as “∀x (Human(x) → 

Animal(x))” instead of “∀x (P(x) →  R(x))”, we can separate it from the logical 

expression of the sentence “All animals are living beings”, in this case, will be “∀x 

(Animal(x) → LivingBeing(x))”. We can check whether these logical expressions have 

the same form by abstracting predicates after translation. In this scenario, our models 

must be able to detect the parts of sentences that will serve as predicates in a logical 

expression and determine the truth-functional connectives and quantifiers. 

The former can be seen when we consider sentences that contain a negation. Consider 

the sentence, “No bird is human”. This sentence can be expressed logically in two ways: 

“∀x (Bird(x) → ¬Human(x))”, which can be read as “For all x, if x is a bird, then x is 

not a human”, and “¬∃x (Bird(x) ∧ Human(x))”, which can be read as “There is no x 

such that x is a bird and x is a human”. Both expressions convey the meaning of the 

sentence. This could seem a minor issue since if our model’s prediction conveys the 

meaning of the sentence, then there is no need to check whether any other expression 

can also convey this meaning. However, it becomes crucial when we evaluate our 

model’s success in the task. Comparing the prediction and the ground truth of a sentence 

in the test data in terms of accuracy is a general evaluation method in developing 

artificial intelligence models. However, this evaluation method can be insufficient when 

dealing with one-to-many mappings. Consider again the sentence “No bird is human”. If 

this sentence exists in our test data with the ground-truth “¬∃x (Bird(x) ∧ Human(x))”, 

and if our model predicts “∀x (Bird(x) → ¬Human(x))”, although we got a prediction 
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that conveys the meaning of the sentence, this would be counted as a false prediction in 

terms of accuracy, since neither they are the exact expression nor exhibit the same form. 

To overcome this problem, we must also check whether the prediction and ground-truth 

expressions are equivalent. We cannot adequately evaluate our model’s success for the 

translation task without checking this condition. 

2.3.4.4.  Generalizability 

One final challenge for developing a model for the translation task is whether it can 

generalize its knowledge to unseen data. Although this is a general challenge for any 

machine learning model, it is more challenging for the translation task since translation 

requires the model to generalize its knowledge into two domains. On the one hand, the 

model’s knowledge must be generalizable over unseen natural language sentences, 

meaning that however they become complex, it must apply its knowledge to any natural 

language sentence, detect the truth-functional connectives, parts of sentences that will 

serve as predicates, the adequate number and type of quantifiers, and place the 

parentheses in a way that the scope and bindings of the quantifiers would be adequate. It 

is also important that expressions of these unseen sentences are well-formed. On the 

other hand, the model must be able to generalize its knowledge of the formal aspects of 

the sentences in a recursive and structured way. For example, suppose the internal 

structure of an expression must contain more truth-functional connectives for a sentence 

that is not part of the training data. In that case, the model must detect this new formal 

part and apply its knowledge of how truth-functional connectives are used to predict this 

new form. We can say that this would be the most challenging part of a model of 

translation since it requires attending to the formal aspects recursively and structurally, 

which is claimed to be one of the main challenges of data-based approaches in artificial 

intelligence systems. 

The Transformer-based language models are said to revolutionize the artificial 

intelligence field of research and change how we approach language-based tasks. 

Although they outperform many other types of models, it is still debatable whether they 

can be used for any language-based tasks. Using these models may be beneficial for 

translating natural language sentences into first-order logic expressions of their 

advantages mentioned above. However, the challenges discussed above must also be 

addressed to claim that these models are, in fact, adequate for the task. 

2.4. Conclusion 

In this chapter, we first introduced formal and applied logic, focusing on first-order 

logic. We presented several benefits of translating natural language sentences into first-

order logic and explained why the translation is challenging, primarily due to the 

essentiality of understanding language. Then, we introduced argumentation theory and 

its critique of formal logic in evaluating and analyzing argumentations, which, together 



38 

 

with the developments in artificial intelligence, led the way to the computational study 

of argumentation and argumentation mining. Finally, we briefly introduced artificial 

intelligence systems and categorized them to show the importance of the Transformer 

architecture and why it revolutionized the field of research. We focused on language 

models that use the Transformer architecture and provided reasons why models that rely 

on this architecture can be beneficial for automating the translation task. In the end, we 

discussed what needs to be considered when we are developing a model for the 

translation task, what requirements the developed models must fulfill, and what needs to 

be considered when evaluating the success of a model. In the next chapter, we will 

review the literature on automating the translation task, which is regarded as a task 

belonging to semantic parsing. We will present and evaluate methods from the literature, 

focusing on approaches and modeling strategies utilized, datasets on which the models 

were trained, and metrics used to evaluate these models. 
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3. TRANSLATING NATURAL LANGUAGE SENTENCES INTO FIRST-

ORDER LOGIC EXPRESSIONS 

In this chapter, we will review the literature on automating the translation task using 

artificial intelligence systems. Specifically, we will introduce the semantic parsing 

literature and how various artificial intelligence systems are utilized within this field. We 

will present and evaluate methods from the literature, focusing on approaches and 

modeling strategies utilized, datasets on which the models were trained, and metrics 

used to evaluate these models. Then, we will introduce our approach to automate the 

translation task using a Transformer-based language model. Together with introducing 

our approach, we will focus on how our approach differs from the models in the 

literature, considering a new dataset developed for this evaluation and several new 

evaluation metrics that we consider necessary for evaluating any model developed or 

trained for the translation task. After introducing our approach, we will present our 

findings based on our evaluation methods and discuss the status of the Transformer-

based language models and their appropriateness for the translation task. 

3.1.  Semantic Parsing 

Semantic parsing is a research area in natural language understanding, dealing with 

automatically translating natural language sentences into formal meaning representations 

that can be executed in suitable machines or computer programs (Kamath and Das, 

2019). Since the process of mapping from natural language sentences to formal meaning 

representations requires extracting the precise meaning of a sentence, together with the 

prediction of inherent structures in sentences, semantic parsing differs from machine 

translation and language generation; mapping to a formal meaning representation must 

be a structured and well-formed object that can be executed. 

Semantic parsers may consist of several components, including a formal meaning 

representation that the semantic parser makes a prediction for a natural language 

sentence, an environment that the prediction of the parser can be executed, a grammar to 

derive well-formed formal meaning representations, a model with a learning algorithm 

to train the semantic parser to perform the translation, and a dataset to train the model. 

The formal meaning representation of the semantic parser can be a logic-based 

formalism, such as first-order logic and lambda calculus, a graph-based formalism, or a 

programming language for converting queries to be executable in databases or 

knowledgebases. Depending on the formalism, an adequate grammar with a lexicon 

needs to be defined and implemented for the semantic parser, and an environment needs 

to be used to execute the parser’s predictions. 

The choice of the type of model depends on its advantages and disadvantages. The 

methodologies for semantic parsing include rule-based models, statistical models, and 

neural models (Kamath and Das, 2019). Rule-based models can be based on pattern-
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matching systems that check whether a suitable pattern can be found in the parser to be 

parsed, syntax-based systems that generate syntactic parse trees for predictions, and 

grammars that also consider semantic categories. Although rule-based systems are quite 

efficient and guarantee that predictions are well-formed, they suffer from being domain-

specific and ungeneralizable to other domains of knowledge. Also, they require expertise 

to define the rules for parsing, which can be extensive for even single domains. 

Statistical models were developed to overcome the difficulties of rule-based systems 

using learning algorithms and annotated datasets. Although this approach reduces the 

need for expertise in defining rules for parsing using statistical learning techniques to 

learn the relations between the training data and the predicted output, they require 

expertise in annotating the training dataset due to statistical models’ requirement of 

complex annotations to make the model to be able to attend the relevant parts of the 

data. The requirement of complex annotated datasets also makes the statistical models 

domain-specific, and it is hard to develop one since it requires expertise in the domain. 

With the rise of the achievements of neural models in sequential tasks, many researchers 

have begun to consider semantic parsing as a machine translation task in which its 

predictions must be in a form that computer programs can execute. This approach 

reduced the need for expertise in defining rules and annotating datasets since neural 

models can be trained to learn mappings from natural language sentences to formal 

meaning representations without intermediate representations and manually crafted 

features. Although this advantage of neural models makes them generalizable over 

several domains and easy to train, they do not leverage in-built knowledge of 

compositionality, which rule-based models can always ensure, which can make them 

generate syntactically incorrect or semantically inaccurate predictions (Kamath and Das, 

2019). Another concern is that these models do not always ensure interpretability, 

meaning it is hard and generally not possible to determine why a specific prediction is 

made for a specific input. To interpret their results and the trained model itself, several 

post-hoc analyses can be required.  

It is a common practice to evaluate the success of neural models using surface form 

evaluation metrics, such as accuracy or BLEU scores. It is suggested that such 

evaluation metrics can also be used to evaluate the neural-based semantic parsers. 

However, it is also possible that these models can be trained and checked by directly 

implementing their predictions for the environments to be executed. This 

implementation can guarantee that the predictions will always be well-formed and can 

be evaluated based on the execution result. Considering and suggesting this approach as 

a suggestion, Kamath and Das (2019) also claim that fine-tuning across datasets to 

leverage shared representational power may provide benefits for developing 

generalizable semantic parsers by reducing the representational burden on the semantic 

parser and leveraging already known structure of the fine-tuned model. 
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3.1.1. Semantic Parsing as Machine Translation 

As claimed, it is possible to consider semantic parsing tasks as machine translation tasks 

using neural-based approaches. In this section, we will sketch how the translation task 

can be considered a semantic parsing task.  

Our task is to automate the translation of natural language sentences into first-order logic 

expressions. For this task, we need to specify the components of semantic parsing 

models accordingly. 

For our translation task, our formal meaning representation is first-order logic, and our 

sentences that will be translated will be any natural language sentence, no matter how 

complex. Our lexicon for first-order logic will include all necessary symbols used to 

construct well-formed formulas, including truth-functional connectives, quantifiers, and 

parentheses. Together with these, we will also need variables, constants, and predicates. 

While variables can be any lower-case character, our predicates and constants can be the 

parts of natural language sentences that will serve as predicates and constants. 

Considering our aim in this thesis, we can select a transformer-based language model for 

training. For the environment, we can choose any environment that can execute the 

model’s predictions, such as The Natural Language Toolkit (NLTK), an open-source 

library for natural language processing (Bird et al., 2009). For the dataset requirement, 

our dataset must consist of pairs of natural language sentences and first-order logic 

expressions that convey the meaning of the sentences. This dataset must be as diverse as 

possible and include many pairs in different forms so that our model can capture 

different possible forms of expressions. Finally, we need evaluation metrics to evaluate 

the success of our trained model. These metrics must measure the success of the 

predictions in different ways, focusing on whether the predicates are accurate, whether 

the form of the expression is adequately captured, and whether the prediction is a well-

formed expression. 

These specifications will help us to train an adequate model for the translation task, and 

we will use them while describing our approach. However, before describing our 

approach to modeling, we will provide a literature review of the developed models for 

the translation task. While introducing these models in the literature, we will emphasize 

their approaches and evaluation methods for their success. 

3.1.2. Models for Translating Sentences into Formal Expressions in the Literature 

In this section, we will review and evaluate the approaches of the models developed for 

the translation task. These approaches include rule-based, neural-based, and hybrid 

models that integrate rule-based and neural-based approaches into their framework. We 

will emphasize their approaches, methodologies, used model types, and evaluation 

strategies. Mainly concerning the training datasets and evaluation metrics, we argue that 
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the literature still requires adequate training datasets and evaluation metrics to develop 

and evaluate models trained for the translation task. 

One of the earlier attempts at automating the translation task was developed using a rule-

based approach. Bansal (2015) developed a rule-based system to automate the 

translation of natural language sentences into first-order logic expressions to offer 

educational tools and enable further research in computational linguistics and logic. The 

model employs and utilizes rules that match natural language sentence structures to 

corresponding first-order logic structures by parsing the sentences considering their part-

of-speech structure using context-free grammar. The system consists of two modules, 

which are matcher and applier, that hold the rules to parse the sentence, extract the 

predicate terms and variables from it using part-of-speech tags, search for an appropriate 

form in the system, and apply the extracted predicate terms and variables to the formal 

expression. It is reported that the modules have around 195 rules and that 215 sentences 

were translated by applying them. Bansal also developed a benchmark consisting of 350 

sentences, which are annotated with their corresponding first-order logic expressions and 

the predicates used in the sentences, for the evaluation of the proposed algorithm and 

system’s performance in translating sentences to logical expressions.  

The main concern with this approach is that it can parse and translate natural language 

sentences only if a pattern of structure appropriate for the logical expression can be 

found in the system. Also, optimizing and developing the appropriate rules for any 

structure becomes a complex task. As reported, the optimal number of rules would be 

the number of distinct first-order logic expressions that can be (Bansal, 2015). 

Considering the variational complexity a natural language sentence can have, the 

corresponding first-order logic expression of that sentence could prove to be just as 

complex, and therefore, for this approach to capture this complexity, it would require 

careful expertise to handle possible pattern structures and rules. 

Since rule-based approaches require expertise to capture the optimal number of possible 

rules and structures, many researchers attempted to use neural-based models for the 

translation task. One of the earliest attempts leveraged several neural-based models to 

investigate whether such models can effectively automate the translation task. Singh et 

al. (2020) proposed a neural-based model that employs a sequential-to-sequential 

framework to map natural language sentences to their corresponding first-order logic 

expressions. Their approach used a bidirectional Long Short-Term Memory (LSTM) as 

the encoder to capture contextual information from the input sentence and an LSTM 

decoder to generate the first-order logic expression. They also enhanced the standard 

model by introducing a variable alignment mechanism to maintain consistency in 

variable usage across different predicates within the first-order logic expression. This 

model could also disentangle the prediction of first-order logic entity types, which are 

unary and binary predicates, variables, and scoped entities. Using this ability, the model 

could predict the category of the entity as an auxiliary task during training, which 

provided categorical and structural differences for the model.  
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Two subsets of the SNLI (Stanford Natural Language Inference) dataset, introduced by 

Bowman et al. (2015), were used to train the model. The evaluation of the model 

consisted of exact and partial accuracy matching between the prediction and the ground 

truth, which was estimated as recall, precision, and F1 scores between either the 

prediction and the ground truth as wholes or aligning the variables and predicates of the 

prediction and ground truth. They demonstrated the effectiveness of explicitly modeling 

variable alignment and disentangling the prediction of first-order logic expressions for 

the translation task. Their analysis also shows that their model is robust to input 

variations and can handle increased input lengths effectively, which shows the 

effectiveness of neural-based models. 

Another neural-based approach belongs to Levkonskyi and Li (2021). In this approach, 

the researchers focused on developing models to automate the translation task by 

developing four encoder-decoder models that were trained for the task: an LSTM model, 

a Bi-directional Gated Recurrent Unit (GRU) with Attention model, and two variants of 

Bi-directional LSTM with Attention models. By training these models, they wanted to 

explore the effectiveness of recurrent neural network architectures in handling the 

translation from natural language to first-order logic, given only characters as markers of 

semantics. The critical aspect of their work is that rather than splitting the input 

sentences into words, they implemented character-level prediction. They preprocessed 

sequence pairs for training into one-hot-encoded matrices with sequences padded to 

ensure uniform length. Attention mechanisms were integrated into some models to 

enhance their ability to focus on relevant parts of the input sequences, and various 

variations in the number of hidden layers, dropout rates, batch sizes, and optimizer 

functions were explored. 

Levkovskyi and Li (2021) developed a publicly available dataset that includes English 

sentence and first-order logic expression pairs generated by templates using ccg2lambda, 

a CCG-based formal semantic parser. Developing this dataset included using only valid 

sentence-expression pairs guaranteed by the parser. To evaluate the models’ 

performances, they used exact match accuracy between the predictions and the ground 

truth expressions, and validation loss was monitored during training to check the 

models’ performance over unseen data and prevent overfitting. According to their 

analysis, the models achieved high accuracy and low loss, indicating their effectiveness 

in semantic parsing tasks. 

Lu et al. (2022) introduced Dual-(m)T5, a dual reinforcement learning model for parsing 

natural language into propositional and first-order logic. They claimed that there is a 

lack of large and comprehensive datasets in the literature. To overcome this absence and 

the limitations of existing reinforcement methods due to their need for manual reward 

settings, they developed a neural-based model that uses a scoring model to automatically 

learn rewards applicable to various types of logical expressions and employs curriculum 

learning to stabilize the training process.  
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The Dual-(m)T5 model employs a dual-task approach, utilizing T5 and mT5 language 

models, developed by Raffel et al. (2020), for both Natural Language to Logical 

Expression (NL2LE) and Logical Expression to Natural Language (LE2NL) tasks (Lu et 

al., 2022). This bidirectional generation model is trained using reinforcement learning, 

with a scoring model introduced to calculate validity rewards automatically. It also 

incorporates curriculum learning for pre-training and introduces unlabeled data to 

enhance model performance. They used exact matching accuracy between the 

predictions and the ground truths to evaluate their model performance. One of the 

important aspects of their work is that they introduced a Chinese-PL/FOL dataset. 

Together with this dataset, they used a subset of the English-expression pair dataset 

developed by Levkonskyi and Li (2021). They claimed their approach significantly 

advanced the field by offering a new and effective solution to the challenges of 

converting natural language into predicate and first-order logic with its novel reward 

mechanism, introducing an effective training strategy, and developing a new dataset. 

While comparing their model with the previous models and conducting an error analysis, 

they stated that multiple correct logical expressions may convey the meaning of the 

same natural language sentence. However, in the existing datasets, there is only one 

annotated logical expression for a sentence (Lu et al., 2022). They stated that earlier 

works ignored this possibility and that it must be addressed in future work. 

Hahn et al. (2022) fine-tuned T5 Transformer models for translating English sentences 

into regex, first-order logic, and linear-time temporal logic. They aimed to explore the 

Transformer models’ ability to maintain their pre-trained natural language generalization 

capabilities, including their ability to handle new variable names and operator 

descriptions that were not present during fine-tuning. To fine-tune their model, they 

created two datasets, FOL-mnli and FOL-codesc. These datasets were generated using a 

toolchain that enabled the researchers to generate syntactically correct expressions and 

provided them with a semantic framework. They evaluated their models based on 

syntactic accuracy and reported the competitive ones. By showing that the Transformer 

models could effectively generalize to out-of-distribution instances and new linguistic 

variations, the researchers demonstrated the feasibility and effectiveness of using fine-

tuned language models for translating natural language sentences into formal 

specifications. 

Yang et al. (2023) fine-tuned a language model named LOGIC LLAMA based on the 

LLaMA-7B architecture with LoRA to translate natural language sentences into first-

order logic expressions. Their model is enhanced using a novel training approach 

combining supervised fine-tuning and reinforcement learning with human feedback for 

further correction, which enables the model to act as a standalone direct translator and 

correct predictions that are generated by other models. Their main aim was to develop a 

model that could reach GPT-4’s performance at a fraction of the cost. 

To fine-tune their model, the researchers developed the MALLS (large language Model 

generAted NL-FOL pairS) dataset, generated from GPT-4 by providing instructions for 
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sentence and expression pairs generation, minimizing repetition and ensuring diversity. 

The initial dataset consisted of 34,000 pairs. Yang et al. (2023) used two metrics to 

evaluate their model: BLEU score and logical equivalence score. The researchers 

designed the logical equivalence score metric, which measures the similarity between 

two first-order logic expressions. This similarity is calculated by finding and extracting 

the literals in both expressions, binding them, and generating truth tables for the binding. 

To find and extract the literals, they developed a context-free grammar to generate 

syntactic trees. If the parsing fails, the expression is decided as syntactically invalid. 

Their strategy for the binding was to create a binding with the highest logical 

equivalence score via a greedy search from the set of possible bindings. If the 

expressions do not have the same number of literals, they add additional literals for the 

missing literals. Finally, they computed the logical equivalence score by generating truth 

tables for both expressions and calculating the overlap ratio. To calculate the BLEU 

score, they used a specialized tokenizer to split every quantifier, operator, and term into 

tokens. Together with the MALLS dataset, they also tested their model on FOLIO and 

LogicNLI datasets and showed that an open-source model trained on large data can 

reach the performance of GPT-4. 

The approach is important since it demonstrates the potential of combining advanced 

neural network architectures with new training methodologies and provides a new 

dataset and evaluation methods to the field. It also shows that open-source language 

models can reach the performance of GPT-4 with a fraction of the cost. 

Pan et al. (2023) and Olausson et al. (2023) developed frameworks in the same spirit: 

leveraging both neural-based and rule-based approaches for enhancing natural reasoning 

tasks in language models. While Pan et al. (2023) offered their framework for a diverse 

range of symbolic formulations, including deductive reasoning, first-order logic 

reasoning, constraint satisfaction problems, and analytical reasoning, Olaussan et al. 

(2023) mainly focused on first-order logic reasoning. They both treated the language 

model as a semantic parser for translating natural language sentences into formal 

meaning representations and used external theorem provers to check whether the 

translated premises follow a translated conclusion. The translation task is conducted by 

providing instructions as prompts to the base models without fine-tuning or training. 

With the addition of a rule-based prover to their language models, both frameworks 

ensure the well-formedness and executability of the output expressions. These 

frameworks are evaluated by whether a conclusion is reached by the premises and used 

FOLIO and ProofWriter datasets, which were developed for logical and natural language 

reasoning tasks. They both showed that implementing a hybrid or neurosymbolic 

approach for logical and natural language reasoning tasks improves the performances of 

base language models. 

Each model contributes significantly to the field and provides important aspects and 

tools to enhance the automation of the translation task. However, several important 

aspects also need to be considered. These aspects are the datasets used to train these 

models and the metrics used to evaluate the successes of these models. 
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First, we mentioned four essential aspects in the previous chapter that a model 

developed for the translation task must be evaluated: generating well-formed structures, 

differentiating form from content, many-to-one and one-to-many mappings, and 

generalizability. Although there are approaches in the literature that evaluated their 

models considering generating well-formed structures and generalizability, none of the 

models were evaluated for the possibility of one-to-many mappings. We claimed this is 

an essential aspect of translating natural language sentences into first-order logic 

expressions; therefore, providing a metric to evaluate the models based on this 

possibility and ensuring that the training dataset consists of pairs that this metric can 

evaluate must be an essential part of the approaches. We also claim that differentiating 

form from content was not explicitly conducted in these approaches. Most of the models 

focus on extracting adequate predicates for the expressions from the sentences and do 

not evaluate the form of the expressions directly. This aspect must also be addressed in a 

model developed for the translation task. Therefore, at least two additional metrics are 

needed: one that compares the form of the prediction with the form of the ground truth, 

and one that checks whether a prediction conveys the same meaning as the ground truth 

in virtue of its form. 

Second, most datasets used to train the models are not publicly available, making 

comparing them with new models not possible. Although there are several publicly 

available datasets in the literature, such as FOLIO (Han et al., 2022), Text2log 

(Levkovskyi & Li, 2021), and MALLS (Yang et al., 2023), these datasets are 

inappropriate for our aim. It has also been stated in other studies that FOLIO is not large 

enough to train a language model and that it contains sentences that do not have formal 

counterparts (Yang et al., 2023). It has also been stated that, although it is a large 

dataset, Text2log does not contain complex and diverse range of logical forms (Lu et al., 

2022). It is more suitable for training models to learn how to extract predicates. Finally, 

when we inspected the MALLS dataset, we found several syntactically ill-formed and 

semantically inadequate translations. We believe these mistaken predictions are due to 

the generation process using GPT-4. Because of these reasons, a more adequate dataset 

that focuses on diverse logical forms is needed to train new models. 

Considering these aspects, new datasets and evaluation metrics are needed to train new 

models for the translation task. In the next section, we present our approach, together 

with presenting a new dataset and evaluation metrics. 

3.2. Translating Natural Language Sentences into First-order Logic Expressions 

using Transformer-based Langauge Models 

In this section, we will present our approach to translate natural language sentences into 

first-order logic expressions. The presentation of the approach consists of how the 

translation task and its components are conceptualized. Here, we introduce the new 

WillowNLtoFOL dataset, consisting of 16014 natural language sentence-first-order logic 

expression pairs. We also introduce the metrics we developed and used to evaluate our 
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model. The evaluation of the trained model is based on two tasks: whether the model 

performs well on the test dataset to assess its performance on unseen sentences and 

whether it can generalize its knowledge for more complex examples that their formal 

structures were not in the training dataset. 

3.2.1. Conceptualization 

We aimed to test the capabilities of a Transformer-based language model in translating 

natural language sentences into first-order logic expressions, which is considered a 

semantic parsing task. We wanted to evaluate these models in terms of whether they can 

capture the formal aspects of the expressions, generate well-formed expressions, and be 

generalizable over unseen sentences that require a compositional use of the learned 

formal aspects. We conceptualized this task as machine translation, considering the 

earlier approaches. A visualization of this task can be seen from the figure below. 

 

Figure 4: Conceptualization of the translation task and evaluation methods 

Here, we want our model to learn several aspects, including how to extract parts of 

sentences that will serve as predicates in expressions, determine the main quantifier and 

find the quantifiers, and determine the number of predicates, variables, and terms that 

should be used in the expression, associate the predicates with the required truth-

functional connectives, and ultimately, predict well-formed first-order logic expressions 

that convey the meaning of the input natural language sentence. 
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3.2.2. Specifications 

As described in the previous section, semantic parsing models must have several 

components. These components are a formal meaning representation, a model with a 

learning algorithm, a training dataset to train the model, an environment in which the 

output will be executed, and metrics to evaluate the model’s performance. Now, we will 

introduce how we specified these components for our task. 

3.2.2.1.  Formal Meaning Representation 

The formal meaning representation of our model is first-order logic. The lexicon of the 

formal meaning representation includes every necessary lexical item to construct well-

formed first-order logic expressions. These lexical items include: 

Truth-functional connective symbols = [∧, ¬, ∨, →, ↔, ⊕] 

Quantifier symbols = [∀, ∃] 

Parentheses symbols = [(, )] 

Variables = [x, y, z, w, ….] 

We wanted to extract the predicates and terms from the sentences. For example, for the 

sentence “All humans are mortal, and Socrates is a human.”, the predicates and the terms 

will be the following: 

Predicates = [Human, Animal] 

Terms = [socrates] 

In our formal meaning representation, we will accept only those expressions that can be 

constructed by the rules for well-formed expressions, which are: 

1) P(x) and Q(a, b) are expressions where P and Q are predicates, x is a variable, 

and a and b are names of objects or terms. The predicates can be n-place, 

meaning that they can take more than one variable or term.  

2) If T and R are names for expressions, then ¬T, (T ∧ R), (T ∨ R), (T → R), (T ↔ 

R), and (T ⊕ R) are expressions.  

3) If T is an expression and x is a variable, then ∀x (T) and ∃x (T) are expressions. 

4) No other construction is an expression. 
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3.2.2.2.  Model 

We decided to use T5 (Text-To-Text Transfer Transformer), a pre-trained language 

model developed by Raffel et al. (2020), to explore the capabilities of the transfer 

learning strategy in natural language processing for our Transformer-based language 

model for the semantic parsing task. This framework converts all text-based language 

problems into a text-to-text format covering machine translation, summarization, 

classification, and question-answering. Many variants of T5 or follow-up works have 

been developed since its initial release, such as mT5, developed by Xue et al. (2021), a 

multilingual version of T5.  

There are several reasons we chose this language model. First, it preserves the encoder-

decoder architecture of the original Transformer model, developed by Vaswani et al. 

(2017), with only several changes in its self-attention mechanisms. Second, it can 

perform a wide range of natural language processing tasks in a text-to-text framework, 

where inputs and outputs are in text format, allowing for a simple approach to various 

tasks without architectural changes. Finally, its pre-training on a large corpus of text data 

using unsupervised learning objectives helps the model learn general language 

understanding and generation capabilities. These aspects of T5 provide good reasons to 

leverage and evaluate it for the translation task. 

The fine-tuning process of T5 requires several steps, including task definition and 

formulation, preprocessing and tokenization, and the specification of hyperparameters. 

The task definition and formulation are given to the model by adding a prefix to the 

input sequences. Our task is translating natural language sentences into first-order logic 

expressions, and considering our natural language is English, our prefix can be “translate 

English to First-order logic:”. The preprocessing stage includes adding the prefix to the 

input sequences and processing the training data in a suitable format that T5’s tokenizer 

can use appropriately. Tokenization is the step where the input and output sequences are 

tokenized. Finally, the hyperparameters, such as batch size, learning rate, and number of 

epochs, need to be specified. After handling these steps, one can start fine-tuning using 

their training dataset. Once the training begins, the model will update its parameters to 

minimize the loss between the predicted output sequences and the ground truth 

sequences in the dataset. Once the fine-tuning process is complete, one can evaluate the 

fine-tuned model on the test dataset based on the metrics defined for the task. 

3.2.2.3.  Dataset 

For this task, we developed the WillowNLtoFOL dataset, consisting of 16014 natural 

language sentence and first-order logic pairs. Although there are several datasets for the 

translation task in the literature, such as FOLIO, Text2log, and MALLS, these datasets 

are inappropriate for our aim. It has been stated in other studies that FOLIO is not large 

enough to train a language model and that it contains sentences that do not have formal 

counterparts. It has also been stated that, although it is a large dataset, Text2log does not 
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contain a complicated or diverse range of logical forms. It is more suitable for training 

models to learn how to extract predicates. Finally, when we inspected the MALLS 

dataset, we found several syntactically ill-formed and semantically inadequate 

translations. We believe these problems are due to the generation process using GPT-4. 

Considering these, we wanted to construct a dataset containing diverse logical forms. 

Also, we wanted our dataset to contain a diverse range of natural language sentence 

parts that will serve as truth-functional connectives. However, since it is not easy to 

construct a large database, we used GPT-4 but in a controlled fashion (OpenAI, 2024). 

First, we gathered 300 natural language sentences and quantified first-order logic 

expression pairs with different logical forms. We evaluated them based on their well-

formedness and whether the expressions conveyed the meaning of the sentences. Then, 

using GPT-4 and providing instructions on how to extend the pairs, we increased the 

pairs by changing the predicate names and, if necessary, the logical form. After the first 

process, we got nearly 3000 pairs. Then again, we evaluated them based on their well-

formedness and whether the expressions convey the meaning of the sentences. There 

were several problematic expressions regarding the usage of the parentheses and the 

places of variables in n-ary predicates, which make them either ill-formed or 

semantically inadequate. There were also several duplicate pairs. After fixing the 

problematic expressions and deleting the duplicate pairs, we got around 2500 pairs. 

Then, we used GPT-4 again to increase the number of pairs and got around 17000 

expressions. We could only evaluate them based on their well-formedness. After we 

eliminated the ill-formed expressions and duplicated pairs, we got around 15600 pairs. 

Since these were all quantified expressions, we prepared 100 pairs containing 

unquantified first-order logic expressions. Then, using GPT-4, we extended the number 

of unquantified expressions to around 370. In the end, we gathered a dataset that 

contained 16014 natural language sentences and first-order logic expression pairs with a 

diverse range of logical forms and predicate names. The statistics of the dataset can be 

seen from the below histograms. 
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Figure 5: The number of truth-functional connectives and quantifiers in the 

WillowNLtoFOL dataset 

 

Figure 6: Frequency of how many quantifiers there are in expressions in the 

WillowNLtoFOL dataset 
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Figure 7: Frequency of how many truth-functional connectives there are in expressions 

in the WillowNLtoFOL dataset 

 

Figure 8: Frequency of how many symbols there are in expressions in the 

WillowNLtoFOL dataset 
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Figure 9: Frequency of the top 50 predicates in the WillowNLtoFOL dataset 

 

Figure 10: Frequency of the top 20 logical forms in the WillowNLtoFOL dataset 
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3.2.2.4.  Environment 

We chose The Natural Language Toolkit (NLTK), an open-source library for natural 

language processing developed by Bird et al. (2009), as our environment. NLTK library 

can parse first-order logical expressions and check their well-formedness. Using a 

specific module called inference, it can leverage extended provers. For NLTK to parse 

our expressions, we translated each symbol in the expressions in our dataset into 

NLTK’s lexicon. The corresponding symbols are the following: 

[∀ : all / ∃ : exists / ∧ : & / ∨ : | / → : -> / ¬ : - / ↔ : <-> / ⊕ : !=] 

Once we translated our symbols into NLTK’s symbols for the first-order logic lexicon, 

we could check whether the expressions were well-formed. We also used NLTK to 

develop our metrics, which we will introduce now. 

3.2.2.5.  Metrics 

We used four metrics to evaluate our models: well-formedness, exact match, formal 

match, and equivalence. 

The well-formedness metric uses the NLTK library’s resources to check whether a 

generated expression is well-formed. To check the expressions’ well-formedness, we 

first translated the symbols in expressions into NLTK’s lexicon for logical symbols. 

Then, we parsed these expressions. If the expressions are well-formed, this metric 

returns true and false otherwise. 

The exact match metric has been used widely in machine translation and semantic 

parsing tasks to check whether a predicted output is identical to the ground truth stated 

in the dataset. If they are equal, this metric returns true and false otherwise. 

Although it is widely used in the literature, using the exact match metric is insufficient 

to evaluate a model trained for translating sentences into their logical expressions. The 

reason is that what is more important in logical expressions is their logical forms. 

Regardless of the exact predicate names, we wanted to evaluate the predictions based on 

their logical forms. So, we developed the formal match metric that evaluates this aspect 

of logical expressions. Formal match metric abstracts away the predicate names and 

places different numerals for each predicate in the logical expression. It finds the 

character sequences before a parenthesis, which indicates variable places. From left to 

right, it puts every sequence with its assigned numeral into an array and checks whether 

a sequence has been seen before. It puts the same numeral for this new sequence if it is 

seen. It puts a new numeral in the sequence’s place if it is not seen. For example, the 

abstracted version of the expression “¬∀x (Human(x) → Mortal(x) ∧ ¬Mortal(x)” would 

be “¬∀x (1(x) → 2(x) ∧ ¬2(x)”. The formal match metric takes two expressions, the 

prediction from the sentence and the ground truth expression of the sentence, abstracts 

their predicates into numerals and checks whether they are equal. If they are equal, this 
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metric returns true and false otherwise. This metric allowed us to evaluate the 

predictions of the model based on their formal aspects. 

Finally, as we described in the earlier sections, more than one logical expression can 

convey the meaning of the same sentence. If we use only exact match and formal match 

metrics, we may miss this aspect of the logical expressions, and it can cause our 

evaluation metrics to count accurate predictions as inaccurate. To avoid this situation, 

we developed the equivalence metric using Prover9, an automated theorem prover that 

can perform deductions and check whether a conclusion expression is followed from the 

premise expressions (McCune, 2005–2010). Since the NLTK inference package includes 

Prover9, we wanted to use it to check whether two expressions are equivalent. The 

equivalence metric instantiates the prover class in NLTK inference using the Prover9 

package. It takes two expressions, abstracts their predicates, converts their symbols into 

NLTK’s lexicon, and checks whether the two expressions are true for the same objects. 

If they are equivalent, this metric returns true and false otherwise. 

With these metrics, we can evaluate the formal aspects of logical expressions and the 

predicate extraction evaluations and well-formedness differently. These metrics also 

allowed us to evaluate the models’ predictions as wholes. 

3.2.3. Fine-tuning 

We fine-tuned two T5 models: a T5-small model and a T5-base model. T5-small and 

T5-base differ in the number of parameters and layers they have. The increased number 

of parameters and layers leads to better performance due to the ability to capture more 

complex patterns and hierarchical and abstract representations of the input data. For both 

models, we applied the same process of preprocessing, tokenization, hyperparameter 

specification, and evaluation.  

For the prefix that will specify the task to the model, we used “translate English to First-

order logic:”. 

The preprocessing part consists of dividing the dataset into training, validation, and test 

parts, preprocessing the pairs in the parts of the dataset, and tokenizing the pairs in the 

dataset.  

We divided the entire dataset by first separating three percent from the whole as the test 

part and then separating ten percent as the validation part. We selected the remaining 

part for training. After the separation, we got 13979 pairs in training, 1554 in validation, 

and 481 in test. While the training part is used to train the models, the validation part 

checks for potential overfitting during the training. The test part evaluates the model 

based on the metrics we selected after the training. 

After the splitting, we processed the pairs in three parts of the dataset. Here, we 

lowercase all characters in the natural language sentences and add the prefix to the head 
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of all-natural language sentences in the parts of the dataset. For the first-order logic 

expressions, we replaced each truth-functional connective and quantifier in the 

expressions with corresponding natural language representatives. We converted the 

symbols because when we inspected how the T5’s tokenizer tokenizes the data, we saw 

that the symbols were undefined for the tokenizer. Once we replaced the symbols with 

representatives, the tokenizer could tokenize the whole expression. The following list is 

the words we converted the symbols to: 

[∀: FORALL / ∃: EXISTS / ¬: NOT / ∧: AND / ⊕: XOR / ∨: OR / →: THEN / ↔: IFF] 

Finally, at the end of the preprocessing, we tokenized the sequences using T5’s 

tokenizer. We ensured the sequences were padded or truncated to the specified 

maximum lengths for natural language and first-order logic sequences. After the 

tokenization, we got input IDs, attention masks, and ground truth labels for each pair. 

One example pair before and after the preprocessing stage is the following: 

Table 10: An example pair before and after the preprocessing stage 

NL (before preprocessing) Every chef is talented, but not every talented person is a 

chef. 

FOL (before preprocessing) ∀x (Chef(x) → Talented(x)) ∧ ¬∀x (Talented(x) → 

Chef(x)) 

NL (after preprocessing) translate English to First-order Logic: every chef is 

talented, but not every talented person is a chef. 

FOL (after preprocessing) FORALL x (Chef(x) THEN Talented(x)) AND NOT 

FORALL x (Talented(x) THEN Chef(x)) 

 

We specified the hyperparameters using a hyperparameter optimization method that 

resulted in the following hyperparameters: 
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Table 11: Hyperparameters for training 

Batch size of training data per device 8 

Batch size of evaluation data per device 8 

The number of epochs 2 

Learning rate 1e-3 

Weight decay 1e-2 

Adam (Adaptive Moment Estimation) optimizer 1e-8 

Warmup steps 300 

Gradient accumulation steps 1 

 

These hyperparameters specify how many training and validation pairs will be contained 

in each batch per device before being fed into the model for training and validation, how 

many times the model will iterate over the entire dataset during training, and the step 

size at which the model’s parameters are updated during training. We also specified 

weight decay to prevent potential overfitting during training, Adam optimizer to 

improve numerical stability during optimization, warmup steps to gradually increase the 

learning rate from an initial small value to its maximum value over a certain number of 

steps starting the training, and gradient accumulation to accumulating gradients over 

multiple batches before updating the model parameters. 

We used the Hugging Face transformers library and its ‘Trainer’ class to specify the 

necessary adjustments and hyperparameters (Wolf et al., 2020). The evaluation of the 

model during training is performed on 1,554 examples in the validation dataset. The 

training began with 13,979 examples and iterated over the entire training dataset for two 

complete epochs. 

3.2.4. Evaluation 

After the end of the fine-tuning process, we evaluated both models in terms of two 

stages. First, we evaluated our models based on our four metrics using the unseen test set 

pairs for the evaluation. This stage shows whether the models learn adequate patterns 

from the training dataset. Second, we prepared 89 pairs to ensure their logical 

expressions’ forms are not in the dataset. We prepared these pairs to test whether the 

models learned first-order logic expressions’ structural and hierarchical properties or 

only a few patterns in the dataset. We believe that these new pairs require the use of 
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quantifiers, predicates, conjunctions, and terms in a structured and hierarchical way and 

will reveal whether models can actually learn these features. We evaluated our models 

on these pairs, again using four metrics. 

We used an inference code to predict logical expressions for sentences to evaluate the 

models on the test dataset. In this inference code, we specified the parameters for 

inference: number of beams, length penalty, and early stopping. The number of beams 

parameter controls the number of beams to use during beam search, which explores 

multiple possible sequences simultaneously and keeps track of the most promising 

predictions at each step. The length penalty parameter is used to encourage shorter or 

longer predictions. Finally, the early stopping parameter controls whether to stop 

prediction generation early based on certain conditions, such as reaching a predefined 

endpoint or reaching a maximum length for predictions. For the evaluations, we give the 

values 3, 5, and False to the parameters, respectively. 

For the first evaluation step, the following results were obtained: 

Table 12: Evaluation Results for the test set 

Metric T5-small T5-base 

Well-formedness 0.9688 0.9979 

Exact Match 0.4034 0.5104 

Formal Match 0.7961 0.8354 

Equivalence 0.8133 0.8500 

 

This table shows that with the same configurations and dataset, the T5-base performed 

better than the T5-small model, and the results for exact match metrics are relatively 

low. In contrast, formal match and equivalence metrics are relatively high, which 

indicates an error in predicate extraction.  

We investigated the low results for the exact match metric and saw two leading error 

causes. First, the model predicted predicates that were slightly different than the 

predicates that were stated in the ground truths. Such examples include predicting 

“Loves” rather than “Love”, “IsSunny” rather than “Sunny” or “Cylindrical” rather than 

“Cylinder”. Although these examples seem minor errors, they may affect the model’s 

performance if no metric considers the form of the expressions. Second, rather than 

minor differences, sometimes the models predicted completely different predicates. Such 

examples include predicting “MemberOf” rather than “Species”, “Recognizes” rather 

than “Reciprocate”, or “LooksLifeAsGameOfLong” rather than 

“RegardsLifeAsGameOfLuck”. These examples show that predicate extraction can 
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sometimes be problematic for language models, and it must be assessed if the primary 

goal of the models is to predict accurate predicates. Since we are primarily concerned 

with the forms rather than extracting exact predicates, we move to the results of the 

other three metrics. 

Considering the well-formedness metric, both models performed well and provided high 

results; T5-base could predict well-formed expressions for each sentence that T5-small 

could not, and there was only one ill-formed expression that T5-base predicted, which 

T5-small could generate a well-formed one. Although the results allow us to compare 

the two models based on the values of the metrics, we wanted to investigate where both 

models failed and whether there are patterns between false predictions. 

We first wanted to check whether the inputs’ token sizes and predictions’ token sizes 

affect the models’ performance and whether the length of the sentences and predictions 

affect the predictions’ quality. Using the tokenizer we used for training, we counted each 

token in the test set, separating the accurate and false predictions. We compared the 

results we gained with the equivalence metric and got the following results: 

 

 

Figure 11: True and false predictions’ sentences’ token size frequency, where the left 

histogram belongs to T5-base and the right histogram belongs to T5-small 
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Figure 12: True and false predictions’ token size frequency, where the left histogram 

belongs to T5-base and the right histogram belongs to T5-small 

We can see that neither the token size of sentences nor the predictions directly affect the 

truth and falsity of the predictions. Therefore, we need to look for the cause or causes of 

the errors, not the length of the tokens of sentences and predictions. 

We conducted a manual error analysis and inspected false predictions in both models. 

First, we checked for ill-wormed expressions. We found that the T5-base model 

predicted an ill-formed sequence for only one sentence, for which T5-small made a well-

formed prediction. The ill-formed predictions of T5-small were due to either missing or 

additional parentheses and using unbounded variables in predictions. Although T5-small 

predicted a well-formed expression for a sentence that T5-base predicted ill-formed, T5-

small also predicted an ill-formed sequence whose form resembles the T5-base’s ill-

formed expression. Both sentences required a logical expression with multiple variables 

in predicates and names as terms. 

Considering the common false predictions in both models, we found several patterns of 

mistakes. These mistaken patterns consist of false assignments of exclusive and 

inclusive disjunctions, errors in separation considering adjectives, false assigning of 

variable order and number to the predicates, errors in quantification and assigning 

negation, and missing predicates in expressions. We present several examples in the 

following table: 
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Table 13: Examples of common mispredictions of models 

Sentence T5-small’s 

prediction 

T5-base’s 

prediction 

Error and Truth 

No dog prefers 

crowded parks. 

∀x ∀y (Dog(x) ∧ 

CrowdedPark(y) → 

¬ Prefer(x, y)) 

∀x ∀y (Dog(x) ∧ 

CrowdedPark(y) → 

¬ Prefer(x, y)) 

CrowdedPark(y) 

Crowded(y) ∧ 

Park(y) 

A gadget can be 

electronic or 

mechanical. 

∀x (Gadget(x) → 

(Electronic(x) ⊕ 

Mechanical(x))) 

∀x (Gadget(x) → 

(Electronic(x) ⊕ 

Mechanical(x))) 

(Electronic(x) ⊕ 

Mechanical(x) 

Electronic(x) ∨ 

Mechanical(x) 

If some books 

are unread, then 

everything is 

illuminating or 

some stories are 

boring. 

∃z (Book(x) ∧ 

Unread(x)) → ∀y 

(Illuminating(y)) ∨ 

∃z (Story(z) ∧ 

Boring(z)) 

∃x (Book(x) ∧ 

Unread(x)) → ∀y 

(Illluminating(y)) ∨ 

∃z (Story(z) ∧ 

Boring(z)) 

Unread(x) 

¬ Read (x) 

Coaches train 

athletes, and 

physiotherapists 

help them. 

∀x ∀y ∀z 

(Coach(x) ∧ 

Athlete(y) ∧ 

Physiotherapist(z) 

→ Trains(x, y) ∧ 

Helps(z, x)) 

∀x ∀y ∀z (Coach(x) 

∧ Athlete(y) ∧ 

Physiotherapist(z) → 

Trains(x, y) ∧ 

Helps(z, x)) 

        Helps(z, x) 

Helps(z, y) 

There are 

deserts where 

no crops can 

thrive. 

∃x ∃y (Desert(x) ∧ 

∀z (Crop(z) → ¬ 

ThrivesIn(z, y))) 

∃x ¬ ∃y (Desert(x) ∧ 

Crop(y) ∧ 

ThrivesIn(y, x)) 

(T5-small: Extra 

Quantification) 

(T5-base: Mistaken 

negation) 

 

Aside from the common mistakes, there were also individual errors in the models. The 

T5-base model performed several mistaken predictions, including assigning additional 

quantifiers due to additional predicates in the expressions and several mistaken 

predictions due to misuse of truth-functional connectives. The T5-small model, on the 

other hand, performed several mistaken predictions due to misuse of truth-functional 

connectives and either adding or not adding parentheses that change the meaning of the 

expression. Also, several common errors arise for different sentences, including 

assigning false predicates in expressions. Examples can be seen in the following table: 
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Table 14: Examples of individual mispredictions of models 

Model  Sentence Prediction Ground Truth 

T5-base If anything is loud, 

then all entities are 

linked to a cylindrical 

object. 

∃x (Loud(x) → ∀y ∃z 

(Cylindrical(z) ∧ 

LinkedTo(y, z))) 

∃x (Loud(x)) → ∀y ∃z 

(Cylinder(z) ∧ 

LinkedTo(y, z)) 

T5-base All people avoid 

dangerous situations. 
∀x (Person(x) → 

AvoidDangerousSitues(x)) 

∀x ∀y (People(x) ∧ 

DangerousSituation(y) 

→ Avoid(x, y)) 

T5-base A teacher who 

educates a pupil will 

be assisted by 

someone. 

∀x ∃y (Teacher(x) ∧ 

Pupil(y) ∧ Educate(x, y) → 

∃z (Pupil(z) ∧ 

WillAssist(z, x))) 

∀x ∃y (Teacher(x) ∧ 

Pupil(y) ∧ Educates(x, y) 

→ ∃z (Person(z) ∧ 

WillAssist(z, x))) 

T5-base Any red fruit is juicy 

only if it is an apple. 
∀x (RedFruit(x) → 

(Juicy(x) → Apple(x))) 

∀x (Red(x) ∧ Fruit(x) → 

(Juicy(x) → Apple(x))) 

T5-small There isn’t a car that 

can be driven by all 

drivers. 

¬ ∃x (Car(x) ∧ ∀y 

(Driver(y) → CanDrive(x, 

y))) 

¬ ∃x (Car(x) → ∀y 

(Driver(y) → 

CanDrive(y, x))) 

T5-small A tall skyscraper 

overlooks a city. 
∃x (Tall(x) ∧ Skyscraper(x) 

→ ∃y (City(y) ∧ 

Overlooks(x, y))) 

∃x (Tall(x) ∧ 

Skyscraper(x) → ∃y 

(Overlooks(x, y))) 

T5-small Every scientist is 

analytical, but not 

every analytical 

person is a scientist. 

∀x (Scientist(x) → 

Analytical(x)) ∧ ¬ ∀x 

(Analytic(x) → 

Scientist(x)) 

∀x (Scientist(x) → 

Analytical(x)) ∧ ¬ ∀x 

(Analytical(x) → 

Scientist(x)) 

T5-small No teacher in the 

school helps with 

homework either 

Jack or Lily. 

¬ ∃ x (Teacher(x) ∧ 

InSchool(x) ∧ 

(HelpsWithHomework(x, 

jack) ∨ 

HelpsWithLily(x))) 

∀ x (Teacher(x) ∧ 

InSchool(x) → ¬ 

HelpHomework(x, jack) 

∧ ¬ HelpHomework(x, 

lily)) 

 

During our analysis, we also found that several predictions can be considered true even 

if counted as false for all metrics except well-formedness. These predictions can be 
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considered true due to different predications of expressions. An example is the 

following: 

Table 15: Examples of different predicate predictions of models 

Sentence T5-small’s 

prediction 

T5-base’s 

prediction 

Ground Truth 

There is no house 

that is owned by 

every rich person. 

¬ ∃x (House(x) ∧ 

∀y (Rich(y) ∧ 

Person(y) → 

Owns(y, x))) 

¬ ∃x (House(x) ∧ 

∀y (Rich(y) ∧ 

Person(y) → 

Owns(y, x))) 

¬ ∃x (House(x) ∧ 

∀y (Rich(y) ∧ 

Person(y) → 

OwnedBy(x, y))) 

There is no city that 

is visited by every 

traveller. 

¬ ∃x (City(x) ∧ ∀y 

(Trainer(y) → 

Visits(y, x))) 

¬ ∃x (City(x) ∧ ∀y 

(Traveller(y) → 

Visits(y, x))) 

¬ ∃x (City(x) ∧ ∀y 

(Traveller(y) → 

VisitedBy(x, y))) 

 

In this example, the predicate “OwnedBy(x, y)” expresses that “x” is owned by “y”. 

However, in the predicates that the models predicted, “Owns(y, x)” expresses “y” owns 

“x”, which conveys the same meaning and, therefore, is true. The same situation can be 

seen from the second example as well for the predicates “Visits(y, x)” and “VisitedBy(x, 

y)”. However, comparing the positions of variables due to the meaning differences of 

predicates requires a semantic analysis of the predicates, which our metrics cannot 

handle. It requires using knowledge bases to assess the meaning of the predicates and 

possible variables a predicate can take. 

Finally, we found that several predictions of the models were true based on the metrics 

but counted as false due to some errors in the dataset’s ground truth expressions. We 

believe these errors happened when we extended our dataset in the second stage using 

GPT-4. Such examples and the models’ predictions for the sentences can be found in the 

following table: 

Table 16: Errors resulting from incorrect ground truths 

Model Sentence Prediction Ground Truth 

T5-base It is not true that every 

flower is yellow if and 

only if it smells good. 

¬ ∀x (Flower(x) → 

(Yellow(x) ↔ 

SmellsGood(x))) 

¬ ∀x (Flower(x) 

∧ Yellow(x) ↔ 

SmellGood(x)) 

T5-base Birds can fly and have 

feathers. 
∀x (Bird(x) → 

(CanFly(x) ∧ 

HasFeathers(x))) 

∀x (Bird(x) → 

(CanFly(x) → 

HasFeathers(x))) 
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T5-small Birds can fly and have 

feathers. 
∀x (Bird(x) → 

(CanFly(x) ∧ 

HasFeathers(x))) 

∀x (Bird(x) → 

(CanFly(x) → 

HasFeathers(x))) 

T5-small No doctors who can 

operate are cardiologists. 
¬ ∃x (Doctor(x) ∧ 

CanOperate(x) ∧ 

Cardiologists(x)) 

¬ ∀x (Doctor(x) 

∧ 

CanOperate(x) 

→ 

Cardiologist(x)) 

 

Considering this first analysis, the T5-base model performed slightly better than the T5-

small model. Although they performed well on many sentences, there were several 

mistaken prediction patterns. These mistaken predictions were most common in 

expressions with multiple variable predicates. There were also commonly mistaken 

predictions in differentiating inclusive or from exclusive and with missing predicates. 

However, looking at the results, both models learned several forms of logical 

expressions and could apply this knowledge to unseen sentences. 

However, the primary evaluation we wanted to conduct was whether this knowledge was 

about logical expressions’ hierarchical and structural properties or just about the patterns 

learned from training data. For the second evaluation step, we prepared additional pairs 

to test whether the models learn specific features about first-order logic expressions and 

whether they can extend their learned knowledge to sentences that require more complex 

first-order logic expressions to be translated.  

To test this, we prepared 89 pairs with different complexities. These new examples 

require new formal expressions in that they focus on the places of variables of 

predicates, productively applying truth-functional connectives and differentiating terms 

from predicates. 

Several examples of these new pairs are the following: 
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Table 17: Example pairs from the additional test set 

Sentence Ground Truth 

There are people who love every movie, 

but Harold hates some movies. 
∃x (Person(x) ∧ ∀y (Movie(y) → Loves(x, 

y))) ∧ ∃z (Movie(z) ∧ Hate(harold, z)) 

There are people who love every movie, 

but Harold and Jessica hate some movies. 
∃x (Person(x) ∧ ∀y (Movie(y) → Love(x, 

y))) ∧ ∃z (Movie(z) ∧ Hate(harold, z) ∧ 

Hate(jessica, z)) 

There are movies that Jessica likes, and 

there are movies that Harold hates. 
∃x (Movie(x) ∧ Likes(jessica, x)) ∧ ∃x 

(Movie(x) ∧ Hate(harold, x)) 

All people love someone that loves 

everyone. 

∀x (Person(x) → ∃y (Person(y) ∧ Love(x, 

y) ∧ ∀z (Person(z) ∧ Love(y, z) → Love(x, 

z)))) 

Everyone is loved by someone. 
∀x (Person(x) → ∃y (Person(y) ∧ Love(y, 

x))) 

 

We applied the same inference parameters and got the following results in the second 

evaluation step: 

Table 18: Evaluation results for the additional test set 

Metric T5-small T5-base 

Well-formedness 0.8315 0.8989 

Exact Match 0.1486 0.1000 

Formal Match 0.2568 0.2125 

Equivalence 0.2973 0.3125 

 

From this table, it can be seen that both models performed poorly for the new pairs. 

While the predicted expressions were mostly well-formed, there was a dramatic change 

in performance regarding the other three metrics.  

Again, we conducted a manual analysis to inspect this dramatic change and check the 

differences between predictions and ground truths. We categorized the mistakes as the 
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following: 1) confusing names with predicates, 2) mistakes in the separation of 

adjectives from subjects, 3) mistakes in variable order, 4) mistakes in connectives and 

quantifiers, and 5) missing predicates in expressions. Several examples can be seen in 

the following table: 

Table 19: Mispredictions in the second evaluation stage 

Model Sentence Prediction Ground Truth 

T5-base There is at least one 

bee that does not read, 

does not think, does 

not breathe, does not 

dress, does not fly, 

does not walk. 

∃x (Bee(x) ∧ ¬ 

Read(x) ∧ ¬ Think(x) 

∧ ¬ Breathe(x) ∧ ¬ 

Dress(x) ∧ ¬ Walk(x)) 

∃x (Bee(x) ∧ ¬ Read(x) ∧ 

¬ Think(x) ∧ ¬ 

Breathe(x) ∧ ¬ Dress(x) ∧ 

¬ Fly(x) ∧ ¬ Walk(x)) 

T5-base A child is playing a 

game that is 

challenging and hard 

at a blue table. 

∃x ∃y (Child(x) ∧ 

Game(y) ∧ 

Challenging(x) ∧ 

Hard(y) ∧ ∃z (Blue(z) 

∧ Table(z) ∧ 

PlayingAt(x, y))) 

∃x ∃y ∃z (Child(x) ∧ 

Game(y) ∧ 

Challenging(y) ∧ Hard(y) 

∧ Blue(z) ∧ Table(z) ∧ 

PlayingAt(x, y, z)) 

T5-base All people love 

someone that loves 

everyone. 

∀x (Person(x) → ∃y 

(Person(y) ∧ ∀z 

(Person(z) → Loves(z, 

y)))) 

∀x (Person(x) → ∃y 

(Person(y) ∧ Loves(x, y) 

∧ ∀z (Person(z) ∧ 

Loves(y, z) → Loves(x, 

z)))) 

T5-base Jessica is loved by 

everyone she loves. 
∀x (Person(x) ∧ 

Love(jessica, x) → 

Love(jessica, x)) 

∀x (Person(x) ∧ 

Love(jessica, x) → 

Love(x, jessica)) 

T5-base Some films are 

preferred by Jessica, 

while all others are 

hated by Harold. 

∀ x (Film(x) → 

(Prefers(x, jessica) ⊕ 

Hate(x, harold))) 

∀ x (Film(x) → 

(Prefer(jessica, x) ⊕ 

Hate(harold, x))) 

T5-base There exists a city that 

is large if and only if it 

is populated, yet not 

every large city is 

populated. 

∃x (Large(x) ↔ 

Populated(x)) ∧ ¬ ∀x 

(Large(x) → 

Populated(x)) 

∃x (City(x) ∧ (Large(x) 

↔ Populated(x))) ∧ ¬ ∀x 

(City(x) ∧ Large(x) → 

Populated(x)) 
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T5-small If a book is rare, then 

it is either expensive 

or old, but not both. 

∀x (Rare(x) → 

(Expensive(x) ⊕ 

Old(x))) 

∀x (Book(x) → (Rare(x) 

→ (Expensive(x) ⊕ 

Old(x)))) 

T5-small Every scientist who is 

not a mathematician is 

a physicist, and there 

is a scientist who is 

neither. 

∀x (Scientist(x) ∧ ¬ 

Mathematician(x) → 

Physicist(x)) ∧ ∃y 

(Scientist(y) ∧ ¬ 

Mathematician(y)) 

∀x (Scientist(x) ∧ ¬ 

Mathematician(x) → 

Physicist(x)) ∧ ∃x 

(Scientist(x) ∧ ¬ 

Mathematician(x) ∧ ¬ 

Physicist(x)) 

T5-small There is someone who 

likes tea or coffee, but 

if she likes tea, she 

does not like milk. 

∃x (Person(x) ∧ 

(LikesTea(x) ∨ 

LikesCoffee(x))) ∧ ∃y 

(LikesTea(y) ∧ ¬ 

LikesMilk(y)) 

∃x ((Person(x) ∧ 

(LikeTea(x) ∨ 

LikeCoffee(x))) ∧ 

(LikeTea(x) → ¬ 

Milk(x))) 

T5-small Any cat that chases 

some mice and doesn’t 

sleep is either active or 

lazy. 

∀x (Cat(x) ∧ ∃y 

(Mouse(y) ∧ Chases(x, 

y) ∧ ¬ Sleeps(x, y)) → 

(Active(x) ∨ Lazy(x))) 

∀x ∃y ((Cat(x) ∧ 

Mouse(y) ∧ Chase(x, y) ∧ 

¬ Sleep(x)) → (Active(x) 

⊕ Lazy(x))) 

 

We wanted to see whether these mistaken predictions could be corrected by changing 

the parameters of inference, forcing it to either search for more promising predictions or 

to predict larger sequences, or making changes in the natural language sentences to see 

whether the behavior of the models change. We found that several mistaken predictions 

can be corrected, specifically, the ones concerning confusing names with predicates. 

When we changed the names in the sentences, the models could correct some 

predictions. These new names were not in the training dataset, so we believe this 

happened due to the earlier training of the T5 models themselves; their training data may 

not include the names that caused the mistaken predictions. However, we found that 

binding two names with a conjunction to the same predicate causes an error, which can 

only be corrected when writing the names using predicates for each. The following table 

exemplifies these situations: 
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Table 20: Corrections of predictions about confusing names with predicates 

Sentence Mistaken 

Prediction 

New Sentence Corrected Prediction 

All humans 

are mortal, 

and Socrates 

is mortal. 

∀x (Human(x) → 

Mortal(x)) ∧ ∀y 

(Socrates(y) → 

Mortal(y)) 

All humans are 

mortal, and Harold 

is a mortal. 

∀ x (Human(x) → 

Mortal(x)) ∧ 

Mortal(harold) 

If Miranda 

and Morty 

are mortal, 

there are 

some people 

who are not. 

∃ x (Person(x) ∧ 

Person(x) ∧ 

Mortal(x)) → ∃ x 

(Person(x) ∧ ¬ 

Mortal(x)) 

If Carl is a mortal 

and Ethem is a 

mortal, then there 

are some people 

who are not. 

Mortal(carl) ∧ 

Mortal(ethem) → ∃ x 

(Person(x) ∧ ¬ 

Mortal(x)) 

Every time 

Alice reads 

a book, she 

gains 

knowledge. 

∀ x (ReadBook(x) → 

GainKnowledge(x)) 

Every time Harold 

reads a book, he 

gains knowledge. 

∀ x (Book(x) ∧ 

Reads(harold, x) → 

GainsKnowledge(harold, 

x)) 

 

However, for the other categories, such changes in sentences or changing the parameters 

did not help. For example, there were two predicates that we tried to separate into two 

predicates, which were: “DeadAnimal(w)” and “ScaryAnimal(y)” for the sentences “A 

tiger hunts animals, a jackal feeds on the remains of dead animals, and some animals do 

not eat meat”, and “If some birds that are white cannot fly, then all yellow snakes are 

scary animals, or some snakes are not birds”, respectively. Although the expressions’ 

forms could be considered correct, separating these predicates may provide more 

information if the adjective could be separated from the subject. Changing the 

parameters also did not help to fix the mistakes in variable order and connectives and 

quantifiers. Concerning the variable order, we highlighted two examples in Table 19. 

We found several patterns of mistakes in connectives and quantifiers. These patterns 

include confusing conjunction with material conditional between quantified expressions, 

confusing inclusive and exclusive disjunctions, and errors due to the placement of 

negation. 

While analyzing these mistaken predictions, we found an interesting mistake: there were 

missing predicates in expressions, especially when the expressions were complex and 

long. These missing predicates can be categorized into two main categories: missing 

predicates that determine the domain of discourse and missing predicates in long and 

complex expressions. While both categories were exemplified in Table 19, we wanted to 
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see whether this happens even for the simplest expressions. We provided additional 

sentences to the models, and we observed that the models did not include one or more 

predicates in the expressions, even if the predictions require connecting the predicates 

with the same truth-functional connectives. The missing predicate mistake happened 

even if we forced the models to predict longer sequences by changing the inference 

parameters. One example of this situation can be seen in the table below: 

Table 21: Example of missing predicate error with conjunctions 

Sentence Prediction 

Rebecca is a human. Human(rebecca) 

Rebecca is a human and John is a human. Human(rebecca) ∧ Human(john) 

Rebecca is a human and John is a human 

and Harold is a human. 
Human(rebecca) ∧ Human(john) ∧ 

Human(harold) 

Rebecca is a human and John is a human 

and Harold is a human and Emmanuel is a 

human. 

Human(rebecca) ∧ Human(john) ∧ 

Human(harold) ∧ Human(emmanuel) 

Rebecca is a human and John is a human 

and Harold is a human and Emmanuel is a 

human and Carl is a human. 

Human(rebecca) ∧ Human(harold) ∧ 

Human(harold) ∧ Human(emmanuel) ∧ 

Human(carl) 

[Human(john) is mistaken] 

Rebecca is a human and John is a human 

and Harold is a human and Emmanuel is a 

human and Carl is a human and Finch is a 

human. 

Human(rebecca) ∧ Human(harold) ∧ 

Human(harold) ∧ Human(carl) ∧ 

Human(finch) 

[Human(john) is mistaken, and 

Human(emmanuel) is missing] 

Rebecca is a human and John is a human 

and Harold is a human and Emmanuel is a 

human and Carl is a human and Finch is a 

human and Helen is a human. 

Human(rebecca) ∧ Human(harold) ∧ 

Human(carl) ∧ Human(finch) ∧ 

Human(helen) 

[Human(john) and Human(emmanuel) 

are missing] 
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We observed this behavior when we used disjunction too: 

Table 22: Example of missing predicate error with disjunctions 

Sentence Prediction 

Rebecca is a human. Human(rebecca) 

Rebecca is a human or john is a human. Human(rebecca) ∨ Human(john) 

Rebecca is a human or john is a human or 

Harold is a human. 
Human(rebecca) ∨ Human(john) ∨ 

Human(harold) 

Rebecca is a human or John is a human or 

Harold is a human or Emmanuel is a 

human. 

Human(rebecca) ∨ Human(john) ∨ 

Human(harold) ∨ Human(harold) 

Rebecca is a human or John is a human or 

Harold is a human or Emmanuel is a 

human or Carl is a human. 

Human(rebecca) ∨ Human(john) ∨ 

Human(harold) ∨ Human(harold) ∨ 

Human(harold) ∨ Human(emmanuel) ∨ 

Human(carl) 

Rebecca is a human or John is a human or 

Harold is a human or Emmanuel is a 

human or Carl is a human or Finch is a 

human. 

Human(rebecca) ∨ Human(john) ∨ 

Human(harold) ∨ Human(harold) ∨ 

Human(carl) ∨ Human(finch) 

Rebecca is a human or John is a human or 

Harold is a human or Emmanuel is a 

human or Carl is a human or Finch is a 

human or Helen is a human. 

Human(rebecca) ∨ Human(john) ∨ 

Human(harold) ∨ Human(carl) ∨ 

Human(finch) ∨ Human(helen) 

[Human(emmanuel) is missing] 

 

This mistake indicates that even if the roles and workings of the truth-functional 

connectives are learned, the models may ignore several predicates while generating the 

expressions, which is inadequate to translate natural language sentences into first-order 

logic expressions. Missing predicates change the whole meaning of the expression, 

making it not convey the meaning of the natural language sentence. 

In summary, while several mistaken predictions could be corrected by changing parts in 

sentences or adjusting the inference parameters, several could not. This situation 

indicates that while these models learned several features of first-order logic 

expressions, the learned features could not be generalized into more complex 

expressions in a productive and compositional way. 
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4. CONCLUSION 

Model Evaluation and Error Analysis: We wanted to evaluate Transformer-based 

language models on translating natural language sentences into first-order logic 

expressions. We fine-tuned two language models, T5-small and T5-base, with our new 

WillowNLtoFOL dataset to conduct such an evaluation. We evaluated the models using 

four metrics: well-formedness, exact match, formal match, and equivalence. Our 

evaluation was conducted in two stages. First, we evaluated the models’ performances 

on the test dataset. We got high results for this evaluation except for the exact match 

metric, which indicates that the models could not adequately predict the exact predicates 

indicated in ground truths. However, we got high results for formal match and 

equivalence metrics, which indicates that the models learned the formal aspects of 

expressions from the training dataset. In this evaluation step, we observed several 

common mistaken prediction patterns: false assignments of exclusive and inclusive 

disjunctions, errors in the separation of adjectives, false assigning of variable order and 

number to the predicates, errors in quantification and truth-functional connectives, and 

missing predicates in expressions.  

 

For the second evaluation step, we prepared additional natural language sentence and 

first-order logic expression pairs to test whether the models learned specific features 

about first-order logic expressions and whether they could generalize their knowledge to 

sentences requiring more complex first-order logic expressions. Although the models 

mostly predicted well-formed expressions in this evaluation step, both models performed 

poorly regarding the other three metrics. In this evaluation stage, we categorized the 

mistaken patterns as 1) confusing names with predicates, 2) mistakes in the separation of 

adjectives from subjects, 3) mistakes in variable order, 4) mistakes in connectives and 

quantifiers, and 5) missing predicates in expressions. This evaluation stage indicates that 

the models could not generalize their knowledge to sentences that require more complex 

first-order logic expressions. To analyze these mistaken predictions, we tried to change 

the inference code’s parameters or change several parts of the sentences in pairs to see 

whether the models’ behavior changed and predict correct expressions. We saw that the 

mistakes in confusing names with predicates can be corrected by changing the natural 

language sentences. However, the mistaken predictions in the other categories could not 

be corrected. 

 

During the analysis, we focused on mistakes in missing predicates to understand why the 

models ignore several predicates while predicting expressions. We ran several tests and 

observed that the models were unable to predict longer expressions in a productive 

manner, even if the expressions contained predicates connected by the same truth-

functional connectives. This missing predicate error highlights that models failed to 

consider the compositional aspect of logical expressions, which determines the meaning 

of the entire expression according to its components. These experiments and evaluations 

give good reasons to conclude that transformer-based language models may require 
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additional specifications for semantic parsing tasks, which require considering the 

structural and hierarchical features of sentences and expressions.  

 

Hybrid Model Approaches: The results we gained from the second evaluation stage do 

not mean that Transformer-based language models cannot be beneficial for semantic 

parsing tasks. The results from the first evaluation stage indicate that they successfully 

generalize in the domain in which they are trained and can apply this knowledge to 

unseen forms if they exhibit similar structures. The task, then, is to find a way to make 

this knowledge be applied productively and compositionally for complex sentences. We 

believe it is possible to integrate Transformer-based language models’ capabilities with 

other artificial intelligence systems, such as rule-based systems. This integration has the 

potential to increase their capabilities. Such hybrid approaches have already been 

proposed (Marcus, 2020) or applied to other domains of formal expressions (Wong et 

al., 2023), and there is no reason to think it is not possible to adopt such a hybrid 

approach for translating natural language sentences into first-order logic expressions.  

 

Challenges for Future Models: Considering the results, we believe three main issues 

must be considered when developing a new model for a translation task. The first is 

about the possible variables a predicate can take and semantic interpretations of 

predicates that determine the order of variables. Such knowledge requires either using a 

grammar to find the variables from the sentence and add them to the predicates or using 

a knowledge base for predicates to indicate how many variables they can take. As we 

have seen from the results, this aspect of first-order logic expressions seems challenging 

for the language models, and it must be assessed by providing additional rule-based 

approaches.  

 

The second important issue is about the construction of the datasets. When we inspected 

the literature, we saw few datasets available for training models. However, we found 

them problematic, considering the complexity of the task, and therefore, we developed a 

new dataset. This new dataset can serve the literature well, considering its effectiveness 

based on the results we gained. After our experiments, we saw the effectiveness of well-

developed datasets. Although Transformer-based language models eliminate the need 

for additional labeling, developing adequate training datasets is still crucial since the 

variation in datasets and their way of development directly affects the models’ 

performance. Considering the structure of first-order logic expressions, the well-

formedness of the expressions in the dataset is highly important. The datasets also 

require expressions in various forms and their corresponding sentences that convey the 

meaning of the expressions. Finally, agreement on how to translate natural language 

sentence parts into first-order logic and determining what roles these parts play in the 

expressions requires expertise and training. When determining whether a sentence is a 

statement and can be translatable into first-order logic expression, various natural 

language sentence parts playing the roles of truth-functional connectives must be 

determined and prepared cautiously. These aspects are important while developing a 

dataset for the translation task, and we have tried to fulfill them in this work. However, 

although our dataset was effective, further improvements can be made, considering the 
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additional need for more complex expressions and the problematic pairs generated 

during the extending process using GPT-4.  

 

The final issue concerns the metrics used to evaluate the models. Many models in the 

literature use metrics designed to evaluate natural language to natural language 

translations. Although using them to evaluate predicate extraction capabilities can be 

useful, they are mostly inadequate to evaluate models developed to translate sentences 

into logical forms. Logical forms have compositional structures and have meaning only 

under interpretation. Therefore, we cannot use the same metrics even if we 

conceptualize semantic parsing tasks as machine translation tasks. To overcome this 

problem, we developed formal match and equivalence metrics, which directly evaluate 

the predictions based on their forms. Considering the results we gained from both 

evaluation stages, these metrics were effective and necessary. Only after these metrics 

were we able to evaluate the formal structures of the expressions, which is the main 

subject of logic. These metrics also allowed us to differentiate and evaluate seemingly 

similar but unequal formal expressions. Changing the order or location of parentheses, 

variables, and predicates directly affects the meaning of logical expressions due to their 

compositional structure, and these differences were easily identified and evaluated by 

the equivalence and formal match metrics. Therefore, it is crucial to notice that while 

developing a model for a given task, it is essential to have a clear understanding of the 

task itself and develop evaluation metrics accordingly.  

 

Potential for Improvement: In this work, we used four metrics that are necessary to 

evaluate any model developed or trained to translate natural language sentences into 

first-order logic expressions. After the experiments and evaluations, we saw the 

effectiveness of these metrics, especially the formal match and equivalence metrics. 

Although these metrics were necessary and effective, we concluded that more metrics 

are needed for evaluation. There must be metrics that also evaluate the semantic aspects 

of the predicates and consider their variable number and order. We presented two 

examples that require such a metric in Table 15. However, as we said, this would require 

integrating knowledge bases or grammars to determine the adequate number and order 

of the variables. We believe that variable order and number problem can be assessed 

with such an approach. 

 

We developed a new dataset for this work, the WillowNLtoFOL dataset, consisting of 

pairs with diverse predicates and logical forms. Although this dataset has proven its 

effectiveness, as seen in the success of the first evaluation step, we have seen several 

pairs whose ground truths need to be revised. These inaccurate ground truths are due to 

the extending process using GPT-4. We assumed that if the extending process is 

controlled, we could eliminate the possible inaccuracies. However, after the evaluations, 

we realized that inaccurate pairs are possible even if the extending process is controlled. 

This situation indicates that using language models for generating datasets may not be 

reliable, especially if the dataset requires accurate ground truths with compositional 

structures. We will review the WillowNLtoFOL dataset pairs and manually correct the 

inaccuracies before making this dataset available to other researchers. 
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In predicting the accurate expressions for the sentences, we also observed that extracting 

the accurate predicates was challenging for the models. We saw that word spelling and 

labeling can be crucial for generating adequate predicates. In future work, rather than 

only focusing on the formal aspects of the translations, predicting accurate predicates for 

expressions must also be assessed if the predictions will directly be used for tasks such 

as natural language reasoning. 

 

Future Directions: The main conclusion of this thesis is that there are reasons to claim 

that fine-tuning transformer-based language models is not enough to automate 

translating natural language sentences into first-order logic expressions. Although these 

models can learn various forms and formal features of first-order logic expressions, we 

found that these features could not be generalized to translate more complex sentences 

productively. Adding new pairs with previously unseen forms to the training datasets or 

benefiting other approaches is necessary to make these models generalizable. Such 

approaches can use hybrid models integrating Transformer-based language models with 

rule-based approaches to leverage their valuable aspects. While transformer-based 

language models eliminate the need for intermediate representations in training datasets 

and leverage transfer learning to provide contextual information during the translation, 

rule-based approaches can provide systematic and productive aspects required in 

translating natural language sentences into first-order logic expressions. Integrating 

these approaches for the translation task can be a future work that can be investigated. 

 

Another approach may be to integrate the metrics into the training process. In this work, 

since we wanted to evaluate the Transformer-based language models without integrating 

additional metrics other than calculating training loss and validation loss to see whether 

they show overfitting, we did not measure the scores of the metrics during the training. 

However, since these metrics proved their efficiency, adding them to the fine-tuning 

processes is also possible. Whether this approach provides generalization over new 

unseen sentences is a question to be answered. 

 

We selected our formal meaning representation as first-order logic in this work and 

prepared a dataset for fine-tuning the models. Although we saw that this is a challenging 

task and needs several adjustments and improvements to be successful, we believe that 

using language models for the translation task can also be beneficial for extending a 

successful translation model from translating first-order logic to non-classical logics, 

such as modal logic, epistemic logic, and deontic logic. These logics extend the first-

order logic by representing additional operators to reason about statements with different 

modalities (Haack, 1978). For example, while modal logic includes modal operators to 

reason about necessity and possibility, deontic logic focuses on normative concepts such 

as obligation and permission. If a successful translation model that leverages 

Transformer-based language models is possible, adapting it for new kinds of logic could 

be a matter of preparing new datasets for those logics accordingly and fine-tuning the 

translation models with these new datasets. Therefore, leveraging language models can 

also be beneficial for extending the inference domain. However, as said, whether such 
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an approach can be successful can only be tested by developing a successful translation 

model that leverages language models. 

 

Finally, another aim of this thesis was to develop a successful translation model using 

the Transformer-based language models and use it to evaluate logical aspects of 

argumentations in argumentative scientific texts. Such a translation model can be 

beneficial for computational argumentation literature. However, since the models are not 

generalizable, the types of sentences found in argumentative scientific texts seem unfit 

for translation at this stage. However, we still believe that computational argumentation 

research can benefit from such a translation model, especially for finding possible 

enthymemes in argumentative structures or revealing hidden premises of argumentations 

in a deductive manner. Therefore, developing successful translation models can still 

benefit the computational argumentation area of research, which is a valuable aim to 

pursue. 
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