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ABSTRACT

IMAGE SEQUENCE COMPRESSION USING TRANSFORM DOMAIN
QUANTIZATION TECHNIQUES

Mustafa Ali TURKER
M. S. in Electrical and Electronics Engineering
Supervisor: Prof. Dr. Mete SEVERCAN
July, 1994, 152 pages.

Optimal scalar and vector quantizers that can be used on the trans-
formed image sequence frames are examined and a new method for vector quan-
tization is proposed. Quantizers are essential components of any compression
system and they are the main contributors to the reconstruction error incurred at
the decompression. As image transformation, Discrete Cosine Transform (DCT)
is chosen, since it is a good approximation to Karhunen-Loéve transform which
perfectly decorrelates its input data.

For scalar quantization in DCT domain, nonuniform Max quantizers
tailored for the distribution of DCT coefficents of transformed image data are
used and integer bit allocation method of marginal analysis is chosen. Further,
incorporation of human visual system properties to this optimal scalar quantiza-
tion scheme is extensively discussed and simulations are performed.

For vector quantization in DCT domain, classified vector quantiza-
tion (CVQ) techniques are examined and a novel scheme named as Classifier
Constrained Vector Quantization (CCVQ) is introduced. This technique uses
some elements of the input vector as class features and jointly optimizes the VQ
codebook and the classifier, using Lagrangian methods. Therefore, it generates
subcodebook for each class with optimal sizes and minimum distortion. This new
method is tested experimentally and shown to have a very short execution time,
although its PSNR performance is very close to full-search VQ techniques.

In order to choose the best quantization policy, optimal scalar quanti-

zation and vector quantization are compared both theoretically and practically.

il



As a result, vector quantization is confirmed to be superior over any scalar quan-
tization scheme.

Finally, the intraframe coded image sequence frames with the above
techniques are interframe coded to reveal the potential of compression in temporal

direction.

Keywords: Image Compression, DCT, Vector Quantization, Scalar Quantization,

Human Visual System.

Science Code : 609.02.08
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DONUSUM UZAYI NICEMLEME TEKNIiKLERI iLE GORUNTU Dizisi
SIKISTIRILMASI

Mustafa Ali TURKER
Yuksek Lisans Tezi, Elektrik ve Elektronik Mihendisligi Anabilim Dali
Tez Yoneticisi: Prof. Dr. Mete SEVERCAN
Temmuz, 1994, 152 sayfa.

Dontsgtirilmiis gorinti dizisi kareleri tizerinde kullanilabilecek optimal
skalar ve vektor nicemleyiciler incelenmis ve yeni bir vektor nicemleme yontemi
one sirilmigtir. . Nicemleyiciler sikigtirma sistemlerinin zorunlu pargalarindan
biridir ve agmada beliren yeniden olugturma hatalarimin ana nedenidir. Gorinti
dénigtirilmi olarak Ayrik Kosints Dontigimi (DCT), verileri ilintisizlegtiren
Karhunen-Loéve Déniigimine en yakin déntligiim olmasi sebebiyle segilmigtir.

DCT uzayinda skalar nicemlemek i¢in, donigtirilmis gorinti bil-
gisinin DCT katsayilarinin dagilimina gore bigilmis diizensiz Max nicemleyicileri
kullanilmigtir ve tamsay: bit atama metodu olan marjinal analiz segilmigtir. Bun-
dan bagka, insan gori sistemi ozelliklerinin optimal skalar nicemleme iglemine
katilmalar1 derinlemesine tartigilmig ve simulasyonlar gergeklegtirilmigtir.

DCT uzayinda vektor nicemleme amaciyla, simiflandiriimig vektor nicem-
leme (CVQ) teknikleri incelenmis ve Smiflandiricr Kistash Vektor Nicemleme ads
verilen yeni bir yéntem sunulmusgtur. Bu yontem girilen vektoriin bazi 6gelerini
simf belirteci olarak kullanir ve VQ kodtablosu ile ssmflandiriciyi Lagrange yontem-
leri kullanarak ortaklaga optimize eder. Boylece, her sinif igin altkodtablosu op-
timal biyiklikte ve minimum hata igin liretilmis olur. Bu yeni yontem deneysel
olarak test edilmigtir ve tam-arama VQ tekniklerine ¢ok yakin PSNR bagarim
olmasina ragmen gok kisa hesaplama siiresine sahip oldugu gosterilmistir.

En iyi nicemleme yaklagimmi segmek i¢in optimal skalar nicemleme
ve vektor nicemleme yontemleri kuramsal ve deneysel olarak kargilagtimlmgtir.

Sonug olarak, vektor nicemlemenin herhangi bir skalar nicemleme iglemine nazaran



Ustiin oldugu teyid edilmistir.
Son olarak, yukaridaki yontemlerle karei¢i kodlanmig gorunti dizisi
kareleri, zamanda sikigtirma potansiyelini ortaya ¢ikarmak igin kareleraras: kod-

lanmagtir.

Bilim Dal Sayisal Kodu : 609.02.08
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CHAPTER 1

INTRODUCTION

Probably no single work in this century has more profoundly altered man’s
understanding of communication than C. E. Shannon’s “A Mathematical Theory
of Communication” [1]. In the first of a series of articles [2] commemorating the
25" anniversary of the first publication of Shannon’s celebrated paper in 1948,
J. R. Pierce describes it as a bomb and “something of a delayed action bomb”.
As the 20 century dawning, the shock wave from that bomb is still spreading
and the dust does not seem to get settled when the century ends.

INFORMATION
SOURCE TRANSMITTER RECEIVER DESTINATION

SIGNAL RECEIVED
SIGNAL
MESSAGE MESSAGE

NOISE
SOURCE

Figure 1.1. Schematic diagram of a general communication system.

Shannon observed that all communication systems can be represented by
the block diagram in Figure 1.1. Then, he constructed simple mathematical
models that describe the macroscopic functioning of these blocks, and how these
models can work together to optimize the overall performance of the system.
He also defined the concept of rate distortion function and then sketched the
proof of a lossy source coding theorem. With this theorem, he introduced a new
avenue of research to information theory, which is called ‘source coding with a

fidelity criterion’ (also called ‘rate distortion theory’). However, it was the year



1959, that saw the formulation of rate distortion theory as we know it today.
That year was marked in the history of information theory by the appearance of
another paper of Shannon [3], in which he laid out basic tenets of rate distortion
theory, along with a rigorous proof of a lossy source coding theorem. Shannon’s
source coding theorem states that the rate distortion function of a discrete-time
source evaluated at a distortion level D gives the minimum rate R in bits per
source sample at which the source can be represented if the source would be
reconstructed at a distortion less than or equal to D.

Rate distortion theory provides a mathematical basis and theoretical limits
for the rapidly evolving branch of communication engineering commonly referred
as data compression, bandwidth compression, or redundancy reduction. Infor-
mation, in its many forms, has been a valuable commodity ever since man began
thinking. As a result, the ability to store, access, and transmit in an efficient
manner has become crucial. This is particularly true in the case of images or
video (image sequences). A large number of information units (or binary units
for digital pictures, bits) is required to represent even a small image. More-
over, due to the rapid advances in sensor technology and digital electronics, this
number grows larger with each new generation of products. The only remedy is
application of lossy source coding to images. So, the subject thrived and grew
to become a well-rounded and exciting chapter in the annals of science. How-
ever practical systems had not been available until the great achievements of
solid state physics in integrated circuits appeared and computers flourished. On
the other hand, recently developed standard for still image and video compres-
sion, like JPEG, CCITT H.261, MPEG-I, enabled inter-workability. Therefore,
engineers gained necessary incentive, and development of systems for numerous
applications gained impetus. d

Some outstanding applications of video compression, which will have heavy

influence in daily life when accomplished are :

e High Definition Television (HDTV) : All-digital HDTV systems which have
their specifications being established at the moment, both in USA and
Japan will certainly use high-fidelity video compression methods to re-
duce their unacceptable bandwidth requirement due to their high resolution

frames. Since it has high-resolution pictures, HDTV can also be expected to



impact the medical industry by enabling doctors to make remote diagnoses

in emergency situations, in sparsely populated areas.

e Video telephony and videoconferencing : The visual telephone service is
generally a two-way telecommunication service which uses a switched net-
work of broadband or narrowband analogue and/or digital circuits to estab-
lish connections among subscriber terminals, primarily for the purpose of
transmitting live or static pictures. Since the quality of communication be-
tween the subscribers would be increased a lot, these services are expected

to cause a significant decrease in traveling expenses.

e Video surveillance systems : This a special application of one-way video
transmission system which requires real-time, low-fidelity video compression
for saving or transmitting the video data of a place which is needed to be
monitored. In the case of compressing the video data into very low bit-rates,
open-air surveillance systems can be built which would utilize the existing

telephony lines, hence cabling costs would be reduced.

o Interactive video databases (video on demand) : Such data bases which
would hold video and images galore using data compression, will impact
a wide range of services including the travel industry, marketing of the

real-estate, education and entertainment

e Video unification : The ultimate goal of image and video compression. Once
standards for all types of images and video sequences are settled which could
work in concord with each other, all possible video services including the

ones mentioned above can be unified in a large multimedia environment.

1.1 Image Sequence Compression Techniques

Image sequence compression is achieved by excising the correlation existing
both spatially, within each frame of the sequence, and temporally between the

frames. Possible methods of removing this correlation can be listed as below :

e Subband coding techniques: Dividing the sequence into subbands of varying

spatial frequency intervals, a different compression method can be applied



for each band, which would comply with the statistical properties of the cor-
responding subbands. These techniques are especially useful for progressive

transmission.

e Motion estimation/ motion compensation techniques : Motion estimation
examines the movement of pixels, blocks or objects in an image sequence for
obtaining vectors to represent the estimated motion. Motion compensation,
then uses this knowledge of motion, to achieve data compression by coding

only the difference signal between original and estimated frames.

o Intra/interframe coding : It Involves compression of each frame of the se-
quence individually. Then temporal redundancies are removed using the

compressed frame data.

o 2™ generation techniques : Unlike the above methods, which are statistical
in nature, 2" generation techniques makes use of the knowledge on human
visual system, to produce subjectively good-quality pictures at high com-
pression ratios, mainly by preserving components of the image to which

human eye is sensitive like edges.

e Feature based techniques : Involves the paradigm, which only encodes some
crucial features of the image such as facial features for a video telephone
application. Encoding may be done by using a codebook for each feature
which contains a set of possible shapes for that feature. For an efficient

coding such a set should contain orthogonal shapes.

1.2 The Choice of this Thesis Work

Motion estimation/ motion compensation based techniques are used in
many existing standards for image sequence compression like CCITT H.261,
MPEG-I, MPEG-II. However, they require a long execution time if subpixel ac-
curacy is desired by motion estimation. If motion estimation is carried out on
block by block basis with the assumption that all pixels in a block undergo the
same displacement, it can account for only translational motion and fails for cam-
era zooms, pans, object rotation, change of object shape etc., causing blocking

artifacts. Subband coding is a method which has been quite settled down, since



it is one of the earliest approaches to coding. Finally, feature based techniques
seems to be quite appealing since they can produce very high compression ratio.
But the results are usually far from being natural.

The choice of this thesis favours intra/interframe compression techniques.
If applied in the transform domain, intra/interframe coding is a kind of a divide
and conquer technique, which removes the spatial correlation within subblocks of
size N x N, and then undertakes the problem of removing redundancy between
the subblocks. Finally, temporal compression is done by interframe coding. On
the other hand, inspired from 2"¢ generation techniques, some proper weighting
functions can be used to account for human visual system properties sufficiently.
When compared to motion estimation/ motion compensation paradigm, although
it is more statistical in nature and seemingly more complex, it can adopt any
motion estimation technique for interframe coding of the compressed data.

The Discrete Cosine Transform (DCT) is chosen in this thesis to repre-
sent the elements of each image subblock in a domain where they are almost

uncorrelated.

1.3 The Aim and Organization of the Thesis

The transform coefficients which represents the image subblocks in the DCT
domain have real values and must be quantized prior to quantization. Quan-
tization is the main step in encoding which introduces the largest amount of
distortion. Therefore, optimal quantizers should be constructed to achieve high

performance coding. Generally there exists two types of quantizers :
1. Scalar quantizers which operates on single samples of the source.

2. Vector quantizers which operates on k—dimensional blocks (vectors) of the

source.

The main purpose of this thesis is to develop scalar and vector quantizers for
the quantization of image data in DCT domain. Efficacious ways for interframe
coding has been extensively covered by motion estimation/ motion compensation
paradigm. However, the virtue of intra/interframe compression lies in its capa-
bility to reduce spatial redundancy within each frame of the sequence. The key

for such an effective intraframe coding is a good quantizer.



With this aim, firstly, optimal scalar quantizers are examined. The neces-
sary ingredients of optimal scalar quantization, namely the information regarding
the probability distribution function of the source to be quantized and an optimal
bit allocation algorithm to distribute the available bits are discussed extensively.
Secondly, the case of vector quantizers are inspected emphasizing the proof of the
superiority of vector quantization over scalar quantization. Since a very impor-
tant disadvantage of intra/interframe coding with respect to motion estimation
and compensation methods is its computational burden for intraframe coding, the
second most important intention of this thesis work is to develop a fast intraframe
coding techniques. For that reason, classified vector quantizers are scrutinized.
Finally, a classified vector quantization scheme which is called ‘classifier con-
strained vector quantization’ (CCVQ) is developed. This new technique of vector
quantization not only accomplishes the task of optimal quantization, but also has
a very short execution time of codebook and classifier generation.

The organization of the thesis is as follows :

In Chapter 2, an objective quality assessment measure PSNR is explained
which will be used throughout this thesis to judge the performance of the tested
compression systems using the fidelity of the output images with respect to the
input.

In Chapter 3, DCT is introduced as a member of the Sinusoidal Family
of transforms and the choice of DCT as the unitary transform to represent the
images is justified by proving its asymptotic equivalence to the optimal Karhunen-
Loéve Transform for correlated input data. Also, the derivation of DCT from
Fourier Cosine Transform and its relation to Fourier Transform is gi\}exl.

The subject of Chapter 4 is optimal scalar quantization. The optimal uni-
form and nonuniform Max quantizers are explained. To be able to construct such
optimal quantizers, the distribution of DCT coefficients for images is inspected by
an overrunning survey through the literature. The survey reveals the contrasting
predictions in the related scientific works, but finally comes up with acceptable
distribution functions for the DC and non-DC DCT coefficients. Having deter-
mined the optimal scalar quantizers, to construct an optimal system, the choice of
the bit allocation method of marginal analysis is justiﬁed. Further, human visual
system properties are investigated to a large extent and various visual system

models are given to be able to carry out a perceptual domain transform coding



scheme. The chapter also includes experimental results comparing the perceptual
domain optimal scalar quantization to DCT domain optimal scalar quantization.

The 5% Chapter starts with a preliminary work to present the properties
of optimal vector quantizers and norms of distortion to judge optimality. Then,
the asymptotic optimality of vector quantization is explained and its superiority
to scalar quantization is proved theoretically using high resolution quantization
theory findings. Being contented with the supremacy of vector quantization, the
method of classified vector quantization is chosen to be the best candidate for
adaptive real-time intra/interframe coding systems which uses vector quantiza-
tion. Later in the chapter, the reader’s attention is dragged upon the subop-
timalities of exisﬁing classified vector quantization methods and the novel tech-
nique of CCVQ) is presented. Experimental results demonstrating the complexity
reduction with the new technique with respect to some other vector quantiza-
tion techniques which uses full-search codebooks are given. However, the loss of
PSNR performance is showed to be only very small. On the other hand, subjec-
tive quality of the reconstructed images is demonstrated to be improved, due to
edge-oriented classification. The chapter concludes with an experiment revealing
the superiority of vector quantization over scalar quantization.

Chapter 6, mainly contains two simple experiments about the interframe
coding of the scalar quantized and vector quantized intraframes. The reason is
to exhibit the promises of interframe coding in removing the temporal redun-
dancy. No new methods or extensive examinations of possible interframe coding
techniques are presented since the aim of this thesis is rather to obtain fast and
efficient intraframe coding methods.

Chapter of 7, concludes the thesis with an overall evaluation of the tested

methods, proposed CCVQ scheme and directions for feature research.



CHAPTER 1II

TRANSFORM CODING

Transforms, particularly integral transforms, are used primarily for the re-
duction of complexity in mathematical problems. Differential equations and in-
tegral equations may be changed into algebraic equations whose solutions are
more easily obtained, by applying appropriate transforms. In image data source
processing, ‘2-dimensional unitary transforms’ (see the following section for de-
scription) have found three major applications. Transforms have been utilized to
extract features from images. For example, in the Fourier transform, the average

‘value or “d.c.” term is proportional to the average image brightness, and the high
frequency coefficients indicate the sharpness and orientation of the edges within
an image. Dimensionality reduction in computation is another application. Small
transform coefficients may be excluded from processing operations, such as fil-
tering, without much loss in processing performance. The third application is
‘transform coding’. Transform coding denotes a procedure, in which the image is
subjected, prior to coding and transmission, to an invertible transform, with the
aim of converting the statistically dependent image elements to independent coef-
ficients. Transforms are employed to represent the pictures in a ‘space’, in which
the attributes of the pictures are not correlated. The basic property of image
upon which image compression techniques rely is inter-element correlation. The
neighboring picture elements of even fairly active images, i.e. those containing
a reasonable amount of spatial detail, have ‘on the average’ similar amplitudes
of intensity and chrominance. This property of images implies that, their power
spectral distribution is strongly low pass in nature, thus requiring little coding
capacity for transmission. The degree to which images may be compressed whilst
still allowing satisfactory reproduction after storage or transmission in compressed

form is, therefore, crucially dependent upon their correlation properties.
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Figure 2.1. Transform coding block diagram

A general transform coding scheme is shown in Figure 2.1. It involves
subdividing an L X L image into smaller, nonoverlapping N x N blocks and
performing a unitary transform on each subblock. Upon redistribution of the
signal energy among uncorrelated coefficients, a smaller set of relatively high
energy coeflicients are quantized and encoded for the channel.

When compared to spatial coding of image data, transform coding is some-
what more versatile, yet more elusive. For an image with high spatial correlation,
many high - order transform coefficients will be small and may either be coded
with very few bits or deleted completely. The optimal bit allocation problem for

the transform coeflicients has been studied extensively and optimum solutions



have been found (see Section 3.3). Although transform coding is very immune
to variations in input data, it is sensitive to storage and transmission errors
than spatially coded images as all coded coefficients have very ‘fragile’ informa-
tion. Compared to spatial coding, this method is relatively complex and benefits
greatly from the recent advances in high-speed digital hardware. Generally, trans-
form coding gives good quality image reproductions at rates between 0.5 and 1.0
bpp range, provided that input image does not have large amounts of intricate
spatial detail.

Among various transforms proposed for image data coding, the ‘Discrete
Cosine Transform’ (DCT ), emerges to be the best candidate to replace the
Karhunen-Loéve Transform (KLT ) for compression applications, which is sta-
tistically optimum from the standpoint of energy compaction. DCT is also out-
standing for its fast and efficient implementations employing real arithmetic (see
Section 2.5).

In the following sections details about DCT will be explained and the choice

of DCT as the main domain throughout this thesis will be justified.

2.1 Definitions and Properties

The Discrete Cosine Transform, introduced by Ahmed et al. [5], has been
selected to be the transform which will be used throughout this chapter, and also
in this thesis work. Reasons for the choice of DCT is stated in Section 2.5. In
the below section the position of DCT among all transforms is stated and some
of its properties are mentioned.

Wang (6] classified the existing DCTs into four types:

1. DCT-1
Forward :
9 1/2 N ‘
XMW (m) = (—1\7> k. ngo kynx(n)cos (m;\;w) , m=0,1,...,N;
Inverse :
9 1/2 N
z(n) = (—N-) k., Z kwm XM (m) cos (ny\;w) , n=0,1,...,N. (2.1)

n=0

10



2. DCT-II

Forward :
o 2\1/2 N1 m(2n + 1)m
X (m) = (—j—v—) kn Y z(n)cos [T——} , m=0,1,...,N—1;
n=0
Inverse :
1/2 N-1
z(n) = (%) > km XC®)(m) cos [%—)—7{] , n=0,1,...,N—1.
n=0
(2.2)
3. DCT-III
Forward :
c 2\1/2 N1 (2m + l)nx
X (3)(m): <N) z knz(n) cos [T] , m=0,1,...,N—1;
n=0
Inverse :

2 1/2 N-1 9
z(n) = (N) ko ) XC(S)(m) cos {M] , n=0,1,...,N—1.

n=0 2N
(2.3)
4. DCT-1IV
Forward ;
1/2 N-1 9
XW(m) = (%) ; z(n) cos [(2m s 125\;"’ + UW] m=0,1,...,N—1;
Inverse :
2NV @2m+1D)(@2n+ Dr
— (= ‘ (4) = -
z(n) (N) ngo)x (m)cos[ AN Jn 0,1,...,N—1
(2.4)
where

k,,:{ %2- when p=0or N
1 when p#0and N.

In the above equations, x(n) is the input (data) sequence and X0 (m)
is the transform sequence corresponding to DCT-:, where ; = 1,2,3,4. Note
that the normalization factor {/(2/N) that appears in both the forward and the
inverse transforms can be merged as 2/N, and moved either to the forward or to
the inverse transform. The k, factor appears in the first order coefficients of the

transforms, so as to make the magnitude of the first basis vector of the transform

11



unitary. Observe from the above equations that un-normalized first basis vector
elements have the magnitude \/i/W (cos(0) = 1), and so the sum of their squares
is N x (\/5/—N )> = 2. Since the sum of the squares of all elements in a basis
vector must equal to unity (see Section 2.4), each element in the first order must
be normalized by 1/+/2.

DCTs can be derived from Fourier Cosine Transform (FCT) which is noth-
ing but the Fourier Transform (FT) of the even symmetrical version of the signal.
Next section is devoted to a short derivation of DCT from FCT. DCT can also be
viewed as a member of the vast family of sinusoidal transforms, which have very
appealing properties for image coding, hence it is worth to cover it in an extra
section. Following this, important properties of DCTs, from the point of view of

image coding will be given.

2.2  Derivation of DCT from Fourier Cosine Transform

It is tempting to treat DCTs as discretized approximations of continuous
FCT. However, this would be quite wrong, since in digital coding one deals with
samples, measurements, and time instants. The continuum is merely an ideal-
ization to permit the use of calculus. So, although such a derivation of DCT
from FCT gives quite an insight, the various properties of DCT should be dealt
separately in the discrete world. Keeping this in mind, the derivation of FCT

from FT and DCT from FCT follows:

Given a function z(t) for —oo < t < o0, its Fourier Transform is

Flz(t)] 2 X(w) = ( : )1/2 /oo x(t)e ™ dt

o oo
FX(w)] é;l)(t) = (;;)1/2 /:: X(w)e™tdw . (2.5)

where w = 27 f is the radian frequency and f is the frequency in Hertz.

If z(t) is defined only for ¢t > 0, we can construct a function y(¢) such that

y)=1{" = (2.6)

then,

Fly(t)] = (ﬁ) /Ooo z(t) cos(wt)dt . (2.7)

s

12



Now, FCT of z(t), t > 0 can be defined as follows
F.lz(t)] £ Xe(w) = ( ) /oo ) cos(wt)dt

F7 X (w)] 220t = ylt)= (—2-> / Xe(w) cos(wt)dt . (2.8)
/) Jo
Observe that, from (2.8), it is clear that F,[] = F,![-]. It can be seen, again from
(2.8), that FCT has a kernel given by
K (w,t) = cos(wt) (2.9)

up to a normalization constant. Let w,, = 27méf and ¢, = nét be the sampled
angular frequency and time, where § f and 6t represent the unit sample intervals
for frequency and time respectively; m and n are integers. If we further let
§fét =1/(2N), where N is an integer, Equation (2.9) can be rewritten in the

form
Tmn A

No= K.(m,n) . (2.10)

Equation (2.10) represents a discretized FCT kernel. If this kernel is regarded as

Ko(wm,t,) = cos(2rmné f6t) = cos

elements in an (N + 1) by (N + 1) transform matrix, denoted by [A], then mnt!
element of the matrix is

mwmn

N ) m,n=20,1,...,N. (2.11)

[A] mn = COS(

When [A] is applied to a column vector & = [x(0), z(1),...,2(N)]7, the vector
X = [X(0),X(1),...,X(N)]T is obtained such that,

X = [A], (2.12)

where,

((m) Z cm(mml yz(n) m=0,1,...,N. (2.13)

n=0
This type of DCT was first reported by Kitajima in 1980 [7], and was named

as Symmetric Cosine Transform (SCT). Other types of DCT can be formed by
modifying SCT by scaling, or shifting operations.

With the inspiration from above derivation, DCT can also be obtained from
DFT directly in the discrete domain.

Let {z(n)} be a given sequence, then an extended sequence {y(n)}, even

symmetric about the point (2N — 1)/2, can be constructed so that,

| =0,1,...,N -1,
y(n) = ¢ * " (2.14)
z2N —-n—-1) n=N,N+1,...,2N — 1.

13



Then, DFT of y(n) is,

2N -1
Y(m)= Y y(n)Wy m=0,1,...,2N — 1. (2.15)

n=0
where Wyy 2 exp(—j2x /2N). This can easily be reduced to the form (see [§],
page 49, for details of the derivation),

N-1
Y(m)= 3 z(n)[WEp + Wontm), m=0,1,....,2N—1.  (2.16)

n=0

with the use of symmetry property of y(n). If both sides of Equation (2.16) is

multiplied by the factor %W;;V/ % one directly obtains,

1 m/2 N-1 mw
=Wyl Y(m) = > z(n)cos [(2n+1)—] , m=0,1,...,N—-1. (2.17)
2 = 2N

Comparing Equation (2.17) with the DCT-II (definition in (2.2), it can be seen
that Equation (2.17) is the DCT-II of the N-point sequence z(n), except for the
scaling factors in (2.2). So, as {Y(m)} is the 2N-point DFT of {y(n)} (symmetric
version of {x(n)}), Equation (2.17) shows that, for m = 1,2,..., N — 1, the 2N-
point DFT of the even-symmetric version of an N-point sequence is same as the
N-point DCT of the sequence, except for a scaling factor. Note that, the scaling
factor in Equation (2.17), c;)rresponds to a simple all-pass filter. This result also
implies that N-point DCT can be implemented via 2N-point DFT. Moreover,
when {x(n)} is also real, Haralick [9] showed that 2N-point DFT of its even-
symmetric version can be calculated via two N-point DFTs, thus reducing the
complexity of the implementation of DCT a good deal. In the later years, many

other methods to reduce the complexity had been proposed [10].

2.3 DCT as a Sinusoidal Transform

DCT is one of an extensive family of ‘sinusoidal transforms’, documented
by Jain [11]. In their discrete form the basis vectors of such transforms consist
of sampled sinusoidal and cosjnusoidal functions. Observe Figure 2.2, to see that
the basis vectors for N = 8 are generated by sampling at 8 points, a set of cosine

waves of increasing frequency.

Jain [11] showed that the well-known discrete Fourier, cosine, sine, and

14



Figure 2.2. 1D Discrete Cosine Transform basis vectors; N=8

Karhunen-Loéve (for 1**-order stationary Markov processes) transforms are mem-

bers of this family. To define the sinusoidal transforms family, consider the para-

metric family of matrices

[J] = [J(L], k’-z, kg, A4)]

Fl—kla —Q

—Q 1
0 —«
0
0
k4CY 0

0

0

0 kga
0
0
—a 0
1 —a

—a 1 —kQCY

(2.18)

This is a variation of the well-known tridiagonal Jacobi matrix (a matrix [J] is

called a Jacobi matrix if [J],,n = 0, for (m —n) > 2) if ks = ky = 0. For k3 = kq,

J is a symmetric matrix and with proper choice of « it would be admissible as a

positive definite covariance matrix. Each covariance matrix guarantees an associ-

ated set of complete orthonormal eigenvectors. Such eigenvectors are obtainable

15



by solving the equation

for different sets of k;, 7 = 1,2,3,4. Then Jm’s are the corresponding m** column
vectors of the sinusoidal transform matrix [®]. So the family of unitary sinusoidal
transforms can be defined as the class of complete orthonormal sets of eigenvectors
generated by those J matrices which are admissible as covariance matrices, i.e. ,
those which have such o, ky, k3, k3 = k4 that they become positive definite.For

the particular choice of

o é 4
= 1+p2

kl = kzzl

k3 = k4:0

the eigenvectors are the basis vectors of N-point DCT.
Note that through derivation of the family of matrices [J] is too tedious.

The interested reader may refer to page 117 of [12], and [11] for details.

2.4 Properties of DCT

Two-dimensional DCT is a ‘unitary transform’ ([13], [14]). A unitary trans-
form is a specific type of linear transformation in which the basic linear operation,
F(my,my) Z Z f(n1,n2)A(nq, ng;my, my) (2.20)

n1=1ny=1

is exactly invertible,

flng,ny) = Z Z (mq,m2)B(nq,ny;my, my) (2.21)

mp=1mq=1

and the forward and inverse transform kernels
{A(n1,n;mq,m3)} and {B(ny,ny;my,my)},

which are sets of basis functions satisfying the following conditions of ‘orthonor-
mality’ and ‘completeness’ :

DN A, gy ma, ma) AT (0, nhyma,my) = 8(ng — nl,ny — nh)

my mMm2

>3 B(nag,ny;my,my) B*(n,nhsmy,my) = §(nyg — nf,ny — nb)

myp Mmg

(Orthonormality) (2.22)
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03" A(na, ngymy, ma) A% (ng,ngymy,my) = §(mq — my, me — mb)
ny n2

3" B(ni,nasmy,ma) B* (g, naymy,my) = &(mq — my, mg — mb)
ny na

(Completeness) (2.23)

It can be observed that for the above conditions to hold the inverse trans-
form kernel must be the complex conjugate of the forward transform kernel. If it
exactly equals to the forward kernel then the transform is an ‘orthogonal trans-
form’. DCT is an orthogonal transform.

Unitary transforms can be conveniently expressed in vector-space form. Let
f and F' denote the vector forms of an image pixel array and its transform, then

two-dimensional unitary transform in matrix form is,

F = [Alf (forward)
(B|F (backward) (2.24)

!
Il

Then it is obvious that [B] = [A]~! and for unitary transforms, [A]*" = [A]~1.
For real, unitary transforms, [A]T = [A]7.

Testing these conditions on the transform matrices of DCTs given in Equa-

tions (2.1),(2.2),(2.3),(2.4), which are

1. DCT-1:

2\1/2 mnmw
[CJI\,H],,m = (ﬁ) [kmkn cos ( N )] , m,n=0,1,...,N; (2.25)

2. DCT-1I :

o\ 1/2 ’
[levl]nm = (j%f) [km COS (ﬂz%]&r“)l 3 m,n=0,1,... 3 N — &

(2.26)
3. DCT-III :
¢ 1/2 92
[C]{/I]]mn = (’i‘,) [Iifn COSs (W)] . m,n = 0, 1, ey N — 1;
(2.27)
4. DCT-1V :
o9\ 1/2 ' 9 9
[CI{IV]mn = (Ti]’) {COS ((771 + l/u)]gn * I/N)n-)] s m,n=10,1,...,N-1;
(2.28)
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where,
k= 7‘; when p=0or N
1  when p# 0 and N.

one can see that, they satisfy the below properties [8§],
1. For DCT-I [Cf,1]™ = [CRpu]” = [Chal-
2. For DCT-II [C{17! = [CH]T = [CH).
3. For DCT-IIT [CHT]7! = [CHT = [CH)-
4. For DCT-IV [C{] = [CIT = [C¥H].

A unitary transformation is said to be ‘separable’ if its kernel can be written

in the form,

A(nq,n2;my, my) = Ac(ng, my)Ag(ny, ms). (2.29)

where the kernel subscripts indicate row and column one-dimensional transform
operations. A separable two-dimensional unitary transform can be computed in
two steps. First, a one-dimensional transform is taken along each column of the
image and next, a second one-dimensional transform is taken along each row of
the result. An (N x N) two-dimensional DCT can also be reduced to two N-point
one-dimensional DCTs. Let [g] be an (N x N) matrix (an image block if g, is
interpreted as the grey level or the intensity of the pixel at the location (m,n) of
the image). [G], the two-dimensional orthogonal transform of the matrix [g], and

its inverse can be defined as,
[G] = [AN][g][AN]"

9] = [AN]T[Gl[AN] - (2.30)

Notice that, the notation [An], is adopted from the above Equations 1.25-28 to
denote an N x N transform matrix. If [G] is the two-dimensional DCT-II of [g¢],

then the uv'* element of [(7] is given by,

2e(uw)e(v) L& 2m ur m o
[G]uu - M—(—) Z Z[ﬂ]mn COs [(2 + 1) ] COS [(2 +1) ] ,

N m=0 n=0 2N 2N
where u,v=20,1,...,N—1, and
X ifk=0
c(k)y={ V2 (2.31)
1 otherwise.

18



Similarly, the mn** element of [¢g] can be reconstructed by the two-dimensional
IDCT-II of [G] as,
9 N N
[g)mn = N ggc(u)c(v)[G]w cos [%l—w—w] Cos [Q%—NM] ,
where m,n=20,1,...,N —1. (2.32)

Now the separability property of the two-dimensional DCT can be illus-
trated by writing Equation (2.31) as follows,

(Gluo = \/% o(u) ,:éo {\/% (v) é[g]mn o0s [(2"—;‘]\,111] }x [(L’”g]‘\}ﬂ] ,

where w,v=0,1,...,N —1. (2.33)

The inner summation is an N-point one-dimensional DCT-IT of the rows of
[g], whereas the outer summation represents the one-dimensional DCT-II of the
columns of the “semi-transformed” matrix. A fine implication of this property is
that, two-dimensional (M x N) DCTs can be implemented via M N-point one
dimensional DCTs. Note that the order, in which the row transform and the
column transform is done, is theoretically immaterial.

At this point perhaps it is worth mentioning some spatial properties of
an N x N DCT coefficients block. The upper-left coefficient represents the DC
or average intensity value of the transformed block. Progression from left to
right represents an increasing number of vertical edges while,similarly, top to
bottom represents an increasing number of horizontal edges. So bottom-right
coeflicient yields maximum mix of the vertical and horizontal edges (a chessboard
pattern). Hence, discarding high-sequency coefficients in the DCT domain (which
is tantamount to low-pass filtering) implies deletion of corresponding basis images
from the original image, as DCT is a decomposition process. This is called ‘zonal
sampling’ and experimental work on DCTs revealed that coding only 25% of the
transform coefficients is enough for the human observers to recognize the inverse

transformed image almost fully ([8]).

2.5 Superiority of DCT

In all transform coding systems the central point is, naturally, the decision
of the transform that will be applied on the one-, two-, or three-dimensional in-

put data array. While comparing a variety of orthogonal transforms for a certain
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input data, parameters like ‘energy packing efficiency’, ‘decorrelation efficiency’,
‘variance distribution’, ‘maximum reducible bits’, implementation (or computa-
tional) complexity can be used. Another fact is that, the characteristics of the
input source also affects the above parameters, so the source must be carefully
modeled and all comparisons must be carried out using the same model of source.

To determine the optimum transformation for a given source in MSE sense
the following discussion is valid (see chapter 3 of [8] for details). Consider a an N-
dimensional, zero-mean, random vector X. If {q-g,} is a set of linearly independent

basis vectors spanning the N-dimensional space, then X can be expanded in terms

of ¢;’s as,
N-1

)2 = Z a,'(;,' (234)

=0
Then X can be accurately represented by N numbers, a;. But if we were to
represent X with D numbers (D < N), so that bandwidth reduction is possible,
we should choose {5,} such that N — D number of q;’s are only insignificantly

different than zero. Karhunen and Loéve in their historical works [15], [16] showed

that {$;} to minimize D can be obtained by solving the diagonalization problem,
(Al — wlIn))di =0  i=0,1,...,N —1, (2.35)

where [A] = E [)Z' XT]is the auto-covariance matrix of the source, y; is a Lagrange
multiplier and [In] is the N x N identity matrix.

Now, the set of basis vectors {5,} form the bases for Karhunen-Loeve ex-
pansion and the matrix [®] = [50, b1v. ., gZN_l] is the Karhunen-Loéve Transform
(KLT ) matrix. The KLT is said to be optimal, because it has the following prop-

erties:
1. It completely decorrelates the signal in the transform domain.
2. It minimizes the MSE in bandwidth reduction.

3. It contains the most amount of energy (variance), in the fewest number of

transform coefficients.
4. It minimizes the total representation entropy of the sequence.

However, it is computationally unattractive for the following reasons :



1. The basis functions are dependent on the auto-covariance matrix of the

source (see Equation (2.35)) and therefore can not be predetermined.

2. Given an auto-covariance matrix, the solution of (2.35) is quite involved.

There are only a few cases in which analytical solutions are available.

3. Unlike commonly used transforms, there is no fast KLT in general.

One such case for which the analytical solution to the diagonalization prob-
lem of (2.35) is available, is the stationary 1** order Markov signals (also referred
as Markov-1). A formal definition of the process can be found, for example in
Papoulis [17]. For the present, an m**-order Markov signal can be defined as
a signal for which the probability of a given sample having a particular value
depends upon a finite number ‘m’ of the preceding symbols. That is the source
has memory. As far as a 1°* order Markov source is concerned it depends only
on the previous sample. The degree of dependence is represented with a corre-
lation coefficient, 0 < p < 1. In digital images, the analogous situation is where
the probability of a given pixel having a particular intensity is dependent on
the surrounding pixels. In fact, this model is quite efficient for the representa-
tion of correlation-displacement relationship of images which are smooth, i.e. ,
which contain relatively small varying details. Still, usage of this model for the
‘active images’ is often criticized ([18], [19]), saying that it does not provide an
accurate, general representation. Indeed, with only three statistical parameters
(mean, variance, and one-step correlation coefficient) it does not seem logical to
represent such active images, but for sufficiently slowly varying intensity images,
it is the most commonly used model for describing the statistics of each line of
the image,[20]:

Up = PUp_1 + € k=0,1,...,N -1

where, E{e } =0, E{erer} = (1 = pt)oléy,
and E{u?} 2 ol . (2.36)

Note that one-step correlation p is generally chosen to be 0.9 < p < 0.95 for
image sources.
Auto-covariance matrices of such stationary Markov-1 sources of unity vari-

ance, i.e. 02 = 1, have the form,

[A]i g = pli=*] iLk=0,1,... . N—1. (2.37)



It is interesting to observe that, with

a® p/(1+p?) (2.38)

and

A2 (1—p?)/(1+ %) (2.39)

the following property can be shown [11] for the sinusoidal transforms kernel

matrix [J] of Equation (2.18) :

[J(p,p,0,0)] = G*[A] (2.40)

Note that, since the eigenvectors of a matrix is invariant under all commuting
transformations, the eigenvectors of [A]™! (and hence of [J(p, p,0,0)]) and [A] are
identical. Since [J(p, p,0,0)] is also a covariance matrix, the KLT of its underlying
random process is the same as the KLT of stationary Markov-1 process. For this
case, Ray and Driver, [21], have provided the solution of (2.35).

The attractiveness of DCT stems from its asymptotical equivalence to the
optimal KLT. It has been shown that (see [8], chapter 3), DCT-I is asymptotically
equivalent to KLT (as N — oo and p = 1, where N is the size of the transform
matrix) and DCT-IT is asymptotically equivalent to KLT (as p — 1) for Markov-
1 signals. Note that as p increases to 1 decorrelation power of DCT-I decreases
even when N is very large. However DCT-II performs better for p near 1 without
any dependency to .

The proof of asymptotic equivalence above can either be carried out analyt-
ically, or just through simple observations on the matrix [J] of Equation (2.18).
For p — 1 the matrix [J(1,1,0,0)] (see Equation (2.20)) reduces to KLT for
Markov-1 signals, [11]. Infact all sinusoidal transforms are asymptotically equiv-
alent to KLT in some aspect. But as p — 1 (the case in typical images) only

DCT-II is equivalent. To show this Jain in [11] utilizes the difference norm
A = |[[J(kr, k2, k3, k)] = [J (p, 5, 0,0)]]] (2.41)

where ||[X]|| = 3, ;[X]?; is the weak norm (seminorm) of the matrix [X], and

tabulates A expressions for different sinusoidal transforms. From that it is evident

that DCT-II is better than all even-sized sinusoidal transforms for 0.5 < p <1l
[t must be mentioned, although the choice of DCT can be justified as being

the best nearest suboptimum transform to optimum KLT for 1* order stationary
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Markov Processes, typical image data is, aside from fitting to 1% order Markov,
is not stationary. Still, DCT seems to be more fitting to the covariance matrices
of such non-stationary processes [12].

Besides these theoretical near optimalities of DCT-II, Rao and Yip, in chap-
ter 6 of [8], testify DCT-II as being the second best transform after KLT for

Markov-1 signals with p = 0.9, using the following performance measures

e Rapidness in the decrease of variance distribution of coefficients.

o Energy packing efficiency, i.e. portion of energy contained in the first M of

N transform coefficients.

e Fractional correlation left undone by a transform, a measure defined in [22].
KLT completely decorrelates a signal. Whereas auto-covariance matrix in
KLT domain is diagonal, the covariances matrices in the domain of other
discrete transforms have non-zero off-diagonal elements which are indicative

of the correlation between the various sequences involved.

e Minimum information rate in bits per transform coefficient as yielded by
rate-distortion function assuming coefficients have Gaussian probability dis-

tribution.

Similar comparisons had been carried out by Clarke (see [12] chapter 3) for
Markov-1, p = 0.91, in measures of energy packing efficiency and decorrelation
efficiency. He also compared various transforms in terms of energy contained in
the DC and four lowest-order coefficients in the case of 8 x 8 transform for three
test images. Results showed that DCT-II is the best substitute for KLT.

The complexity of KLT has made any attempt in deriving fast algorithms
quite futile, while DCT-II and others that are asymptotically equivalent to it
are amenable to fast algorithms, making real-time applications feasible. For the

two-dimensional case of images fast implementations can be classified as follows

e By reducing 2D-DCT to a lexicographically ordered 1D-DCT, [23], using
the separability property of 2D-DCT, (Equation (2.33)). Note that most
VLSI implementations of 2D-DCT make use of this property! The method
is only partially recursive, but allows simple index mapping. In this case,
fast 1D-DCT algorithms must also be examined and many examples of them

are reviewed in chapter 4 of [8].
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e Block matrix decomposition of the transform matrices, thus aiming for a
recursive structure [24]. The author of this thesis have implemented this
algorithm on a PC-based computer as it is the only fully recursive algorithm
with relatively less number of real multiplications and additions among

others.

e Implementation via 2D-FFT (see Equation (2.17)), [25]. Then any FFT

algorithm can easily be employed.

o Implementation via other discrete transforms such as Walsh-Hadamard

Transform (WHT) [26].

When compared to DFT, DCT alleviates some of the problems which arise
in the application of DFT to a data series. Naturally, DFT is applied to sampled
data, and so the transform domain has a “repeat” spectra. Sampling rate should
be such that aliasing does not o;‘.cur. Conversely, the fact that transform coef-
ficients are also sampled, i.e. calculated at a finite number of frequencies means
that a line spectrum is generated instead of a continuous spectrum, for which the
input must have been “periodic”. Therefore the DFT representation is not that of
an isolated segment of the input, but is of that sample periodically repeated. Such
a waveform contains severe discontinuities due to the level difference between the
start and end of the repeated segment. These result in spurious spectral compo-
nents. However, in the case of DCT the segment is made even symmetric before
transforming (see Equation (2.14)). Then the start and end of the new, even
symmetric segment is at the same level! This fact is, also, the reason why even
sized DCTs are preferred.

In addition to all the appealing properties of DCT mentioned above, DCT

is outstanding as being a ‘real transform’, thus allowing real arithmetic.



CHAPTER 1II

DISCRETE COSINE TRANSFORM DOMAIN SCALAR QUANTIZATION

In the previous chapter the choice of DCT as a good substitute for KLT

for image data sources has been justified. If image data is to be scalar quantized

in the DCT domain, the outline of a practical transform coding algorithm is as

follows:

ot

. Divide the N x N image into small rectangular blocks of size n x n.

Transform each block.

Estimate the variances of transform coefficients using sufficient number of

transformed blocks.

Using the variances of coefficients employ a bit allocation algorithm to de-
termine the optimal number of bits that each DCT coefficient should be

quantized into.

Quantize the transform coefficients to the predetermined number of bits,
using an optimal non-uniform quantizer tailored for the probability distri-
bution of the coefficients. Such quantizers are designed for unity variance
data source, so normalize the coefficients to have unity variance prior to

quantization.

Entropy encode the quantizer output (upon demand) to reduce the bit-
rate without causing distortion at the expense of dealing with the buffering
problem. Buffering problem arises when a variable rate code is connected

to a channel or decoder demanding fixed rate input.

Encode the quantizer or entropy coder output. Also encode the variances
and bit allocation table for the reproduction of the coefficients. Encoding

is done for error control.



8. Transmit or store the data which is in the form of codewords now.

The scheme outlined above is also called ‘2D Block Quantization’. Block
quantization is the method of quantizing a block of independently distributed
continuous random variables on an element-by element basis (therefore should not
be confused with VQ). Each element of the block is quantized by a scalar quantizer
into a predetermined integer number of bits. It has been widely employed in
transform coding and subband coding especially for images.

Transform coefficient quantization and bit allocation for the quantizers are
two crucial steps in block quantization which worth discussing in detail. Bit
allocation is the first problem to be solved prior to quantization. However, for
a better understanding, the discussion about bit allocation problem is deferred
until other subjects about quantizers are covered.

Apart from the essential steps of bit allocation and quantization, in the
later sections the role of ‘human visual system’ in DCT domain transform coding
will also be discussed. The chapter will be concluded with experimental work

involving various DCT domain SQ schemes.

3.1 Scalar Quantizers for Transform Coeflicients

Major part of error introduced in the compression process using transform
coding is caused by the quantization of the DCT coefficients. The transform
operation is normally carried out digitally, and therefore the input image data
is already being (linearly) quantized by the frame grabber. That’s why, some
authors refer to the coefficient quantization step as ‘requantization’ [12].

Quantization is the process of subdividing the range of a signal into nonover-
lapping regions. An output level is then assigned to represent each region. A
formal definition can be made as follows,

Let X be a real scalar random variable at the quantizer input, with variance

o2 and pdf p(-). An L-level quantizer Q(-) maps the continuous variable X into

a discrete variable Y such that
Q(‘\’) =Y = Yk ifz, <X < Tl

where

yr € {y1,92,- - Y41} xr € {T1,29,...,21} (3.1)
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are the reconstruction levels and decision threshold values respectively. Then quan-

tization error () = X — Y is also a random variable with pdf p,(-) and variance

o2 = EQ = [ [o - Q@)'p.(2)da. (3.2)
If the region of integration is divided into L intervals, we obtain
2 N [T 2
or=>3 ) lz — y)’po(z)dz. (3.3)
k=1"7%

Quantizers can be categorized as uniform or nonuniform, symmetric or non-
symmetric, midrise or midtread and memoryless or with memory. Qur discussion
will be limited to memoryless, midrise quantizers, those for which the mapping
of a sample at a time is not affected by earlier or later input samples and zero is
not one of the output levels. Symmetric quantizers have their reconstruction and
decision threshold values even symmetric for both positive and negative ranges

of the input. Then, positive (negative) levels completely describe the quantizer.

3.1.1 Uniform Quantizers

For uniform quantizers decision intervals are of same length A, and the

reconstruction levels are the mid-points of the decision intervals,
T, = —o0; Tp4 = 00; Tpypr — Tk = A; k=2,...,L—1. (34)

The error introduced can be expressed in two parts. Errors which are due to the

finite number of levels of the quantizer and are in the finite ranges of (—£, 2] are
called ‘granular’ errors, while errors due to the bursts in the input samples, i.e.
if £ > (zp + A) or ¢ < —(z, + A) are called ‘overload’ errors (see Figure 3.1).

Total error variance is

2 _ 2 2 -
0g = Og{granular) + T4 (overload)* (3"))

If the source to be quantized is uniformly distributed and bounded with

Z € (Zmin, Tmaz ), then there is no overload distortion, and simply A = #= oY
where R is the number of bits/sample. If the source has a nonuniform pdf, the
optimum uniform quantizer is found to have stepsize A,,; which minimizes 03 of

Equation (3.5) or Equation (3.3) with respect to an error measure such as mean
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Figure 3.1. Illustration of a symmetric, uniform, 3-bit, midrise quantizer

square error (MSE). Such quantizers are called minimum MSE (MMSE) uniform

quantizers or uniform Max quantizers. Then, equation to be solved is

2
daq

Aom

where o of Equation (3.3) can be used where

L+2
o = (k—~ ;)A k=23, L

(k—%—l)A L k=1,2....L 3.7)

Yr =
for the case of midrise quantizers. Explicit solutions for this minimization problem
is not available for L > 3, but numerical ones have been proposed by [39],[36].

Equidistant decision and representation levels are simple conceptually, as
well as for implementation. However, a random variable can be quantized with
smaller error variance if nonuniform spacing between the levels is employed. First
workers to show this were Panter and Dite (1951), [40]. Later, an iterative solution
for the determination of optimum decision and reconstruction levels, when pdf of
the input and MMSE as the optimization criterion are given, is proposed by Lloyd
and Max, [41],[39]. Such a MMSE quantizer is named as Lloyd-Max quantizer or
nonuniform Max quantizer. Lloyd-Max quantizers are uniform only for uniform
pdf (in which case Lloyd-Max quantizer equations become linear, such a quantizer
is also called linear quantizer) and for L < 2. In the following section Lloyd-Max

quantizers are discussed in detail.



3.1.2 Lloyd-Max Quantizers

Given the distribution of the source, a quantizer can be optimized to yield
MMSE if the quantization error variance, ¢ of Equation (3.3), is minimized.

Therefore, necessary conditions for a minimum are

do? o
a0, k=23,...,L; P9, k=1,2,...L
oz ayk

Max showed that, [39], these differentiations leads to

Tiopt = —00 53 TL4i,opt = OO,
Yk,opt + Ykt1,0pt . .
Lk,opt = B ) k= 2, 3, ey L. (38)
Joktvert gy (2)dz
Zk,opt Pz P
Yiopt = TR ; k= 2, 3, ey L. (39)
g t+1,0pt
f-"»‘k,omop px('lt)d.’ll

These results state that the optimum decision levels lie halfway between the
optimum reconstruction levels, which, in turn, lie at the center of mass of the
probability density in the interval between the decision levels. Then iterative
methods can be used to calculate optimal levels (see [42], [43], [44]).

Note that, the conditions above, although necessary, are not sufficient for
designing optimum quantizers as they are also satisfied for locally minimum so-
lutions. Fleisher, [45], and more recently Trushkin, [46}, have shown that for the
MSE criterion, a sufficient condition for having a unique solution of Lloyd-Max
equations is log-concavity of the probability density function of the source :

()-2—1%%’%('—”) <0. (3.10)
It is also proven by Fleisher, [45], that if the log-concavity property holds for a
symmetric distribution, then associated unique quantizer is symmetric too. But
as pointed out by Sharma, [47], the optimal quantizer need not be symmetrical

for all symmetrical distributions. Due to above facts, for various distributions

the following results apply:

e The Gaussian (or normal) density function, f(x) = Ae=** where generally,

— _1 S BN : .
A= o and a = 57, is strictly log-concave, and hence, given the number
of levels, it has a unique nonuniform symmetrical quantizer associated with

it.



e The Laplacian (or two-sided exponential) density function, f(z) = eI,
where a = g, is only semi-normal, i.e. the the inequality in Equation (3.10)
should be replaced by equality. Still, Trushkin, [46] has shown that it does
have a unique solution of Lloyd-Max equations. There is also a special set
of equations presented in [38], requiring much less number of iterations for
optimal quantizers with even number of levels tailored for Laplacian pdf.

Note that the nonuniform quantizer for Laplacian pdf is also symmetric.

o The gamma density function, f(z) = Azbe™°, does not satisfy the log-
concavity property. Kabal, [42], has shown that the optimal uniform and
nonuniform quantizers of even number of levels for gamma pdf are not

symmetrical, and presented the optimal levels.

[e]

0—2%7, there is no evidence in the

e For Cauchy density function, f(z) =
literature which examines the log-concavity. If the test is applied it can be

seen that,
P log po(x)  2(a? —a®)
Jx? T (224 a?)?

Then inequality does not hold for |z| > |a|, hence existence of a unique

(3.11)

MSE optimized quantizer is definitely suspicious.

e The Rayleigh density function, f(x) = ﬁe‘“’z/ 2%[](x), where U(x) is the
unit step function (1 for z > 0), is not symmetrical but log-concave as,

9? log ps () _ (i n log ) <0

ox? 22 o’

(3.12)

So there exists a unique quantizer (not symmetric) associated with it, but

in the literature there is no trace of such a quantizer.

Some interesting properties of Lloyd-Max Quantizers are as follows (for the

proofs see [4]):

e The quantizer output is an unbiased estimate of the input, i.e. , E{Y} =
E{X}.

e The quantization error is orthogonal to the quantizer output, i.e. , F{(X —

Y)Y} =o.

e It is sufficient to design the quantizer for zero mean, unity variance distri-

butions.
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It is worth noting that theoretical optimality of the Lloyd-Max quantizer
has also been proved experimentally by Jain, [20] for Gaussian and Laplacian
densities. If the quantizer output is to be coded at a fixed number of levels,for
a given rate Lloyd-Max quantizer has the closest SNR value to the hypothetical
Shannon Quantizer (see Section 3.3.1), outperforming optimal uniform quantizers

about 2 dB for Gaussian and 4.3 dB for Laplacian sources.

3.2 Distribution of DCT Coeflicients for Images

It has been shown in the previous section that probability distribution of
the DCT coeflicients is an essential information for designing optimal quantizers
tailored for them. However, there is a great confusion in the literature about
the actual probability density function (pdf) of the coefficients. It is worth men-
tioning at this point that, the disorderly usage of terms probability distribution
and density should not confuse the reader, since all the functions of concern are
exponentials and hence, their derivatives or integrals are scaled versions of each
other.

The first prediction about the distributions of DCT coefficients was made
by Chen and Smith, [27], in 1977. Depending on the fact that each cosine trans-
form domain sample is formed from cosine weighted sum of all the pixels in the
original image, based on the central limit theorem (CLT), [17], they approxi-
mately modeled non-DC and DC coefficients by Gaussian densities. In 1978,
Pratt, [13], conjectured that the DC coefficient should have a Rayleigh distribu-
tion since it was the sum of positive values, and that, based on CLT, non-DC
coefficients should be Gaussian. In 1980, Netravali and Limb, [28], agreed with
Pratt and also stated that the histogram of DC coefficients were roughly bell-
shaped. Modestino et al., [29],also accepted the same assumption in 1981.Then,
Murakami et al., [30], were the first to deny the general reliance on CLT. In 1982,
they assumed Gaussian distribution for DC, and Laplacian for non-DC coeffi-
cients of Hadamard Transform. In the same year, Ngan, [31], pointed out that
CLT was not applicable to short-term statistics considered in image coding, and
examining the histograms of DCT coefficients of a head-and-shoulders image, he
proposed the usage of Gaussian function for DC, and Laplacian function for non-

DC DCT coefficients. In 1983, Reininger and Gibson, [32], realized the confusion
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and applied Kolmogorov-Smirnov (KS) test to see the goodness of fit of Gaussian,
Laplacian, Rayleigh, and Gamma distributions to DCT coefficients of five test
images for block sizes of 8, 16, and 32. KS test statistic is a distance measure

between the sample distribution Fix(z) and the tested distribution Fr(z),

D&

max
=1,2,...

|FX($i) - FT(.’B,‘)l. (3.13)

1 N

where N samples of data is used for testing. The distribution that yields the small-
est KS statistic was the best fit for the data. They concluded that in all cases
Gaussian distribution was the best fit for the DC coefficient, and that Laplacian
distribution yielded the smallest KS statistics for non-DC coefficients in almost
all images, except for a highly detailed image, for which Gaussian distribution
was the best fit at all block sizes. This result was also excepted by Chen and
Pratt, [33], in 1984, and they built their scene adaptive coder based on it. In
1985, Modestino et al. [34], once more proved emprically that non-DC coefficients
depart very much from Gaussian statistics by forming so called quantile-quantile
(Q-Q) plots, and percentile-percentile (P-P) plots between DCT coefficient dis-
tributions of ten test images and Gaussian distribution. They also proposed an
adaptive quantizer to match the input statistics, but it was not fast enough to be
used in real-time applications. This was almost the final work on the distribu-
tion of DCT coefficients. Gaussian assumption for DC and Laplacian assumption
for non-DC coefficients became widely accepted. Only in 1986, Eggerton and
Smith, {35], claimed that Cauchy distribution fits better to non-DC coefficients,
but due to the facts stated in the Section 3.1.2, building quantizers for Cauchy
distribution was not practical and did not draw much interest.

For implementation of nonuniform quantizers tailored for Laplacian pdf,
the first attempt was made by Paez and Glisson, [36], but Adams and Giesler,
[37], points out that some of their innermost decision and reconstruction values
were in error by as much as 12%. Reasons for error were approximations and
single precision arithmetic. Computer technology was not improved enough to
calculate the values accurately, at that time. Although Noll and Zelinski, [38],
reports that 8% error in threshold values would decrease the SNR 0.05 dB only,
for the sake of perfection we have gone for the most accurate results. Here
we tabulate the results presented by Ngan, [31]. They are accurate upto five

decimal digits and confirms with the results of Adams and Giesler. The threshold
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Table 3.1. Decision and reconstruction levels of optimum 7 bits Laplacian quan-

tizer

Zi Yi Zi Yi Zi Yi
0.00000 | 0.01639 | 0.83357 | 0.85792 | 2.22938 | 2.27641
0.03304 | 0.04969 | 0.88282 | 0.90772 | 2.32563 | 2.37485
0.06660 | 0.08351 | 0.93323 | 0.95873 | 2.42646 | 2.47808
0.10070 | 0.11788 | 0.98486 { 1.01099 | 2.53234 | 2.58659
0.13535 | 0.15282 | 1.03778 | 1.06458 | 2.64376 | 2.70094
0.17059 | 0.18836 | 1.09208 | 1.11957 | 2.76138 | 2.82182
0.20643 | 0.22451 | 1.14780 | 1.17603 | 2.88592 | 2.95002
0.24290 | 0.26128 | 1.20502 | 1.23402 | 3.01824 | 3.08647
0.28000 | 0.29872 | 1.26384 | 1.29366 | 3.15938 | 3.23230
0.31778 | 0.33684 | 1.32434 | 1.35502 | 3.31059 | 3.38888
0.35625 | 0.37567 | 1.38661 | 1.41821 | 3.47341 | 3.55794
0.39545 | 0.41524 | 1.45077 | 1.48334 | 3.64979 | 3.74164
0.43540 | 0.45556 | 1.51694 | 1.55054 | 3.84220 | 3.94276
0.47611 | 0.49666 | 1.58524 | 1.61995 | 4.05388 | 4.16499
0.51762 | 0.53858 | 1.65582 | 1.69170 | 4.28913 | 4.41326
0.55996 | 0.58133 | 1.72884 | 1.76598 | 4.55388 | 4.69449
0.60315 | 0.62498 | 1.80447 | 1.84296 | 4.85665 | 5.01881
0.64726 | 0.66954 | 1.88290 | 1.92284 | 5.21034 | 5.40187
0.69231 | 0.71508 | 1.96435 | 2.00587 | 5.63580 | 5.86973
0.73836 | 0.76164 | 2.04907 | 2.09227 | 6.17040 | 6.47107
0.78543 | 0.80923 | 2.13731 | 2.18235 | 6.89260 | 7.31412
8.02641 | 8.73870

values given for 256 level Gaussian are calculated using Max algorithm. It is very
important to note that, these tables are for zero mean, unity variance sources.
The mean of DC coefficient must be subtracted from itself and all coefficients
must be variance normalized prior to quantization. Calculation of variances of
coefficients is described in Section 3.3.3.

The necessary quantization tables for Lloyd-Max quantization of DCT co-

efficients, are given in Tables 3.1, 3.2, and 3.3.
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Table 3.2. Decision and reconstruction levels of optimum Laplacian quantizers

Bits x; Yi Bits ; Yi
0.00000 | 0.70711 0.00000 | 0.03258
2 10.00000 | 0.41976 0.06619 } 0.09979
1.12686 | 1.83397 0.13449 | 0.16919
0.00000 | 0.23340 0.20507 | 0.24094
3 | 0.53318 | 0.83296 0.27806 | 0.31519
1.25274 | 1.67251 0.35366 | 0.39213
2.37965 | 3.08680 0.43206 | 0.47199
0.00000 | 0.12399 0.51348 | 0.55498
0.26442 | 0.40484 0.59816 | 0.64135
0.56675 | 0.72866 0.68637 | 0.73139
4 1091984 | 1.11102 0.77841 | 0.82542
1.34443 | 1.57784 0.87462 | 0.92381
1.87764 | 2.17743 0.97541 | 1.02701
2.59722 | 3.01701 | 6 | 1.08125 | 0.13550
3.72421 | 4.43142 1.19267 | 1.24984
0.00000 | 0.06404 1.31026 | 1.37069
0.13220 | 0.20035 1.43478 | 1.49887
0.27320 | 0.34605 1.56709 | 1.63530
0.42428 | 0.50251 1.70820 | 1.78110
0.58697 | 0.67144 1.85938 | 1.93766
0.76322 | 0.85500 2.02216 | 2.10667
5 | 0.95548 | 1.05596 2.19851 | 2.29034
1.16697 | 1.27798 2.39090 | 2.49146
1.40199 | 1.52601 2.60256 | 2.71366
1.66648 | 1.80695 2.83777 | 2.96188
1.96891 | 2.13088 3.10245 | 3.24303
2.32214 | 2.51340 3.75870 | 3.95015
2.74694 | 2.98048 4.18397 | 4.41780
3.28050 | 3.58051 4.71828 | 5.01876
4.00074 | 4.42098 5.43991 | 5.86106
5.12949 | 5.83800 6.57225 | 7.28344
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Table 3.3. Decision, reconstruction levels of optimum 8 bits Gaussian quantizer

i Yi L3 Yi Ti Yi Ti Yi
0.0000 | 0.0084 | 0.5497 | 0.5586 | 1.1630 | 1.1735 | 1.9802 | 1.9964
0.0169 | 0.0253 | 0.5675 | 0.5764 | 1.1842 | 1.1949 | 2.0130 | 2.0296
0.0338 | 0.0422 | 0.5853 | 0.5943 | 1.2056 | 1.2164 | 2.0466 | 2.0636
0.0507 | 0.0591 | 0.6033 | 0.6122 | 1.2273 | 1.2381 | 2.0810 | 2.0983
0.0676 | 0.0760 | 0.6212 | 0.6302 | 1.2491 | 1.2600 | 2.1161 | 2.1340
0.0845 { 0.0930 { 0.6393 | 0.6483 | 1.2711 | 1.2821 | 2.1522 | 2.1705
0.1014 | 0.1099 | 0.6574 | 0.6665 | 1.2933 | 1.3045 | 2.1893 | 2.2081
0.1183 | 0.1268 | 0.6756 | 0.6847 | 1.3157 | 1.3270 | 2.2274 | 2.2467
0.1353 | 0.1438 | 0.6939 | 0.7030 | 1.3384 | 1.3498 | 2.2666 | 2.2864
0.1522 | 0.1607 | 0.7122 | 0.7214 | 1.3613 | 1.3728 | 2.3069 | 2.3275
0.1692 | 0.1777 } 0.7306 | 0.7399 | 1.3844 | 1.3960 | 2.3486 | 2.3698
0.1862 | 0.1947 | 0.7491 | 0.7584 | 1.4078 | 1.4195 | 2.3917 | 2.4136
0.2032 | 0.2117 [ 0.7677 | 0.7771 | 1.4314 | 1.4433 | 2.4363 | 2.4590
0.2202 | 0.2287 | 0.7864 | 0.7958 | 1.4553 | 1.4673 | 2.4826 | 2.5062
0.2373 | 0.2458 | 0.8052 | 0.8146 | 1.4795 | 1.4917 | 2.5308 | 2.5553
0.2543 | 0.2629 | 0.8241 | 0.8335 | 1.5040 | 1.5163 | 2.5810 | 2.6066
0.2714 | 0.2800 | 0.8430 | 0.8525 | 1.5288 | 1.5412 | 2.6334 | 2.6603
0.2885 | 0.2971 | 0.8621 | 0.8717 | 1.5539 | 1.5665 | 2.6884 | 2.7166
0.3057 | 0.3142 | 0.8813 | 0.8909 | 1.5793 | 1.5921 | 2.7463 | 2.7760
0.3228 | 0.3314 | 0.9006 | 0.9102 | 1.6051 | 1.6180 | 2.8074 | 2.8388
0.3400 | 0.3487 | 0.9199 | 0.9297 | 1.6312 | 1.6444 | 2.8722 | 2.9056
0.3573 | 0.3659 | 0.9395 | 0.9492 | 1.6577 | 1.6711 | 2.9413 | 2.9770
0.3746 | 0.3832 | 0.9591 | 0.9689 | 1.6846 | 1.6982 | 3.0154 | 3.0538
0.3919 | 0.4005 | 0.9788 | 0.9888 | 1.7119 | 1.7257 | 3.0955 | 3.1372
0.4092 ( 0.4179 | 0.9987 | 1.0087 | 1.7397 | 1.7537 | 3.1829 | 3.2286
0.4266 | 0.4353 | 1.0187 | 1.0288 | 1.7679 | 1.7821 | 3.2793 | 3.3299
0.4441 | 0.4528 | 1.0389 | 1.0490 | 1.7966 | 1.8110 | 3.3870 | 3.4441
0.4615 | 0.4703 | 1.0592 | 1.0694 | 1.8258 | 1.8405 | 3.5099 | 3.5757
0.4791 | 0.4878 | 1.0796 | 1.0899 | 1.8555 | 1.8705 | 3.6537 | 3.7317
0.4966 | 0.5054 | 1.1002 | 1.1106 | 1.8857 | 1.9010 | 3.8287 | 3.9257
0.5143 | 0.5231 | 1.1210 | 1.1314 | 1.9166 | 1.9322 | 4.0562 | 4.1867
0.5320 [ 0.5408 | 1.1419 [ 1.1524 | 1.9481 | 1.9640 | 4.3951 | 4.6036
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3.3 Optimal Bit Allocation

Below is a block diagram of the 2D block quantization scheme which has

been outlined at the beginning of this chapter.
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Figure 3.2. One-dimensional transform block quantization with scalar quantizers

As it can also be guessed from Figure 3.2 optimal bit allocation is the
problem of distributing a given number B of bits among M quantizers, such that
the total average distortion of all M quantizers would be minimized. Assuming
that all coefficients have been quantized (even to 0 bits), M is generally equal to
the number of coefficients (N? in case of N x N block quantization).

Consider a two-dimensional N x N block of image data [X] with elements
(pixels) i, 4,5 = 1,2,..., N. If [X] is transformed using a real, unitary transform
(see Section 2.4) into another N x N block [Y] with elements (transform coeffi-
cients) yi;, 4,5 = 1,2,..., N, then [Y] = [A][X], and [X] = [A]7![Y] = [A]F]Y].
Assigning a different scalar quantizer to each transform coefficient, one obtains
§i; = qii(yi;) or [Y] = Q([Y]). Inverse transformation gives the reconstruc-
tion block, [X] = [A]T[V]. The aim of bit allocation is to minimize the overall
mean-square distortion of the system, or in other words, the reconstruction error

variance :

1 N .

D = Ti; — :Az“ 2
N ™ NE{i’JZ,::](BJ BJ) }
— 1 f: E{( .. “)2}

- N < N 2 -sz '1'1.7
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— 2
" NxN g.::l eis
= o (3.14)

where e;; = z;; — #;; is the reconstruction error for 75 input sample.

Since unitary transforms are variance preserving, the only source of distor-
tion in the system are (assuming error-free transmission) the quantizers. There-
fore, the reconstruction error variance for the 75t element equals to the quantiza-
tion error variance of the ij** quantizer. Defining the reconstruction error matrix
[E] = [X] — [X], the quantization error for ij** element ¢i; = Yij — Ui, and the

quantization error matrix [Q] = [Y] — [V'], the proof is as follows :
o = E{[E]"[E]}

= E{[[X] - [XN"[Ix] - [X]))
= E{[AI"IlY] - YT (A" ([Y] - (Y1)}

= E{IY] - [PITIANAITIY] - (7))
= E{([v]-[V]"[[lv] - [¥]}}
= E{[QI"[Q]}

= o) (3.15)

Assuming b;; number of bits are allocated for the 75 quantizer, let’s define

a quantizer distortion function f(b;;), such that

;. = Z
Uq - N ‘h]

,]—

1 N o
= XN Z 05;,» (b;5) (3.16)
,3=1

where ofh.j is the variance of the 15 transform coefficient. Interpretation of f(b;;)
is that , depending on the pdf of the quantizer input (in our case, transform
coefficients), type of quantizer and number of levels of the quantizer, it gives
the mean-sciuare distortion that the quantizer will produce if the input has unity
variance. In general it is not possible to obtain closed form expressions for f(b;;).
Seeking for approximate solutions,if the quantization is fine enough to assume

that the source pdf is constant within a quantizer interval, then
f(bi) = k2770 (3.17)
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where k£ and p take on constant values depending on the type of the quantizer
and pdf of the source [12], [44]. For fine quantization i.e. b; > 5, p = 2 (for
large b;;, p can be approximated regardless of whether the quantizer is uniform

or non-uniform). For instance, Max [39] determined

f(L)y = 13207 L=4
f(L)y = 221719 L =36 (3.18)

where L is the number of quantizer levels. Later, Wood [48] proposed an approx-
imation for the MSE of the optimum quantizer (see Section 3.1.2) which, for the
Gaussian distribution, tends to 2.7L~2 as L — co. Moreover, for large L, Jayant
and Noll (see [44], sect. 12.4.1) set p = 2 and choose k as 1.0, 2.7, 4.5, and 5.7
for Max quantizers with, uniform, Gaussian, Laplacian and gamma distributions
respectively at the input. For the uniform quantizer Clarke (see [12] sect. 4.6.1)

suggests

flLy = L™'* L<4
f(L) = 1.66L7* L>4 (3.19)

So, although the choice of unitary transform has no effect on the devel-
opment of theory, the probability distribution and variance distribution of its
coefficients have crucial importance. At this point the aim of bit allocation can

again be stated as minimization of the average distortion

1 X
D= 2 f(bi; 3.20
NxNi;:lo-y,]f( .7) ( )
subject to the constraint
N
> bj=B (3.21)
7,7=1

Properties of the bit allocation scheme that will solve this problem should

be as follows :

o It should be adaptable to systems which consist of different types of quan-

tizers, having different expressions of quantizer distortion function f(bj;).

o It should consider arbitrary coefficient pdf’s, as long as the quantizer dis-

tortion function for that kind of source exists.
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o It should output integer number of bits.

o It should have b;; > 0 since practically it must be so, and b;; < bmax due

to perceptual reasons.

¢ It should be applicable for all scalar quantizers as long as they have convex
and non-increasing distortion functions (non-increasing in the sense that as
the number of quantizer levels increase the amount of distortion that the
quantizer will introduce should increase). The reason for the requirement

of convexity will be given in Section 3.3.1.

In the following sections, the methods for achieving minimum distortion
with the tota] allocatable bits constraint will be described and their usefulness in

terms of above properties will be discussed.

3.3.1 Rate-Distortion Theoretic Approach

This section will cover a common approach to bit allocation problem which
has been in use for more than two decades and still seems appealing to some
researchers. Historical evolution of the algorithm will be given and reasons why
its optimality in theory does not ensure its optimality in practice will be discussed.

The first work dealing with bit assignment in block quantization was re-
ported by Huang and Schultheiss [49], who considered blocks of correlated Gaus-
sian random variables transformed by KLT (see Section 2.5). Since KLT coef-
ficients of a block were Gaussian and uncorrelated, they were also independent.
So they developed their bit allocation scheme assuming the block quantization
of independent, Gaussian random variables and chose the quantizer function of

S(bi;) = k2724 (see 3.3). Then, Equation (3.16) becomes

. 1 N .
_— 2 __ 2 s “Zbi]
D — o, = NN i;:l o—yiju ) (3.22)

If quantization of each coefficient were to introduce equal and constant amount

of error,
o2
d= —i— =05, 27, (3.23)
Then,
b = é(logz 0;;] —log, d). (3.24)

&
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So using Equation (3.21) one obtains

N
> (log, UZ'_]. —log,d) = 2B, (3.25)
1,5=1
or equivalently
log,d = — 25 + ! ilo ol (3.26)
BT TN YN T NN 82 %y '

1,5=1
Substituting Equation (3.26) into Equation (3.24) optimum bit assignments are

obtained :

1 ) 1 N )
bij = 5 log, Oy — N x N(_QB + k§=:1 log, Uykz)
B 1, N,
= N + i(log2 % T NN k§1 log, o3,
B 1 ol
- ~1 i 3.27
N % N + 2 ng [HQZ:l U;M]I/NXN ( )

Note that N—E—ﬁ is the average rate of the system and since Huang and Schultheiss

‘used KLT, the variance O'Z',J.

are in fact the eigenvalues of the source covariance
matrix (see Section 2.5). ;

Notice that Equation (3.24) (where Equation (3.27) stems from) has the
form b; = %bg?(crjij /d) and so it is very similar to Shannon’s famous rate-
distortion function for coding zero-mean, o?-variance, discrete-time, continuous
amplitude, memoryless, Gaussian sources under mean-square error distortion cri-
terion [3]. This similarity (noticed first by Davisson [50]) needs examining since
it will reveal the underlying approximation in the Huang and Schultheiss bit
allocation scheme.

Assume a discrete-time source of Gaussian distributed random variables,
N(0,0?), which are statistically independent (i.e. memoryless) and can take any
value on the real-line (continuous amplitude). Distortionless transmission of such
a source is impossible as the channel capacity must be infinite. Since a channel
word should be assigned for each point on the real-line, there will be infinite
number of channel words, implying that each channel word will have infinite di-
mension. So the channel capacity, C, determines the quality of the reproduction,
because assuming the channel is not wide enough to transmit all the informa-

tion, the amount it can handle will determine the amount of mutual information

between the source and the reproduction. Defining a measure for distortion, the
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rate-distortion function R(D) is the minimum value of mutual information for a
given distortion level D. Therefore, R(D) < C insures the possibility of obtaining
distortion as low as D. If the source is memoryless, R(D) depends on source the
pdf and the chosen reproduction fidelity criterion (also called distortion measure,
cost function, loss function etc.). In the popular case of difference distortion mea-
sures where the measure p(-) is of a single argument such that p(z,y) = p(z — y)
is used, there exists an easy to calculate lower bound for R(D) if [e*?dz is
finite Vs < 0 (see [51] section 4.3.1). This bound is called ‘Shannon lower bound’
after its inventor (3], and the associated (hypothetical) block quantizer is called
‘Shannon quantizer’ [20]. Shannon lower bound is different for a given pdf and
difference distortion measure and the hypothetical Shannon quantizer needs an -
infinite size block of source samples to encode to achieve the bound. Note that
if the source is correlated (i.e. with memory) R(D) can not be calculated ana-
lytically, rather Ry(D) for N — oo is calculated where Ry (D) is the N** order
rate-distortion function for coding blocks of size N of the source. In transform
coding, since one deals with finite number of coefficients for, say, an interval of
speech or a block of image, transform coefficients are a discrete-time source. For
KLT transform coefficients are independent and continuous in amplitude (i.e. can
achieve any value on the real-line). Given that such a source has N(0,0?) as a
pdf and fidelity criterion is the squared-error, it was first Shannon [3] (see [51],

theorem 4.3.2 for a complete derivation) who showed that

1 o?
R(D) = 5ma,x(0,10g25)
0'2 y
_ 2log, %, 0< D‘g o?, (3.28)
0, D > o2,

Note that, if D > o? ; i.e., the allowable distortion is greater than the signal
variance (energy), then there is no need to code and transmit it at all [50]. Also
note that for this case of Gaussian pdf and MSE difference measure, Shannon
lower bound is also equal to R(D). Conceptually, the performance of Equa-
tion (3.28) is achievable by encoding in such a way that the reconstruction error
is Gaussian with variance D for each possible sample (coefficient) value and is
sample-to-sample independent. Shannon Quantizer has such output since it uses
infinite size sample blocks, which will cause infinite end-to-end delay! Another

case achieving Gaussian error distribution is transmission over a Gaussian channel
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with noiseless feedback (see [50] and references there, and [51] section 4.3.3). So
there exists no practical way of achieving the bound. As a result, the underlying
assumption of Huang and Schultheiss was that they assumed that all quantizers
in their block quantizer were Shannon quantizer i.e. their quantizer distortion
function f(n) = k272" belongs to a Shannon Quantizer. The only reason for
choosing a Shannon quantizer may be that Shannon lower bound coincides with
R(D)’s of many practical quantizers at a low distortion values i.e. if the number
of levels of the quantizers are large (see the start of Section 3.3 and [51] section
4.3.4).

The only reasonable property of Huang and Schultheiss scheme may be their
Gaussian assumption of source samples and use of MSE, which at first sight seems

contradictory since the following two objections may immediately be raised :
1. Sources, in particular video sources, are not Gaussian.

2. MSE is not appropriate to account for the perceived distortion by human

observers.

These objections are true, but it is also true that the value of Gaussian
R(D) for MSE criterion is an upper bound for the R(D)’s of all other non-
Gaussian pdf sources , since it has the maximum differential entropy (see [52]
page 1563, and [51] theorem 4.6.3). Although, a system would achieve optimum
performance (can encode into fewer bits) if it has been tailored for the second
order statistics (i.e. covariance matrix, or spectral density if source is stationary,
or exact pdf with known variance), such information may not be available or
variable, like video data source for instance. Such was the case for the the early
days of Huang and Schultheiss and so Gaussian assumption was favorable, but
today such information is more or less available (see Section 3.2). The second
objection is still upto debate. After all, MSE can be weighted to account for
perceptual criteria [35].

Hence disadvantages of Huang and Schultheiss scheme are as follows :

1. They assumed that all quantizers used are of the same type namely Shan-
non quantizers for Gaussian distributed sources and quadratic difference

distortion measure.
2. They used KLT for it is the optimum transform, but it is not practical.
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Besides, a different choice of unitary transform would not necessarily yield
Gaussian coefficients for Gaussian input (see Section 3.2). Moreover it may

not even have uncorrelated coefficients. So the scheme lacks flexibility

3. Allocated bits are not necessarily integer or may even be negative. Therefore
rounding to nearest integer or zero is required which destroys the schemes

presumed optimality.

Despite all these facts, the above scheme has been employed by many care-
free researchers such as [54], [55], [27], and many others even contemporary ones
[56], [57].

Wintz and Kurtenbach [58] noticed the unrealizable quantizer function
above and used uniform quantizers. Their quantizer function was found experi-

mentally and approximately as
1
f(b;) = exp(—gbij In 10) (3.29)

Then using Lagrange multipliers and treating b;; as a continuous variable they
minimized Equation (3.20) imposing the constraint in Equation (3.21). That is,

solution of

J 1 i\’: 0.‘2 6—%6,‘,'11110 /\( B 1 iv: b) (3 ‘30)
Obi; | N x N S ¥ NxN NxN /= u
is sought for b;;, 2,7 = 1,2,..., N. The result was
B 2 ol
bij = - : 3.31
7T NxN + In 10 In [HQIJ:] O-Z“]l/NxN (3.31)

Then the real valued bits assigned were rounded to the nearest integer and in
case Equation (3.21) was not satisfied they applied two heuristic rules to adjust
some of the &;;.

This unequal bit assignment procedure was also used, though suboptimum,
by some researchers in mostly wrong ways! (see the references in section 4.7 of
[12]).

Finally Segall [59] modified the same rate-distortion theoretic approach and

solved the problem of negative bit assignments. His algorithm was as follows :

1. Find the inverse function of the derivative of the quantizer function as

h(z) = f7Y(X) and find the root of the nonlinear equation

1 > 0/(0)\ _ q

z,j=1|cr!2,‘.].>9 Yi;
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The solution may be obtained by an iterative technique such as the Newton-

Rhapson method.

2. The bit assignment is

g*f'(o
(%_)) » 05607 < ”;ij’
I]U = Yij

(3.33)
0, 0 > 0';.1..
Notice that the coefficients whose variance falls below 8* are not coded at all.
For the inverse function to exist f(-) must be convex and nonincreasing. This
assumption for the quantizer functions has been mentioned before. As a matter
of fact, all scalar quantizers have such quantizer functions. Only vector quantizer

may have non-convex and/or increasing functions [60], but they are beyond the

scope of this chapter.The drawbacks of the method are

e Allocated bit values are still not integer. There is no upper limit to the

allocatable number of bits for a coefficient.

e all quantizer are assumed to be of the same type and so, have the same

quantizer function.

For these remaining drawbacks it was again Segall who suggested a com-

pletely different scheme based on marginal analysis.

3.3.2 Marginal Analysis Approach

Realizing the requirement of integer bit allocation algorithms Segall, sug-
gested that marginal returns could be used [59]. The concept of marginal returns
was first introduced by Fox [61] for a completely different task. In the economics
literature there have been several treatments of a resource allocation problem.
This problem is not only mathematically equivalent to the bit allocation prob-
lem, but also it also requires non-negative integer results. One solution was due
to Fox. Pratt ([13] section 6.2) made use of the Segall’s suggestion and developed
an integer bit allocation algorithm, which was also favoured by Jain, later [20].

Outline of the algorithm is as follows :
1. Initially set the allocations as bY; = 0 and set iteration index n=1.
2. b = b}‘j_l +8(7—1,7 —m), where for the Im'* coefficient the marginal return

o5, [F057Y) — f(057 + 1)] is maximum.
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3. i forj:l b;; = B, stop; otherwise j — j + 1 and go to step 2.

8(-, ) above is the Kronecker delta function. If ties occur in the marginal returns
a bit is given to all the coefficients which are tied and algorithm is initiated again
with those allocations.

For a total number of B bits, N X N marginal returns must be searched
B times, which requires (N? — 1) B comparisons. For image coding since N x N
is typically 8 x 8, 16 x 16, or 64 x 64, the computational burden becomes quite
severe. Jain proposed a slight change in the algorithm to speed it up, if the
quantizers used have the MSE distortion function of the form f(n) = k277" [4].
Actual improvement in the algorithm was made by Tzou [62], who noticed that
at any iteration if two coefficients already have same number of bits assigned
then the one with larger variance takes the next bit. So the key to his method for

computational reduction is sorting the variances in descending order, before the

NxN

2 times

bit allocation procedure. The algorithm he proposed is runs about

faster than the above procedure. A simple computer program, that implements
Tzou’s method exists in appendix A.5 of [8].

Marginal analysis approach results in the global minimization of the quanti-
zation error in block quantization if the MSE distortion functions of the quantizers
used are convex. So is the case for optimal nonuniform Lloyd-Max quantizers tai-
lored for various pdfs. The algorithm uses the quantizer function directly and so
does not have to make the assumption of Gaussian input nor usage of a Shannon
quantizer. Therefore, different type of quantizers and/or same type of quantizer
tailored for different pdfs can be used. For instance non-DC DCT coefficients
are shown to exhibit Laplacian distribution while DC coefficients have Gaus-
sian distribution (see Section 3.2). Then this algorithm can be used for block
quantization of DCT blocks with Lloyd-Max quantizers tailored for Gaussian or
Laplacian whenever needed. It outputs optimal positive integer values and can
even be modified to limit the maximum allocatable number of bits, by deleting
those coefficients which has already been allocated maximum number of bits from

the search list.



3.3.3 Variance Estimation for Bit Allocation

Variances of transform coefficients are essential ingredients of any bit allo-
cation algorithm.

Assume that image sequences consisting of frames of size M x M are fed to
the system of Figure 2.1 and each frame is divided into sub-blocks of size N x N.
In practice, a large number of test images can be used to estimate the coefficient
variances. If the N x N image sub-blocks are assumed to be governed by a zero
mean separable Markov process one can construct the row and column correlation

matrices in the spatial domain

1 pe pl e p)TE !
pe 1 pp opp e T N7
i pr 17 ' :
[Cor,) =02 | p2 . el el p2 : (3.34)
L p gl
pr piop 1 p,
AR A O S
1 P P2 g1 ]
pe 1 p. p R A
pi b1
[Cor,] = o? : pr . Tl e p? : (3.35)
L pe pt
prE e el pe 1 e
AR A A |

where p, and p. are adjacent row and column correlation coefficients respectively
and usually they are assumed to be about 0.9. Transforming these two matrices,
say with DCT-II one obtains [CorP¢T=11] and [CorP®T~11]. Then variance of the

15" coefficient is

J%CT—II(ia j) = U;z',DCT—II(ia i)UZ,DCT—II(j’ ) (3-36)

where 02 por_y;(2,4) and 02 pop_14(7, 7) are the diagonal elements of the matrices
[CorPCT-11] and [CorPCT—11] respectively [63].
Another way of calculating coefficient variances is Mandela re-ordering [34].

It indicates the sorting of those coefficients which are at the same spatial frequency
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at each sub-block. That is the (z,7)** Mandela block consists of (M/N)? coeffi-
cients, gathered by selecting the coefficient at the spatial coordinate (z, ) of each
transformed block. Computationally the variance calculation from the Mandela
re-ordered sub-blocks can be expressed as follows, (with a slight change in the

coeflicient notation of Section 3.3 )

) . N x N M[N)-1(M/N)~1 . -
Opor-1(tsd) = 7 D Y. [YE+EN,G+IN) - 560 (8.37)
M x M k=0 =0
where §(3, j) is the mean value of the coefficient at the (3, j)** position in the block.
For DCT, only the DC coeflicient has a mean value and it can be calculated by

averaging all the DC coefficients. Non-DC coefficients have their mean values 0.

3.4 Human Visual System in Transform Coding

For any image processing system, the final observer of the result is almost
always human. Then, it would be logical to incorporate the human visual system
(HVS) characteristics into the image coding process, so that subjectively more
pleasing results could be obtained.

To set the terminology, in this section the term ‘apparent brightness’ or
shortly ‘brightness’ will be used to refer a perceptual entity meaning the perceived
brightness of a point, while ‘intensity’ or equivalently ‘luminance’ will refer to a
physical quantity meaning the amount of light radiated from the point.

The ‘luminance’ of an object is independent of the luminances of the sur-
rounding objects, while ‘brightness’ of an object which is the perceived luminance
of it, depends highly on the luminance of the surround. Two objects with identical
luminances could have different brightnesses under different surroundings.

Basically the eye behaves as a function of four independent variables :

Intensity

Colour

Variations in spatial details

Variations in temporal details.

Dependence on light intensity and variations in spatial detail will be covered

in the following sections. But color dependence is excluded as it is not directly
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related with the statistics of the image and so can not be adapted to the statistical
compression techniques that will be presented in this thesis.

On the other hand, in terms of dependence on temporal details the most
important phenomena occurs when observing a repeatedly flashing source of light
at a constant rate. If this rate is above a, so called ‘critical fusion frequency’,
the flashes of the light source are indistinguishable from steady light of the same
average intensity. Critical fusion frequency, generally does not exceed 50-60 Hz
[64]. Therefore temporal response should be considered in the design of image
displays, frame grabbers etc.

Properties of HVS can be incorporated to the following areas of image

coding :
e Image Quality Assessment
e Image Compression
e Image Enhancement.

HVS characteristics in response to light intensity and spatial factors have
not, yet, been specified completely, and so have not been applied to image coding
effectively. Still, to demonstrate the usage of a more multidisciplinary approach,
they have been incorporated to some of the data compression schemes tested
in this thesis. For that reason, it has been attempted to use an inefficient but
correct model for HVS, so that the image coding scheme can be modified to
preserve information to which the human eye is sensitive.

In the following sections neurobiological and psychophysical properties of
the human visual system will be discussed with sufficient extend with an aim to

derive a practical model.

3.4.1 Neurobiology of the Visual System

It is essential that, before constructing models for the HVS, a brief, func-
tional examination of the visual perception should be made. The visual system
can operate at levels of illumination varying over ten orders of magnitude (i.e., ten
log units or a range of 10''!). Cornea and lens focus the light on the retina (see
Figure 3.3). The lens has an aperture, controlled by the iris, which is variable over

the range 2-8 mm. in response to ambient illumination. The retina contains two
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Cornea Optic nerve

Figure 3.3. Cross-section of the eye

types of photoreceptors, called ‘rods’ and ‘cones’, which detects the incident light
intensity by means of a photochemical reaction. The rods, about hundred million
in number, are relatively long and thin. Although they lack colour response, they
are extremely sensitive (responding to,one out of ten photons). They take part
in reception for the lower several orders of magnitude termed as ‘scotopic’ region,
which goes from darkness to a dimly lighted room (night vision is achromatic).
The cones are shorter and thicker. Some 6.5 million cones are responsible from
colour vision and the higher 5-6 orders of magnitude, called as the ‘photopic’
region (goes from well lighted room to bright sunlight). Both cones and rods are
active in the region in between, which is termed as the ‘mesopic’ region. As a re-
sult the response to additional light depends highly on background illumination.
Our interest is primarily the photopic region, since electronic image displays are
well-lighted.

The distribution of both types of detector across the retina is highly nonuni-
form. The cones are packed in the center of the retina (termed as the ‘fovea’),
near the optical axis of the lens, at a density of 120 cones per degree of arc sub-

tended in the field of vision. It is interesting that, in bright light the pupil of the
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eye is limited to 2 mm in diameter by the iris, and acts like a low-pass spatial
filter (for green light) with a passband of 60 cycles/degree. Then, the human eye
filters out spatial frequencies above 60 cycles/degree, eliminating aliasing errors
in the sampled image formed by the cones spaced at a density of 120 cones/degree
(as if the designer was aware of the sampling theorem!). Maximum visual acuity
is on the fovea, having an area of 1.5° where the viewer fixes his attention with
highest resolution. Cones ends about 7° off axis, and rods concentrate at 20° off
axis. Rods fall half the density at visual periphery (75°) and vanish at the fovea.

Considering the encoding and transmission part of the system, the cones
which are ‘laterally connected’ to ‘horizontal cells’, are also connected to ‘bipolar
cells’ extending forward through the nerve layer of the retina towards the lens.
Bipolar cells connect ‘ganglion cells’, which join to form the ‘optical nerve’ The
optical nerve, consisting of a bundle of 1 million fibers, leaves the eye through the
retina at some 15° off axis, causing a blind spot, and transmits the neutral image
to the brain. Notice that due to fewer number of optical nerve fibers compared
to that of cones and rods, the retina itself performs image compression by using
the interconnected neural cells mentioned above. Compression ration is 7:1 in
daylight and 100:1 at dark.

Above discussion is related to the neurobiological properties of the visual
system. Neurobiology deals with the structure the nervous system, or neuroan-
otomy and its functions, or neurophysiology. Since 1950’s, many discoveries on
" the subject have been made. From image coding point of view, psychophysiolog-
ical and psychophysical properties of the visual system is important, as a model
for the spatial frequency of it is sought. So much is sufficient for the neurobiology
of HVS, to establish a basis for better understanding of psychophysiology of it.
But neurobiology of the vision is a very interesting subject, so interested read-
ers are strongly encouraged to refer to the excellent book of Nobel prize winner

author D. H. Hubel, [65], for further contemporary information.

3.4.2 HVS Modeling

Before attempting to model the HVS, it is necessary to identify some basic
perceptual phenomena about it. Such phenomena mainly depends on the per-
ception of brightness and darkness by human beings which is mainly effected by

‘contrast’ existing in the view.



The most important perceptual phenomena about the sense of brightness
is the one called ‘brightness constancy’. It stands for the fact that the sense
one has about the brightness of a real object in a natural environment is largely
independent of the changes in the overall level of illumination. For example, a
white page of paper is sensed as “white”, no matter how it is illuminated, whether
by bright sunshine or by the much weaker light of a desk lamp. In other words,
human perception tends to keep constant the brightness “attributes” of objects
despite variations in the overall level of illumination. Without this constancy a
white page would assume all possible gray levels that lie between white and black,
in the course of a day if the only source of light is the sun.

However, this constant sense of brightness is altered if there is a ‘contrast’
between the object and its background or between the object and the surrounding
objects. In case of a contrasting background the altered sense of brightness can
be explained by contrast laws (refer [66], section 4.5.1).

In case of multiple objects, a large number of different effects may occur. A
single illuminated object, in a completely dark surround, always appears bright.
Even a piece of coal appears “bright” if illuminated under such isolation con-
ditions. However, when two objects of different reflectances are placed next to
each other, the previous sensation is modified. For instance, if a piece of chalk is
placed against the coal in the latter example, chalk turns the coal into “black”.
Consequently, the chalk appears “white”. Or if the background illumination of
darkness around the coal is increased the coal begins to appear “darker”. Thus,
‘brightness’ (or ‘darkness’) sensation depends on spatial and temporal changes in
the physical distribution of light flux reaching our eyes from various portions of
the visual field.

Due to the above facts, the types of contrast can be generalized into two :

1. Successive Contrast : The dependency of the brightness of a surface (region)
to the surface preceding it in time. As an example of this case, where
temporal changes in luminance influence the brightness, consider prolonged
viewing of a constant luminance. Then local adaptation to the region would
occur, and aftereffects would occur. Examples of such aftereffects are those
that occur when eyes are closed after viewing a bright object or the sustained

stationary image one has, after removing his/her sight from a very fast



moving (or turning) object. Such after images are called ‘dark light’. On the
other hand, if the stimulus contrast is not too large, a prolonged exposure
results in a reduction of apparent contrast and even stimulus fading. Then,

eye movements or blinks will revive the faded image (but not for too long).

2. Simultaneous Contrast : The dependency of the brightness of one region on
the relative brightnesses of adjacent regions. A single object (assuming no
background exists!) under constant illumination appears brighter or darker,
depending only on whether it reflects a higher or lower percentage of the
incident light. However, its brightness would be altered if at the background

of the objects there exist brighter or darker regions adjacent to its borders.

Effects of simultaneous contrast and successive contrast can be best ob-
served through ‘visual illusions’. Visual illusions, which are due to some contrast
distribution, help to extract salient features of HVS since they are the direct con-
sequences of perceptual phenomena in humans under natural views. Therefore,
discovering neurobiological and psychophysical properties of HVS to account for
visual illusions would lead us to correct HVS models. Therefore, the more visual
illusions a model accounts for, the more efficient it is. Unfortunately, there exists
no way of incorporating phenomena due to successive contrast into a practical
HVS model. Therefore, the attention is focused to simultaneous contrast in this

thesis.

3.4.2.1 Simultaneous Contrast

The alteration of brightness constancy of an object, in front of a contrasting
background has been explained above, by contrast laws. The viewing condition
where there exist a uniform (homogeneous) background or a nonuniform back-
ground (the case of multiple objects), is said to have simultaneous contrast.

In the case of uniform background, the psychophysical experiments to ob-
tain the contrast laws are called “just noticeable difference” experiments [67]. It
consists of presenting to the subject two neighboring illuminated areas, one with
luminance L and the other with L + AL. The incremental difference AL is in-
creased until the brightness difference between the two adjacent regions can just
be noticed by the subject. The procedure is carried out for a whole range of L

values. Traditionally ({66], page 140), human behaviour in this context has been
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described by the linear equation, known as Weber’s law :

AL
ACw = —, (3.38)

where ACw is the change in contrast and it is constant. An alternative relation-
ship was suggested by Fechner over 100 years ago:

AL

ACF = log,o L

(3.39)

Accordingly, from Equation (3.39) one obtains Cr = a1 + a; log;, L.

Obviously, these laws can not be applied for the whole range of L. Brightness
constancy is limited by the saturation effects that occur in extreme cases of
illumination (see [68] section II.B.2). If the light level is very low the range of
apparent brightness is very restricted. In complete darkness one perceives no
brightness differences. Moreover, the above laws account for different portions of
the perceptible L range. In fact, they coincide for low L region where log;oL o L.

Due to their limited applicability, in image coding Stevens’ power law

Cs = L'/ (3.40)

195}

is more widely preferred and n is often chosen to be 3 [69]. One important
connotation of the laws above in image coding is that a disturbance of a given
magnitude (noise for example) will be more noticeable in the darker areas of an
image.

Until now it is assumed that the viewed object has a uniform brightness over
its surface. Therefore this situation can be called ‘area contrast’. A more careful
examination of brightness of objects surface would reveal another consequence of
simultaneous contrast, called ‘border contrast’ effects.

Since simultaneous contrast is due to spatially adjacent regions to an object,
its effects are most striking at the borders of the object. These are called ‘border
contrast’ effects. Only if the borders enclose a large homogeneous region, a change
of brightness, spreads uniformly over the entire region and ‘area contrast’ effects
occur.

The most frequently encountered visual illusions, which demonstrate the
border contrast effects are the Cornsweet illusion and Mach bands [67]. Examine
double Mach bands from Figure 3.4. The intensity distribution is actually plotted

in Figure 3.5 in part (B). But the brightness distribution exhibits a brighter
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Figure 3.4. (A) Multiple Mach bands and (B) double Mach bands

stripe in the region before intensity degradation starts and a darker one before
it starts increasing. The example of multiple Mach bands demonstrates both
border contrast and area contrast effects. The Mach bands on the left has an
decreasing light intensity, from top to bottom, with identical steps. However, the
brightness does not “seem” to decrease uniformly. Rather it decreases fast at the
top, then a sudden decrease is observed towards the bottom. This confirms the
logarithmic law of Fechner’s. The multiple Mach bands at the right hand side
has a decreasing light intensity in a logarithmic fashion and hence seems to have
more uniformly decreasing brightness.

The Mach band effect shows that the threshold of noticeable difference AL
in the contrast laws is sensitive to the presence of a nearby luminance transition.
In image coding, making use of this ‘spatial masking’ property of human vision,
there has been effort to “hide” the coding artifacts around the edges where it is
least noticeable [70]. Therefore, once the edge is reconstructed well after coding,
it would mask the distortion around it.

Aside from double Mach bands another, striking visual illusion due to bor-

der effects of simultaneous contrast is the Hermann grid illusion, illustrated in
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Figure 3.5. Intensity vs brightness distribution of (A) multiple Mach bands and

(B) Double Mach Bands with brightness exaggerated

Figure 3.6. Dark blobs appear at the intersections. However.if one focuses his/her
eye at a particular intersection. that is if an intersection is viewed ‘foveally” (recall
Section 3.4.1), then the bloh vanishes.

Certain combinations of incomplete figures generate edeces. which are clearly
visible although there exists no corresponding lnminance steps for such edges.
An example is given in Figure Figure 3.6.7. Also, observe in the figure that the
surface ontlined by the illusory contour appears lighter in brightness than the
white page surronnding it. From this point of view. it is interesting to observe
that the perception of an edge. even an illusory edge is accompanied by the arca
contrast effect.

In the next section. the neurophysiological reasons nnderlving the above

psychophysical phenomenon will bhe given.

3.4.2.2  Neurophysiological Reasons of Visual Hlusions

L

Section 3401 it has bheen mentioned that the eve is able to respond

to an enormous range of intensities (of the order of 10™). This sngeests that it
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Figure 3.6. Hermann grid illusion

Figure 3.7. An example of illusory contours




should have an adaptation mechanism to varying range of intensities. One way of
accomplishing this is to undo the increase in illumination, i.e. reduce the effective
retinal illumination. This is called ‘dark-glasses’ principle and it is provided by
changing pupil aperture. But the pupil diameter can vary only about 4:1. So it
is apparent that a very large degree of adaptation exists at the receptor level. A
signal with a frequency span of 10" /42 can not (at least physically!) travel along
the optical nerve. Actually, the frequency does not exceed a maximum of perhaps
1 kHz ([66], section 4.5.1). Since linearity prevails between impulse frequency at
the output of the ganglion cell and the photoreceptors’ potential output at its
receptive field, it is clear that this data compression is a result of a photochemical
reaction at the transducing elements (rods and cones). The neurophysiology of
these reactions are explained in [71] section IV.A. Neurophysical experiments
carried out by many scientists reveal that (see [T1] section I11.A.4), the membrane
potential of photoreceptors are actually proportional to the contrast which is
related to the intensity through the contrast laws given in the previous section. As
a result, the photochemical data compression at the photoreceptor level accounts
for the visual phenomena of brightness constancy.

The area of retinal photoreceptors which can influence the behaviour of a
ganglion cell, whose axons make up an optical nerve, is called the ‘receptive field’
of that cell. In 1953 Kuffler [72] has shown with psychophysiological experiments
that these fields have an excitatory region at the center and a surrounding antag-
onistic region. Light shining on a photoreceptor at the excitatory region changes
its membrane potential which ultimately raises the firing rate of the impulse train
at its ganglion cell ontput. On the other hand, light falling on a photoreceptor
at the surrounding region inhibits and decreases this firing rate. In general, the
effects of all inputs, excitatory and inhibitory undergoes an algebraic summation
at the synapse connecting the ganglion cell to the optical fiber, forming a point
spread function of shape like a Mexican sombrero (the neurophysiological reasons
are explained in [67], chapter 6 and [71] section IV.C). Figure 3.8 illustrates this
very important phenomena due to spatial interactions in the retinal receptive
fields, which is called ‘lateral inhibition’. Kuffler also, discerned two kinds of
ganglion cells : ‘ON-centered’ cells which increase their firing rate when light “in-
crements” are presented at their excitatory receptive fields, and ‘OFF-centered’

cells which are excited by light decrements.
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Figure 3.8. Lateral inhibition

To find the point spread function in Figure 3.8, a flashing spot of light is
focused on the middle of the excitatory region of the a particular receptive field
and the frequency of impulses at the corresponding optical fiber is recorded. Then
the diameter of the spot is increased until at a threshold value at which the firing
rate suddenly drops. If the diameter is further increased, a saturation level at
the firing rate can be reached meaning that the spot covers the whole inhibitory
surround. Since the spot approximates the impulse excitation in systems theory,
the so obtained point spread function is the spatial impulse response of the HVS.
Calculating its Fourier Transform one can get the ‘Transfer Function’ of the

HVS. Recall from linear systems theory that there exist two ways of obtaining
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the transfer function experimentally. The first one is to apply sinusoidals at every
frequency, then the curve tracing the amplitudes of output sinusoidals would be
the transfer function (output is also a sinusoid since sinusoidals are eigen fuctions
of linear systems). Another way, is to apply a square wave, then the transfer
function can be calculated using the response and the Fourier transform of the
square wave excitation. Either way is applicable to the spatial case to obtain
the so called ‘Modulation Transfer Function’” (MTF). The word “modulation”
indicates that, since the eye is sensitive to only the ratios of illumination (contrast,
contrast laws), the square-wave or sine-wave gratings that will be used should
have a constant DC component. In ordinary linear systems the input (stimulus)
square or sine waves should have amplitude one, but since there is no notion of
a unit for HVS, one can vary that amplitude of the stimulus wave until it is just
noticeable for the subject. Hence, the MTF obtained in this way is also called
the ‘Contrast Sensitivity Function’ (CSF) or the ‘Threshold Sensitivity Function’
of the HVS. One can observe his/her own CSF in Figure 3.9, where sine waves of
increasing frequency in horizontal direction and decreasing amplitude in vertical
direction is drawn on a constant DC level. Notice that, it has the form of a high
pass filter, with a peak at a certain spatial frequency.

The lateral inhibition phenomena accounts for the bordering effects in si-
multaneous contrast, and hence explains the related illusions. Mach in 1866 first
predicted that due to the Mach bands illusion, each functional field in the retina
(now called receptive fields) should have an excitatory component next to an
inhibitory component. Today we know that if the intensity distribution func-
tion of double Mach bands is passed through a linear system with MTFE as in
Figure 3.9, the corresponding brightness distribution can be obtained, which is
directly related to the phenomena of lateral inhibition.

Lateral inhibition also explains the Hermann grid illusion. Relationship
between the area of intersection in the Hermann grid illusion and the strength of
illusion provides estimates for the spatial ranges of the excitatory and inhibitory
interactions. In particular, increasing the area of intersection until the illusion
vanishes one can determine the diameter of the center and antagonistic surround
of the receptive field which is the neurophysiological correlate of that area. De-
tailed explanations of the illusions with lateral inhibition can be found in [68].

Before examining models for the HVS, there is one more factor which is



Figure 3.9. Experimental sinusoidal gratings varying in frequency and amplitude

to determine human visual system MTF

independent of the retinal and neural functions, but is the effect of purely the
optical (pupil/lens) system. Westheimer and Campbell [73] have measured the
distribution of light on the retina formed by the human eye optics and obtained

an isotropic, 2D lowpass filter with line spread function of the form
h(x) = e, (3.41)

where z is in minutes of arc and A = 0.7 for a pupil diameter of 3 mm. Then,
Fourier Transform of h(x) gives the spatial response

2\

TN e

H(w) (3.42)

3.4.2.3 Monochrome Vision Models

For developing a model the psychopysical phenomenon that should be taken

into account are :

1. Spherical abberation of the lens and the corresponding low pass filter char-

acteristics given in Equation (3.42).
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2. Amplitude (point) nonlinearity at photoreceptors due to the light adapta-

tion requirement.

3. MTF with high pass characteristics, that occur in the ganglion cells due to

lateral inhibition.

These properties form the so called ‘early vision’ part of the HVS. Note
that, the phenomena of lateral inhibition is represented by the MTF described
in Section 3.4.2.2. But to do so the system should be considered linear, homo-
geneous, and isotropic. But HVS has none of these properties. Still it can be
assumed to operate at the “linear region of the nonlinearity” if measurements are
confined to small increments of luminance [74]. The photoreceptors do not have
homogeneous distribution over the retina (recall Section 3.4.1) but the amount
of uncertainty this fact adds to a models output which is developed for homoge-
neous systems is unknown, yet experimental data predicts that it is not much.
The MTF of Figure 3.9 is also called called line spread function, since it is found
by inputting 1D stripes. If the system was isotropic (circularly symmetric), it
can readily be extended to 2D MTF, otherwise 2D MTF must be calculated by
using oriented lines. Such experiments show that the response is minimum at
45°, where a frequency of 10 cycles/degree is reduced only by 15% from the value
it has for the vertical grating case, meaning that the change can be ignored [74].

After this early vision part of the system information is carried to the striate
cortex for further processing. At the cortex level Hubel and Wiesel [65] has found
that there exists two kinds of cells : simple and complex. Simple cells behave
like ganglion cells and have receptive fields formed from excitatory and inhibitory
optical nerves. However, complex cells do not have such regions in their receptive
fields, rather they react to the intensity changes of stimulus at certain orientation.
This phenomenon that about the existence of spatially selective filtering at the
cortex was also reported later by Campbell and Robson, with psychophysical
experiments [75].

A model for the HVS covering all the above phenomenon would look like
Figure 3.10. Many researchers constructed multiple channel models (refer [69]
and [68] section V.C) depending on the findings of Campbell and Robson. But
from the image coding point of view they are not useful, because of their complex-

ity. On the other hand Davisson [76] supplied experimental data for the output
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of early vision part by using exponential sine wave gratings. Since HVS has loga-
rithmic point non-linearity at its input block (Fechner law) the exponential would
be cancelled and direct data on the MTF could be obtained. Hall and Hall [74]
developed a pioneering single channel model using this data and later Mannos

and Sakrison described the MTF with a, now famous, expression

H(f) = a(b+ cf)eapl(ef)"). (3.43)

3.4.3 Perceptual Domain Transform Coding

Application of the model of Figure 3.10 is quite simple to transform do-
main coding schemes. Since, transform coding is, in fact, a spatial frequency
decomposition, each transform coefficient can be considered to correspond to a
frequency channel. Then, the frequency channel selectivity of the cortial process-
ing would be satisfied. As a further simplification the first two blocks of low pass
filtering and nonlinearity due to physical properties of eye and adaptation mech-
anism of photoreceptors respectively can be thought to be neutralized. Using the
properties of the display devices that are employed to view the images.

Since all monitors have finite resolution, the spatial details almost always
remains within the pass band of the low pass filter for normal viewing distances.
Moreover, monitors using cathode-ray tubes converts the input signal to light
display with exponential nonlinearity. Therefore, the logarithmic nonlinearity
due to Fechner’s law would also be cancelled [78]. That leaves us with the MTF
described by the Mannos and Sakrison’s expression.

Passing transformed image blocks from the MTF of HVS, one would be
imitating the HVS and consequently would obtain the mapping of the image
to the ‘perceptual domain’. Stockham has proved experimentally that, coding of
images in the perceptual would give better subjective results at the reconstruction
[79]. The reason is that, the distortion introduced to the frequency components
at which the HVS is sensitive would not be amplified by the HVS. Rather, the
distortion would be distributed to all frequency in a perceptually equal fashion.

Mannos and Sakrison after extensive experiments have arrived at the fol-

lowing quantitative HVS model:
H(f) = 2.6(0.192 + 0.114 f Yeap[—(0.114[)""] (3.44)
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Figure 3.10. A complete model for human visual system
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This MTF has a peak at f=8 cycles/degree.

Incorporation of HVS in the transform domain implies that the DFT coef-
ficients should be multiplied with H(f) at the corresponding frequencies. A DFT
coefficient at the (i,7)" spatial location corresponds to f = \/iZ + j2. With the
impact of DCT in transform coding, Nill has noticed that, since DCT is actually
the DFT of the even extended image (recall Section 2.2) and the viewer is not
observing this extended image, the physical significance of DCT coefficients for
the HVS would be lost. Therefore Nill [80] proposed that the MTF should be
multiplied by the weighting function A(f) defined as follows :

- o\ 1/2
[A(S) |= (% + % []n (% + 47:212 +1 } ) (3.45)

where « has the typical value of 11.636 1/degree. He also proposed the following

as a good representation of HVS :
H(f) = (0.240.45)exp[—(0.18 )] (3.46)

which has a peak at around f=5 cycles/degree. However Nill, has not supported
his work with experimental results on images. Later Ngan et al. [81] have used
Nill’s multiplicative function A(f) with their MTF in the DCT domain adaptive
coding scheme that they developed. The MTF they used had a peak at f=3

cycles/degree and had the form
H(f) = (0.2+0.45])eap[—(0.181))] (3.47)

After multiplying this MTF by A(f), the peak frequency shifts to 4 cycles/degree.
They achieved acceptable quality reproductions at rates of 0.2 or 0.3 bhpp.
Very recently, Chitprasert and Rao [82] developed the following MTF for

DCT weighting based on extensive experiments :
H(f) = 2.46(0.1 + 0.25f)exp(—0.25[). (3.48)

It had a peak at 3.75 cycles/degree. For 8 x 8 DCT-II this MTF results in the
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following weighting matrix :

[ 0.4942 1.0000 0.7023 0.3814 0.1856 0.0849 0.0374 0.0160
1.0000 0.4549 0.3085 0.1706 0.0845 0.0392 0.0174 0.0075
0.7023 0.3085 0.2139 0.1244 0.0645 0.0311 0.0142 0.0063
0.3814 0.1706 0.1244 0.0771 0.0425 0.0215 0.0103 0.0047
0.1856 0.0845 0.0645 0.0425 0.0246 0.0133 0.0067 0.0032
0.0849 0.0392 0.0311 0.0215 0.0133 0.0075 0.0040 0.0020
0.0374 0.0174 0.0142 0.0103 0.0067 0.0040 0.0022 0.0011
I 0.0160 0.0075 0.0063 0.0047 0.0032 0.0020 0.0011 0.0006

3.5 Experimental Results

Consider the transform coding system of Figure 2.1. In Sections 3.1.2 and
3.3.1 it has been justified that optimal scalar quantizers for the DCT coefficients
are nonuniform Lloyd-Max quantizers tailored for Gaussian pdf for DC coefficients
and Laplacian pdf for non-DC coefficients. In Section 3.3, bit allocation problem
has been extensively discussed and marginal analysis approach has been accepted
as the most appropriate and optimal method for the bit assignment to above
quantizers.

In the experiments performed in this thesis work simulations have been
carried out on the popular 8 bpp gray level test sequence of Miss America, which
is a 256 x 256, 150 frame image sequence. Mandela re-ordering over the first
three frames of the sequence is used for estimating the variances of the transform
coefficients for the marginal analysis bit allocation scheme with Tzou’s method
(Section 3.3.2).

Resulting DC mean value was 69.447273, and variance matrix was

[ 1001.888 12.31474 2.092180
9.338483 1.134139 0.454674
2.638924 0.381950 0.228907
0.947318 0.177208 0.084764
0.300800 0.068600 0.035387
0.150318 0.033848 0.014368
0.074249 0.024604 0.010855

| 0.050986 0.013281 0.007293

0.666371
0.163167
0.098627
0.048139
0.023661
0.010657
0.011842
0.009072

0.263281
0.093111
0.052894
0.035792
0.019765
0.010369
0.007866
0.005673

0.159800
0.055508
0.040769
0.024271
0.018055
0.010679
0.017729
0.013931

0.099777
0.037780
0.028633
0.018360
0.010678
0.006217
0.006572
0.005353

0.107693 |
0.051546
0.036653
0.022453
0.032635
0.012386
0.078064
0.067355




Each coefficient is normalized using this matrix prior to quantization, so
that scalar quantizers prepared for unity variance sources could be used. Note
that, for the DC coefficients, mean value should be subtracted before normal-
ization. Therefore the DC mean value and the variance matrix must be sent to
the decoder. Then, DC coefficients are optimally scalar quantized into a pre-
determined level of 8 bits, using nonuniform Lloyd-Max quantizers tailored for
Gaussian pdf. It has been observed that if optimum uniform quantizers were
used for the DC coefficients of the first frame the PSNR performance would be
38.59 dB, while for optimal nonuniform quantizers it is 38.61 dB. This choice of 8
bits for DC coefficients is common to most of the transform domain compression
schemes, as it is better to quantize the DC coefficients finer, since, otherwise,
blocking artifacts may occur at the reconstruction. In the literature there ex-
ists post-filtering techniques to overcome this type of distortion which is visually
quite disturbing [83]. Comparisons of performance of many techniques with the
rate-distortion bound reveal that block quantization performs the best within 1-2
bpp range ([51] section 5.1). Therefore decision is made on compressing each
frame of the sequence into 1 bpp. Remaining 56 bits per each sub-block is then
distributed to the Lloyd-Max quantizers tailored for Laplacian pdf to quantize
the non-DC coefficients. The below map indicates the bits allocated to the cor-
responding transform coefficients. This map must also be sent to the decoder.
Observe that most of the bits are allocated to the low frequency zone, reflecting
the energy compaction property of DCT. Observe also that, 24 out of 64 coeffi-
cients are coded, which is more than 25%, the presumably enough percentage of

coefficients for the satisfactory reconstruction (see Section 3.3.1).

[6 643281 1]
54321000
43210000
32100000
20000000
20000000
1000000 I
(0000000 0|

To account for the human visual system properties. the three of the HVS
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Table 3.4. Comparison of overall PSNR performances of the three systems which

incorporate HVS with the system that does not include it.

[ No HVS | HVS-1| HVS-2 | HVS-3
| PSNR| 38.61 | 38.68 | 3849 | 3534

models described in Section 3.4.3 are compared to the result of the above system

subjectively. The three MTF expressions for the HVS are
1. MTF of Chitprasert and Rao in Equation (3.48). Denoted as HVS-1.

2. MTF of Ngan et al. in Equation (3.47) together with the weighting function
A([f) in Equation (3.45). Denoted as HVS-2.

3. MTF of Nill in Equation (3.46) together with the weighting function A(f)
in Equation (3.45). Denoted as HVS-3.

It has been observed that the HVS model of Chitprasert and Rao was perceptually
the most good looking one. See Figure 3.11 for a personal subjective evaluation
of your own and check Table 3.4 for the corresponding PSNR performances. A
typical viewing distance can be ten times the height of the picture. So the images
printed in this thesis book should be viewed at a distance of one meter.

For the sake of comparing a system including a HVS model and a system
excluding it, all 150 frames are encoded using the system described above with
and without HVS weighting.

DC mean of the HVS weighted sub-blocks was 34.320869 and variance dis-

tribution was
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{ 244.6946 12.31474  1.031916  0.096935 0.009069 0.001152 0.000140 0.000028 ]
9.338483  0.234692  0.043272 0.004749 0.000665 0.000085 0.000011 0.000003
1301585 0.036351  0.010473  0.001526 0.000220 0.000039 0.000006 0.000001
0.137803  0.005158 0.001312  0.000286 0.000065 0.000011 0.000002 0.000000
0.010362  0.000490 0.000147 0.000043 0.000012 0.000003 0.000000 0.000000
0.001083  0.000052 0.000014 0.000005 0.000002 0.000001 0.000000 0.000000
0.000104  0.000007 0.000002 0.000001 0.000000 0.000000 0.000000 0.000000

L 0.000013 0.000001  0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 |



(a) (b)

(©) (d)

Figure 3.11. Frame number 0 compressed with block quantization with (a) with-

out HVS (b) with HVSI (¢) with HVS2 (d) with HVS3.
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Table 3.5. Comparison of the PSNR performances of the frames displayed in

the following pages as an output of the block quantization system including or

excluding HVS.

| sq |Hvsi-sq
Frame #61| 38.01 38.55
Frame #75| 39.47 39.69
Frame #88| 38.14 38.08
Frame #149 38.13 38.28

Bit allocation after HVS weighting yields the following map.

s T E¥2a98]
78 % 190D
63200000
52000000
20000000
00000000
00000000
(00000000

Observe in Figure 3.12 that the HVS weighted system outperforms the
system lacking HVS in many frames.

On the other hand, actual improvement was in the subjective measures.
All 10 viewers who evaluated the two sequences favoured the HVS weighted one,
under normal viewing conditions.

See Figures 3.13, 3.14 and 3.15 for a subjective evaluation of your own and

Table 3.5 for corresponding PSNR performances.

3.6  Conclusions

It has already been mentioned in Section 2.5 that, particular image frames
can quite efficiently be represented by Markov-1 models. Consider a Gaussian
Markov-1 source with correlation coefficient p. The rate-distortion function for

such a source (see [51] example 4.5.2.2) under MSE criterion assuming unity
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For 1bpp rate, this bound for p = 0.8 is about 7 dB lower than that of a memo-
ryless Gaussian source whose rate-distortion function appears in Equation (3.28)

which can be written as

R(D) = 3 log, 7, (3.50)
for a unity variance source.

Ordinary PCM treats any source as memoryless and employs uniform quan-
tization. If the source is passed through a ‘compressor’ prior to quantization,
which in effect makes its pdf uniform and optimizes the quantization (assum-
ing an ‘expander’ is employed at the receiver), then the PCM system is said to
have optimum companding [44]. The performance of such a system equals that of
nonuniform Lloyd-Max quantization of the source and still falls short of the R(D)
bound for memoryless sources, due to the facts mentioned in Section 3.3.1. If the
source has memory, R(D) bound is even lower. Therefore. block quantization
bridges the gap between PCM and rate-distortion bound for correlated sources
with known pdf (see [51] figure 5.1.2).

Recall from Equation (3.17) and the discussion following it, that assuming
low-distortion (i.e. high-resolution quantization), variance of the reconstruction
error incurred when a source of variance o is scalar quantized into b bits is
0% = k27 %02 When an N x N block of the source is PCM encoded using identical
quantizers for each source sample (i.e. kis same), the average reconstruction error
variance is

1

N
T pem = NxN > k2 Rad, (3.51)

1,7=1
where R, which is the number of bits allocated for each coefficient, is constant
and therefore, also equals to the average rate of the system. Since an orthogonal

transform (such as DCT) is variance preserving

; I & g
ol=——">" 0o’ | (3.52)
Nox N2,

if the block of source was first transformed and then PCM encoded, the average
reconstruction error variance would be
I o
2 = 9—2R .2 QRS
TePCM = NN y k2 o (3.53})

1,7=1
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For block quantization, through optimum bit allocation, total acceptable recon-
struction error for the N x N block is distributed equally to all coefficient quan-
tizers. Then, again assuming identical quantizers, average reconstruction error
variance for block quantized transform block is

i B
&£ NxN

a

N
N g, (3.54)

ij=1
Substituting b;; from Equation (3.27) to this equation one obtains the minimum

possible average reconstruction error variance

e 1 i i
min{o?go} = N—XTV-k‘Z_ZR | [ (3.55)

ig=1
where R is the average rate of the system and R = B/(N x N)
Using Equations 3.53 and 3.55 the maximum gain that block quantization
can theoretically attain over PCM can be calculated as
2
o e
g min{o? go}

1 N 2
NxN Zi-.i=l U!/u
N 5 k
KT 7, L

= (3.56)
The practical gain that block quantization attains can be obtained by multiply-
ing the denominator of Equation (3.56) with a correction factor that accounts
for the practical quantizer function. The correction factor is nothing else but the
parameter k mentioned in Equation (3.17), at the start of Section 3.3. As an ex-
ample, (r'géy’xmr must be multiplied with 1/2.7 for Lloyd-Max quantizer designed
for Gaussian pdf which corresponds to a 4.3 dB loss over the maximum attainable
gain.

This section also reveals that subjective improvement can be obtained after
the objective improvement by block quantization by HVS weighting. However,
since HVS weighting requires additional computation there should be a compro-
mise between the added complexity and achieved subjective improvement. Re-
sults given in this chapter, reveals that, the HVS incorporating methods tested
do not supply enough subjective improvement to be traded with the added com-
plexity. Therefore simpler ways of incorporating HVS should be investigated,

which may be a topic of further research.



System proposed here has all of its blocks implemented optimally. In the
literature there is no such system since probably due to the confusing choices of
many references, the authors are misled.

Consider the system proposed in Figure 3.1. This chapter consists of the
optimal ways of implementing the blocks of the system assuming that scalar
quantizers are used. Therefore, one can conclude that the results obtained are the
best possible ones for systems using scalar quantizers. The only improvement that
can be done on this system is employing entropy coding or, going even further,
optimizing the scalar quantizers used, with respect to a proceeding entropy code,

which is still a very hot topic of research.
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Figure 3.12. PSNR performance of block quantization using optimum scalar
quantizers on DCT coefficients and HVS weighted DCT coefficients over the se-

quence.
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Figure 3.13. Original Frames of number (a) 61 (b) 75 (¢) 88 (d) 149.



(d)

Figure 3.14. Frame number 61 block quantized (a) without HVS (b) with HVS,

and frame number 75 (¢) without HVS (d) with HVS




(©) (d)

Figure 3.15. Frame number 88 block quantized (a) without HVS (b) with HVS5,
and frame number 149 (c) without HVS (d) with HVS.
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CHAPTER 1V

DISCRETE COSINE TRANSFORM DOMAIN VECTOR QUANTIZATION

A scalar quantizer maps an input value into one of a ‘finite’ number, say
N, of reproduction values. Due to the finite number of reproduction levels, only
the index of the closest reproduction level in the collection is enough to be trans-
mitted over the channel. The transmission rate of the system would be log, N
bits/sample. With the expense of some distortion, this rate may be significantly
smaller than the rate required without quantization. For example, an input sam-
ple which is a real number would require an infinite number of bits to be trans-
mitted if it is not quantized (or it would require a quantizer with infinite number
of levels for distortionless reconstruction as it was mentioned in Section 3.3.1).
Vector Quantization (VQ) generalizes scalar quantization to the simultaneous en-
coding of a vector of, say k, input samples to one of a finite number, say N, of
reproduction vectors. This collection of reproduction vectors is called the ‘code-
book’. The codebook is usually generated off-line by training it with a number
of vectors that represents the statistical properties of the actual vectors to be
encoded. Then, transmission rate of the system would be at most log,(N/k)
bits/sample.

The most frequently cited theoretical rationale for VQ is due to Shannon,
who showed that the limit on data compression performance (i.e. the theoretical
rate-distortion bound for the source) in the sense of minimizing the average dis-
tortion for a particular communication rate, can be approached arbitrarily closely
by coding blocks or vectors of source samples rather than coding them individ-
ually [3]. However, VQ has both a higher search complexity and also a larger
memory requirement than scalar quantization that grow exponentially with the
vector dimension. On the other hand, if VQ is applied in the transform domain
by taking a subset of transform coefficients for each sub-block as vector inputs,

its complexity decreases since vector dimension decreases. Besides, it overcomes
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Figure 4.1. A DCT-VQ system for Intra/interframe coding of image sequences

the suboptimality of TC by removing the local redundancies. Figure 4.1 shows a
DCT-VQ scheme for image sequence compression.

To construct a vector quantizer, the first thing to do is to decide on the
design structure of the codebook. The codebook may be standard (or full-search),
tree-structured, product-code, fixed-rate, variable-rate, finite-state, classified etc.
Excellent reviews on various VQ design structures can be found in [10], [84], and
[85]. Secondly, a satisfactory size of training set of vectors should be chosen and
the codebook should be generated such that overall distortion due to the encoding
of the training vectors would be minimized. In the statistical literature, training

sets are also called learning sets. There are also a large number of codehook
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generation techniques.

It is impossible and unreasonable to review and compare experimentally all
the existing VQ techniques. So considering the specifications of a desired sys-
tem one should limit the choice of possible methods of concern. Image sequence
coding is usually done for real-time applications, therefore requires fast encod-
ing, decoding. Besides the chosen method should perform well on a variety of
images, hence better be adaptive, which also requires fast execution. Among VQ
techniques tree-structured VQ (TSVQ) and classified VQ (CVQ) has the most
reduced complexity. TSVQ sacrifices much reconstruction quality to construct a
tree structured codebook. On the other hand CVQ has relatively higher perfor-
mance when compared to TSVQ and also it exhibits high edge fidelity if classi-
fication is edge oriented. For these reasons, in this thesis work, CVQ has been
chosen to be the best candidate for real-time, adaptive, intraframe coding of im-
age sequences and a new classified VQ technique named as ‘classifier constrained
vector quantizer’ is proposed. For experimental comparison, standard, fixed-rate
vector quantizers are used with codebooks generated using various techniques.
All vector quantizers of concern in this work operate in DCT domain.

For a fixed-rate vector quantizer all the codeword label lengths are same.
The choice of fixed-rate vector quantizers for this thesis work, is important, since
there is quite an effort to design variable-rate codes at the moment. Most chan-
nels demand fixed-rate. If the code to be transmitted is a variable length code
and the channel is a synchronous channel demanding fixed rate, then a buffer
interconnecting the output of the encoder to the channel input must be instru-
mented. This brings the issues of buffer constrained optimization of the encoder
and buffer control policies to omit buffer ‘overflow’, and ‘underflow’.

Before going into details about the experimented VQ techniques, basic prop-
erties of VQ will be explained and superiority of VQ with respect to scalar quan-

tization will be justified.

4.1 Preliminaries

Vector quantization is a multidimensional optimization problem where a
codebook of vectors are optimized to represent a source of vectors. To set the

terminology, a vector quantizer maps each input vector X € IR* onto a set of
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codewords Q(‘:’) = )-“',-, where Y; € C C R¥ and i = 1,2,..., N, so that C denotes
the codebook and N its size. The vectors of the codebook are chosen from
a collection of k-dimensional vectors called the ‘output alphabet’. Here output
alphabet is assumed to be the set IR¥. Optimality conditions of a vector quantizer

for minimum distortion are :

1. Nearest Neighbor Condition : The Euclidean space IR* must be partitioned

into disjoint regions such that
Ri={X € R*:| X~ ¥: |I<|| X = ¥; |,Vj # i}, (4.1)

2. Centroid Condition : The codevectors must be the centroids of the above
regions (note that, regions of such an optimal partitioning is called Voronoi

regions or Dirichlet partitions),
V.= E[X | X e Ri. (4.2)

If pdf of the input vectors happens to have regions of zero probability,
then one or more of the Voronoi region may contain no vectors and so the
centroid can not be calculated. Such a degenerate case is called the ‘empty

cell problem’.

3. Zero Probability Boundary Condition : The probability of a collection of

points being equidistant from at least two of the codevectors is zero :
Pr(X | XY |=| h f, || for some ¢#j)=0 (4.3)

Otherwise, tie-breaking would be required, which means that reaching a

unique quantizer is not possible.

All these conditions are direct generalization of their scalar case counterpart,
derived by Lloyd, so they are also called Lloyd’s conditions. Proofs of these three
conditions can be found in [10].

There are two types of optimality. A quantizer is ‘locally’ optimum if every
small perturbation of the codevectors does not lead to decrease in the distortion,
D. A quantizer is ‘globally’ optimal, if there exists no other codebook that gives
a lower level of distortion. If a codebook satisfies the first two conditions it is

widely believed that it is only locally optimal, but there is no general theoretical
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derivation of this result, in the literature. For the particular case of discrete input
distribution, such as a sample distribution produced by a training sequence, a
codebook that meets all the three conditions is proved to be locally optimum
([10], section 11.2).

The codebook C and the partition {Ry,..., Ry} completely describes the
quantizer Q. The performance of a vector quantizer @ with a given codebook C

can be measured by the expected (average) distortion

D(Q)

E[di(X,Q(X))]

N
S Pr(X € R)E[d(X, V) | X € Ry

=1

N
g (X € Ry) /Xenldk()(,Y,')p( )ax, (4.4)

where X = {@1,22,..., 2} is a real, k-dimensional random vector on IR¥, de-
scribed by a joint (multidimensional) probability density p()z) and dk(/i‘, B) is
a distortion measure in IR* space. Here the expectation is with respect to the
density function 1)()?) . Since this distribution is usnally unknown or not analyt-
ically expressible, the above performance measure is practically meaningful if the
quantizer is to be used on a stationary and ergodic sequence of vectors so that
the time-averaged distortion
1M il
o Z d(Xi, Q(X3)

converges with probability one to D(Q) as M — oo. If the sequence is M-ergodic
the above time-averaged distortion equals to D(Q). That is ergodicity allows
one to substitute sample (or time) averages for ensemble averages. Notice that,
this fact gives clues about the size of the training set of vectors [86]! Further-
more, under certain condition on the distortion measures the above discussion
can be extended to asymptotically mean stationary sources (from strictly mean
stationary sources) and moreover if a source is not ergodic, again under certain
conditions it can be treated using ergodic decomposition. These subjects are
beyond the scope of this thesis but interested reader can refer to (87].

If d;\.(/f, E) operates on the elements of its argument vectors, it is called to
be a ‘single letter fidelity criterion’ [88]. That is,

k
di(A,B) = Z a;, b (4.5)
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For a better understanding of the forthcoming discussion, single letter fi-
delity criteria should be examined more carefully.
Let || X || denote a seminorm (seminorm, since it has a single argument)

on IR¥, that is it satisfies the following conditions :
LI X =0,
2. |aX I=la |- % |l for a € R,
LNX+Y I XN+l Y || (the triangular inequality).

Common examples are the I, or Holder norms (sometimes also denoted as L,

norms) defined by
5 1/v
a A v
1% 1 :{zm} | (46)
i=1

For v = 1 one obtains the mean absolute error metric /; which is

k
I fh= 31 s (4.7)

=1
and for v = 2 one obtains the mean-square error metric (the Euclidean norm), l,
which is

y % 1/2
I X ll2= {Z | i |2} : (4.8)

i=1
All Hélder norms have variants called as the #%* power or r-law of them and

can be expressed as follows

B3

i /v
= {Z | = |”} : (4.9)
=1

Note that, a chosen distortion measure is more useful if it is a distance or metric,
and hence satisfies the triangular inequality. Some 7t power of Hélder norms do
not have this property, but for instance, 2" power or 2% Jaw of l, metric, which

is the well-known squared-error measure (the Euclidean distance)

| X 3= Z | z: |2, (4.10)

is a metric and it is very commonly used in practice due to its mathematical

convenience. Notice that, for a single argument (seminorm), it actually gives the



vector variance of its argument vector. Another common form of measure is the
weighted squared-error measure

k

v |12 = X .2
| X 113 weightea= 2 wi | @i I, (4.11)

i=1
Since I, norms can also be written in inner product form, || X |.= {XT X2
(similarly || X |2= {XTX} ), weighted measures can further be generalized as

Y |12 = vT

I X 13 puciortes = {XT1BIX}

ko k
= 375N [B]yzz;. (4.12)

i=1 j:'l
where [B] is a k x k, positive definite, symmetric matrix. Observe that if [B] is
also a diagonal matrix, then Equation (4.12) reduces to Equation (4.11) and if it

is the identity matrix, Equation (4.12) further reduces to Equation (4.10).

Turning our attention back to (lk(/\A’, )7), if it has the form
(X, V)= L(X -Y) (4.13)

it is called as a ‘difference distortion distortion measure’ and then, any of the
above norms are adoptable since they all have single arguments, i.e. they turn
to be full norms for difference distortion measures. As an example if the norm of

Equation (4.9) is chosen
a(X,¥) = | X-Y;

i -
{Z |l I"} g (4.14)
1=1

or if the norm of of Equation (4.12) is chosen, then

(X, ¥) = | X-Y ||B
= - “1 (B)[X —

There also exists distortion measures which does not have the form of Equa-

—yi)(z; — y5)- (4.15)

HM».

tion (4.13) but depends on X and ¥ in a more complex manner. An important
example is Ttakura-Saito distortion measure [89], which is very useful in LPC
speech coding systems but usually unacceptably complex for image coding. It
has the form

(X, 7 = [R = PIT[R(X)][X - ¥] (4.16)
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where for each X, [R():;)] is a k x k, positive definite, symmetric matrix. For
some of the other distortion measures, not mentioned here, the interested reader
may refer to [90].

In VQ codebook generation and performance evaluation for image coding
the most commonly used measure of distortion is that of Equation (4.10) i.e.,
the Euclidean distance. However, others can also be easily used. For instance,
some researchers strongly favour [; metric since it requires no multiplication [91]
and furthermore there is experimental evidence that for some coding methods, if
the design of the codec is based on l; metric rather than l,, subjectively better
results are obtained (see [92] for the case of wavelets). But the possibility that
usage of [} metric produces subjectively better results for any coding scheme is
still a subject of debate. As a result, while not subjectively meaningful in many
cases, generalization of I, metric, permitting input-dependent weightings have
proved useful although slightly complicated. Hence, throughout this thesis work
1, metric will be used in designing the VQ systems of concern. Other metrics
given above are useful for calculating performance bounds for VQ.

Once codebooks fitting above optimality conditions are generated using one
of the above metrics, the source can be quantized to nearest codevector, nearest
in the measure of one the above metrics. If all codevectors are tested to find
the nearest, this type of quantization is called ‘“full search’ and it is the method
used throughout this thesis work. Assuming the metric used for testing is that
of Equation (4.10) i.e., the Euclidean distance, the number of multiply-adds re-
quired to quantize a single k-tuple with a codebook of size N is Nk. Defining
RE (log, N)/k as the bits per dimension (sample), this computational cost be-
comes k2B% meaning that the ‘computational cost’ grows exponentially with the
dimension and the bits per dimension. Another important part of the quantiza-
tion cost is the ‘memory’ or ‘storage’ cost, i.e. how much memory is needed to
store the codevectors? Assuming one storage location per vector dimension, the

cost is again k2.

4.2 Superiority of Vector Quantization

The very appealing properties of VQ had been set forth much before first

practical vector quantizers began to appear and initiated a great deal of research.
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The theoretical advantages of VQ are mainly two-fold, those depicted by rate-
distortion theory and those by high-resolution quantization theory. Especially,

high-resolution theory results can be used to reveal the practical advantages of

VQ over SQ.

4.2.1 Theoretical Advantages of Vector Quantization

Assuming no constraint has been imposed on a finite dimensional vector
quantizer except for the resolution (i.e. finite codebook size), it has mainly two

attributes :
1. Vector dimension k.
2. Resolution or codebook size N.

Most of the results in this section are derived under two asymptotic conditions

over these attributes :

1. Vector size k is large and N is arbitrary. Rate-distortion theory provides

results on vector quantizer performance under this condition.

2. Codebook size N is large (i.e. small distortion) and k is arbitrary. This
is the subject of high-resolution or asymptotic quantization theory. The
essence of high-resolution quantization theory is to assume that there are
so many output points that the probability density of the input is approxi-

mately constant across any particular input vector.

4.2.1.1 Rate-Distortion Theory

Since the unique purpose of data compression is to minimize the transmis-
sion bit-rate for a desired level of distortion or vice verse, it is important in a
particular situation to know the theoretical lower bound on the bit-rate for any
quantizer. Rate-distortion theory, a branch of information theory, deals with
obtaining such lower bounds of bit-rate or distortion, without requiring the de-
sign of actual quantizers. That is, given the source sample it does not bother to
calculate explicitly what the reproduction must be. It just considers the basic
transmission system of Figure 4.2, and any kind of source. The source may be in

continuous-time or in discrete-time, and its amplitude may be, again, continuous
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Figure 4.2. A basic information transmission system.

(e.g. transform coefficients) or discrete (e.g. pixels of an image). For a given
distortion metric, one can compute either R(D), the ‘rate-distortion function’,
defined as the minimum achievable rate (per dimension) for a given distortion
D, or its inverse D(R), the ‘distortion-rate function’, defined as the minimum
achievable distortion for a given rate .

For our specific purpose, consider discrete-time continuous amplitude sources.
Since the given input sample may have any real value, for lossless reconstruction,
the output should also have continuous amplitude, meaning the representation
should have infinite number of bits/sample and that the channel should handle
infinite rate (recall Section 3.3.1). Therefore, for such sources R(0) = oo. For fi-
nite ‘capacity’ channels, it is inevitable that D > 0 and R(D) gives the minimum
capacity that the channel should have to carry enough information for a recon-
struction having distortion D. Note that, by doing this the output becomes no
more continuous. That is, output space would be partitioned into finite number
of regions, since finite channel capacity implies finite number of representations.
Actually, the minimum number of such partitions is 258(P).,

For an encoder to achieve that R(D), D > 0, bound, it must completely
decorrelate the input, i.e. excise all the redundancy in the source. This can
only be done by encoding the whole source at one time, which is practically
impossible. The encoder would have to wait until all the source arrives and
so, the encoding delay would be infinite. Therefore considering the practical
case of coding k-tuples of source, the k" order rate-distortion function, Ry(D),
is sought. Ry(D) approaches R(D) as k — oco. At this point, to understand
the concept of rate-distortion theory, one should immediately contemplate the

case of the case of having zero distortion. A source of k-tuples of continuous
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amplitude samples would require an infinite size codebook of k-tuples, each having
continuous amplitude random variables as elements i.e. codevectors are from an
infinite output alphabet, namely IR*. All that rate-distortion theory says is, to
achieve a distortion D > 0, the minimum number of partitions in the output
space (alphabet), should be 2Rx(D) if Ek-tuples are coded, which is greater than
the minimum number of partitions 2R(D) ' if co-tuples are coded. In other words,
we are just demanding more channel capacity to limit the encoding delay, but
still keep the distortion at the level D.
The optimality of VQ in the asymptotic sense of large vector dimension, is
proved by the fact
All[x;) Ri(D) = R(D) (4.17)

which was first shown by Shannon [3]. But still, the ‘operational’ (practical)
rate-distortion function of any vector quantizer available falls short of the bound
R,.(D). The reason is given below.

Assume D > 0, for obtaining Ry(D), rate-distortion theory assumes that
one can choose 28(D) number of reconstruction vectors from the infinite set of
IRk, But then there exists infinite number of choices. Limiting the number of
choices to M, one can obtain the ‘constrained-alphabet’ rate-distortion function
Rai(D) [93], [94], [95] (the reader should discriminate the difference between
constrained-resolution and constrained-alphabet!). If one lets the output alpha-
bet (collection of possible choices of codevectors) be the set IR*, meaning M — oo,
Ry (D) — Ri(D). Going even further, also impose a partitioning over the source
space consisting of L regions, where L > M. Then the relation between resulting
rate-distortion functions is Ry amx(D) > Rux(D) = Ri(D) = R(D). Because,
when a partitioning of the source space is imposed, one sacrifices from the free-
dom of treating each input vector separately and has to map all vectors ina
region to the same codevector, thus further increasing the distortion. Equality
with Rasx(D) is met when L — oo. Although Rarx(D) can be described theo-
retically, it is impossible to calculate. But in the case of Rpmx(D), where source
and reproduction alphabets are finite, the elegant Blahut algorithm [96] can be
used for computing. In the development of Ry ark(D) it is permitted that all the
source vectors in a partition cell has the same and constant probaility of being

mapped to any of the output vectors. On the other hand, for all present practical
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VQ schemes, L = M and all input vectors in a partition cell is mapped, with
probability 1, to the same codevector which is also ‘within’ that cell. This preclu-
sion of inter-cellular mappings restricts the ‘operational’ rate-distortion function
of all exsisting VQ schemes to be bounded by Rpark(D). Hence, all upto date
VQ designs falls short of the Rx(D) bound. Various choice of L and M bridges
the gap between operational rate-distortion functions and Ry(D), and from the
ongoing discussion it is, now, clearer that the VQ paradigm, can only ‘asymptot-
ically’ achieve the R(D) bound for a given source, while scalar quantizers can, in
any way, not. Still, even the best performing quantizer ever, can not carry us to

the promised land by Shannon.

4.2.1.2 High-Resolution Quantization Theory

High resolution quantization theory provides results (upper and primarily
lower bounds) on the minimum distortion attainable by a k-dimensional quantizer
for the case of large but finite (or fixed, or constrained) number of reconstruction
vectors, and for the case of constrained output entropy. again, for large but
unconstrained resolution.

Adopting the terminalogy used in Section 4.1, the output entropy is

N - - — —
H==> pi(X)log,pi(X) pi(X)=FPr{X e Rt (4.18)
i=1

Such performance bounds are often tighter [97] than the general lower
bounds provided by the rate-distortion theory (Section 1.2.1.1). Furthermore,
it is often the case experimentally that these bounds are fairly accurate when the
number of allowed reproduction vectors is only moderate.

The initial fundamental assumption in almost all studies of asymptotic
quantization is that the probability density p(/\_;) is sufficiently ‘smooth’ to ensure
that 11(/\7) is effectively constant over small bounded sets (partition regions for
high resolution). In particular, for N large enough, ])I(X') =p( o | X i) 2 s
Then,

1>

Pr(X € Ri)
/ ])(_‘;;)(l,‘z
Ri

l),' / (l,‘?
Ri

bV(R:), (4.19)
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or equivalently,
oy U
pi(X) = VR (4.20)

V(
where given a set G C IR¥, its volume V(G) is defined by
V(G) = /Cd;?. (4.21)

V(G) is the Lebesgue measure of G in IR¥, and it can be defined only if G is
a Borel set. In particular the volume of the unit sphere (a Borel set) in IRF is
defined by

Ve = VT || U [I< 1)) (4.22)

For the 2" power of Holder norms, [? it can be expressed as [98]

* v

Vi(v) = M (4.23)
kT (k/v)vk-1
where T'(+) is the gamma function.

In 1948 Bennett [99] modelled the one-dimensional quantizer (scalar quan-
tizer) as a zero memory monotonic increasing nonlinearity C'(-) (called the com-
pressor, recall Section 3.6) followed by a uniform N-level scalar quantizer in turn
followed by the inverse nonlinearity C'='(+) (called the expandor). Based on some
implicit mild regulatory conditions on p():;) in the case of large N, he derived
the integral below as an approximation to the minimum squared-error distortion

attainable by such a scaler quantizer :

(=) AR
~ —dX.
. 12N? /L. n(x)

(4.24)

where /\(\7) = (l(?'(X)/«l)?, (Ly, Ly) is the interval that consists of the N —2 finite
regions R;,i = 2,..., N —1 of the scalar quantizer. He also assumed that L; and
L are appropriately chosen so that the contribution to the distortion due to the
tail or ‘overload’ regions can be neglected (recall Equation (3.5) and Figure 3.1).

The necessary and sufficient conditions for Bennett’s integral to give the cor-
rect distortion was derived many years after Bennett by Bucklew [100]. Bucklew
also gave an example for which Bennett’s integral does not give correct asymptotic
distortion of a quantizer. However, Bennett’s integral was a convenient analyti-
cal tool for optimization studies of k-dimensional quantizers and having realized
the virtues of high resolution quantization theory many authors began to ob-
tain approximate solutions for the distortion in cases of large N and constrained

entropy.



Let’s denote the minimum distortion for quantizing k-dimensional vectors
into a large number of quantization levels N (high-resolution) under the metric pih
power of Holder norms [, (Equation (4.9)) as D(N; k,r,1,). Bennett’s integral was
for D(N;1,2,1;). Panter and Dite [40] simplified Bennett’s integral and obtained
D(N;k,2,1;) = C;N~%* where C; was a constant depending on p()?) and k
(recall that for k = 1 this result was also used in Section 3.3). For the scalar case,

Algazi showed that [101]
1 S .
D(N; 1,7,y = —=(2N)™ Il 2r(E) ll1/4m) (4.25)

where p;(Z) is the one-dimensional pdf of the random variable &. For the case of

constraint entropy, Gish and Pierce [102] solved the one dimensional problem as

1 "
D(H;1,7,l) = l2*“2-1[”—”(”"1 (4.26)

7
where I is the fixed output entropy constraint and H(p;(Z)) is the differential
entropy, H(p1(£)) = — [ p1(#)log, pi(&)dz. Later, Gray and Gray [103] obtained
a simple proof of the Gish and Pierce’s result via Holder’s and Jensen’s inequalities
instead of using variational techniques as Gish and Pierce did. Gray and Gray
also provided a simple proof for Algazi’s result.

Then generalizations of the above results to vector quantization (k > 1)

followed. Zador, in his historical paper [104] obtained

D(N3k,v, 1) = Ak, r)N=* || p(X) [lk/h4n) (4.27)

and

B ool = B e B AR (4.28)

where 11(1)();;)) is the differential entropy of the random vector X and || ];()\7) Il

is as below with a k-dimensional integration

1) = [ focr] (1.29

Zador did not derived A(k,7) and B(k,r) explicitly, rather gave lower and upper
bounds for them. Later, it was noticed by Bucklew [105], who also developed
upper bounds for the distortion with {7, metric, that Zador’s upper bound actually
converges his lower bound for k& — oco. The most striking feature of Zador’s

expression in Equation (4.27) was that A(k,r) had no dependency on the pdf of
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the random vector. Gersho, unlike Zador, came up with a valid explanation of the
situation for multidimensional case with [3, and obtained coinciding result with
Zador’s [106]. Since his conjectures will be used explicitly in the next chapter,
details of the Gersho’s work should be given.

Recall from Equation (4.1) that an optimal vector quantizer must have
Drichlet partition. In general, each bounded Drichlet region is a ‘polytope’ and
is convex. A convex polytope is a region of k-dimensional space bounded by
(k — 1)-dimensional hyperplanes so that any point lying on a line segment joining
points in the bounding hyperplanes is within the region. On the other hand the
unbounded regions or ‘overload’ regions makes sufficiently small contribution to
the distortion (N is large). If a uniform probability density is placed on the space
contained by the polytopes (as it is, due to high resolution assumption), then
the optimum reconstruction k-tuples are the centroids of the polytopes (recall
Equation (4.2)).

A convex polytope T is said to generate a ‘tessellation’, if there exits a
partition of IR¥, whose regions are all congruent to 7'. For instance, on the two
dimensional plane IR?, all triangles, quadrilaterals, hexagons generate tessella-

tions. Keeping above facts in mind, here are the Gersho’s conjectures :
1. For large N optimal partitioning of IR* is essentially a tessellation.

2. Let Tk be the class of admissable polytopes in IR* such that a convex poly-
tope T € IR¥ is an element of T} if it generates a Dirichlet partition. Now

define the ‘coefficient of quantization’ as

al. . fr | X =V |; dX

Clhkr) = 240k ST+ /8

(4.30)

where the argument of infimum is nothing but the normalized ‘moment of
inertia’ of the k-dimensional volume T'. This coefficient of quantization is
determined by the optimal cell shape (a polytope such that 7' € Ty), and it

is independent of p(X').
After these conjectures, Gersho proves that C'(k,r) is lower bounded as

1 i
Ch,r) > kHVk"“, (4.31)

using the fact that the sphere in any dimesion & has the lowes moment of inertia.
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He, also obtains a general form for the Bennett’s integral :
D(N; k, 1, 1y) = N"/’“C(k,r)/p()?)[A(X;)]"/kdX, (4.32)

where /\()_&;) is the asymptotic output point density function (check the counter-
part of it in Bennett’s integral in Equation (4.24)). The region of integration
in Equation (4.32), is the union of all bounded regions (i.e. unbounded Drichlet
regions, polytopes is excluded) due to the negligible overload distortion. Notice
that, each region R; makes an equal contribution to the distortion.

Using Holder’s inequality on Equation (4.32) one can obtain [106] :

[rENEI4X 21| PR leyesrn (4.33)

with the equality attained when X is proportional to p(Z)¥+7) - Since this is al-
ready the property of a k-dimensional compressor, equality holds, and an identical

expression to Zador’s (Equation (4.27)) is obtained
D(N; k1) = C(k, YN | p(X) Nisorsr) - (4.34)

Using the lower bound for C(k, ) given at Equation (4.31) in Equation (4.34),
a lower bound for D(N;k,7,1l;) can be obtained, which is known as the Gersho
lower bound or the sphere bound.

Yamada et al. [97] extended Gersho’s results for 5 to I, In their derivations

they used spherical regions with ‘effective radius” R(R;)
R(R) = [V(Ra)/Vi]'*, (4.35)

and obtained a lower bound for the distortion (not an approximate solution like
Equation (4.32)). They then proceed to show how these lower hounds for various
choices of k and r, are infact tighter than the Shannon lower bound (Equa-
tion (3.28)).

As a last note, consider || ])(}:’) ||l as in Equation (4.29), where 7)():") is the
k" order joint probability density function of the k-dimensional vectors from a
stationary, zero mean, random source. Since, the source is zero mean its covari-
ance function will be same as its correlation function which is the inverse Fourier
transform of spectral density function. Then, from the definition of spectral den-

sity function one can obtain
= . T.]\7+7'2 e T y
1 2) lywen= Cay2EE (4.36)
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where | C | is the determinant of covariance matrix [C] of the source (see [104] for

the proof). If the source samples are also independent and identically distributed,

then

P
|C |V*=35% = [H a?] (4.37)
a=1

where &3 is the geometric mean of the variances of elements of the vector.

4.2.2 Practical Advantages of Vector Quantization

For VQ there exists three properties of vector elements which, when utilized

appropriately, result in optimal performance [52]:

1.

‘Dependency’ : It can be classified into two : ‘Linear dependency’ and
‘nonlinear dependency’. Linear dependency is the correlation between vec-
tor elements. When elements of a vector are decorrelated (say by a unitary
transform) they become no more linearly dependent, but still they can have
a statistical dependency. Nonlinear dependency is whatever dependency re-

mains after linear dependecy is removed.

. ‘Dimensionality’: As vector dimension increases VQ can adopt any suitable

cell type to fill the k-dimensional space effectively.

. ‘Probability density function shape’ : In the case of convex polytopes in

Section 4.2.1.2 the cells do not only have the same shape but also the cell
sizes were also same. Therefore, the cell spacing was uniform. Uniform
cell spacing (identical cell sizes) is reasonable for uniform pdf assumption
of high resoultion quantization theory. In case of, nonuniform pdf, the cell

sizes can vary to increase the performance of VQ.

To reveal why and by how much a vector quantizer outperforms a scalar

quantizers, the above three properties can be represented in three analytical fac-

tors which are called the vector quantizer advantages.

Using the results of high-resolution quantization theory examined in Sec-

tion 4.2.1.2, Equation (4.34) to be specific, a vector quantizer advantage factor

over scalar quantizer can he defined as follows

a D(N;1,7)

DN E:w)

CLr) N @) hyasn
Cllr) || p(X) Neporn

Alk,r)
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where # is a random variable and X is a random vector belonging to the same
source and governed by the corresponding marginal and joint density function
p(z) and p(X;), respectively. Now define a dummy density function which would
result if vector elements were independent :

k
p*(X) & TIp(@. (4.39)

i=1

With this definition, Equation (4.38) can be re-written as follows
A(k,r) = F(k,r)S(k,r)M (k7). (4.40)

where F(k,r) is the ‘space filling advantage’, S(k,r) is the ‘shape advantage’,
and M(k,r) is the ‘memory advantage’ factors corresponding to dimensionality,
probability density function shape and dependecy properties listed above, respec-

tively.

4.2.2.1 Space-filling Advantage

Space-filling advantage is defined by as follows
A Clilsz)
i B _ 4.
F(k,r) i) (4.41)

Observe that, F'(k,r) depends only on the coefficient of quantization (Equa-

tion (4.30)) and hence due to Gersho's second conjecture in Section 4.2.1.2, it
depends only on the efficiency with which the polytopes fill the space. Since
C(k,r) is a strictly decreasing function of k, it is obvious that F(k,7) > 1 for
E > 1. This factor guarantees that VQ will always achieve superior performance
over scalar quantization and so it has long been recognized as the fundamental
advantage of VQ over scalar quantization by many researchers. For k = 1,2
and all 7, and for k = 3 and » = 2, C(k,r) can be calculated since admissable
polytopes for such cases are known [106], [98]. For k > 3, fixing r, lower bounds
on C(k,r) such as Gersho’s lower bound can be used to find upper bounds for
F(k,r). Conway and Sloane have also conjectured a tighter lower hound [107].

For a table of upper bounds on F'(k,r) refer [98]

4.2.2.2 Shape Advantage

Shape advantage can be written as follows
.S’(k,?') é H ]’(I—z |l1/(1+7') g
Il 2= (X Ny e
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Adapting Equation (4.6) to this continuous argument case of Holder norms Equa-
tion (4.42) can be re-written as follows

_ Up@)V/H0)rdz

S(I\;’,T) = W

(4.43)

Hence S(k,r) depends only on the shape of p(Z) using Holder’s inequality one

can show that S(k,r) > 1 for all k> 1 and r >0 [98].

4.2.2.3 Memory Advantage
Memory advantage is clearly

M(k,r) N P7(X) Neysr) ”*(‘1‘7) lsgeer) (1.44)

| (X Hlirery
For input k-tuples of independent identically distributed (i.i.d.) elements, by
definition p*(X) = p(X) and so M(k,r) = 1, meaning all the advantage of VQ
is due to space-filling and shape factor. For other cases one should have the
expression of k-dimensional joint probability function of the source and has to
compute it over k-dimensional integrals, which is a tedious task (refer [98] and

[52] example 2 for such cases).

4.3 Codebook Generation Techniques

No matter what type of a VQ structure is chosen, a codebook is required.
The key to efficient VQ data compression is a good codebook. Tn this section
most recent codebook generation techniques as well as the classicial method of
generalized Lloyd algorithm will be reviewed.

All methods included in this section are for minimizing the distortion intro-
duced due to VQ quantization with finite dimension codebooks generated using
finite number of training vectors. The only constraint imposed on the methods
below is the resolution of the codebook to be generated, in other words its size.

Other type of constraints are beyond the scope of this section.

4.3.1 Generalized Lloyd Algorithm

Lloyd method I for scalar quantizer design (proposed in 1957 as an unpub-

lished technical note, but later edited in [41]) was in use at statistical literature



since 1965. Tt was called the ‘k-means algorithm’ (perhaps that’s why the script
for vector dimension is always chosen as “k” in VQ) and used for clustering and
pattern recognition problems [108]. It was first in [90], that it appeared in com-
pression literature and provided a practical codebook design algorithm for VQ
that would yield codebooks meeting all three of the Lloyd’s conditions. Since
then, some authors called the algorithm as LBG algorithm after the initials of
Linde, Buzo and Gray, others used the name generalized Lloyd algorithm (GLA).
GLA has pioneered the overwhelming research work on VQ and taken part in
most of the work on VQ either for comparison purposes or as a tool for other
algorithms. It requires an initial codebook to start with and iteratively optimizes
the encoder for the decoder and decoder for the encoder using the codebook and
a given distortion measure.

The outline of the algorithm is as follows :

Step 0 Start with :
A set of training vectors B, X e B,
An initial codebook {¥%,..., )1{0)} =c c R*,
A termination constant ¢ (typically 0.001),
A distortion measure (l;\.(/i‘, 5),
Initialize :
The iteration counter t=1,
The average distortion D©) of the quantizer to oo.
Step 1 Encode all the training set vectors by mapping them to their
nearest codevector i.e. map a given training set vector X to ?,»U) if
(X, )7',»“)) < di( X, )7']-(”)\/]' #£ pand j =15« vuqdVe
This mapping will result in a minimum distortion partition and
impose decision region around each codevector. Also check if any
non-zero probability boundry condition occured and if it did,
apply a suitable tie-breaking rule.
Step 2 Calculate the resulting average distortion
D) = E{ming - (X, V)
if (DD — pW)/pt=1) < ¢ QUIT, else CONTINUE with Step3.
Step 3 Check if there exists any empty cells. If so, make an alternate bit

assignment. Update the codebook by replacing each codevector f’,-“’
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; = (141 St ; ;
with a new codevector },-( +1) that minimizes the average distortion
in its decision region. If the distortion measure is the Euclidean
distance this new codevector would be the centroid of the training

set vectors enclosed by the region. SET ¢ =1+ 1 and GOTO Step 1.

If at any iteration the optimum partitioning generated in Step 1 has a cell
with zero probability of having a training set vector, empty cell problem occurs,
since the new centroid can not be calculated. A variety of heuristic solutions exist,
for handling the problem. Aside from assigning an arbitrary vector as centroid,
one method may be to split the centroid of the cell with highest number of training
set vectors into two and delete the empty cell. Another method is to split the
centroid of the cell with highest partial average distortion.

One can also check, before terminating, if the zero-probability boundry con-
dition is satisfied. That is no training set vector is left to be equidistant from two
(or more) codevectors. The situation can be detected in Step 1 of the algorithm
and can be overcome using again heuristic methods, such as assigning the vector
to the tied cell with smallest partial distortion or to the tied cell with least num-
ber of elements. If this condition is not satisfied and the algorithm terminates,
then the resulting codebook can, in principle, be improved by breaking the tie in
any different manner and running the algorithm for one more iteration. Although
the improvement due to this additional step scems practically negligible, this step
becomes very important, if the size of training set is small. Notice that, GLA
does not converge to a unique codebook since ties can be broken in any fashion.

The general convergence analysis of GLA was carried out only in [109], with
extensive mathematics. Their result was that, given a distortion function with the
property that d : IR* x IR¥ — [0,00) and three more additional properties which
are important only technically for the proofs and has no practical meaning, if GLA
is to be trained with M samples, having an emprical distribution function of Far,
from an asymptotically mean stationary ergodic source described by distribution

function F with properties ;
1. F contains no singular-continuous part,
9. [d(X,V)dF(X) < oo for each ¥ € R¥,
then GLA converges with probability one. The emprical distribution function of
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a M length sequence of random vectors, just places the probability 1/M on each
of the elements of the sequence.

GLA is a descent algorithm i.e through its iterations the distortion func-
tion decreases monotonically. However, considering codebooks of more than one
codevector for which the distortion function is not convex and contains multiple
local minima, GLA may well be trapped in a poor local minimum instead of con-
verging to the global minimum [110]. For that reason, starting with a good initial
codebook becomes important. Initial codebooks may be obtained by randomly
choosing some of the training set vectors to be initial codevectors, or spliting can

be used. These techniques are very well reviewed in [85] and [11 1] section 12.1.2

4.3.2 Pairwise Nearest Neighbor Search Algorithm

Pairwise Nearest Neighbor Search Algorithm (PNN) has been proposed as
an alternative to GLA by Equitz [112]. But later Bottemiller revealed that [113],
it was identical to Ward’s hierarchical clustering method [114].

At the start of the algorithm each of M training set vectors are treated as
individual clusters and merges the nearest two, reducing the number of clusters
to M — 1. This merging is meant to continue until a desired number of clusters
are obtained or the average distortion exceeds a predetemined threshold. But
unfortunately when clusters got more than one member, one has to take into
account not only the closeness of the centroids of the clusters, but also the number
of members in the canditate pair. For instance, merging two clusters one having
hundred vectors and the other only one vector, may cause a higher overall increase
in the distortion than the case where clusters having four vectors and one vector
are merged, even though the former pair had their centroids closer, since for the
former merge a much larger number of vectors must be moved. So a new closeness
measure is developed rather than just using Buclidean distance
'IIV"'”,J'

n;S? it 0
n; +n;

. = S mpSy + | 2 — 25 s (4.45)

where n; is the number of training vectors in " cluster, n;; = n; +nj, T 1s the

th

centroid of the i cluster, 57 is the average squared error between the centroid

and vectors of the 7" cluster, and 57 is that of the cluster formed by merging

the it" and jclusters.
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The key to efficient execution of this algorithm is to quickly find the two
closest pairs. In [112] usage of k—d trees is employed so that the complexity of the
entire PNN algorithm (including the generation of the tree and searches) would
be O(M log, M) which is independent from the desired size of the codebook. On
the other hand, a single merge of full-search has a computational complexity of
T'log,, T, if there exists T' clusters at the moment.

Full-search PNN has a performance comparable to that of GLA, but fast
PNN, lacks optimality and has worse performance. Still it is favourable, since
it runs about twice as fast as GLA. If output of PNN algorithm is fed to GLA
as initial codebook, GLA converges in about half as many iterations without the
danger of being trapped in poor local minimum since it has been started with a
good initial condition. In that case the resulting codebook performs better than

both GLA and also PNN generated codebooks.

4.3.3 Kohonen Learning Algorithm

Kohonen learning Algorithm (KLA) was originally proposed by Kohonen
[115]), as a supervised learning scheme for self-organization of artificial neural
networks as well as for Voronoi tessellation (partitioning) of vector quantizers.
Considering an initial codebook, each time a training vector arrives KLA calcu-
lates the closest codevector and tilts it towards the training vector.

This direct application can be modified to be a supervised learning scheme
(also known as Learning Vector Quantization which is available via anonymous
ftp in a nice program package) where hoth classification and compression can be
done. Let us assume that each codevector has a class label accompanying its
codebook address label, then KLA can supervise the training of the codebook, if
it knows the true classification of the training set vectors, by rewarding correct
classifications and punishing incorrect ones. With the presentation of a training
vector, if the class of closest codevector matches that of the training vector, then
the codevector is moved towards the training vector. Otherwise, it is punished
by being moved away from the training vector.

When applied to VQ, KLA can be generalized as follows.With the presenta-

tion of a new training-set vector X (n) at the nth iteration, each codevector Yi(n)
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is updated using the formula
Yi(n) = Yi(n — 1) + ai(n)hi(j*, n)[X (n) = Yi(n — 1]

jt= a,rgn}in | X(n)=Yi(n—1)]. (4.46)

where a;(n) € [0,1] is the step-size for i** codevector at n'* iteration, which
must asymptotically decay to zero as n increases. h;(j*,n) is a neighbourhood
function that scales the step-size of i** codevector at n'® iteration, depending
on its physical closeness to the 7*** codevector which has the shortest Euclidean
distance to X (n), the Euclidean winner. Therefore, KLA belongs to the class of
competitive learning algorithms.

Then, vectors in a certain neighbourhood of the Euclidean winner will be
updated. In the original proposal neighbourhood was reduced to update only the
winner, i.e.

hi(j%,n) = i (4.47)
0 ifz# g™
Actually, for the distortion to converge to a local minimum i.e., for the nearest
neighbor and centroid conditions to hold, it suffices to assume that only the
Euclidean winner is updated [116].

Initial codebook C(0) = {Y¥;(0), Y2(0),...,Yx(0)} can be chosen arbitrarily,
satisfying the only condition that no two or more codevectors can be equal.

Assuming independent and identically distributed random vectors are fed
to the algorithm at each iteration n, convergence of KLA, in the case of a sin-
gle vector codebook was proved asymptotically, as n — oo [116]. A sufficient

condition for the convergence is found to be

a(n —1)
> re = 1. A48
a(n) > Tham—T) where «(0) = 1 (4.48)
Then
Y a(n) =00 (4.49)
n=0

meaning, although a(n) monotonically decays to zero, its sequece sum should
diverge. The reason is, if there exists a single codevector, through the iterations
of Equation 4.46, the value of that codevector should finaly converge to E{X}.
Then, Equation 4.46 would become a mean estimator, and if Equation 4.48 holds

its estimation error variance asymptotically becomes zero.
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However there is no rigorous proof of convergence for the multiple codevec-
tor case, for which the distortion function is not necessarily convex and contains
multiple local minima. But if it is assumed that the algorithm converges to some
extent, the step-size would decrease so much that the behaviour of each codevec-
tor in its own cell will obey the asymptotic property discussed above. Therefore,
convergence of each codevector to the centroid of its own cell would be guaran-
teed, and centroid condition would be met to yield a locally optimum codebook.

The lowest convergence time was shown to be achieved with the unique
schedule of a(n) = 1/n. However in practice, hyperbolic, or exponential or linear
step-size schedules are prefered [116]. In the above learning formula of Equa-
tion (4.46), notice that each codevector has a step-size updating formula of its
own. This was not the case in the original proposal by Kohonen. But, treating
each codevector individually and hence updating its assigned step-size only when
it is the Euclidean winner fits better to the convergence analysis of KLA. Also
it gives quite a flexibility in step-size scheduling so that schedules for different
input types can be derived.

The neighborhood function of Equation (4.46), is used to ensure that enough
number of codevectors would be affected with the presentation of a new train-
ing vector. If only the Euclidean winner is updated throughout the iterations
(i.e. there exists no neighborhood), it might happen that some of the codevec-
tors never win due to poor initial conditions. Solutions for better neighborhood
mechanism can be derived (see Section 4.3.4), both to solve this problem, and
also for better partitioning the input space for obtaining better local minima of
the distortion function.

Since KLA updates the codebook with each presentation of a training set
vector it acts on instantaneous gradient. Thus, unlike true gradient algorithms
like GLA the distortion function is not necessarily decreases monotonically and
so it may escape from poor local minima. Another important property of KLA is
that since it is an on-line algorithm, KLA is amenable to parallel implementations.

Finally as a practical note, although the original algorithm requires a new
training set vector to be introduced at each iteration, in our experiments we have
used a limited training set in our application, but introduced it to the algorithm

repeatedly, until the algorithm converges.

o s
R yenkel
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4.3.4 Stochastic Kohonen Learning Algorithm

Recall from Section 4.3.1 that GLA generates only locally optimum VQ
codebooks. To achieve globally optimal performance, algorithms must be devised
that do not share the deterministic nature of GLA. A family of optimization
techniques called ‘stochastic relaxation’ (SR) is characterized by the common
feature that each iteration for the search for the minimum of a ‘cost function’
consists of perturbating the ‘state’, i.e. the set of independent variables of the cost
function, in a random fashion. Applying SR to VQ cost function is the distortion
function and the state is the codebook. The magnitute of the perturbations
decreases in time so that the convergence is achieved with probability one. Since
the perturbation can be such that it increases the cost function, the non-zero
probability of accepting the higher cost enables the SR techniques to escape
from poor local minima and find a solution closer to the global minimum if
the perturbations are ‘frozen’ sufficiently slowly. An important family of SR
algorithms is known as ‘simulating annealing’ (SA) [117]. It was Kirkpatrick et
al [118], who introduced a general way of finding the global minimum of a multi-
dimensional non-convex cost function defined over a finite state space under the
name of simulated annealing. They chose such a name for their method, as they
were greatly influenced from a scheme of simulating the dynamics of a melted
substance in a heat bath. Since the cost function in their method is decreased in
a non monotonic way, it was a stochastic procedure. Later SA is successfuly used
to solve the problem of globally optimum codebook design in VQ [119]. A detailed
discussion on the design of globally optimum vector quantizers using SA and SR
can be found in [120]. SA has also been applied to still image compression. In
[121] comparison of SA with other codebook generation techniques for VQ image
compression 1is given.

Although SA achieves the goal of globally optimum codebook generation
the execution time of the algorithm is very long, hence not suitable for practical
applications. As a practical example, if codebook size is 256 and vector dimension
is 4, it is about 1050 times slower than GLA for a training set of zero-mean, unity
variance uncorrelated Gaussian samples and about 1650 times slower than GLA
for a training set of zero-mean, unity variance Gauss-Markovl source of p = 0.8

[121]. Inspired from SA algorithms in [116] an algorithm called ‘soft competition
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scheme’ is developed, that modifies the neighborhood and step-size function of
KLA in a stochastic manner, therefore can be called as ‘Stochastic Kohonen
Learning Algorithm’ (SKLA). SKLA is only about 20-25 times slower than GLA.
SKLA has been adapted to image sequence coding with slight chat;ges in {122].
Consider a training-set X = {)?1, X M} of M k-dimensional vectors and
a state vector S of size M which contains corresponding states (e.g. codevector
labels) of each vector in the set. X can be partitioned into N distinct regions
R (e.g Voronoi partitioning of a vector quantizer), by assigning each vector X;
in X, one of N states s; € {1,2,..., N} such that if X; € R., then s; = n (a
typical VQ encoding of the training set). Finally, consider a distortion value

D(§ ), associated with any S ie. any partition of X’ such that
— M - -
D(S) =) di(X:,Ys,) (4.50)
i=1
where Vn is the centroid of the region R,

Theory of simulated annealing, states that, the distortion value D(g), asso-
ciated with the state vector .5_", can be globally minimized by iteratively updating
s using any stochastic transition rule (e.g. each iteration of a codebook design
algorithm) between the states which yields an inhomogenous, finite-state Markov
chain with Gibbs stationary distribution of P7(§:) = Ae“D(g)/T, if the param-
eter T' 1s reduced sufficiently slowly. Here Pv(g) is the probability to attain a
specific state S. Now let’s make an analogy between the VQ codebook and the
state vector 5. Assume that, training set of vectors are encoded using the up-
dated codebook yielded at the end of each iteration of a codebook generation
algorithm, and also assume that the labels of the encoded training set vectors
are saved in a so called state vector. Then the codebook generation algorithm
turns out to be a vector source. If this has the above property of distribution, the
source will eventually converge and start to output identical vectors. The theory
of simulated annealing promises that, the partition imposed by this final state
vector on the training set, is the globally optimum partition.

Reconsider Equation (4.46), the codebook update rule of KLA. Due to
the analogy stated above the neighbourhood function is the stochastic transition
rule between the successive updates of the codebook such that overall iteration

process would represent a Markov chain with Gibbs distribution. Hence, direct

dependence of neighbourhood function on the Euclidean winner is dropped and
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we change h;(7*,n) in Equation (4.46) into A(z,n), where

. - =4l R ()= Fi(n—-1)]
1 with probability p = Ae : T

0 with probability 1 — p.

h(i,n) = (4.51)

Step-size function, obeying the conditions in Equation (4.48), can be selected as,
1

;‘.'(;%_—1) + h(z,n)

a;(n) = ; where a(0) = 1. (4.52)

T in Equation (4.51) is the temperature and it is decreased sufficiently slowly
at each pass of the training-set. In the limit T — 0 (freezing), probability of
h(z,n) becomes 1 for the Euclidean winner and 0 for others, meaning that the
algorithm should have been converged by then. The cooling schedule chosen
in our experiments is T(m) = ToA™™, where m is a counter which is increased
by one at each sweep through the training-set. Choice of 75 and A depends on
the statistics of the training-set vectors. In our experiments with slowly varying

image sequences we have chosen Tj as 15° and A as 1.07.

4.4 DCT Domain Classified Vector Quantization

Generally, classified vector quantization (CVQ) paradigm, involves the sub-
division of the VQ codebook so that each subcodebook could be used for vector
quantizing a particular class of input data. A classifier capable of differentiat-
ing between different types of features determines the class of an incoming vec-
tor and switches the appropriate codebook for that class to quantize the vector
(See Figure 4.3). Subcodebooks may have different sizes and each of them can be
generated by a different distortion measure or may use a different measure while
chosing a codevector to encode a given vector. The rationale for this approach
is that numerous small codebooks, each tuned to a particular class of vectors,
can provide comparable or perceptually higher image quality with lower search
complexity as compared to a single large codebook.

All the subcodebooks can be concatenated to form a union codebock and
so all codevectors can be labeled from 1 to N. Then no overhead information
would be required since class information would be included in the label of the

codevector already. N is the size of the overall codebook and

M
N=YN. (4.53)
=0
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Figure 4.3. A DCT-CVQ system for Intra/interframe coding of image sequences

where M is the number of classes and N;s are the subcodebook sizes. It is also
possible to separately encode the class label (from 1 to M) and the codevector
index within that class (1 to N;). But then, M and N;s should be a power of 2
or else, the result would be a variable rate code. That is, codevector labels would
have variable lengths.

In DCT domain some of the classification criteria may be

e Block activity : A measure of activity can be used to classify the trans-

formed blocks. The most popular measure of activity is the AC-energy



content, which was first proposed by Gimlett [123]. Such an activity mea-

sure can be expressed as

N N
E*C = [Zza(i,j)ﬁ(i,j)} — a(0,0)£*(0,0). (4.54)

i=1 j=1
where a(7,7) is a weighting factor which is suggested to be inversely pro-
portional with the corresponding coefficient variance by Gimlett. Later,
McLaren and Nguyen, proposed that it should be proportional to the fre-
quency of the corresponding coefficient to account for the human visual

system properties [124].

e Spatial edge type : Although edges constitute only a small spatial portion
of the images, they carry most of the perceptual information content. The
reason is, there is neurobiological evidence that there are special cells in the
brain, which are sensitive to edges and psychophysiological evidence that
these cells form groups in the visual cortex, each group being sensitive to a
certain orientation of the edge, within a range of angles (see Section 3.4).
Therefore human visual perception is very suceptible to the degradations
along edges. On the other hand, none of the metrics that can be used in
VQ accounts well enough for the degree of distortion in edges. In particular
Euclidean distance is a poor measure for the edge distortion. Since there
exists relatively less number of edge blocks in the training set and there is no
preferential treatment to them by the distortion metric, edges are not well
represented in the codebook. That’s why, all VQ schemes suffer from edge
jaggedness, in other words the staircase effect along the edges. Even when
there exists enough number of edge codevectors, still a given suitable metric
for VQ, like Euclidean distance, does not ensure that edge vectors would
be coded by edge codevectors. These facts demonstrate enough reason for
the attactiveness of CVQ using edge-oriented classifiers. In DCT domain
edge-oriented classifier can be designed, since it is known that, certain DCT

coefficients reflect orientation and distinction of various edge patterns [125].

Upon making the decision on the classification criteria, a suitable method
for designing the codebook must be devised, and the problem of obtaining optimal
subcodebook sizes must be solved. In the following section existing methods for

this task and a novel classified VQ, codebook generation algorithm will be given.
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4.4.1 Existing Methods and Their Weaknesses

Notice from Equations 4.32, 4.36 and 4.37 distortion incurred by vector
quantization increases with vector variance and decreases with codebook size.
Therefore, for each subcodebook to contribute equal amount of distortion to the
overall distortion subcodebook sizes should be inversely proportional to the vector
variances of the vectors to be quantized with that s’ubcodebook. This problem of
optimum subcodebook size determination in CVQ is analogous to the optimum
bit allocation problem in block quantization and should certainly be solved for
optimum performance.

The first systems with classification in the literature were using AC-energies
as classification criteria having the form of Equation (4.54). Chen and Smith used
it with no weighting factors to classify the transformed image frame subblocks into
equally populated levels [27]. The number of classification levels was generally
dependent upon the image size, coding rate, and dynamic range of AC energies
of the subblocks. Then they employed scalar quantization with optimum bit
allocation. Adaptation of such a classification scheme to CVQ is simple. In
that case, average AC energies of the subblocks (vectors) in a block would be
comparable to the average vector variance of vectors in that level. But then, the
range of vector variance would be large for reasonable number of levels and the
problem of optimum subcodebook size determination would become untractable.

Another classification criteria is edge-oriented classifiacation which was first
introduced by Ramamurthi and Gersho [126]. Their system involved no trans-
forms and they used a spatial edge-oriented classifier which discriminates between
primarily shade (no gradient), midrange (moderate gradient, no edge), horizon-
tal edge, diagonal edge, and mixed (no definite edge but significant gradient)
image subblocks. They obtained subcodebooks for each class using full-search
GLA and employed a brute-force method to obtain optimal subcodebook sizes
by generating locally optimum subcodebooks for every permissible size until an
asymptotically true relation of distortion (which is not valid for all classes!) is
met partially.

For edge-oriented classification in DCT domain, one can also use the DCT
coefficients which are on the first row (V; = cp;,7 = 1,..., N) and first column

(H; = cig,2 =1,...,N) of the the DCT block of size N x N [127]. The usage of ‘
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V; and H; for edge detection is as follows.

e Their magnitude reflects the distinction of the edge i.e. how fast the inten-

sity changes within the edge.

e Their polarity reflects the orientation of the edge i.e. whether the intensity

changes from darker to lighter or vice verse.

o Their relative magnitude reflects the direction of the edge i.e. the angle of

the edge with respect to horizontal or vertical axis.

Observe in Figure 4.4 how values of the edge feature vector formed by using
just V; and H, reflects the above listed properties of the edge. In the Figure 4.4,
each (Hq, V) pair corresponds to a spatial edge pattern and a simple model of
that pattern is drawn on the plane. Note that, the models on the circular path
corresponds to the same y/ H + V;%. As this value gets larger the edges become
more distinct, as it gets smaller the edges become more pale.

By clustering the edge feature vectors X s = {H1,V1)}, one can obtain a
DCT domain edge oriented classifier, such that an incoming block is classified to
the nearest (Hy, V4) class node (see Figure 4.5).

To solve the problem of optimum subcodebooks sizes D. S. Kim and Lee
[127] assumed that all subcodebooks were of the same size, but they have em-
ployed an edge feature vector clustering scheme with weighted MSE measure.
Then, the classifier clustering scheme would give more weight to less distinct
edge classes which have smaller vector variance and less weight to distinct edge
classes which have larger vector variance. Then the partial distortion contribution
from the classes would be balanced. But then, this weighted clustering scheme
would not form the optimum partitioning on the class feature vector space. J. W.
Kim, and Lee [125] proposed using bit allocation texhniques of Section 3.3, but
this is not possible since the exact quantizer functions of the vector quantizers
for the subcodebooks can not be determined. Moreover, approximate distortion
functions such as those in Section 4.2.1.2 would not hold as subcodebook sizes
are relatively small, in other words not large enough for the high resolution quan-
tization theory results to hold.

Riskin has proposed an optimal bit allocation method for CVQ subcode-

books [128] which uses generalized BFOS algorithm (named after the inventors
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Figure 4.4. Corresponding spatial edge patterns in (Hy, V1) plane

of the original algorithm : Breiman, Friedman, Olshen, and Stone [129}) to de-
termine the lower convex hull of the distortion functions of the quantizer. But
this method, also, requires unacceptable computation time for the practical ap-
plications demanding real-time encoding.

In fact, none of the above methods are appropriate and efficient for adaptive
real-time applications. In the next section, we will present a new method for

generating both the codebook and the classifier simultaneously in DCT domain.
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Figure 4.5. An 8-Node DCT domain direct classifier

4.4.2 Classifier Constrained Vector Quantization

A ‘classifier constrained vector quantizer’ [130] maps each input vector
X € IR* onto a set of codewords, Q()?) = 17;] where ﬁ] € C; and C; C C C R¥,
subject to the constraint that all codewords in C; are of the same class as the
source vector. Given a vector Z € IR*, let Zf € IR™ be the class feature
vector of dimension m < k, extracted from Z by choosing certain elements of
7. Assume that the classifier partitions feature vector space into M regions,
P = {P,..., Py}, and the quantizer partitions input vector space into N regions,
R = {Rm,..,RLNI,...,RM,I,..,RM,NM}, so that I—/; is the representative feature

vector of the region P;, and Y;; is the representative vector of the region R; ;.
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Then y(X) = i if X; € P, is the classifier, o(X,7(X)) = j if X € Ry,
is the encoder and ,B(j,'y()_(" ) = )71( %), 18 the decoder. For generating optimum

quantizer and classifier partitions, the average quantizer and classifier distortions,

Dg(a, 8,7) = E[du(X, B X, (X)), 7(X)))]

and
Doi(e, 8,7) = Eldm(B(d X, 7(X)), 7(X))s, V,2))]

where

- - 1 r
dr(Aa B) = ;Z(ai - bi)2

i=1
A= [(Zl, QA2yeeey (ZT]T, B = [b], bz,..., b,-]T
must be jointly minimized. Analogous to entropy constrained VQ [131], methods,
CCVQ algorithm [132], minimizes a Lagrangian modified distortion expression

Jx = Dg(a, B,v) + ADci(e, 8,7), by alternately improving «, 8 and «. In other

words, starting with an initial coder (a9, 8(®, 4(®)), a transformation
(ot glt+1) Ay = (o), B, 4(1)) (4.55)
is employed as follows:

1. Fixing ¥ and B®, o(+1) is calculated to minimize Jy(a(*t1, gt ~(t)),
This can be done by searching those codevectors which are in the same
class as the incoming training vector and chosing the label of the nearest

one to encode the training vector.

2. Fixing v and ot B(t+1) is calculated to minimize Jy (oltt1), g+1) 4(8)),
This can be done by chosing the centroid of the training set vectors which

are mapped to the same label in the previous step, as the new codevector

for that label.

3. Fixing ot and g+, 441 j5 calculated to minimize
J/\(a(t+1)7;B(t+1)77(t+l))'

This can be done by the chosing the centroid of the class features of the
training set vectors which are found to be in the same class, at the previous

steps, as the new node for that class.
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Steps (2) & (3) can be realized by the generalized Lloyd algorithm (GLA),
while Step (1) can be implemented by a full search algorithm since the subcode-
book sizes are small enough.

Here is the outline of the algorithm with Steps 1,2, and 3 corresponding to

the same steps above :

Step 0 Start with :
A Lagrangian multiplier A,
A termination constant ¢,
A codeword index set IC,
A classifier-word index set Z,
A training set of vectors X’ C IR¥,
An initial codebook {8)(5,%)};e7 e1
an initial classifier {7(0)()?)})3 X
Initialize :
The 1teration counter t=1,

The Lagrangian distortion J(®) = co.

Step 1 (X, O(X)) = argmin du(X, 500, 79(X)).
Step 2 81)(j,5) =aggmin, Bld(X, V) O(X) = i, a+D(X, 48 = .
Step 3 V; =azgmin, Eldn(V, B*1(5,5);) | a*1(X3) = j].
Step 4 J+1) — DQ(a(t+1)’/3(t+l),7(t+1)) + ,\DC,(a(‘“),/j(tH),7(‘+1)).
Step 5 If | J®) — Jt+D | /JE+1) < ¢

SET t=t+1 and GOTO (1)

Otherwise, QUIT.

The above CCVQ algorithm generates jointly optimal subcodebooks and a
classifier. Optimality is in the sense that the distortion is minimized. That is the
input vector space and classifier vector spaces are jointly optimally partitioned.
However, optimality is local, as basicly GLA is used to minimize the distortion
which is proved to give only locally optimal results (see Section 4.3.1). GLA is
chosen as the iterative technique to minimize distortion, because it is the fastest
one among others presented in the sections above.

One very important virtue of this joint optimization of codebook and clas-

sifier simultaneously is that optimal subcodebook sizes are obtained as a side
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product. Therefore, CCVQ should theoretically outperform all other CVQ meth-
ods discussed in Section 4.4.1, which suffer from the problem of non-optimal

subcodebock sizes.

4.5 Experimental Work

Simulations of the GLA, KLA, SKLA, and CCVQ algorithm has been done
on 256x256, 8 bpp, 150 frame image sequence Miss America. Each frame of
the sequance is divided into 8 x 8 subblocks and DCT-II of each subblock is
taken. DC coefficients are scalar quantized separately into 8 bits using a 256
level, non-uniform, leoyd—Max quantizer. Since DCT non-DC coefficients are
highly correlated along the zig-zag scan path and 25% of them is presumed to
be sufficient for reconstruction with subjectively unnoticable distortion [8], 14
non-DC coeflicients are zig-zag scanned to form vectors. Codebook size is chosen
to be 256, so that resulting bit-rate would be 0.25 bpp for each frame. A fine
initial codebook extracted from the first frame of the sequence using PNN is fed
to GLA and CCVQ algorithms. For SKLA and KLA algorithms initial codebook
is obtained by sampling the training set formed from the first three frames of the
sequence. Then first frame vectors are used as the training-set for all algorithms.
Full search VQ with the generated codebooks are used to encode and decode all
150 frames at 0.25 bpp without codebook refreshment.

Overall PSNR performance of the algorithms, together with their codebook
generation CPU-time on SUN Sparctation 10/30 with non-optimized C-language
source codes and number of iterations they required for the particular experiment
performed can be found in Table 4.1. Note that, at the given execution time
and number of iterations in Table 4.1, CCVQ algorithm generates not only the
codebook but also an 8-node classifier. Besides it can be observed from the
execution times in the table that CCVQ is the fastest one among others due to
the decreased search time by classifiacation. The clustering map of the classifier
nodes for this experiment can be found in Figure 4.5.

PSNR performance of the algorithms can be observed in Figures 4.6, 4.7,
and 4.8.

For the sake of comparison CCVQ algorithm is also tested with a ready to

use initial codebook and classifier formed from many head and shoulder shots of
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Table 4.1. Comparison of overall PSNR and required CPU time for the four
different algorithms. Iterations for SKLA and KLA indicates the number of

times that the complete training set is introduced to the algorithms

PNN-GLA | SKLA KLA | PNN-CCVQ

PSNR 34.19dB | 34.07 dB | 33.85 dB | 34.00 dB
TIME 54.1 s 2697.1 s | 1896.9 s 29.6 s
ITERATIONS 12 187 103 20

Table 4.2. PSNR performances of GLA, SKLA, KLA, and CCVQ algorithms
with initial codebooks generated using PNN on frames 0,46,116, and 149 of the

sequence.
PNN-GLA | PNN-SKLA | PNN-KLA | PNN-CCVQ
Frame #0 |  38.99 38.23 36.94 38.97
Frame #46 34.72 34.68 34.35 34.43
Frame #116 34.59 34.51 34.33 34.38
Frame #149  33.41 33.61 33.41 33.53

human speakers. Starting with such an initial codebook and classifier, CCVQ
algorithm is executed using the first frame vectors of the sequence for training.
PSNR results of this newly generated codebook compared to those of CCVQ that
accepted PNN generated initial codebook and classifier mentioned above, can be
found in the Figure 4.9. Observe that CCVQ still performs well with overall
PSNR 34.00 dB.

Also see Figures 4.11, 4.12, 4.13, and 4.14, for a subjective evaluation of
your own on some of the encoded frames of the sequence, and compare them with
the original frames in Figure 4.10. Table 4.2 can be referred for corresponding
PSNR performances. Notice that, since the codebooks are generated using the
vectors of the first frame of the sequence as training set vectors, PSNR of the

first frame is very high.
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4.6 Conclusion

Due to the substantial storage and computational costs typically associated
with VQ (see Section 4.1) one should always check the performance of VQ, in
any specific application, with respect to SQ to help assess the benefits accrued by
VQ. For that purpose, below is the results of block quantization with optimum
bit allocation applied to the sequence Miss America at 0.25 bpp rate.

The overall PSNR performance was 32.72 and optimum bit allocation map

was found to be

83 1000O00D0
3 00000O0O0CTO0
1 0000O0O0CO
000O0OOOOTD
000O0OOGO OO
0 000O0O0OO0CO
0 000O0O0COO
| 00000000

PSNR performance for individual frames is compared to that of CCVQ in
Figure 4.15.

This result also confirms experimentally that VQ is superior to scalar quan-
tization and should therefore be favourable especially for rates lower than 0.5 bpp.

A very important issue, also covered in this chapter is the novel CCVQ
algorithm. CCVQ generates locally and jointly optimal subcodebooks and a
classifier faster than the other methods tested. Due to joint optimization optimal
subcodebook sizes are obtained. Having optimal subcodebook sizes equalizes
the partial contribution of each subcodebook to overall distortion, and hence
minimizes the distortion in the CVQ system. From this point of view CCV(Q

outperforms any other existing classified vector quantization system.
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Figure 4.10. Original frames of number (a) 0 (b) 46 (c) 116 (d) 149.
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(a) (b)

(©) (d)

Figure 4.11. First frame of the sequence compressed with (a) VQ with GLA (b)
VQ with SKLA (c) VQ with KLA (d) CCVQ.



() (d)

Figure 4.12. 46" frame of the sequence compressed with (a) VQ with GLA (b)
VQ with SKLA (c) VQ with KLA (d) cevaQ.



(a) (b)

(©) (d)

Figure 4.13. 116" frame of the sequence compressed with (a) VQ with GLA (b)
VQ with SKLA (¢) VQ with KLA (d) CCVQ.



(c) (d)

Figure 4.14. 149" frame of the sequence compressed with (a) VQ with GLA (b)
VQ with SKLA (c) VQ with KLA (d) CCVQ.
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CHAPTER V

INTERFRAME CODING FOR SCALAR QUANTIZATION AND VECTOR
QUANTIZATION IN DCT DOMAIN

The main purpose of data compression is to excise the redundant informa-
tion in a source of data. In the case of image sequences as the source of data the
redundant information is both spatial and temporal. In the previous chapters op-
timal ways of encoding each frame of an image sequence using scalar quantization
and vector quantization have been explained. These methods are optimal in the
sense that they almost completely decorrelate spatial information in the image
sequence. The subject of this chapter is the ways of removing redundancy in
the temporal direction. As a matter of fact, although it depends on how fast the
objects are moving in the view image sequence captured, typically the correlation
in temporal direction is much larger than that in spatial detail.

Once spatial compression on the image sequence frames is carried out any
interframe coding technique can be employed on the compressed data. The em-
phasis in this thesis has been on intraframe compression. However, for interframe
compression, DPCM followed by entropy coding is tested for scalar quantization
case and for vector quantization, a method for generating fixed rate code is ex-

amined, which is called label replenishment.

5.1 Interframe Coding for Scalar Quantized Image Sequence Frames

Among many possible techniques a simple variation of DPCM is chosen,
just to demonstrate the potential of compression in the temporal direction. As
the test sequence, again 150 frame Miss America sequence is chosen. Note that,
Miss America is a 50 fr/sec sequence.

In terms of quantized DCT subblocks, the difference of each coefficients

label in two successive frames of the sequence is found. Collecting label difference
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Figure 5.1. Probability density function of differences in non-DC DCT coefficient
(0,1) which has been scalar quantized into 6 bits.

data for each coeflicient, probability density functions for all coefficients which
are quantized into more than one bit is found. The optimal bit allocation map

for scalar quantization, found in Section 3.5 is used which is rewritten below :

(8 6 43221 1]
54321000
43210000
32100000
20000000
20000000
1000000 1
00000000

In Figures 5.1, 5.2, and 5.3 probability density functions for some of the
coefficients can be observed.
Now, assume an entropy coder which would encode the label differences

into variable number of bits equal to their entropy. Existence of such prefix-free
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‘Figure 5.2. Probability density function of differences in non-DC DCT coefficient

(1,0) which has been scalar quantized into 5 bits.

codes have been proved [1] and further Huffman proposed such a code [133]. In
Table 5.1 corresponding entropies of label differences are given for all coefficients
which have been allocated more than one bit. For those coefficients, encoded
into one or zero bits, there is no need for further encoding. Summing up the
given entropy values in the table and adding the one bit encoded ones, one can
conclude that 30.489063 + 7 = 37.489063 bits is actually enough for encoding
each 8 x 8 DCT block and still obtain the same PSNR. performances given in
Figure 4.674823798. The rate will be 37.489063/64 = 0.59 bits per pixel and if
50 fr/sec transmission of frames of size 256 x 256 is required, would demand a

channel rate of 1933312 bits per second.

5.2 Interframe Coding for Vector Quantized Image Sequence Frames

It is interesting that, in the literature only a few methods have been pro-
posed for interframe coding of VQ compressed image sequence frames [134], [135],

[136], [137]. Again, just for the sake of demonstrating the potential of attainable
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which has been scalar quantized into 8 bits.

compression, the simple method of label replenishment is chosen.

A label memory is devised, which keeps the VQ codevector label of each
8 x 8 DCT subblock of the previously encoded frame. Then, a comparison with
the labels of the current frame is made and in case of coincidence an escape
bit of 0 is sent. For differing labels escape bit is turned to 1. As mentioned
before in Section 4.5, DC coefficients, even in VQ employing systems, are better
scalar quantized. Although the differential scalar quantization labels for these
DC coefficients can be entropy coded, like in the previous section, it is, now,
preferred to design a fixed rate code. Therefore, examining Figure 5.3, for the
probability density function of the differential DC coeflicient labels, it is observed
that 3 bits would be enough to represent differences within 48, which covers the
range of highest probability. Larger differences would be truncated, causing an
ignorable degradation.

Experiments are carried on temporally sub-sampled Miss America sequence
into 8.33 fr/sec, since this frame rate is sufficient for such a slowly varying se-

quence like Miss America. Afterall, if necessary frame interpolation can be made
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Table 5.1. Entropies of differential DCT coeflicient, which are scalar quantized

into the given number of bits.

Coeflicient | # Bits Allocated | Entropy (in bits/sample)
(0,0) 8 2.700021
(0,1) 6 2.663982
(0,2) 4 1.938385
(0,3) 3 1.766086
(0,4) 2 1.418827
(0,5) 2 1.787335
(1,0) 5 1.985687
(1,1) 4 1.884603
(1,2) 3 1.700194
(1,3) 9 1.600633
(2,0) 4 1.794678
(2,1) 3 1.671292
(2,2) 2 1.498267
(3,0) 3 1.587847
(3,1) 2 1.489350
(4,0) 2 1.488968
(5,0) 2 1.512908

at the receiver side of the system. With CCVQ as the VQ technique, simulation
shows that, including the escape bit, the required transmission rate would be
80853 bits per second, meaning that compression to 80853/(8.33 x 65536) = 0.148
bpp is achieved. Since actually 50 fr/sec were considered, the effective com-
pression is 80853/(50 x 65536) = 0.0247 bpp and compression rate achieved is
8bpp/0.0247 = 323 times.

Notice that frame size of the sequence is actually quite large compared
to those used in many very low bit-rate systems. A typical frame size would
be 112 x 96, in which case the demand for transmission rate may be reduced
even down to 14400 baud, permitting a possible use on the existing telephony

lines. Moreover, entropy coding would also reduce the bit-rate with no additional
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distortion, but with a requirement for buffering.
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CHAPTER VI

CONCLUSION

Transform Coding schemes are effective approaches for image data com-
pression. Among various transforms investigated for image coding, DCT is pre-
ferred from the standpoints of ease of implementation and closeness to optimum
Karhunen-Loeve transform in energy compaction. Due to such virtues, DCT
is primarily used in many image compression systems including all the existing
standards for image compression.

Since DCT coefficients have real, continuous values, their lossless transmis-
sion over any finite bandwidth channel is impossible, and hence quantization is
necessary. In fact, this is the case for all unitary transforms. Practical quantizers
which map their input into finite number of levels (reproductions) always intro-
duce error. However, this finite mapping also accomplishes compression. This
opposing effects of quantizers with respect to communication engineers’ wishes
can only be dealt by optimizing the trade-off between the distortion and com-
pression (rate). Given the output rate the optimum quantizer in this aspect is
the one which introduces minimum distortion. In this thesis, optimal quantizers
are sought for compressing image sequence data down to low bit-rates and very
low bit-rates. For a quantizer to be optimized, information about the statistics of
the source is essential. From this point of view transform domain quantization is
appealing, since transform coefficients are actually weighted summations of the
input and therefore contain statistical information. Similarly, intra/interframe
coding is also appealing in this sense as quantizers used would act on spatial data
rather than temporal (unlike motion estimation/ compensation paradigm) which
have more stationary statistical properties.

In order to determine optimal quantizers and optimal systems which uti-
lizes such quantizers, an extensive survey through the literature is necessary. An

example from Section 3.2 can be given to clarify, the need for a careful literature



survey. Recently, Eggerton and Smith, [35], claimed that Cauchy distribution
better represents the actual distribution of non-DC DCT coefficients for images.
However, as shown in Equation (3.11), Cauchy distribution is not log-concave.
Consequently, since it has been proven by Trushkin [46] that Lloyd-Max equa-
tions has a solution (meaning an optimal quantizer exists), for only log-concave
distributions, there exists no quantizer, which is optimal for it. Therefore even
if Cauchy distribution fits better, it has no use in practice. In case of scalar
quantizers, this detailed survey has ended up with an optimal block quantiza-
tion system which uses pdf optimized scalar quantization and marginal analysis
for bit allocation, which has not been tried in the literature before. Moreover,
to adopt a multidisciplinary approach, incorporation of HVS properties has also
been tested. As a result, the best performing scalar quantization system, possible,
without entropy coding is obtained. It is observed that incorporation of HVS in
the way Section 3.4.3 describes does not exhibit sufficient improvement to com-
pensate for the additional complexity. However, it “exhibits” an improvement.
As conclusion, the approach is promising and may well be a future direction of
research.

Shifting the attention from scalar quantizers to vector quantizers, a choice
has been made in favour of classified vector quantization systems. The reason
is that, the computational complexity of the resulting intraframe coding system
should be decreased for the proposed systems’ being useful at practical real-time
applications. Under scrutiny, it has been observed that all existing classified VQ
schemes were lacking optimality due to arbitrary choices of subcodebook sizes.
The major contribution of this thesis work for data compression science, emerges
at this point. A new classified VQ scheme which jointly optimizes the quan-
tizer and the classifier is introduced (the CCVQ algorithm). This new algorithm
generates optimal VQ subcodebooks for each class with optimal sizes. Hence,
it solves the problem of having optimal subcodebook sizes which all the other
CVQ schemes suffer from. The resulting classified VQ system which had quite a
reduced complexity and considerable edge-fidelity, is then compared to a number
of full-search VQ techniques which aim to produce optimal codebooks. It is a fact
that no VQ codebook, generated by remaining obedient to some kind of a rule

(such as classification), can introduce same or less distortion then an independent
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optimal codebook. Hence, the classified VQ codebook obtained via CCVQ algo-
rithm would certainly introduce more distortion than the full-search codebooks
used for testing. However, experimental results revealed that the performance
of the new scheme is quite comparable. Therefore, this result has the promise
that the new scheme can be very useful for image sequence compression since it
is fast, efficient, and has high subjective fidelity. Again for further research, ways
of incorporating HVS to VQ can be sought, which has only very rare examples
in literature.

Another, less covered area in the literature is the interframe coding tech-
niques using the compressed frames. Although, the potential of such techniques
has been demonstrated in Section 5.2, in the literature there has been very lit-
tle effort to develop methods for temporal codebook adaptation, efficient label
and/or codeword replenishment. These problems which have not been dealt in
this thesis, due to the focus on quantization and intraframe coding remains to be
a wide-open research frontier.

Comparing best performing scalar quantization techniques to vector quan-
tization, this thesis work also contains evidence that VQ is better than scalar
quantization both in theory and experimentally. However, because of the sub-
stantial computational and memory costs associated with VQ, scalar quantization
can be preferred at high rates. In addition scalar quantization is more robust,
especially when used in an operational environment of channel errors. This is the
reason why scalar quantizers are, until now, have been preferred by the existing
standards like JPEG, and MPEG-1. As a result it can be concluded that VQ can
be of great use for rates below 1 bpp.

In this thesis work, an attempt has been made to extensively survey existing
solutions for the problems in quantization that the thesis addresses. Optimal
methods are clearly identified, in spite of the fact that the underlying background
in the literature was quite confusing. Some of these optimal methods have been
brought together to obtain optimal systems, which have not been tested in the
literature before. From this point of view, this work may be very valuable for
those interested in the subject and those looking for new research areas under the
subject of quantization, which has already been studied for about half a century,
now.

On the other hand, a new, optimal method, CCVQ, has also been proposed.

134



Optimality is based on the statistics of the source, therefore, this new method can
readily be used for coding of any source type, where classification and compression

is needed. Image sequence compression is just a mere application.
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APPENDIX A

ILLUSTRATION OF VISUAL ANGLE

Quantitatively, the visual angle is calculated as follows :

tan A = g—o (A.1)

(o]

where S, is the height of the object, d, is the viewing distance, and A is the
visual angle subtended at the viewing distance (see Fig. A.1). Generally, normal
viewing distance in image coding is assumed to be four times the picture height
as the pictures are displayed in monitors.

The visual angle is measured in terms of degrees. Conversions to other

measures are as follows :

1° (degree) = 60’ (minutes of arc) (A.2)
1" = 60" (seconds of arc) (A.3)

As an example, visual angle of the Sun which is about 93 million miles away
is 30’, while visual angle of the Moon is same as that although it is 240 thousand

miles away.






APPENDIX B

PERFORMANCE MEASURES

In image coding the best way to assess the quality of a reproduction image
or image sequence is of course the inspection of it by a human observer. On the
other hand, some quantitative measures of performance of a compression system
is also essential, mainly to be able to compare with the results in the literature.

Such quantitative measures can be grouped into the following two classes:

1. Objective Measures : These are the statistical evaluations of the error signal,

incurred due to compression.

2. Subjective Measures : Measures which, in some way accounts for the human
visual system, so that they give numerical representations of the assessment

that a human observer would make with bare eyes.

Although there exist many powerful subjective measures and many other
objective ones, the choice of this thesis work favours an objective performance
measure, namely peak signal-to-noise ratio (PSNR).

Assume that an image frame, which is to be compressed contains N x N
pictorial elements (pixels) which have already been quantized into a certain num-
ber of levels and therefore has the value X(¢,7) where i, = 1,..., N. Average

signal power of this input can then be calculated as follows

E{X?} = ot = 3 3 X¥(i, ) (B.1)

=1 j3=1

When this source is encoded and reconstructed by a compression system each
pixel X(z,7) will be reproduced as another discrete value Y (7, 7). Then, average
least squares error (LSE) power (or average mean square error (MSE) power) of

the reconstruction will be

i 1 XA .
E{| X-Y|P}=02 55~ NxNZZIA(z,J)—Y(z,J)IZ- (B.2)

=1 j=1




Normalized LSE (NLSE) distortion can now be calculated as follows

2
52 __ O LSE
e,LSE 0_72:

SNR of this system is defined as follows {4]

SNR 2 10log,o ——,

Oc,LSE

and Peak SNR (PSNR) of it is defined as follows
' Xmin - Xma:c |2

2
O LSE

PSNR £ 10log,,

(B.3)

(B.4)

(B.5)

For typical images represented with 8 bits per pixel, X,,;,, = 0 and X, = 255.

PSNR performance of a system is usually 12-15 dB higher then SNR of it.

Since the quality assessment for most of the compression systems that one

can find in the literature is made using PSNR, PSNR will be the performance

measure throughout this thesis work.



