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ABSTRACT 

 

FROM DIVERSITY TO CONSERVATION: 

INSIGHTS FOR A NATIONAL GENETIC MONITORING PROGRAM 

FOR HONEY BEES IN THE FACE OF CLIMATE CHANGE 

 

 

 

Kükrer, Mert 

Doctor of Philosophy, Biology 

Supervisor : Prof. Dr. C. Can Bilgin 

 

 

March 2024, 155 pages 

 

 

Understanding the population genetics and ecological dynamics of honey bees (Apis 

mellifera) is crucial for their conservation and sustainable management. In this study, 

we collected 460 honey bee samples from 392 localities across Anatolia and Thrace, 

representing five subspecies: A. m. syriaca, A. m. caucasica, A. m. anatoliaca, A. m. 

meda, and the C lineage ecotype from Thrace. Additionally, we acquired samples 

from other regions in Europe and the Caucasus, bringing the total number of samples 

to 691. We genotyped these samples at 30 microsatellite loci and used various 

statistical analyses to explore the genetic diversity and population structure of honey 

bees in the region. Our analyses revealed distinct genetic clusters corresponding to 

the subspecies' distribution and identified transition zones. We further investigated 

the environmental drivers of genetic variation using Gradient Forests and 

Generalized Dissimilarity Modeling. Our results indicate that climatic and 

geographic factors are essential in shaping honey bee population structure. 

Additionally, we analyzed temporal changes in genetic diversity under future climate 

scenarios, predicting potential shifts in the distribution of ancestral groups. 
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Moreover, we assessed protected area resemblance and proposed new conservation 

sites, considering representation and complementarity in ecological similarity. 

Overall, our study provides valuable insights into the population genetics and 

ecological patterns of honey bees, highlighting the importance of considering 

environmental factors for their conservation and management. These findings have 

implications for honey bee biodiversity conservation, management practices, and 

sustainable apiculture in the region and beyond. 

 

Keywords: Honey Bee, Genetic Diversity, Population Structure, Climate Change, 

Conservation 

 



 

 

vii 

 

ÖZ 

 

ÇEŞİTLİLİKTEN KORUMAYA: 

İKLİM DEĞİŞİKLİĞİ KARŞISINDA BAL ARILARINA YÖNELİK BİR 

ULUSAL GENETİK İZLEME PROGRAMINA İLİŞKİN ÇIKARIMLAR 

 

 

 

Kükrer, Mert 

Doktora, Biyoloji 

Tez Yöneticisi: Prof. Dr. C. Can Bilgin 

 

 

Mart 2024, 155 sayfa 

 

Bal arılarının (Apis mellifera) popülasyon genetiğini ve ekolojik dinamiklerini 

anlamak, koruma ve sürdürülebilir yönetim için önemlidir. Bu çalışmada Anadolu 

ve Trakya'daki 392 noktadan A. m. syriaca, A. m. caucasica, A. m. anatoliaca, A. m. 

meda alt türlerini ve C soy hattına ait bir ekotipi temsil eden 460 bal arısı örneği 

topladık. Ek olarak, Avrupa ve Kafkasya'nın diğer bölgelerinden örnekler alarak 

toplam örnek sayısını 691'e çıkardık. Bu örneklerde 30 mikrosatelit lokusunu 

genotipledik ve bölgedeki bal arılarının genetik çeşitliliğini ve popülasyon yapısını 

keşfetmek için çeşitli istatistiksel analizler kullandık. Analizlerimiz, alt türlerin 

dağılımına ve tanımlanan geçiş bölgelerine karşılık gelen farklı genetik kümeleri 

ortaya çıkardı. Gradyan Ormanı ve Genelleştirilmiş Benzeşmezlik Modellemesi 

kullanarak genetik çeşitliliğe dair çevresel itici güçleri tespit ettik. Sonuçlarımız, bal 

arısı popülasyon yapısını şekillendirmede iklimsel ve coğrafi etmenlerin önemini 

göstermektedir. Ek olarak, gelecekteki iklim senaryoları altında atasal grupların 

dağılımındaki olası değişiklikleri tahmin ettik. Ayrıca, korunan alanlara benzeşimi 

değerlendirdik ve temsil kabiliyeti ve tamamlayıcılığı göz önünde bulundurarak yeni 

koruma alanları önerdik. Genel olarak çalışmamız, bal arılarının popülasyon genetiği 
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ve ekolojik örüntüleri hakkında değerli bilgiler sağlayarak, koruma ve yönetim için 

çevresel faktörlerin dikkate alınmasının önemini vurgulamaktadır. Bu bulguların, 

bölgede ve ötesinde bal arısı biyolojik çeşitliliğinin korunması, yönetimi ve 

sürdürülebilir arıcılık için çıkarımları vardır. 

 

Anahtar Kelimeler: Bal Arısı, Genetik Çeşitlilik, Popülasyon Yapısı, İklim 

Değişikliği, Koruma 
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CHAPTER 1  

1 BACKGROUND 

Pollinators and ecosystems constitute a fundamental aspect of Earth's biodiversity, 

with the Western honey bee, Apis mellifera, standing as a central figure in the 

interplay between the two. Pollination of diverse flowering plants by honey bees 

underscores their crucial role in maintaining ecological balance and sustaining food 

security (Potts et al., 2010). However, the ongoing challenges associated with global 

change pose a threat to the persistence and resilience of these vital pollinators 

(IPBES, 2019).  

1.1 Social structure and intracolony communication 

A defining feature of A. mellifera is its highly organized social structure, 

characterized by complex caste differentiation and cooperative behaviors within 

colonies (Seeley, 2009). The colony comprises three castes: the queen, worker bees, 

and drones. The queen is the sole reproductive female, responsible for laying eggs, 

while worker bees engage in various tasks such as foraging, nursing, and hive 

maintenance. Drones, the male bees, are involved solely in mating with queens. 

Their eusocial system contributes to the adaptation of honey bee colonies to their 

dynamic environment. The organization within colonies is orchestrated by 

sophisticated communication mechanisms, predominantly through pheromones and 

dance language (Winston, 1991). The waggle dance is particularly notable, with 

worker bees conveying information about the location of food sources to their hive 

mates (Seeley, 2009). This communication system enhances the efficiency of 

foraging activities and plays a crucial role in the overall functioning of the colony. 
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1.2 Foraging behavior and ecological significance 

While foraging, honey bees serve as crucial pollinators for a multitude of crops and 

fruits crucial to global agriculture and wildflowers (Gallai et al., 2009). Thus, beyond 

their production of honey, the foraging behavior of A. mellifera is pivotal to its 

ecological significance and contributes to the biodiversity of terrestrial ecosystems 

and sustainability of natural habitats (Klein et al., 2007). 

The global distribution of A. mellifera intersects with numerous biodiversity 

hotspots, where unique ecological conditions foster diverse assemblages of flora and 

fauna (Myers et al., 2000). In these regions, honey bees interact with an extraordinary 

array of plant species, forming intricate pollination networks. The co-evolutionary 

relationships between honey bees and local flora contribute to the overall 

biodiversity of these hotspots, making A. mellifera not just a beneficiary but also a 

key player in the ecological dynamics of these areas. 

1.3 Evolutionary history and global distribution 

The genus Apis encompasses 12 extant species grouped into three categories: giant 

honey bees, dwarf honey bees, and cavity-nesting honey bees (Arias and Sheppard, 

2005). While the majority of Apis species are native to Asia, there is one notable 

exception, A. mellifera. Fossil evidence from the Oligocene period (34 to 23 million 

years ago) suggests that ancestral Apis originated in Europe, with subsequent 

migration occurring 23 to 5.5 million years ago during the Late Oligocene or the 

Miocene epoch (Ruttner, 1988; Kotthoff et al., 2013). Two primary hypotheses have 

been proposed to explain this migration: one proposes that ancestral Apis migrated 

from Europe to Asia, where it diversified into the three distinct categories; the other 

suggests that ancestral Apis remained widespread in Europe and Asia, with a later 

colonization of Africa via the Iberian Peninsula near the end of the Miocene, 

resulting in the emergence of A. mellifera, while other Apis species originated from 

Asian ancestors. 
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While it is widely agreed upon that the genus experienced significant diversification 

in Asia, uncertainties persist regarding the ancestral origins and adaptive radiation 

of contemporary Western honey bee lineages and subspecies (Lin et al., 2023). A 

comprehensive compilation based on morphological characteristics suggested four 

main lineages: the A lineage in Africa, the C lineage in eastern Europe, the M lineage 

in western and northern Europe, and the O lineage in western Asia (Ruttner, 1988). 

Recent molecular studies have largely corroborated these lineages and identified 

additional lineages, including the Y lineage for populations in the Arabian Peninsula, 

L in northeastern Africa, and U in Madagascar Island (Garnery et al., 1992; Franck 

et al., 2000; Franck et al., 2001; Whitfield et al., 2006; Meixner et al., 2013; Harpur 

et al., 2014; Wallberg et al., 2014; Cridland et al., 2017; Dogantzis et al., 2021). 

Beekeeping has deep historical roots in Anatolia, dating back to 6600 BC during the 

reign of the Hittite civilization (Akkaya and Alkan, 2007). Türkiye hosts more than 

nine million hives distributed across the country, tripling those in the United States 

and equating to half the total hives in EU countries combined (FAO, 2022). Nearly 

one-fifth of recognized A. mellifera subspecies, including A. m. meda, A. m. syriaca, 

A. m. caucasica, and A. m. anatoliaca from the O-lineage, along with an ecotype 

from the C subspecies group, are found in Türkiye (Kandemir et al., 2005; Kükrer et 

al., 2021). Furthermore, genetic material from the A lineage has been identified in 

native bees along the Levantine coast of Türkiye, thereby amalgamating genetic 

elements from Africa, Europe, and Asia (Kandemir et al., 2006). 

1.4 Local adaptation and global change 

The relationship between humans and honey bees has played a significant role in 

expanding the geographic distribution of A. mellifera. Through anthropogenic 

translocation of colonies beyond their natural range, this species has become globally 

distributed and can be found on every inhabited continent, thriving in climates 

ranging from temperate regions to subtropical and tropical environments (De la Rúa 

et al., 2009). The geographic diversity of the Western honey bee is a testament to its 
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historical ability to adapt and disperse across a wide array of ecosystems. Different 

subspecies of A. mellifera have developed specific adaptations to cope with varied 

temperature, precipitation, and seasonal patterns, showcasing an impressive capacity 

to thrive in climates ranging from subarctic to subtropical (Whitfield et al., 2006). 

As the Earth's climate undergoes rapid transformations, honey bees find themselves 

grappling with a suite of challenges (Vanbergen et al., 2013). Alterations in 

temperature patterns, precipitation regimes, and the frequency of extreme weather 

events directly impact the foraging behavior, reproductive success, and overall health 

of honey bee colonies. The consequences of these changes extend beyond the 

individual level, affecting the intricate social dynamics within colonies and, 

consequently, the broader ecosystem. While the geographic diversity of A. mellifera 

has been a source of strength for the species, it also exposes populations to an array 

of threats. Habitat loss, pesticide exposure, and the spread of diseases pose 

challenges to honey bee populations worldwide (Goulson et al., 2015). 

Understanding how these threats interact with the diverse ecological contexts in 

which honey bees exist is crucial for developing effective conservation strategies. 
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CHAPTER 2  

2 PERSPECTIVE 

(with Cemal Can Bilgin, published in Bee Studies). 

2.1 Abstract 

Quantitative studies concerning the impact of climate change on pollinators are 

generally lacking. Relationship between honey bee diversity, present local 

adaptations and adaptive capacity of subspecies and ecotypes in the face of climate 

change is an urgent but rather poorly studied topic worldwide. Actually, such an 

effort lies at the crossroads of various fields of inquiry. Those include conservation 

of local honey bee diversity, breeding various local stocks for desirable traits, and 

enabling resilient ecosystem services. With the ever-increasing availability of 

genomic tools, now it is more probable than ever to simultaneously fill such gaps. 

Current knowledge and growing awareness on honey bee diversity in Turkey let us 

progress into a more systematic utilization of this resource through development of 

climate-conscious models. Here we provide a framework that takes genomic 

diversity into account for assessing and monitoring various aspects of species’ 

response to climate change which can potentially lead to drastic impacts. 

2.2 Introduction 

As the global environment alters with an increasing pace, ecosystem resilience 

becomes more reliant on the readjustment of species to emerging conditions. For this 

reason, it is important to evaluate, monitor and manage genetic diversity and related 

adaptation capacity based on scientific results. Given the possible angular effects of 

climate change in the upcoming decades, it is necessary to expose how ecosystems 
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can benefit from genetic diversity. In addition, it is essential to develop and test best 

practice protocols to monitor genetic diversity that varies in space and time. 

In terms of honey bee (Apis mellifera) biodiversity, the current direction of 

anthropogenic impact is in line with the loss of native races and the adaptations they 

have accumulated over thousands of years (de la Rúa et al., 2013; Jensen et al., 2005; 

Soland-Reckeweg et al., 2009). The factors that cause colony losses in honey bees 

are very diverse. Possible loss or decline of pollinators are thought to be due to a 

combined result of destruction and degradation of habitats, pollution and pesticide 

related toxicity, pathogen and parasite related diseases, and invasive species many 

of which also effect honey bees (De la Rúa et al., 2009; Goulson et al., 2015; et al., 

2010; Van der Zee et al., 2015). 

Increasing hybridization of honey bee subspecies due to human activities like 

migratory beekeeping and queen and colony trade also threaten honey bees by 

potentially leading to loss of gene combinations that provide local success (Kükrer 

et al., 2021). The absence of effective implementation of documentation and 

monitoring methods for uncovering the genetic basis of adaptive traits makes it 

difficult to understand and resist the trend of human induced loss of adaptive 

diversity. However, it is not possible to achieve success in long-term monitoring 

especially, without developing methods that are inexpensive and feasible but still 

able to provide meaningful data by deployment of technology-intensive procedures. 

New risks and challenges are causing concern as global climate change potentially 

elevate temperatures and aridity in many parts of the world. We have very little 

information - not only in Turkey but in the world - about the overall impact of climate 

change on honey bees, even less on pollinators as a whole. However, most 

predictions suggest that climate change will worsen the situation by introducing new 

stressors (González-Varo et al., 2013; Le Conte and Navajas, 2008). 

A reduction in adaptive genetic diversity will not only be loss of a historic natural 

heritage that is intrinsically valuable but also of various economic and ecological 

benefits for the society (Espregueira et al., 2020). Urgently focusing on the genomic 
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analysis of the relationship of honey bees with their environment in the era of global 

climate change will be to the benefit of both the society and the nature. There is now 

a strong incentive to consider and investigate pronounced influences of 

environmental conditions on honey bees through a perspective of ecosystem 

resilience. 

This article aims to emphasize the need for developing a framework that takes 

genomic diversity into account for monitoring the adaptive capacities of honey bee 

subspecies and ecotypes present in Turkey in response to climate change. 

2.3 It is not known in what way the global climate change will affect honey 

bee populations 

It is predicted that Turkey's climate will in general become hotter and more arid 

(Bilgin and Türkeş, 2008; Bilgin, 2013). However, the impact of this change on 

ecosystems and species still needs to be explored. It is of decisive importance 

whether the pollinators in general and honey bees in particular can adapt to a rapidly 

changing environment due to their role in nature and agricultural activities. However, 

our knowledge of the adaptation capacities in those species is limited. In addition to 

the identification of genes taking a role in adaption to hot and dry environments, 

documenting the existence and distribution of such genes in honey bee populations 

is important too. 

Beyond single genes, the distribution of subspecies is determined under the influence 

of various climatic, geographical and biological factors. These complex factors can 

be combined to model the subspecies’ ecological niches whose long-term 

characteristics will retain themselves under natural selection (Peterson, 2003). It is 

not always true that the combination of environmental conditions in which the 

species can survive is limited only by the current distribution of the species. 

Therefore, when it comes to modeling the distribution of a species, it is also 
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necessary to refer to the basic niche, realized niche and potential niche concepts 

(Sillero, 2011). 

Such models can be used not only to explain the current situation but also to model 

the distributions in the past - especially in the ice ages during which subspecies were 

drawn to refuges (Kozak et al., 2008). If a precise population genetic structure map 

can be generated based on genome surveys making use of high-density SNP data it 

might be possible to clarify how current distributions of the subspecies are affected 

by historical processes. 

Similar models can be used to predict how species and sub-species would react under 

various climate change scenarios (Fordham et al., 2013). Findings to be obtained in 

this way are good candidates as contributions to conservation planning, since they 

provide hints about how ecologically and economically important gene resources 

may change in the future. 

There is no doubt of the various difficulties in terms of distribution modeling in 

species that interact with humans. However, these difficulties do not create 

insurmountable obstacles. For example, in the case of honey bee subspecies, the fact 

that these can be transported by people from one region to another would even be 

useful, as it will facilitate understanding of the potential niche (Jimenez-Valverde et 

al., 2011). 

Of course, the purpose of creating models related to climate change cannot be to 

make definitive judgments about distributions, especially for species that humans 

utilize. The main purpose should be to reveal the stress factors and selection 

pressures that will occur in future ranges. Ecological niche models assist in 

determining relative weights of a wide variety of climatic and geographical factors 

that will require adaptation or species’ adaptive capacities. 

There is already evidence that the current climate might be playing a role in the 

distribution of honey bee subspecies. Separate studies in the Carpathians and on 

Africanized bees in South America indicate that borders of the subspecies might be 
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determined by their capacity to adapt to vital factors such as temperature and 

precipitation (Coroian et al., 2014; Nelson et al., 2017). This is in contrast to artificial 

selection efforts by humans which are not mainly related to climate and geography, 

but rather agricultural characteristics such as yield and disease resistance. 

Considering that honey bees have an intense interaction with the environment, it is 

almost impossible to think that they would not be affected by climate change. 

Therefore, the detection of genes that may prove to be useful in adapting climate 

change and investigating the effects of this change on the distribution of subspecies 

and ecotypes would fill an important gap. 

2.4 Unique adaptations of honey bees in Turkey are not studied at the 

genome level 

Migratory beekeeping and bee trade are shown to act like a hybrid zone mobile in 

space and time, facilitating the partial amalgamation of subspecies in Turkey 

(Kükrer, 2013; Kükrer et al., 2021; Oskay et al., 2019). Despite that, high levels of 

geographically structured genetic diversity of honey bee subspecies in Turkey and 

the need to develop policies to maintain it, was also confirmed. 

But how can the natural population genetic structure be preserved, when about 5 

million of the 8 million hives in Turkey are taken from one region to another each 

year, and tens of thousands of queen bees change hands? Could environmental 

consequences play a certain role in the maintenance of distinct subspecies? In order 

to find answers, it should be examined whether there is a relationship between the 

distribution of various geographical and climatic factors such as temperature, 

humidity, altitude, precipitation regime, winter severity, insolation, flora, and the 

current distribution of subspecies. It can also be tested which particular genetic 

features obtained from whole genome sequencing change in a clinal fashion in line 

with environmental factors (Jones et al., 2013). 
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If honey bee populations are subject to natural selection due to their environment, 

then this selection force would emerge as a stabilizing factor for preserving locally 

adapted subspecies by acting against hybrids, and eventually restricting gene flow 

between populations (Feder and Nosil, 2010). In that case, natural selection would 

counterweigh the effect of gene flow between populations and random genetic drift. 

As a result, it is inevitable to observe different combinations of allele frequencies in 

various populations (Savolainen et al., 2013). Sudden changes are to be expected 

where selection is relatively strong while a smoother transition would be observed 

in regions where gene flow between populations is higher (Beekman et al., 2008). 

Since random genetic drift increases the differentiation between populations isolated 

from each other, the effects of geographical barriers also become measurable. In 

cases where a certain climatic factor or selection is not causative, it should be 

considered that the significant genetic distance between populations depends on 

geographical isolation (Manel et al., 2003). 

The functions of the DNA regions candidates for selection can be easily inferred 

since honey bee genome was sequenced at an early stage and is studied relatively 

well (The Honey Bee Genome Sequencing Consortium, 2006). Therefore, it is 

possible to investigate the relationship between selected genes and environmental 

factors. At this stage, the goal is to make biologically meaningful inferences about 

the functions of any candidate genes selected in relation to climatic and geographical 

variables. 

In a recent study on the relationship between environmental conditions and genome-

wide selection, it has been observed that altitude-related adaptations are preserved in 

two African subspecies where gene flow between them is so intense that it prevents 

observation of a genetic structure (Wallberg et al., 2017). It is normal to expect a 

similar process in Turkey where adaptations to environmental factors were preserved 

despite high levels of gene flow. In another study from Kenya, genes that could play 

an important role in adaptation to various climate types and geographies were 

investigated by comparing savanna, coastal, mountain and desert populations (Fuller 
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et al., 2015). In research conducted on a newly identified subspecies in China, 

researchers focused on the genetic effects created by transition from tropics to the 

temperate zone (Chen et al., 2016). In the Iberian Peninsula where genome-wide 

selection signals based on bioclimatic variables were investigated (Henriques et al., 

2018) the findings demonstrate that genes involved in regulation of the biological 

clock by biosynthesis of macromolecules are associated with local adaptations. 

Concerning honey bee subspecies in Turkey, various studies making use of SNP 

markers in honey bees have been carried out in the past. Whitfield et al. (2006) 

included samples from Turkey in their research, but this work was essentially in the 

domain of phylogeography. Although 11 genes were identified as candidates for 

selection, that comparison was carried out on Italian, Western European and African 

bees but bees from Turkey were excluded from that part of the study. Wallberg et al. 

(2014) focused on local adaptations but samples obtained from Turkey were only 

evaluated for extraction of global population structure. Here, the main comparison 

was made between A-C, A-M and C-M lineages leaving aside O-lineage bees which 

also includes subspecies in Turkey. Cridland, Tsutsui, and Ramírez (2017), did not 

themselves gather samples from Turkey but made use of data generated by Wallberg 

et al. (2014). Uncertainties caused by a sequencing method that is no longer available 

due to high error rates were revealed and the need for analysis of high-quality 

genome data belonging to samples from Turkey and South West Asia was 

emphasized. 

Although different aspects of genetic diversity of honey bee subspecies in Turkey 

were examined, the way they are adapted to the local conditions were not studied at 

the genome level. In addition, despite extensive research, the exact distributional 

ranges of the subspecies and the core areas where they are found in “pure” forms are 

still not clear. This also holds for regions where subspecies’ ranges overlap and they 

exchange genes with each other, as well as for critical regions where sudden changes 

in the subspecies composition occur. 
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It is possible that these deficiencies would be eliminated with a well-planned 

countrywide study which, in this way, would lead to a better understanding of genetic 

resources of native honey bee races and provide the most basic information that 

could be utilized in breeding efforts. Bearing in mind the global climate change, 

uncovering how climate and geography affect honey bees will be vital for the success 

of future breeding and conservation projects. 

2.5 There is no model yet to monitor honey bee genetic diversity in Turkey 

In Turkey, within the last decade, awareness about the potential value of the honey 

bee diversity has radically improved due to intensive efforts of scientists, beekeepers' 

associations and civil society organizations. In parallel, there has been an increase in 

conservation implementations and rehabilitation in the field of honey bee ecotypes 

(Gül, 2020). Currently, breeding herds are either being created or have already been 

established in Ankara, Ardahan, Artvin, Çanakkale, Çorum, Düzce, Hatay, İzmir, 

Kırklareli, Kırşehir and Muğla provinces. Since these activities are aimed at local 

ecotypes, important genetic material is thus put under protection. In concordance 

with these efforts, a number of subspecies and ecotypes are in the process of being 

registered by The Ministry of Agriculture and Forestry as native genetic resources 

of Turkey. This action, too, can be expected to contribute to conservation and 

breeding efforts in Turkey. 

Monitoring programs are implemented in order to detect changes in genetic 

variability or in the frequencies and the distribution of adaptive variants (Flanagan 

et al., 2018). It is possible now, to further enhance the valuable steps taken till the 

moment and start monitoring of honey bee genetic diversity in Turkey and to 

consider making use of emerging technological tools in the field of genome 

sequencing as well as the decreasing costs. 

However, till now, methods used for discrimination of subspecies in such efforts are 

mainly based on morphology, geometric morphometry and on mitochondrial as well 
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as nuclear DNA markers like microsatellites. Resolution provided by such methods 

are far from precise discrimination of ecotypes, let alone allowing accurate reflection 

of diversity present in Turkey. Furthermore, and more importantly, they do not let 

us to take into account a conscious incorporation of genomic elements that play role 

in adaptation of ecotypes to their natural environment. Today conservation and 

breeding efforts should focus more on genetic variation specifically improving the 

subspecies’ capacity to adapt climate change. Constraints related to the adequate 

documentation of genetic diversity in Turkey do not enable yet, the development of 

functional and at the same time low-cost monitoring models. 

An adaptive management context with an integrated monitoring step will enjoy the 

chances of both learning more about the local ecotypes and evaluating the 

effectiveness of management actions once they are initiated. After an initial genomic 

assessment by sequence capture methods or SNP arrays, it is possible to consistently 

genotype many individuals over time. This would certainly help to reach diverse 

objectives like diagnosing introgression and conservation efficacy, characterization 

of neutral and adaptive genetic variation especially related to climate change, as well 

as retrieving information about desirable traits (Aykanat et al., 2016). 

2.6 A potent long-term ecological research perspective and scope 

Basically, any research addressing the adaptive capacities of subspecies in Turkey 

against climate change should cover the following scope: 

(i) Core regions in which 5 honey bee subspecies stay unmixed should be identified 

by an intense sampling effort across the country from stationary apiaries whose 

beekeepers reject to replace queens and colonies with non-native races. In order to 

achieve this, genome-wide data obtained with next generation sequencing techniques 

should be utilized. 

(ii) Despite the anthropogenic impact in the form of migratory beekeeping and trade, 

subspecies are known to preserve their identities at certain places. Selection at the 
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genomic level naturally relies on environmental conditions. Investigation of this 

phenomenon necessarily means comparing relative weights of natural selection, 

gene flow and genetic drift within populations. 

(iii) Candidate genes located in genome regions under selection and playing a role 

in adaptation to local conditions should be identified. The functions of these genes 

and their relation with the environmental conditions should be examined. Genetic 

features that play a role in adaptation to elevated temperatures and aridity should be 

revealed through various comparisons between populations residing in such milieu. 

Existing conservation and breeding efforts like those supported and carried out by 

The Ministry of Agriculture and Forestry and Turkish Beekeepers’ Association 

should better be reinforced by evolutionary knowledge. This will be achieved 

through purposeful introduction of locally adaptive genetic variants in addition to 

variants that provide adaptive potential under climate change within such stocks. 

(iv) In order to preserve the genetic diversity and adaptation capacities documented 

in this way, a low-cost, feasible, but technology-intensive monitoring method should 

be developed. After an initial assessment, intensive sampling coupled with 

monitoring of conservation areas for these alleles by at least 5-year intervals should 

be guaranteed. 

(v) Population structure obtained from genetic data should be used in models that 

will shed light on the evolutionary histories of subspecies and how their natural 

distribution would be affected under various global climate change scenarios. 

2.7 Discussion 

The most important needs of the actual period include the establishment of 

quantitative and regular implementations to appraise, monitor and manage the 

genetic resilience and adaptive capacity for species under human use or those not. 

This points to relevance for incorporation of genetic and evolutionary knowledge in 

policies concerning conservation planning and sustainability of ecosystem services, 
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particularly under the severe impact of global climate change (COST Committee of 

Senior Officials, 2018). 

The challenges faced in this area can be more easily overcome via piecing together 

of the following pursuit, akin but not limited to providing integration platforms in 

order to link together stakeholders and developing collaborations that combine 

experience in various areas of expertise to form the basis of a sustainable impact as 

well as integrating emerging technological tools into existing activities; explaining 

decision-makers how genetic diversity can benefit ecosystems; developing and 

testing best practice protocols for monitoring genetic diversity in space and time. As 

a key pollinator, honey bees (Apis mellifera) draw much attention among species 

aimed for determination and monitoring of the genetic adaptation capacities in 

response to climate change. 

Although honey bees are intensively managed by humans, they cannot be regarded 

as fully domesticated. Apart from wild populations in the natural distribution range 

of the species or feral colonies that escaped from human hands, even colonies under 

human control act as part of wildlife due to nectar and pollen foraging activities. 

Their unique role in pollination makes bees a critical species for ecosystem resilience 

in addition to agricultural production and ecosystem services. 

We need to put forward a monitoring model that can process honey bee diversity 

throughout the country. This also provides an opportunity to go beyond a general 

characterization of biodiversity. It can be aimed to monitor, in terms of presence and 

distribution, both specific alleles involved until now in local adaptation to native 

conditions and also genetic features that may contribute to adaptive potential under 

conditions of global climate change. 

Long-term monitoring is a costly and labor-intensive process. This is also the most 

important reason for the fact that monitoring studies with a large spatial scale are not 

always possible. A technology-intensive monitoring model that combines the most 

cost-effective, feasible, state-of-the-art scientific methods developed and tested till 

now is likely to contribute to the goal of creating standard and routine tools. 
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Developing a model for monitoring and utilization of honey bee genomic diversity 

is not only useful for revealing the adaptive potential to climate change, but also with 

simple customizations, would provide new opportunities for implementation of 

marker assisted selection in breeding for disease resistance (varroosis, Nosema, 

foulbrood, etc.), obtaining desirable phenotypic characters (gentleness, wintering 

success, low swarming tendency, etc.) and increased yield (honey, royal jelly, pollen, 

propolis, bee venom and other bee products). 

Genomic diversity and adaptive potentials are rapidly lost or undergoing serious 

changes under human influence. With such a model, decision-makers and field 

operators might have a chance to benefit from genomic and evolutionary information 

in the face of adverse human-induced effects. 

This piece focuses on the limits of our knowledge on honey bee diversity in Turkey, 

its interaction with the environment, the consequences of this interaction for natural 

selection, and its implications for the future under global climate change. We 

recommend that further research in honey bee genetics would better seek previously 

unexplored phenomenon, structures and relationships. Such investigation would 

have the potential to innovatively apply to the situation the knowledge and 

techniques in the field of genomics and to contribute in the formation of an 

understanding that will be utilized in a way which may concern many stakeholders. 
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CHAPTER 3  

3 INTRODUCTION 

In the face of ongoing global change, biogeography has evolved into a dynamic field 

for understanding how species respond to environmental transformations (Parmesan, 

2006). As habitats shift, ranges fluctuate, and ecosystems undergo rapid 

modifications, combining spatially explicit genetic data with information on species' 

adaptive traits enables the exploration of mechanisms shaping species distributions, 

including the role of selection (Joost et al., 2007; Gienapp et al., 2008; Eckert et al., 

2008). 

Divergent local geographic forms often result from spatially heterogeneous selection 

operating on complex alternative phenotypes influenced by the interplay between the 

external environment, genes, and their immediate genomic environment (Chevin and 

Hospital, 2008; Slatkin, 2009; Schwander et al., 2014). These traits are subjects of 

polygenic local adaptation and highly interconnected regulatory networks (Pritchard 

et al., 2010; Jones et al., 2012; Boyle et al., 2017). Correspondingly, selection acts 

upon multiple end phenotypes of whole organisms rather than single traits where 

harmoniously integrated gene complexes compromise between opposing selection 

pressures (Mayr, 1970). 

When outbreeding is the disruptor of such coadapted gene complexes, locally 

adapted ecotypes can persist in parapatry despite gene flow (Lynch, 1991; Flaxman 

et al., 2013; Akerman and Bürger, 2014; Kulmuni and Westram, 2017). In that case, 

the observed geographic structure could be attributed to the interplay between the 

level of gene flow (migration) and selection pressure (local adaptation; Galindo et 

al., 2009; North et al., 2011; Kirk and Freeland, 2011). Interestingly, selective 

sweeps and background selection involved in local adaptation enhance the 

differentiation signal even at distant neutral loci (Charlesworth et al., 1997). 
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Moreover, a more pronounced differentiation at neutral loci in populations subject 

to local adaptation especially holds under high levels of inbreeding (Eckert et al., 

2010), as is mostly the case with small populations isolated in refugia or confined to 

peripheries. 

When selection acts on many loci, these boosted signals amplify further because it 

becomes more difficult for an allele to disentangle itself from non-neutral loci 

(Barton and Bengtsson, 1986). Thus, in the presence of local adaptation, the overall 

genetic structure may act as a proxy for the coupling between environment and 

organism, even if inferred from neutral markers. Although widely treated as a mere 

confounding element of adaptive marker identification (Yu et al., 2006), population 

structure may have adaptive significance and inform about dynamic responses to 

environmental change. 

Identifying ecological patterns associated with genetic clines might be challenging 

(Jones et al., 2013). Nevertheless, approaches that account for non-linear interactions 

between environmental variables and ancestry compositions, such as Gradient 

Forests (GFs) and Generalized Dissimilarity Modeling (GDM), might be helpful 

(Ferrier et al., 2007; Ellis et al., 2012). GFs and GDM have been used in studying 

biodiversity at several layers, from ecosystems, communities, and species to 

populations, morphological traits, and genes (Bay et al., 2018; Mokany et al., 2019a, 

2019b;  Morgan et al., 2020; Gougherty et al., 2021; Fitzpatrick et al., 2021). Once 

biodiversity at any level is modeled as a function of multiple environmental 

gradients, the resulting models can be used to develop forecasts under global climate 

change scenarios (Fitzpatrick et al., 2011; Fitzpatrick & Keller, 2015).  

The western honey bee (Apis mellifera) is a flagship species with a wide 

geographical range and ecological and economic significance (Ruttner, 1988; Franck 

et al., 2001; Meixner et al., 2010; Iwasaki and Hogendoorn, 2021). Due to their 

functional role as generalist, widespread, and efficient pollinators, honey bees may 

provide insights into ecosystems and respond to monitoring requirements about 

sustainability and diversity of communities (Quigley et al., 2019; Cunningham et al., 
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2022). Furthermore, spatio-temporal analyses on honey bee models can be 

implemented in various situations, biological questions, and species (Dearden et al., 

2009). 

Despite human-mediated gene flow, historical or current environmental features and 

genotype-environment interactions often continue to shape the spatially structured 

genomic diversity of distinct subspecies of honey bees (Büchler et al., 2014; 

Wallberg et al., 2014; Harpur et al., 2014; Cridland et al., 2017, 2018; Wragg et al., 

2018; Parejo et al., 2020; Dogantzis et al., 2021; Gmel et al., 2023). Nevertheless, 

anthropogenic factors influence gene flow between honey bee populations. 

Queen/colony trade and migratory beekeeping practices create mobile hybrid zones 

in space and time (Kükrer et al., 2021). Although characterization of allelic 

divergence, selection candidates, and gene-environment associations across multiple 

honey bee species are well represented in the literature (Fuller et al., 2015; Chen et 

al., 2016, 2018; Wallberg et al., 2017; Henriques et al., 2018; Montero‐Mendieta, 

2019; Christmas et al., 2019; Ji et al., 2020; Cao et al., 2023; Everitt et al., 2023), the 

role of climate in compositional turnover among honey bee populations remains 

understudied. 

Climate plays a crucial role in regulating various processes on Earth, for instance, 

ecosystem productivity and sustaining life, including humans (Howden et al., 2007; 

Willis and Bhagwat, 2009; Bellard et al., 2012). As climate change affects these 

processes, understanding the relationships involved is essential for mitigating 

negative impacts, particularly the expected profound changes in local extinctions, 

distribution ranges of species and ecosystems, community compositions, and 

ecosystem functioning by the end of the 21st century (Thuiller et al., 2019; Babcock 

et al., 2019; Román-Palacios & Wiens, 2020; Pörtner et al., 2022). 

When climate vulnerability is high, economic damages become likely and may result 

in food insecurity, particularly in smallholder operations where environmental 

fluctuations magnify the challenges (Cohn et al., 2017; Coronese et al., 2019). 

Reducing economic damages and supporting food security may benefit from 
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appreciation of locally adapted geographic forms, which may have higher yield, 

better colony development, greater performance and increased survival, infrequent 

occurrence or lower levels of pathogens, broader expression of desirable traits in 

swarming, defensiveness, or hygiene (Costa et al., 2012; Hatjina et al., 2014; Büchler 

et al., 2014; Meixner et al., 2014; Uzunov et al., 2014). 

Quantitative studies regarding the various impacts of global change on honey bees 

and beekeeping are limited in comparison to the level of threats encountered (Gordo 

and Sanz, 2006; Kovac and Stabentheiner, 2011; Delgado et al., 2012; Howlett et al., 

2013; Wang et al., 2016; Langowska et al., 2017; Flores et al., 2019; Nürnberger et 

al., 2019; Rowland et al., 2021; Keeler et al., 2021; Becsi et al., 2021; Gonzalez et 

al., 2022). This caveat is followed by the lack of forecasts about various impacts of 

environmental transformation on honey bees, such as spatio-temporal analyses of 

intra-specific turnover (Kükrer and Bilgin, 2020). The growing interest in ecological 

forecasting arises from the urgency to provide vital information on future population, 

community, and ecosystem states to enhance conservation, management, and 

adaptation strategies (Petchey et al., 2015). 

A recent systematic review on climate change impacts on honey bees and beekeeping 

revealed significant negative impacts on various aspects of honey bee ecology and 

physiology, including food reserves, plant-pollinator networks, mortality rates, gene 

expression patterns, and metabolism (Zapata‐Hernández et al., 2024). However, the 

assessment identified several key knowledge gaps in the existing literature. These 

include a limited number of predictive studies and a lack of comprehensive climate 

analysis, hindering our understanding of potential impacts on these vital pollinators. 

Moreover, studies have primarily focused on individual honey bee behavior rather 

than population dynamics, and have been conducted at relatively short spatial 

(<10 km) and temporal (<5 years) scales, limiting their applicability to larger-scale 

and mid-term assessments. Additionally, environmental analyses have 

predominantly relied on short-term weather data rather than long-term climate 

trends, further complicating efforts to forecast future impacts. 



 

 

29 

To assess honey bee diversity and habitats across temporal and spatial scales, we 

first characterize neutral genetic diversity and population structure across a historical 

refugium in and around Anatolia that poses a natural laboratory with diverse bee 

habitats and vast heterogeneity (Hewitt, 1999; Sönmez, 2022). Five native honey bee 

subspecies meet, exchange genes, and adapt to local conditions in Anatolia and 

Thrace, which comprise a unique experimental setting by bringing together genetic 

elements from Europe, Asia, and Africa (Kandemir et al., 2006; Kükrer et al., 2021). 

Deploying GFs, we identify drivers of intra-specific turnover by modeling genetic 

composition as a function of climate and geography. Then, we apply GDM to site-

pair dissimilarities in GF-selected environmental variables to model ancestry 

estimates, which are treated as relative abundances and serve as the response 

variable. Finally, we carry out forecasts and spatio-temporal analyses to predict 

vulnerability and assess the persistence, resilience, and conservation efficacy of 

native populations to inform the management of honey bees. 
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CHAPTER 4  

4 METHODS 

4.1 Sampling and genotyping 

We collected 460 honey bee samples from 392 localities in 75 provinces during 

fieldwork from May 2016 to November 2019. The localities cover the natural ranges 

of the five subspecies that occur in Türkiye: A. m. syriaca, A. m. caucasica, A. m. 

anatoliaca, and A. m. meda from the O lineage, as well as the ecotype from the C 

subspecies group that occurs in Thrace. We additionally acquired 45 A. m. carnica 

samples from Europe (Austria and Germany), 12 A. m. caucasica samples from the 

Caucasus (Georgia), and 174 samples from stationary beekeepers previously 

collected across Türkiye from March 2010 to August 2012 (Kükrer, 2013; Oskay et 

al., 2019). By doing so, the total number of samples gathered reached 691. 

We grouped samples in and around Türkiye into 12 putative populations, as shown 

in Figure 1. Samples were grouped in those populations according to their proximity 

and similarities in climate, topography, and floral characteristics, alongside initial 

findings from prior research (Kandemir et al., 2006; Bodur et al., 2007; Tunca, 2009; 

Kükrer et al., 2021). Beekeepers in this study declared that they used honey bees 

from stocks native to their area and had not purchased non-native queens or colonies 

in the last ten years. 

We isolated DNA from bee heads, grouped 30 microsatellite loci (Estoup et al., 1995; 

Solignac et al., 2003; Bodur et al., 2007; Shaibi et al., 2008; Tunca, 2009) into four 

sets (set 1: AP218, A113, AB024, AP249, A088, AP001, AP043; set 2: AP049, 

AP238, AC006, AP243, AP288, HBC1602, A107; set 3: A079, AC306, AP226, 

A007, HBC1601, AP068, A014, AP223; set 4: AP019, AB124, A043, A076, AP273, 

AP289, HBC1605, A028), amplified markers, determined fragment sizes, and 

binned the microsatellite alleles as specified in Kükrer et al. (2021). We excluded 
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locus A076 since it did not consistently amplify across samples (see Supplementary 

Table 1 for sample metadata, markers, and genotypes). 

 

Figure 1. Sampling sites and populations. 

Population abbreviations are as Eur: Europe, ES.Marm: East and South Marmara, Co.Aeg: Coastal 

Aegean, W.Anat: West Anatolia, W.BlkS: Western Black Sea, C.BlkS: Central Black Sea, L.Cauc: 

Lesser Caucasus, Erz-Kar: Erzurum-Kars Volcanic Plateau, U.Euph: Upper Euphrates, EC.Anat: 

East-Central Anatolia, E.Med: Eastern Mediterranean. 

 

Since manual or automated genotyping of microsatellites may be prone to errors, we 

blindly double-genotyped 18,310 alleles in 290 individuals to estimate errors 

associated with the genotyping process. We took any mismatch between separate 

genotyping efforts as an error and corrected them by double-checking the raw 

electropherogram data. We removed eight samples genotyped at less than eight loci 

and a duplicated individual detected by the R-package poppr 2.9.4 (R Core 

Team 2022 version 4.2.2; Kamvar et al., 2014). To find full/half-sibs, we calculated 

relatedness by Colony 2.0 (Wang, 2012) and removed ten individuals assigned as 

siblings. This exclusion left 672 samples for downstream analyses. 
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4.2 Exploring genetic diversity and population structure 

We estimated the frequency of null alleles by popgenreport 3.0.7 (Adamack and 

Gruber, 2014). We used the same package to calculate the total number of alleles per 

locus, observed and expected heterozygosity, deviations from Hardy-Weinberg 

equilibrium, linkage disequilibrium, the Shannon-Wiener diversity index, and the 

number of unique private alleles for each putative population. We estimated allelic 

richness and calculated the genetic fixation index (Fst), inbreeding coefficient (Fis), 

and allelic differentiation by hierfstat 0.5-11 (Goudet, 2005). 

Before running a model-based clustering algorithm, we constructed phylogenies by 

UPGMA (Unweighted Pair Group Method with Arithmetic Mean) based on 

population genetic distances (Reynolds et al., 1983), visualized by the online tool 

Interactive Tree of Life v5 (Letunic and Bork, 2021). By AMOVA implemented in 

poppr, we tested whether genetic differences within and between populations differ 

from random expectations. We examined population structure by analyzing principal 

components through Discriminant Analysis of Principal Components (DAPC; 

Jombart et al., 2010), regular Principal Component Analysis (PCA), and a spatially 

explicit version of it: sPCA (Jombart et al., 2008). The sPCA method produces 

independent synthetic variables that maximize genetic variance and spatial 

autocorrelation (implemented in adegenet 2.1.10; Jombart, 2008). 

We estimated individual membership coefficients (Supplementary Table 1) by 

Structure 2.3.4 (Pritchard et al., 2000), analyzed distinct K-values by Structure 

Harvester 0.6.94 (Earl and vonHoldt, 2012), permuted ancestry estimates by 

Clumpak (Kopelman et al., 2015), and visualized them with dabestr 0.3.0 (Ho et al., 

2019). Based on population structure revealed through Fst values, phylogenetic tree, 

AMOVA results, and sPCA, we decided to carry out downstream analyses with five 

ancestral groups corresponding to five subspecies (syriaca, caucasica, anatoliaca, 

meda, and the C lineage ecotype from Thrace), in addition to the reference carnica 

population of C lineage. 
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However, the minimum K-value where all the subspecies became identifiable was 

seven rather than six, showcasing a spurious cluster that cannot be clearly traced to 

any particular geography but still staying within the distribution of anatoliaca. 

Hence, we summed membership coefficients from these two anatoliaca clusters for 

further analyses (see RESULTS section and Figure 9). Also, we combined residual 

carnica and Thracian clusters' membership coefficients to account for the total C 

lineage ancestry found in the samples. This summation across clusters left us with 

five ancestry estimates for each individual, i.e., Levantine (syriaca), Caucasian 

(caucasica), Anatolian (anatoliaca), Zagrosian (meda), and Thracian (C lineage) 

ancestral groups. 

We identified spatial outliers for each of the five ancestral groups with spdep 1.2-8 

(Bivand and Wong, 2018) by plotting ancestry estimates of each individual against 

their spatially lagged values within a mean radius of ~80 km. We manually checked 

those outliers and removed 80 samples with obvious mismatches to spatially 

expected ancestry. Elimination included unexpected cases such as unadmixed (i.e., 

with an estimated ancestry larger than 0.75) Caucasian individuals on the Aegean 

coast or unadmixed Thracian individuals in East Anatolia (see Supplementary 

Figures 1, 2, 3, 4 and 5). After this filtering according to admixture patterns (i.e., 

the particular composition of ancestry estimates at a specific site), there were 592 

samples left for downstream analyses. Then, we interpolated ancestry estimates on 

geographic maps using a Kriging model where the covariance matrix of ancestry 

estimates exponentially decreases with distance (Jay et al., 2012). 

4.3 Modeling intra-specific turnover and predicting ancestries 

Besides the geographic distance, the kriging model leaves out any interaction 

between ancestry compositions and the environment. Nevertheless, the interplay 

between population structure and environment is usually more complex than 

isolation by distance alone. Hence, we modeled intra-specific turnover across the 

landscape to identify climatic and geographic drivers of variation in the admixture 
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patterns. For that purpose, we fitted Gradient Forests (GFs) and Generalized 

Dissimilarity Models (GDMs) to ancestry estimates of 554 individuals in and around 

Anatolia (i.e., from Türkiye and Georgia), leaving out the 38 reference carnica 

samples from Austria and Germany to limit the study area. 

While fitting the models, we used 19 bioclimatic variables from WorldClim 2.1 in 

2.5-minute spatial resolution (Fick and Hijmans, 2017). This dataset describes 

annual and seasonal temperature and precipitation trends and extreme or limiting 

climatic factors. Envirem is another dataset likely to have direct relevance for 

ecological or physiological processes determining species distributions (Title and 

Bemmels, 2018). We used 18 climatic and topographic variables from the Envirem 

dataset to expand and complement WorldClim at the exact resolution. With the help 

of raster 3.6-23 (Hijmans, 2022), we retrieved altitude data based on remotely sensed 

digital elevation models obtained by The Shuttle Radar Topography Mission 

(SRTM) at 90-meter resolution (Jarvis et al., 2008). We used a buffer distance of 3 

km for each variable, corresponding to an efficient foraging radius of a worker bee 

communicated by error-prone waggle dance (Haldane and Spurway, 1954; Visscher 

and Seeley, 1982). Complete variable names, abbreviations, and units used in the 

downstream analyses are summarized in Table 1. 

GF is a machine learning approach that can model compositional turnover by fitting 

an ensemble of regression trees to construct cumulative importance functions of 

predictor variables. Implemented in extendedForest 1.6.1 and gradientForest 0.1-32 

as an extension of the random forest method (Ellis et al., 2012), GFs determine how 

well arbitrary split values along a gradient explain biological variation across the two 

sides of that split. To identify where changes are rapid and which environmental 

gradients have greater overall importance than others, we fitted GFs to logit 

transformed values of ancestry estimates. GFs cannot directly incorporate 

geographic distances. Thus, we included the effects of spatial and latent processes 

by incorporating the first two Moran's Eigenvector Maps (MEMs) with cumulative 

adjusted R2 values 0.9, calculated from the geographic coordinates of the sampling 

locations by adespatial 0.3-21 (Dray et al., 2023). 
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Table 1. Summary of environmental variables used in the study. 

Abbreviation Variable Unit 

TUR_alt Altitude m 

meanT bio1: annual mean temperature °C 

diurnalTrange bio2: mean diurnal range °C 

isothermality bio3: isothermality  - 

Tseasonality bio4: temperature seasonality °C 

maxTwarm bio5: maximum temperature of warmest month °C 

minTcold bio6: minimum temperature of coldest month °C 

annualTrange bio7: temperature annual range °C 

Twettest bio8: mean temperature of wettest quarter °C 

Tdriest bio9: mean temperature of driest quarter °C 

Twarmest bio10: mean temperature of warmest quarter °C 

Tcoldest bio11: mean temperature of coldest quarter °C 

annualP bio12: annual precipitation mm 

Pwet bio13: precipitation of wettest month mm 

Pdry bio14: precipitation of driest month mm 

Pseasonality bio15: precipitation seasonality - 

Pwettest bio16: precipitation of wettest quarter mm 

Pdriest bio17: precipitation of driest quarter mm 

Pwarmest bio18: precipitation of warmest quarter mm 

Pcoldest bio19: precipitation of coldest quarter mm 

gdd5 sum of mean monthly temperature for months with mean 

temperature greater than 5℃ multiplied by number of days 

℃ days 

gdd0 sum of mean monthly temperature for months with mean 

temperature greater than 0℃ multiplied by number of days 

℃ days 

count10 count of the number of months with mean temperature 

greater than 10℃ 

months 

thermicity compensated thermicity index ℃ 

embergerQ Emberger's pluviothermic quotient - 

annualPET annual potential evapotranspiration mm / year 
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Table 1 (continued). 

Abbreviation Variable Unit 

PETseasonality monthly variability in potential evapotranspiration mm / month 

PETdriest mean monthly potential evapotranspiration of driest 

quarter 

mm / month 

PETwettest mean monthly potential evapotranspiration of wettest 

quarter 

mm / month 

PETwarmest mean monthly potential evapotranspiration of warmest 

quarter 

mm / month 

PETcoldest mean monthly potential evapotranspiration of coldest 

quarter 

mm / month 

aridity Thornthwaite aridity index - 

moisture a metric of relative wetness and aridity - 

maxTcold maximum temperature of coldest month ℃ 

minTwarm minimum temperature of warmest month ℃ 

continentality mean temperature of warmest month - mean temperature 

of coldest month 

℃ 

roughness terrain roughness index - 

topoWet topographic wetness index - 

 

 

We hypothesized that if local adaptation were to play a major role in genetic 

differentiation, then the cumulative R2 of environmental predictors in explaining 

ancestry composition responses could potentially surpass that of MEM variables. We 

expect Levantine ancestry to respond to temperature-related environmental 

predictors aligning with their adaptation to Mediterranean climates characterized by 

hot summers. Meanwhile, we expect Caucasian ancestry to respond to moisture-

related environmental predictors reflecting their adaptation to consistently moist 

environments during the flowering season. Since the relative importance of various 

environmental factors may differ between subspecies transition zones, we also 

constructed regional GF models containing a subset of samples and only fitted to 

ancestry compositions relevant to those transition zones. We considered variables 
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with weighted R2 values larger than 0.01 in this basal gradient forest analysis 

important contributors and incorporated them in the following GDM processes as 

potential predictors. 

GDMs attempt to explain biological variation as a function of climate and 

geography. They can be used to identify environmental gradients associated with 

compositional turnover and where this turnover is rapid along each gradient (Ferrier 

et al., 2007). By applying generalized dissimilarity modeling, any biological distance 

can be related to how much sampling sites differ in their environmental conditions 

or how physically isolated they are. We used gdm 1.5.0-9.1 (Fitzpatrick et al., 2022) 

to fit GDMs and infer admixture patterns across the study area. As in the case of 

GFs, we fitted GDMs within more limited boundaries corresponding to transition 

zones between ancestral group pairs. We applied an elimination procedure based on 

the variance inflation factor (VIF) implemented in usdm 2.1-6 (Naimi et al., 2014) 

to account for multicollinearity between environmental variables. We set the 

correlation threshold to 0.75 and the VIF threshold to 5 to select independent 

variables we would incorporate into our models. 

We constructed GDMs to transform those selected environmental variables into their 

relative importance for intra-specific turnover. We hypothesized that if local 

adaptation were to play a major role in genetic differentiation, the variance in 

compositional turnover explained by environmental predictors might exceed the 

variance explained by geographic distances alone. Such models derived from GDMs 

can be projected spatially across a sparsely sampled landscape, and we used this 

feature as a surrogate of ancestry compositions across the whole landscape. To 

visualize the rasters derived from transformed environmental variables, we reduced 

the outputs into synthetic variables using PCA, where the first three PCs represented 

a red-green-blue color palette. We cross-validated our global model ten times by 

training the data with 90% of the site pairs and testing it in the remaining 10%. We 

grouped predictors as temperature, precipitation, or their interaction (tXp) related 

variables and evaluated variance partitioning. 
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4.4 Spatio-temporal analysis of biodiversity patterns and conservation 

implications 

Once there is a space-wide model based on transformed variables, it can be used to 

predict ecological similarity between any sites of interest, whether under current 

conditions or in future climates. Using our dissimilarity model, we analyzed spatio-

temporal variation of ecological distances to answer several questions related to 

within species diversity patterns of honey bees. Ecological similarity computations 

are derived and slightly modified from those described in Mokany et al. (2022).  

4.4.1 Survey gaps, uniqueness, and turnover speed 

First, we assessed potential survey gaps within our study area. For each cell in the 

raster grid, we recorded the pairwise ecological similarity between that cell and the 

sampling site most similar to it, with lower scores indicating higher potential survey 

gaps. We evaluated the uniqueness of each cell as its mean ecological similarity to a 

set of random reference cells that correspond to 5% of the study area. We 

hypothesized that core regions where subspecies are found in unadmixed forms 

would be identified with high levels of uniqueness, whereas transitional zones would 

reflect more moderate values. 

As uniqueness patterns might interact with turnover speed, we calculated the 

turnover speed at each site as the mean ecological similarity of the corresponding 

cell to its neighbors within a radius of 0.5 degrees. We predict that geographic or 

ecological barriers to gene flow would be characterized by fast turnover sites, 

indicative of isolation by barriers (IBB) or environment (IBE). Specifically, regions 

such as the Taurus Mountain Range, Sea of Marmara,  Anatolian Diagonal, and East 

Anatolian Plateau might demonstrate heightened turnover rates. Conversely, sites 

exhibiting low turnover speed are anticipated to align with an isolation by distance 

(IBD) pattern. 
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4.4.2 Ancestral group similarity and hierarchical classification 

We used the unadmixed sampling sites with an ancestry estimate exceeding 0.85 in 

one of the five ancestral groups to assess how ecological similarities to each ancestral 

group changed across the study space. For each ancestral group and each cell, we 

calculated the mean ecological similarities to those unadmixed reference cells and 

constructed affinity maps. 

We followed a supervised approach to classify the study area into five clusters 

corresponding to five subspecies. First, we calculated pairwise ecological similarities 

between every unadmixed reference cell and fed the arising distances into 

hierarchical clustering. Then, we classified every cell into the cluster of the most 

similar unadmixed reference according to the previous hierarchy. In addition, we 

reiterated this classification method with six and seven clusters to gain insights about 

ancestry compositions arising in distinct ecological conditions—potential ecotypes 

below the subspecies level. To investigate the effectiveness of our supervised 

classification method, we repeated the same procedure with the random reference 

cells rather than the unadmixed references. We derived a hit rate for the accuracies 

of both approaches in predicting the dominant ancestral group at every sampling site 

with an ancestry estimate exceeding 0.625 (representing an F1 crossed to an F2 at a 

putative hybrid zone). 

4.4.3 Protected area resemblance and conservation complementarity 

Currently, there are eight protected areas in Türkiye where migratory beekeeping 

and queen/colony sales are restricted—established in Adıyaman, Ardahan, Artvin, 

Düzce, Hatay, İzmir, Kırklareli, and Muğla. Furthermore, located within these 

protected areas are breeding and conservation apiaries collected from a 

representative sample of native colonies from the corresponding province. To 

evaluate representation within the protected areas, we calculated the ecological 
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similarities of each cell across the study grid to cells falling inside the conservatories. 

We recorded the maximum value as the resemblance index. 

We further iterated this procedure three times by adding new hypothetical 

conservation sites (Hakkari, Çankırı, and Muş) considering complementarity in 

terms of ancestral clusters revealed by population structure analyses and spatial 

patterns observed in ecological similarities. In addition, we compared the 

resemblance indices of every cell under different conservation scenarios by a paired 

t-test and visualized stepwise resemblance gains by dabestr. For each conservation 

scenario, we compared the total surface area protected directly in conservation sites 

and indirectly through a resemblance index larger than a threshold of 0.7. Finally, 

we assessed the differential impact of additional conservation sites on the 

resemblance values within the study area classified to each ancestral cluster with 

analysis of variance (ANOVA) followed by a Tukey's test. 

4.4.4 Temporal analyses 

In the temporal analysis, we considered six Coupled Model Intercomparison Project 

Phase 6 (CMIP6) climate projections that exhibited favorable accuracy performance 

in the short term, along with varying long-term equilibrium climate sensitivity: 

CNRM-ESM2-1, INM-CM4-8, MPI-ESM1-2-HR, MIROC6, EC-Earth3-Veg, 

UKESM1-0-LL (Tokarska et al., 2020; Meehl et al., 2020). The data consisted of 

composite means of bioclimatic variables downloaded by geodata 0.5-3 (Hijmans et 

al., 2023) from WorldClim for Shared Socioeconomic Pathways (SSPs): 126, 245, 

370, 585, and for mid-years: 2030, 2050, 2070, 2090. Using the projections above, 

we calculated the Envirem variables by envirem 2.3 (Title and Bemmels, 2018) from 

monthly average minimum/maximum temperatures and total precipitation. 

We made predictions for the 16 SSP-time period combinations across the study area 

with the previously constructed dissimilarity model. Then, we assessed temporal 

changes for survey gaps, uniqueness, turnover speed, ancestral group similarities, 
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and classification outcomes. Cell-level comparisons employed a paired t-test, and 

we visualized such changes using dabestr. We considered sites as under-sampled if 

their gap values were lower than 0.45, as unique if their uniqueness was lower than 

the 10th percentile, as fast turnover if they appeared before the 10th percentile of 

turnover speed values, as with high correspondence if their ecological similarity to 

any ancestral group exceeded 0.4. 

We hypothesized that climate change-induced drastic impacts across the landscape 

would result in distinct manifestations. Firstly, we anticipate an increase in survey 

gaps as a consequence of increased mismatch between the characteristics of the 

sampling sites and the broader study area due to inadequate coverage of ecological 

gradients. Secondly, we predict that lowlands in cooler climates will experience 

invasions by populations preadapted to hotter and more arid conditions. With 

facilitated migration of such populations to new areas, we expect to observe 

increased homogenization leading to decreased uniqueness within affected areas, 

alongside dramatic shifts in ancestral group similarities and classification outcomes. 

Additionally, such shifts might lead to an increase in fast turnover sites due to 

increased interface between ancestral groups that occupy varying altitudes. 

4.4.5 Persistence, resilience, disappearance, and emergence 

To further evaluate the potential impact of climate change on honey bee diversity, 

we employed four additional indices: persistence (inverse offset), resilience (refugia 

value), disappearance (loss—forward offset), and emergence (novelty—reverse 

offset). For the persistence index, we began by calculating the ecological similarity 

of each cell to itself in the future to derive offset values. Then, to avoid any divisions 

to zero, we added 1 to the summed offset values before averaging across scenarios 

as a measure of consistent durability in ancestry compositions across SSPs and time 

periods. Since offsets are inversely related to persistence, we took the inverse of the 

final value. 
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For the disappearance index, we calculated the ecological similarity of each cell in 

the current conditions to all other future cells in the random reference set, recorded 

the maximum value for each scenario, and, in the end, averaged across the designs 

to derive a measure of continuous loss of ancestry compositions across SSPs and 

periods. In contrast, for the emergence index, we calculated the ecological similarity 

of each future cell to the current random set, recorded the maximum value for each 

scenario, and averaged across the designs as a measure of consistent novelty in 

ancestry compositions. 

Finally, for the resilience index, we calculated the ratio of the mean ecological 

similarity of each cell in the future to their 0.5-degree radius neighbors under current 

or future conditions. So, a future cell of such a ratio higher than 1 exhibits higher 

ecological similarity to its neighbors' current conditions than their future conditions, 

thus having a high value as a potential refugium. We took the arithmetic mean of the 

rates across SSP-year combinations to get a measure of continuous refugia for 

ancestry compositions—hence, the resilience index. 

We defined sites with high resilience if the refugia value was greater than 1, with 

low persistence if their average offset values were in the 4th quartile, and with high 

disappearance or emergence if their maximum similarity to reference cells was 

smaller than 0.6. A decline in persistence and resilience indices coupled with an 

uptick in disappearance and emergence indices over time would bolster the assertion 

that climate change constitutes a considerable threat to existing honey bee 

biodiversity. 

Climate change could affect various ancestral groups disparately and exhibit varying 

impacts across spatial scales or protection statuses. For instance, a disproportionate 

impact observed within protected areas or sites characterized by high uniqueness 

may point to shortfalls in preservation efforts, carrying significant conservation 

implications. Thus, we also analyzed how our five indices of persistence, resilience, 

disappearance, emergence, and resemblance varied with other spatial patterns. For 

that purpose, we checked if index values differed significantly between sites: 
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densely/sparsely surveyed, unique/generic, fast/slow turnover, 

protected/unprotected, and with high/low ecological similarity to any ancestral group 

or classified to any of the clusters. To draw inferences from the interactions between 

indices and other spatial patterns, we carried out a Bonferroni corrected t-test for 

each index. In the case of classification outcomes, we applied an ANOVA followed 

by Tukey's test. 

Detailed information regarding the R packages and the session information can be 

found in Supplementary Table 2.
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CHAPTER 5  

5 RESULTS 

5.1 Rich tapestry of genetic variation reveals a multitude of population 

profiles and differentiation 

Double-genotyping efforts revealed a low overall error rate of 2.7%. We found 499 

mismatches out of 18310 microsatellite alleles genotyped and estimated initial per 

locus genotyping error rates between 0 and 0.07 (Supplementary Table 3). Since 

we rechecked the raw electropherograms of all the mismatches, the remaining 

genotyping error would be even lower. 

The number of alleles per locus ranged from 4 to 53, and the total number of alleles 

was 574, of which 140 were private alleles. The estimated frequency of null alleles 

was in the range of -0.01 and 0.12 with a mean of 0.05 (Supplementary Table 3). 

Four loci pairs showed significant linkage disequilibrium in three populations 

(Supplementary Table 4), and there were 46 population-loci pairs out of 377 with 

significant deviations from Hardy-Weinberg equilibrium (Supplementary Figure 

6). No loci showed widespread linkage disequilibrium, deviation from Hardy-

Weinberg equilibrium, and high null allele frequencies simultaneously, so we kept 

all the loci for the rest of the analysis. We calculated several diversity indices and 

present them in Supplementary Table 3. The rest of these loci-based statistics 

include: expected and observed heterozygosity levels, Fis, Fit, and Fst estimations, 

evenness, G'st, Gst, and Jost's D estimations. 

At the population level, mean allelic richness per loci corrected for sample sizes 

ranged between 1.42 and 1.63, with a mean of 1.56, Thrace having the highest allelic 

richness observed. Eur, Thrace, and E.Med had the highest number of private alleles: 

28, 25, and 23. E.Med and Thrace also showed the highest richness values of 4.38 

and 4.34 in a Shannon-Wiener diversity index (Supplementary Table 5). Erz-Kar 
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and L.Cauc populations had the highest inbreeding levels with Fis estimations of 0.15 

and 0.11, where overall Fis was 0.04. We summarize expected and observed 

heterozygosity levels and Fst values for each population in Supplementary Table 5. 

5.2 Population structure points to distinct ancestral groups but also 

widespread admixture across the landscape 

Pairwise G'st, Gst, Jost's D, and Fst estimations were highest among Eur and other 

populations (Supplementary Table 6). Notably, Thrace and ES.Marm populations 

displayed a more pronounced level of differentiation compared to the remaining 

populations in Anatolia, where the overall differentiation trend was comparatively 

weaker. Likewise, Eur population and samples from around Anatolia formed poles 

at opposite ends of the PCA, whereas Thrace samples stayed in between (Fig. 2)—a 

pattern repeated in the phylogeny. In the UPGMA tree, the Eur population was again 

the first to diverge, followed by Thrace and ES.Marm (Fig. 3). On the other hand, in 

a spatially explicit sPCA with samples excluding the Eur, each of the Thracian, 

Levantine, Caucasian, Anatolian, and Zagrosian ancestral groups formed distinct 

groups (Fig. 4, 5, and 6). Nevertheless, the transition between ancestral groups 

across the space was gradual—even demonstrating further substructure within 

Anatolian samples centered on Co.Aeg and W.BlkS populations (Fig. 7 and 8). 

Given the distinct clusters in the UPGMA tree and sPCA plots, where Thrace, 

E.Med, L.Cauc, Zagros, and Co.Aeg populations form the cores, we conducted an 

AMOVA with only these five populations. The results of the AMOVA proved 

significant differentiation between these potentially unadmixed populations, 

highlighting their genetic distinctiveness (p = 0.01). (Supplementary Table 7 and 

Supplementary Figures 7, 8, 9, 10, and 11). Thrace and Co.Aeg populations (p = 

0.01) differed significantly from each other, just like Zagros differed from each of 

the E.Med (p = 0.03), L.Cauc (p = 0.04), and Co.Aeg (p = 0.01) populations. A 

DAPC plot also confirmed the presence of five genetic groups in honey bee 

populations (Supplementary Figures 12 and 13). 
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Figure 2. PCA plot revealing spatial distribution patterns. Eur and Asia Minor samples occupy 

opposite poles, while Thrace samples appear in an intermediary position. Inertia ellipse coefficients 

are 1.5. The horizontal axis explains 12.4% of the variance, and the vertical axis 4.0%. 

 

 

Figure 3. UPGMA tree showing genetic relationships among honey bee populations. The Eur 

population diverges first, followed by Thrace and ES.Marm populations. 
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Figure 4. sPCA axes 1 and 2, displaying Thrace, L.Cauc, and E.Med populations at three poles. 

Inertia ellipse coefficients are 1.5. The first axis explains 52.3% of the variance, the second axis 

21.6%. 

 

 

Figure 5. sPCA axes 2 and 3 highlight additional genetic structure; populations in western Anatolia 

form a pole against L.Cauc and E.Med populations. Inertia ellipse coefficients are 1.5. The second 

axis explains 21.6% of the variance, the third axis 7.8%. 
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Figure 6. sPCA axes 2 and 4 differentiate the Zagros population from others. Inertia ellipse 

coefficients are 1.5. The second axis explains 21.6% of the variance, the fourth axis 4.0%. 

 

 

Figure 7. sPCA axes 1, 2, and 3 are plotted on a red-green-blue color scale proportional to the sPC 

scores, illustrating gradual transitions between populations. 
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Figure 8. sPCA axes 2, 3, and 4 plotted on a red-green-blue color scale proportional to the sPC scores, 

showcasing genetic substructure in western Anatolia. 

 

Clustering analysis unveiled main ancestral groups: Thracian, Anatolian, Caucasian, 

Levantine, and Zagrosian. When estimated at K = 2, individual membership 

coefficients differentiated samples from Europe and Asia (Fig. 9a). Thracian 

samples emerged as a mixture of the two gene pools at that level and formed their 

cluster at K = 5. At K = 7, it was possible to observe all the subspecies plus a spurious 

cluster within the distribution range of anatoliaca (Fig. 9b and 9c). 

The structure model assumes a hypothetical ancestral population by allowing each 

population to drift away from that ancestral population at a different rate and 

considers that allele frequencies tend to be similar in various populations (Falush et 

al., 2003). Correspondingly, the model allows the existence of multiple populations 

with closely matched allele frequencies to capture subtle genetic structure. However, 

this broad definition of what constitutes a population may lead to the inference of 

spurious populations not stemming from genetic discontinuity, especially for those 

that exhibit wide geographical distribution under a stepping-stone migration model 

(Falush et al., 2003; Guillot et al., 2005). Such populations might erroneously persist 
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due to the failure of the MCMC algorithm to eliminate them effectively, indicating 

a potential convergence issue (Guillot et al., 2005). 

 

 

Figure 9. Ancestry estimates at different K values using STRUCTURE software. 

 

The wide distribution of anatoliaca subspecies is quite heterogeneous regarding 

environmental conditions and involves transitions to multiple other subspecies. 

These transition patterns become evident when ancestry estimates of individuals 

within populations are plotted separately for each ancestral group (Fig. 10, 11, 12, 

13, and 14). Populations mainly composed of individuals with high Anatolian 

ancestry (Co.Aeg, ES.Marm, W.Anat, W.BlkS) manifest in the country's western 

portion. Nevertheless, ES.Marm population neighboring Thrace, C.BlkS population 

neighboring Caucasus, EC.Anat population neighboring the Levant, and U.Euph 

population neighboring Zagros regions show high ancestry estimates, especially in 

the dominant ancestral groups at these neighboring sites (Fig. 15). 
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In fact, interpolation of ancestry estimates depicts a more detailed scenery of the 

gradual admixture patterns. In addition to providing a solid first glimpse of core 

regions where subspecies are found in unadmixed forms and transition zones where 

subspecies gradually transform into each other, the kriging outcome revealed areas 

where changes might be relatively rapid (Fig. 16). One exciting pattern showcased 

by interpolation has been the disturbance of graduality in transition between 

Anatolian and Zagrosian ancestral groups at East Anatolia. Whereas the dominant 

Zagrosian ancestry followed the northern route exacting the riverbed of the Araxes, 

the predominant Anatolian ancestry followed the routes exacting those of the Murat 

and the Karasu—the two main tributes of the Euphrates. 

 

 

Figure 10. Scatter plot based on ancestry estimates contrasted against Eur population representative 

of Thracian ancestral group. The dots show Euclidean distances from means of representative 

populations with a 95% confidence interval bar around. The distribution of the estimation statistic 

accounts for the precision. Bars right to the data points refer to the 25 and 75% quartiles; the gap 

between them is the median value. 
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Figures 11 and 12. Scatter plot based on ancestry estimates contrasted against Co.Aeg and  L.Cauc 

populations representative of Anatolian (green) and Caucasian (blue) ancestral groups. The dots show 

Euclidean distances from means of representative populations with a 95% confidence interval bar 

around. The distribution of the estimation statistic accounts for the precision. Bars right to the data 

points refer to the 25 and 75% quartiles; the gap between them is the median value. 
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Figure 13 and 14. Scatter plot based on ancestry estimates contrasted against Zagros and E.Med 

populations representative of Zagrosian (red) and Levantine (violet) ancestral groups. The dots show 

Euclidean distances from means of representative populations with a 95% confidence interval bar 

around. The distribution of the estimation statistic accounts for the precision. Bars right to the data 

points refer to the 25 and 75% quartiles; the gap between them is the median value. 

 



 

 

55 

 

Figure 15. Geographic representation of ancestry compositions for each population, highlighting the 

proportions of ancestral group contributions. Thr: Thracian, Ana: Anatolian, Cau: Caucasian, Zag: 

Zagrosian, Lev: Levantine. 

 

 

Figure 16. Kriging interpolation of ancestry estimates illustrates the nuanced landscape of gradual 

admixture patterns between ancestral groups. Note the interpenetration between Anatolian and 

Zagrosian ancestral groups along the riverbeds of the Euphrates and the Araxes. 
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5.3 GF models shed light on global and localized drivers of intra-specific 

turnover across environmental gradients 

Model performances for distinct ancestral groups in the global GF model averaged 

0.64, ranging from 0.41 for the Zagrosian cluster to 0.74 for the Levantine cluster 

(Supplementary Table 8). The model identified the first two MEMs capturing the 

spatial processes as the most important predictors of intra-specific turnover in 

ancestry compositions (Fig. 17 and Supplementary Table 9). The relatively vital 

role of MEM1 and MEM2 (R2 values of 0.12 and 0.18, respectively) on the turnover 

would indicate the importance of spatial location or some other unmeasured 

environmental predictors. Although spatial MEMs had the highest relative 

contribution, climatic variables still constituted 53% of the captured R2 after 

summing variable importance’s (0.34 over 0.64). When limited to selected variables 

with R2 over 0.01, the relative contribution of climatic factors comprised 40% of 

such variables in the global model (0.20 over 0.50). 

PETwettest, Pwarmest, Tdriest, and isothermality followed the MEMS with the 

highest R2-weighted importance. Other variables with weighted importance value 

larger than 0.01 and associated with excess turnover were aridity, Tseasonality, 

TUR_alt, continentality, Pdriest, Pwettest, minTwarm, PETdriest, and Pcoldest. 

Thracian ancestry responded strongly to PETwettest (especially < 30mm/month), 

TUR_alt (especially < 500m), and Pcoldest. In contrast, Caucasian ancestry showed 

the highest sensitivity to Pwarmest (especially > 150mm), Tdriest, aridity, Pwettest, 

and PETdriest (Fig. 18). On the other hand, Zagrosian, Levantine, and Anatolian 

ancestral groups responded similarly to most of the predictors except isothermality 

and Tseasonality for Zagrosian cluster and minTwarm for Levantine cluster 

(especially > 20 oC). 
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Figure 17. Variable importance scores (R2 values) for the global GF model, highlighting the 

significance of spatial processes and key environmental variables driving intra-specific turnover in 

ancestry compositions. 
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Figure 18. Ancestral group response curves illustrate sensitivity to specific environmental variables 

in the GF model. Vertical axes depict the relative cumulative importance of the variable to ancestral 

groups, identifying critical thresholds and regions along the environmental gradients. Thr: Thracian, 

Ana: Anatolian, Cau: Caucasian, Zag: Zagrosian, Lev: Levantine. 

 

The ratio of captured R2 by the climatic variables showed substantial differences 

when analyzed within subregions. Thracian to Anatolian transition had the lowest 

figure (36%), while Caucasian to Anatolian transition doubles this with the highest 

value observed (72%; Supplementary Table 8). In contrast to global patterns, 

regional GF models each time selected a lesser number of variables with R2 > 0.01 

at the transition zones between subspecies pairs (Supplementary Table 9). Still, the 

regional models highlighted specific environmental predictors that made minor 

contributions to the global model but played a significant role in driving local genetic 

differentiation, for instance, Pdriest at Thracian-Anatolian (Supplementary Figures 

14 and 15), altitude and minTwarm at Anatolian-Levantine-Zagrosian 

(Supplementary Figures 16 and 17), or Pwettest at both Anatolian-Caucasian and 

Caucasian-Zagrosian transitions (Supplementary Figures 18, 19, 20, and 21). 
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5.4 GDMs disclose distinct patterns in environment-ancestry composition 

relationships 

The global GDM included geographic distance and seven environmental variables 

as predictors after controlling for multicollinearity (Pdriest, minTwarm, Pwettest, 

PETdriest, continentality, PETwettest, and isothermality). All the explored variables, 

geographic or environmental, influenced predicted dissimilarities with summed 

coefficient values between 0.1 and 1.1. The mean dissimilarity between site pairs 

when they had identical predictor values (called the intercept), was 0.17. Predictor 

variables including geographic distance, explained 27.0% of the deviance with a 

mean absolute error of 0.19 in a ten times cross-validation. The seven climatic 

variables combined accounted for 15.6% of the deviance. In contrast, this figure was 

5.5% for temperature (isothermality, minTwarm, and continentality), 6.8% for 

precipitation (Pwettest and Pdriest), and 8.6% for tXp (PETdriest and PETwettest) 

related variables. 

Turnover was most sensitive in response to geographic distance and Pdriest, closely 

followed by minTwarm, Pwettest, and PETdriest (Fig. 19). The least influential 

environmental variables of continentality, PETwettest, and isothermality are more 

readily associated with transitions from Thracian to Anatolian or Anatolian to 

Zagrosian ancestral groups (Fig. 20). Those two transitions are somewhat more 

gradual than transitions to Caucasian or Levantine ancestral groups (Fig. 21). 

As with such GF models, regional GDMs provided a more nuanced understanding 

of fine-scale patterns of turnover in ancestry compositions at a local level 

(Supplementary Figures 22, 23, 24, and 25). Indeed, geographic distance was the 

most important variable in the global model; in the regional models, it dropped to 

either second or third positions. Such as, at the Anatolian-Levantine-Zagrosian 

transition zone, minTwarm over-dominated the geographic distance 

(Supplementary Figure 26), just like isothermality at Thracian-Anatolian and 

Caucasian-Zagrosian (Supplementary Figures 27 and 28), or PETdriest at both 
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Anatolian-Caucasian and Caucasian-Zagrosian transitions (Supplementary Figures 

28 and 29). 

 

 

Figure 19. Variable I-splines, demonstrating the sensitivity of turnover in ancestry compositions to 

environmental predictors in GDM with error bands (+/- one standard deviation). While holding all 

other variables constant, the maximum height indicates the total amount of ecological distance 

associated with the gradient of the predictor, and the slope indicates the rate and variation along the 

gradient. 
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Figure 20. Influence of GDM transformed variables across the study space. 

 

 

Figure 21. The GDM prediction map displays spatial patterns of predicted dissimilarity based on 

geographic distance and climatic variables. Colors represent gradients in genetic turnover in a red-

green-blue scale according to the first three PC scores of transformed environmental variables. 
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5.5 Spatial analyses unveil ecological patterns and turnover dynamics 

A great majority of the research area demonstrated considerable ecological 

coherence with the sampling sites (mean maximum similarity 0.78, SD = 0.07), 

allowing a robust analysis of interplay between ancestry compositions and 

environmental conditions (Fig. 22). Sites that deviated from the broader ecological 

context, thus identified as highly unique, corresponded primarily to the core zones 

where subspecies were found in an unadmixed form (Fig. 23), suggesting the 

presence of localized ecological conditions driving distinct adaptations. 

Furthermore, the spatial analysis revealed two regions with exceptionally high 

turnover speeds: the Taurus Mountains and the East Anatolian Plateau. The former 

exhibits a physical barrier to extensive gene flow. In contrast, the latter presents rapid 

ecological transitions indicative of dynamic environmental gradients or ecological 

boundaries (Fig. 24). These findings highlight the spatial heterogeneity of ecological 

similarities, as well as the eminence of core zones and various turnover dynamics 

within the study area. 

In addition to the anticipated strong association of the five ancestral groups with their 

respective bastions that they are named after, survey sites displayed distinct patterns 

of ecological similarity to the sites unadmixed in certain ancestral groups (Fig. 25, 

26, 27, 28, and 29). Specifically, while the western portion of Anatolia exhibited 

higher ecological similarity to the Thracian group, the strip of land along the eastern 

Black Sea coast showed a greater affinity in the Caucasian group, and the high 

similarity regions to the Levantine group extended towards East-Central Anatolia. 
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Figure 22. Scarcity of survey gaps enables robust analysis of the interplay between ancestry 

compositions and environmental conditions. White crosses depict sample locations. 

 

 

Figure 23. The uniqueness of sites—deviation from the broader ecological context—indicates 

localized ecological conditions driving distinct adaptations. 
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Figure 24. Spatial representation of turnover speeds, highlighting regions with exceptional turnover 

dynamics: the East Anatolian Plateau and the Taurus Mountains, respectively exemplifying isolation 

by environment and physical barriers. 

 

 

Figure 25. Patterns of ecological similarity across the study space to unadmixed reference sample 

locations (white crosses) reveal specific ecological affinities to Thracian ancestral group. 
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Figure 26. Patterns of ecological similarity across the study space to unadmixed reference sample 

locations (white crosses) reveal specific ecological affinities to Anatolian ancestral group. 

 

 

Figure 27. Patterns of ecological similarity across the study space to unadmixed reference sample 

locations (white crosses) reveal specific ecological affinities to Caucasian ancestral group. 
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Figure 28. Patterns of ecological similarity across the study space to unadmixed reference sample 

locations (white crosses) reveal specific ecological affinities to Zagrosian ancestral group. 

 

 

Figure 29. Patterns of ecological similarity across the study space to unadmixed reference sample 

locations (white crosses) reveal specific ecological affinities to Levantine ancestral group. 
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Based on our GDM, we classified the study area via hierarchical clustering 

supervised by unadmixed reference cells and identified five primary bioregions 

representing ancestral groups within the study area (Fig. 30). Increasing the number 

of clusters to six and seven provided insights into the potential ecotypes existing 

below the subspecies level, as influenced by distinct ecological conditions (Fig. 31 

and 32). The two newly added clusters represented the coastal and inland 

populations of anatoliaca and caucasica bees with well-known and extensively 

studied distinct morphological and life-history traits. Our supervised classification 

approach proved accurate with a hit rate of 86% (n = 389) compared to the 59% of 

the approach based on random reference cells. 

 

 

Figure 30. Hierarchical clustering of the study area supervised by unadmixed reference cells 

identifies five primary bioregions representing predicted ancestral group distributions. 
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Figure 31. Classification of the study area into distinct ecotypes using 6 hierarchical clusters and 

supervised classification. 

 

 

Figure 32. Classification of the study area into distinct ecotypes using 7 hierarchical clusters and 

supervised classification. 
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5.6 Assessment of protected area resemblance prompts recognition of new 

conservation sites 

Established protected areas spanned and represented all ancestral groups except 

Zagrosian (Fig. 33). The protected area resemblance across the landscape notably 

increased when Hakkari was added to conservation sites to include the only 

unrepresented subspecies, meda, and subsequently, Çankırı and Muş to enhance 

complementarity and representativeness (Fig. 34, 35, and 36). In terms of the area 

protected directly, the current coverage of 59,711 km2 increases to 81,949 km2 when 

additional conservation sites are considered (Fig. 37). However, the indirectly 

protected area, as determined by a resemblance index greater than a threshold of 0.7, 

expands from 499,719 km2 to 754,809 km2—almost equaling the complete surface 

area of Türkiye (Supplementary Table 10). The mean gain per cell in resemblance 

was 0.023 when Hakkari was added, an additional 0.018 after Çankırı, and a further 

0.007 after Muş (all p < 0.001). The total gains almost reach up to 0.05 (Fig. 38). 

Initial differences between ancestral groups' resemblance were significant in a 

Tukey’s test (all p < 0.001). Currently, the Thracian and Caucasian groups are those 

best represented in the protected areas, followed by the Anatolian (with mean 

resemblance differences of 0.06 and 0.04). The Zagrosian group is the least 

represented, with a mean difference of 0.12 and 0.11 compared to these most well-

protected groups. However, after including Hakkari, these figures dropped to 0.05 

and 0.04 (still both p < 0.001). Following the inclusion of Çankırı in the 

conservatories, the mean difference in resemblance between Thracian and Anatolian 

groups reduced to 0.02 (p < 0.001). Meanwhile, the Caucasian and Anatolian groups 

had equal levels of representation. After including Muş, the resemblance of the 

Zagrosian, Anatolian, and Caucasian groups became equalized, while each stayed 

0.02 below the Thracian group (p < 0.001). Considering all the scenarios, there was 

very little or no improvement in the resemblance of the Levantine ancestral group 

(Supplementary Table 11). 
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Figure 33. Protected area resemblance of sites and distribution of established protected areas (black 

hexagons) within the study area, representing ancestral groups except Zagrosian. 

 

 

Figure 34. Spatial change in PA resemblance after adding Hakkari for representation of meda 

subspecies. 
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Figure 35. Resemblance increases further following the inclusion of Çankırı to complement existing 

conservation sites. 

 

 

Figure 36. Continued improvement in resemblance with the addition of Muş for enhanced 

representativeness. 
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Figure 37. Comparison of areal gains in protection status with successive additions of Hakkari, 

Çankırı, and Muş, either directly within PAs or indirectly through PA resemblance higher than 0.7. 

 

 

 

Figure 38. Mean gains in resemblance per cell through successive additions of Hakkari (if1 minus 

pa), Çankırı (if2 minus if1_2), and Muş (if3 minus if2_2) in 2000 randomly selected sites. Note the 

impact on the resemblance of least protected sites by including Hakkari. 
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5.7 Temporal analyses point to shifts in turnover patterns and the 

vulnerability of ancestral groups 

Throughout the first half of the century, the general picture of ecological regions 

remained relatively stable; however, divergence emerged among the models in the 

latter half, particularly under the more pessimistic SSP scenarios (Fig. 39). 

Importantly, the impacts of climate change were not uniform across the study area. 

Thrace experienced substantial changes at an early phase, followed by a disruption 

in coherence in the Caucasus. Later, a divergence between highlands and lowlands 

intensified within Anatolia. Across the study area, coastal regions appeared more 

vulnerable initially, but in later years and under intense SSP scenarios, inland areas 

were affected similarly. Notably, the increases in minTwarm were a primary driver 

of these changes, alongside considerable impacts from changes in the PETdriest 

(Supplementary Figure 30). 

An examination of the ecological similarities to each ancestral group revealed that 

cells particularly similar to any of the groups showed a consistent decline (Fig. 40). 

An exception was with the Levantine group, which initially declined but had gains 

later. At the end of the projection period, the number of cells that displayed high 

ecological similarity to unadmixed Thracian or Caucasian samples halved. Although 

the region with high similarity to the Zagrosian group showed a decline, the 

Anatolian counterpart experienced the most drastic case regarding the total surface 

area. 

Nevertheless, these changes had other implications for classification results (Fig. 

41). Despite the massive decline of high ecological similarity to unadmixed 

Anatolian samples, the Anatolian ancestral group still maintained its classified area 

until the late stages of the projection period (Fig. 42). Meanwhile, the Thracian group 

steadily decreased from over 50,000 km2 to 25,000 km2, the Caucasian group from 

circa 100,000 km2 to 75,000 km2, and the Zagrosian group from circa 200,000 km2 

to 150,000 km2. Conversely, the Levantine group continued to gain ground, almost 
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doubling its size from circa 175,000 km2 to 300,000 km2 by the end of the projection 

period. Classification changes across the study area reached 150,000 km2 in total. 

 

 

Figure 39. Climate change impact on turnover patterns. Temporal analyses point to shifts in intra-

specific turnover patterns under different SSP scenarios at midyears of two-decade periods. The first 

half of the century shows relative stability, while divergence emerges in the latter half, particularly 

under more pessimistic SSP scenarios. Colors represent gradients in genetic turnover in a red-green-

blue scale according to the first three PC scores of transformed environmental variables. 
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Figure 40. Study area showing high ecological similarity (greater than 0.4) to ancestral groups. 

 

 

Figure 41. Alterations in five primary bioregions representing predicted ancestral group distributions 

under different SSP scenarios at midyears of two-decade periods. 
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Figure 42. The study area is classified into each ancestral group, highlighting shifts and losses. The 

black line indicates the total area with a changed classification outcome. 

 

The SSP-year combinations presented variation in probable scenarios, with the 

Thracian group shrinking drastically in some of them, nearly disappearing within the 

borders of Türkiye (Fig. 43). Relatively high losses of ecological similarity were 

apparent in rasters associated with the Caucasian group, indicating retreat and 

fragmentation, particularly at lower altitudes (Fig. 44). This pattern manifesting in 

the lowlands was observed in the Anatolian and Zagrosian rasters, albeit to a lesser 

degree (Fig. 45 and 46). In the extreme case of late SSP585 scenario, the Levantine 

group gained excessive ground in central Anatolia and even the central Black Sea 

(Fig. 47). 
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Figure 43. Projected changes in ecological similarity to unadmixed Thracian sampling locations in 

response to climate change. 

 

 

Figure 44. Projected changes in ecological similarity to unadmixed Caucasian sampling locations in 

response to climate change. 
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Figure 45. Projected changes in ecological similarity to unadmixed Anatolian sampling locations in 

response to climate change. 

 

 

Figure 46. Projected changes in ecological similarity to unadmixed Zagrosian sampling locations in 

response to climate change. 
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Figure 47. Projected changes in ecological similarity to unadmixed Levantine sampling locations in 

response to climate change. 

 

Analyzing survey gaps, we observed a notable increase in that figure, especially in 

areas of higher climate impact (Fig. 48). There was a significant decrease in 

maximum ecological similarity to sampling sites, with a magnitude of similarity loss 

averaging around 0.06 at the cell level (p < 0.001; Fig. 49). The proportion of the 

study area with survey gap values exceeding the threshold increased continuously 

under each scenario throughout the years, ranging from nearly none to 50,000 km2 

by the end of the century (Fig. 50). Additionally, the uniqueness at the cell level 

increased, albeit to a lesser degree than survey gaps, averaging around 0.03 (p < 

0.001). While each cell became more uncommon, the total area classified as highly 

unique consistently decreased from circa 100,000 km2 to 75,000 km2. The 

uniqueness of the sites at Levant and Thrace appeared to decline consistently across 

the SSP-year combinations, just as the coherence of the highly unique locations at 

the Caucasus was disrupted (Fig. 51). 



 

 

80 

At the cell level, turnover speed did not exhibit substantial changes. However, across 

the study area, the proportion of sites with fast turnover had an observable increase, 

their surface area rising from circa 100,000 km2 to 150,000 km2. Furthermore, 

notable changes in turnover patterns were observed, including a shift of the 

geographical barrier at the mid-portion of the Southeast Taurus range to the Mercan 

Mountains in East Anatolia (Fig. 52). The Aegean mountainous areas also displayed 

increased turnover speeds due to rising temperatures, as did the coastal regions along 

the Eastern Black Sea. Comparison of SSP scenarios across the time periods for the 

survey gaps, uniqueness, and turnover speed can be tracked from Supplementary 

Figures 31, 32, and 33. 

 

 

Figure 48. Mean survey gap values across the study space and climate change scenarios. White 

crosses show sample locations. 
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Figures 49 and 50. (a) Mean difference in maximum ecological similarity to sampling sites (i.e., 

survey gaps; gap.fut minus gap), uniqueness (uniq.fut minus uniq), and turnover speed (speed.fut 

minus speed) in 2000 randomly selected sites. (b) Study area with survey gap values, uniqueness, and 

turnover speed surpassing thresholds (0.45, 10th quantile, and 10th quantile, respectively) under 

different SSP scenarios throughout the years. Predictive curves and shadows represent the Locally 

Weighted Scatterplot Smoothing regression and confidence intervals of +/- one standard deviation. 
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Figure 51. Mean uniqueness across the study space and climate change scenarios. 

 

 

Figure 52. Mean turnover speeds across the study space and climate change scenarios. 
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5.8 Spatio-temporal complexity in climate change impact threatens 

persistence and resilience 

Highly persistent sites exhibited a decline over time and across scenarios, along with 

sites displaying high resilience (Fig. 53). Conversely, sites with exceptionally high 

disappearance or emergence indices increased. The emergence of novel ancestry 

compositions unfolded later due to intensifying environmental changes. Regarding 

persistence, sites that remained high on that index decreased from around 800,000 

km2 to 575,000 km2, affecting nearly one-fourth of the study area. Spatially, low 

persistence was heterogeneous (Fig. 54), with the Thrace, Upper Euphrates, and 

Levantine regions experiencing the highest declines, along with coastal areas of the 

Aegean, central Black Sea, and those neighboring the Caucasus (Colchis). In 

contrast, East-Central Anatolia showed the most extreme persistence, followed by 

the highlands of West and East Anatolia. 

Spatial differences between persistence levels were reflected in significant mean 

differences in a Tukey’s test between sites classified to various ancestral groups (all 

p < 0.001), with the Thracian group displaying the lowest scores (Supplementary 

Table 12). On the other hand, sites with high ecological similarity to either the 

Anatolian or Zagrosian groups showed significantly greater persistence (both p < 

0.001; Supplementary Table 13). The persistence was significantly lower in 

regions with fast turnover rates and high resemblance to protected areas, meanwhile 

highly unique regions had high persistence (all p < 0.001 with mean differences 0.70, 

0.21, and 0.35). Under SSP126, the loss of persistence was limited over the years, 

while SSP585 showed almost homogeneous low persistence across the study space, 

except for some restricted sites (Fig. 55). 

The area that can potentially serve as refugia declined from 300,000 km2 to 250,000 

km2. Refugium sites tended to concentrate around mountainous areas, especially 

those surrounded by lowlands or adjacent to low-persistence sites (Fig. 56). Regions 

classified to Thracian and Levantine ancestral groups suffered from an absence of 

such places in excess, therefore, significantly lacked efficient refugia (all p < 0.001). 
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In contrast, resilience was slightly higher in sites highly similar to the Zagrosian 

group, as in sites with slow turnover (both p < 0.001 with mean differences 0.08 and 

0.07). Furthermore, there were considerable differences across SSPs. In extreme 

cases, newly established refugia were sometimes overridden, such as in Thrace and 

Aegean, or even in the central Anatolian plateau and the mid-portion of the Southeast 

Taurus range at later stages of the projection period (Fig. 57). 

 

 

Figure 53. Study area with persistence, resilience, disappearance, and emergence indices surpassing 

thresholds (75th quantile, 1, 0.6, and 0.6, respectively) under different SSP scenarios throughout the 

years. Predictive curves and shadows represent the Locally Weighted Scatterplot Smoothing 

regression and confidence intervals of +/- one standard deviation. 
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Figure 54. The spatial distribution of persistence levels measuring consistent durability in local 

ancestry compositions across the study space and climate change scenarios. 

 

 

Figure 55. Impact of climate change on the persistence of ancestry compositions. 
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Figure 56. The spatial distribution of the resilience index measuring continuous refugium potential 

for local ancestry compositions across the study space and climate change scenarios. 

 

 

Figure 57. Impact of climate change on resilience of ancestry compositions. 
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Low persistence may result in the replacement of distinct local ancestry 

compositions with those from neighboring sites, but at other times may end up in 

ancestry compositions previously unknown. The disappearance of current ancestry 

compositions occurred relatively quickly and stabilized around 25,000 km2. In 

contrast, the emergence of new ancestry compositions became more pronounced in 

the second half of the century, affecting an area of up to 100,000 km2. Sites suffering 

the most from disappearance included the Colchis, a relatively restricted zone in 

South Aegean, Mount Uludağ in Marmara, and northern Syria, and likely the 

southern lowlands of the mid-portion of Southeast Taurus range (Fig. 58). 

Conversely, areas of emergence were prevalent in Colchis, around the Bosporus, the 

central Black Sea coast, and the Araxes River valley north of Mount Ararat in the 

easternmost part of Anatolia (Fig. 59). 

In the late stage of pessimistic SSP scenarios, high disappearance was predicted 

throughout Thrace, entirely replaced by novel ancestry compositions, which 

extended to the western Black Sea region (Fig. 60 and 61). Significant mean 

differences register the consequences in disappearance and emergence indices 

between sites classified to the Thracian group or others (both p < 0.001). The two 

indices were slightly larger in regions with fast turnover (both p < 0.001 with mean 

differences of 0.08). 
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Figure 58. The spatial distribution of the disappearance index measuring the continuous loss in local 

ancestry compositions across the study space and climate change scenarios. 

 

 

Figure 59. The spatial distribution of the emergence index measuring consistent novelty in local 

ancestry compositions across the study space and climate change scenarios. 
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Figure 60. Impact of climate change on the disappearance of ancestry compositions. 

 

 

Figure 61. Impact of climate change on the emergence of ancestry compositions. 
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CHAPTER 6  

6 DISCUSSION 

The results presented in this study provide insights into the drivers of intra-specific 

turnover in ancestry compositions across honey bee populations and shed light on 

the complex dynamics of honey bee population structure in response to 

environmental gradients. The findings highlight the importance of both global and 

local factors in shaping genetic differentiation among honey bee subspecies and 

emphasize the significance of considering specific climatic variables beyond 

geographic distance in understanding the patterns of ancestry turnover. Furthermore, 

the spatio-temporal analyses of climate change impact raise concerns about the 

vulnerability of distinct ancestral groups and underscore the need to identify and 

incorporate new conservation sites to enhance the representation and resilience of 

honey bee populations. 

6.1 Global and local drivers of intra-specific turnover 

One of the key findings of this study was the identification of global and regional 

drivers of intra-specific turnover. The impact of localized climatic factors on the 

complexity of genetic differentiation highlights the importance of considering 

regional contexts and fine-scale ecological patterns (Kim et al., 2023). The global 

dissimilarity model heavily relied on precipitation amount and levels of potential 

evapotranspiration of the wettest and driest periods. These two metrics combined 

provide information on potential soil moisture gradients across seasons and 

landscapes—an essential predictor of plant phenology and community structure (Zhu 

et al., 2016; Liu et al., 2022; Dudenhöffer et al., 2022). Alterations in phenology and 

composition may significantly affect periodic resource availability and diversity, 

requiring life-history adaptations (Alstad et al., 2016; Grünzweig et al., 2022), which 
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can drive dramatic shifts in insect phenology involving complex genomic 

architecture with polygenic effects, such as diapause timing in various species 

(Kinzner et al., 2019; Shah et al., 2020). Moisture-related variables had the highest 

predictive power for the Caucasian ancestry as anticipated. 

Among the temperature-associated variables, the minimum temperature of the 

warmest period assumed a significant role in the global and local models. Maximum 

temperature extremes often define physiological limits to heat tolerance or interfere 

with sperm viability and queen failure (Sinervo et al., 2010; McAfee et al., 2020). 

Meanwhile, epigenetic, physiological, or behavioral adaptations in coordinated 

thermoregulatory activities to avoid overheating might depend on minimum 

temperature levels at the warmest period as a response threshold (Stabentheiner et 

al., 2022; Zhang et al., 2022; Alghamdi and Alattal, 2023; Alattal and Alghamdi, 

2023). Aligning with their thermal tolerance limits, bees adapted to hotter 

environments exhibit longer foraging durations and extended foraging ranges in their 

natural habitats than exotic subspecies (Alattal and Alghamdi, 2015). As expected, 

Levantine ancestry responded strongly to minTwarm. 

A. m. syriaca bees exhibit specific adaptations to elevated temperatures, including 

smaller size, lighter coloration, and shorter hair (Ruttner, 1988). In contrast, A. m. 

caucasica bees are large, dark, and hairy, with a tendency to hoard propolis 

(Kekeçoğlu et al., 2020). The two subspecies display extremely divergent behavior 

sets, which may be adaptive at their native distributions. Levantine bees produce a 

large number of swarms with multiple queens, are highly defensive, display high 

levels of hygienic and grooming behavior associated with the expression of genes 

with potential neurodevelopmental and behavioral effects, and sustain low levels of 

mite infestation (Kence et al., 2013; Yıldız and Karabağ, 2022). Caucasian bees 

enjoy sequential resource availability throughout the flowering season and are 

known for low levels of defensiveness, swarming tendency, and flower fidelity 

(Brillet et al., 2002; Çakmak et al., 2010). In contrast, syriaca foragers lack flexibility 

in learning, but the resulting flower constancy minimizes search time which may be 

beneficial in a Mediterranean climate with long summer draughts and high predator 



 

 

93 

densities. Meanwhile, plasticity is significant when maximizing honey stores for 

long winters, which is an issue for caucasica bees (Claudio et al., 2018). 

Differential neural, hormonal, and developmental responses across local populations 

may play a crucial role in shaping the range of physiological and behavioral plasticity 

displayed by individuals or colonies in response to daily and yearly thermal 

fluctuations (Willmer and Stone, 2004; Grodzicki and Caputa, 2014; Abram et al., 

2017; González‐Tokman, 2020). Along their clines, continentality and isothermality 

exert distinct effects on honey bee populations. Up-regulated stress responses during 

cooling or heating affect survival (Fahrenholz et al., 1989; Torson et al., 2015; Mucci 

et al., 2021; Kaya-Zeeb et al., 2022). For instance, the rate of temperature increases 

over time influenced critical thermal minima and maxima of scutellata-hybrids 

derived from African bees (Gonzalez et al., 2022). In this study, the Zagrosian 

ancestry in the native distribution of A. m. meda was most sensitive to predictors 

related to temperature oscillations. 

Besides their direct impacts at the individual and colony levels, thermal fluctuations 

are associated with plant productivity and pollen richness (Reitalu et al., 2019). 

Whereas, higher minimum temperatures alter plant respiration and slow carbon 

accumulation for tree growth (Anderegg et al., 2015). Both factors influence land 

cover and nutrition (Niemczyk et al., 2021), hence may affect foraging and colony 

health. 

Although climatic variables contributed a good share of the captured variance, spatial 

processes captured by MEMs in GFs, like the geographic distance in global GDM, 

appeared as the most critical predictors of intra-specific turnover. These results 

suggest that geographic distance and possible unmeasured environmental factors 

which are not captured by the other explicitly modeled predictors have shaped 

genetic differentiation among honey bee populations, as in some other species 

(Vanhove et al., 2021; Lima‐Rezende et al., 2022). 

In addition to geographic distance, multiple isolation patterns manifested across the 

study space, including isolation by environment and physical barriers. Despite the 
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relatively small ecological distances and extant gene flow between subspecies on 

both sides of the Bosporus and the Dardanelles straits, the Sea of Marmara emerged 

as a primary demarcation line between western Anatolia and Thrace. Likewise, 

although accompanied by a more pronounced environmental signal, the transition 

from syriaca to meda and anatoliaca primarily aligned with the Taurus Mountains.  

Consistent with findings in various other species, patterns of isolation by 

environment were evident along ecological boundaries and environmental gradients, 

attributable to well-known biogeographical breaks at suture zones and rapid 

ecological changes occurring at the East Anatolian Plateau and the Anatolian 

Diagonal (Bilgin, 2011; Gür, 2016; Nielsen et al., 2021). The transition from 

anatoliaca to caucasica was much quicker. In contrast, interpenetrated with the river 

beds of the Euphrates and the Araxes, the transformation to meda occurred at a 

relatively slower pace. 

6.2 Climate vulnerability in the form of declining persistence and resilience 

Our temporal analyses of climate change impact raise concerns about the persistence 

and resilience of honey bee diversity. Persistence is not uniform across the study 

area, and the findings suggest that honey bee populations may face shifts in turnover 

patterns and are vulnerable to climate change, as in other species (Nielsen et al., 

2021). Shrinking regions of exceptional uniqueness, dramatic declines in the 

proportion of sites with high similarity to any of the ancestral groups, and physical 

shifts at sites of fast turnover and along transition zones all point to wider admixture 

across the landscape. Climate change-induced hybridization in insect populations 

can lead to various evolutionary outcomes apart from introgression, including 

species fusions, local extinctions, genetic swamping, and shifts in hybrid zone 

boundaries (Arce-Valdés and Sánchez-Guillén, 2022). 

The area occupied by local subspecies except syriaca consistently shrinks under each 

forecast, particularly threatening the Thracian ancestral group. On the other hand, 
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bees with Levantine ancestry bearing particular adaptations to elevated temperatures 

seem to gain an advantage in time. Intriguingly, those bees are not the subspecies of 

choice by beekeepers due to their high defensiveness, tendency to swarm, and low 

honey yields (Kence et al., 2013). When ecological barriers to gene flow are in place, 

only a limited number of alleles beneficial at both sides of the barrier may introgress 

(Akerman and Bürger, 2014). Without obstacles and selection pressure, populations 

widely admix and homogenize. However, it should be noted that physical barriers 

such as the Sea of Marmara and the Taurus Mountains may buffer the spread of 

Levantine ancestry to Anatolia and Anatolian ancestry to Thrace. 

Our predictions about rapid shifts in intra-specific turnover are realistic and align 

well with ecological forecasts of other insect species with a mix of winners and losers 

(Neupane et al., 2024). Given their ectothermic nature, insect physiology and trophic 

or community‐level interactions are highly dependent on ambient temperatures, 

rendering insect distributions vulnerable to impacts from warming or temperature 

extremes (Chen et al., 2011; Harvey et al., 2020). Furthermore, populations 

exhibiting enhanced survival responses in the face of predicted increase in drought 

frequency and intensity possess an evolutionary advantage (Exposito-Alonso et al., 

2018). Morphometric analyses of honey bee samples from the Jordan Valley dating 

back 3000 years suggested a different geographical distribution of subspecies in the 

near past and indicated probable rapid shifts in the historical record by rejecting local 

syriaca ancestry in favor of anatoliaca (Bloch et al., 2010). 

Under competitive advantage, scutellata-European hybrids derived from non-native 

African bees introduced to Brazil colonized the New World in less than 50 years 

(Calfee et al., 2020). Still, the invasion was halted at replicated hybrid zones in 

California and Argentina. Besides, a notable decrease in scutellata ancestry existed 

in the highland populations compared to lowlands (Everitt et al., 2023). More 

interestingly, genome-wide ancestry compositions were correlated between 

populations in similar habitats in Argentina and Colombia despite large geographical 

separation. While Calfee et al. (2020) confirmed the genomic cohesion and 

polygenic basis of the rapid expansion of scutellata ancestry and related fitness costs 
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in cooler climates, it faced challenges deciphering the precise environmental 

variables driving the relationship between intra-specific turnover and latitude. 

Common garden experiments point to a similar competitive advantage of locally 

adapted subspecies in honey bees (Costa et al., 2012; Hatjina et al., 2014; Büchler et 

al., 2014; Meixner et al., 2014; Uzunov et al., 2014). Space-for-time substitution is 

supported by common garden experiments and fossil pollen data in other species 

when spatial and temporal models capture comparable climate dissimilarities (Blois 

et al., 2013; Lovell et al., 2023), making it a widely employed method across eco-

evolutionary subfields such as population phenotypes, genotypes, species' 

distributions, and ecological communities (Thomas et al., 2004; Wilczek et al., 2014; 

Alexander et al., 2015; Gougherty et al., 2021). Comparative studies conducted 

across various sites and gradients provide essential evidence regarding the 

environmental factors influencing variations in insect abundance and diversity 

(Blüthgen et al., 2022). 

Potential refugia for the current ancestry compositions show a continuous decline 

across years and SSPs, accompanied by increasing disappearance and emergence 

indices. These putative refugia tend to concentrate around mountainous areas 

surrounded by lowlands and adjacent to low-persistence sites. Regions inhabited by 

Thracian and Levantine ancestral groups suffer from a lack of such refugia, 

impairing their resilience. In the face of rapid anthropogenic change, insect 

populations exhibit diverse resilience through shifts and adaptations (Lancaster et 

al., 2016; Dudaniec et al., 2018; Halsch et al., 2021; McCulloch and Waters, 2023). 

Geographically restricted alpine species with limited dispersal options face increased 

extinction risks, while surviving upland insect lineages may experience rapid 

adaptive changes (Kinzner et al., 2019; Shah et al., 2020). 

Notably, newly established mountainous refugia were sometimes overridden in our 

study area at later stages of pessimistic climate scenarios. Moreover, in these 

instances, the ecological similarity between study sites and sampling sites exhibited 

a gradual decline, characterized by relatively low persistence and resilience values 
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in these areas. This decline underscores the importance of intensifying monitoring 

and further sampling at such sites. Monitoring intraspecific genetic diversity is 

crucial for species' adaptation to changing environments and mitigating the risks 

particularly in regions vulnerable to climate-induced stresses (Pearman et al., 2024). 

Climate responses can be asymmetric, often showing sharp declines beyond certain 

upper climate thresholds (DeMarche et al., 2019). Projected climate risks are 

significantly amplified under the SSP585 scenario compared to the SSP126 scenario, 

underscoring the urgency for implementing stringent emission controls (Kim et al., 

2023). Considering the higher equilibrium climate sensitivity in the CMIP6 models, 

these more pessimistic scenarios where warming exceeds 4 °C might not be 

unrealistic (Meehl et al., 2020; Lee et al., 2023). Thus, our results incorporating all 

four SSPs might be considered more as a baseline regarding the climate vulnerability 

of honey bee populations. 

Although we focused on Anatolia and Thrace for our model system, our approach 

holds significant importance for monitoring and conservation of managed and wild 

honey bee populations across neighboring countries of Iran, Iraq, Syria, Cyprus, 

Greece, Bulgaria, Georgia, and Armenia in Europe and Asia. This vulnerability and 

novel form of human-mediated gene flow associated with climate change could 

threaten populations, alongside ongoing anthropogenic impact stemming from 

migratory beekeeping and trade (Kükrer et al., 2021). Despite our study is based on 

managed honey bees, feral populations and wild pollinators might suffer from the 

same environmental changes (Jaffe et al., 2010; Requier et al., 2019). Furthermore, 

our modeling approach could benefit not only other insects but also domestic and 

wild animal or plant species, particularly around the Mediterranean, where similar 

pressures may apply. 
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6.3 Assessing and enhancing conservation strategies through resemblance 

analyses 

Our findings have important implications for breeding and conservation 

management. Breeding programs often rely on locally adapted geographic forms, but 

our study shows that even these populations might be maladapted to future 

conditions (Hoffmann, 2010; Breed et al., 2013; Henry, 2016; Marsh et al., 2021). 

Sites with low persistence have an alarming overlap with established protected areas. 

Thrace, the Aegean coast, and parts of the Caucasus range, all harboring 

conservatories, suffer from low persistence. Moreover, sites with a high resemblance 

to protected areas display significantly reduced persistence. 

Incorporating environmental variation in conservation decision-making is feasible. 

Hanson et al. (2017) confirmed that environmental and geographic variation could 

predict adaptive and neutral genetic variation and be used as surrogates in 27 plant 

species collected over the European Alps. Pairwise ecological similarities we used 

to compute resemblance indices incorporate climatic variation within the study space 

and consider the distribution of ancestry compositions across the landscape. 

Our assessment of protected area resemblance highlights the critical need to identify 

and incorporate new conservation sites to enhance the representation of ancestral 

groups and increase protected area coverage (Rodrigues and Brooks, 2007; Kukkala 

and Moilanen, 2013). By adding specific unprotected areas to the conservation sites, 

the indirectly protected area through resemblance could expand significantly, 

covering a substantial portion of the study area. 

According to our analysis, A. m. meda is currently unprotected, making it an urgent 

conservation priority. Meanwhile, adding Muş to the conservation sites could be 

beneficial, as it appears to be the epicenter of Anatolian ancestry in the east, where 

meda and anatoliaca populations interpenetrate each other along distinct river beds 

of the Euphrates and the Araxes. Moreover, due to the ecological similarity of Muş 
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to the sites harboring high Zagrosian ancestry, such a conservation measure would 

also benefit that group. 

While our conservation proposals could not increase the protected area resemblance 

in the Levantine ancestral group, an observational examination of the resemblance 

layers suggests that adding Mardin to the conservatories could benefit conservation 

through increased representativeness. However, we lack samples from this area or 

its immediate neighbors to assess the genetic makeup of the region directly, so we 

refrain this time from suggesting the province among the proposed protected areas. 

Another spatial approach concerning complementarity and representation can be a 

backward assessment of current protected areas. Removing protected areas 

sequentially and monitoring changes in resemblance values can identify potential 

overlaps and inform more efficient future resource allocations. 

Our results emphasize the potential benefits of incorporating localized conservation 

strategies to promote conservation complementarity and protect the unique genetic 

diversity of honey bee populations (Sarkar, 2006). However, it should be noted that 

climate change may significantly impact protected areas (Geldmann et al., 2019). 

Our analyses show that freely evolving conservation sites may shift in ancestry 

compositions in response to environmental change. When deciding on new protected 

areas, choosing sites with high persistence and resilience indices might be adaptive 

in the face of climate change. Pushing forward, it is possible to assess the climate 

efficacy of current protected areas by computing resemblance indices for future 

rasters. 

An even more interesting option involves considering freely evolving protected areas 

and identifying current sites with lowered resemblance to future protected areas, thus 

with eroding conservation statuses. Alternatively, computing the resemblance 

between future sites and future protected areas can identify potential overlaps and 

reveal places that would be indirectly protected at a later stage—or those with low 

ecological similarity to protected areas, thus would stay uncovered. In that case, 

controlled mating, including artificial insemination, can benefit conservation herds. 
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Mating control can effectively maintain or enhance protected area resemblance in 

the face of climate change. Additionally, it can be strategically utilized to bolster 

adaptive capacity within protected areas, mainly by assisted gene flow of identified 

adaptive markers (Gaitán‐Espitia and Hobday, 2021). 

This study provides essential first steps in national genetic monitoring and 

conservation planning of honey bee populations in Türkiye. It brings together 

specimen and genetic data across the country, identifies conservation goals, 

evaluates existing protected areas, and designs expansions as in the original 

description of systematic conservation planning (Kukkala and Moilanen, 2013). This 

first assessment of honey bee conservation sites in Türkiye integrates genetic and 

environmental factors to evaluate complementarity and representativeness. 

In the future, our results can be incorporated into more sophisticated decision-

making and advanced systematic conservation planning tools. These tools can 

include spatial, genetic, and ecological data to optimize conservation decision-

making and identify priority conservation areas for honey bee populations (Zurell et 

al., 2022; Nielsen et al., 2022; Andrello et al., 2022). Integrating insights from 

resemblance analyses with these sophisticated conservation decision tools will 

provide better implementations for safeguarding honey bee genetic diversity and 

adaptive capacity. 

6.4 Methodological limitations and contributions 

Both fitness and climate are multidimensional, and locally adapted lineages are 

expected to display a wide range of responses across various vital rates and 

environmental drivers (DeMarche et al., 2019). We assume past trends have been 

stable and current states reflect an optimally balanced situation. This complexity and 

difficulty in specifying ecological niches constitute a challenge in predicting novel 

system states in response to change. The unpredictability is further exacerbated by 

computational irreducibility, wherein evolution may be considered a chaotic process. 
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As a result, ecological systems exhibit low intrinsic predictability (Coreau et al., 

2009; Doebeli and Ispolatov, 2010; Beckage et al., 2011). To address challenges 

associated with climate unpredictability, we employed six general circulation models 

as future climate rasters for four shared socioeconomic pathways (SSPs) and periods. 

Additionally, we implemented a rigorous variable selection procedure, which 

involved considering the variance inflation factors and GF outcomes before 

modeling dissimilarities. 

Despite the robustness of our models, forecasting ancestry estimates is still 

challenging due to widely unknown and potentially differential physiological limits, 

the intragroup genetic diversity that can determine adaptive capacities, 

developmental and other kinds of plasticity, and specific plant-pollinator interactions 

of populations under consideration (Franks et al., 2014; Quigley et al., 2019; Kükrer 

and Bilgin 2020; Keeler et al., 2021; Cunningham et al., 2022). Still, our turnover 

predictions can be considered an assessment of ongoing pressures and climatic stress 

on local populations that must cope with environmental transformations. The 

increased mismatch between existing gene combinations and the environment can 

undermine resilience through hindered colony development, reduced performance 

and survival, and higher levels and occurrence of pathogens (Hatjina et al., 2014; 

Büchler et al., 2014; Meixner et al., 2014). 

In six tree species, randomly selected SNPs outperformed candidate loci in 

predicting the performance in common garden experiments (Fitzpatrick et al., 2021; 

Capblancq and Forester, 2021; Lachmuth et al., 2023; Lind et al., 2023). In 

Arabidopsis thaliana, while heritability levels were notably high, no individual SNP 

showed significant association with drought survival, instead, it was linked to genetic 

group membership (Exposito-Alonso et al., 2018). Similarly, Nielsen et al. (2021) 

found that both neutral and outlier loci followed biogeographical breaks in the Cape 

urchin, common shore crab, and granular limpet. These outcomes suggested that 

allele frequencies across the genome were generally aligned with the same 

environmental gradients crucial for local adaptation. Thus, the influence of 
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environmental gradients on both adaptive and neutral genomic backgrounds was 

parallel or proportional. 

Based on these insights, we utilized a novel approach by employing GDM to model 

ancestry estimates and forecast intra-specific turnover in ancestry compositions—

the first time to our knowledge. Previous research has mainly used genetic distances 

or differentiation indices (Fst) to understand local adaptation to climate, but these 

methods may underestimate the true magnitude of local adaptation (DeMarche et al., 

2019). In this study, we employed ancestry compositions inferred from putatively 

neutral microsatellite markers as a multidimensional proxy to represent the processes 

operating at the local scale, instead of reducing population differentiation to a single 

metric as in Fst. Forecasting with multi-dimensional ancestry compositions is a viable 

approach, given that neighboring populations with similar environmental constraints 

to future site conditions may already exhibit preadaptation (Davis and Shaw, 2001). 

Elevated habitat suitability correlates positively with gene flow across landscapes, 

supported by both theoretical frameworks and empirical evidence from 

phylogeographical and landscape genetic studies (Auffret et al., 2017; Knowles and 

Massatti, 2017; Massatti and Winkler, 2022). Jay et al. (2015) utilized a model-based 

approach that integrates genetic and geographic data and employs Bayesian methods 

to infer admixture coefficients based on correlations with environmental variables 

and make forecasts. However, our specific interest lies in modeling pairwise 

dissimilarities between sites based on ecological gradients, for which GDM proves 

highly advantageous (Mokany et al., 2022). GDM effectively accounts for 

nonlinearities in the dissimilarity measures, including when pairs of assemblages are 

entirely different. Moreover, GDM allows for including a wide range of 

environmental covariates, enabling the identification of influential factors driving 

diversity. This flexibility allows us to explore various combinations of 

environmental variables and their effects on dissimilarity. 

SNP markers are highly informative and can provide candidate markers involved in 

local adaptation. However, they often lack experimental validation of their fitness 
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consequences under various environmental conditions and genetic backgrounds 

(Barghi et al., 2020). Besides, collating georeferenced SNP data with uniform and 

comparable methods across the entire range of Apis mellifera poses challenges. 

Instead, we focused on a historical refugium with significant environmental 

heterogeneity spanning almost 1 million square kilometers, utilizing microsatellite 

markers. Our sampling is highly dense to capture any relationships between ancestry 

compositions and the environment within our study area (Anderson et al., 2010; 

Landguth and Schwartz, 2014). Including proximate sites with both high and low 

environmental similarity characterize lower dissimilarity values more accurately 

(Mokany et al., 2022).  

Our method to compute the forward and reverse offset calculations, simplified and 

slightly modified from Mokany et al. (2022), is faster and less computationally 

demanding while providing valuable insights. It allows us to determine (i) current 

ancestry compositions that may no longer be available in the future and (ii) novel 

ancestry compositions that are distinct from currently observed. By employing our 

approach, computation time is significantly reduced. A single run on a quad-core 

2.40 GHz laptop with 12 GB of RAM, using a set of random reference cells 

representing 5% of the study space, took only 10 hours. The analyses would take 

approximately ten days if all pairwise comparisons were used. While its broader 

efficacy requires further testing and may not capture sites extremely rare, our method 

remains informative because it considers minimum ecological distances between 

study sites and the random set rather than relying solely on mean similarities. It offers 

a suitable tool for assessing the impact of climate change, especially in the 

developing world, where computational resources might be limited. 

Our streamlined approach and the provided code (Supplementary Code) are 

valuable for assessing vulnerability and enabling straightforward interpretation. The 

four vulnerability indices (persistence, resilience, disappearance, and emergence) 

offer specific averages across outcomes of scenario-period combinations for 

understanding the consistent and continuous impacts. Additionally, we introduce a 

supervised classification approach with high sensitivity based on type sites (in our 
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case, sites with highly unadmixed samples) to predict expected cluster distributions 

from genetic and environmental variables jointly. This approach is applicable across 

different taxonomic levels, ecosystems, and communities while classifying 

biodiversity. 

Overall, the results presented in this study provide valuable insights into the complex 

interplay between environmental factors and genetic differentiation in honey bee 

populations. The findings highlight the importance of considering global and 

regional aspects and specific climatic variables in understanding the patterns of 

ancestry turnover. Additionally, the spatio-temporal analyses of climate change 

impact raise essential conservation implications and underscore the urgency of 

implementing targeted conservation strategies to protect honey bee populations' 

genetic diversity and ensure their long-term persistence and resilience in the face of 

global change.
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CHAPTER 7  

7 CONCLUSION 

Our research sheds light on the drivers of intra-specific turnover in ancestry 

compositions across honey bee populations. It reveals the complex interplay between 

global and localized factors in shaping genetic differentiation. Integrating spatial 

analyses, GF models, and GDM approaches provides comprehensive insights into 

honey bee populations' diversity patterns and turnover dynamics. Our findings 

underscore the significance of spatial processes and specific climatic variables 

influential in genetic differentiation. Furthermore, assessing climate change impacts 

reveals the vulnerability of honey bee populations with declining persistence and 

resilience levels. These results highlight the urgent need to identify and incorporate 

new conservation sites to enhance the representation and resilience of ancestral 

groups. Overall, this study contributes crucial knowledge to honey bee 

biogeography, facilitating informed conservation strategies for safeguarding their 

unique diversity and persistence in the face of global change.  
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APPENDICES 

A. Supplementary Figures 

 

 

 

Supplementary Figures 1 and 2. Moran plots identifying spatial outliers for (a) Thracian, (b) 

Anatolian ancestral groups. 
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Supplementary Figure 3. Moran plot identifying spatial outliers for Caucasian ancestral group. 

 

 

Supplementary Figure 4. Moran plot identifying spatial outliers for Zagrosian ancestral group. 
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Supplementary Figure 5. Moran plot identifying spatial outliers for Levantine ancestral group. 

 

 

Supplementary Figure 6. Deviations from Hardy-Weinberg equilibrium across loci-population 

pairs. 
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Supplementary Figure 7. AMOVA randomization test outcomes of all five representative 

populations: Thrace, Co.Aeg, L.Cauc, Zagros, and E.Med. 

 

 

Supplementary Figure 8. AMOVA randomization test outcomes of Thrace and Co.Aeg 

populations. 
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Supplementary Figure 9. AMOVA randomization test outcomes of Zagros and Co.Aeg 

populations. 

 

 

Supplementary Figure 10. AMOVA randomization test outcomes of Zagros and L.Cauc 

populations. 
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Supplementary Figure 11. AMOVA randomization test outcomes of Zagros and E.Med 

populations. 

 

 

Supplementary Figure 12. DAPC plot of axes 1 and 2. 
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Supplementary Figure 13. DAPC plot of axes 1 and 4. 

 

 

Supplementary Figure 14. Ancestral group response curves in the regional GF model at the 

transition zone between Thracian and Anatolian ancestral group pair. Thr: Thracian, Ana: Anatolian. 
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Supplementary Figure 15. Variable importance scores (R2 values) for the regional GF model, 

highlighting the significance of spatial processes and key environmental variables driving intra-

specific turnover in ancestry compositions at the transition zone between Thracian and Anatolian 

ancestral group pair. 
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Supplementary Figure 16. Ancestral group response curves in the regional GF model at the 

transition zones between Anatolian, Levantine, and Zagrosian ancestral group pairs. Ana: Anatolian, 

Zag: Zagrosian, Lev: Levantine. 

 

 

Supplementary Figure 18. Ancestral group response curves in the regional GF model at the 

transition zone between Anatolian and Caucasian ancestral group pair. Ana: Anatolian, Cau: 

Caucasian. 
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Supplementary Figure 17. Variable importance scores (R2 values) for the regional GF model, 

highlighting the significance of spatial processes and key environmental variables driving intra-

specific turnover in ancestry compositions at the transition zones between Anatolian, Levantine, and 

Zagrosian ancestral group pairs. 
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Supplementary Figure 19. Variable importance scores (R2 values) for the regional GF model, 

highlighting the significance of spatial processes and key environmental variables driving intra-

specific turnover in ancestry compositions at the transition zone between Anatolian and Caucasian 

ancestral group pair. 
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Supplementary Figure 20. Ancestral group response curves in the regional GF model at the 

transition zone between Caucasian and Zagrosian ancestral group pair. Zag: Zagrosian, Cau: 

Caucasian. 
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Supplementary Figure 21. Variable importance scores (R2 values) for the regional GF model, 

highlighting the significance of spatial processes and key environmental variables driving intra-

specific turnover in ancestry compositions at the transition zone between Caucasian and Zagrosian 

ancestral group pair. 



 

 

140 

 

Supplementary Figure 22. Fine-scale turnover patterns in ancestry compositions in regional GDMs 

at the transition zone between Thracian and Anatolian ancestral group pair. 

 

 

Supplementary Figure 23. Fine-scale turnover patterns in ancestry compositions in regional GDMs 

at the transition zone between Anatolian and Caucasian ancestral group pair. 
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Supplementary Figure 24. Fine-scale turnover patterns in ancestry compositions in regional GDMs 

at the transition zones between Anatolian, Levantine, and Zagrosian ancestral group pairs. 

 

 

Supplementary Figure 25. Fine-scale turnover patterns in ancestry compositions in regional GDMs 

at the transition zone between Caucasian and Zagrosian ancestral group pair. 
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Supplementary Figure 26. Importance of specific environmental predictors at the transition zone 

between Thracian and Anatolian ancestral group pair. 

 

 

Supplementary Figure 27. Importance of specific environmental predictors at the transition zones 

between Anatolian, Levantine, and Zagrosian ancestral group pairs. 
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Supplementary Figure 28. Importance of specific environmental predictors at the transition zone 

between Caucasian and Zagrosian ancestral group pair. 

 

 

Supplementary Figure 29. Importance of specific environmental predictors at the transition zone 

between Anatolian and Caucasian ancestral group pair. 
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Supplementary Figure 30. Influence of GDM transformed variables under different SSP scenarios 

at midyears of two-decade periods. 

 

 

Supplementary Figure 31. Survey gaps across different SSP scenarios and periods. 
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Supplementary Figure 32. Uniqueness across different SSP scenarios and periods. 

 

 

Supplementary Figure 33. Turnover speed across different SSP scenarios and periods. 
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B. Supplementary Tables 

Supplementary Table 1. Metadata and genotyping information for the honey bee samples, including 

locality, ancestry estimates, genotyping markers, and allelic information. 

 

 

 

ID Thr Cau Lev Zag Ana Region Population Lon Lat A007 A014 A028 A043

apis_UGB4 0,97 0,00 0,00 0,01 0,02 1 Eur 6,12 51,05 120_120 217_217 137_137 140_142

apis_UGB5 0,99 0,00 0,00 0,00 0,00 1 Eur 6,12 51,06 120_120 217_217 131_137 140_140

apis_UGA5 0,99 0,00 0,00 0,00 0,00 1 Eur 6,15 51,06 113_113 217_234 131_137 125_140

apis_UGA1 0,99 0,00 0,00 0,00 0,01 1 Eur 7,46 53,42 113_120 217_234 137_137 125_140

apis_UGA2 0,99 0,00 0,00 0,00 0,00 1 Eur 7,46 53,43 113_120 217_217 131_137 125_125

apis_UGA3 0,99 0,00 0,00 0,00 0,00 1 Eur 7,47 53,42 113_113 217_234 127_131 140_142

apis_UGB1 0,98 0,00 0,00 0,00 0,01 1 Eur 9,68 52,17 113_120 217_234 NA 140_140

apis_UGB2 0,99 0,00 0,00 0,00 0,00 1 Eur 9,68 52,18 113_118 217_234 137_137 140_142

apis_PaxC1 0,96 0,00 0,01 0,01 0,02 1 Eur 11,92 51,49 126_164 217_223 131_137 127_140

apis_PaxC2 0,99 0,00 0,00 0,00 0,00 1 Eur 11,92 51,50 113_126 217_217 131_137 140_140

apis_PaxC3 0,87 0,00 0,01 0,02 0,10 1 Eur 11,92 51,51 113_126 217_217 137_137 140_140

apis_PaxC4 0,99 0,00 0,00 0,00 0,01 1 Eur 11,92 51,52 118_126 217_217 131_131 140_140

apis_PaxC5 0,98 0,00 0,01 0,01 0,01 1 Eur 11,92 51,53 120_124 217_217 131_131 127_140

apis_PaxB1 0,99 0,00 0,00 0,00 0,01 1 Eur 11,93 51,49 113_118 217_217 131_131 127_140

apis_PaxB2 1,00 0,00 0,00 0,00 0,00 1 Eur 11,93 51,50 118_118 217_217 131_131 127_127

apis_PaxB3 0,99 0,00 0,00 0,00 0,00 1 Eur 11,93 51,51 113_113 217_217 131_137 127_140

apis_PaxB4 0,99 0,00 0,00 0,00 0,00 1 Eur 11,93 51,52 113_118 217_217 137_137 125_140

apis_PaxB5 0,97 0,01 0,00 0,01 0,01 1 Eur 11,93 51,53 113_118 217_223 131_137 127_140

apis_PaxA2 0,98 0,00 0,00 0,00 0,01 1 Eur 11,94 51,49 113_118 217_217 137_137 139_142

apis_PaxA3 0,98 0,00 0,00 0,00 0,01 1 Eur 11,94 51,50 113_118 217_217 137_137 140_140

apis_PaxA4 0,96 0,00 0,03 0,00 0,01 1 Eur 11,94 51,52 118_118 217_217 137_137 125_140

apis_PaxA5 0,97 0,00 0,00 0,01 0,01 1 Eur 11,94 51,53 118_120 217_217 132_132 125_142

apis_PaxA1 0,99 0,00 0,00 0,00 0,00 1 Eur 11,94 51,51 113_120 217_217 137_137 140_142

apis_PaxD3 0,91 0,00 0,02 0,02 0,05 1 Eur 11,95 51,49 118_126 217_217 131_137 127_140

apis_PaxD4 0,99 0,00 0,00 0,00 0,00 1 Eur 11,95 51,52 120_126 217_217 137_137 127_140

apis_PaxD5 0,98 0,00 0,00 0,00 0,01 1 Eur 11,95 51,53 118_126 217_217 131_137 127_142

apis_PaxE2 0,96 0,02 0,00 0,01 0,02 1 Eur 11,96 51,50 118_120 217_217 137_137 125_142

apis_PaxE4 0,98 0,00 0,01 0,01 0,01 1 Eur 11,96 51,52 118_118 223_234 137_137 125_140

apis_PaxE5 0,98 0,00 0,01 0,00 0,01 1 Eur 11,96 51,53 118_120 217_217 131_137 127_140

apis_PaxF1 0,99 0,00 0,00 0,00 0,00 1 Eur 11,97 51,49 113_118 217_224 137_137 142_142

apis_PaxF3 0,87 0,05 0,03 0,01 0,05 1 Eur 11,97 51,51 118_118 217_217 137_137 142_142

apis_PaxF4 0,99 0,00 0,00 0,00 0,01 1 Eur 11,97 51,52 118_118 217_217 137_137 142_142

apis_PaxF5 0,97 0,01 0,00 0,01 0,01 1 Eur 11,97 51,53 118_118 217_217 137_137 140_142

apis_UAA1 0,96 0,00 0,00 0,01 0,02 1 Eur 14,75 47,16 113_118 217_234 133_137 140_142

apis_UAA2 0,98 0,00 0,00 0,00 0,01 1 Eur 14,75 47,17 115_115 217_234 137_137 125_140

apis_UAA3 0,99 0,00 0,00 0,00 0,00 1 Eur 14,76 47,16 115_118 217_217 132_137 125_140
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Supplementary Table 2. Information about the R packages used in the study and session details. 

 

 

Supplementary Table 3. Loci-based genetic diversity measures. 

 

 

 

 

 

R version 4.2.2 (2022-10-31 ucrt)

Platform: x86_64-w64-mingw32/x64 (64-bit)

Running under: Windows 10 x64 (build 19045)

Matrix products: default

locale:

[1] LC_COLLATE=Turkish_Turkey.utf8  LC_CTYPE=Turkish_Turkey.utf8    LC_MONETARY=Turkish_Turkey.utf8 LC_NUMERIC=C                    LC_TIME=Turkish_Turkey.utf8    

attached base packages:

[1] parallel  stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:

 [1] gradientForest_0.1-32 extendedForest_1.6.1  tidyr_1.3.0           envirem_2.3           palinsol_0.93         gsl_2.1-8             gdm_1.5.0-9.1        

 [8] lattice_0.21-8        maps_3.4.1            moments_0.14.1        cluster_2.1.4         rworldmap_1.3-6       RColorBrewer_1.1-3    fields_14.1          

[15] spam_2.9-1            gtools_3.9.4          raster_3.6-23         ggplot2_3.4.2         viridis_0.6.3         viridisLite_0.4.1     dabestr_0.3.0        

[22] splancs_2.01-43       sp_1.6-0              adespatial_0.3-21     hierfstat_0.5-11      PopGenReport_3.0.7    knitr_1.42            spdep_1.2-8          

[29] sf_1.0-10             spData_2.2.2          pegas_1.2             ape_5.7-1             magrittr_2.0.3        poppr_2.9.4           adegenet_2.1.10      

[36] ade4_1.7-22           dplyr_1.1.2           pkgbuild_1.4.2        pak_0.4.0             usdm_2.1-6            terra_1.7-39         

loaded via a namespace (and not attached):

  [1] uuid_1.1-0          plyr_1.8.8          igraph_1.4.1        splines_4.2.2       gstat_2.1-1         rncl_0.8.7          gap.datasets_0.0.5  digest_0.6.31      

  [9] foreach_1.5.2       htmltools_0.5.4     gdata_2.18.0.1      fansi_1.0.4         doParallel_1.0.17   R.utils_2.12.2      xts_0.13.0          prettyunits_1.1.1  

 [17] jpeg_0.1-10         colorspace_2.1-0    mmod_1.3.3          xfun_0.37           rgdal_1.6-6         callr_3.7.3         crayon_1.5.2        phylobase_0.8.10   

 [25] zoo_1.8-11          iterators_1.0.14    glue_1.6.2          gtable_0.3.1        seqinr_4.2-23       polysat_1.7-7       adegraphics_1.0-18  scales_1.2.1       

 [33] mvtnorm_1.1-3       DBI_1.1.3           GGally_2.1.2        shapefiles_0.7.2    Rcpp_1.0.10         xtable_1.8-4        progress_1.2.2      units_0.8-1        

 [41] foreign_0.8-83      proxy_0.4-27        dotCall64_1.0-2     intervals_0.15.3    dismo_1.3-9         httr_1.4.5          FNN_1.1.3.2         genetics_1.3.8.1.3 

 [49] calibrate_1.7.7     wk_0.7.1            ellipsis_0.3.2      pkgconfig_2.0.3     reshape_0.8.9       XML_3.99-0.13       R.methodsS3_1.8.2   deldir_1.0-6       

 [57] utf8_1.2.3          tidyselect_1.2.0    rlang_1.1.0         reshape2_1.4.4      later_1.3.0         munsell_0.5.0       adephylo_1.1-13     tools_4.2.2        

 [65] cli_3.6.0           generics_0.1.3      evaluate_0.20       stringr_1.5.0       fastmap_1.1.1       yaml_2.3.7          processx_3.8.0      purrr_1.0.1        

 [73] s2_1.1.2            RgoogleMaps_1.4.5.3 pbapply_1.7-0       nlme_3.1-160        mime_0.12           R.oo_1.25.0         xml2_1.3.3          gap_1.5-1          

 [81] compiler_4.2.2      beeswarm_0.4.0      png_0.1-8           e1071_1.7-13        RSAGA_1.4.0         spacetime_1.3-0     tibble_3.2.0        RNeXML_2.4.11      

 [89] stringi_1.7.12      gdistance_1.6       ps_1.7.2            Matrix_1.5-1        classInt_0.4-9      vegan_2.6-4         permute_0.9-7       vctrs_0.6.1        

 [97] pillar_1.9.0        lifecycle_1.0.3     combinat_0.0-8      maptools_1.1-6      cowplot_1.1.1       httpuv_1.6.9        R6_2.5.1            latticeExtra_0.6-30

[105] promises_1.2.0.1    KernSmooth_2.23-20  gridExtra_2.3       vipor_0.4.5         codetools_0.2-18    boot_1.3-28         MASS_7.3-58.1       withr_2.5.0        

[113] mgcv_1.8-41         hms_1.1.2           grid_4.2.2          class_7.3-20        rmarkdown_2.20      shiny_1.7.4         ggbeeswarm_0.7.1    interp_1.1-3    

Locus Alleles Private alleles Genotyping error Null alleles Expected H Observed H Fis Fit Fst Evenness G'st Gst Jost's D

A007 53 15 1,79 0,03 0,95 0,89 0,03 0,07 0,04 0,68 0,43 0,03 0,41

A014 10 2 2,68 0,10 0,65 0,48 0,08 0,27 0,21 0,70 0,31 0,13 0,20

A028 15 4 6,26 0,08 0,39 0,28 0,25 0,29 0,06 0,43 0,10 0,06 0,04

A043 16 3 3,06 0,05 0,54 0,46 0,10 0,15 0,06 0,52 0,12 0,05 0,07

A079 14 5 0,89 0,03 0,78 0,73 0,01 0,07 0,07 0,76 0,33 0,09 0,26

A088 14 5 0,49 0,07 0,68 0,57 0,04 0,17 0,14 0,73 0,28 0,11 0,19

A107 44 6 4,00 0,01 0,94 0,93 0,00 0,02 0,02 0,68 0,27 0,02 0,25

A113 18 2 0,97 0,05 0,89 0,79 0,01 0,13 0,12 0,82 0,48 0,08 0,43

AB024 8 2 0,97 0,04 0,60 0,54 0,09 0,10 0,02 0,73 0,16 0,06 0,10

AB124 19 5 3,28 0,03 0,80 0,74 0,03 0,08 0,06 0,62 0,28 0,06 0,23

AC006 11 3 1,69 0,06 0,25 0,18 0,04 0,30 0,27 0,43 0,38 0,29 0,11

AC306 12 3 1,39 0,05 0,75 0,67 0,00 0,12 0,12 0,78 0,19 0,05 0,14

AP001 34 9 3,88 0,06 0,78 0,67 0,04 0,15 0,12 0,48 0,25 0,06 0,20

AP019 11 2 2,12 0,00 0,33 0,33 -0,01 0,02 0,03 0,45 0,04 0,03 0,01

AP043 36 9 5,83 0,05 0,87 0,77 0,08 0,12 0,05 0,54 0,29 0,06 0,24

AP049 18 7 3,07 0,08 0,43 0,31 0,13 0,30 0,19 0,46 0,35 0,21 0,16

AP068 12 2 4,02 -0,01 0,65 0,66 -0,03 -0,02 0,01 0,56 0,01 0,00 0,01

AP218 4 1 0,00 0,01 0,26 0,25 -0,03 0,05 0,08 0,55 0,06 0,04 0,02

AP223 9 3 2,68 0,04 0,67 0,60 0,03 0,12 0,09 0,80 0,23 0,08 0,16

AP226 8 3 1,34 0,10 0,35 0,21 0,08 0,43 0,38 0,49 0,40 0,29 0,12

AP238 5 1 0,27 0,04 0,45 0,39 0,01 0,14 0,14 0,77 0,26 0,15 0,12

AP243 12 6 0,98 0,01 0,16 0,15 0,06 0,07 0,01 0,38 0,02 0,01 0,00

AP249 11 1 3,40 0,09 0,75 0,59 0,07 0,22 0,16 0,68 0,56 0,21 0,44

AP273 7 2 1,32 0,01 0,46 0,44 -0,02 0,05 0,07 0,76 0,13 0,07 0,06

AP288 11 5 1,79 0,06 0,42 0,34 0,03 0,21 0,19 0,52 0,35 0,22 0,15

AP289 49 11 4,42 0,12 0,91 0,68 0,21 0,26 0,05 0,54 0,45 0,06 0,42

HB_C16_01 48 8 1,35 0,02 0,94 0,91 0,00 0,04 0,04 0,63 0,47 0,04 0,45

HB_C16_02 47 3 6,61 0,08 0,85 0,71 0,14 0,17 0,03 0,40 0,22 0,04 0,19

HB_C16_05 18 12 1,34 0,04 0,66 0,60 0,03 0,09 0,06 0,78 0,20 0,07 0,13
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Supplementary Table 4. Significant linkage disequilibrium between loci pairs. 

 
Eur Co.Aeg EC.Anat 

A107:AC306 
  

0,0001 

AB124:AP288 
 

0,0001 
 

AC006:HB_C16_02 0,0001 
  

HB_C16_01:HB_C16_02 0,0001 
  

 

 

Supplementary Table 5. Population-based genetic diversity measures. 

 

 

Supplementary Table 7. AMOVA results. 

 

 

Population N Private alleles Mean richness Total richness H Hexp Hobs Fis Fst

C.BlkS 34 1 1,42 41,17 3,53 0,51 0,50 0,05 0,15

Co.Aeg 55 8 1,59 46,16 4,01 0,60 0,58 -0,03 0,11

E.Med 80 23 1,54 44,55 4,38 0,54 0,50 0,05 0,08

EC.Anat 29 6 1,46 42,36 3,37 0,47 0,43 0,06 0,20

Erz-Kar 51 6 1,60 46,34 3,93 0,66 0,61 0,15 0,10

ES.Marm 29 6 1,63 47,23 3,37 0,64 0,62 0,00 -0,05

Eur 38 28 1,54 44,80 3,64 0,55 0,54 0,02 0,03

L.Cauc 44 8 1,58 45,76 3,78 0,58 0,54 0,11 0,05

Thrace 77 25 1,63 47,38 4,34 0,64 0,62 0,03 -0,05

U.Euph 74 11 1,58 45,87 4,30 0,59 0,55 0,02 0,11

W.Anat 65 6 1,57 45,49 4,17 0,57 0,56 0,00 0,09

W.BlkS 53 5 1,58 45,72 3,97 0,58 0,53 0,06 0,10

Zagros 43 7 1,57 45,64 3,76 0,58 0,53 0,05 0,04

Subset Test Obs Std Obs Expectation Variance Alter Pvalue

all Variations within samples 5,13 -8,19 5,70 0,07 less 0,0100

all Variations between samples 0,33 4,82 0,00 0,07 greater 0,0100

all Variations between Population 0,32 40,01 0,00 0,01 greater 0,0100

t-a Variations within samples 7,29 -3,21 7,62 0,10 less 0,0100

t-a Variations between samples 0,21 1,47 -0,01 0,15 greater 0,1000

t-a Variations between Population 0,30 17,05 0,00 0,02 greater 0,0100

z-a Variations within samples 2,95 -1,75 3,07 0,07 less 0,0300

z-a Variations between samples 0,09 1,39 0,00 0,07 greater 0,1300

z-a Variations between Population 0,04 5,33 0,00 0,01 greater 0,0100

z-l Variations within samples 2,68 -2,24 2,81 0,06 less 0,0300

z-l Variations between samples 0,12 2,25 0,00 0,05 greater 0,0400

z-l Variations between Population 0,02 2,26 0,00 0,01 greater 0,0300

z-c Variations within samples 2,87 -4,21 3,18 0,07 less 0,0100

z-c Variations between samples 0,29 4,73 0,00 0,06 greater 0,0100

z-c Variations between Population 0,03 2,00 0,00 0,01 greater 0,0400
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Supplementary Table 6. Pairwise genetic differentiation estimates among populations. 

 

 

 

G'st Eur Thrace ES.Marm Co.Aeg W.Anat W.BlkS C.BlkS L.Cauc Erz-Kar U.Euph EC.Anat E.Med Zagros

Eur NA NA NA NA NA NA NA NA NA NA NA NA NA

Thrace 0,39 NA NA NA NA NA NA NA NA NA NA NA NA

ES.Marm 0,46 0,00 NA NA NA NA NA NA NA NA NA NA NA

Co.Aeg 0,65 0,11 0,06 NA NA NA NA NA NA NA NA NA NA

W.Anat 0,66 0,13 0,08 0,02 NA NA NA NA NA NA NA NA NA

W.BlkS 0,67 0,15 0,09 0,02 0,02 NA NA NA NA NA NA NA NA

C.BlkS 0,75 0,24 0,18 0,08 0,14 0,09 NA NA NA NA NA NA NA

L.Cauc 0,70 0,27 0,22 0,13 0,16 0,15 0,06 NA NA NA NA NA NA

Erz-Kar 0,64 0,11 0,06 -0,01 0,02 0,03 -0,02 -0,02 NA NA NA NA NA

U.Euph 0,66 0,14 0,09 0,02 0,02 0,02 0,05 0,10 -0,03 NA NA NA NA

EC.Anat 0,74 0,28 0,24 0,16 0,14 0,13 0,20 0,28 0,19 0,14 NA NA NA

E.Med 0,69 0,18 0,13 0,05 0,05 0,04 0,09 0,15 0,04 0,03 0,06 NA NA

Zagros 0,69 0,19 0,13 0,05 0,04 0,03 0,08 0,08 0,00 0,01 0,14 0,04 NA

Gst Eur Thrace ES.Marm Co.Aeg W.Anat W.BlkS C.BlkS L.Cauc Erz-Kar U.Euph EC.Anat E.Med Zagros

Eur NA NA NA NA NA NA NA NA NA NA NA NA NA

Thrace 0,09 NA NA NA NA NA NA NA NA NA NA NA NA

ES.Marm 0,10 0,00 NA NA NA NA NA NA NA NA NA NA NA

Co.Aeg 0,16 0,02 0,01 NA NA NA NA NA NA NA NA NA NA

W.Anat 0,17 0,03 0,02 0,00 NA NA NA NA NA NA NA NA NA

W.BlkS 0,17 0,03 0,02 0,00 0,00 NA NA NA NA NA NA NA NA

C.BlkS 0,21 0,05 0,04 0,02 0,03 0,02 NA NA NA NA NA NA NA

L.Cauc 0,18 0,05 0,04 0,03 0,03 0,03 0,01 NA NA NA NA NA NA

Erz-Kar 0,15 0,02 0,01 0,00 0,00 0,01 0,00 0,00 NA NA NA NA NA

U.Euph 0,17 0,03 0,02 0,00 0,01 0,00 0,01 0,02 -0,01 NA NA NA NA

EC.Anat 0,22 0,07 0,06 0,04 0,04 0,03 0,05 0,07 0,05 0,03 NA NA NA

E.Med 0,19 0,04 0,03 0,01 0,01 0,01 0,02 0,03 0,01 0,01 0,02 NA NA

Zagros 0,18 0,04 0,03 0,01 0,01 0,01 0,02 0,02 0,00 0,00 0,03 0,01 NA

D Eur Thrace ES.Marm Co.Aeg W.Anat W.BlkS C.BlkS L.Cauc Erz-Kar U.Euph EC.Anat E.Med Zagros

Eur NA NA NA NA NA NA NA NA NA NA NA NA NA

Thrace 0,28 NA NA NA NA NA NA NA NA NA NA NA NA

ES.Marm 0,33 0,00 NA NA NA NA NA NA NA NA NA NA NA

Co.Aeg 0,52 0,07 0,04 NA NA NA NA NA NA NA NA NA NA

W.Anat 0,52 0,08 0,05 0,01 NA NA NA NA NA NA NA NA NA

W.BlkS 0,54 0,09 0,05 0,01 0,01 NA NA NA NA NA NA NA NA

C.BlkS 0,61 0,16 0,11 0,05 0,08 0,05 NA NA NA NA NA NA NA

L.Cauc 0,57 0,18 0,15 0,08 0,10 0,09 0,03 NA NA NA NA NA NA

Erz-Kar 0,51 0,07 0,04 -0,01 0,01 0,02 -0,01 -0,01 NA NA NA NA NA

U.Euph 0,52 0,09 0,06 0,01 0,01 0,01 0,03 0,06 -0,02 NA NA NA NA

EC.Anat 0,59 0,18 0,15 0,09 0,08 0,07 0,11 0,17 0,12 0,08 NA NA NA

E.Med 0,55 0,11 0,08 0,03 0,03 0,02 0,05 0,09 0,02 0,02 0,03 NA NA

Zagros 0,56 0,12 0,09 0,03 0,03 0,02 0,05 0,05 0,00 0,01 0,08 0,02 NA

Fst Eur Thrace ES.Marm Co.Aeg W.Anat W.BlkS C.BlkS L.Cauc Erz-Kar U.Euph EC.Anat E.Med Zagros

Eur NA NA NA NA NA NA NA NA NA NA NA NA NA

Thrace 0,16 NA NA NA NA NA NA NA NA NA NA NA NA

ES.Marm 0,19 0,00 NA NA NA NA NA NA NA NA NA NA NA

Co.Aeg 0,28 0,04 0,02 NA NA NA NA NA NA NA NA NA NA

W.Anat 0,29 0,05 0,03 0,01 NA NA NA NA NA NA NA NA NA

W.BlkS 0,29 0,06 0,03 0,01 0,01 NA NA NA NA NA NA NA NA

C.BlkS 0,35 0,09 0,06 0,02 0,05 0,01 NA NA NA NA NA NA NA

L.Cauc 0,30 0,10 0,09 0,05 0,07 0,06 0,01 NA NA NA NA NA NA

Erz-Kar 0,26 0,04 0,02 -0,01 0,01 0,00 -0,06 -0,01 NA NA NA NA NA

U.Euph 0,28 0,05 0,04 0,01 0,01 0,01 0,01 0,04 -0,01 NA NA NA NA

EC.Anat 0,36 0,12 0,11 0,07 0,07 0,06 0,10 0,13 0,09 0,07 NA NA NA

E.Med 0,31 0,07 0,05 0,02 0,02 0,02 0,02 0,07 0,01 0,01 0,03 NA NA

Zagros 0,30 0,07 0,05 0,02 0,02 0,01 0,02 0,03 0,00 0,01 0,07 0,02 NA
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Supplementary Table 8. Model performance for ancestral groups in global and regional GFs and 

relative contributions of environmental variables. 

 

 

Supplementary Table 10. Areal gains in protection status, directly within PAs or indirectly through 

PA resemblance under different scenarios. 

Status Class Area 

Direct Current 59711 

Direct +1 PA 65898 

Direct +2 PA's 73819 

Direct +3 PA's 81949 

Resemblance Current 499719 

Resemblance +1 PA 577674 

Resemblance +2 PA's 713422 

Resemblance +3 PA's 754809 

 

 

 

 

 

 

 

 

 

 

Model All Variables Environmental Important Selected Thracian Anatolian Levantine Caucasian Zagrosian

Global 0,64 0,34 0,50 0,20 0,73 0,64 0,74 0,67 0,41

A to T 0,66 0,23 0,53 0,09 0,75 0,57 NA NA NA

A to C 0,58 0,42 0,46 0,29 NA 0,52 NA 0,64 NA

A to L to Z 0,55 0,22 0,38 0,06 NA 0,58 0,76 NA 0,31

C to Z 0,59 0,36 0,46 0,23 NA NA NA 0,70 0,48
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Supplementary Table 9. Weighted importance of environmental variables in predicting intra-

specific turnover in the global and regional GFs. 

 

 

Var Global A to T A to C A to L to Z C to Z

MEM2 0,1849 0,1937 0,0165 0,2017 0,1925

MEM1 0,1164 0,2404 0,1468 0,1249 0,0401

PETwettest 0,0240 0,0193 0,0053 0,0068 0,0095

Pwarmest 0,0220 0,0068 0,1102 0,0029 0,0647

isothermality 0,0177 0,0153 0,0199 0,0129 0,0331

Tdriest 0,0176 0,0039 0,0479 0,0071 0,0140

aridity 0,0153 0,0027 0,0413 0,0055 0,0268

Tseasonality 0,0143 0,0034 0,0066 0,0096 0,0096

TUR_alt 0,0143 0,0071 0,0169 0,0159 0,0171

continentality 0,0135 0,0067 0,0054 0,0108 0,0056

Pwettest 0,0123 0,0049 0,0248 0,0025 0,0268

Pdriest 0,0123 0,0238 0,0070 0,0044 0,0124

minTwarm 0,0114 0,0030 0,0021 0,0157 0,0021

PETdriest 0,0110 0,0030 0,0221 0,0024 0,0133

Pcoldest 0,0105 0,0127 0,0040 0,0025 0,0038

minTcold 0,0097 0,0064 0,0038 0,0096 0,0056

Pseasonality 0,0082 0,0046 0,0032 0,0066 0,0111

Pdry 0,0079 0,0122 0,0090 0,0025 0,0094

Twarmest 0,0076 0,0024 0,0005 0,0099 0,0018

Tcoldest 0,0076 0,0058 0,0048 0,0059 0,0064

Pwet 0,0070 0,0051 0,0062 0,0031 0,0065

maxTcold 0,0067 0,0036 0,0041 0,0076 0,0023

diurnalTrange 0,0064 0,0085 0,0075 0,0061 0,0044

PETwarmest 0,0063 0,0057 0,0102 0,0042 0,0112

meanT 0,0061 0,0016 0,0027 0,0060 0,0030

Twettest 0,0061 0,0037 0,0024 0,0055 0,0036

gdd0 0,0058 0,0025 0,0019 0,0057 0,0020

annualTrange 0,0058 0,0040 0,0050 0,0072 0,0043

annualP 0,0056 0,0102 0,0067 0,0020 0,0049

roughness 0,0054 0,0039 0,0044 0,0032 0,0047

PETseasonality 0,0052 0,0084 0,0052 0,0038 0,0070

embergerQ 0,0052 0,0082 0,0047 0,0070 0,0020

maxTwarm 0,0049 0,0026 0,0030 0,0054 0,0043

annualPET 0,0046 0,0017 0,0038 0,0041 0,0059

PETcoldest 0,0045 0,0043 0,0025 0,0030 0,0030

thermicity 0,0045 0,0013 0,0026 0,0041 0,0021

moisture 0,0038 0,0031 0,0027 0,0040 0,0049

gdd5 0,0030 0,0014 0,0030 0,0044 0,0022

topoWet 0,0018 0,0030 0,0016 0,0019 0,0035

count10 0,0013 0,0006 0,0006 0,0016 0,0004
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Supplementary Table 11. Mean differences between ancestral groups' PA resemblance under 

different scenarios. 

 

Comparison PAs Difference p_adj

Cau-Ana pa 0,04 0,0000

Lev-Ana pa -0,07 0,0000

Thr-Ana pa 0,06 0,0000

Zag-Ana pa -0,06 0,0000

Lev-Cau pa -0,11 0,0000

Thr-Cau pa 0,02 0,0000

Zag-Cau pa -0,1 0,0000

Thr-Lev pa 0,13 0,0000

Zag-Lev pa 0,01 0,0000

Zag-Thr pa -0,12 0,0000

Cau-Ana if1 0,04 0,0000

Lev-Ana if1 -0,03 0,0000

Thr-Ana if1 0,06 0,0000

Zag-Ana if1 0,01 0,0000

Lev-Cau if1 -0,07 0,0000

Thr-Cau if1 0,02 0,0000

Zag-Cau if1 -0,04 0,0000

Thr-Lev if1 0,08 0,0000

Zag-Lev if1 0,03 0,0000

Zag-Thr if1 -0,05 0,0000

Cau-Ana if2 0 0,0000

Lev-Ana if2 -0,07 0,0000

Thr-Ana if2 0,02 0,0000

Zag-Ana if2 -0,03 0,0000

Lev-Cau if2 -0,07 0,0000

Thr-Cau if2 0,02 0,0000

Zag-Cau if2 -0,04 0,0000

Thr-Lev if2 0,08 0,0000

Zag-Lev if2 0,03 0,0000

Zag-Thr if2 -0,05 0,0000

Cau-Ana if3 0 0,0000

Lev-Ana if3 -0,07 0,0000

Thr-Ana if3 0,02 0,0000

Zag-Ana if3 0 0,0100

Lev-Cau if3 -0,07 0,0000

Thr-Cau if3 0,02 0,0000

Zag-Cau if3 0 0,1500

Thr-Lev if3 0,08 0,0000

Zag-Lev if3 0,07 0,0000

Zag-Thr if3 -0,02 0,0000
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Supplementary Table 12. Mean differences between persistence, resilience, disappearance, and 

emergence indices of ancestral groups. 

 

Comparison Index Difference p_adj

Cau-Ana persistence -0,17 0,0000

Lev-Ana persistence -0,42 0,0000

Thr-Ana persistence -0,93 0,0000

Zag-Ana persistence 0,17 0,0000

Lev-Cau persistence -0,25 0,0000

Thr-Cau persistence -0,75 0,0000

Zag-Cau persistence 0,34 0,0000

Thr-Lev persistence -0,51 0,0000

Zag-Lev persistence 0,59 0,0000

Zag-Thr persistence 1,1 0,0000

Cau-Ana resilience 0,02 0,0000

Lev-Ana resilience -0,13 0,0000

Thr-Ana resilience -0,11 0,0000

Zag-Ana resilience 0,03 0,0000

Lev-Cau resilience -0,15 0,0000

Thr-Cau resilience -0,14 0,0000

Zag-Cau resilience 0,01 0,0001

Thr-Lev resilience 0,01 0,0000

Zag-Lev resilience 0,16 0,0000

Zag-Thr resilience 0,15 0,0000

Cau-Ana disappearance 0,03 0,0000

Lev-Ana disappearance 0,13 0,0000

Thr-Ana disappearance 0,07 0,0000

Zag-Ana disappearance 0 0,0100

Lev-Cau disappearance 0,1 0,0000

Thr-Cau disappearance 0,04 0,0000

Zag-Cau disappearance -0,03 0,0000

Thr-Lev disappearance -0,06 0,0000

Zag-Lev disappearance -0,13 0,0000

Zag-Thr disappearance -0,07 0,0000

Cau-Ana emergence 0,05 0,0000

Lev-Ana emergence 0,05 0,0000

Thr-Ana emergence 0,17 0,0000

Zag-Ana emergence 0,01 0,0000

Lev-Cau emergence 0 0,2750

Thr-Cau emergence 0,12 0,0000

Zag-Cau emergence -0,04 0,0000

Thr-Lev emergence 0,13 0,0000

Zag-Lev emergence -0,04 0,0000

Zag-Thr emergence -0,16 0,0000

Cau-Ana resemblance 0,04 0,0000

Lev-Ana resemblance -0,07 0,0000

Thr-Ana resemblance 0,06 0,0000

Zag-Ana resemblance -0,06 0,0000

Lev-Cau resemblance -0,11 0,0000

Thr-Cau resemblance 0,02 0,0000

Zag-Cau resemblance -0,1 0,0000

Thr-Lev resemblance 0,13 0,0000

Zag-Lev resemblance 0,01 0,0000

Zag-Thr resemblance -0,12 0,0000
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Supplementary Table 13. Interactions of persistence, resilience, disappearance, emergence, and 

resemblance indices with other spatial patterns. 

 

Index First Mean Mean1 Mean2 p p_adj

Persistence sparse 2,88 3,13 0,0000 0,0000

Persistence unique 3,45 3,1 0,0000 0,0000

Persistence fast 2,5 3,2 0,0000 0,0000

Persistence unprot 3,24 3,03 0,0000 0,0000

Persistence Tlow 3,23 2,92 0,0000 0,0000

Persistence Clow 3,13 3,12 0,3842 0,3842

Persistence Alow 2,97 3,25 0,0000 0,0000

Persistence Llow 3,12 3,17 0,0000 0,0000

Persistence Zlow 2,9 3,49 0,0000 0,0000

Resilience sparse 0,86 0,93 0,0000 0,0000

Resilience unique 0,94 0,92 0,0000 0,0000

Resilience fast 0,86 0,93 0,0000 0,0000

Resilience unprot 0,93 0,92 0,0000 0,0000

Resilience Tlow 0,93 0,92 0,0000 0,0000

Resilience Clow 0,92 0,98 0,0000 0,0000

Resilience Alow 0,9 0,95 0,0000 0,0000

Resilience Llow 0,94 0,89 0,0000 0,0000

Resilience Zlow 0,89 0,97 0,0000 0,0000

Disappearance sparse 1,29 1,19 0,0000 0,0000

Disappearance unique 1,19 1,19 0,2703 0,2703

Disappearance fast 1,26 1,18 0,0000 0,0000

Disappearance unprot 1,2 1,18 0,0000 0,0000

Disappearance Tlow 1,19 1,17 0,0000 0,0000

Disappearance Clow 1,19 1,18 0,0000 0,0000

Disappearance Alow 1,23 1,16 0,0000 0,0000

Disappearance Llow 1,17 1,22 0,0000 0,0000

Disappearance Zlow 1,21 1,15 0,0000 0,0000

Emergence sparse 1,28 1,21 0,0000 0,0000

Emergence unique 1,21 1,22 0,0001 0,0001

Emergence fast 1,29 1,21 0,0000 0,0000

Emergence unprot 1,2 1,22 0,0000 0,0000

Emergence Tlow 1,2 1,23 0,0000 0,0000

Emergence Clow 1,21 1,22 0,3473 0,3473

Emergence Alow 1,24 1,2 0,0000 0,0000

Emergence Llow 1,22 1,2 0,0000 0,0000

Emergence Zlow 1,24 1,18 0,0000 0,0000

Resemblance sparse 0,51 0,7 0,0000 0,0000

Resemblance unique 0,64 0,71 0,0000 0,0000

Resemblance fast 0,69 0,7 0,0000 0,0000

Resemblance Tlow 0,68 0,74 0,0000 0,0000

Resemblance Clow 0,69 0,76 0,0000 0,0000

Resemblance Alow 0,66 0,73 0,0000 0,0000

Resemblance Llow 0,7 0,71 0,0000 0,0000

Resemblance Zlow 0,71 0,68 0,0000 0,0000



 

 

155 

CURRICULUM VITAE 

 

Surname, Name: Kükrer, Mert  

 

EDUCATION  

Degree Institution Year of 

Graduation 

MS  METU Biology 2013 

BS METU Molecular Biology and Genetics 2009 

High School 60th Year Anatolian High School, İzmir 2004 

 

 

PUBLICATIONS  

1. Kükrer, M., Kence, M., & Kence, A. (2021). Honey bee diversity is swayed by 

migratory beekeeping and trade despite conservation practices: Genetic evidence 

for the impact of anthropogenic factors on population structure. Frontiers in 

Ecology and Evolution, 9, 556816. 

2. Kükrer, M., & Bilgin, C. C. (2020). Climate change prompts monitoring and 

systematic utilization of honey bee diversity in Turkey. Bee Studies, 12(1), 19-25. 

3. Oskay, D., Kükrer, M., & Kence, A. (2019). Muğla bal arısında (Apis mellifera 

anatoliaca) Amerikan yavru çürüklüğü hastalığına karşı direnç 

geliştirilmesi. Arıcılık Araştırma Dergisi, 11(1), 8-20. 

4. Donthu R., Marcelino J., Giordano R., Tao Y., et al. (in press). HBeeID: A 

Molecular Tool That Identifies Honey Bee Subspecies from Different Geographic 

Populations. 

 


