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ABSTRACT

CAN AI CODE LIKE A HUMAN: A CRITICAL ANALYSIS OF AI’S UNDERSTANDING IN
CODE GENERATION

Akkus, Sami
M.S., Department of Cognitive Science

Supervisor: Prof. Dr. Cem Bozsahin

April 2024, 34 pages

Large language models (LLMs) are so popular that they have revolutionized many software develop-
ment areas, including code generation. This thesis investigates GPT3.5’s ability to achieve human-like
understanding in code generation.

Its main purpose is to answer how adding more context, extracting explicit intention, and simulating
multi-agent systems based on the distributed cognition and extended mind thesis affect the semantic
understanding of LLMs in code generation. The success criteria of LLMs in code generation are
evaluated based on the HumanEval dataset, which has real-world interview questions focusing on
logical reasoning abilities, problem-solving, and simple math questions.

Additionally, it searches to what extent LLMs can mimic human cognitive processes, evaluates this
from the viewpoint of functionalism and the Chinese Room Argument, and tries to answer the question:
Are we in the era of meeting the requirements of Strong AI?

Furthermore, It demonstrates the limitations of LLMs because of their dependency on training data,
inherent biases, and lack of environmental interaction, which restrict their originality and understand-
ing of intent. The findings show that while LLMs are very good at understanding syntax, their true
understanding of semantics is still a significant challenge.

Keywords: Al generativity, distributed cognition, code generation, originality, bias, limitations
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0z

YAPAY ZEKALARIN KODLAMA BECERISI INSANLA REKABET EDEBILIR Mi? YAPAY
ZEKANIN KOD URETIMINDEKI ANLAYISI VE ELESTIREL BiR BAKIS

Akkus, Sami
Yiiksek Lisans, Biligsel Bilimler Boliimii

Tez Yoneticisi: Prof. Dr. Cem Bozgahin

Nisan 2024, 34 sayfa

Biiyiik dil modelleri (LLM’ler) biiyiik popiilarite kazanmis ve kod iiretimi de dahil olmak iizere bir-
cok yazilim gelistirme alaninda devrim yaratmistir. Bu tez, GPT-3.5’in kod tiretiminde insan benzeri
anlayisa ulagma yetenegini aragtirmaktadir.

Bu aragtirmanin temel amaci, daha fazla baglam eklemenin, acik niyeti ortaya ¢ikarmanin ve dagitik
bilis ve genigletilmis zihin tezi teorilerine dayali ¢oklu ajan sistemlerini simiile etmenin, LLM’lerin
kod tiretimindeki anlamsal anlayisini nasil etkiledigini incelemektir. LLM’lerin kod tiretimindeki ba-
sar1 kriterleri, mantiksal akil yiiriitme yeteneklerine, problem ¢dzmeye ve basit matematik sorularina
odaklanan gercek diinya miilakat sorulari iceren HumanEval veri seti kullanilarak degerlendirilmekte-
dir.

Ayrica, aragtirma, LLM’lerin insan biligsel siireclerini ne dlgiide taklit edebilecegini incelemektedir.
Bu tez, islevselcilik ve Cin Odas1 Argiimani perspektiflerinden degerlendirilerek su soruya cevap ara-
maktadir: Giiclii Yapay Zeka gereksinimlerinin kargilandig1 bir dsnemde miyiz?

Bunun yani sira, tez, LLM’lerin egitim verilerine bagimliliklari, onyargilar1 ve ¢evresel etkilesim ek-
siklikleri nedeniyle orijinalliklerini ve niyet anlama kabiliyetlerini sinirlayan sinirlamalarini vurgula-
maktadir. Tezdeki bulgulara gore, LLM’lerin s6zdizimini anlama konusunda ¢ok iyi olduklarini, ancak
anlamsal anlayista hala 6nemli bir zorlukla kars1 karsiya olduklarimi gostermektedir.

Anahtar Kelimeler: Al yaraticilifi, dagitik bilis, kod tiretimi, 6zgiinliik, 6nyargi, sinirlar
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CHAPTER 1

INTRODUCTION

As it is known, Large Language Models (LLMs) are one of the most popular topics in today’s develop-
ing technology field. They lead to new ideas and advancements in many areas, from code generation,
digital arts, and science to content creation and medical research, by automating processes[3]. Re-
cent developments in the code intelligence are impressive. It has significantly enhanced tasks such
as code summarization, code generation, code search, clone detection, and automated bug fixing [4],
[5]. Amazingly, it’s doing that kind of work with that execution speed. What LLMs bring invites
many questions: Will developers become obsolete as Al takes over code writing? Or will humans and
machines collaborate in a new period of software creation?

As we go into the details of what LLMs promises and its rapid adaptation in diverse sectors, an impor-
tant question comes to mind: Do the capabilities of LLMs indicate the possibility of realizing Strong
AI? Does Al understand, learn, and apply knowledge and reasoning in a way indistinguishable from
human intelligence?

Considering functionalism allows us to think that mental states are defined by their biological or ar-
tificial functions that perform functional roles as human cognition, like problem-solving, decision-
making, reasoning, and understanding context. Could it have mental states similar to humans, aligning
with the principles of Strong AI? On the other hand, behaviorism focuses on observable behaviors
acquired through interaction with the environment. It evaluates Al based on its observable behavior.
In contrast to functionalism, behavioralism does not care about the internal mental states. If we look
at it from this perspective, can we see it as a step toward strong AI?

Yet, Searle’s Chinese Room[6] argument introduces a critical counterpoint. In the Chinese Room ar-
gument, Searle imagines a person who does not understand Chinese sitting inside a room. This person
has a set of rules in English for manipulating Chinese characters because he can understand English.
They use these rules to produce accurate responses when given a string of Chinese characters. From
the observer’s view, the person understands Chinese, but they follow syntactical rules without com-
prehending semantics. This thought experiment shows that no matter how convincingly it performs
human-like tasks, manipulating symbols and executing rules to produce outputs(Weak Al), they do
not understand as humans do. Similarly, Bender and Koller [7] stress that while Al can process lin-
guistic forms, it needs to grasp the communicative intent behind words. These perspectives show that
despite AI’s ability to perform human-like tasks and imitate language patterns and internal representa-
tion, which can only acquire certain aspects of meaning(semantic similarity), there still needs to be a
significant hole in achieving proper semantic understanding.



If we think specifically about code intelligence, coding requires innovative thinking and creativity[8].
Applying Boden’s[9] three criteria of creativity, namely, value, novelty, and surprise, it is seen how
current training methods for LLMs foster creativity, especially from the requirements of novelty and
surprise. This contemporary understanding of Al generativity invites criticism that LLMs inherently
work based on conditions to generate new and independent data. This dependency indicates that the
input data limits the output. They also convey essential consequences for these models’ perceived
independence in content generation because it forces existing biases onto data.

Moreover, Al generativity believes these models are closed systems in that only internal data is ma-
nipulated because it can only see internal data representations. Considering the concept of distributed
cognition from "Cognition in the Wild" offers a perspective here[10]. Hutchins asserts that cognitive
processes are not limited to an individual but are distributed across a network of humans, artifacts, and
tools in their environment. In parallel, The Extended Mind Thesis[11] claims that our minds are not
confined to our brains, our skulls, or even the boundaries of the body[11]. Cognitive processes can
extend into the external environment, incorporating tools, devices, and other external elements. An-
other complementary perspective, as discussed in the paper "Improving Teamwork Competencies in
Human-Machine Teams," emphasizes the need for Al systems to go beyond data processing, embrac-
ing a dynamic and environment-aware approach. That integration is a must for achieving creativity
and originality in Al. By integrating those concepts, the current state of Al generativity is critically as-
sessed as disconnected from the real world and absent of physical embodiment. True creativity can not
be achieved because original Al generativity needs interaction with the environment and an embodied
understanding of the world.

To narrow the scope to code generation, we just evaluate GPT3.5’s understanding of the intentions of
what it generates. Programming languages are created by humans to abstract from the machine level
to a higher and more understandable level to make it easier to design and develop software relevant to
specific domains or problems. This allows programmers to focus on solving complex problems without
knowing into the details of the machine’s hardware. Because generated code is strictly structural, we
can easily measure and evaluate it from the perspective of logical reasoning, complex problem solving,
understanding the intent, dependency on training data, and bias.

1.1 Motivation

LLMs not only change the way we do tasks but also how we interact with computers. Today, millions
of users are using ChatGPT and we can receive responses from a chatbot as if we are talking to a
human. Millions of programmers use code assistants like Copilot and Amazon Whisperers. What is
surprising is that it has created an addiction in us, as if we have been using these products for years.

LLM’s ability to analyze large code repositories like GitHub and StackOverflow enables programmers
to focus on their high-level design and architecture. Programmers have been beginning to leave repet-
itive tasks to the LLM, such as code completion, code automation, documentation, bug fixing, writing
unit tests, etc. It can perform these tasks so quickly, which is intriguing for humans.

Doing many tasks in a way that is exclusive to human intelligence raises the question: Are LLMs
another hype, and we accept them as extensions of the mind, or have we reached the utopia of Strong
AI? We will analyze this question from the perspective of its understanding and intention. Despite not
knowing what LLMs are, we all accept that they have started a new era.



1.2 Research Questions

In this study, we aim to investigate the capabilities of Large Language Models (LLMs) to achieve a
human-like level of understanding in code generation. The following research questions drive this
research:

RQ1: How does adding more context and explicit intention affect the understanding of LLMs
in code generation?

RQ2: What are the most effective methods for evaluating the syntactic and semantic correctness
of code generated by LLMs?

RQ3: Does simulation of the principles mentioned in distributed cognition and the extended
mind thesis improve the understanding and intention of LLMs in code generation?

RQ4: What are the benefits of using multi-agent systems to improve understanding and intention
in Al-generated code?






CHAPTER 2

LITERATURE REVIEW

This chapter will first explore the evolution of text generation and the methods used in natural lan-
guage processing (NLP). Then, we will briefly summarize the technologies used and their respective
subsections. Lastly, we will go into code generation, discussing what is currently being achieved in
NLP.

2.1 The History Of Code Generation

While text generation is not initially the main focus of the thesis, previous studies provide us with a
stepping stone. Searching academic databases like ACM, Google Scholar, or IEEE primarily yields
papers on speech recognition, spoken dialogue systems, and handwriting recognition. This shows the
origins of code generation and its relationship with the area of text generation.

2.1.1 Markov Chains

One of the earliest methods used while generating text is Markov Chains[12]. It is widely used in natu-
ral language processing (NLP) for tasks such as natural language generation, named-entity recognition,
and parts of speech tagging ([13].

This goes back to a study in 1913. Markov did revolutionary research on "Eugene Onegin" by Alexan-
der Pushkin. Markov developed a theory of Markov chains by analyzing the sequence of vowels and
consonants. He showed that a consonant or vowel appearing in the text could be predicted depending
on the just previous letter. A Markov chain assumes that in predicting the future in the sequence, just
all that matters is the current state.[14]. It provided the foundation for today’s statistical models and
natural language processing.

Markov assumption: When predicting the next state, we don’t need to care about the past state; we
care about the current state.

Plgi=al|q,...,qi—1) =P(gi=a|g-1) (D



2.1.2 Symbolic Programming and Rule-Based Systems

Text generation was based on symbolic programming and rule-based systems[15][16]. These methods
are based on rules and logical processes. They were used in automating straight tasks. However, they
were less effective with complex text structures and could not understand the text’s deeper meaning
and intentions.

One of the groundbreaking research was made in the 1950s when researchers first attempted to use
rule-based approaches to natural language processing[17]. In that experiment, about sixty Russian
sentences were translated into English using an IBM computer.

2.1.3 N Gram Models

An N-gram is a sequence of N words in a sentence or a given text. For example, 2-gram (bigram)
means a two-word sequence of words. The following sentence contains the bigrams:

Natural Language Processing enables computers to understand human language

(Natural, language)
(language, processing)
(processing, enables)
(enables, computers)
(computers, to)

(to, understand)
(understand, human)
(human, language.)

3-gram (trigram) means a three-word sequence of words. The above sentence contains the following
trigrams.

(Natural, language, processing)
(language, processing, enables)
(processing, enables, computers)
(enables, computers, to)
(computers, to, understand)

(to, understand, human)
(understand, human, language.)

The prediction of a word in a sequence based on its preceding words.[14] These models, which include
unigrams, bigrams, and trigrams, are built on conditional probabilities to predict the next word in a
sequence.

For bigram:

C HWn—1, Wy
Plwy, | wy—1) = ount(tn—1, wn)

(@)

Count(w,,_1)

For trigram:
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Although N-gram models are used in language modeling, text completion, and machine translation,
they face limitations in capturing long-range dependencies and semantic meanings. As seen in the
formula it has a limited window size to capture the long-range dependency. To overcome those kinds
of limitations, we need more advanced models like neural network models, especially Recurrent Neural
Network or Long Short Term Memory networks (LSTMs) and Transformer models.

2.1.4 Neural Networks and Deep Learning

Neural Networks(NN) are a collection of interconnected neurons consisting of layers in which data
passes from one layer to another[18]. Each layer performs specific transformations by using activation
functions. These layers are called input, hidden, and output layers.

Input layer ! Hidden layers ¢ Output layer

Input 1 l \\ // \\ // i
Input 2 .Eéqﬁziigﬁ?zii“\ .
v, \/ A ‘ '
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A""A

D e laa\l
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Figure 1: Neural Networks with three-layers [1]

The basic computation unit of NNs is the neuron. McCullough and Pits in order first suggested this
idea[19] in 1944, describing it as resembling brain neurons in computing. Although they indicated
the foundational work of what we consider an artificial neural network(ANN) today, and it has existed
for many decades, the question arises as to why it has exploded today. The answer to this question
depends on three things.

Firstly, the amount of data available to us is significantly large because these models need more and
more data. Secondly, these models need more computational resources[20] and parallelization[21] to
process such big data. Graphical Process Units(GPU) enable training and the parallel processing of
such big data[22]. Lastly, algorithms and open-source software advancements like TensorFlow [23]
make it more pervasive than ever.

In 2000, Yoshua and Bengio proposed a neural network model for building a language model, which
differs from the n-gram models.[24] The model learns a distributed representation for words[25] that



is currently known as word embeddings and the probability function of word sequences. What they
found is one of the groundbreaking steps in deep learning.

2.1.4.1 Recurrent Neural Network (RNN)

Recurrent neural networks (RNN) are naturally suited to processing time-series data and other se-
quential data[26]. It is an extension to feedforward networks to allow processing variable length
sequences[26]. To model sequences, we need a mechanism that can meet the requirements of han-
dling variable-length sequences, tracking long-range dependencies, keeping the order, and sharing the
parameters across the sequence. They are all required criteria to model sequences.

Output Vector

O,

@ RNN ’\ hy

Input Vector

Figure 2: RNN Architecture

It processes a sequence of data by using hidden states that can capture information from the previous
steps. RNNs have a cyclic connection, where outputs from previous steps are fed into the model as
inputs for the next step, keeping the memory of the previous input.

Although RNN can hold information longer than n-gram models, it suffers from a Vanishing Gradient
problem in which gradients are minimal at the backpropagation time (BPTT), and they can not learn
much in that time. If the sequence is very large and has a long-range dependency, the gradient is
vanishing continuouslys; it loses its ability to learn as it goes in time. For instance, generating program-
ming code naturally requires this feature because it is inherently dependent on the variable declaration
or function definition.

2.1.4.2 Long Short Term Memory (LSTM)

Long Short-Term Memory (LSTM) is an improvement over recurrent neural network (RNN) architec-
ture used in the deep learning. LSTM has memory cell and it is always ready while processing the
entire sequence. The state of this cell is controlled by the gates, namely, the forget gate, input gate,
and output gate.



Forget gate decides which information can be removed from the cell. The input gate’s responsibility is
to determine which information should be added to the cell state or should be updated on the cell state.
Lastly, output gate decides what cell state should be passed.

LSTM solves the Vanishing Gradient Problem by using cell states and gates[27]. The cell state is used
as memory, and gates control the flow of the information so it can capture long-range dependency. To
generate code or text, it is an essential feature that a generator needs to access function definition or
variable declaration.

2.1.4.3 Transformer Architecture

Although RNN meets the requirements for processing sequential data, it has some inherent restrictions
because it processes the information step by step, which prevents the computation of sequential in-
formation in parallel. Another bottleneck is the memory consumption to encode very long sequences,
which results in information loss in long-range dependency. RNN links the part of each time step to
another time step by recurrence; iterative computation is necessary.

To eliminate those restrictions and to meet the desired capabilities like streaming input, processing
the data in parallel, and capturing long-range dependency, a new architecture was suggested by the
famous paper "Attention All You Need" [2]. This paper introduces a new architecture with an attention
mechanism that shows no need to process the information sequentially. This attention mechanism is
so intuitive that it only cares about the most essential input part. It finds out which parts should be
attended to and extracts those parts with high attention. It is like a search problem to find something
relevant on the internet.

Qutput
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Figure 3: Transformer Architecture [2]



Transformers are composed of many components. The input embedding component provides the vec-
tor embedding of the word or token sequence for transformers. Because transformers don’t have
a built-in concept of sequence order, the positional encoding component integrates the information
about the position of each word. The self-attention mechanism is the most critical component of this
architecture, and it tries to find the most important feature in the input. It finds out the dependencies
between tokens regardless of their distance in the sequence. After it gets the positional embedding
vector, it computes the query, key, and value for the searching operation. The similarity between the
query vector(Q) and the key vector(K) is computed by using the cosine similarity of those two vectors.
It shows how similar the query and key are in this space. This computation aims to find the essential
features of the input and the relative relationship between the tokens or words in that sentence. It
computes the attention weight of the words. Lastly, the attention score matrix and Value matrix(V)
are multiplied to find high attentional features to be extracted. Besides, transformer architecture has
other components, such as the feed-forward neural network, encoder, decoder, and output layer, in
transformer architecture.

Attention(Q, K, V') = softmax <QKT) Vv
n Vdy,

where dj, is the dimension of the key vectors.

Itis a very promising architecture to generate code because of the self-attention mechanism can process
all the token at once enabling the model to weight the input in parallel and they can handle the long
range dependecy regardless of the its distance from the current word.

It is a basis for the following models BERT([28], T5[29] and GPT[30]

2.2 The Role Of LLMs in Code Generation

Code intelligence uses ML techniques to extract knowledge from code repositories and enables the
development of intelligent tools to improve both programming quality and productivity[31]. Nowa-
days, with the advancements in LL.Ms, these tools are used in various applications, including code
generation, code completion, code translation, code refinement, code summarization, defect detection,
and clone detection[32]. Some of the examples used for code intelligence applications are GitHub
Copilot-powered OpenAl and DeepMind’s AlphaCode[33, 32]

Code generation from natural language description(N2Code) is one of the most difficult tasks in code
intelligence[31]. Although there have been many advances in deep learning and researchers are trying
to find new ways to automatically learn the translations from the requirements to the source code, it is
still challenging to generate code that is correct both syntactically and semantically[34].

The survey "Large Language Models Meet NL2Code" in 2023 reviewed 27 LLMs for generating code
and found that three factors that make LLMs successful are Large Size, Premium Data, and Expert
tuning[31]. Large size refers to the number of parameters in LLMs that allow finding more complex
patterns. The second one is the quality and diversity of the data. Lastly, tuning hyperparameters to
achieve the desired performance is called "Expert Tuning."

10



As a result, it is shown that while LLMs are very good at understanding code syntax because of the
latest developments, they still struggle with semantic understanding of code semantics.[5]

2.3 Challenges in Code Generation

There are two main aspects of generating programming code: syntax and semantics. Syntax refers to
the programming rules and structures that make the code valid, while semantics refers to the meaning
and interpretation of the code. Indeed, semantics decide what a program will do when executed. If the
semantics of the programming code are completely checked based on the program text, they are called
static semantics; otherwise, they are called dynamic semantics because they describe the behavior of
programs when they are executed[35].

The studies [5, 36] on LLM to evaluate their understanding and semantics. These studies focus on the
reconstruction of semantic and syntactic structures like Abstract Syntax Trees (AST), Control Flow
Graphs (CFG) or Call Graph(CG), Control Dependency Graphs (CDG), and Data Dependency Graphs
(DDG)[36].

AST is used to represent the hierarchical structure of the code syntax. CG is a graph representation
of the programming code that shows all paths that might be traversed through a program during its
execution. CDG is a graph representation used to show the control dependencies in a programming
code. It indicates that the execution of specific program parts depends on the other parts of the code.
DDG is used to show how data flows and the relationship between variables.

Although LLms are very good at understanding code syntax, can return correct ASTs, and can generate
CG, CFG, and DDG, despite their hallucinations because of the reasoning about data flow, they are
very limited in understanding the dynamic behavior of code[?].

2.4 Philosophical Perspectives

2.4.1 Extended Mind Thesis (EMT)

The traditional view sees all cognitive processes happening in our brains. The extended mind the-
sis(EMT) [37], which was introduced by Andy Clark and David Chalmers in 1998, opposes this idea
and claims that our mind is not confined to our body or brain.

It extends into the external environment by using tools (like notebooks and calculators) and objects
and is an integral part of cognitive processes. This idea is considered the "Parity Principle," stating
that if a part or resource of the world functions as a process, we can recognize it as part of the cognitive
process whether or not it is done in the head[37][38]. From this view, functionalism is foundational for
EMT because, like EMT, functionalism is only interested in what mental states do rather than where
they are located[39].

Based on EMT, the environment’s role is very crucial, and it has an active role in solving a problem
and can not be seen as just passive input. It is called "Active Externalism". This thesis even sees other
people as the extension of our mental processes because of the function they reflect.
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2.4.2 Situated Cognition Theory (CGT)

According to the Situated Cognition Theory(SCT), cognitive processes are connected to the context in
which they occur. Brown, Collins, and Duguid proposed, in 1989, that knowledge is not a product of
the individual mind but rather emerges from the interaction between people and their environment[40].
Therefore, SCT’s role in problem-solving is crucial, as it stresses the importance of context and envi-
ronment in building knowledge and understanding of problem-solving. [41, 42, 43, 44].

2.4.3 Distributed Cognition Theory(DCOT)

Distributed Cognition Theory by Hutchins[10] (DCOT) extends the theory of SCT and claims that
cognitive processes are distributed between internal and external representations across a group of
individuals and across space and time[45, 46].

In his famous "Cognition In The Wild" book[10], he has written what he observed when he studied
in the US Naval Ship between 1980 and 1984. At that time, he studied how the complex task of
ship navigation was done, and it was not restricted to a navigator’s mind but was distributed among
crew members through interactions with tools and devices. He observed how navigation tasks were
assigned to crew members who were responsible for a specific part of them. Each crew member had
a specialized role in different cognitive processes, and they utilized tools and artifacts to transform
information into the most usable form. As a result, they were collectively helping to steer the ship.

Besides, protocols and well-defined procedures were essential for communicating on a Navy ship. Pro-
cedures were executed to ensure the information must be processed in coordination and to minimize
errors. The physical characteristics of the ship affected how tasks were performed and how informa-
tion was routed among crew members. For example, the design of the ship’s bridge enabled visual
interaction between the crew.
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CHAPTER 3

METHODOLOGY

This methodology aims to simulate cognitive processes required in problem-solving and improve
GPT’s code generation by improving the docstring of Python’s code. To realize this, we use a multi-
agent environment in which each agent has a specific role that evaluates and improves the docstring
from the perspective of clarity, relevance, and completeness. With clear and more understandable doc-
umentation, we try to fill the gap between human understanding and GPT’s understanding. On the
other hand, By finding implicit intentions and by adding them to documentation explicitly, we try to
make GPT improve interpretation.

To set up and create such an environment, Langchain is used to develop Al agents, and HumanEval is
used as a dataset to test the correctness of the code generated by Al Agents.

3.1 LangChain

LangChain is an open-source framework for developing LLM-powered applications. It provides a set
of tools to help developers handle the complexity of developing applications. Our motivation behind
using this framework is to eliminate complexity while developing agents.

We use Langchain to develop Al agents that help in enhancing, evaluating, and comprehending doc-
strings in code snippets.

3.2 HumanEval Dataset

The HumanEval dataset [47], including a tool focused on the functional correctness of generated code,
was developed to evaluate code generation models. The dataset contains hand-written 164 program-
ming problems with a function signature, a docstring, and a set of unit tests that evaluate the code’s
correctness. Each question evaluates the suggested solution from different aspects, like understanding
the problem, algorithms, and mathematics. Some of the tasks are complex because they correspond to
the questions someone faces in a software development interview.

The dataset allows for benchmarking of models using the pass@k metric[48], which measures the
fraction of programming problems for which k code samples are generated per problem; if any sample
passes the unit test, it is considered solved.
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3.3 Multi-Agent Framework Description

Four agents are designed and developed using Langchain: Comment Enhancement Agent(COA), Clar-
ity Evaluation Agent (IUA), Intention Understanding Agent(COA), and Code Optimization Agent(COA).
Their common goal is to enhance the docstring to generate the correct code. Each agent has a clear
role and a set of following objectives:

3.3.1 Comment Enhancement Agent (CEA)

CEA is the entry point for a problem. Based on the prompt that contains the problem provided by
HumanEval, it generates the docstring and code snippet. Firstly, it concentrates on improving existing
docstrings regarding clarity and intentional meaning and generates the first code snippet. If COA
provides an optimization plan, it considers the optimization plan while generating code and docstrings.
The following description Table 3.1 with instruction Table 3.2 is given to the GPT3.5 as the format of
"You are a Comment Enhancement Agent (CEA) with the following persona".

Table 3.1: Description of Comment Enhancement Agent (CEA)

Description of Comment Enhancement Agent (CEA)

This agent creates and enhances the docstring with the code snippet explained in the prompt
provided as input. By following the given instructions, the docstring is made clearer and more
detailed.

Input

Docstring: Docstring
Feedback (optional): If any feedback provided by the COU
Output

Enhanced Docstring: An improved version of the provided docstring that is clearer,
better detailed, and more effectively represents the function’s intents and functionality.

Code Snippet: The initial generated code by CEA based on the enhanced docstring.
Constraints

Keep Original Intent: Enhancements must not change the function’s main purpose or
application as initially intended.

Accuracy: Ensure that all details, examples, and explanations are relevant and correct.

The description of CEA exists in Table 3.1 and the related instructions can be found in Table 3.2
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Table 3.2: Instructions for Comment Enhancement Agent (CEA)

Instructions for Comment Enhancement Agent (CEA)

Run the Actionable Optimization Plan

If an actionable optimization plan provided by COU, run the plan.

Analyze the Docstring

Analyze the provided docstring, understand its description of the function’s intention,
and give examples that must consider edge cases and exceptions.

Find Sections for Enhancement:
Clarity: Identify sections where the explanation is unclear and difficult to understand.

Detail: Look for missing details, such as edge cases, parameter-specific explanations,
and return values, that can help capture deeper insights into the function’s behavior.

Contextual Information: Determine where additional context can be helpful to under-
stand the function’s usage.

Intent: Ensure that the docstring represents why the function is proper and how it should
be used.

Prepare an Enhanced Docstring:

Clarify Intents: Improve the docstring to unambiguously describe what the function
does and its direct use cases.

Include Context and Give More Examples: Add examples and scenarios, and give
more details describing the function’s usage.

Resolve ambiguity: Fill in the missing information recognized during its analysis. En-
sure the docstring represents all the critical parts of the function’s functionality.

3.3.2 Clarity Evaluation Agent (CLEA)

This agent’s main goal is to check that the docstrings are explained well to grasp the necessary func-
tionality in the code snippet. Its task can be thought of as a static analysis of the functionality in
code. This agent compares the docstring to the code and evaluates that the functionality in the code
meets the docstring. It evaluates the docstring according to the three criteria: Clarity, Relevance, and
Completeness.

The clarity metric measures how easily the docstring can be comprehensible by checking its explicit
language usage. The relevance metric checks whether the docstring matches what the code is supposed
to do and whether it contains relevant information. The completeness metric is used to assess the
docstring and includes a complete explanation of the code. The agent finds a score for each criterion
and returns the reasoning behind its score.

15



Table 3.3: Description of Clarity Evaluation Agent (CLEA)

Description of Clarity Evaluation Agent (CLEA)

This agent is designed to assess the clarity, relevance, and completeness of the docstrings. It
evaluates both docstrings and the code snippets generated by CEA to measure their clarity,
relevancy, and completeness.

Input

Code Snippet: The code generated Python code by CEA.

Enhanced Docstring: The docstring that is generated by CEA.
Output

Scores for Clarity, Relevance, and Completeness: Numeric values based on the pre-
defined scale, which is between 1 and 10.

Reasoning: A summary of the scores includes suggestions for improving the docstring’s
usefulness.

Constraints

Ensure the evaluation is objective by focusing only on the docstring and its quality with-
out being affected by the complexity of the code snippet.

Avoid biases.

Table 3.4: Instructions for Clarity Evaluation Agent (CLEA)

Instructions for Clarity Evaluation Agent (CLEA)

Analyze the Code Snippet and its Docstring

Review the code snippet with its docstring. Try to understand the functionality of the
code and what comments in the docstring explain.

Evaluation Criteria

Its assessment should be based on the following criteria:

Clarity: How easily is the comment understandable? Does it use clear and concise
language to describe the code’s intent and functionality?

Relevance: Does the comment in the docstring accurately reflect the code it de-
scribes? Is the information relevant for understanding the code snippet?

Completeness: Evaluate if the comment provides a comprehensive explanation of
the code. Does it have any missing or critical information that affects the under-
standing of the code’s functionality?

Scoring Algorithm Assign a score based on the agents’ analysis, using a scale (e.g.,
1-10) for each criterion (Clarity, Relevalfee, Completeness) and provide a summary of
justification for the score for the areas for improvement.




3.3.3 Intention Understanding Agent (IUA)

This agent’s main objective is to assess whether the code represents true intention or not by reviewing
both the enhanced docstrings and code provided by CEA. The evaluation can be thought of as a dy-
namic analysis of code that tries to compare semantic aspects of the code by comparing the intended
functionality to the actual functionality generated in LLM. Besides, This helps fill the gaps resulting
from implicit intention by extracting and uncovering hidden intents.

Table 3.5: Description of Intention Understanding Agent (IUA)

Description of Intention Understanding Agent (IUA)

This agent is designed to evaluate the accuracy, consistency, and completeness of the docstring
in conveying the true intention and functionality of the code snippet. It compares the descrip-
tions in the docstring with the code’s true behavior to determine discrepancies.

Input

Code Snippet: Generated code by CEA.
Docstring: The enhanced docstring that is generated by CEA.

Output

Evaluation Summary: A brief report detailing the assessment of the comment’s accu-
racy, completeness, and consistency with the code’s intention, including any recognized
discrepancies.

Improvement Recommendations: Detailed suggestions on enhancing the comment to
reflect the code’s intention.

Constraints
Keep an objective perspective by focusing on aligning the docstring and the code’s intent.

The evaluation is based on the following four criteria: Accuracy, completeness, consistency, and dis-
crepancy detection. At first, accuracy is used to understand whether the code behaves correctly accord-
ing to the docstring. The second one is completeness, which measures whether the whole intention
is acquired. The third one is consistency, which measures whether the code is consistent with differ-
ent kinds of inputs. Lastly, discrepancy detection measures what sections of the code’s intention are
misunderstood by the docstring.
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Table 3.6: Instructions for Intention Understanding Agent (IUA)

Instructions for Intention Understanding Agent (IUA)

Comprehensive Review

Analyse both the code snippet and its related docstring carefully. Understand the func-
tionality implied in the docstring and analyze the code to verify if it performs as de-
scribed.

Evaluation Criteria

Accuracy: Determine if the comment accurately describes the code’s behavior and in-
tent. Does the code do what the docstring conveys?

Completeness: Assess if the comment captures the code’s intention and scope. Are
there functionalities described by the code that don’t exist in the docstring?

Consistency: Ensure that the docstring is consistent with the code and inputs. Does the
docstring stay valid for different proper inputs?

Discrepancy Identification: If discrepancies between the code’s behavior and the doc-
string’s description are found, stress especially these findings. Deliver insights into what
parts of the code’s intention are misunderstood by the docstring.
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3.3.4 Code Optimization Agent (COA):

The main objective of COA is to create an actionable optimization plan understood by LLM. COA
gets feedback from both IUA and CLEA, analyzes the reports to find the areas that can be improved,
recognizes the redundant parts of the comments, and prepares the optimization plan, which is both
understandable and actionable by LLM.

Table 3.7: Description of Code Optimization Agent (COA)

Description of Code Optimization Agent (COA)

This agent uses feedback from CLEA and IUA to refine the docstring enhancement process
iteratively by aiming to optimize the clarity, accuracy, and completeness of the docstrings gen-
erated by CEA. Ensure the enhanced docstring reflects the code’s functionality and is easy to
understand for AL

Input

Feedback Reports: Assessments from CLEA and IUA that include scores and recom-
mendations for each reviewed docstring.

Enhanced Docstring: CEA produced groups of original docstring with their enhanced
one.

Optimization Plan: A detailed, actionable plan for the necessary modifications to the
docstring enhancement process, which even includes changes to prompts.

Constraints
Focus on actionable feedback that can directly inform adjustments to CEA.

Ensure any proposed changes are possible within CEA’s capabilities.

By focusing on these objectives, the methodology aims to show the gap between Al-generated code
and human understanding by providing insights into how Al can be better designed to interpret implicit
intentions. It presents that designing more intuitive Al systems using a multi-agent environment better
aligns with human cognitive processes.
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Table 3.8: Instructions for Code Optimization Agent (COA)

Instructions for Code Optimization Agent (COA)

Analyze Feedback Reports Review the input provided by CLEA and IUA by focusing
on the areas of improvement, such as aspects that affect clarity, accuracy, or complete-
ness in the enhanced docstring.

Prepare An Actionable Optimization Plan Develop strategies to adjust the docstring
enhancement process based on the given feedback. This involves:

Modifying the prompts used by CEA to include more specific instructions or ques-
tions that address the founded problems.

Adjusting the criteria provided to CEA for docstring enhancement by stressing the
importance of accuracy, completeness, consistency, or clarity.

Introducing new steps in the process to capture and correct issues before the en-
hanced comments are completed.

Evaluate the Expected Impact: Review the newly enhanced docstrings to assess the
impact of the optimization strategies. Compare the feedback to previous rounds to de-
termine if there has been an improvement.
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Workflow Description

The workflow is executed for the following agents: Comment Enhancement Agent (CEA), Clarity
Evaluation Agent (CLEA), Intention Understanding Agent (IUA), and Optimization Agent (COA). It
can be seen as an iterative process that improves docstring comments’ clarity, relevance, and accuracy.

Here’s a clear description of how these agents should cooperate:

Worfklow
Initial
Docstring
N Enhanced Docstring
Comment
—>»{ Enhancement Agent
(CEA)

Clarification Enhancement

Agent
(CLEA)

Score(Clarity, Relevance, Completeness), Justification

>

Enhanced Docstring, Generated Code

Intention Understanding

Agent
(IUA)

A

Code Optimization

Agent
(COou)

A

Feedback(Optimization Plan)

(Accuracy, Completeness, Consistency),
Recommendation

Figure 4: Agent Workflow

Step 1: Initial Comment Enhancement

1. CEA gets an original docstring as a parameter and feedback from COA, if applicable. Its task
is to enhance the docstring to improve clarity and usage, add missing context, and ensure the
intention behind the code is explicitly stated. Moreover, CEA tries to remove the aspects that

previously could be seen as ambiguous by using feedback.

2. CEA considers edge cases, exceptions, or additional context that could enhance AI’s under-

standing of the function’s behavior and expected outcomes.

3. CEA checks all the related parameters, return values, and side effects that are required to docu-

ment for Al understanding

Step 2: Evaluation of Enhanced Docstrings

1. CLEA inspects the clarity, relevance, and completeness of the enhanced comments provided by

CEA. It evaluates whether the docstring is understandable and provides meaningful knowledge

of the code’s functionality.
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2. TUA checks the accuracy and completeness of the enhanced docstring to illustrate the code’s
intention. It ensures that the comments truly describe what the code does and don’t leave out
critical information about its functionality.

Step 3: Feedback Aggregation and Analysis

1. CLEA and IUA provide feedback on the enhanced docstring that includes scores and advice for
improvement. This feedback underlines where the docstring lacks clarity, intentions, relevance,
and accuracy.

2. COA collects and analyzes the feedback from CLEA and IUA. It determines common issues,
patterns, and areas where the comment enhancement process can be improved.

Step 4: Optimization of the Enhancement Process

1. COA develops optimization strategies based on the feedback analysis step. This step involves
refining the instructions for CEA, modifying the evaluation criteria for CLEA and IUA, and
finding new procedures to address the determined issues.

2. COA implements these strategies by updating the parameters for CEA, CLEA, and [UA.

Step 5: Iterative Improvement

1. CEA uses the optimization plan and the instructions provided by COA to enhance the previous
docstring and code snippet. CLEA and IUA re-evaluate the docstring, and new analysis of
feedback is generated based on the optimized docstring

2. This workflow continues iteratively in a loop, with OA fine-tuning the process based on feed-
back from CLEA and IUA and CEA applying these optimizations to enhance comments more
effectively.

3.5 Implementation Detail

LangChain Integration

Langchain is configured to work with ChatGPT-3.5 by setting up API keys and parameters to commu-
nicate with LLM to generate enhancing docstrings. The Langchain library, with the following versions
in the table, is used to develop agents in this environment.

Package Name Version
langchain 0.1.16
langchain-community | 0.0.32

langchain-core 0.1.42

langchain-text-splitters | 0.0.1
langsmith 0.1.45
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Usage of The HumanEval Dataset

It contains 164 problems similar to someone facing interview questions stored in /data/HumanEval. jsonl.gz

for data handling. This file is decompressed, and the resulting JSON file includes the prompt. The
prompt containing the initial docstring and function signatures is used for the initial docstring.

For the test integration, all the unit tests provided by the dataset are run on a sandbox because the code
is in GitHub and can contain malicious code snippets. Therefore, the test cases are run on a sandbox
in the spotted virtual machine that Google Cloud provides.

Executing the Workflow for the ’Add Numbers’ Problem.

A very simple problem of "Adding to Numbers" is prompted to the CEA to keep it simple and demon-
strate how effective this workflow is when executed.

Step 1: Initial Comment Enhancement

Listing 3.1: Initial Docstring for Add Two Numbers Function

def add_numbers (x, Vy):

Table 3.9: Initial Output of Comment Enhancement Agent (CEA) for "Add Two Numbers" Problem

Initial Output of Comment Enhancement Agent (CEA) for "Add Two Numbers" Problem

1. Analyze the Docstring: The current docstring is minimal and lacks details about the
parameters and return values. It doesn’t include any examples or edge cases.

2. Find Areas for Improvement

Clarity: The description is clear but too brief.
Detail: Missing details about parameters and return values.
Contextual Information: Lacks examples and context for usage.

Intent: Needs explicit details on what the function does and its usage.
3. Prepare an Enhanced Docstring

Clarify Intents: Explicitly describe what the function does.
Include Context and Give More Examples: Add examples with various inputs.

Resolve Ambiguities: Provide details on parameters and return values.
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CEA analyses initial docstrings and generates enhanced versions. It tries to improve clarity, detail, and
accuracy by making the docstrings more understandable by LLM.

Based on its output in Table 3.9, the prompted docstring is missing contextual information with pa-
rameters and return values. Although the description seems clear, it doesn’t show its intent and usage.
Moreover, the parameter and return values do not have type information.

Table 3.10: Evaluation by Clarity Evaluation Agent (CLEA) for "Add Two Numbers" Problem

Evaluation by Clarity Evaluation Agent (CLEA) for "Add Two Numbers" Problem

1. Clarity

Description: The docstring briefly describes the function’s purpose.
Language Simplicity: The language is simple and easy to understand.
Grammatical and Syntactic Errors: There are no grammatical or syntactic errors.

Ambiguity: The docstring lacks detail and can be considered ambiguous due to
the absence of parameter descriptions and return value information.

Clarity Score: 5/10
2. Relevance
Function Description: The docstring correctly describes that the function adds
two numbers.
Parameter Roles: The docstring does not describe the parameters.
Return Value: The docstring does not mention what the function returns.

Relevance Score: 4/10
3. Completeness
Details on Parameters: The docstring does not include any information about the

parameters x and y.

Details on Return Values: The docstring does not include any information about
the return value.

Edge Cases and Examples: The docstring does not provide examples or mention
edge cases.

Completeness Score: 3/10

As shown in Table 3.10, the clarity score is 5 out of 10 because it is missing information for param-
eters and return values and is ambiguous, making the docstring less understandable. Additionally, its
relevance score is 4/10, which can be increased by reflecting all the functions’ aspects, including input
and return values with their type information. Lastly, its completeness score is very low, which is 3/10,
because it does not consider any edge cases.
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Table 3.11: Evaluation by Intention Understanding Agent (IUA) for "Add Two Numbers" Problem

Evaluation by Intention Understanding Agent (IUA) for "Add Two Numbers" Problem

1. Accuracy
Functionality Description: The docstring accurately describes the primary func-
tionality of the function, which is to add two numbers.

Behavior Description: The docstring does not provide detailed descriptions of the
behavior for various inputs, but it correctly indicates the function’s purpose.

Accuracy Score: 6/10
2. Completeness
Parameter Details: The docstring does not provide information about the param-

eters x and y, including their types or roles.

Return Value: The docstring does not mention what the function returns, including
the type of the return value.

Edge Cases: The docstring does not address any edge cases or provide examples
demonstrating the function’s usage.

Completeness Score: 3/10
3. Consistency
Input Consistency: The docstring’s description is consistent with the function’s

implementation for general cases.

Edge Cases: The docstring does not provide any information on how the function
handles edge cases or unusual inputs.

Consistency Score: 5/10
4. Discrepancy Detection

Missing Information: The docstring is missing detailed information about the
parameters and return value.

Discrepancy Detection Score: 4/10

The docstring describes the main functionality, which adds two numbers, but it does not contain nec-
essary information on the behavior of various inputs. Therefore, it gets a moderate score of 6/10.
Because it does not contain any edge cases and enough examples, its completeness score is very low,
that is 3 out of 10. Its missing information about parameters and return value may cause discrepancies,
so its discrepancy score is 4/10

Listing 3.2: Enhanced Docstring and Code for Add Two Numbers by CEA

1 |def add_numbers(x, vy):
2
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if not isinstance(x, (int, float)) or not isinstance(y, (int,
float)) :
raise TypeError ("Both inputs must be either int or float")
return x + y

Step 2: Evaluation of Enhanced Docstrings (CLEA and IUA)

CLEA evaluates the enhanced docstrings from the perspective of their clarity, relevance, and com-
pleteness. It uses a set of methods to assess clarity by measuring language simplicity, that is, whether
the language used in the description is complex. It also checks for grammatical and syntactic errors
that could confuse the GPT and tries to resolve the ambiguity. Moreover, it checks the docstring to
see if it clearly describes what the function does, if its parameter’s role is explained correctly, what
type of output it is expected, and if the return value is given clearly. It ensures that the docstring com-
pletely explains the function’s behavior, which includes all parameters, return values, and edge cases
that cover unusual usage and invalid input.

For the case of "Add Two Numbers," CLEA found out that the docstring includes a clear description of
the function’s purpose, which includes details of parameters, return values, and many examples with
edge cases. It scored 10 for clarity, relevance, and completeness.

On the other hand, IUA compares the enhanced docstrings to actual code and tries to evaluate it from
the perspective of completeness, accuracy, and consistency. It evaluates whether the code snippet
correctly grasps the intention of the docstring. It checks whether the docstring contains the required
description of each parameter and inspects the function return value. It analyzes the code to show
that the generated code implements all the required algorithms. It tries to find edge cases by trying
unexpected parameters, exceptional cases, and edge input values. This is not just a static analysis like
CLEA does; it is a simulation of dynamic analysis to measure the correctness of the behavior. Besides,
it finds and verifies that the docstring provides enough examples to create the corresponding context.
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For the problem of "Add Two Numbers," IUA can not make any suggestions because all the require-
ments are met.

Step 3: Feedback Aggregation and Analysis

The feedback provided by both agents is very positive, and the docstring and its generated code get
the highest score, which is 10, indicating the docstring is clear, relevant, and complete. Besides, its
intentional meaning is uncovered enough to capture its implicit intention.

Step 4: Optimization of the Enhancement Process

COA collects feedback from both CLEA and IUA, and then, it identifies the required actions to be
taken by CEA to enhance docstrings. It creates necessary strategies based on the feedback and refine
the required steps to improve the quality of it. As a result, it will create an actionable optimization plan
to be done by CEA.

However, no further optimizations are needed in this case because the docstring already meets a high
level of standards.

Step 5: Iterative Improvement

Since the docstring already meets high-level standards, no further iterations are required.

3.6 Simulation and Testing

To run and simulate the agents, we need to use a sandbox. The HumanEval dataset, pulled from
GitHub, may contain harmful code in some unit tests, especially while running the unit tests for a sug-
gested solution, so a virtual machine is used on which Ubuntu is installed via Google Cloud Compute
Engine.

The environment takes each problem from the HumanEval dataset and provides it to CEA. Because
the dataset contains only 164 problems, no parallelization is required for this kind of task. Besides, it
simplifies monitoring the log files while agents are running without requiring synchronization code.

3.7 Results

In this methodology, The metric pass@1 (Section 3.2) is used as a metric to evaluate the perfor-
mance of the GPT3.5 while code generation. It is one of the most widely accepted techniques in code
generation[47]. It shows how the model succeeds in generating the correct answer on the first attempt.

In this context, the Humaneval dataset contains 164 problems, and the agent workflow solves 114 of
them correctly.
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Performance Metric Success Percentage
Zero-Shot Performance of GPT-3.5 Turbo [49] 57.3%
Performance of Multi-Agent Environment 69.5%

Table 3.12: Performance Comparison of GPT-3.5 Turbo in Zero-Shot and Multi-Agent System on
HumanEval Dataset

The performance of the multi-agent setup proves that clarifying docstring with intentions results in
solving problems more easily than before. Assigning specialized roles to multiple agents with col-
laboration leads to better data handling, error correction, considering more edge cases that individual
agents can not do alone.
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CHAPTER 4

CONCLUSION AND FUTURE WORK

4.1 Conclusion

This thesis inspects whether Al can achieve a human-like level of intentional understanding by focus-
ing on code generation’s ability of GPT3.5.

The first research question (RQ1), "How does adding more context and explicit intention affect the
understanding of LLMs in code generation?" can be answered based on the findings that adding
more context and uncovering hidden intentions improves the semantic understanding of GPT in code
generation. The multi-agent framework, in which the agent Comment Enhancement Agent (CEA) clar-
ifies docstrings by extracting implicit intentions, performs better in handling complex code generation
problems.

For the second research question (RQ2), '"What are the most effective methods for evaluating the
syntactic and semantic correctness of code generated by LLMs?", this study shows that LLMs
are very good at parsing and processing syntactic structures. They can even understand the semantics
in code statically to some extent. However, they have problems with dynamic understanding, which
requires executing the code. Therefore, using the HumanEval dataset and its unit tests to check the
correctness of the generated code and metrics, such as pass@k, is a very robust method for assessing
GPT’s performance.

The third research question (RQ3), "Does simulation of the principles mentioned in distributed
cognition and the extended mind thesis improve the understanding and intention of LLMs in
code generation?" and the last question (RQ4), "What are the benefits of using multi-agent sys-
tems to improve understanding and intention in Al-generated code?", can be answered according
to the methodology used in this study that shows multi-agent systems with functional roles can better
resemble human cognitive processes than a single one. Of course, this cognitive process means simu-
lating understanding and intention through statistical patterns, as not in the case of the discussion on
LLM can truly understand the language like humans; it is like an attribution to mental states such as
beliefs, desires and intentions as stated by Dijk, If we look at the problem from the perspective of attri-
bution to mental states, it pragmatically allows us to simplify complex problems and predict behaviors
[50].

This approach does not require that the system consciously experiences these states as humans do,
but rather that attributing these states to the system provides a valuable framework for understanding
and predicting its behavior. From the functional role perspective, it is like how we use the concept of
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intention to explain human actions every day[51]. It is suggested that treating systems as if they have
intentions can be a helpful heuristic for understanding and predicting their behavior[52].

Although this view simplifies understanding intentions, these capabilities are confined to the context
and structure of the training data. It raises the question of whether the text generated by LLMs refers
to external realities or remains bound within textual semantics in training dataset[53].

To overcome those limits, multi-agent environment are simulated by assigning role for each agent. It
is monitored that how they interact with each agent for solving complex problems.This perspective
mimics the distributed cognition environment to handle sub-tasks and to uncover implicit intentions
within larger tasks by coordinating with other agents to achieve the assigned goal.

4.2 Future Work

In order to improve the capabilities of the semantic understanding of LLM, more research is needed
focusing on how execution can be represented syntactically, and more datasets and evaluation metrics
are necessary that go beyond syntactic correctness.

Moreover, the multi-agent systems demonstrate that they are very useful, so integrating real-world
environmental interactions and physical embodiments could improve Al generativity and originality
by mitigating the inherent biases resulting from training data.
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