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Abstract

Nonlinear absorption properties of PbMoy 75 W ,50, single crystal fabricated by the Czochralski
method were studied. The band gap energy of the crystal was determined as 3.12 eV. Urbach energy
which represents the defect states inside the band gap was found to be 0.106 eV. PbMoy 7,5Wq 2504
single crystal has a broad photoluminescence emission band between 376 and 700 nm, with the
highest emission intensity occurring at 486 nm and the lowest intensity peak at 547 nm, depending on
the defect states. Femtosecond transient absorption measurements reveal that the lifetime of localized
defect states is found to be higher than the 4 ns pulse duration. Open aperture (OA) Z-scan results
demonstrate that the PbMog ;5 W 2504 single crystal exhibits nonlinear absorption (NA) that includes
two-photon absorption (TPA) as the dominant mechanism at the 532 nm excitations corresponding
t02.32 eV energy. NA coefficient (3.4) increased from 7.24 x 10" mW 't08.81x10 ' mw!
with increasing pump intensity. At higher intensities 3.rtends to decrease with intensity increase. This
decrease is an indication that saturable absorption (SA) occurred along with the TPA, called saturation
of TPA. The lifetime of the defect states was measured by femtosecond transient absorption
spectroscopy. Saturable absorption behavior was observed due to the long lifetime of the localized
defect states. Closed aperture (CA) Z-scan trace shows the sign of a nonlinear refractive index. The
optical limiting threshold of PbMoy ;5 W 550, single crystal at the lowest intensity was determined as
3.45 mJ/cm?. Results show that the PbMog 7sW¢ 250, single crystal can be a suitable semiconductor
material for optical limiting applications in the visible region.

1. Introduction

Fabrication and testing of new materials with combinations of various organic and inorganic elements to obtain
better nonlinear optical properties (multiphoton absorption, inverse saturable absorption, saturable absorption,
and self-focusing/defocusing effects) is a major goal of many disciplines. Molybdate (MoQO,) and tungstate
(WO,) compounds are good host materials for metals and rare earth elements and they have a wide range of uses
such as supercapacitors [ 1, 2], solid-state lighting 3], sensors [4], photocatalysis [5, 6], wastewater treatment [6],
smart filtering optical radiation [7], microwave imaging [8], energy conversion [9], electromagnetic interference
(EMI) shielding [10], optical limiting [11, 12], low temperature co-fired ceramic (LTCC) [13], and thermistor
applications [14, 15]. Lead-doped crystal and thin film materials such as PbMoO, and PbWQO,, which are
inorganic semiconductor materials, attract attention due to their high density, high chemical stability, high
radiation damage threshold, high thermal conductivity, high optical transmittance, short decay time and
luminescence properties in the visible region [16, 17]. It has been reported that doping metal ions such as Zn and
Mn can change the optical properties of host materials by providing efficient radiation channels [18, 19].
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Moreover, it has been reported that Zn-bonded WO, nanostructures exhibit reverse saturable absorption under
continuous-wave laser excitation [20]. Besides, rare earth element doped MoO,4 and WO, semiconductor
materials attract attention in optoelectronic technology due to their effective luminescence properties [21-24].
Additionally, these two materials are also of interest because they show nonlinear optical responses to high light
intensities [11, 12, 25-29].

Within the framework of light—matter interaction, various materials in crystal [30—32], thin film [33-36],
nanostructure [37], and liquid [38] forms that exhibit nonlinear absorption properties at high light intensities
are produced and examined. The nonlinear effect in the transmittance of a material can be observed in two
different types, nonlinear absorption (NA) and saturable absorption (SA). SA indicates the increase in
transmittance depending on the increasing light intensity. This relates to the fact that at relatively low light
intensities the available energy levels are filled with excited electrons and no more electrons move these levels
through the valence band [39, 40]. NA corresponds to the decrease in transmittance due to increasing light
intensity and is determined by the NA coefficient. The well-known NA mechanisms are one-photon absorption
(OPA), two-photon absorption (TPA), free-carrier absorption (FCA), and reverse saturable absorption (RSA).
The NA feature offers materials in various usage areas such as optical switching [33], optical waveguide devices
[41], ultrafast fiber lasers [42], self-defocusing lasing [43], self-frequency-doubling [44], and optical limiting
[45, 46] applications.

Studies examining the optical limiting properties of materials exhibiting NA behavior are common in the
literature. An optical limiter can allow light to pass up to a certain intensity threshold while absorbing light at
intensities above the threshold. High-intensity light can cause serious damage to the human eye and detectors.
Therefore, it is desired that the limiting threshold of an optical limiting material be as low as possible for
protecting eyes and detectors. Among the nonlinear optical materials, metal MoO, and WO, materials such as
Sn** doped BaMoO, [11], Cr’* doped La,(WO,); [12], PbM0oO, [26], and Sn** doped CdMoO, [47] showed
that they have good NA properties and low optical limiting thresholds.

The present work represents the investigation of the photoluminescence and nonlinear absorption
properties of PbMog 75 W 50, single crystal for optical limiting applications. Structural and optical
characterization of PbMo, 75sW ,50, single crystal was performed in our previous study [48]. For
understanding the nonlinear absorption and the nonlinear refraction properties of PbMog 75W 250, single
crystal, the open aperture (OA) and closed aperture (CA) Z-scan methods were used at 532 nm laser excitations
with 4 ns pulse duration and 10 Hz repetition rate. Femtosecond transition absorption spectroscopy
experiments were carried out to understand the photoluminescence and nonlinear absorption mechanism of
PbMoyg.75W( 2504. The decay kinetics of PbMoyg 75W 250, single crystal are discussed in detail.

1.1. Experimental methods

A single crystal of PbMog 75W 250, was grown using the Czochralski technique. The requisite melts, composed
of PbO, M0O3;, and WOj; oxides, were precisely combined in stoichiometric proportions within a Pt crucible for
the purpose of crystal growth. This growth process involved maintaining specific rates: a pulling rate of 2 mm
h™', arotation rate of 20 rpm, and a cooling rate of 30 °C h™". Subsequently, the elongated bulk crystal obtained
underwent cutting and meticulous polishing of both of its surfaces to achieve a high level of optical quality. The
photograph of the crystal examined in the present paper, the x-ray diffraction pattern, and detailed information
about the crystalline parameters were reported in our previous study [48]. The findings indicated that the grown
compound is in single crystal form and exhibits a favorable crystalline structure. A Shimadzu-1800 model UV-
vis spectrophotometer was used to examine the linear optical absorption features of PbMoy 75W 550, single
crystal. Photoluminescence measurement was performed by Pelkin Elmer LS 55 Fluorescence Spectrometer.
The nonlinear optical responses of PbMoyg 75 W 250, single crystal to intense laser light were investigated with
the OA and CA Z-scan experiments at 532 nm wavelength excitations of Quantel Brilliant model Q-switched
Nd:YAG laser source with 4 ns pulse duration, and 10 Hz repetition rate.

Ultrafast pump probe spectroscopy measurements were performed using a Ti:Sapphire laser amplifier and
an optical parametric amplifier system with 52 fs pulse duration and 1 kHz repetition rate (Spectra Physics,
Spitfire Pro XP, TOPAS) with a white light continuum probe a commercial pump probe experimental setup
from Spectra Physics, Helios to reveal the charge transfer dynamics of PbMoy ;5sW 504 single crystal. Pulse
duration was measured as 120 fs by cross-correlation inside the pump probe setup. The pump wavelengths were
chosen based on the maximum linear absorption wavelength of the crystal. The excited state dynamics were
measured between 0.1 ps and 3.2 ns timescale. Experimental data was analyzed by using Surface Xplorer
software that is provided by Ultrafast Systems.
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Figure 1. (a) Absorption spectrum and (b) Tauc plot of PbMog 7;5W 250, single crystal.

2. Results and discussions

2.1. Linear optical properties
The linear absorption spectrum of PbMog 75Wj 550, single crystal was given in figure 1(a). there is no explicit
absorption in the 5001100 nm range. However, the absorption band corresponding to smaller wavelengths
than 500 nm is close to perfect but not sharp due to the defect states localized below the conduction band. Asa
result, defect states are responsible for narrowing the band gap.

The band gap energy of the crystal is expressed by the equation (1) [49], given as

ahv = A(hv — Ep)" (1)

where v is the linear absorption coefficient defined from the absorption spectra, hvis the photon energy, Aisa
constant, E, is the energy of band gap, and n equals 1/2 for direct transitions and 2 for indirect transitions,
respectively. The direct band gap energy of the PbMoyg 75W 50, single crystal was found to be 3.11 eV from the
point where the linear fit line intersects the hv axis in the Tauc plot given in figure 1(b).

Electronic transitions to the defect states within the band gap and close to the conduction band contribute to
the NA of the PbMoy 75W 2504 single crystal. The Urbach energy of the crystal identifies the distribution of the
defect states localized within the band gap and it can be obtained by the following equation [50],

a = agexp (hv/Ey) (2)

where gy is a constant, and Ey;is the Urbach energy. The E;value is proportional to the defect states distributed
between the valance and conduction bands. The Urbach energy of the PbMoy ;5W 50, single crystal was
determined as 0.106 eV from the inverse slope of the In («) versus hv curve illustrated in figure 2. This result
points out that the defect states are distributed below 0.106 eV of the conduction band.

The photoluminescence (PL) spectrum of the PbMoy ;5 W 250, single crystal was obtained under 350 nm
wavelength excitation and given in figure 3. As seen in the figure, the PbMoy ;s W 250, single crystal has a wide
PL emission band between 376 and 700 nm. The highest emission intensity occurred at 486 nm. The lower
intensity peak at 547 nm is based on the defect states. The transitions of trapped electrons from defect states
localized below the conduction band to the valance band caused the emissions with lower energy. Details and a
discussion of decay kinetics are given in section 2.3 Femtosecond Transient Absorption Spectroscopy. The peaks
observed in the photoluminescence spectrum can be attributed to the ordered lattice defects of [WOZ]inthe
crystalline structure (responsible for blue emission), charge transfer transitions within [MoO,] clusters
(electrons are excited from 2p states of oxygen to 4d states of Mo localized within the band gap and they emit
light at different energies as they pass to different lower states during the relaxation process), and oxygen-related
defect centers (responsible for green emission) [51, 52]. Photoluminescence properties can be adjusted by
doping metal or rare earth elements. Shifts in the photoluminescence wavelengths were observed in molybdate
and tungstate crystals doped with different alkali metals such as Ca, Cd, and Sr [53]. The emission band of the
PbMoy ;5W 250, single crystal is narrower than that of these crystals. It can be due to the PbMog ;5W( 5504
single crystal having a less defective structure than these crystals.

3
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Figure 2. In(«) versus hv plot of PbMog 75W 2504 single crystal.
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Figure 3. Fluorescence spectrum of PbMoyg 75 W »50, single crystal.

2.2.Nonlinear absorption properties
OA Z-scan measurements under 532 nm wavelength excitations at 4 ns pulse duration were carried out and NA
behaviors of the PbMoy ;5 W 250, single crystal at various intensities were given in figure 4. It can be seen in the
figure that the normalized transmittance decreased with increasing input intensity. On account of the energies of
defect states and excitation wavelength (532 nm) corresponding to ~3.0 eV and 2.32 eV, respectively, the
electrons in the valance band do not reach defect states close to the conduction band via OPA in
PbMoy 75W 2504 single crystal. On the other hand, the possibility of OPA occurring requires deep defect states,
excitonic states, or thermally induced free carriers [54]. Since the energy of excitation light is higher than the half
ofband gap energy (E,/2), the TPA condition is satisfied. Therefore, the dominant NA mechanism is TPA in
PbMoy 75W 250, single crystal. Additionally, the defect states prohibit the recombination of electron—hole pairs
and contribute to NA by trapping carriers excited by TPA. Besides, the electrons carried to the upper parts of the
conduction band by TPA transfer their energies to the electrons occupying lower energy levels, and therefore,
ESA contributes to NA. Another result from OA Z-scan experiments at higher input intensity excitations
indicated the saturation of TPA, as seen in figure 5. This can be explained by the fact that as higher intensities are
increased, defect levels and upper excited levels begin to fill. For this reason, NA coefficients begin to decrease.

A theoretical model given in equation (3) was used for analyzing the Z-scan results. This model represents
the OPA, TPA, and free carrier absorption (FCA) and their saturations [55],
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where I is the output intensity that comes from the PbMoy ;5W 550, single crystal to the detector, 2’ is the
propagation distance of light inside the crystal, Iso is the intensity threshold of saturation, 3is the TPA
coefficient, oy is free carrier absorption cross-section. AN is photocarrier density and it is a function of v and 5.
AN describes the light absorption of photocarriers in defect states via OPA provided that the lifetime of the
defect states is longer than the pulse duration. AN can be given as following equation:

AN = (O”To/ﬁ(x)o)] (4)

where 7 is the pulse duration and wy is the beam waist at the focus. Thus, equation (3) becomes the following
equation.

dI ol ﬁeﬁ"lz
— = - - =—fd
dz' 1+ I/Isar 14 13/ f{ ©)
and
Befr = B + (ooatn/ hw) (6)

where (s a free parameter obtained from the fitting of the experimental data.

The nonlinear refractive index (#1,) of the PbMoyg 75 W 2504 single crystal can be assigned from the diversity
that is a function of |A | between the normalized peak (T},) and valley transmittance (Ty) in the CA Z-scan data.
The relation between the diversity and the on-axis phase shift, | Ay, |, is given as follows [56]:

5
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Figure 6. CA Z-scan curves of PbMoy 75W, »50, single crystal at various intensities.
— — 0.25
ATP_V = Tp — TV = 0406(1 — S) |A(p0| (7)

where S = 1 — exp (—2r2/w?)is the linear aperture transmittance, r, is the radius of the aperture and w, is the
beam waist on the aperture. Sis defined as 0.3 for this study. The nonlinear refractive index is found by the
following equation.

ny = 2PN (2 vy )
2rlpLyy

where Log = [1 — exp(—al)]/a is the effective thickness of the sample and I, is the intensity at the focus.

The pure 1, was obtained by dividing the CA into OA data. Therefore, the CA Z-scan trace was taken into
account, as shown in figure 6. The normalized CA Z-scan trace shows prefocal transmittance valley and
postfocal transmittance peak, evidence of the self-focusing (1, > 0) behavior of the PbMoy, ;,5W, 550, single
crystal. The n, value was calculated to be 4.68 x 107" cm?/W at 54.1 MW cm ™ * input intensity.

The obtained NA coefficients (3.) and saturation intensities (Is4r) at various input intensities (Iy) from the
theoretical fits of Z-scan data are listed and compared with PbMoQO, and rare earth elements doped PbWO,
crystalsin table 1. The [, increased from 7.24 x 10~ "mW 't08.81 x 10~ ' m W' with increasing pump
intensity. At higher intensities, the 3,4 values tended to decrease from 1.51 x 107 mW "t01.36 x 10 " m
W' with increasing input intensity. Ig4 is the input intensity value required for saturable absorption (SA) to
occur. Unlike PbMoO, and PbWO, crystals, the decrease in the 3,5 values of PbMoy 75W( 2504 single crystal
with increasing input intensity is a consequence of the fact that SA also occurred along with TPA, called
saturation of TPA. The PbMoy 75W 550, single crystal we studied has lower nonlinear absorption coefficients
than that of the other crystals as referenced in table 1. The reason for this is the less defective structure of the
PbMoy ;5Wy 250, single crystal than the others, and then the nonlinear effect occurs at relatively higher laser
intensities and initiates saturation. Atlow intensities, the PbMog 75W 250, single crystal did not show nonlinear
properties. The nonlinear effects were observed in molybdate and tungstate crystals at relatively lower laser
intensities as seen in table 1. Accordingly, it is seen that the alkaline metal contribution, Mo and W ratios, and
their combinations affect the nonlinear absorption and optical limiting properties, and these effects can be
adjusted. However, since the band gap energies of these crystals are in 3-5 eV range, optical limiting cannot be
achieved for the near-infrared region.

The optical limiting threshold of PbMoyg 75 Wy »504 single crystal was defined from the normalized
transmission curve as a function of fluence, as seen in figure 7. The decrease in the normalized transmittance

6
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Figure 7. Optical limiting curve of PbMoy 75 W 50, single crystal at 54.1 MW cm ™2 input intensity.

Table 1. Comparison of Iyt and G values of PbMog 75W 2504 single crystal with different studies on PbMoO,4 and PbWO, crystals with
excitation wavelengths and pulse durations (7).

Materials Aexc(nm) 7(ns) I,(MW /cm?) Tsar (W/m?) Begr (m/W) References
PbMoy 75W¢ 2504 single crystal 532 4 54.1 1.40 x 10" 7.24x1071° Present work
59.2 7.45 x 10" 8.50 x 107 1°
74.0 4.15 x 10" 8.81 x 107
99.2 1.08 x 10"2 1.51x107°
117.3 1.40 x 102 1.38x107°
135.4 1.29 x 10" 1.36 x 107°
PbMoO, Single crystal 532 4 2.16 3.20 x 10" 7.11x10°° [26]
853 3.51 x 10" 8.26 x 1078
13.05 3.79 x 10! 9.46 x 107°
19.42 3.84 x 10! 1.96 x 1077
PbWO,: (0%) Mn?*" 532 10 — 0.5106 x 10° 1.496 x 1071° [27]
PbWO,: (0.3%) Mn*" 0.9855 x 10° 1.980 x 1071°
PbWO,: (0.5%) Mn** 1.4027 x 10° 2.029 %107
PbWO,: (0.7%) Mn>" 2.3392 x 10° 2.496 x 1010
PbWO,: (0%) Cr** 532 — — — 1.32x107° [28]
PbWO,:(0.1%) Cr’* 1.52%107°
PbWO,: (0.3%) Cr>" 1.78 x 107°
PbWO,: (0.5%) Cr>" 1.83 x107°
PbWO,:(0.7%) Cr’* 231%x10°°
ZnMoQy 532 — — — 2.15%x107° [29]
ZnMoO,: Ni (0.3%) 2.84%107°
ZnMoO,: Ni (0.5%) 2.52%x10°°
ZnMoOy: Ni (0.7%) 2.19%x107°
ZnMoO,: Ni (0.9%) 331%x107°
ZnWO, 532 — — — 3.36 x 10°° [20]
ZnWO,: Er (0.3%) 3.92x1078
ZnWO,: Er (0.5%) 427%x1078
ZnWO,: Er (0.7%) 4.82x10°8
ZnWO,: Er (0.9%) 5.13x107°
(CoMo004),/PMMA microcrystal 532 6 33 — 1.75x 107° [57]
48 1.23x107°
63 1.01 x107°
82 0.80 x 107>
86 0.68 x 107>

with increasing fluence of light gives the PbMoyg 75W, 550, single crystal an optical limiting feature that can be
identified with a limiting threshold refers to the point of fluence where the transmittance starts to strongly fall.

The optical limiting threshold of PbMoyg 75W 250, single crystal was found as 3.45 mJ/ cm?at54.1 MW cm ™

2
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Table 2. Comparison of the optical limiting thresholds of
PbMoy 75Wy 2504 single crystal and MoO, and WO, based materials in

the literature.

Optical limiting
Materials thresholds References
PbMoyg 75W( 2504 3.45mJ cm 2 Present work
BaMoO, 221 MW cm ™2 [11]
Sng.1Bag.sMoO, 136 MW cm 2
Sng.3Bag ;MoO, 109 MW cm ™2
Sny sBag sMoO, 204 MW cm ™2
La,(WO,)s 91.2Wem™2 [12]
La,(WO,)3: Cr’* (0.1%) 87.1Wcem ™2
Lay(WO,)s: Cr’™ (0.3%) 86.9W cm >
La,(WO,)5: Cr’ " (0.5%) 86.7Wcm ™2
La,(WO,)3: Cr’* (0.7%) 86.2Wcm ™2
PbMoO, 491 mJ cm ™ [26]
CdMoO, 41.45Jcm™? [47]
Sng1CdysMoO, 32.83Jcm ?
Sng 3Cdy sM0O, 21.22)ecm ™2
Sng.5Cdy sM0O, 11.92Jcm ™2
(CoMo04),/PMMA 1.99)cm ™2 [57]
(CoMo004)s/PMMA 1.48)cm™>
(CoMo04)s/PMMA 1.31)cm™?

input intensity. In the previous study, the optical limiting threshold was found as 4.91 mJ/cm* at 2.16 MW /cm?
for PbMoQ, single crystal [26]. This result shows that the PbMoyg 75 W 250, single crystal exhibits better optical
limiting performance at greater input intensities compared to the previous study. Besides, the optical limiting
threshold of PbMoyg 75W¢ 250, was compared with MoO, and WO, based materials with various components in
the literature and listed in table 2.

2.3. Femtosecond transient absorption spectroscopy

In an attempt to understand photoluminescence and nonlinear absorption mechanism and decay kinetics of
PbMoy ;5W 250, single crystal femtosecond transient absorption spectroscopy measurements were carried out.
The pump wavelength was determined as 400 nm corresponding to the edge of the energy band gap of the
crystal. Thus, the defect states localized under the conduction band were also excited. In transient absorption
spectra of PbMoy 75W 250, single crystal, it was observed that there is a broad and continuous excited state
absorption (ESA) band in the range of 400-800 nm as expected nature of the semiconductors (figure 8). The
strong ESA signal around 450 nm can be originated from the localized defect state. It was also observed that the
maxima of the ESA signal red shifted with time delay due to filling of the defect states. Possible transitions
between the energy states are shown in figure 9.
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Figure 9. Possible optical transitions of PbMoy 75W 2504 single crystal with 400 nm excitation.

Saturable absorption property occurs only if the lifetime of the localized defect states is longer than the pulse
duration of the laser. To get deep insight into the dynamics of the defect states, the decay kinetics were fitted
using Surface Xplorer software with the function as given [58],

I(t) = f R(t — t)S(t)dt' ©)

where I (t) is the time-resolved intensity, R(t) is the instrument response function and S(t) is the response from
the crystal, respectively.

The salient features of nonlinear dynamics in semiconductors under optical excitation have been studied in
the literature [59—61]. The understanding of the transient processes occurring in photo-generated carrier
populations is of great relevance because it would allow a deeper physical insight on the dynamical effects of
interaction mechanisms upon observable properties of the system. The first of them, commonly called the
thermalization process, is mainly governed by the rapid interactions, namely, the electron—electron and the
electron-optical phonon interactions. In this stage the carrier distribution function is far from equilibrium.
Once thermalized, the electronic system relaxes by dissipating the energy in excess into the lattice. This stage
ends when the interaction mechanisms randomize the energy and momentum in the carrier population. The
second stage of the relaxation is the so called, cooling process, and is mainly ruled by the slow interactions in the
system, namely, electron—phonon scattering and recombination. Associated to each one of the stages of the
relaxation process, there is a characteristic time. The first one, the thermalization time, is an effective time
determined by the intrinsic characteristic times of the rapid interaction mechanisms within the system and the
second one is a characteristic time determined by the interaction mechanisms of the system with the
surroundings. Carrier thermalization is a relatively fast process, typically in the range of 10 fs to 1 ps.
Semiconductors typically have some shallow or deep sub-bandgap defect states. Carriers from the band-edge
quickly get trapped into these states within a short span of 10-100 ps. More the number of traps faster is the
trapping rate [62]. Further decay of excess carriers take place through band-to-band or excitonic radiative
recombination. The radiative recombination lifetime of typical compound semiconductors is in the range of
0.1-100 ns [62].

The decay traces of PbMog 75W 550, single crystal by probing 450 nm and 600 nm are given in figure 10.
The transient absorption signal caused by the excited carrier absorption in the PbMoyg 75W 250, single crystal
immediately appears after the pump excitation. The fast component around 100 fs indicates that the photo-
excited carriers complete the thermalization through carrier-carrier scattering in PbMog 75W 250, single
crystal. The second component in the order of a few picoseconds can be attributed to the charge recombination
with getting trapped by the localized defect states. The time components are about 9 psand 11 ps for 450 nm and
600 nm probe wavelengths, respectively. Finally, the slow component (out of the time scale range in pump—
probe setup) is attributed to the carrier vanishing from localized defect states to valence band for electron—hole
recombination. This time scale is compatible with the radiative recombination lifetime of typical compound
semiconductors, as the results also prove that PL signals originate from defect states [62]. Since the trapping
lifetime of the crystal is higher than the laser pulse duration (4 ns), the SA properties were observed under high
intensities.
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Figure 10. Decay traces of the nonlinear absorption at 400 nm excitation of PbMoy 75sW 550, single crystal.

3. Conclusion

PbMoy 75W 250, single crystal fabricated by the Czochralski technique and nonlinear absorption properties
were investigated. The band gap and Urbach energies of PbMoy 75 W 2504 single crystal were calculated as 3.12
and 0.106 eV. PbMog 75W »504 single crystal has a broad PL emission band from 376 to 700 nm depending on
defect states. Results of the OA Z-scan experiment at 532 nm excitations with 4 ns pulse duration indicate that
the PbMoy 75W 250, single crystal has NA and SA behavior. Based on the femtosecond transient absorption
measurements, the lifetime of the localized defect states was found higher than 4 ns pulse duration. This explains
why open aperture Z-scan experiments exhibit saturable absorption characteristics with high intensities. TPA is
the dominant mechanism of NA at 532 nm excitations corresponding to 2.32 eV. Since the defect states close to
the conduction band, OPA does not contribute to NA. 3 gincreased from 7.24 x 107 mW 't08.81 x 107'm
W' with increasing pump intensity. At higher intensities, 3,yindicated a decreasing trend due to the saturation
of TPA. The higher nonlinear refractive index was found to be 4.68 x 10> cm®/W at 54.1 MW cm ™~ *input
intensity. The optical limiting threshold of PbMoy, 75 W, 5504 single crystal was found as 3.45 mJ/cm’. As a
result, PbMoy 75sW 50, single crystal can be a promising optical limiter material in the visible region.
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