
ORIGINAL ARTICLE

Hierarchical reinforcement Thompson composition

Güven Orkun Tanık1 • Şeyda Ertekin1,2

Received: 10 January 2023 / Accepted: 25 March 2024
� The Author(s) 2024

Abstract
Modern real-world control problems call for continuous control domains and robust, sample efficient and explainable

control frameworks. We are presenting a framework for recursively composing control skills to solve compositional and

progressively complex tasks. The framework promotes reuse of skills, and as a result quick adaptability to new tasks. The

decision tree can be observed, providing insight into the agents’ behavior. Furthermore, the skills can be transferred,

modified or trained independently, which can simplify reward shaping and increase training speeds considerably. This

paper is concerned with efficient composition of control algorithms using reinforcement learning and soft attention.

Compositional and temporal abstraction is the key to improving learning and planning in reinforcement learning. Our

Thompson sampling inspired soft-attention model is demonstrated to efficiently solve the composition problem.

Keywords Reinforcement learning � Thompson sampling � Artificial intelligence agents � Soft attention

1 Introduction

Reinforcement learning (RL) is concerned with exploration

and learning of the best action sequences in an environment

to maximize cumulative reward. The prominent algorith-

mic hurdle of reinforcement learning is delayed feedback

and reward attribution. The practical hurdle is difficulty of

reward shaping, efficient learning and changing environ-

ments and eventually bridging the simulation to real-world

gap. Models trained in simulations may not be able to

achieve meaningful success in the real world, and the cost

of learning in the real world may be unfeasible, either in

the number of trials needed or the modes of failure being

too costly. There is a vast spectrum of different rein-

forcement learning algorithms trying to address all these

problems, as well as reducing programming effort and

increasing practicality. To get our models to perform well

in the real world, ideally, we need our models to be easy to

specify, train and modify. Failure to specify robust and safe

models, usually in the form of reward shaping, leads to

many concrete problems, namely, undesired side effects,

reward hacking, unsafe exploration and brittleness to dis-

tributional shift [1]. Human learning has remarkable

qualities that would help us solve some of these problems,

if we manage to mimic those qualities. We are attempting

to improve training efficiency through a human inspired

skill combination framework, that produces faster learning,

and easier reward specification. This is especially useful in

real-world applications where model training can be very

costly, and rewards can be very hard to specify.

When we humans try to learn a new skill, we usually do

not start from scratch. We usually utilize our previously

learned fundamental movements and patterns to build our

new skills [2]. Our skills are usually made up of compo-

sitions of smaller skills, embedded in the larger skill and

adapted on the fly to the specific problem. Taking cooking

as an example; cutting, mixing and stirring are not learned

with each recipe. Cutting may be modified depending on

the utensil used or the component that is being cut, but

essentially it is the same skill across the board in a wide

variety of cooking recipes. What we are proposing is the

reinforcement learning equivalent of the underlying prin-

ciple: a set of basic skills, which can be learned thoroughly

and exhaustively, that will be combined to achieve ever

& Güven Orkun Tanık
orkun.tanik@metu.edu.tr

Şeyda Ertekin

sertekin@metu.edu.tr

1 Computer Engineering Department, METU, 06800 Ankara,

Turkey

2 CAD/CAM & Robotics Center, METU, 06800 Ankara,

Turkey

123

Neural Computing and Applications
https://doi.org/10.1007/s00521-024-09732-9(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0001-8363-8103
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-024-09732-9&domain=pdf
https://doi.org/10.1007/s00521-024-09732-9

more complex tasks. This approach aims to build models

using simple sub-models, which are by definition easier to

specify and train, to alleviate aforementioned problems.

We are proposing a hybrid approach, that aims to practi-

cally train models on a pre-decomposed problem, to effi-

ciently learn and later be easy to modify, which would be

more efficient than classical single-stage learners.

Single-stage learners, as in most deep reinforcement

learning models, tend to lose their performance when the

task they are trained on is modified. This also means that

these models are sensitive to environmental changes which

complicates the transition from simulation to real world.

Especially for single-stage learners, robustification [3] is

needed for dynamic environments or real-world deploy-

ment [4], where the environment contains a lot of small

changes, where weather affects the sensors and perception

of the agent.

Some of the previous work to address these problems

has been on task decomposition [5, 6] and its efficient

application [7, 8]. Bacon et al. [9] renewed interest leading

to [10] and combination with other reinforcement learning

methods [11, 12]. Lent [13] proposes a two-layer decom-

position in reinforcement learning in random neural net-

works as a method to improve efficiency and performance.

A similar work [14] also embraces a composition approach

where a policy layer is shared between different skills. Our

method, Hierarchical Reinforcement Thompson Composi-

tion (HRTC), proposes a novel composition method that

efficiently explores and learns to combine sub-skills which

allows separately training the skills and meta-policy.

Keeping with the analogy, we are not trying to learn or

discover the ideal decomposition. The ideal decomposition,

or some decomposition, is assumed to be provided by the

experts that are setting up the learning task.

This expert intuition, imparted to the model as the task

decomposition, may be viewed as a foundation for the

model. The expert intuition can be fed into the system

using input rules as in [15], which need advice modeling

and is more complex. Our approach has multiple advan-

tages. It builds a symbolic base, similar to [16], which

helps in solving complex problems, outperforming neural

models as evidenced in NeurIPS 2021 Nethack challenge

and in [16]. It also removes the need to retrain sub-models

and decreases the training needed to solve posed problems

significantly. Most importantly, this decomposition makes

reward shaping much simpler, making training sub-models

easier for the programmer and the model at the same time.

Training efficiency is a metric that is taken into account

in [13, 15, 16]. This paper outlines the efficiency gains of

the proposed hierarchical learning method, which uses a

Thompson sampling inspired beta distributed soft-attention

model to combine pre-trained sub-models against selected

single-stage state-of-the-art models.

2 Background

We will briefly go over the methods we are using and

drawing inspiration from in our proposal.

2.1 Actor–critic methods

Policy optimization methods are one of the fundamental

reinforcement learning algorithm families that are about

finding an approximating function that maps the agent’s

current state to its next action. Actor–critic methods [17]

are on-policy temporal difference (TD) learning methods

that use both a value function (critic) and a policy function

(actor). Policy gradient methods are used to train these

systems.

Our approach is a derivative of actor–critic models. The

components and behavior can be summarized as follows:

• Actor: Selects actions based on the current state.

• Critic: Evaluates the chosen actions and estimates their

values.

• Initialization: Initialize actor and critic networks with

random weights and set hyperparameters.

• Interacting with Environment: Actor selects an action,

environment provides reward and next state.

• Updating the Critic: Critic’s weights are updated to

minimize the difference between predicted and actual

rewards (TD error).

• Updating the Actor: Actor’s weights are updated to

maximize actions leading to higher rewards, guided by

the critic’s evaluation

• Repeat: Update steps are repeated for multiple episodes,

enabling the model to learn optimal actions over time.

Vanilla policy gradient keeps the policy updates close in

parameter space. However, small changes to some

parameters may have huge effects on the model outputs

with corresponding performance effects. Thus, small

updates may end up collapsing the model performance.

This makes the models brittle when using large step sizes

with vanilla policy gradients, hurting policy gradients’

sample efficiency.

In order to counteract the high variance that policy-

based methods suffer from, it is possible to employ a base

value function to de-bias the state-action expected value

function. If high variance is not addressed, it may lead to

catastrophic collapse of the learned function, or poor

convergence.

Trust region policy optimization (TRPO) [18] and

proximal policy optimization (PPO) [19] techniques build

on these concepts. TRPO aims to update its policy by

taking the largest step possible to improve performance,

while satisfying a closeness constraint on the updated and

old policies to avoid taking a too large update step that may

Neural Computing and Applications

123

destabilize model performance. The constraint modeled

using KL-Divergence, as a measure of distance between

probability distributions. TRPO tries to avoid this kind of

collapse using its closeness constraint and aims to quickly

and monotonically improve performance.

PPO is another step in the same direction as TRPO. PPO

also tries to take the largest ‘‘safe’’ policy gradient step,

without jeopardizing model collapse. The main difference

is the approach to the problem. TRPO tries to solve this

problem with a complex second-order computation at each

step, whereas PPO distills the closeness objective into its

objective function. PPO is significantly simpler to imple-

ment, and even though the computations are not as precise,

the resulting performance is on par with TRPO with much

less computational overhead.

We are using a actor–critic method, specifically PPO in

the core of our model. PPO is chosen because when

comparing end-to-end methods, it outperformed all other

methods we have tried in our experiments in terms of

learning performance, namely, TRPO, Advantage Actor–

Critic (A2C) [20], Deep Deterministic Policy Gradient

(DDPG) [21], Soft Actor–Critic (SAC) [22] and Twin

Delayed DDPG (TD3) [23].

2.2 Soft attention

We humans use our selective attention in our cognitive

faculties [24]. We restrict our attention to particular objects

and tasks and tune out irrelevant information. This helps us

concentrate, and emphasize what is considered more

important, urgent and relevant. In line with the parallels,

we draw between human learning and our proposal, we are

making use of attention systems for learning.

Computational attention mechanisms have been inven-

ted and have been successfully applied to deep learning

problems, commencing a wave of performance gains in

every problem domain that deep learning techniques are

applied. Selective attention assumes not every input is of

the same importance at a given step. This may be objects or

pixels in image processing tasks, words and expressions in

language processing or sub-tasks in our application.

Attention mechanisms have two distinct categories: hard

and soft attention [25].

Hard attention refers to choosing some part of the input

and only processing that part. Whereas soft attention still

takes in the whole input, but multiplies the whole input by

some attention coefficient such that the relevant part is

more prominent in its representation. This lends itself

better to back-propagation and thus usually easier to train.

We are using soft attention in our model’s action filter.

This allows us to modify the resulting overall output

action, combining all the candidate actions in a way that is

driven by the current state.

2.3 Beta distribution

Deep learning-based models working in continuous envi-

ronments usually output probability distributions which is

then sampled to determine the resulting action. Classical

algorithms use normal distribution as their output distri-

bution. The model outputs a mean value and a standard

deviation, which are used to build the probability distri-

bution function.

However, there are drawbacks to this approach. A nor-

mal distribution is a symmetric distribution around the

mean. When the mean moves to either end of the proba-

bility spectrum, the trailing end of the distribution corre-

sponds to the nearest extreme end of the distribution results

in sampling zero or one disproportionately more probable.

As the mean of the distribution gets closer to zero, the

probability of sampling zero increases disproportionately.

This sampling ‘‘bias’’ results in models that converge and

behave in sub-optimal manners as the numerical mean of

the samples and outputted mean from the model start to

diverge as the mean gets closer to zero or one.

However, beta distribution does not suffer from the

imbalance that occurs when the distribution is close to zero

or one. Beta distribution is approximately normal when its

parameters are sufficiently large. Unlike normal distribu-

tion, which tracks the mean and variance of the distribu-

tion, beta distribution tracks the relative weights of its

parameters, which results in a more natural relationship

between successful application of the sub-tasks and their

prevalence, which can be utilized as a pseudo-count.

Beta function can be defined as follows:

bða; bÞ ¼ CðaÞCðbÞ
Cðaþ bÞ ð1Þ

where C denotes the gamma function. The beta function’s

probability density function can assume many shapes, from

uniform (when b ¼ a ¼ 1Þ, to approximating normal dis-

tributions (a[1&b[1).

We are using beta distribution in our policy outputs,

especially in our HRTC meta-policy but also by modifying

the PPO algorithm to demonstrate the concept.

2.4 Thompson sampling

Thompson sampling is an algorithm that is used to opti-

mize the explore–exploit dilemma in decision problems. It

is a computationally efficient method that balances maxi-

mizing current performance and investing in exploration to

potentially improving future performances. This technique

is the critical component of our method, which allows us to

improve the learning performance.

In �-greedy approaches, as in a lot of the reinforcement

learning algorithms, there is dithering for exploration. This

Neural Computing and Applications

123

approach fails to write off bad actions, effectively wasting

some of the exploration actions on experiments that have

no possibility of improving the overall results. Dithering

hurts results by delaying convergence, especially in large

action spaces, like the target continuous environments of

this work.

Thompson sampling samples a prior distribution for the

decision, updating the expectations accordingly. If we

assume the distribution to be beta, this leads to wider prob-

ability distributions where the actions are under-explored,

and narrower probability distributions where the actions are

better explored.As the decision process uses sampling,wider

distributions have larger probabilities to be chosen if their

expectation function can produce higher rewards.

Let’s assume that there are k actions, and action k pro-

duces a reward with probability hk, and we have indepen-

dent prior belief over each hk. If we take the prior to be beta
distributed, prior probability density function for each

action k becomes:

pðhkÞ ¼
hak�1
k ð1� hkÞbk�1

bðak þ bkÞ
ð2Þ

where we can treat a and b as pseudo-counts, with positive

rewards increasing a and negative rewards increasing b.
With this simple update scheme, a stationary problem can

be learned very efficiently. As ak þ bk increases, the dis-

tribution becomes more concentrated. This means as an

action is chosen over and over, the system prior belief

about the outcome for that action becomes more precise.

On the other hand, when an action is under-explored, the

resulting sampled value can have a wide range of values,

which makes it more likely to be chosen to be explored,

which, in turn, concentrates the distribution function,

resulting in efficient exploration. For the exploitation

phase, simply the mean for the beta function ak=ðak þ bkÞ
is used.

We are making use of a Thompson sampling inspired

action filter, which essentially decides the more desirable

the contribution of each sub-action at each state. This

mechanism feeds into the combination logic directly, pro-

viding a simple and easy to compute combinational action

at each state, while providing an efficient way for explo-

ration by minimizing dithering. Classical explore–exploit

approaches can be considered to use the principle of opti-

mism in the face of uncertainty (OFU). Our approach, like

[26, 27] in Bayesian systems, applies plausibility into

exploration instead of optimism.

2.5 Hierarchical reinforcement learning

As our method uses a decomposition in its core, we need to

mention hierarchical reinforcement learning methods, even

though unlike most of these methods we are not trying to

find an ideal decomposition of tasks, these methods gave us

inspiration on the formulation of our method. We are

assuming the decomposition is supplied to us. Essentially

imposing a decomposition task on the programmer, is a

performance advantage in the shape of not searching for

the decomposition. Also simultaneously changing decom-

position and combinations increase the complexity,

delaying the learning process.

All the previously mentioned methods are end-to-end

methods, which take a problem, and try to solve it at once.

Then, there are the family of hierarchical learning methods

for decomposing the problem and solving each sub-

problem.

Feudal Networks [6] learn to divide the work to achieve

goals at each level, so that the manager level learns to

assign local and specific sub-goals to the lower level, while

the lower levels learn to solve their tasks optimally.

Options Framework [5], specifically option–critic

architecture [9, 11, 12], attempts to learn a decomposition

termed options, with an actor–critic model to choose the

option to be executed. Options are executed until their

termination, then a new option is selected via an initiation

function. The framework learns when to terminate and

initiate an option.

These methods introduce implicit temporal abstractions

as a complexity management method. Our method uses

explicit task-based temporal abstraction.

3 Methods

Our proposed algorithm aims to build a skill combination

model. In order to achieve this, we are combining a

Thompson sampling like approach with skill decomposi-

tion and show that both are needed for a positive outcome.

As illustrated in Fig. 1, there is a meta-policy and a master

critic. Master critic is the value function for the whole

combined skill. However, the action is not produced by the

meta-policy itself. The meta-policy is there to learn how to

combine the outputs of the various sub-skills using soft

attention. Meta-policy is learned in an on-policy manner

using PPO with a modification—beta distribution.

Considering the general case as a finite horizon Markov

decision process with M ¼ ðS;A;R;P; sÞ, where S is the

state space, A is the action space, RaðsÞ is the probabilistic
reward function for action a in state s, Paðs0jsÞ is the

probability distribution for transitioning to state s0 from

state s when action a is chosen and s is the time horizon. A

deterministic policy l is a mapping from each state s 2 S to

an action a 2 A. We define the value function as

Neural Computing and Applications

123

Vl;iðsÞ ¼ El

Xs

j¼i

RajðsjÞ ð3Þ

where RaðsÞ denotes the expected reward when the action a

is selected in state s. The policy l is optimal for M when

Vl;iðsÞ is maximal for 8s 2 S and i. Our approach uses an

actor–critic approach, where V is approximated by an

neural network called the critic, and meta-policy l is

learned by the critic neural network which tries to optimize

itself according to the critic. Value function is a repre-

sentation of the TD error and approximation of state-action

values, stands for the anticipated reward for the agent

following its policy l. PPO loss function is used as is,

which is clipped rðhÞÂt for learning, is given in Eq. (4).

LPPOðhÞ ¼ Êt½minðrtðhÞÂt; clipðrtðhÞ; 1� �; 1þ �ÞÂtÞ�
ð4Þ

where probability ratio rt is defined as

rtðhÞ ¼
phðatjstÞ
pholdðatjstÞ

ð5Þ

This loss equation attempts to regularize policy updates

using the parameter �, so that the updated policy is not far

from the old policy. This mechanism intends to stop the

update of the probability ratio after a threshold. PPO is an

on-policy approach that trains a stochastic policy, which

does exploration by sampling actions according to its latest

policy. This work is an empirical attempt to modify the

actor for efficient exploration with powerful generalization

using Thompson sampling, while avoiding dithering and

using sub-skills to achieve exploration coverage of the

action space.

Actor–critic methods usually produce r and l values

defining a normal distribution, corresponding to the mean

and variance, respectively, of said distribution. The agent

then samples this distribution as a mechanism for explo-

ration, updating r and l values in the process. During

performance evaluation, usually directly r is used as the

output value instead of sampling, leading to a more

stable output. In order to embed the Thompson sampling

mechanism, we are modifying the actor to output a and b
values for each sub-skill in the library for each context,

then sampling the resulting beta distribution as the input

weights for a soft attention filter to combine the sub-skills.

The beta mean ak=ðak þ bkÞ is used during evaluation

instead of sampling. This is akin to solving the learning

problem with Thompson sampling in contextual bandit

problems, albeit with delayed rewards, which is being

taken care of using the critic network.

Filters are used to integrate different parts of the algo-

rithm together seamlessly. State filter is used simplify sub-

skills. Part of the simplification stems from using a subset

of the observation because some sub-skills may not make

use of the whole observed environment. The other part of

simplification is simplification of the desired result, as it is

just a small part of the problem. At the output end, all the

sub-skills simultaneously run as if the context entails the

full usage of each sub-skill. Each sub-skill produces their

proposed actions their own reward systems would entail.

Action filter is then used to combine outputs of various

sub-skills into a single action, using soft attention.

At each step, all the sub-skills read in their filtered state

and produce their intended output. Some of the skills will

be antagonistic, in which case the meta-policy quickly

learns to use one of the antagonistic sub-skills. Some of the

skills are synergistic, which are regulated and used in

combination by the meta-policy.

Fig. 1 HRTC algorithm

Neural Computing and Applications

123

Algorithm 1 HRTC, single level

This novel approach has several advantages:

• Each sub-skill can be a different type of model;

• Optimized/chosen for the skill needed, such as MPC for

navigation

• Can be individually trained

• Can have its own state subspace

• Have its own reward function

• Can be individually verified/tested

• Can be trained without affecting other sub-skills

• Meta-policy can be thought as a skill itself, recursively

building more complex skill trees

• Meta-policy and skills can have distinct time

resolutions

• Environment effects can be compensated in the meta-

policy, which drastically simplifies skill training

• Skills can be transferred

• Usage and activation of the skills can be observed and

modified, which combined with pre-decomposition of

skills, lends itself to being explainable which is

extremely important in real-world systems.

Our results demonstrate that this approach converges faster

and more reliably in reinforcement learning tasks under

control domain.

4 Results

When we set out to find a suitable demonstration envi-

ronment for our proposed model, we were looking for a

fairly simple continuous control environment that had

random elements. The environment’s randomization is

crucial for our principal value proposition, an

adaptable algorithm.

We chose our demonstration medium as OpenAI Gym’s

CarRacing-v0 environment. It is a fairly simple continuous

control environment that incorporates a randomly gener-

ated track, and a car which has acceleration, braking and

steering as inputs. This environment was chosen for the

initial evaluation and demonstration purposes, as it offers a

simplistic state and action space. Reward structure is also

fairly simple: There is a continuous time penalty of �0; 1

points per frame designed to encourage forward motion,

and a positive ?1000/N points reward for any new section

of the track that the car moves through, where N is the total

number of tiles in the track. If the agent achieves 900

points average in 10 consecutive tracks, we consider the

problem solved. If the problem is not solved in 10,000

tracks, we consider the model failed to solve the problem.

The reward structure encourages the controller to

quickly complete the track, and the random track genera-

tion coupled with our 10 consecutive track rule punishes

memorization.

We also opted for a static sub-skill library that does not

require training to clearly demonstrate the performance of

our algorithm. For implementation, it is assumed as

deterministic action outcomes for five distinct action

intents: turn left [�1:, 0., 0.], turn right [0., 0., 0.], accel-

erate [0., 1., 0.], decelerate [0., 0., 0.8] and hold condition

[0., 0., 0.]. Meta-policy learns to combine these intents

(actions), as its response to observed states. We inten-

tionally chose a large number of sub-skills intentionally to

demonstrate combination power of our algorithm, instead

of a more efficient already combined two sub-skill setup;

just a turning and an accelerate/decelerate skill. Also we

Neural Computing and Applications

123

chose the sub-skills such that they will need to be com-

bined in antagonistic and synergistic manners. In our setup,

acceleration–deceleration and right–left turns are antago-

nistic pairs as both produce opposite results. Whereas

acceleration and either turns are synergistic that in order to

navigate both should be employed at the same time. For

example, to successfully execute a turn around a bend, the

model should learn to decrease acceleration and increase

deceleration prior to entering the bend, then accelerate and

turn in the correct direction while navigating the turn.

Our proposed model solved the environment faster and

more reliably than other methods. The options based

methods failed to converge in 10,000 steps in any of the

trials. However, single-stage methods were competitive.

We benchmarked PPO, SAC, TD3 and A2C—a combina-

tion of on-policy and off-policy algorithms with a mix of

stochastic and deterministic policies. PPO is used for

benchmarking, as it is the best performing in experiments,

and HRTC uses a derivative of PPO for its meta-policy

learner. PPO algorithm itself is also modified with beta

distribution to demonstrate the difference is not only due to

an output distribution change, which coincidentally per-

formed among the worst in the experiments. Also almost

all the remaining code, and the actor and critic networks

are sized identically to show the advantages of our method.

We used a 6-layer convolutional network, taking in a 4�
96� 96 input, and outputting 256� 1� 1. A 2-layer fully

connected actor and critic networks were connected to

complete the system. Same networks’ outputs were modi-

fied to output a and b values for beta distribution

modifications.

As it is observed from Table 1, our proposed method

achieves better convergence characteristics overall.

Training is much more stable, and variance of the results

are much smaller. The continuous variants of the envi-

ronments we chose come with relatively small action

spaces, even then a significant number of the training

attempts fail. We opted to use sequential seeds in order to

capture the stability aspect of the algorithms. Results where

PPO model collapsed are omitted from the result in order

not the negatively bias the results of the collapsing models,

number of collapses are noted at the bottom of the table.

The number of runs denoted on the table also directly

correlate with the running time of the respectable algo-

rithms, as all four models use the same underlying struc-

ture. Each run of the CarRacing-v0 environment lasts 1000

frames, thus the number of runs directly equate time spent

in the environment.

As it is observed in Fig. 2, the algorithm performance

converges faster and with smaller fluctuations, as can be

deduced from the smaller variance figure of our algorithm

in Table 1. Visual inspection of the trained models in the

environment also showed good error correcting behavior

from the HRTC agent, which found road tiles quickly and

resumed driving as fast as possible.

We also ported our solution to continous variant of

LunarLander gym environment, using a static heuristic

sub-routine library as the HRTC sub-skill set. This envi-

ronment is a classic rocket trajectory control task, where

the agent tries to land a rocket ship softly to a landing pad,

using the main engine and two orientation engines. Agent

loses points for firing engines and gets rewards for slowly

approaching the landing pad. Results are shown in Fig. 3.

This result shows that using a well performing sub-skill set,

the algorithm convergence characteristics can be repro-

duced in other environments.

Table 1 Performance—Numbers denote the number of runs until solution

Trial number PPO HRTC SAC TD3 A2C

Beta Normal Beta Normal

0 3620 3300 1890 2150 3120 1920 2830

1 1570 2460 1680 1990 3430 4580 2670

4 1670 1650 1760 2950 6490 2560 2740

5 1670 1750 1850 2380 2220 2790 2100

6 5140 2490 2150 2470 2760 2630 2880

7 3080 2820 1860 2240 3510 2150 2320

8 5200 1840 1590 3170 2680 2280 3060

9 2160 1920 2350 2650 7440 3000 1940

10 2120 3710 1290 2250 2790 1870 2550

Model collapse 2 1 0 1 3 1 1

Fastest solution 2 2 5 0 0 0 0

Avg± STD Dev 2914± 1449 2438± 727 1824– 307 2472± 386 3827± 1733 2642± 775 2566± 353

Bold values indicate the best performance

Neural Computing and Applications

123

The main difficulty of analyzing the results is detangling

the interaction of the beta distribution—Thompson sam-

pling and the meta-policy learning, as the results

demonstrate that the HRTC normal also shows some sat-

isfactory results. Table 1 also shows that the HRTC vari-

ants have less result variance, which may be due to the

Fig. 2 Algorithm training results. X-axis depicts the number of

epochs. Y-axis is the total reward running average accumulated and

smoothed for visual clarity. The trends are unchanged until the end of

the experiment at epoch 10,000, which is cropped in favor of the

observability of solution performance

Fig. 3 Algorithm training results on LunarLander environment. X-axis depicts the number of epochs. Y-axis is the total reward running average

accumulated and smoothed for visual clarity

Neural Computing and Applications

123

effect of the static intents. We attempted to show the

attribution of the results between the two modifications we

made, distribution and meta-policy, via experimental

results.

5 Conclusions

We demonstrated a novel approach to hierarchical rein-

forcement learning that is efficient, stable, explainable and

versatile that can be used in control settings. It is especially

useful where incremental changes to the environment,

model or mission are expected.

The demonstrated results show better efficiency in

learning, as the compared methods all make use of on-

policy learners with no memory replay. Even when all the

sub-components are the same, the Thompson sampling

system, with its prior beliefs and pseudo-counts learned

through experimentation, achieves better and more efficient

characteristics than some of the most efficient and most

widely used state-of-the-art RL methods. Our proposed

method even had a slight disadvantage in the number of

parameters to learn.

This work will presumably have more impact in more

complex environments, as said environments would require

much higher learning costs for each required sub-skill.

Future experiments in more complex environments, such as

in high-fidelity simulators, will be conducted to confirm

our assertions and quantify associated efficiency gains.

Specifying a good reward function can be arduous and

prone to error, as the agents may not behave as expected.

The potential impact of this framework would also make

reward functions compositional, thus making specifying

reward functions easier since they will only be concerned

about the sub-skill that they are specified on. Reuse and

partial trainability will also make the whole training more

efficient.

Funding Open access funding provided by the Scientific and Tech-

nological Research Council of Türkiye (TÜBİTAK). No funds, grants

or other support was received.

Data availability The data sets generated during and/or analyzed

during the current study are available from the corresponding author

on reasonable request.

Declarations

Conflict of interest The authors have no conflict of interest to declare

that are relevant to the content of this article.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indicate

if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this licence, visit http://creativecommons.

org/licenses/by/4.0/.

References

1. Amodei D, Olah C, Steinhardt J, Christiano P, Schulman J, Mané

D (2016) Concrete problems in AI safety

2. Hangl S, Dunjko V, Briegel HJ, Piater J (2020) Skill learning by

autonomous robotic playing using active learning and exploratory

behavior composition. Front Roboti AI. https://doi.org/10.3389/

frobt.2020.00042

3. Cheng Y, Zhao P, Wang F, Block DJ, Hovakimyan N (2022)

Improving the robustness of reinforcement learning policies with

l1adaptive control. IEEE Robot Autom Lett 7:6574–6581. https://

doi.org/10.1109/LRA.2022.3169309

4. Amini A, Gilitschenski I, Phillips J, Moseyko J, Banerjee R,

Karaman S, Rus D (2020) Learning robust control policies for

end-to-end autonomous driving from data-driven simulation.

IEEE Robot Autom Lett 5:1143–1150. https://doi.org/10.1109/

LRA.2020.2966414

5. Sutton RS, Precup D, Singh S (1999) Between mdps and semi-

mdps: a framework for temporal abstraction in reinforcement

learning. Artif Intell 112:181–211. https://doi.org/10.1016/

S0004-3702(99)00052-1

6. Vezhnevets AS, Osindero S, Schaul T, Heess N, Jaderberg M,

Silver D, Kavukcuoglu K (2017) Feudal networks for hierarchical

reinforcement learning

7. Frans K, Ho J, Chen X, Abbeel P, Schulman J (2017) Meta

learning shared hierarchies

8. Nachum O, Gu S, Lee H, Levine S (2018) Data-efficient hier-

archical reinforcement learning

9. Bacon P-L, Harb J, Precup D (2016) The option-critic

architecture

10. Riemer M, Liu M, Tesauro G (2018) Learning abstract options

11. Chunduru R, Precup D (2020) Attention option-critic

12. Kamat A, Precup D (2020) Diversity-enriched option-critic

13. Lent R (2019) A generalized reinforcement learning scheme for

random neural networks. Neural Comput Appl 31:2699–2716.

https://doi.org/10.1007/s00521-017-3223-1

14. Sahni H, Kumar S, Tejani F, Isbell C (2017) Learning to compose

skills

15. Bignold A, Cruz F, Dazeley R, Vamplew P, Foale C (2021)

Persistent rule-based interactive reinforcement learning. Neural

Comput Appl. https://doi.org/10.1007/s00521-021-06466-w

16. Kurniawan B, Vamplew P, Papasimeon M, Dazeley R, Foale C

(2022) Discrete-to-deep reinforcement learning methods. Neural

Comput Appl 34:1713–1733. https://doi.org/10.1007/s00521-

021-06270-6

17. Konda VR, Tsitsiklis JN (2000) Actor-critic algorithms

18. Schulman J, Levine S, Moritz P, Jordan MI, Abbeel P (2015)

Trust region policy optimization

19. Schulman J, Wolski F, Dhariwal P, Radford A, Klimov O (2017)

Proximal policy optimization algorithms

20. Mnih V, Badia AP, Mirza M, Graves A, Lillicrap TP, Harley T,

Silver D, Kavukcuoglu K (2016) Asynchronous methods for deep

reinforcement learning

Neural Computing and Applications

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/frobt.2020.00042
https://doi.org/10.3389/frobt.2020.00042
https://doi.org/10.1109/LRA.2022.3169309
https://doi.org/10.1109/LRA.2022.3169309
https://doi.org/10.1109/LRA.2020.2966414
https://doi.org/10.1109/LRA.2020.2966414
https://doi.org/10.1016/S0004-3702(99)00052-1
https://doi.org/10.1016/S0004-3702(99)00052-1
https://doi.org/10.1007/s00521-017-3223-1
https://doi.org/10.1007/s00521-021-06466-w
https://doi.org/10.1007/s00521-021-06270-6
https://doi.org/10.1007/s00521-021-06270-6

21. Lillicrap TP, Hunt JJ, Pritzel A, Heess N, Erez T, Tassa Y, Silver

D, Wierstra D (2015) Continuous control with deep reinforce-

ment learning

22. Haarnoja T, Zhou A, Hartikainen K, Tucker G, Ha S, Tan J,

Kumar V, Zhu H, Gupta A, Abbeel P, Levine S (2018) Soft actor-

critic algorithms and applications

23. Fujimoto S, Hoof HV, Meger D (2018) Addressing function

approximation error in actor-critic methods. https://github.com/

24. Bater LR, Jordan SS (2019) Selective attention. Springer, Berlin,

pp 1–4. https://doi.org/10.1007/978-3-319-28099-8_1904-1

25. Niu Z, Zhong G, Yu H (2021) A review on the attention mech-

anism of deep learning. Neurocomputing 452:48–62. https://doi.

org/10.1016/j.neucom.2021.03.091

26. Osband I, Russo D, Roy BV (2013) (More) efficient reinforce-

ment learning via posterior sampling

27. Osban I, Roy BV (2016) Why is posterior sampling better than

optimism for reinforcement learning?

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Neural Computing and Applications

123

https://github.com/
https://doi.org/10.1007/978-3-319-28099-8_1904-1
https://doi.org/10.1016/j.neucom.2021.03.091
https://doi.org/10.1016/j.neucom.2021.03.091

	Hierarchical reinforcement Thompson composition
	Abstract
	Introduction
	Background
	Actor--critic methods
	Soft attention
	Beta distribution
	Thompson sampling
	Hierarchical reinforcement learning

	Methods
	Results
	Conclusions
	Open Access
	References

