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ABSTRACT

REAL-TIME JOINT MULTI-CAMERA MULTI-PERSON TRACKING

Temür, Abdussamet Tarık
M.S., Department of Computer Engineering

Supervisor: Assoc. Prof. Dr. Emre Akbaş

May 2024, 49 pages

This study aims to construct a Real-Time Multi-Camera Multi-Person Tracking (MC-

MOT) system which jointly optimizes local (single-camera) and global (multi-camera)

feature distances. While most existing approaches follow a two-stage track-then-

associate scheme, this work focuses on a joint approach. Our method also operates

in real-time in contrast to the more common offline or windowed joint tracking al-

gorithms which operate on future information. In summary, this study contributes:

(i) A joint MCMOT formulation where the optimization objective solves both local

and global tracking at teach step, (ii) a realization of the method in the form of an

algorithm capable of producing real-time track IDs, and (iii) a new MCMOT evalua-

tion metric we call Global IDF1 which acts as a multi-camera extension of the IDF1

metric, emphasizing continuous traceability of a target across a multi-camera net-

work. We further propose a Multi-View Fusion (MVF) network to extract descriptive

feature vectors for multi-camera detection groups. We report results comparable to

offline state-of-the-art methods while remaining real-time and retaining simplicity.

Keywords: Tracking, Multi-Camera, Real-Time, Multi-Object, Re-Id
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ÖZ

GERÇEK ZAMANLI BÜTÜNLEŞİK ÇOKLU KAMERA ÇOKLU İNSAN
TAKİBİ

Temür, Abdussamet Tarık
Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. Emre Akbaş

Mayıs 2024 , 49 sayfa

Bu çalışma, yerel (tek kamera) ve global (çoklu kamera) özellik mesafelerini birlikte

optimize eden Gerçek Zamanlı bir Çoklu-Kamera Çoklu-Kişi Takip (MCMOT) sis-

temi oluşturmayı amaçlamaktadır. Mevcut yaklaşımların çoğu iki aşamalı, önce tek

kamerada takip yapıp sonra takipleri bağlayan bir şema izlerken, bu çalışma ortak

bir yaklaşıma odaklanmaktadır. Yöntemimiz, daha yaygın olan ve gelecekteki kare-

ler üzerinde çalışan çevrimdışı takip algoritmalarının aksine gerçek zamanlı olarak

sonuç üretir. Özetle çalışmamızın katkısı şu şekildedir: (i) Optimizasyon hedefinin

her adımda hem yerel hem de global benzerlikleri dikkate aldığı bir ortak MCMOT

formülasyonu, (ii) formülasyonun, gerçek zamanlı takip yapan bir algoritma ile ger-

çekleştirilmesi, ve (iii) IDF1 metriğinin çoklu kamera uzantısı olan ve bir çoklu ka-

mera ağı içerisinde hareaket eden hedeflerin sürekli izlenebilirliğini ölçen yeni bir

MCMOT değerlendirme metriği olan Global IDF1. Ayrıca, takip edilen hedeflerin

farklı perspektiflerden gelen görüntülerini bir arada temsil eden özellik vektörleri çı-

karmak üzere özgün bir Çoklu Görüş Birleştirme (MVF) ağı önermekteyiz. Yöntemi-

miz, sadeliğini kaybetmeden gerçek zamanlı bir şekilde en iyi çevrimdışı yöntemlerle

vi



karşılaştırılabilir sonuçlar üretmektedir.

Anahtar Kelimeler: İnsan-Takibi, Takip, Çoklu-Kamera, Çoklu-Nesne, Gerçek-Zamanlı
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Problem Definition

Multi-camera multi-object tracking (MCMOT) is a central problem in computer vi-

sion that involves the tracking of multiple objects across multiple cameras simul-

taneously. In contrast to the comparatively more simple classical (single-camera)

tracking problem, multi-camera multi-object tracking requires that targets be tracked

across several cameras with varying degrees of overlap at different viewpoints. In

light of current developments in fields such as self-driving vehicles [6, 7, 8], smart

cities [9], human-robot interaction [10, 11, 12, 13] and many others, the importance

of jointly solving the tracking problem across large numbers of cameras and sensors

has significantly increased.

Posing MCMOT as a joint optimization problem where single-camera and multi-

camera features and distances are both taken into account is a desirable goal pursued

by many previous studies [14, 15, 16, 17, 18]. The dominant paradigm for joint MC-

MOT uses various graph formulations of the problem, thus requiring time-window

based or offline operation. In this study, we propose a real-time method capable of

jointly optimizing over single-camera and multi-camera feature distances in a joint

optimization objective. Real-time solutions are particularly valuable for applications

like human-robot interaction and smart vehicles, where quick decision-making is es-

sential and sometimes a hard requirement.
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1.2 Proposed Methods and Models

We propose a Real-Time Multi-Camera Multi-Person Tracker using visual and geo-

metric features. We make use of 2D ground plane projections of detection targets as

geometric, multi-camera or global features which requires a calibrated camera net-

work. Our algorithm fuses these feature distances and jointly optimizes over the final

score using the Hungarian algorithm [19] to assign each detection a global track ID

in a single stage approach at each frame. Figure 1.1 shows a general overview of our

method, for a calibrated multi-camera network, we extract detections and visual/geo-

metric features at each time step, then compute track IDs.

Figure 1.1: Overview of our approach. Given an n camera video stream, at each frame

t, our tracking pipeline produces detection boxes for all cameras. Then, we extract

floor projections and visual features for each detection before passing the information

into the Joint Tracker module. The Joint Tracker produces globally consistent track

IDs for all input detections.

The Joint Tracker module first produces cross-camera detection groups to act as per-

son hypotheses, then matches these groups to existing global tracks based on a fused

distance function using visual and floor projection features. We explain the Join

Tracker in detail in Chapter 3.
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1.3 Contributions and Novelties

Graph based formulations dominate the state-of-the-art in multi-camera multi-person

tracking. Most graph based tracking algorithms must operate with a time window or

offline for successful graph construction. We propose a joint optimization approach

to real-time multi-camera multi-person tracking which optimizes multiple sources of

feature distances jointly, producing track IDs for each detection at each frame in con-

trast to window-based or offline graph formulations. We also present a realization of

this approach which uses visual-feature vectors extracted by a NN and ground-plane

projections. We further fuse single camera visual features via a novel transformer

based fusion network. We finally propose a new evaluation metric, Global IDF1, to

better capture a global tracker’s ability to correctly and continuously track a target

across a multi-camera network.

1.4 The Outline of the Thesis

This thesis is structured in 5 chapters. The first chapter provides a general overview

of the method and explains the contributions and novelties introduced by our work.

The second chapter provides a detailed overview of existing work where we survey a

large number of papers from the the multi-camera multi-person tracking literature as

well as other related problems. We also provide a comprehensive analysis of the real

world use cases for our research. The third chapter contains and explanation of the

proposed method in detail using figures and pseudocode. We also provide an in depth

explanation of the main assumptions we make in our study. The fourth chapter begins

with a comprehensive survey of existing performance metrics for tracking, we then

propose a new tracking metric and present a comparative analysis. Further, we pro-

vide quantitative results and benchmarks on public multi-camera multi-person track-

ing datasets and report the computational complexity and run times of our method.

We finally present ablation studies where we remove certain components of our sys-

tem and discuss the effects on performance. In the fifth and final chapter, we discuss

the main limitations of our work and potential ways of addressing them, which leads

to a discussion of future work.
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CHAPTER 2

BACKGROUND AND RELATED WORK

This chapter provides an overview of the history and state-of-the-art in real-time

multi-camera multi-object tracking (MCMOT) and other fields and sub-fields relevant

to our study. We use persons (pedestrians) as tracking targets in our work, therefore,

the background and relevant research explored in this section also focuses heavily on

the person-tracking formulation of MCMOT.

We begin by providing a comprehensive, high-level background for the problem and

exploring tracking in single and multi-camera settings with emphasis on real-time

applications. We then explain ground plane projections in calibrated multi-camera

networks, which are essential to our work. We finally conclude with a survey of

related studies from the literature.

2.1 Background

Visual tracking has been a central problem in image processing and computer vision

from its inception. The problem can be defined most generally as the tracking of

an object or group of objects through time in a single or multi-camera network. Al-

though visual tracking has a rich history, with influential studies dating back to the

late 1990s [20], the multi-camera formulation of the problem has experienced a surge

in research interest in recent years. This growing focus is partly driven by advance-

ments in camera technology and availability, coupled with enhanced computational

capabilities at the edge.

In visual tracking, the number of tracking targets and cameras vastly change the prob-

5



lem difficulty by introducing a plethora of new possible scenarios. This has lead to

the field of visual tracking fragmenting into smaller sub-fields of research based on

specific problem formulations. In this work, we focus on the most challenging for-

mulation; multi-camera multi-object tracking.

Multi-camera multi-object tracking (MCMOT) is defined as the problem of track-

ing multiple objects across multiple cameras simultaneously. Although some ideas

presented in our work can be generalized to different tracking targets, we focus on

tracking persons in this study. With human tracking-targets, MCMOT is an increas-

ingly more important problem in computer vision due to its various downstream ap-

plications in rapidly developing fields such as surveillance for security [21, 22, 23],

self-driving vehicles [6, 8] human-robot interaction [10, 11, 12], smart cities [9], in-

telligent transportation [7] and others.

Many applications of MCMOT greatly benefit from real-time solutions, as they often

enforce strict time windows within which trackers must operate. Human-robot inter-

action and smart vehicles are two great examples to these applications. In both prob-

lem definitions, the decision-making algorithm depends on one or several trackers

that must operate within very short time windows, ruling out offline or large-window

solutions. We further explore the importance and implications of developing real-time

tracking solutions in this chapter.

Several sub-fields of research under visual tracking largely overlap with our problem

definition. Studies in these fields provide rich context and powerful insights for our

work. We mainly explore three adjacent problem definitions: Real-Time SCMOT,

POI Tracking and Offline MCMOT.

Real-Time SCMOT (Single-Camera Multi-Object Tracking), sometimes referred to

as simply Real-Time MOT (Multi-Object Tracking), is the problem of tracking multi-

ple objects given a video stream from a single camera in real time. This domain con-

tains a robust literature with many insightful studies for its multi-camera extension

some of which are further explored in this chapter. POI (Person of Interest) tracking

is the problem of tracking a specific person of interest across a multi-camera system

in real-time. This is a very important problem for many security and law enforcement

applications and is a relaxed formulation of Real-Time MCMOT. Finally offline MC-

6



MOT has the same formulation as our problem with the real-time constraint relaxed

or removed. Figure 2.1 offers a conceptual view of the position of this study within

relevant fields of research.

Figure 2.1: Venn diagram showing the position of our work within three central fields

of research in visual tracking. We position our work at the intersection of MCMOT

with real-time algorithms. Adjacent fields of research, namely; Real-Time SCMOT,

Offline MCMOT and POI Tracking, are formulated by removing one of our three

important constraints.

Also worthy of note is the mobility of the camera-network on which tracking is to be

done. Algorithms for both SCMOT and MCMOT further branch into specializations

for still-camera vs moving-camera networks. In our work, we mainly focus on the

still-camera setting, however the central ideas can be extended to moving-camera

systems.
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2.1.1 Single-Camera Tracking

In the space of visual tracking, Single-camera tracking (SCT) is defined tradition-

ally as the problem of tracking the movement of one or more objects across time

given a continuous video stream. The multi-target version of the problem is termed

single-camera multi-object tracking (SCMOT). Terminology around SCT frequently

skips explicitly specifying the single-camera nature of the problem setting, resulting

in SCT being referred to simply as ‘Tracking’, and SCMOT being referred to simply

as ‘MOT’. We, however, adopt a more precise nomenclature in this study.

Literature in SCT has a long history, with earlier approaches adapting methods from

different fields to visual tracking for predominantly robotics applications. In their

1995 paper, Lee et al. apply Kalman filters to visually tracking a single object moving

within a 3D volume given a video stream [20] with impressive results. Later studies

expand on these methods by generalizing them to multi-object settings [24, 25] and

addressing difficult scenarios.

There are various challenges in single camera tracking from handling variations in

object appearance to dealing with partial or full occlusions and lighting differences.

Another significant difficulty comes from low or variable frame rates and pacing. Es-

pecially for non-rigid and asymmetric objects like pedestrians, variations in visual

appearance over time pose a significant problem for visual feature based trackers.

Various studies attempt to alleviate these difficulties using a plethora of methods.

Salscheider [26] fuses motion clues and visual features using an SVM based method

to address visual variations while Chen et al. [27] use combinations of feature vectors

from multiple different depths in a CNN based feature extractor. To account for illu-

mination differences, Yang et al. [28] propose a Hyperline Clustering based method

increasing the robustness of color histogram based trackers.

A large body of studies focus on alleviating visual variability difficulties for SCMOT.

As most of these methods attempt to increase feature robustness, they are directly

applicable to our Real-Time MCMOT solution as well as most other MCMOT solu-

tions.

Finally, we define the predominant tracking-by-detection paradigm [29] which we
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also adopt in our work. The tracking-by-detection paradigm is a three-stage paradigm

where a continuous stream of frames are passed through a detector, producing detec-

tions. The detections are then processed by one or several feature extractors, produc-

ing feature vectors. These are then sent to the tracker which uses feature distances

and various other specific logic to process the inputs and assigns track ids to each

detection. Figure 2.2 provides an overview of the paradigm. All state-of-the-art and

baseline methods we explore and use for comparison in this study follow the tracking-

by-detection paradigm [18, 30, 31, 32, 33, 34, 17] unless otherwise specified, as does

our own method.

Figure 2.2: Overview of the tracking-by-detection paradigm. At frame t, a frame is

sent from camera c1 to the Detector, which then produces zero or more detections

d and passes them to the feature extraction stage where features are extracted. The

tracking algorithm then produces track IDs using feature distances.

There is also a detection-free tracking paradigm [35, 36, 37], where the goal is to track

hand-picked (or otherwise specified) objects across a video. The main advantage of
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detection-free tracking is its ability to track an object regardless of its class, given that

most object detectors are trained on a specific class or set of classes. More recently,

a Track-Anything system [38] was proposed, building a detection-free tracker on top

of Meta’s Segment-Anything [39] model. Although detection-free tracking is also an

interesting field of research, we focus on the tracking-by-detection paradigm in this

work.

2.1.2 Multi-Camera Tracking

Multi-Camera Tracking (MCT) is the extension of Single-Camera Tracking into multi-

camera networks. In MCT, an additional goal of re-identifying persons across cam-

eras is introduced, complicating the problem further. MCT further branches into sin-

gle and multi-object formulations. The single object formulation is used to solve

the Person-of-Interest (POI) Tracking problem, where the goal is to track a specific

person across a multi-camera network. We focus on the Multi-Object formulation

(MCMOT) of the problem and further set our tracking target objects as humans. Al-

though MCMOT has implications for POI Tracking, it is outside of the scope of this

study other than being a potential downstream application.

The dominant paradigm for MOT is tracklet association where single-camera trackers

are ran on each camera’s output stream, then the resulting single-camera tracks, called

tracklets, are re-identified across cameras using a re-identification module [40, 18].

Figure 2.3 provides a high level overview of this paradigm. State-of-the-art in this

paradigm is dominated by models attempting to fix tracklets at the multi-camera stage

[41, 18], where the re-identification algorithm has the further capability of dividing

input tracklets based on cross-camera information. Studies outside of this paradigm

are predominantly formulations posing MOT as a graph problem where nodes are

detections as opposed to tracklets [41].

As the re-identification layer is downstream of the single-camera trackers in this

paradigm, the real-time nature of the algorithm is dependent on the upstream trackers.

Most commonly, the re-identification algorithm only makes an assignment once it is

given a full tracklet, which leads to variable length delays for the final global ID as-

signments [41, 42, 22]. That is, if a tracklet is t seconds long, it will only be assigned
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its final global ID after t seconds. In our work, we assign global track IDs to each

detection at each frame, resulting in a closer to real-time solution limited only by the

camera’s Frames-per-Second (FPS) parameter.

Figure 2.3: Overview of the tracklet association paradigm for Multi-Camera Track-

ing. In this paradigm, a single-camera tracker is ran on each video stream. The output

tracklets and their relevant features are then passed onto a re-identification algorithm

to be matched into final global track IDs.

2.1.3 Ground Plane Projections as Global Features

Ground plane projections represent footfall positions of person detections on a 2D

coordinate system representing an approximately flat floor plane. In a multi-camera

network, the cameras can be calibrated and registered into the same 2D floor coor-

dinate system, making ground plane projections a unified multi-camera feature for

MCMOT. Several studies attempt to make use of ground plane projections for MC-

MOT [18, 43, 44], with all reporting promising results. We also make use of ground

plane projections as multi-camera features in this work.
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Ground plane projections requires the camera-network to be calibrated, which may be

a difficult process depending on the scene. This limits the availability of open source

datasets and introduces representational variation in calibrations. In this study, we

focus on the WILDTRACK [3], PETS09 [2] and EPFL (Terrace and Walkway) [1]

datasets, all of which offer ground plane projection capabilities. We further discuss

the datasets and calibration representations in the next chapter.

2.2 Related Work

This section details existing work in the field of tracking with an emphasis on studies

adjacent to real-time and joint multi-camera multi-object tracking. We first analyze

the existing work on Joint MCMOT, then move on to explore near or fully real-time

solutions.

2.2.1 Joint MCMOT

We define Joint MCMOT as the task of jointly optimizing over single-camera and

multi-camera feature distances to arrive at the final global track IDs. That is, given

a detection from some camera in a multi-camera network, a joint tracker produces

a track ID based on existing single-camera tracks and cross-camera tracklet associa-

tions jointly with neither taking full precedence.

In its original form, tracklet association shown in Figure 2.3 works by using a down-

stream re-id module whose objective is to connect tracklets. Potential ID switch errors

in the tracklets caused by the upstream single-camera trackers are not accounted for

in the re-identification module [40, 42].

Several studies have attempted to solve tracking as a global optimization problem.

The most prominent approach to globally optimizing over local and global feature

distances is by posing MCMOT as a graph problem where nodes represent detections

or small groups of detections, and edges represent similarities between connected

nodes. The similarity scores are calculated using feature distances.

Dehghan et al. [16] propose a Generalized Maximized Multi-Clique Problem for-
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mulation to MCMOT where graph nodes represent small batches of detections and

show promising results. Chen et al. [17] use a joint distance function taking both

single-camera and multi-camera distances into account in a global graph formulation.

Further, Nguyen et al. [18] bring a Deep Learning based approach to the formulation

by proposing NN models capable of dividing single-camera tracks based on multi-

camera information. This also allows the final model to be a true joint model.

Although graph based formulations have been used to produce joint tracking solutions

[16, 17, 18], one shortcoming they have is that they must work either in a sliding

window based fashion or completely offline. In contrast, we propose a joint MCMOT

solution capable of working in real-time, producing track IDs for each detection at

each frame.

2.2.2 Real-Time MCMOT

The ability to track and associate person detections across a multi-camera network

is a desirable ability for many applications. In human-robot interaction (HRI), for

instance, a very important problem is human intention recognition [13, 45, 46] defined

as the problem of recognizing a human’s intentions for the immediate future. Human

intention recognition is a crucial problem for HRI as predicting human behavior is

a must for successful interaction. Unsurprisingly, this use case requires real-time or

close to real-time operation.

Real-time or near real-time multi-object tracking has a robust literature with contri-

butions from various fields of application. You et al. [43] propose an end-to-end

real time tracking pipeline called Deep Multi-Camera Tracking (DMCT) using cus-

tomized neural networks for computing floor projections and track IDs at each frame.

Gaikwad et al. [22] develop a fast deep learning based multi-camera tracker spe-

cialized Nvidia Jetson edge machines achieving up to 30 frames per second (FPS)

with their re-identification algorithm. Yang et al. [47] propose an online distributed

tracking system which makes use of visual feature vectors extracted by a neural net-

work as well as histograms generated by image patches. There are many other studies

focusing on Real-Time MCMOT.
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CHAPTER 3

METHOD

We propose a real-time tracking solution to multi-camera multi-object tracking for

person tracking which fuses single-camera and multi-camera features at the detection

level to relate detections to tracks at each frame in a single-stage algorithm. Given

a set of synchronized cameras overlooking a scene with acceptable coverage, our

algorithm provides global track ids for each person detection at each frame. This

chapter formally defines and rigorously explains the problem, with emphasis on its

setting and underlying assumptions.

Our model works on a synchronized multi-camera network where the cameras are

calibrated and both intrinsic and extrinsic calibration parameters are known. The

cameras produce frames at each time-step which are then passed through a detec-

tor, producing zero or more person detections for each camera. The detections are

then passed through the feature extraction stage where we (i) compute the bounding

box center coordinates, (ii) pass the bounding box crops through a feature extraction

network which consists of a Body-part-Based feature extraction network [4] with an

OSNet backbone [5] trained for re-identification on ImageNet [48], producing 512

dimensional full-body feature vectors and (iii) use camera calibrations (or ground-

plane homographies based on availability) to project the center of the bottom edge of

each bounding box, producing floor projections into a joint 2D coordinate system.

3.1 Problem Setting

Given a set C = {ci}ni=1 of n cameras overlooking a scene with varying degrees of

overlap, let each camera produce a frame f t
ci

at time t. Let Dt
ci
= {dtcij} be the set of
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object detections for frame f t
ci

. Then, the goal of multi-camera multi-object tracking

is to correctly assign all detections dtcij in Dt
ci

to some global track id Tk = T t
k where

T t
k = {dtclj}

m
l=1 is the set of detections belonging to the object with track id k at frame

t.

In this work, we focus on the problem of person tracking which has the same problem

formulation as the generalized formulation above with the addition that all detections

are persons. Further, in our setting, we assume that the set of cameras C are over-

looking a flat ground plane or a topology that can be approximated reasonably well

with a flat plane. We also require that the set of cameras have a reasonable coverage

of the scene, this is explained in detail in a following section.

Figure 3.1 provides an overview of our problem setting, given a calibrated multi-

camera network with an arbitrary number of cameras, our goal is to produce globally

consistent track IDs for all person detections at every frame.

Figure 3.1: Overview of our approach. For an n camera setting, we begin with n

parallel pipelines. Each pipeline extracts detections and corresponding features at

each frame t. The joint tracking algorithm then computes globally consistent track

IDs for each detection.

We explain each component of the Joint Tracker in detail in the following section.

16



3.2 Method

Given n synchronized cameras ci ∈ C streaming at the same FPS setting, let f ci
j

denote frame j for camera i. Given f ci
j , we pass it through some person detector D

to produce a set Dci
j of detections. Then, for every detection d ∈ Dci

j , we compute a

set of features to be used in the decision making step. In our formulation, we use two

types of features. Namely, floor-plane projections extracted using camera calibration

information and visual feature vectors extracted using a neural network. Figure 3.2

serves as a high level diagram of the feature extraction module. Details of the feature

extraction module are provided later in the chapter.

Given floor projection features P ci
j and visual features F ci

j for the set of detections

Dci
j , we define our problem formulation around a cost matrix construction. At a high

level, the main loop of our Joint Tracker is explained in Algorithm 1.

Algorithm 1: Joint Tracker Pseudocode

1 G← {} // Instantiate empty gallery of global tracks

2 for each frame t do

3 F ← {} // Instantiate empty feature set

4 D ← {} // Instantiate empty detection set

5 for each camera c do

6 Dc ← Set of detections for camera c at time t

7 Fc ← Features for Dc

8 D.append(Dc)

9 F.append(Fc)

10 S ← group_detections(D,F )

11 M ← calculate_cost_matrix(S,G)

12 track_ids← hungarian_matching(M)

13 Update G with track_ids

14 The cost matrix is similar to ByteTrack [31] but extended to multiple

cameras.

We now move on to explain the components of the main loop individually in detail

beginning with the feature extraction module.
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3.2.1 Features

Figure 3.2: Overview of the feature extraction module in our formulation. Given an

arbitrary detection di and calibrations Ci from the corresponding camera, the module

extracts floor projection features and visual features using the respective extraction

methods.

3.2.1.1 Visual Features

For visual feature extraction, we use a BPBReid (Body-part-based Re-Id) network

[4] with an OSNet (Omni-Scale Network) [5] backbone pre-trained on open source

person re-identification datasets Market1501 [49] and DukeMCMT [50]. The OSNet

backbone is a convolutional neural network designed to extract features at various

scales while BPBReid makes use of pose information at training time to extract body

parts.

Given a variable sized person detection crop, we pad and resize is to (384, 384) be-

fore feeding it to the feature extraction network. The network then produces a 3584

dimensional visual feature vector representing the crop.
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3.2.1.2 Floor Projections

We assume camera calibrations are available in our setting. Camera calibrations are

intrinsic and extrinsic matrices and optionally distortion parameters which define a

mapping from any pixel on a given camera to a globally consistent floor coordinate

system. If distortion parameters are ignored, an image to floor plane mapping can

also be described by a homography matrix H = IE where I and E are the intrinsic

and extrinsic matrices of the target camera.

Given Hi or the pair (Ii, Ei) for some camera ci, we can map any pixel on ci to its

corresponding global floor coordinate simply in the following way:

pi = (c′i · Ii) · Ei (3.1)

or

pi = c′i ·Hi (3.2)

For notational convenience, assume c′i = (x, y, 1) where (x, y) is the 2D image co-

ordinate. Then pi = (pxi , p
y
i , 0.0) is the global floor coordinate corresponding to ci.

Note that both Hi and the pair Ii, Ei are invertible matrices as they define simple

homographies between two planes.

Given a detection box dj from camera ci, let gj be the center of the bottom edge of dj .

We call gj the “floor contact point” of dj . Then, the floor projection of dj is computed

as follows:

floor_projection(dj) = (g′j · Ii) · Ei (3.3)

The floor projection module therefore is an extremely lightweight matrix multipli-

cation operation, mapping a given detection to a globally consistent coordinate we

designate a floor projection point.
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3.2.2 Detection Grouping

Given sets of detections D with corresponding floor projections, detection grouping

is an algorithm used to create “person hypotheses” for the final matrix score calcula-

tion stage of the pipeline. Starting from some arbitrary camera, we produce detection

groups based on floor projection distance. Two detections are assigned to the same

group if a) they are from different cameras, b) they are within some radius r of each

other. If multiple detections satisfy the constraint, we pick to lowest distance candi-

date.

We provide pseudocode for our implementation of the detection grouping algorithm

in Algorithm 2.

Algorithm 2: Detection Grouping Pseudocode

Input: D // Multi-camera detections at current frame.

Input: λ // Matching radius parameter.

1 P ← {} // Instantiate empty gallery of detection

groups

2 foreach detection d ∈ D do

3 Pd ← {d} // Instantiate detection group for d

4 dp ← {d′ ∈ D | dist(d, d′) < λ and cam(d) ̸= cam(d′)}
// Potential matches.

5 foreach d′ ∈ dp do

6 if no element in Pd is from the same camera as d′ then

7 Pd.append(d′)

8 else if there is an element d′′ in Pd from the same camera as d′ then

9 dapp ← argminx∈{d′,d′′} dist(d, x)

10 Pd ← (Pd \ {d′′}) ∪ {dapp}

11 P ← P ∪ {Pd}

The detection grouping stage produces person hypotheses consisting of sets of cross

camera detections. We then move on to cost matrix calculation and feature fusion

across detection groups.
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3.2.3 Cost Matrix Calculation

Given a set of detection groups (person hypothesis) S and the current gallery of global

track G, we construct a cost matrix to do Hungarian matching based assignment be-

tween the sets.

Figure 3.3: Cost matrix for the assignment problem. Rows correspond to detection

groups and columns correspond to global tracks from the dictionary.

The total cost for a given entry of the matrix is as follows:

λLd(mean(GT0),mean(dg0)) + (1− λ)Lv(F (GT0), F (dg0)) (3.4)

Where Ld represents the floor projection distance measurement, which is L2 distance

on the floor plane converted to centimeters. We enforce Ld to be smaller than 1

meter for a matching and normalize it by 100, thus ∀xd(x) ∈ [0, 1]. We calculate Ld

between the mean floor projection point of the final frame of GT0 and the mean floor
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projection point of dg0. Lv represents the visual distance, which is cosine distance in

our implementation and thus normalized in (0, 1). The function F is used to describe

both the final frame of GT0 and dg0. Finally λ is a hyperparameter representing

feature weight, with a higher λ value emphasizing floor projections.

We finally move on to describe a novel Multi-View Fusion (MVF) network for the

function F . That is, for visual features, we propose a neural network to produce the

representative feature instead of basic averaging across views.

3.2.4 Multi-View Fusion Network

We describe our Multi-View Fusion network proposal in this section. As previously

mentioned, the MVF is proposed as an alternative to simple averaging when attempt-

ing to create summary vectors for detection groups. The network architecture is in-

spired by the Decoder module in Masked Autoencoders [51]. Similarly to the de-

coder module, the MVF fixed length masked sequences of feature vectors as input

and consists of a series of transformer layers. We separate the training and inference

procedures and explain them using figures 3.4 and 3.5.

At training time, we use a frozen pre-trained visual feature extractor (BPBReid in our

experiments) to extract features vectors for all training crops. Then, we construct sets

of possible positive examples using masking. Finally the masked sequences are fed

through the MVF and the output descriptor feature vector is passed through a fully-

connected layer. We train the network to predict the correct unique person ID with

cross-entropy loss following the literature [4, 5]. Figure 3.4 provides an overview of

this approach.
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Figure 3.4: Training procedure for the Multi View Fusion network. A frozen pre-

trained BPBReid [4] network with an OSNet [5] backbone is used to extract visual

feature vectors which are used to generate positive training examples via masking.

The MVF network is used to fuse feature vector sequences into a single descriptor

vector which is then passed through a fully connected layer and softmax to arrive at a

class ID. The network is trained with cross entropy loss using each unique person ID

as a separate class following the literature.

After training, the final linear layer is removed and the MVF is used to produce the

final descriptive feature vectors for a given detection group. The masking approach

to generating training examples allows the network to generalize better to conditions

with impaired visibility. We use fixed length sequences based on the number of cam-

eras and sinusoidal positional encodings. Figure 3.5 provides an overview of this

approach.
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Figure 3.5: Inference procedure for the Multi View Fusion network. After training,

the final fully-connected layer is dropped and the MVF output descriptor feature vec-

tor is used to represent the target detection group.

3.3 Assumptions and Implementation Details

We discuss our implementation details and assumptions in this chapter. Our main

assumption is the existence of camera calibration parameters for our network of cam-

eras. We assume both intrinsic and extrinsic parameters are available for each camera

such that the parameters can be used to map any pixel coordinate on a camera to a 2D

floor plane coordinate system shared by all cameras. We use floor projections for de-

tection grouping and as global features for tracking as discussed earlier in the chapter.

We use the OpenCV pinhole model with no distortion parameters in our experiments.

Next, we discuss camera coverage, a mostly overlooked but central issue for any

tracking system. Most if not all studies make strong assumptions about camera po-

sitioning and coverage without explicitly addressing them. Earlier in the chapter, we

briefly mention the term “reasonable coverage” to describe the ideal camera setting

for our method. This section contains a more thorough explanation.
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3.3.1 Camera Coverage

The term “reasonable coverage” is less straightforward to formally define than it

might appear and has a full fledged field of research attached to it [52]. Studies in

the field mostly focus on the optical camera placement (OCP) problem which can be

formulated as a graph set-cover problem [53] where the goal is to optimize camera

placement to minimize the number of cameras required for coverage. Expectably, the

field has experimented with various definitions of “acceptable coverage” which we

found to be fairly use-case specific in our studies.

In this study, we define acceptable camera coverage as the coverage of the entire

scene of tracking by one or more cameras, with no blind zones. We further define

“good coverage” as follows: Acceptable camera coverage conditions are satisfied,

further, for all pairs of cameras with overlapping views, the overlapping regions on

the image planes of the cameras are large enough to contain a full person detection.

Figure 3.5 provides a visual representation of our coverage conditions and underlines

the difference between acceptable and good coverage.

In our experiments, we observed that fragmentation errors predominantly occur at

camera intersection regions during transitions. Interestingly, when these intersec-

tion areas are designed for reasonable visibility across multiple camera views, the

occurrence of fragmentation errors significantly diminishes. This highlights the im-

portance of strategic camera placement in minimizing fragmentation challenges in

multi-camera tracking systems.

In our experiments, we find that fragmentation errors predominantly occur at cam-

era intersections during transitions. Intersection regions with reasonable visibility in

several camera views produce significantly fewer fragmentations. This observation is

the motivation behind our “acceptable” versus “good” visibility standards. Luckily,

most existing public multi-camera person tracking datasets satisfy both conditions in

the vast majority of their scenes.
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Figure 3.6: Birds-eye views of a two-camera system. Cyan represents visibility, green

represents overlap and yellow points represent detections. Regions outlined by dotted

lines satisfy our acceptable coverage criterion. Detection d1 near the intersection is

visible to both cameras on Scene A and only one camera at a time in Scene B, thus

Scene A further satisfies the good visibility criterion.
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CHAPTER 4

EXPERIMENTS

This chapter presents experimental results for the proposed methods on a variety of

multi camera multi object tracking datasets from the pedestrian tracking domain. An

overview of the datasets used in this study is followed by a thorough description of

evaluation methods. Due to its complex definition, MCMOT has various evaluation

metrics, focusing on different aspects of the problem. We provide explanations for

the most commonly used evaluation methods in this section, which we also use.

4.1 Datasets

This section details the multi-camera multi-object tracking datasets used for experi-

ments in this work. Since the study focuses on person tracking, all datasets are person

tracking datasets. Due to our usage of person floor plane projections, we also require

that the datasets have intrinsic and extrinsic camera calibrations.

WILDTRACK

The WILDTRACK [3] dataset is a multi-camera pedestrian tracking dataset consist-

ing of 7 synchronized videos with each video having 400 annotated frames at 2 FPS.

There are a total of 313 pedestrians in the dataset across various combinations of cam-

eras. Following the literature [18, 3], we use the first 90% of the annotated frames

for training and evaluate our results on the last 10%. This corresponds to around 140

global tracks, 600 local tracks and 5500 detection boxes across all cameras. WILD-

TRACK also contains intrinsic and extrinsic camera parameters which can be used
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for computing person floor projections.

EPFL Multi Camera Pedestrians Dataset

The EPFL Multi Camera Pedestrians Dataset [3] is a collection of multi-camera

pedestrian tracking datasets containing annotated videos and camera calibrations. We

focus on the Terrace sequence which consists of around 3.5 minutes of synchronized

video across 4 cameras collected at 25 FPS ( 5010 frames per camera). There are a

total of 7 pedestrians in the videos, though the number of global tracks is closer to 40

due to targets leaving and re-entering the scene, this translates to 100 local tracks and

45000 detections per camera. Following [18, 54], we use the first 10% of the frames

for training and the remaining frames for testing.

PETS09 Dataset

The PETS09 dataset is a collection of multi-camera pedestrian tracking datasets col-

lected from 5 synchronized cameras at 7 FPS. We focus on the S2-L1 sequence which

consists of 795 annotated frames containing 19 global tracks with around 20 local

tracks and 8000 detections per camera. We use the first 50% of the dataset for training

and test on the remaining 50% following [18, 55].

4.2 Evaluation Methods

This section details the quantitative evaluation methods and metrics used in this study.

MOTA (Multi-Object Tracking Accuracy):

MOTA = 1−
∑

t(FNt + FPt + IDSt)∑
t(GTt)

(4.1)

Where FN represent the false negatives, FP false positives, IDS ID-switches and GT

ground truth detections. MOTA [56] measures the percentage of mistakes made by

the tracker, represented as a sum of missed, falsely identified or switched detections.

Note that each ID switch is penalized once per camera in the multi-camera setting.
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MOTP (Multi-Object Tracking Precision):

MOTP = 1−
∑

t(st)∑
t(|st|)

(4.2)

where st represents the summed detection to ground truth distance between each

matching (this can be an integer or floating point number depending on distance cal-

culation) at time t and |st| represents the total number of ground truth matchings made

at time t. Note that MOTP measures localization on the image coordinate system and

is therefore a mainly single-camera object detector localization metric.

We now define the Mostly Tracked and Mostly Lost metrics from [57].

MT (Mostly Tracked):

A track is considered “Mostly Tracked” if 80% or more of its frames have been cor-

rectly identified. This metric is the percentage of tracks in the dataset that are “Mostly

Tracked”.

ML (Mostly Lost):

A track is considered “Mostly Lost” if 20% or fewer of its frames have been correctly

identified. This metric is the percentage of tracks in the dataset that are “Mostly Lost”.

We now define IDF1, or Identification F1 proposed in [58]. We first make a series of

definitions.

ID-Recall (IDR):

ID-Recall (IDR) =
IDTP

IDTP + IDFN
(4.3)

Where IDTP is the number of true identifications and IDFN is the number of false

identifications made by the tracker. IDR measures the recall of the tracker, that is,

what percentage of the total number of ground truth detections it identifies correctly.

ID-Precision (IDP):

ID-Precision (IDP) =
TP

TP + FP
(4.4)

Where TP is the number of true identifications and FN is the number of false identi-

fications made by the tracker. IDP measures the precision of the tracker, that is, the

number of correct identifications over all identifications made.
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Identification F1 (IDF1):

Identification F1 =
TP

TP + 1
2
(FN + FP)

(4.5)

IDF1 [59] attempts to measure both the precision and recall of the tracker. When

extended to the multi-camera setting, IDF1 treats all detections equally regardless of

track continuity. That is, IDF1 only indirectly measures ability to continuously track

a target across its entire trajectory.

We find that track continuity is crucial for many applications of global tracking from

security [60, 22, 23], to self-driving vehicles [6] and many more. In our formulation, a

track is considered continuous if its target is correctly identified on at least one camera

throughout its journey in the tracking zone. In the following section, we propose a

new global tracking performance metric to better capture global tracking continuity.

4.2.1 Global Identification Metrics

We propose a new series of evaluation metrics we call Global Identification Metrics

to better capture global track continuity in contrast to IDF1, which operates on all

cameras separately and equally with no regard for global continuity. Our main met-

ric is Global-IDF1 (GIDF1), designed to better capture a given algorithms ability to

satisfy the following goal; the correct and continuous tracking and re-identification

of an objects entire trajectory within the tracking scene. Our proposed metrics are

generalizations of IDF1 and accompanying metrics to the multi-camera setting.

We propose that while correctly re-identifying all detections is important, continu-

ously tracking a target’s entire journey is often just as important as it serves to provide

downstream tasks with trajectories in many applications. We extend IDF1 to Global

IDF1 (GIDF1) in this section.
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Figure 4.1: All possible tracker correctness cases for a 2-camera system. We construct

the definitions for a general n-camera setting without loss of generality.

4.2.1.1 Basic Definitions

Based on Figure 4.1, we make the following series of definitions:

True Positive (TP):

The target is correctly identified on at least one camera and not incorrectly identified

on any camera. Cases 0 and 1 from Figure 4.1 are examples of TPs for a 2-camera

setting.

Partial ID-Switch (PIDS)

The target is correctly identified on at least one camera and incorrectly identified on

at least one camera. Case 2 from Figure 4.1 is an example of a PIDS.

False Positive (FP):

The target is incorrectly identified on at least one camera and not correctly identified

on any cameras. Cases 3 and 4 from Figure 4.1 are examples of FPs for a 2-camera

setting.

False Negative (FN):
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The target is missed on all cameras. Case 5 from figure 4.1 is an example of a FN.

4.2.1.2 Definitions

Based on the basic definitions from the previous subsection, we now define the Global

Identification metrics.

Global ID-Recall:

Global ID-Recall (GIDR) =
TP + PIDS

TP + FN + PIDS
(4.6)

GIDR measures the ability of a global tracker to correctly identify a tracking target

on at least one camera at any given frame.

Global ID-Precision (GIDP):

Global -ID Precision =
TP

TP + FP + PIDS
(4.7)

GIDP measures the correctness of a global tracker’s predictions. That is, the ratio of

fully correct detection groups produced by the tracker to all groups.

Global IDF1 (GIDF1):

GIDF1 =
TP + 1

2
PIDS

TP + PIDS + 1
2
(FP + FN)

(4.8)

Similarly to the original per-detection IDF1 [58], this measures a combination of

precision and recall for the global formulation.

4.3 Quantitative Results

This section contains quantitative results for the proposed algorithm and comparisons

to various benchmarks. The results are produced using the evaluation methods on the

datasets detailed in the previous sections of this chapter.

Here we compare our model to baseline solutions on EPFL-Terrace, PETS09-S2L1

and WILDTRACK. KSP is a simple [61] K-Shortest Path approach (graph based).
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HCT [34] uses a Hierarchical Composition of Tracklets and TRACTA [62] uses a

Restricted Non-negative Matrix Factorization approach for tracklet matching. LMPG

(or Lifted-Multicut) uses several specialized neural networks with a graph formula-

tion to fix and connect tracklets. Note that all of these methods are based on tracklet

matching are thus window based or offline.

Table 4.1: Comparisons to baseline methods on the EPFL [1] dataset, Terrace1 se-

quence to our method. Results taken as reported from the original papers.

Method MOTA MOTP MT ML

KSP [61] 58 63 - -

HCT [34] 72 71 - -

TRACTA [62] 81 79.5 - -

Ours + Simple Averaging 78.09 87.32 100.0 0.0

Ours + MVF 71.8 83.6 89.6 0.0

Table 4.2: Comparisons to baseline methods on the PETS09 dataset, S2-L1 sequence

[2] to our method. Results taken as reported from the original papers.

Method MOTA MOTP MT MP

KSP [61] 80 57 - -

HCT [34] 89 73 - -

TRACTA [62] 87.5 79.2 - -

LMGP [18] 97.8 82.4 100.0 0.0

Ours + Simple Averaging 81.38 86.43 94.73 0.0

Ours + MVF 83.4 86.0 100.0 0.0

We note that using the Multi-View Fusion network results in a significant decrease in

performance for the EPFL Terrace sequence, while there is a small increase in per-

formance for the PETS09 dataset. We attribute this to training data availability as the

network fails to train to convergence for very small datasets. Our experiments show a

positive correlation between dataset size (total number of global tracks/cameras) and

performance increase introduced by the MVF network. We further discuss this in the

following section.
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Some of our baseline models for EPFL and PETS09 do not report results for WILD-

TRACK. For completeness, we use several other available tracking solutions as base-

line for WILDTRACK. Namely, we use KSP-DO [3] is an modification of KSP which

uses Deep Occlusion Reasoning [63] to estimate person floor projections and occlu-

sions. GLMB [33] uses a 3D occlusion model in a Bayesian formulation to handle

occlusions, misdetections, clutters etc. GLMB is an online solution capable of pro-

ducing track ids in real-time. GLMB can also be paired with Deep Occlusion rea-

soning to produce improved results. DMCT (Deep Multi-Camera Tracker) [32] is

also a real-time solution making use of a series of neural networks for 3D occupancy

estimation and tracking.

Table 4.3: Comparisons of baseline tracking solutions on the WILDTRACK [3]

dataset to our method. KSP and TRACTA results were obtained by using their re-

spective codebases as WILDTRACK results were not published. Remaining results

were taken as reported from the original papers.

Method IDF1 IDP IDR MOTA MT ML GIDF1

KSP [61] 51.7 64.3 41.3 48.3 5.1 43.2 55.2

KSP-DO [3] 73.2 83.8 65 69.6 28.7 25.1 -

GLMB-DO [33] 72.5 82.7 72.2 70.1 - - -

DMCT [32] 81.9 81.6 82.2 74.6 65.9 4.9 -

TRACTA [62] 88.1 88.9 87.5 82.2 77.4 1.6 88.4

LMGP [18] 98.2 99.3 97.2 97.1 97.6 1.3 -

Ours + Simple Averaging 85.2 90.1 80.7 78.1 80.2 2.2 90.2

Ours + MVF 86.8 91.6 82.5 78.9 81.8 2.0 90.5

Given the more reasonable amount of training data ( 360 frames, 7 cameras) for the

WILDTRACK dataset, we observe an improvement introduced by the MVF network.

This expected behavior is hypothesized scale up to larger datasets.
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4.3.1 Evaluation on Global ID Metrics

This section contains experimental results evaluated using Global ID metrics for the

WILDTRACK dataset. Official codebases were used to evaluate the baseline models.

Table 4.4: Comparisons of baselines to our method using the Global ID metrics on

the WILDTRACK [3] dataset.

Method IDF1 IDP IDR GIDF1 GIDP GIDR

KSP [61] 51.7 64.3 41.3 55.2 57.0 53.3

TRACTA [62] 88.1 88.9 87.5 88.4 85.7 90.9

Ours + Simple Averaging 85.2 90.1 80.7 90.2 85.1 95.4

Ours + MVF 86.8 91.6 82.5 90.5 85.6 96.1

We note that GIDR is generally higher than its single camera counterpart. This is due

to the more relaxed definition designed to better capture the multi-camera nature of

the tracking problem in our setting. For use cases favoring the correct tracking of a

target’s trajectory across a multi-camera network, GIDR is more informative than its

single-camera counterpart which requires that the target is correctly identified on all

cameras at every frame.

4.4 Ablation Studies

This section contains ablation studies aimed to better explore the strengths and weak-

nesses of the various components of our solution. We provide experimental results

with different settings. We carry out two series of experiments, first, we remove the

geometric and visual feature components of our cost matrix function and compare the

results to the original joint formulation to better analyze the effects of each compo-

nent. For the second series of experiments, we remove the multi-view fusion network

from our system, replacing it with simple averaging, and compare the results. We con-

duct all combinations of both series of experiments for completeness. Experimental

results are available in Table 4.5.

In our first series of experiments, to compare the effectiveness of our features, we
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conduct experiments on the WILDTRACK dataset by removing the geometric and

visual components at the cost matrix calculation stage and comparing the results to

the joint cost formulation. Table 4.5 contains the results of our quantitative analysis.

It can be seen from the table that removing either component results in a dramatic de-

crease in tracking performance across all metrics. We can also see that our algorithm

performs even more poorly with only the visual component, demonstrating the power

of floor projections as a geometric feature in multi-camera tracking.

Table 4.5: Evaluations of our method with various ablations on the WILDTRACK

[3] dataset. The keyword "mean" represents simple averaging of feature vectors while

MVF means the Multi-View Fusion network was used to generate descriptive features

for detection groups.

Method IDF1 IDP IDR MOTA MT ML GIDF1 GIDP GIDR

Geometric 71.8 75.3 67.8 63.3 66.5 7.3 78.3 74.3 84.1

Visual (mean) 59.1 58.4 60.7 54.1 42.2 12.3 60.6 57.5 63.4

Visual (MVF) 63.5 59.2 62.0 55.7 47.2 10.9 65.1 59.2 71.3

Joint (mean) 85.2 90.1 80.7 78.1 80.2 2.2 90.2 85.1 95.4

Joint (MVF) 86.8 91.6 82.5 78.9 81.8 2.0 90.5 85.6 96.1

In the second series of experiments, we remove our multi-view fusion network in fa-

vor of simple averaging and compare the results. Rows 2 through 5 of Table 4.5 show

that the MVF introduces improvements across the board, being especially useful in

the visual-feature-only setting. We attribute this to the multi-camera representation

power of the MVF compared to simple averaging. We hypothesize that geometric fea-

tures account for most of the multi-camera representation power of our system in the

joint setting. Without geometric features, we see a dramatic increase in performance

introduced by the MVF filling in the multi-camera representation gap.

The formulations from our experiments in Table 4.5 have strong implications for run

time as computationally heavy components are removed in some settings. We report

resulting changes in run times in the following section.
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4.5 Computational Complexity and Run Time Analysis

This section contains a computational complexity analysis of the proposed algorithm.

We also provide tables containing average run time measurements of the algorithm

both component-wise and end-to-end to provide a better understanding of the effects

of various settings on inference time. We demonstrate that the algorithm is capable

of producing track IDs in real time for a 7-camera network covering a crowded scene

with 20 visible people on average per camera per frame and more than 100 unique

individuals using the WILDTRACK [3] dataset. We also show that a floor projection

only version of our algorithm can achieve much faster run time, with implications for

use on much larger camera networks.

4.5.1 Computational Complexity

The proposed algorithm has a computational complexity of O(max(n,m)3) where n

is the number of detections at frame t and m is the number of global tracks in the

dictionary. This is due to the linear sum assignment function call. In contrast to the

exponential time worst case formulations used in most contemporary graph based of-

fline or windowed algorithms, we offer a polynomial time worst case solution.

In practice, due to n and m being small (<100) numbers, the bottleneck becomes the

visual feature extraction network. The best performance is achieved when only floor

projections are used for tracking.

4.5.2 Run Time Analysis

In this section we provide an analysis of runtime for the algorithm. The experiments

are made using a machine with 8 (Intel Xeon) vCPU cores and a Nvidia Tesla V100

GPU. We provide run times for each component of the algorithm running on the

7-camera WILDTRACK dataset with an average of 20 people per camera on each

frame, the results are averaged over 400 frames of inference.
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Table 4.6: Component level breakdown of run times for the full tracking pipeline. We

use the WILDTRACK dataset for this analysis where there are up to 20 people per

camera for 7 cameras. VFE stands for Visual Feature Extraction, VF for Visual Fea-

tures, FP for Floor Projections and MVFNet is our novel multi-view fusion network.

Component Run Time (1 time-step) FPS

VFE w BPBNet, OSNet backbone 294.6 ms 3.4

VFE w BPBNet, OSNet backbone (Parallelized) 51.2 ms 19.5

Floor projections 1.1 ms 909

Floor projections (Parallelized) 0.7 ms 1428

Group detections (Averaging) 1.8 ms 556

Group detections (MVFNet) 21.3 ms 47.0

Group detections (FP only) 1.7 ms 588

Calculate cost matrix 0.1 ms 10000

Hungarian matching & Update 3.2 ms 312.5

It can be seen from Table 4.6 that the bottleneck for our algorithm is by far the visual

feature extractor. Large run time improvements can be achieved by replacing the vi-

sual feature extractor with a faster model or by disabling it completely. The second

longest run time component is the multi-view fusion network MVFNet, which intro-

duces up to 20 ms of extra run time per time step in our pipeline. This component

could be turned off in favor of averaging or due to visual features being turned off. We

observe that the algorithm achieves fastest run times when visual features are turned

off and the slowest run times with visual features and MVFNet enabled.

We can also clearly see from Table 4.6 that feature extraction stage run time dramati-

cally improves with parallelization especially for visual feature extraction. Since our

algorithm does not require cross camera information at the feature extraction stage,

we can fully parallelize it for best run times without loss of performance. We further

analyze end to end run times in Table 4.7.

It can be seen from Table 4.7 that when parallelized, the model achieves real-time

status. Our best performing pipeline in terms of IDF1 and GIDF1 uses both visual

features and floor projections and uses the MVFNet for fusion, we report 13 FPS
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Table 4.7: End to end run times for the full tracking pipeline for various component

combinations. We use the WILDTRACK dataset for this analysis where there are up

to 20 people per camera for 7 cameras. VF stands for Visual Features, FP for Floor

Projections and MVFNet is our novel multi-view fusion network. We report the best

tracking performance in terms of IDF1 and GIDF1 when using both VF and FP with

MVFNet.

Setting Run Time (1 time-step) FPS

VF and FP (Sequential), Averaging 300.8 ms 3.32

VF and FP (Parallel), Averaging 57.0 ms 17.54

VF and FP (Parallel), MVFNet 76.5 ms 13.07

FP only (Parallel) 5.7 ms 175.43

inference time at these settings. The table also shows that disabling visual features

and running only on floor projections result in a huge decrease in run time, achieving

up to 175 FPS on a crowded 7-camera dataset (WILDTRACK).

39



40



CHAPTER 5

CONCLUSIONS

In this study, we present a joint multi-camera multi-person tracker capable of pro-

ducing track IDs at each frame in real time without dependency on a time-window

of detections. We show that person ground contact points can be used as robust

multi-camera features in a calibrated camera network. We conduct a detailed analysis

of camera coverage as an invisible assumption in tracking problem statements and

clearly describe our coverage requirements. We propose a novel multi-camera vi-

sual feature fusion network and show its effectiveness over naive averaging based fu-

sion for larger datasets with more cameras and diverse viewpoints. We quantitatively

evaluate our work on EPFL, PETS09 and WILDTRACK datasets and compare it to

available baselines and state of the art. We address shortcomings in widely adopted

tracking metrics by proposing a new metric designed to emphasize track continuity in

a multi-camera network instead of weighing all ID assignments equally for all cam-

eras at all frames. We evaluate and compare our method’s performance using our

newly developed metric. We finally provide run time and performance comparisons

for our method using different combinations of features and feature fusion methods.

5.1 Limitations and Future Work

Our method depends on intrinsic and extrinsic camera calibrations used to map person

detections to a common floor plane. We use the floor plane coordinates for detection

grouping across cameras and in the final track ID assignment stage. This creates a

limitation for scenes where camera calibration may be difficult. A potential direction

for future improvement can be the addition of an automatic camera calibration step
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using highly confident feature matchings or even person re-identifications similarly

to Lee et al. [64] who propose a pose estimation based extrinsic calibration method.

The integration of this capability to the tracking pipeline would relax the calibration

dependency to a much easier to satisfy planar ground surface dependency.

Another direction for future research can be the improvement of the multi-view fusion

network. The proposed network is trained for each scene/dataset separately since

we use a fixed number of cameras and positional encodings during training. This

introduces two main complications, namely, limited availability of training data for

multi-camera tracking and the requirement for training on a scene before inference

in contrast to the visual feature extractor which we can simply freeze and use in a

different scene. If a scene independent version of the network can be developed, this

would both significantly increase the amount of available training data and remove

the requirement for training before inference on a new scene.

42



REFERENCES

[1] F. Fleuret, J. Berclaz, R. Lengagne, and P. Fua, “Multicamera people tracking

with a probabilistic occupancy map,” IEEE Transactions on Pattern Analysis

and Machine Intelligence, vol. 30, no. 2, pp. 267–282, 2008.

[2] J. Ferryman and A. Shahrokni, “Pets2009: Dataset and challenge,” in 2009

Twelfth IEEE International Workshop on Performance Evaluation of Tracking

and Surveillance, pp. 1–6, 2009.

[3] T. Chavdarova, P. Baqué, S. Bouquet, A. Maksai, C. Jose, T. Bagautdinov,

L. Lettry, P. Fua, L. Van Gool, and F. Fleuret, “Wildtrack: A multi-camera hd

dataset for dense unscripted pedestrian detection,” in 2018 IEEE/CVF Confer-

ence on Computer Vision and Pattern Recognition, pp. 5030–5039, 2018.

[4] V. Somers, C. D. Vleeschouwer, and A. Alahi, “Body part-based representation

learning for occluded person re-identification,” 2022.

[5] K. Zhou, Y. Yang, A. Cavallaro, and T. Xiang, “Omni-scale feature learning for

person re-identification,” CoRR, vol. abs/1905.00953, 2019.

[6] D. Gragnaniello, A. Greco, A. Saggese, M. Vento, and A. Vicinanza, “Bench-

marking 2d multi-object detection and tracking algorithms in autonomous vehi-

cle driving scenarios,” Sensors, vol. 23, no. 8, 2023.

[7] L. Fei and B. Han, “Multi-object multi-camera tracking based on deep learning

for intelligent transportation: A review,” Sensors, vol. 23, no. 8, 2023.

[8] A. Rangesh and M. M. Trivedi, “No blind spots: Full-surround multi-object

tracking for autonomous vehicles using cameras and lidars,” IEEE Transactions

on Intelligent Vehicles, vol. 4, no. 4, pp. 588–599, 2019.

[9] J. Park, J. Hong, W. Shim, and D.-J. Jung, “Multi-object tracking on swir im-

ages for city surveillance in an edge-computing environment,” Sensors, vol. 23,

p. 6373, July 2023.

43



[10] Y. Jang, I. Jeong, M. Younesi Heravi, S. Sarkar, H. Shin, and Y. Ahn, “Multi-

camera-based human activity recognition for humanndash;robot collaboration

in construction,” Sensors, vol. 23, no. 15, 2023.

[11] A. Sharath Chandra, M. Plasch, C. Eitzinger, and B. Rinner, “Context enhanced

multi object tracker for human robot collaboration,” in Proceedings of the Com-

panion of the 2017 ACM/IEEE International Conference on Human-Robot In-

teraction, HRI ’17, ACM, Mar. 2017.

[12] F. Ferraguti, C. Talignani Landi, S. Costi, M. Bonfè, S. Farsoni, C. Secchi,

and C. Fantuzzi, “Safety barrier functions and multi-camera tracking for hu-

man–robot shared environment,” Robotics and Autonomous Systems, vol. 124,

p. 103388, Feb. 2020.

[13] Y. Zhang and T. E. Doyle, “Integrating intention-based systems in human-robot

interaction: a scoping review of sensors, algorithms, and trust,” Frontiers in

Robotics and AI, vol. 10, 2023.

[14] B. Yang and R. Nevatia, “An online learned crf model for multi-target track-

ing,” in 2012 IEEE Conference on Computer Vision and Pattern Recognition,

pp. 2034–2041, 2012.

[15] C. Dicle, O. I. Camps, and M. Sznaier, “The way they move: Tracking multiple

targets with similar appearance,” in 2013 IEEE International Conference on

Computer Vision, pp. 2304–2311, 2013.

[16] A. Dehghan, S. Modiri Assari, and M. Shah, “Gmmcp tracker: Globally opti-

mal generalized maximum multi clique problem for multiple object tracking,”

in Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-

nition (CVPR), June 2015.

[17] W. Chen, L. Cao, X. Chen, and K. Huang, “An equalized global graph model-

based approach for multicamera object tracking,” IEEE Transactions on Circuits

and Systems for Video Technology, vol. 27, no. 11, pp. 2367–2381, 2017.

[18] D. M. H. Nguyen, R. Henschel, B. Rosenhahn, D. Sonntag, and P. Swoboda,

“LMGP: lifted multicut meets geometry projections for multi-camera multi-

object tracking,” CoRR, vol. abs/2111.11892, 2021.

44



[19] H. W. Kuhn, “The hungarian method for the assignment problem,” Naval Re-

search Logistics Quarterly, vol. 2, p. 83–97, Mar. 1955.

[20] J. W. Lee, M. S. Kim, and I. S. Kweon, “A kalman filter based visual tracking

algorithm for an object moving in 3d,” in Proceedings 1995 IEEE/RSJ Interna-

tional Conference on Intelligent Robots and Systems. Human Robot Interaction

and Cooperative Robots, vol. 1, pp. 342–347 vol.1, 1995.

[21] Y. Du, J. Wan, Y. Zhao, B. Zhang, Z. Tong, and J. Dong, “Giaotracker: A

comprehensive framework for mcmot with global information and optimizing

strategies in visdrone 2021,” 2022.

[22] B. Gaikwad and A. Karmakar, “Smart surveillance system for real-time multi-

person multi-camera tracking at the edge,” Journal of Real-Time Image Process-

ing, vol. 18, 12 2021.

[23] A. Sharma, S. Anand, and S. K. Kaul, “Intelligent querying for target tracking in

camera networks using deep q-learning with n-step bootstrapping,” Image and

Vision Computing, vol. 103, p. 104022, 2020.

[24] Y. Yoon, A. Kosaka, and A. C. Kak, “A new kalman-filter-based framework

for fast and accurate visual tracking of rigid objects,” IEEE Transactions on

Robotics, vol. 24, no. 5, pp. 1238–1251, 2008.

[25] E. Cuevas, D. Zaldivar, and R. Rojas, “Kalman filter for vision tracking,” Mea-

surement, vol. 33, 01 2005.

[26] N. O. Salscheider, “Object tracking by detection with visual and motion cues,”

CoRR, vol. abs/2101.07549, 2021.

[27] W. Chen, X. Guo, X. Liu, E. Zhu, and J. Yin, “Appearance changes detection

during tracking,” in 2016 23rd International Conference on Pattern Recognition

(ICPR), pp. 1821–1826, 2016.

[28] S. Yang, Y. Xie, P. Li, H. Wen, H. Luo, and Z. He, “Visual object tracking robust

to illumination variation based on hyperline clustering,” Information, vol. 10,

no. 1, 2019.

[29] L. Leal-Taixé, “Multiple object tracking with context awareness,” 11 2014.

45



[30] A. Dehghan, S. Modiri Assari, and M. Shah, “Gmmcp tracker: Globally optimal

generalized maximum multi clique problem for multiple object tracking,” in

Proceedings of the IEEE conference on computer vision and pattern recognition,

pp. 4091–4099, 2015.

[31] Y. Zhang, P. Sun, Y. Jiang, D. Yu, F. Weng, Z. Yuan, P. Luo, W. Liu, and

X. Wang, “Bytetrack: Multi-object tracking by associating every detection box,”

2022.

[32] Q. You and H. Jiang, “Real-time 3d deep multi-camera tracking,” CoRR,

vol. abs/2003.11753, 2020.

[33] J. Ong, B. Vo, B. Vo, D. Y. Kim, and S. Nordholm, “A bayesian 3d multi-view

multi-object tracking filter,” CoRR, vol. abs/2001.04118, 2020.

[34] Y. Xu, X. Liu, Y. Liu, and S.-C. Zhu, “Multi-view people tracking via hierar-

chical trajectory composition,” in Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), pp. 4256–4265, Jun 2016.

[35] W. Hu, X. Li, W. Luo, X. Zhang, S. Maybank, and Z. Zhang, “Single and multi-

ple object tracking using log-euclidean riemannian subspace and block-division

appearance model,” IEEE Transactions on Pattern Analysis and Machine Intel-

ligence, vol. 34, no. 12, pp. 2420–2435, 2012.

[36] L. Zhang and L. van der Maaten, “Structure preserving object tracking,” in 2013

IEEE Conference on Computer Vision and Pattern Recognition, pp. 1838–1845,

IEEE, 2013.

[37] L. Zhang and L. van der Maaten, “Preserving structure in model-free tracking,”

IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 36, no. 4,

pp. 756–769, 2014.

[38] J. Yang, M. Gao, Z. Li, S. Gao, F. Wang, and F. Zheng, “Track anything: Seg-

ment anything meets videos,” 2023.

[39] A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson, T. Xiao,

S. Whitehead, A. C. Berg, W.-Y. Lo, P. Dollár, and R. Girshick, “Segment any-

thing,” arXiv:2304.02643, 2023.

46



[40] J. Xing, H. Ai, and S. Lao, “Multi-object tracking through occlusions by local

tracklets filtering and global tracklets association with detection responses,” in

2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1200–

1207, IEEE, 2009.

[41] W. Luo, X. Zhao, and T. Kim, “Multiple object tracking: A review,” CoRR,

vol. abs/1409.7618, 2014.

[42] K.-S. Yang, Y.-K. Chen, T.-S. Chen, C.-T. Liu, and S.-Y. Chien, “Tracklet-

refined multi-camera tracking based on balanced cross-domain re-identification

for vehicles,” in 2021 IEEE/CVF Conference on Computer Vision and Pattern

Recognition Workshops (CVPRW), pp. 3978–3987, 2021.

[43] Q. You and H. Jiang, “Real-time 3d deep multi-camera tracking,” CoRR,

vol. abs/2003.11753, 2020.

[44] D. Mendes, S. Correia, P. Jorge, T. Brandão, P. Arriaga, and L. Nunes, “Multi-

camera person re-identification based on trajectory data,” Applied Sciences,

vol. 13, no. 20, 2023.

[45] B. Scassellati, “Towards a theory of intention recognition for human-robot in-

teraction,” Autonomous Robots, vol. 15, no. 1, pp. 1–18, 2003.

[46] R. A. Brooks, Robots with Internal Models: The Dynamics of Intentionality.

MIT Press, 1991.

[47] S. Yang, F. Ding, P. Li, and S. Hu, “Distributed multi-camera multi-target asso-

ciation for real-time tracking,” Sci. Rep., vol. 12, p. 11052, June 2022.

[48] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A

large-scale hierarchical image database,” in 2009 IEEE conference on computer

vision and pattern recognition, pp. 248–255, Ieee, 2009.

[49] L. Zheng, L. Shen, L. Tian, S. Wang, J. Wang, and Q. Tian, “Scalable person

re-identification: A benchmark,” in Computer Vision, IEEE International Con-

ference on, 2015.

47



[50] E. Ristani, F. Solera, R. S. Zou, R. Cucchiara, and C. Tomasi, “Perfor-

mance measures and a data set for multi-target, multi-camera tracking,” CoRR,

vol. abs/1609.01775, 2016.

[51] K. He, X. Chen, S. Xie, Y. Li, P. Dollár, and R. B. Girshick, “Masked autoen-

coders are scalable vision learners,” CoRR, vol. abs/2111.06377, 2021.

[52] M. Song, D. Tao, and S. Maybank, “Sparse camera network for visual surveil-

lance – a comprehensive survey,” 02 2013.

[53] J. Kritter, M. Brévilliers, J. Lepagnot, and L. Idoumghar, “On the optimal place-

ment of cameras for surveillance and the underlying set cover problem,” Applied

Soft Computing, vol. 74, pp. 133–153, 2019.

[54] S. Tang, M. Andriluka, A. Milan, K. Schindler, S. Roth, and B. Schiele, “Learn-

ing people detectors for tracking in crowded scenes,” in 2013 IEEE International

Conference on Computer Vision, pp. 1049–1056, 2013.

[55] Y. Xu, X. Liu, Y. Liu, and S.-C. Zhu, “Multi-view people tracking via hierarchi-

cal trajectory composition,” in 2016 IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), pp. 4256–4265, 2016.

[56] K. Bernardin and R. Stiefelhagen, “Evaluating multiple object tracking perfor-

mance: the clear mot metrics,” EURASIP Journal on Image and Video Process-

ing, vol. 2008, no. 1, pp. 1–10, 2008.

[57] Y. Li, C. Huang, and R. Nevatia, “Learning to associate: Hybridboosted multi-

target tracker for crowded scene,” in IEEE Conference on Computer Vision and

Pattern Recognition, pp. 2953–2960, IEEE, 2009.

[58] E. Ristani, F. Solera, R. S. Zou, R. Cucchiara, and C. Tomasi, “Perfor-

mance measures and a data set for multi-target, multi-camera tracking,” CoRR,

vol. abs/1609.01775, 2016.

[59] A. Milan and et al., “Mot16: A benchmark for multi-object tracking,” arXiv

preprint arXiv:1603.00831, 2016.

[60] J. I. K. dan Informasi, “Comparison of fairmot-vgg16 and mcmot implementa-

tion for multi-object tracking and gender detection on mall cctv,” 2021.

48



[61] J. Berclaz, F. Fleuret, E. Turetken, and P. Fua, “Multiple object tracking us-

ing k-shortest paths optimization,” IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 33, pp. 1806–1819, Sep 2011.

[62] Y. He, X. Wei, X. Hong, W. Shi, and Y. Gong, “Multi-target multi-camera track-

ing by tracklet-to-target assignment,” IEEE Transactions on Image Processing,

vol. 29, pp. 5191–5205, 2020.

[63] P. Baqué, F. Fleuret, and P. Fua, “Deep occlusion reasoning for multi-camera

multi-target detection,” CoRR, vol. abs/1704.05775, 2017.

[64] S.-E. Lee, K. Shibata, S. Nonaka, S. Nobuhara, and K. Nishino, “Extrinsic cam-

era calibration from a moving person,” IEEE Robotics and Automation Letters,

vol. 7, no. 4, pp. 10344–10351, 2022.

49


	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ALGORITHMS
	LIST OF ABBREVIATIONS
	Introduction
	Motivation and Problem Definition
	Proposed Methods and Models
	Contributions and Novelties
	The Outline of the Thesis

	BACKGROUND AND RELATED WORK
	Background
	Single-Camera Tracking
	Multi-Camera Tracking
	Ground Plane Projections as Global Features

	Related Work
	Joint MCMOT
	Real-Time MCMOT


	Method
	Problem Setting
	Method
	Features
	Visual Features
	Floor Projections

	Detection Grouping
	Cost Matrix Calculation
	Multi-View Fusion Network

	Assumptions and Implementation Details
	Camera Coverage


	Experiments
	Datasets
	Evaluation Methods
	Global Identification Metrics
	Basic Definitions
	Definitions


	Quantitative Results
	Evaluation on Global ID Metrics

	Ablation Studies
	Computational Complexity and Run Time Analysis
	Computational Complexity
	Run Time Analysis


	Conclusions
	Limitations and Future Work

	REFERENCES

