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ABSTRACT

A NOVEL CONTENT-BASED RETRIEVAL SYSTEM FOR
HYPERSPECTRAL REMOTE SENSING IMAGERY

ÖMRÜUZUN, FATİH
Ph.D., Department of Information Systems

Supervisor: Prof. Dr. Yasemin YARDIMCI ÇETİN

Co-Supervisor: Prof. Dr. Uğur Murat LELOĞLU

May 2024, 127 pages

Due to the increased use of hyperspectral remote sensing payloads, there has been
a rise in the number of hyperspectral remote sensing image archives, resulting in a
massive amount of collected data. This highlights the need for a content-based image
retrieval system that can manage and enable the use hyperspectral remote-sensing im-
ages efficiently. The conventional content-based hyperspectral image retrieval (CB-
HIR) systems define each image by a set of endmembers and then perform image
retrieval using pairwise distance measures. However, this approach significantly in-
creases the computational complexity of retrieval, especially when there is a high
diversity of materials. Additionally, those systems have difficulties in retrieving im-
ages with particular materials whose abundance is extremely low compared to other
materials or those that are not considered as an endmember while modeling the im-
age. To address these issues, a novel CBHIR system is proposed that aims to define
global hyperspectral image representations based on a semantic approach to differen-
tiate background and foreground image content considering both spatial and spectral
information. In this way, two spectral content dictionaries are used in the process of
modeling hyperspectral images. While the first dictionary originates in spectral terms
related to materials that are rarely encountered in the relevant geographical region,
called foreground content, the second dictionary contains spectral terms for materials
that are commonly seen in the geographical region, called background content. The
proposed system consists of two main modules. The first module characterizes the
hyperspectral images in the archive by four global descriptors: 1) two binary spec-
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tral descriptors (which represent spectral characteristics of distinct foreground and
background materials); 2) two abundance descriptors that model the normalized cu-
mulative fractional abundance of the corresponding materials. The second module
retrieves hyperspectral images from the archive that either cover materials that are
most similar to the given query signature or query image based on a hierarchical
strategy that evaluates the spectral and abundance descriptor similarity. Experiments
conducted on a benchmark dataset of hyperspectral images demonstrated the system’s
effectiveness in terms of retrieval accuracy and time.

Keywords: remote sensing, hyperspectral imaging, content-based semantic retrieval,
feature extraction
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ÖZ

HİPERSPEKTRAL UZAKTAN ALGILAMA GÖRÜNTÜLERİ İÇİN
YENİLİKÇİ BİR İÇERİK TABANLI ERİŞİM SİSTEMİ

ÖMRÜUZUN, FATİH
Doktora, Bilişim Sistemleri Bölümü

Tez Yöneticisi: Prof. Dr. Yasemin YARDIMCI ÇETİN

Ortak Tez Yöneticisi: Prof. Dr. Uğur Murat LELOĞLU

Mayıs 2024, 127 sayfa

Hiperspektral faydalı yüklerin yaygınlaşması ile birlikte hiperspektral uzaktan algı-
lama görüntü arşivlerinin çeşitliliği ve elde edilen veri miktarının büyüklüğü de kat-
lanarak artmaktadır. Bu durum, hiperspektral uzaktan algılama görüntülerinin verimli
olarak kullanımı ve yönetimi için özel olarak tasarlanmış içerik tabanlı görüntü eri-
şim sistemi ihtiyacını ortaya çıkarmaktadır. Geleneksel içerik tabanlı hiperspektral
görüntü erişim (İTHGE) sistemleri her bir görüntüyü bir son üyeler kümesi ile tanım-
lamakta ve görüntü erişimini ikili uzaklık ölçümüne dayalı olarak gerçekleştirmekte-
dir. Bu tip bir yaklaşım özellikle son üye sayısının yüksek olduğu durumlarda erişimin
hesaplama karmaşıklığını önemli ölçüde arttırmaktadır. Bunun ötesinde, bu sistemler
varlığı diğerlerine nazaran çok düşük miktarda olan veya görüntüler modellenirken
sonüye olarak nitelendirilmeyen materyalleri içeren görüntülere erişmekte zorluklar
yaşamaktadır. Bu problemlerin çözümü için bu çalışmada farklı erişim senaryolarına
uygun olarak küresel hiperspektral görüntü betimleyicileri tanımlamak için önplan
ve arkaplan ayrıştırma yaklaşımlarıyla öznitelik tanımlayıcıları üretmeyi amaçlayan
yenilikçi bir İTHGE sistemi sunulmaktadır. Bu şekilde, hiperspektral görüntülerin
modelleme sürecinde iki spektral içerik sözlüğü kullanılmaktadır. İlk sözlük, ilgili
coğrafi bölgede nadiren karşılaşılan ve ön plan olarak adlandırılan materyallerle ilgili
spektral terimlerden meydana gelmektedir. İkinci sözlük ise coğrafi bölgede yaygın
olarak görülen ve arka plan olarak adlandırıan materyallerle ilgili spektral terimleri
içerir ve arka plan içeriği olarak adlandırılır. Bu maksatla, önerilen sistem iki ana
kısımdan oluşmaktadır. İlk kısım arşivdeki hedef hiperspektral görüntülerini dört kü-
resel tanımlayıcı ile tanımlamaktadır: 1) ön plan ve arka plan materyallerin spekt-

vi



ral özelliklerini temsil eden iki adet ikili tanımlayıcı; 2) bu materyallerin normalize
edilmiş oransal toplam varlık bilgisini içeren birer varlık tanımlayıcısı. İkinci kısım,
sorgu imzasına en çok benzeyen materyalleri içeren veya sorgu görüntüsüne en çok
benzeyen hiperspektral görüntülere spektral ve varlık tanımlayıcı benzerliklerini de-
ğerlendiren hiyerarşik bir yönteme dayalı olarak arşivden erişim sağlamaktadır. Kar-
şılaştırma amaçlı bir hiperspektral görüntü arşivi ile gerçekleştirilen deneyler önerilen
sistemin erişim doğruluğu ve zaman bağlamındaki verimliliğini ortaya koymuştur.

Anahtar Kelimeler: uzaktan algılama, hiperspektral görüntüleme, içerik tabanlı an-
lamsal erişim, öznitelik çıkarımı
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CHAPTER 1

INTRODUCTION

1.1 Prologue

In recent years, hyperspectral imaging has become a prominent passive optical remote
sensing technology utilized to solve various problems in diverse fields. From recog-
nizing plant diseases in precision agriculture to buried object detection in military op-
erations, hyperspectral imaging has taken place in applications [9] where observing
the distinctive spectral features of matters is crucial. Consequently, a continuous in-
crease in the deployment of hyperspectral imaging systems leads to significant growth
in the diversity and volume of hyperspectral remote sensing image collections.

Certainly, the most notable feature of hyperspectral imaging, which distinguishes it
from other passive optical remote sensing techniques, is the abundance of informa-
tion provided in the spectral domain. Hyperspectral imaging is a technique that in-
volves capturing a large number of observation channels at consecutive wavelengths.
This method enables the precise recognition and discrimination of objects in a scene,
making it a valuable tool in various fields. On the other hand, dense spectral infor-
mation provided in hyperspectral imagery results in a higher amount of data to be
processed than other optical imaging techniques. Moreover, the vast amount of data
generated in imaging campaigns can pose a challenge when it comes to effectively
utilizing hyperspectral images for interpretation and management purposes. Depend-
ing on application needs, this fact may limit potential benefits that can be obtained
from hyperspectral imagery. Accordingly, one of the critical tasks in remote sensing
is the accurate and fast retrieval of hyperspectral images from image collections in
the context of spectral properties of the matter.

This thesis comprehensively addresses content-based retrieval of hyperspectral im-
agery from different perspectives and proposes a promising system, which is estab-
lished on novel semantic hyperspectral image descriptors that achieve both high ac-
curacy and low computational complexity.
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1.2 Problem Definition

Digitalization has exposed people to deal with unique data management and inter-
pretation problems in many fields, especially those associated with intense usage of
digital imagery. Particularly in fields where large amounts of images are processed
to solve crucial problems, rapid and accurate access to desired images in collections
has been a crucial task. Remote sensing is one of those fields in which a substan-
tial amount of digital images are created at very high speed in different formats by
diverse systems. Moreover, the repetitive nature of remote sensing image acquisi-
tion campaigns results in an exponential increase in the cumulative amount of images
created.

Images acquired during remote sensing campaigns are either interpreted by visual
inspection of individuals or by computers in a relatively automated way for various
purposes, i.e., environmental monitoring, change detection, disaster management, or
target detection. Hence, accessing desired images in collections comprising desired
(or hidden) content is crucial for remote sensing applications. Moreover, the time
required for accessing desired images in the collections may be vital for certain ap-
plications.

Initially, images in such collections were manually classified by associated subjective
keywords that describe image content and meta tags (e.g., content labels, comments,
location, acquisition time, etc.) to ensure easy access to desired images. However,
this approach holds two main drawbacks: 1) exponential increase in both diversity
and amount of images in the collections requires excessive labor force for keyword
assignment, and 2) keyword assignment is an error-prone task, and proposed key-
words may not sufficiently describe overall image content.

In order to overcome these drawbacks by retrieving images from collections in an
autonomous way, Content-Based Image Retrieval (CBIR) paradigm was proposed at
the end of the 90s. The simplest definition of CBIR is “the process of retrieving
desired images from a large collection of images on the basis of features...” [10].
In other words, computer algorithms extract content feature descriptors to retrieve
images from digital image collections instead of relying on subjective keywords as-
signed by individuals. Thus, CBIR systems are designed to optimize the use of image
collections by effectively capturing content descriptors within images. This enables
users to easily search and retrieve images based on image descriptors, making the
process more efficient and streamlined.

The working principle of a CBIR system, whose basic components are illustrated in
Figure 1, can be summarized as follows. A typical CBIR system is composed of two
essential modules: 1) feature extraction module and 2) retrieval module. The feature
extraction module is responsible for obtaining comparable content descriptors from
images in the collection and given query image. It is worth noting that descriptors
extracted in this phase of the system are fully dependent on characteristic properties
(e.g. number of spectral channels or spatial resolution) of the images. In the following
phase, the retrieval module performs a similarity assessment between the query image
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Figure 1: Block diagram of a typical CBIR system.

and each image in the collection, considering the descriptor(s) obtained in the first
phase. Finally, a set of most similar images to the given query image is returned to
the user.

Hyperspectral imaging is a passive optical remote sensing technology gaining pop-
ularity in various industries. Depending on the region of interest in the electromag-
netic spectrum, hyperspectral imaging instruments can acquire images characterized
by very high spectral resolution that results in hundreds of discrete observation chan-
nels. This feature of hyperspectral imagery provides detailed information about the
chemical composition of materials in a given scene. Thus, dense spectral information
provided in hyperspectral imagery leads to a very high capability for identifying and
discriminating objects. Consequently, content-based hyperspectral image retrieval
(CBHIR) is the process of querying hyperspectral image collections in the context of
materials through the dense information in the spectral domain.

Hyperspectral imaging is a powerful tool that enables us to tackle a diverse range of
challenges in remote sensing. Unlike other passive optical imaging instruments, it
offers unique capabilities to help us overcome complex problems and achieve better
results. However, extensive usage of hyperspectral imaging instruments led to a rapid
increase in the number and diversity of hyperspectral image collections. On the other
hand, efficient and precise retrieval of hyperspectral images from collections is a key
challenge in remote sensing. With the growing popularity of hyperspectral imaging
technology, there is a pressing need to develop reliable content-based retrieval sys-
tems. However, the high number of observation channels that deliver dense spectral
information in hyperspectral imagery requires unique methods and dedicated content-
based retrieval systems to retrieve the images from such collections efficiently.

1.3 Purpose of the Study

Compared to other passive optical remote sensing techniques, the most notable fea-
ture of hyperspectral imaging is its ability to distinguish objects in a given scene
through spectral features observed at consecutive wavelengths. Thus, hyperspectral
imaging enables having intense information regarding the chemical structures of the
materials forming the scene. Accordingly, distinctive spectral characteristics of the
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Table 1: Categorization of CBHIR Scenarios

Scenario Quantity of Materials Abundance
1 Single Material Insignificant
2 Single Material Significant
3 Multiple Materials Insignificant
4 Multiple Materials Significant

objects play a crucial role in the content-based retrieval of hyperspectral imagery.
Content-based hyperspectral image retrieval involves searching image collections for
images that depict materials with similar spectral features to the query, allowing for
efficient and accurate identification of desired images. This fact is the most important
point distinguishing hyperspectral image retrieval from conventional image retrieval
tasks mainly built on color, shape, and texture descriptors.

Hyperspectral image processing methods provide detailed information on the variety
of discrete materials and their abundance in a scene. Depending on the diversity of
spectrally distinct materials and their significance, four different CBHIR scenarios
can address various retrieval problems, as listed in Table 1.

The first and second scenarios are associated with cases where the CBHIR system
is employed to retrieve images containing a specific material defined by the query.
These two scenarios are mostly experienced in the form of target content detection
applications in which the existence of a specific material represented by the query
in the image (either at the pixel or sub-pixel level) is of vital importance. In the
second scenario, the retrieval process is enhanced by considering the abundance of
the material of interest as a key factor. This helps to ensure a more efficient and
effective search for the desired matter.

In scenarios three and four, the hyperspectral images are searched for images that
contain more than one significant material whose spectral features are shown in the
query. Unlike the third scenario, the fourth scenario also considers the abundance
of materials given in the query. Accordingly, as the number of materials queried
increases, these two scenarios require specific methods differently from the first and
the second ones.

This study proposes a CBHIR system that offers dedicated solutions to each of the
four scenarios given in Table 1, where the aim is retrieving hyperspectral images
having material(s) in common either by querying via a single material signature or a
query image covering multiple materials.

The CBHIR systems proposed in the literature rely on the descriptors related to the
spectral signatures of distinct materials that are modeled by endmembers and the cor-
responding abundances present in the images. After extracting all the endmembers
from both the query and the images in the collection, CBHIR systems calculate the
similarity between the query and each collection image endmember pairs. Based on
the usage scenarios mentioned in Table 1, these systems have three main limitations:
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1) they do not provide a complete solution that covers first and second scenarios in
Table 1 where images are retrieved by querying a material represented by a spectral
signature and corresponding abundance (if defined), 2) computational cost and re-
trieval time increases proportionally to the number of endmembers contained in the
images that pose a fundamental problem for on-line retrieval; 3) storage of all the
endmembers in the auxiliary archive (a database that is exploited by performing anal-
yses on extracted features, and thus it serves as an auxiliary archive complementary
to the data archives) is challenging as they are often represented in a very high di-
mensional feature space. A more compact representation based on global features
is required when dealing with large-scale hyperspectral image retrieval. Thus, these
systems may be inappropriate for large-scale hyperspectral image retrieval problems.

In addition to the usage scenario limitations, existing CBHIR systems proposed in the
literature have additional shortcomings.

1. Spectral information redundancy due to the relatively high amount of some con-
tent types (e.g., terrestrial barren lands, grasslands, sparsely natural vegetated
areas) in the archive images that causes poor retrieval performance.

2. CBHIR methods that model hyperspectral images by only endmembers may not
accurately extract the endmembers from the images, or pure material signatures
may not exist in the scene. These issues may lead to describing image content
with inappropriate and/or insufficient spectral features.

3. Strategies (i.e., bag-of-endmembers) that aim at combining and clustering all
endmembers to generate a global spectral vocabulary to model hyperspectral
images may ignore spectral signatures (endmember) of rarely seen content in
case of using an inappropriate clustering method or setting parameters of clus-
tering method inaccurately.

To overcome these problems and to provide a single complete solution to all sce-
narios defined in Table 1, we claim that a CBHIR system should have the follow-
ing critical functions: 1) characterizing each hyperspectral image with global hyper-
spectral image representations that can both describe and summarize image content
and 2) effectively assessing similarities between defined global descriptors. To this
end, we introduce a novel semantic CBHIR system that consists of two modules.
The first module is devoted to representing each hyperspectral image with four low-
dimensional global feature descriptors: 1) two spectral descriptors (which represent
spectral characteristics of distinct foreground and background content); 2) two abun-
dance descriptors (which model fractional abundance of corresponding materials in
a given image). This is achieved by differentiating foreground and background con-
tent to derive a compact and distinctive representation of hyperspectral imagery. It is
worth noting that the proposed global features represent a suitable alternative to the
direct use of endmembers when considering scenarios in which very large amounts
of endmembers have to be processed, stored, and compared.

The proposed solution, built on global hyperspectral image descriptors, offers a good
compromise between efficiency and accuracy, especially considering large-scale on-
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line hyperspectral image retrieval. Then, the second module is devoted to retrieving
images similar to the query regarding materials included in the image by assessing the
similarities of spectral and abundance descriptors. This is achieved based on a hier-
archical retrieval strategy, where a predefined number of images are initially selected
according to similarities based on the spectral descriptors. Then, among the selected
images, those with the highest similarity in abundance descriptors are selected as the
final result set. Thanks to this strategy, global features computed by summarizing
content signatures into a fixed-dimensional feature vector are effectively employed in
the context of large-scale hyperspectral image retrieval.

Experiments carried out on a large-scale real multi-label benchmark hyperspectral
image collection demonstrate that the proposed system is capable of accurately re-
trieving hyperspectral images that comprise materials with low computational com-
plexity either queried via a single material signature or a query image depicting one
or more materials as well as their fractional abundances.

Novelties of the proposed system consist of 1) design and development of a semantic
approach that can summarize spectral features of distinct materials and their cor-
responding abundance in hyperspectral images; 2) employment of a novel off-line
feature extraction approach working in background that allows real-time retrieval of
hyperspectral imagery; 3) use of hierarchical image retrieval strategy to employ abun-
dance information for improving retrieval accuracy of the system.

1.4 Structure of the Thesis

The thesis is organized as follows. After Chapter 1, where the definition and pro-
posed solution to the problem are introduced, Chapter 2 discusses the hyperspectral
imaging phenomenon in detail and scrutinizes the retrieval problem from different as-
pects. In Chapter 3, a comprehensive review of CBHIR systems previously proposed
in the literature is presented. Chapter 4 summarizes the research activities performed
within the scope of the thesis except for the proposed novel CBHIR system. Chapter
5 explains the problem formulation and elaborates on the proposed CBHIR system.
Chapter 6 introduces the multi-label hyperspectral image collection used in the ex-
periments and explains the details of the experimental setup. Chapter 7 addresses the
comparative experimental results. Finally, Chapter 8 concludes the study, points out
the future works to be conducted on the proposed system for ensuring performance
improvements, and draws the conclusion of this work.
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CHAPTER 2

BACKGROUND

2.1 Spectral Remote Sensing

In the broadest sense, remote sensing is the science of obtaining information regarding
any object or phenomenon through analysis of the data acquired by an instrument
that is not physically in touch or contact. However, in the present context, remote
sensing refers to all methods of obtaining information about any phenomenon (earth,
lunar, and planetary surfaces, oceans, atmosphere, etc.) through investigating the
data acquired by airborne (e.g., satellite or aircraft) sensor systems those are capable
of sensing electromagnetic radiation reaching from the target surface.

Electromagnetic radiation is a sinusoidal wave carrying a certain quanta of energy
that propagates through space at the speed of light. In remote sensing, electromag-
netic radiation is broadly characterized by the wavelength (�) notion that refers to the
distance between two consecutive picks of the sinusoidal. The amount of energy de-
fined by certain radiation is inversely proportional to its wavelength. In other words,
electromagnetic radiation having lower wavelengths has higher frequency and energy.

Electromagnetic spectrum defines the range of all possible electromagnetic radiation
that can be observed and categorizes them with respect to their wavelengths (or fre-
quencies) within several regions, such as visible, infrared, microwave, or radio waves
(please see Figure 2). For instance, wavelengths lying through 400 nm and 700 nm
are regarded as visible where the human eye is sensitive to electromagnetic radiation
only in this region that defines the color spectrum for human perception. It is worth
noting that the sensitivity of remote sensing systems is not limited to visible regions.
Therefore, various detector materials are used to sense and quantify electromagnetic
radiation in other spectral regions for different purposes.

In remote sensing, electromagnetic radiation that reaches from the target surface to
the imaging system may originate in three ways: 1) thermal radiation self-emitted
by matters, 2) naturally available solar radiation reflected by matters, or 3) auxiliary
radiation (illumination) reflected from matters that are priorly emitted by the imaging
system.
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Figure 2: Electromagnetic spectrum.

Depending on the use of the auxiliary illumination in the measurement process, imag-
ing systems utilized in remote sensing are grouped under two categories: active and
passive systems. In active remote sensing, synthetic radiation required for illumi-
nation is generated by the imaging system and emitted towards the target surface.
Subsequent to the illumination phase, which is performed at specific wavelengths,
reflected or backscattered energy from matters existing on (or beneath) the target
surface is measured to generate the image (Figure 3 (a)). SAR, GPR, and LiDAR
are commonly used imaging systems in active remote sensing that provide useful in-
formation regarding the physical features (e.g., roughness, strictness, and structural
forms) of the matter.

Contrary to active systems, passive remote sensing imaging systems do not use any
auxiliary illumination and measure the amount of solar radiation reflected or thermal
radiation self-emitted by the matters (Figure 3 (b)). This is achieved by quantifying
electromagnetic radiation reaching from the target surface by means of detectors that
are sensitive in narrow or broad sections of the electromagnetic spectrum.

Spectral remote sensing is a branch of passive remote sensing that focuses on how
matters interact with naturally available solar energy. Measured energy at the imag-
ing sensor is determined by spectral characteristics of the matters with respect to what
extent the materials absorb, transmit or reflect the incident solar radiation as a function
of wavelength through the electromagnetic spectrum. Depending on how molecules
consume the energy, a certain amount of incident solar radiation is absorbed by the
matter at different portions of the electromagnetic spectrum, and the rest of the en-
ergy is either transmitted or reflected back to the atmosphere. For instance, chloro-
phyll pigment, which gives green color to plant leaves, causes absorption of most
of the incident solar radiation in the visible region (400-700 nm) for photosynthesis
and strongly reflects the energy at near-infrared (700-1100 nm) region of the electro-
magnetic spectrum. Similarly, matters in a gaseous state generally transmit energy in
VNIR, NIR, and SWIR spectral regions, and they can show high energy reflection or
absorption characteristics at specific wavelengths of MWIR or LWIR regions. Thus,
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(a) Active remote sensing (b) Passive remote sensing

Figure 3: Illustrations of remote sensing systems based on use of natural solar energy
in the measurement.

spectral remote sensing enables having detailed information about the chemical struc-
tures of the matter by observing how they interact with the incident solar radiation at
miscellaneous wavelengths.

According to several observation channels in the resulting image, spectral remote
sensing systems are divided into three categories. Panchromatic imaging systems
have a single-channel detector sensitive to a broad section of the electromagnetic
spectrum. Spectral response (sensitiveness) plot of a typical panchromatic imaging
payload (WorldView-1) as a function of wavelengths in visible and near-infrared re-
gions is indicated in black in Figure 4. Accordingly, panchromatic remote sensing
systems generate a single-channel digital image in that each pixel of the image is rep-
resented by a grayscale intensity value determined by a weighted average of sensed
energy through a particular spectral region that is defined by the quantum efficiency
of the sensor material. On the other hand, as shown in Figure 4, multispectral pas-
sive optical remote sensing systems (e.g., WorldView-2) use multi-channel (typically
ranges between 3 and 12) detectors that each channel is sensitive to a specific portion
of the electromagnetic spectrum. Consequently, images acquired by multispectral re-
mote sensing systems are composed of more than one channel, and a particular pixel
is represented by a sequence of numbers whose elements correspond to a gray level
intensity value at a specific observation channel. Thus, the most outstanding dif-
ference between these two passive remote sensing systems is increasing information
density in the spectral domain as illustrated in Figure 5 (a) and (b). This advantage
of the multispectral systems brings chrominance and enables differentiation of image
pixels with respect to spectral features characterized at each observation channel.

Hyperspectral imaging is yet another relatively new generation of passive optical re-
mote sensing technology that measures reflected or emitted energy from the matter
on the target surface at frequent intervals through a specific region of the electromag-
netic spectrum. In other words, a hyperspectral image comprises tens (or hundreds) of
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Figure 4: Spectral response curves of panchromatic and multispectral imaging pay-
loads on WorldView-1 and WorldView-2 missions, respectively [11, 12].

inherently registered observation channels at successive wavelengths. Consequently,
sequentially ordered observation channels, so-called hyperspectral cubes, give intense
spectral information about the matters in the scene.

Like multispectral imagery, hyperspectral image pixels are represented by a sequence
of numbers whose elements correspond to a gray-level intensity value measured at
a specific wavelength section. The sequence of values observed along the spectral
dimension of a hyperspectral image pixel generates a discrete signal called spectral
signature or chemical fingerprint (Figure 5 (c)). This signature represents distinctive
spectral features of the matter(s) present in a pixel at each wavelength where the ob-
servation is performed. Hence, spectral signatures provide useful information about
the chemical structures of the materials that have never been achieved by other spec-
tral imaging systems. Accordingly, in the literature, hyperspectral imaging is also
called chemical imaging or imaging spectroscopy.

Spectral signatures of materials dominantly covering the Earth’s surface in the Mid-
dle East Technical University (METU) campus, extracted from a hyperspectral im-
age acquired by the National Aeronautics and Space Administration (NASA) Earth
Observatory-1 (EO-1) Hyperion mission, are given in Figure 6. The figure visually
compares two spectral remote sensing systems (multispectral and hyperspectral) re-
garding spectral resolution and spatial coverage.

It is worth noting that apart from the number of observation channels in the resulting
image, there are two essential differences between multispectral and hyperspectral
sensing: 1) none of the multispectral observation channels may cover a particular
section within the spectral region of interest, 2) two or more multispectral obser-
vation channels may overlap in particular sections of the electromagnetic spectrum
where the image is acquired. Accordingly, these drawbacks of multispectral remote
sensing may cause a loss of spectral information. On the other hand, hyperspectral
remote sensing overcomes these drawbacks by fully covering the portion of the elec-
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Figure 5: Illustration of passive optical remote sensing systems and information den-
sity in the spectral domain.

0

500

1000

1500

2000

2500

3000

3500

4000

400 600 800 1000 1200 1400 1600 1800 2000 2200 2400

Re
fle

ct
an

ce

Wavelength (nm)

Water
Forest
Soil
Asphalt Pavement

|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||Hyperion

WorldView-2

Figure 6: Spectral signatures of materials dominantly covering the Earth’s surface
in METU campus. Particular spectral bands corresponding to atmospheric absorption
windows have been removed from the plot due to the low signal-to-noise ratio (SNR).

11



tromagnetic spectrum with non-overlapping and consecutive observation channels.
Thus, hyperspectral imaging enables achieving higher success in the discrimination
and identification of the matters in a given scene with respect to their spectral features
as compared to other spectral imaging techniques.

2.2 Working Principles of Hyperspectral Remote Sensing Systems

This subsection of the thesis is devoted to scrutinizing how hyperspectral remote sens-
ing systems generate such qualified imagery that enables detailed information regard-
ing the chemical and physical (i.e., texture and shape) structures of the matters in
the scene by achieving high resolution in both spatial and spectral domain. In this
context, hyperspectral remote sensing systems are reviewed according to design prin-
ciples that determine how the target surface is imaged in spatial and spectral domains.

Spatial Scanning

Considering the number of pixels acquired at a time in each spatial dimension, three
common approaches in hyperspectral remote sensing system design are illustrated in
Figure 7. Whisk-broom systems, a.k.a. across-track or spotlight scanners, use a single
detector and acquire one pixel at a time by means of a rotating mirror. As soon as one
particular pixel is acquired, the rotating mirror looks at the target surface from a dif-
ferent angle to acquire the neighboring pixel(s). On the other hand, push-broom sys-
tems, a.k.a. along-track scanners, scan the target surface using a single-dimensional
array of detectors, which can acquire one line of pixels at a time as the imaging sys-
tem moves along the flight direction. The hyperspectral imaging systems in the third
group are called snapshot (a.k.a. framing or staring) designs that are able to acquire
multiple pixels in each spatial dimension at a time using a two-dimensional array of
detectors without any need to scan the target surface by means of the movement of
the imaging system.

The most remarkable advantage of whisk-broom design over other hyperspectral
imaging system designs is the less number of detectors to be kept radiometrically
calibrated. However, the moving parts of the whisk-broom design make these sys-
tems more complex and vulnerable. As a variant of the whisk-broom design, push-
broom is the most common hyperspectral imaging payload design used for airborne
and satellite platforms. Push-broom systems cover a wider area on the target surface
than whisk-broom design. Accordingly, push-broom systems look at a particular area
on the ground for a longer period of time than whisk-broom systems, which ensures
higher exposure time and SNR performance. However, since each individual ele-
ment of the detector array has different spectral response characteristics, they must
be calibrated. Otherwise, uncalibrated individual detectors may cause stripes on the
resulting image. On the other hand, snapshot design allows acquiring multiple pixels
along each spatial dimension simultaneously. Similar to push-broom design, snapshot
design requires calibration of each detector array element. In addition to that, 2D fo-
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Figure 7: Common hyperspectral remote sensing system design approaches.

cal plane arrays that are used in snapshot systems offer limited spectral sensitivity and
provide less spectral resolution as compared to other system designs.

It is also worth noting that the spatial dimension of the image acquired by a whisk-
broom or push-broom system in an across-track direction is defined by the rotation
range of the mirror and the number of detectors in the sensor array, respectively. On
the other hand, these systems can acquire the desired amount of pixels (scan lines) in
the second spatial dimension along the flight direction. Despite the snapshot design
allowing acquiring multiple pixels in two dimensions, the spatial dimensions of the
resulting image are limited to a number of sensors on the detector array.

Spectral Selection

Yet another key point distinguishing hyperspectral remote sensing systems is the spec-
tral selection technique that enables imaging of the target scene at consecutive and
non-overlapping wavelengths with high resolution in the spectral domain to build
a hyperspectral data cube. There are three common spectral selection techniques
adopted in hyperspectral remote sensing system design: 1) separating the electro-
magnetic radiation reaching from the target surface into different wavelengths using
a dispersing element, 2) consecutively imaging the target surface at different wave-
lengths in a snapshot manner in the time domain using a tunable band-pass filter, 3)
quantifying the electromagnetic radiation at a specific wavelength at a time using a
moving beam splitter based design called interferometer to form the hyperspectral
imagery.

Hyperspectral remote sensing systems adopting the first approach use a diffraction
grating or prism based dispersing element that separates the electromagnetic radia-
tion reaching from the target surface into different wavelengths (please see Figure
8). Subsequently, the dispersed electromagnetic radiation for a certain spot or spatial
scan line is reflected on a single detector or an array of sensitive detectors in a particu-
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Figure 8: Dispersion unit based spectral selection designs.

lar spectral region of interest. Accordingly, the amount of energy reflected or emitted
by the matter(s) present within the IFOV of the imaging system is quantified at dif-
ferent wavelengths. These spectral selection approaches are used in whisk-broom
and push-broom designs in which the system disperses the electromagnetic radiation
from the target surface, builds up the image as the imaging system moves through the
along-track direction, and scans succeeding lines.

The second spectral selection technique used in hyperspectral imaging system design
is the tunable filter that enables imaging of the target surface at different wavelengths
in the time domain. In other words, the adjustable band-pass filter used in the de-
sign allows a certain frequency of incoming electromagnetic radiation from the target
surface to reach the detector array and blocks other frequencies depending on the
given input voltage. Accordingly, detectors quantify incoming radiation from the tar-
get surface at a specific frequency for all the spatial pixels concurrently. The same
process is repeated in the time domain for the other frequencies (i.e. wavelengths)
by adjusting the filter’s passband for acquiring the other observation channels to form
the hyperspectral image. This spectral selection technique is broadly used in snap-
shot hyperspectral imaging system design that ensures the time required to adjust the
tunable filter to form the hyperspectral image. Despite the snapshot system design
enabling imaging of the target surface in two spatial dimensions, the tunable filters in
front of the detector arrays suffer from some drawbacks, such as low throughput, low
spectral resolution, and limited spectral coverage.

Hyperspectral remote sensing systems in the third group perform spectral selection
using an optical design called interferometer. As illustrated in Figure 10, an interfer-
ometer splits the incoming electromagnetic radiation reaching from the target surface
into two separate beams to create an optical path difference (OPD) between them. In

14



Fo
re

 O
pt

ic
s

 spatial 

sp
at

ia
l 

Tu
na

bl
e 

Fi
lte

r

D
et

ec
to

r A
rr

ay

sp
at

ia
l 

 spatial  λ 

Hyperspectral Image

Figure 9: Tunable filter based spectral selection design.

Fixed 
Mirror

M
oving 

M
irror

Fo
re

 O
pt

ic
s Incoming 

Radiation

Beam 
Splitter

Detector Array

Figure 10: Michelson interferometer.

the next step, two beams are reflected back to interfere with the beam-splitter, and a
combination of the two beams called an interferogram, is measured by the detector. In
order to generate the OPD, one of the two beam’s phases is altered before the interfer-
ence. The phase difference between two beams caused by the OPD either strengthens
or attenuates the resulting interferogram. In other words, the resulting interferogram
gets brigther as the phases of two beams are closer. Similarly, the interferogram is
attenuated as the phase shift between two beams increases. In the final step, the in-
terferogram obtained in the spatial domain as a result of the continuous movement
of the mirror is converted to the frequency domain by applying the Fourier Trans-
form. Accordingly, the interferogram is decomposed into frequency components, and
each individual frequency in the incoming electromagnetic radiation reaching from
the target surface can be quantified. Michelson and Sagnac are the most common
interferometer designs used in hyperspectral remote sensing systems.
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Detector Materials

Hyperspectral imaging is performed in a broad section of the electromagnetic spec-
trum (i.e., 100 nm to 12+ µm) that covers ultraviolet, visible, near-infrared, and ther-
mal infrared regions. However, depending on the spectral region in which the imaging
is carried out, passive optical remote sensing systems need to employ different detec-
tors manufactured with specific materials sensitive to particular spectral regions. The
underlying reason for employing different imaging detectors is the dynamic sensitiv-
ity of the materials used in the detectors in different spectral regions. The spectral
sensitivity of the detector materials is either defined by the quantum efficiency or the
spectral response. The quantum efficiency of a detector material is the ratio of the
incident photon to the converted electron as a function of the wavelength. Similarly,
the spectral response defines the sensitivity of the sensor material to incoming ra-
diation as a function of the wavelength (please see Figure 4). Figure 11 presents
commonly used detector materials in hyperspectral imaging systems and the spec-
tral ranges where the materials show sufficient spectral sensitivity characteristics for
detector production.

2.3 Hyperspectral Remote Sensing Systems

Hyperspectral remote sensing of diverse surfaces (e.g., earth, lunar, or planetary) has
been performed using instruments carried on low or high-altitude platforms since the
early 1980s. Depending on the requirements of the imaging campaign (e.g., period-
icity, distance to target surface, spatial resolution, spectral region, etc.), hyperspectral
remote sensing systems perform image acquisition either on spaceborne (satellites or
space stations) or airborne (manned or unmanned aircraft) platforms. This section
of the thesis is devoted to 1) presenting a comprehensive review of the hyperspectral
imaging systems used in the history of remote sensing and 2) drawing attention to
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the necessity of novel CBHIR systems considering the volume and diversity of image
archives generated by these instruments.

2.3.1 Airborne Systems

The history of hyperspectral remote sensing systems flying on low and medium-
altitude airborne platforms began in 1982 with the deployment of the National Aero-
nautics and Space Administration/Jet Propulsion Laboratory’s (NASA/JPL) 128-band
SWIR (900-2400 nm) Airborne Imaging Spectrometer-1 (AIS-1) instrument [13]. In
the following years, NASA/JPL has developed succeeding hyperspectral imaging sys-
tems Airborne Imaging Spectrometer-1 (AIS-2) [13], Advanced Solid-state Array
Spectroradiometer (ASAS) [14], and Airborne Visible Infrared Imaging Spectrom-
eter (AVIRIS) [15], which operate in either VNIR or VNIR-SWIR regions of the
electromagnetic spectrum. Among these, AVIRIS has been a well known instrument
that acquires 224 band hyperspectral imagery of the Earth’s surface in VNIR-SWIR
(400-2450 nm) region. The AVIRIS archive, continuously updated since 2006 with
gigabytes of new hyperspectral images, is available at AVIRIS Data Portal [16]. Con-
sequently, hyperspectral images acquired by AVIRIS have been used by researchers in
a wide range of fields, e.g., geology, land management, agriculture, and atmospheric
studies, to solve diverse problems.

Since the beginning of 1990s, numerous governmental or non-governmental initia-
tives have also started to develop and deploy hyperspectral remote sensing systems.
For instance, Hyperspectral Digital Imagery Collection Experiment (HYDICE) by
Hughes Danbury Optical Systems (HDOS) [17, 18], Système Spectro-Imageur de
Mesure des Propriétés Hyperspectrales Embarqué (SYSIPHE) by The French Aerospace
Lab (ONERA) [19], TRW Imaging Spectrometer (TRWIS) A-B-II-III by TRW TRWIS-
A [13, 20, 21], Advanced Airborne Hyperspectral Imaging System (AAHIS) by Sets
Technology [22], Airborne Hyperspectral Scanner (AHS) by Daedalus Enterprise
Inc. [13], Digital Airborne Imaging Spectrometer (DAIS) & Reflective Optics Sys-
tem Imaging Spectrometer (ROSIS) by German Aerospace Center (DLR) [23, 24],
Spatially Modulated Imaging Fourier Transform Spectrometer (SMIFTS) by Univer-
sity of Hawaii [13], Airborne Real-time Cueing Hyperspectral Enhanced Reconnais-
sance (ARCHER) by US Air Force [25], COMPASS by the US Government [26],
Compact Airborne Spectrographic Imager (CASI) by ITRES [27], and SEBASS by
Aerospace Corp. [28, 29] pioneered airborne hyperspectral remote sensing systems
developed for different purposes. Due to the common drawbacks of the systems (i.e.,
size, weight, and storage requirements) and the lack of unmanned platforms offering
enough payload capacity, all these hyperspectral remote sensing systems were only
able to operate on manned aircraft platforms (e.g., Lockheed ER-2, Convair CV-580,
GippsAero GA8, Cessna 208). In 2019, Visratek and Headwall Photonics jointly de-
veloped and deployed yet another VNIR-SWIR (400-2500 nm) very high-resolution
airborne hyperspectral imaging system in Turkey for medium-altitude flights that of-
fers fully autonomous mission control and configuration.

17



Figure 12: ARCHER hyperspectral remote sensing system installed on GippsAero
GA8 [30].

In the 2000s, advances in optics, electronics, and computing technologies have led
to the development of new-generation hyperspectral remote sensing systems. This
evolution has been mostly observed in increasing spectral and spatial resolutions ver-
sus reducing the dimensions and weights of the instruments. For instance, the Nano-
Hyperspec (400 nm - 1000 nm) 270 band / 640 pixel VNIR push-broom hyperspectral
imager, which was designed for small Unmanned Aerial Vehicles (UAV), developed
by Headwall Photonics weight less than 650 gr, including a data storage unit. There-
fore, in addition to manned aircraft, hyperspectral imagers have found a chance to fly
on alternative platforms, i.e., single-rotor, multi-rotor, or fixed-wing UAVs. Accord-
ingly, this progress has led to the mass deployment of hyperspectral imaging systems
in a short time for different purposes ranging from precise detection of plant disease
to buried explosive detection.

On the other hand, mass deployment of these systems causes the emergence of diverse
hyperspectral imagery collections to be stored and processed. For instance, the above-
stated hyperspectral remote sensing system (Nano-Hyperspec) acquires hyperspectral
imagery of a ~32 km2 area in 60 minutes on a multi-rotor UAV flying (Figure 13)
at 500 m altitude with 57,6 km/h of cruise speed. Such a flight results in over 29
gigabytes of raw hyperspectral image data. Accordingly, effective management of the
hyperspectral image collections and rapid access to the desired information in these
collections have become an important issue as these systems become more widely
used.

Figure 13: Nano-Hyperspec hyperspectral remote sensing system installed on DJI
M600 Pro UAV.
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Appendix A presents a comprehensive list of the hyperspectral imaging systems de-
veloped for airborne applications by providing their technical and operational speci-
fications.

2.3.2 Spaceborne Systems

Subsequent to successful imaging campaigns performed with airborne platforms, hy-
perspectral remote sensing systems have been also deployed with satellite missions
for different purposes. In 1997, NASA successfully launched the first satellite mission
equipped with a hyperspectral remote sensing instrument. Interferometer-based push-
broom hyperspectral payload on the LEWIS mission observed the Earth’s surface in
the VNIR-SWIR (400 nm - 2500 nm) region with 384 discrete spectral channels. It
is worth noting that the imager was not the first hyperspectral imaging system de-
velopment initiative for a spaceborne mission [31]. Priorly, NASA, European Space
Agency (ESA), and Commonwealth Scientific and Industrial Research Organisation
(CSIRO) initiated three unachieved spaceborne hyperspectral imaging system devel-
opment projects named HIRIS [32, 33], HRIS [34], and ARIES [35], respectively.

In 2000, two successful satellite missions MightySat II and EO-1 were launched by
USAF and NASA, respectively. MightySat II was launched with an interferometer-
based push-broom payload named FTHSI, which could acquire 256-band hyperspec-
tral imagery in the VNIR (400 nm - 1000 nm) region [36]. On the other hand, NASA’s
multi-payload EO-1 mission was launched with a grating-based 220 band push-broom
VNIR-SWIR (400 nm - 2500 nm) hyperspectral remote sensing instrument named
Hyperion [37]. Since NASA has made all EO-1 mission payload data freely available
to download on the Earth Explorer web portal [38], Hyperion’s historical archive has
been the first and ever-growing publicly available hyperspectral image resource for
researchers. Moreover, the EO-1 mission has allowed individuals and organizations
to issue data acquisition requests to have hyperspectral imagery of a specific area in
one of the next possible re-visits if the area lies within the coverage of the satellite.
Consequently, Hyperion hyperspectral imagery has been extensively used for various
applications ranging from mineral mapping to water quality assessment. The EO-1
mission was decommissioned in 2017, but all historical image archives are still ac-
cessible on the Earth Explorer portal.

The following year, ESA successfully launched a Project for On-Board Autonomy
(Proba) mission carrying Compact High-Resolution Imaging Spectrometer (CHRIS)
VNIR (415 nm - 1050 nm) hyperspectral imaging payload [39, 40]. Unlike the hyper-
spectral instruments on the previous satellite missions, images acquired by CHRIS are
composed of either 18 or 62 spectral bands depending on targeted spatial resolution.
Like Hyperion, ESA allows access to CHRIS historical hyperspectral image archive
at Earth Online web portal [41].

In addition to space missions that aim to acquire hyperspectral imagery of the Earth’s
surface, other successful missions have observed planetary or lunar surfaces with hy-
perspectral instruments. Mars Reconnaissance Orbiter (MRO) was launched in 2005
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Figure 14: EO-1 Mission and a false-color representation of a hyperspectral image
acquired by Hyperion payload [42].

by NASA and John Hopkins University to search for mineralogical evidence of wa-
ter on Mars with Compact Reconnaissance Imaging Spectrometer for Mars (CRISM)
hyperspectral imaging system. CRISM is a grating-based VNIR-SWIR-MWIR (400
nm - 3900 nm) hyperspectral imaging system that observes the surface of Mars at 544
distinct spectral channels.

Two years later, China launched Chang’e-1 mission to observe the Moon’s surface
with Interference Imaging spectrometer (IIM) hyperspectral remote sensing system
[43, 44]. The IIM instrument on Chang’e-1 acquired 32-band hyperspectral imagery
of the Moon’s surface with 25.6 m of spectral resolution from a 200 km lunar orbit.
The space missions to obtain hyperspectral imagery of the Moon’s surface have con-
tinued with Indian Space Research Organisation’s (ISRO) Chandrayaan-1 satellite.
The mission was launched with two hyperspectral imagers named HySI [45, 46] and
M3 [46, 47], which were sensitive in VNIR (421-964 nm) and VNIR-SWIR-MWIR
(400 nm - 3000 nm) regions, respectively.

In 2008, China launched another satellite mission with a hyperspectral imaging in-
strument to observe the Earth’s surface. The HIS payload on the HJ-1 satellite is an
interferometer-based instrument and is able to acquire hyperspectral imagery at 115
distinct spectral channels in the VNIR (459 nm - 956 nm) region [48, 49].

Along with civil usage, hyperspectral imagery has been extensively utilized in defense
and security applications. The Tactical Satellite-3 (TacSat-3), launched in 2009 by
the United States Department of Defense (DoD), is a military-purpose hyperspectral
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imaging mission. Grating based Artemis instrument on TacSat-3 has acquired 400
bands hyperspectral imagery in VNIR and SWIR (400 nm - 2500 nm) region [50, 51].

Satellites are not the only platforms that orbit in space with hyperspectral instruments.
In 2011, China National Space Administration (CNSA) integrated a hyperspectral
imaging system into the Tiangong-1 space station. The HIS instrument on Tiangong-
1 acquired 128 bands of hyperspectral imagery of the Earth’s surface in VNIR and
SWIR (400 nm-2500 nm) regions [48, 49]. It has been known that DLR also car-
ries out a project to integrate push-broom DLR Earth Sensing Imaging Spectrometer
(DESIS) hyperspectral imaging instruments into the ISS [52, 53, 54]. In December
2019, the Hyperspectral Imager Suite (HISUI) mission of Japan Space Systems with
two Micro-Hyperspec series hyperspectral imagers (VNIR and SWIR) developed by
Headwall Photonics launched by Space X’s Dragon spacecraft to ISS [55, 56]. The
system delivers hyperspectral imagery with 185 spectral channels over a 20 km swath
width with 20 x 30 meter spatial resolution.

Apart from large-scale satellites and space stations, cubesats have also been used for
spaceborn hyperspectral imaging missions in the recent years. For instance, Green-
house Gas Satellite (GHGSat) launched Claire’s mission in 2016 to observe green-
house and air quality gas emissions with a VNIR hyperspectral instrument. The
Micro-Hyperspec instrument on Claire is sensitive in the VNIR (400-1000 nm) re-
gion and acquires 325 bands of hyperspectral imagery [57, 58, 59].

In addition to the aforementioned spaceborne missions that are either on duty or ex-
pired for various reasons, other satellite missions with hyperspectral imaging pay-
loads are in the design or production phase.

2.4 Review of Hyperspectral Remote Sensing Applications from a Content-
Oriented Point of View

Thanks to incomparable dense spectral information provided by hyperspectral imag-
ing systems regarding the matters that constitute a scene, images acquired with those
systems have been used in various remote sensing applications. This section of the
thesis is dedicated to scrutinizing the utilization of hyperspectral remote sensing im-
agery in diverse applications from a content-oriented point of view by providing real-
life application examples.

2.4.1 Land-Use Mapping / Classification

One of the principal applications that utilize hyperspectral remote sensing imagery is
the precise mapping of land use. Ranging from understanding the Earth’s ecosystem
to city or regional planning, accurate and up-to-date classification of land-cover types
provides quantitative information regarding how a particular region of the Earth is
fragmented either naturally or in a planned manner into diverse sections (urban area,
agricultural area, forest, water bodies etc.) for different purposes.
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Figure 15: Land-use mapping results of classification method proposed in [1] in study
area 1.

Since very dense spectral and spatial information provided by hyperspectral imagery
allows accurate discrimination of matters in a scene, a remarkable number of methods
have been proposed in the literature for land-use classification. A novel approach pro-
posed in [60] performs multi-label land-use classification in hyperspectral imagery. In
[1], authors proposed a framework for land-use classification that combines spectral,
shape, and texture features extracted from hyperspectral imagery with height features
from Digital Surface Models (DSM). Yet another study that proposes an alternative
land-use mapping method combines hyperspectral imagery with LiDAR data to im-
prove classification accuracy [61].

Accordingly, a proper CBHIR system may allow decision-makers to accurately access
desired hyperspectral imagery in a certain archive using a query that embodies/repre-
sents spectral features of similar land-use classes.

2.4.2 Environmental Monitoring

Environmental monitoring is another remote sensing application that intensively ben-
efits from hyperspectral imagery. As a broad definition, environmental monitoring
describes activities performed to observe change and quality of the environment and
includes, but is not limited to, land monitoring and coastal/oceanic monitoring for
different purposes such as change detection, risk assessment, or post-disaster man-
agement.

A method for mapping the thickness of oil spills using hyperspectral imagery was
proposed in [2]. The proposed method was verified with AVIRIS hyperspectral im-
agery acquired in the Gulf of Mexico on May 17, 2010, over the Deepwater Horizon
oil spill disaster area. As shown in Figure 16, high-resolution spectral imagery allows
accurate mapping of oil spill spread and thickness. In [62], hyperspectral remote sens-
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Figure 16: AVIRIS visible-color composite image and example signatures from oil-
spill disaster area [2].

ing imagery has been used to near-real-time monitor the formation of algal blooms,
which are toxic to human health and the ecosystem, in Lake Erie. In [63], off-nadir
hyperspectral imagery acquired by CHRIS/PROBA platform was used to map tropi-
cal dry forest succession in Brazil.

In [64], a novel unsupervised change detection method for multi-temporal hyperspec-
tral imagery was proposed. The proposed method focuses on change in each individ-
ual band of hyperspectral images and creates hyperspectral change vectors using this
information. Yet another method that aims at detecting changes in multi-temporal hy-
perspectral remote sensing imagery using sparse unmixing was proposed in [3] and
verified using real and synthetic data sets.

Despite hyperspectral remote sensing imagery being widely used for detecting changes
originating on the Earth’s surface, it has also been used for real-time risk-assessment
purposes such as detecting or monitoring hazardous matters. In [65], an airborne
hyperspectral imaging system, which operates between 3.3 µm and 5.4 µm, was in-
troduced for industrial emissions monitoring.

Fast and accurate access to hyperspectral images embodying critical content is im-
portant for monitoring, early response, and risk assessment. Thus, a proper CBHIR
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Figure 17: Multi-temporal hyperspectral imagery acquired over New Orleans (a)
September 2010, (b) October 2011, and (c) change detection map generated by the
method proposed in [3].

Figure 18: (a) Thermal image of a segment of the Long Beach industrial corridor (b)
CO ACE detection image [65].
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Figure 19: Plant nitrogen retrieval map generated by the method proposed in [4].

system may contribute to more effective usage of hyperspectral imagery in environ-
mental monitoring.

2.4.3 Precision Agriculture and Forestry

Considering the continuous increase in demand on fruitful food resources around the
World, precision agriculture (or farming) gains more importance with each passing
day. Ranging from crop disease mapping to yield assessment, precision agriculture
has been intensively using spectral remote sensing imagery for decades. Measured
energy reflecting from agricultural fields at specific wavelengths provides useful in-
formation regarding plant diversity, health, soil moisture, and fruitfulness. Thus, hy-
perspectral imagery is a useful data resource for precision agriculture-related appli-
cations. Beyond that, recent developments in imaging technology enable acquiring
hyperspectral imagery at very high resolution that allows analysis of leaves or fruits
of each individual plant in the field.

In [66], a method was proposed for mapping sugarcane plants infected with mosaic
virus in hyperspectral imagery acquired with a UAV platform. In [67], the winter
wheat leaf area index is estimated in airborne hyperspectral imagery using vegetation
indices. Yet another study on winter wheat plants proposed optimized spectral indices
for mapping powdery mildew, yellow rust, and aphid diseases [68]. In [4], nitrogen
retrieval of plants after water, which is an important factor that limits crop yield,
is studied on VNIR and SWIR hyperspectral imagery (see Figure 19). A method
proposed in [69] enables the generation of spectral-temporal response surfaces for
precision agriculture applications using hyperspectral imagery.
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Figure 20: (a) Detection of afforested areas, (b) estimated positions of new trees to
be planted [5].

Precision forestry is another application that utilizes dense spectral information pro-
vided by hyperspectral remote sensing imagery for effective forest management. In
[5], a supportive method was proposed for the afforestation planning process of par-
tially forested areas. The proposed semi-supervised method identifies afforested re-
gions in airborne hyperspectral imagery and estimates proper locations for new trees
considering the canopy area of the mature plant (see Figure 20). In [70], a method
for fusing hyperspectral imagery and LiDAR data for forest monitoring in the south-
western United States was proposed.

All these studies and methods mainly benefit from certain differences in spectral sig-
natures of matters (i.e., plant species, diseases, or pests) that constitute hyperspectral
imagery acquired over an agricultural or forested area. Considering the acreage of
those areas, an accurate CBHIR system may enhance the effectiveness of hyperspec-
tral imagery in precision agriculture and forestry, such as detecting infected plants or
locating certain types of trees that show similar spectral characteristics with plants in
a given query image.
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2.4.4 Mineralogy and Geology

Mineralogy and geology is another field that intensively uses spectral information for
various purposes ranging from drill core analysis to mapping mineral deposits. The
dense spectral information provided by hyperspectral imagery enables the identifica-
tion of minerals due to energy reflection or absorption characteristics they possess at
specific wavelengths. Beyond that, accurate identification of critical (e.g., alteration)
minerals has also been used to localize deposits [6]. Since distinctive spectral features
of minerals and rocks are mainly observed at wavelengths that lie beyond the visible
range, mineralogy and geology applications often benefit from infrared hyperspectral
remote sensing imagery.

Figure 21: Summary of the main deposit types in relation to areas in the spectrum
(indicated by the bars) where absorption occurs related to the presence of key alter-
ation minerals [6].

There have been many studies related to mineral mapping proposed in the literature.
Hydrothermal alteration mapping of Bodie, California, was performed using AVIRIS
hyperspectral imagery in [71]. In [72], the performance of an airborne (AVIRIS) and
a spaceborne (EO-1 Hyperion) hyperspectral imaging system is compared for min-
eral mapping. Yet another mineral mapping method that used thermal hyperspectral
imagery was proposed in [73]. The effect of improving the spatial resolution of hy-
perspectral imagery for mineral mapping was discussed in [74]. EnMAP Geological
Mapper (EnGeoMAP) 2.0 algorithm was proposed in [7] for automated hyperspectral
mineral identification (see Figure 22). In [75], a novel workflow for volcano mapping
and monitoring that integrates hyperspectral imaging with LiDAR was proposed. In
[76], a novel feature extraction method was proposed for mining area classification in
hyperspectral remote sensing imagery.

In addition to mineral mapping, hyperspectral imagery has been used to map hydro-
carbons, the main constituents of oil and natural gas. In [77], an algorithm for hy-
perspectral detection of hydrocarbons called the Hydrocarbon Index was proposed.
The author reviews oil-gas reservoir detection approaches using hyperspectral remote
sensing imagery in [78].

Considering the benefits of spectral information in detecting and identifying minerals,
a proper CBHIR system might be a useful tool for mineralogy and geology applica-
tions in terms of rapid and accurate access to hyperspectral images with minerals
showing similar spectral characteristics with a given query.
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Figure 22: Material map of EnGeoMAP 2.0 calculated from airborne HyMAP data
[7].

2.4.5 Defense and Security

Since chemical fingerprints called spectral signatures of the matter allow rapid and
remote detection and identification, defense and security applications also intensively
benefit from hyperspectral imagery. Utilization of hyperspectral imagery in defense
and security can be categorized under two groups: 1) signature-based detection ap-
plications and 2) anomaly detection applications [79].

Signature-based detection aims to determine the existence of a phenomenon (i.e.,
any target, clue, or residual) in a scene by pair-wise matching spectral signatures
of known matters (namely spectral library) with image pixel signatures either at the
pixel or sub-pixel level. To this end, the proposed methods in the literature mainly
use spectral distance or matched filter-based approaches. In [8], a constrained energy
maximization-based military camouflage detection method is proposed (see Figure
23). A linear unmixing-based sub-pixel target detection workflow is presented in [80].
A supervised metric learning-based sub-pixel target detection method is proposed in
[81]. In [82], an airborne hyperspectral imaging system is introduced for detecting
gaseous and solid targets. In [83], a novel method for detecting targets using sparse
representation of hyperspectral image is proposed. In [84], sparse transfer manifold
embedding (STME) is introduced for encoding discriminating features of the targets
in hyperspectral imagery to increase detection performance.

On the other hand, anomaly detection aims at finding suspicious image pixels whose
spectral characteristics are extraordinarily different than surrounding pixels in an im-
age. One of the most well-known anomaly detection algorithms for multi-band im-
agery called Reed-Xiaoli (RX) was published in [85] and performance of the original
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method was enhanced by other studies, i.e., [86, 87], in the course of time. In [88],
a method was introduced for detecting buried objects in thermal infrared imagery. A
novel method that fuses hyperspectral imagery with high-resolution multispectral im-
agery for target detection is proposed in [89]. A comprehensive review of landmine
detection methods using hyperspectral imagery can be found in [90]. An algorithm
that detects vehicles in shadow areas using hyperspectral and LiDAR data is intro-
duced in [91].

Even if the pure spectral signature of the target does not exist or the featured spectral
characteristics of the target are not known, a proper CHBIR system may allow easy
and fast access to hyperspectral images with similar matters whose spectral charac-
teristics are defined by the query image.

Figure 23: (a) RGB composite image of the data set, (b) Camouflage detection result
[8].
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CHAPTER 3

RELATED LITERATURE

This chapter of the thesis is dedicated to presenting a comprehensive review of litera-
ture related to content detection and content-based retrieval in hyperspectral imagery.
The following subsections elaborate on the related literature in a systematic way by
scrutinizing methods in line with CBHIR strategies defined in Table 1, such that con-
tent detection and retrieval methods are grouped with respect to the type of query:
single material or multiple materials.

3.1 Single Material Based Content Detection Methods for Hyperspectral Im-
agery

Single material-based content detection in hyperspectral imagery refers to the process
of searching a given query signature xq through image pixels xn of all hyperspectral
images Xn in an archive X and considered as a binary hypothesis test:

H0: Content absent

H1: Content present

The detection process is performed either at full-pixel or sub-pixel level. In full-pixel
level content detection, phenomena represented by the query signature are searched
through image pixels of Xn, assuming each image pixel belongs to one class. Sub-
pixel level content detection, on the other hand, assumes that pixel signatures of Xn

might originate in a mixture of one or more material classes due to low spatial resolu-
tion of the imager or other external parameters, i.e., multiple scattering of the incident
light, as explained in Section 3.2. Thus, xq must be searched through all xn as a re-
sulting mixture component or as an interfered form of its original form.

Finally, a CBHIR system retrieves the images with pixel(s) that satisfy H1 considering
the user-defined threshold.
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3.1.1 Full-Pixel Content Detection Algorithms

The full-pixel content detection algorithms calculate one-by-one similarity between
given query signature xq and image pixel signatures xn of an archive image Xn.
In case Xn has one or more pixels that satisfy H1 with respect to a user-defined
threshold, Xn is considered as an image that covers material depicted by the query
spectral signature. The following sub-sections discuss details of full-pixel content
detection algorithms that are widely used in the literature.

Spectral Angle Mapper (SAM)

Spectral Angle Mapper is one of the most well-known and widely used content de-
tection algorithms at full-pixel level in the literature that threats query signature xq

and any image pixel xn of Xn as two vectors and calculates the angle between them.
Even though SAM is a simple and effective way to measure the similarity between
two spectral signatures, the illumination-invariant nature of the method has often been
criticized.

SAM(xq ,xn) = cos�1
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Spectral Correlation Mapper (SCM)

To overcome SAM’s drawback of distinguishing correlation between two given spec-
tral signatures, another full-pixel content detection algorithm called Spectral Correla-
tion Mapper (SCM) was proposed in [92].

As defined in Equation 2, SCM calculates a similarity between given two signatures
in the range of -1 and 1. The SCM approaches 1 as the correlation between channel
values of xq and xn are higher. Similarly, as the correlation between channel values
of xq and xn decreases, SCM approaches to -1.
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Spectral Information Divergence (SID)

Spectral Information Divergence (SID) is yet another well-known method to measure
similarity between given two spectral signatures xq and xn. As a stochastic approach,
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SID models two signatures as random variables with probability distributions. Ini-
tially, xq and xn are normalized to range [0,1] by applying equations 3 and 4 to
calculate desired probability vectors q and p, respectively.
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Then, SID is calculated as

SID (xq,xn) = D (xq||xn) + D (xn||xq) (5)

where D(xq||xn) and D(xq||xn) are relative entropy of xq with respect to xn and
vice versa, respectively and calculated as defined in equations 6 and 7.

D(xq||xn) =
SX

s=1

qs log (qs/ps) (6)

D(xn||xq) =
SX

s=1

ps log (ps/qs) (7)

Jeffries-Matusita Distance (JM)

Jeffries-Matusita Distance (JM) is yet another stochastic approach to enhance the
illumination invariance nature of SAM while determining the similarity between xq

and xn. Similar to SID, JM is calculated based on probability distributions of given
two vectors (see Equations 3 and 4) as defined in equation 8.
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Hybrid Methods

Hybrid methods have been proposed in the literature to combine different content
detection methods and overcome the drawbacks of their standalone usage.
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In [93], SID-SAM method was proposed to combine deterministic SAM and stochas-
tic SID as a new hyperspectral discrimination measure as defined in equation 9.

SID� SAM(xq,xn) = SIDtan(xq,xn) · SIDsin(xq,xn) (9)

where

SIDtan(xq,xn) = SID (xq,xn) · tan (SAM(xq,xn)) (10)

SIDsin(xq,xn) = SID (xq,xn) · sin (SAM(xq,xn)) (11)

Similarly, SID-SCM was defined in [94] by replacing SAM in SID-SAM. In [95], yet
another hybrid method was proposed called JM-SAM as defined in equation 12

JM-SAM (xq,xn) = JM-SAMtan(xq,xn) · JM-SAMsin(xq,xn) (12)

where

JM-SAMtan(xq,xn) = JM (xq,xn) · tan (SAM (xq,xn)) (13)

JM-SAMsin(xq,xn) = SID (xq,xn) · sin (SAM (xq,xn)) (14)

3.1.2 Sub-Pixel Content Detection Algorithms

Apart from full-pixel level content detection, some single material content detection
problems in hyperspectral imagery require sub-pixel level analysis on the assumption
that pixel signatures xn of any hyperspectral image Xn may originate in as a combina-
tion of spectral signatures of multiple materials. This phenomenon may be caused by
various reasons, e.g., insufficient spatial resolution of the imager, atmospheric effects,
or multiple scattering of incident light from surrounding objects.

The following subsections of the thesis present a detailed review of sub-pixel-level
content detection algorithms.

Generalized Likelihood Ratio Test

The Generalized Likelihood Ratio Test (GLRT) algorithm considers the sub-pixel
level content detection problem as a Gaussian interference of other signatures (e.g.,
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neighboring materials, atmospheric effects, or additive noise) to query spectral signa-
ture xq, where background covariance matrix

P
is known.

GLRT (xq,xn) =
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Adaptive Cosine Estimator

As a derivative of GLRT, the Adaptive Cosine Estimator (ACE is invariant to scaling
of xq and xn and performs better content to background (or interference) separation
as compared to GLRT.
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Matched Filter

Matched Filter (MF) is another widely used sub-pixel level content detection method
that assumes both H0 and H1 have equal covariance matrix

P
.

MF (xq,xn) =
(xq � x̄q)

T
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Constrained Energy Minimization

Constrained Energy Minimization is yet another filter-based approach for sub-pixel
level content detection that aims at minimizing the energy originating from the back-
ground while maximizing the output of queried content signature.

CEM (xq,xn) =
xT

q

P�1xn

xT
q

P�1xq

(18)

35



Orthogonal Subspace Projection

Orthogonal Subspace Projection (OSP) is a two-step sub-pixel level content detection.
In the first step, algorithms create an orthogonal subspace projection to eliminate non-
content pixels. In the following step, OSP applies MF to maximize the energy of
pixels containing query signature.

OSP (xq,xn) =
xT

q
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Uxn

xT
q
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Uxq
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where P?
U = ISxS �UU# is the orthogonal subspace, U and U# =

�
UTU

��1
UT

are the background and right pseudoinverse of background, respectively [96].

3.2 Multiple Material Based Content Detection and Retrieval Methods for Hy-
perspectral Imagery

Hyperspectral imagery stands out among all other remote sensing methods due to
the spectral characteristics of the matters observed at hundreds of distinct channels.
This dense spectral and spatial information can be a valuable resource to describe the
phenomenons in the scene. However, hyperspectral imagery contains highly redun-
dant information, and it requires dedicated methods to extract proper features that can
sufficiently model the image content.

Despite the increasing resolution of hyperspectral imaging systems in both spatial
and spectral domains, there are times when one spatial pixel of a hyperspectral image
may cover multiple physical phenomena due to insufficient spatial resolution of the
imaging system. As a result, the spectral signature measured at such a discrete region
(as shown in Figure 25) is a combination of the spectral signatures of blended mat-
ters in proportion to their abundance in the pixel and/or scattered energy from those
matters.

One important step in utilizing hyperspectral remote sensing imagery is to find the
pure spectral signatures of the materials, known as endmembers, and decompose
mixed pixel signatures based on these endmembers to determine the abundances of
these materials at a given pixel. This process is known as spectral unmixing. Spectral
unmixing is essentially a type of blind source separation process that aims to identify
endmembers and their corresponding abundances in pixel signatures.

In literature, spectral unmixing methods are considered either linear or nonlinear. As
illustrated in Figure 24(a), linear unmixing methods assume that mixed pixel signa-
tures measured by hyperspectral imaging systems are originated in i) combination of
two or more endmember signatures in proportion to their abundances in a pixel, and
ii) additive noise at each spectral band. According to this definition, spectral signa-
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Figure 24: Linear and non-linear mixed pixel models.
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and ⌘ are m-th endmember of hyperspectral image xn, fractional abun-

dance of matter represented by m-th endmember in xp

n
and additive noise, respec-

tively.

In linear unmixing, the abundance of endmembers in xp

n
have to satisfy two con-

straints: i) sum-to-one, ii) non-negativity. While sum-to-one constraint requires that
cumulative abundance of all endmembers in xp

n
must be equal to 1, non-negativity

constraint enforces abundance of all endmembers in xp

n
to be greater than or equal to

0.

Since the pure signature of the matters in a scene so, called endmembers, may not
exist in a hyperspectral image due to insufficient spatial resolution of the imaging
system or any other reason, certain linear methods make use of auxiliary endmember
signature archives during the unmixing process.

On the other hand, nonlinear unmixing methods assume that mixed pixel spectral sig-
natures originate in scattered energy from different matters that constitute the scene
either at the microscopic or intimate level, as illustrated in Figure 24(b). Thus, non-
linear unmixing is considered as an ill-posed problem and is usually not preferred in
a solution of real-life spectral unmixing problems.
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Figure 25: Mixed pixel signature.

All CBHIR systems proposed in the literature, except [97], adopt spectral unmixing-
based strategies for two main purposes: 1) to reveal spectral characteristics of the
matters that constitute the scene, 2) to get rid of information redundancy in the hyper-
spectral imagery. Thus, state-of-the-art CBHIR systems intensively use endmembers
in conjunction with their proportions in the pixel signatures to model hyperspectral
images in different ways.

CBHIR systems proposed in [98, 99, 100] model hyperspectral images with endmem-
bers obtained via Pixel Purity Index (PPI), N-FINDR, and A-PPI linear unmixing al-
gorithms, respectively. In the retrieval phase, all three systems utilize one-to-one end-
member matching based Spectral Signature Matching Algorithm (SSMA) to assess
the similarity between the hyperspectral images. SSMA attempts to match each query
image endmember with one of the archive image endmembers, considering a given
Spectral Angular Distance (SAD) threshold. Subsequently, the relative abundance
difference for each matched endmember pair is calculated to generate a feature vec-
tor for signature comparison. Differently from [98, 99], CBHIR system proposed in
[100] employs the SSMA with SID-SAD based hybrid distance. In [101], an updated
version of the CBHIR system proposed in [98] implements a distributed hyperspectral
imaging repository on a cloud computing platform.

In [102], an endmember matching-based distance for content-based hyperspectral
image retrieval is proposed. The proposed distance mutually maps each individual
endmember that belongs to one image to an endmember of the other image by con-
sidering SAD between them. Finally, the sum of the L-2 norm of vectors arising
from minimum SAD between matched endmember pairs gives the Grana Distance
between two hyperspectral images. The study evaluates the retrieval performance
of the proposed hyperspectral image distance with Endmember Induction Heuristic
Algorithm (EIHA) and N-FINDR linear unmixing algorithms. In [103], the same re-
search group introduces an alternative CBHIR system that utilizes both endmembers
and their abundances. The proposed system assesses the similarity of two hyperspec-
tral images by calculating the sum of SAD between each endmember pair arising
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from the Cartesian product of two endmember sets. It is worth noting that the pro-
posed system weights the distance between each endmember pair, considering their
abundances.

In [97], yet another CBHIR approach is proposed that copes with spectral and spatial
information redundancy in hyperspectral imagery with a data compression strategy.
To this end, each hyperspectral image is converted to a text stream (either pixel-wise
or band-wise) and then encoded with the Lempel–Ziv–Welch (LZW) algorithm to
obtain a dictionary that models the image. In the retrieval phase, the level of similarity
between two hyperspectral images is assessed by dictionary distances that consider
common and independent elements in corresponding dictionaries.

In [104], a hyperspectral imagery repository with retrieval functionality is introduced.
The repository catalogs hyperspectral images with endmembers obtained via either
N-FINDR or OSP linear unmixing algorithms in conjunction with their abundances.
The user interacts with the system by choosing one or more spectral signatures from
the library, already available in the repository, as a query. In the retrieval phase, the
repository evaluates the level of similarity between query endmember(s) and cata-
loged image endmembers, considering the SAD. The repository also allows users to
refine retrieval results by filtering the images with respect to predefined abundance
thresholds for the endmembers in the query.

CBHIR system proposed in [105] constructs feature extraction strategy on sparse lin-
ear unmixing. This approach, which utilizes Sparse Unmixing via variable Splitting
and Augmented Lagrangian (SunSAL) algorithm, aims at obtaining image endmem-
bers employing spectral signatures already available in a library within the system.
Consequently, the system skips some time-consuming steps (e.g., estimating the num-
ber of endmembers) in the spectral unmixing chain. However, this CBHIR approach
requires a large built-in library that accommodates spectral signatures of all possible
materials for a proper feature extraction phase. In the retrieval phase, the proposed
system evaluates the similarity of two images considering the SAD between image
endmembers.

In [106], hyperspectral images are characterized with two descriptors. The spectral
descriptors corresponding to endmembers are obtained via the N-FINDR algorithm.
In addition, the proposed system uses Gabor filters to compute a texture descriptor
to model the image. In the retrieval phase, the system considers the sum of spectral
and texture descriptor distances to assess the similarity between two hyperspectral
images. To this end, the distance between spectral and textural descriptors of two im-
ages is calculated by adopting the Significance Credit Assessment method introduced
in [103] and squared Euclidean distance between Gabor filter vectors, respectively.
Similar to [106], the CBHIR system proposed in [107] characterizes hyperspectral
images with two descriptors: spatial and spectral. The spatial descriptor is computed
with a saliency map that combines four features: the first component of the Princi-
pal Component Analysis (PCA), orientation, spectral angle, and visible spectral band
opponent. On the other hand, the spectral descriptor corresponds to a histogram of
spectral words. The spectral words are obtained by clustering endmembers extracted
from all the images in the archive. In the retrieval phase, the similarity between fea-
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ture descriptors is calculated with squared Euclidean distance to assess the similarity
between two images.

In [108], a CBHIR system is proposed to secure hyperspectral imagery retrieval by en-
crypting the image descriptors. The system characterizes hyperspectral images with
spectral and texture descriptors. Scale-Invariant Feature Transform (SIFT) key-point
descriptors of the RGB representation of the image and the endmembers extracted
by the A-PPI linear unmixing algorithm are clustered with the k-means algorithm
to obtain the spectral descriptor. This step defines spectral words that correspond to
cluster centers. The proposed system employs the Gray Level Co-occurrence Matrix
(GLCM) method to compute the texture descriptor to obtain contrast, correlation, en-
ergy, and entropy values. In the retrieval phase, these two descriptors are combined
to model the images, and Jaccard distance is used to assess the similarity between
the two images. Yet another CBHIR system that models the images with spectral and
texture descriptors is introduced in [109]. The system obtains the spectral descriptors
with endmembers extracted with A-PPI unmixing algorithm. To obtain the texture de-
scriptors, the system adopts GLCM based method introduced in [108]. In the retrieval
phase, the proposed system uses SID-SAM-based distance and Image Euclidean Dis-
tance to evaluate the similarity of spectral and texture descriptors, respectively.

In addition to the methods mentioned above, there is also a method that utilizes arti-
ficial neural networks. The method proposed in [110] suggests a model that provides
pixel-based retrieval using Deep Convolutional Generative Adversarial Network (DC-
GAN). For this purpose, an artificial neural network model is trained with a combi-
nation of spectral and spatial vectors obtained using manually selected pure material
signatures from hyperspectral images and neighboring pixel signatures.
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CHAPTER 4

RESEARCH ACTIVITIES CONDUCTED WITHIN THE SCOPE OF THE
THESIS

In the scope of the thesis, several studies were conducted on different datasets to
detect single and multiple contents in hyperspectral images. This section provides
detailed information about these studies. To ensure compatibility with Chapter 3, the
first part presents studies conducted on detecting a single content, while the second
part introduces studies that focus on the detection of multiple contents in a sequential
manner.

4.1 Research Carried on Single Material Based Content Detection

As the details are presented in Chapter 3, single material-based content detection in
hyperspectral imagery refers to the process of searching for a particular query signa-
ture, represented by xq, within the image pixels of a single hyperspectral image or all
hyperspectral images in an archive, represented by Xn.

The first research conducted within this context focused on detecting a specific gas
emission in LWIR hyperspectral images. Remote sensing hyperspectral imaging for
gas detection has various applications, such as investigating gas leaks, factory chim-
ney emissions, and exhaust gases from motor vehicles. In the study, a method was
proposed to reduce the blackbody effect in infrared hyperspectral images to enhance
the performance of methane vapor detection within the image obtained by LWIR hy-
perspectral sensor [111].

Following the observation of the positive impact of the proposed blackbody effect
correction method on content detection in LWIR hyperspectral images, the research
activities within the scope of the thesis continued with a hyperspectral unmixing ap-
proach. In this context, an endmember-based method was adapted to detect the pres-
ence of gases in LWIR hyperspectral images by separating them from the background
and other materials [112]. The method tested on the data used in the previous study
showed the contribution of the Vertex Components Analysis (VCA) unmixing algo-
rithm to the detection performance of gas emission, background, and other object
hyperspectral signatures.
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4.2 Research Carried on Multiple Material Based Content Detection

Following the research activities detailed in the previous section aimed at single
material-based content-based retrieval, research activities for multiple material-based
retrieval in remote sensing hyperspectral image archives were conducted in line with
the ultimate research goal of the thesis.

To achieve our goal, relevant studies available in the literature, whose details are pro-
vided in Chapter 3, were reviewed. Then, these CBHIR systems were implemented
in the MATLAB environment, and the following limitations were identified.

1. Computational cost increases as the number of endmembers extracted from the
images increases.

2. The storage of all the endmembers extracted from images is a challenging task
due to the high dimensionality of the hyperspectral imagery.

To overcome these specified limitations, a CBHIR system was proposed to store ma-
terial information associated with each hyperspectral image efficiently and reduce the
computational complexity at the access stage.

The CBHIR system characterizes hyperspectral images using spectral and abundance
descriptors independent of the number of endmembers and spatial pixels. This re-
duces the time and computational power required for the retrieval process.

Problem Formulation and Notation

Let X = {X1,X2, . . . ,XN} be an archive of N hyperspectral images, where Xn

is the n-th image in the archive. The proposed CBHIR system aims at retrieving a
set XR ⇢ X of R images that are most similar to the query image Xq in terms of
materials present in it. To this end, the proposed system is characterized by two main
modules: 1) representation of each hyperspectral image with two low-dimensional
descriptors (which are obtained via a novel bag-of-endmembers approach); and 2)
retrieval of hyperspectral images by using a computationally cost-effective strategy
(which is achieved based on a hierarchical retrieval strategy). The block diagram of
the proposed CBHIR system is illustrated in Figure 26.

Representation of Hyperspectral Images with Low-Dimensional Descriptors

In the first module, each hyperspectral image Xn, n = 1, 2, . . . , N is modeled in an
off-line manner with two low-dimensional descriptors: 1) a binary spectral descriptor
⇡n that describes spectral characteristics of distinct materials present in Xn; and 2) an
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Figure 26: Block diagram of the proposed bag-of-endmembers based CBHIR system.

abundance descriptor !n that characterizes the fractional abundances of correspond-
ing materials in Xn. Spectral and abundance descriptors of the query image Xq are
calculated online.

To extract these descriptors from both query and archive hyperspectral images, we
introduce a novel bag-of-endmembers based approach. To this end, we initially apply
unmixing to each Xn to obtain the signatures of spectrally distinct materials. Then,
a bag B of endmembers is initially constructed by the endmembers extracted from
the hyperspectral images in the archive. Subsequently, this bag is clustered into K
clusters to obtain a spectral codebook V.

Finally, hyperspectral image descriptors ⇡n and !n are calculated to represent each
image with two low-dimensional vectors.

Retrieval of Hyperspectral Images

In the second module, the set XR of the most similar images to Xq is selected by
a novel hierarchical retrieval strategy, which initially identifies the candidate set of
similar images based on only spectral descriptors and then exploits the abundance
descriptors to enhance the retrieval performance.

In the first step, the similarity between Xq and each Xn is computed concerning the
binary spectral descriptors ⇡q and ⇡n, n = 1, 2, . . . , N only by estimating Hamming
distance between them.

In the case of considering Scenario 3 (given in Table 1) for retrieval, XH is considered
as the final set of retrieved images (i.e. XH = XR) and the algorithm stops at this
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step. If Scenario 4 is considered for retrieval, XH is forwarded to the next step where
we take into account the similarities between the fractional abundance of materials
defined in abundance descriptors !n of images in XH and !q of the query by the
Euclidean distance measure. Finally, the set XR ⇢ X of R images with the highest
similarity to the abundance descriptors of !q is chosen.

Data-Set Description

A benchmark hyperspectral image archive was constructed to evaluate the retrieval
performance of the proposed CBHIR system. To this end, a Level-1-Radiance (L1R)
hyperspectral data product with 220 spectral bands acquired by EO-1 Hyperion in
August 2015 in Ankara, Turkey, was selected. After removing spectral bands associ-
ated with low signal-to-noise, 119 were considered. The selected test site is a section
of 3402x252 pixels with a spatial resolution of 30 m. The data product was divided
into 216 patches of 63x63 pixels to construct the benchmark archive. Each hyper-
spectral image patch in the archive is annotated with 1) multiple low-level land-cover
class labels and 2) single high-level land-use category labels (associated with the most
significant content of the image). The number of land-cover classes associated with
each image varies between 3 and 17, while in total, 29 different land-cover classes
are defined concerning the whole archive. To annotate each image with appropriate
land-cover class labels, very high-resolution (VHR) satellite images acquired in the
same geographical area were used.

The dataset can be accessed at the following URL: https://www.bigearth.
eu/datasets.

Comparative Performance Evaluation of the Proposed CBHIR System

The proposed system was separately evaluated for Scenario 3 and Scenario 4 in the
experiments given in 1. When Scenario 3 is considered, single-stage retrieval (SSR)
is applied to the images represented by the binary spectral descriptors (BSD). This
method is denoted as the proposed BSD-SSR). When Scenario 4 is considered, the
proposed two-stage hierarchical retrieval (TSHR) algorithm is applied to the images’
binary spectral and abundance descriptors (BSAD). This method is denoted as the
proposed (BSAD-TSHR). To evaluate the performance of the proposed BSD-SSR
and the BSAD-TSHR, two state-of-the-art methods were considered for comparison:
1) the endmember matching algorithm based on the Grana Distance [102] (denoted
as EM-Grana), and 2) the endmember matching algorithm that weights the distances
estimated by the SAD between each endmember pair by their abundances [103] (de-
notes as EM-WSAD).

The experimental results show that the proposed BSAD-TSHR, which considers both
spectral and abundance descriptors, obtained significantly better metric values in the
considered archive than the EM-Grana and EM-WSAD.
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Table 2: Performance evaluation of CBHIR systems

CBHIR SYSTEM Method Accuracy
(%)

Precision
(%)

Recall
(%)

Hamming
Loss

Retrieval
Time
(ms)

Previously Proposed
BoE Based System

BSD-SSR 69.19 83.87 80.30 4.02 0.095
BSAD-TSHR 71.70 85.74 82.14 3.66 0.138

Em-Grana 63.93 82.32 73.89 4.64 85.325
EM-WSAD 56.75 77.71 70.14 5.78 10622.500

Although the proposed CBHIR system increases the retrieval performance compared
to other systems in the literature, significant shortcomings have been identified in
modeling hyperspectral images with an endmember-based approach. In Chapter 5, a
novel CBHIR system is introduced to overcome these shortcomings.
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Figure 27: (a) query image, (b) images retrieved by EM-Grana, (c) images retrieved
by the EM-WSAD and (d) images retrieved by the proposed CBHIR system.
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CHAPTER 5

PROPOSED CONTENT-BASED HYPERSPECTRAL IMAGEG RETRIEVAL
SYSTEM

Unlike the existing hyperspectral image retrieval systems reviewed in Chapter 3,
which dominantly measure the similarity between two hyperspectral images by em-
ploying endmember matching-based methods, the proposed system in this thesis ad-
dresses content-based hyperspectral image retrieval with a semantic approach by con-
sidering both spectral and spatial information. The proposed system assumes that hy-
perspectral remote sensing payload data products (airborne or spaceborne) are com-
posed of two types of content: i) foreground and ii) background. It is worth noting
that, to avoid terminological confusion, two definitions are used within the scope of
the thesis: hyperspectral remote sensing payload data product and hyperspectral im-
age. The hyperspectral remote sensing data product represents hyperspectral data
obtained by the payload on the air or space platform covering an area on the Earth,
and the hyperspectral image represents the patches that form the benchmark archive
by dividing the data product into manageable small pieces.

The claim being made in this thesis is that when modeling hyperspectral remote sens-
ing images, it is important to consider the varying prevalence of different types of
material that make up the land cover in a territory covered by the data product. Specif-
ically, certain types of material are much more common than others. These include
areas with sparse natural vegetation, cultivated or uncultivated lands, terrestrial bar-
ren lands, and water bodies. In contrast, material classes such as artificial surfaces,
urban areas, mining areas, and areas of materials with semantically remarkable spec-
tral features are less prevalent. Failing to consider the prevalence of these material
classes when creating content-based models for hyperspectral remote-sensing images
can have significant consequences. For example, it can result in errors in accurately
modeling certain content types that are relatively less common. This fact also makes
it difficult to access related images due to the limitations of the models that are being
used. Therefore, it is crucial to consider the prevalence of different material classes
when modeling hyperspectral remote-sensing images in order to ensure accurate and
reliable results.

The approach forming the basis of the proposed CBHIR system’s semantic feature
extraction method in this thesis is also supported by various institutions’ studies
on land cover diversity. The main MODerate-resolution Imaging Spectroradiometer
(MODIS) Land Cover Classification product categorizes land cover into 17 classes
defined by the International Geosphere-Biosphere Programme (IGBP). These classes
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Figure 28: Terra MODIS MOD12C1 17 land cover classes defined by the IGBP [113].

consist of 11 natural vegetation categories and three developed land categories, one of
which includes a mix of natural vegetation, permanent snow or ice, barren or sparsely
vegetated areas, and water bodies [113]. According to the classification map pre-
sented in Figure 28, it is apparent that certain land cover classes (i.e., Urban and
Built-Up) possess relatively smaller surface areas when compared to the other domi-
nant categories.

Similarly, the United Nations Food and Agriculture Organization (FAO) releases
statistics on land cover globally, including Turkey [114]. The data reveals the dis-
tributions of various land cover classes, summarized in Table 3. It becomes apparent
that certain land cover classes, such as tree-covered areas and terrestrial barren land,
are more prevalent than others, like artificial surfaces (including urban and related
areas), which have a significantly lower presence.

A similar situation is observed in the dataset used in the performance analysis section
of the study, which is further elaborated in Chapter 5 with details. As given in Figure
29, remote sensing images comprise dominant and rarely seen content types.

In this study, where the proposed CBHIR system aims to be a reliable solution for the
effective management of remote sensing hyperspectral image archives, hyperspectral
image contents are divided into two groups in an unsupervised manner based on spec-
tral features and extensiveness of dominant content types at the territorial level. Thus,
hyperspectral image contents representing phenomena intensely present by nature in
that portion of the Earth, e.g., sparse natural vegetation, cultivated or uncultivated
lands, terrestrial barren lands, and large water bodies, are grouped as background
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Table 3: 2021 Land Cover statistics by Food and Agriculture Organization (FAO)
based on European Space Agency Climate Change Initiative - Land Cover (CCI-LC)
Products (Value unit=1000 ha)

Land Cover Type Value (World) % (World) Value (Türkiye) % (Türkiye)
Artificial surfaces
(including urban and associated areas) 60497.24 0.41% 671.21 0.86%

Herbaceous crops 1904136.38 12.94% 29778.27 38.06%
Woody crops 222476.44 1.51% 5351.88 6.84%
Grassland 1815006.92 12.34% 14179.79 18.13%
Tree-covered areas 4268269.01 29.02% 14995.66 19.17%
Mangroves 18426.19 0.13% NA NA
Shrub-covered areas 1605658.84 10.92% 7021.07 8.97%
Shrubs and/or herbaceous vegetation,
aquatic or regularly flooded 193169.63 1.31% 207.7 0.27%

Sparsely natural vegetated areas 889080.29 6.04% 3153.12 4.03%
Terrestrial barren land 1912986.33 13.00% 1445.73 1.85%
Permanent snow and glaciers 1437574.48 9.77% NA NA
Inland water bodies 382913.86 2.60% 1427.3 1.82%

(a) (b) (c) (d)

Figure 29: Dominant and rarely observed content types in remote sensing images.
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Figure 30: Pseudo-color representation of a remote sensing hyperspectral image
X1323 (a), illustration of foreground (b) and background (c) image contents.

content. On the other hand, the proposed CBHIR system claims that foreground con-
tent represents pixels or pixel segments that present remarkable differences in terms
of spectral features in that particular region of the Earth and have an importance in
terms of human perception, e.g., man-made objects, rarely seen minerals or anoma-
lies as illustrated in Figure 30. Thus, such a categorization of content in hyperspectral
remote sensing imagery enables the employment of suitable retrieval strategies to en-
hance the system’s overall performance.

The proposed method is constructed on this semantic approach to overcome the fol-
lowing shortcomings of existing CBHIR methods in the literature.

1. Poor retrieval performance issues that are caused by spectral information redun-
dancy due to the relatively high amount of background content in the archive
images.

2. CBHIR methods that model hyperspectral images by only endmembers may not
accurately extract the endmembers from the images, or pure material signatures
may not exist in the scene. These issues may lead to describing image content
with inappropriate and/or insufficient spectral features.

3. Strategies (e.g., bag-of-endmembers) that aim at combining and clustering all
endmembers to generate a global spectral vocabulary to model hyperspectral
images may ignore spectral signatures (endmember) of rarely seen content in
case of using an inappropriate clustering method or setting parameters of clus-
tering method inaccurately.

The following sections of this chapter elaborate the proposed system in a systematic
way.

5.1 Problem Formulation and Notation

Let X = {X1,X2, . . . ,XN} be an archive of N hyperspectral images, where Xn

is the n-th image in the archive. The proposed CBHIR system aims at efficiently
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retrieving a set XR ⇢ X of R hyperspectral images that contain similar content de-
picted by a query image Xq or spectral signature xq provided by the user. A list of all
mathematical symbols used throughout the thesis is given in Appendix C.

The proposed CBHIR system has two main modules: 1) an offline module to repre-
sent hyperspectral images with low-dimensional descriptors and 2) an online module
to retrieve hyperspectral images using a computationally efficient hierarchical algo-
rithm.

As illustrated in Figure 31, the proposed CBHIR system performs semantic feature
extraction and representation of hyperspectral images with low-dimensional descrip-
tors in the background in an offline manner. Contrary to existing CBHIR systems
in the literature, thanks to the low-dimensional descriptors obtained in this offline
module, the proposed CBHIR system allows online retrieval of hyperspectral images.
These novel feature representation and retrieval approaches are elaborated in the fol-
lowing sub-sections.

5.2 Spectral Vocabulary Generation and Representing Hyperspectral Images
with Low-Dimensional Descriptors

Spectral vocabulary generation and representing hyperspectral images with low di-
mensional descriptors steps of the proposed CBHIR system aim at representing each
hyperspectral image Xn in X by four low-dimensional descriptor vectors: two binary
spectral descriptors �f

n
and �b

n
to represent the spectral characteristics of foreground

and background content, respectively and two abundance descriptors ↵f

n
and ↵b

n
to

hold fractional abundance of corresponding content in the image Xn. In addition to
�f

n
and �b

n
, proposed system uses descriptor �

n
= (�f

n
,�b

n
) to represent spectral

features of overall image content. Similarly, descriptor ↵n = (↵f

n
,↵b

n
) represents

fractional abundance of corresponding content in the image Xn. In order to calculate
these descriptors, we introduce a novel unsupervised spectral vocabulary generation
approach as detailed in the following subsections.

The proposed CBHIR system is constructed on a semantic approach that argues hy-
perspectral remote sensing payload data products consist of two types of content: i)
foreground and ii) background. Thus, this assumption requires a reliable method to
sensitively identify foreground and background pixels or pixel groups (segments) in
a hyperspectral remote sensing image. To this end, the proposed CBHIR system em-
ploys a territorial background content representation-based method to differentiate
foreground and background image contents covering that specific region of the Earth.

Uncovering regional spectral features of background content begins with identifying
regions that fully or massively contain materials that represent spectral features of the
phenomenon intensely present by nature in that portion of the Earth, e.g., terrestrial
barren land, natural vegetation, or cultivated areas. To identify reference background
images in the archive, the proposed CBHIR system benefits from two indicators: a)
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Figure 31: Block diagram of the proposed CBHIR system.
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spectral diversity and b) known spectral characteristics of background contents in that
region of the Earth.

In hyperspectral remote sensing imagery, background contents are identifiable by
their ubiquitous presence across wide regions, resulting in little spectral variation
in that region of the data product. This distinct feature enables the easy identifica-
tion and extraction of such background contents from remote sensing imagery. The
proposed method attempts to discover portions of the data product representing back-
ground content related to the specific geographical territory by performing a sliding
window-based method. Then, candidate territorial background regions are identified
by considering minimum intra-spectral diversity.

In addition to the low spectral diversity, the use of prior information is also crucial in
determining background contents in hyperspectral remote sensing payload data prod-
ucts. For instance, sparse natural vegetation, cultivated or uncultivated agricultural
lands, terrestrial barren areas, and water bodies can be easily detected in hyperspec-
tral imagery depending on the wavelength range of the imaging payload. There-
fore, in addition to the spectral diversity criterion, auxiliary methods (e.g., Surface
Reflectance-derived Spectral Indices) play a critical role in identifying such back-
ground contents. At this point, it is important to note that in the absence of identified
areas defining the background of a specific geographic territory, all contents in that
territory are assumed as foreground by the proposed CBHIR system.

Subsequent to the identification of territorial background content regions, a superpixel-
based segmentation, which was specifically developed for hyperspectral imagery, is
applied to each hyperspectral image Xn in X. This step aims to identify hyperspectral
image pixels (so-called segments) in the same image with similar spectral features and
spatial relations. The superpixel-based segmentation step generates the initial content
segment map for each hyperspectral image Xn. In this way, the first crucial step is
performed to extract semantic information about the content and to eliminate redun-
dant spectral information in hyperspectral image Xn. The proposed CBHIR system
uses this content segment map to compress Xn to eliminate highly redundant spec-
tral information in hyperspectral imagery because of pixels having spatial relations.
This is achieved by modeling each particular content segment with the mean spectral
signature of that segment.

Determining pixel segments within each hyperspectral image and the classification
of these segments either as foreground or background is followed by building the
corresponding spectral vocabularies for these two types of content. To create these
two types of content vocabularies, a foreground content vocabulary is obtained using
the signatures obtained from foreground content segments, and a background content
vocabulary is obtained by clustering the average spectral signatures obtained from
background content segments. Thus, the foreground content in hyperspectral images
is modeled with the highest precision, while on the other hand, the background con-
tent is modeled using a spectral-spatial compression method with a low-dimensional
vocabulary.
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The following step calculates low-dimensional foreground and background feature
descriptors to bring online retrieval capability to the proposed CBHIR system. This
is achieved by representing each hyperspectral image with four feature vectors: two
binary spectral descriptors �f

n
and �b

n
to represent the spectral characteristics of fore-

ground and background content, respectively and two abundance descriptors �f

n
and

�b

n
to hold fractional abundance of corresponding content in the image. In addition

to �f

n
and �b

n
, proposed system uses descriptor �

n
= (�f

n
,�b

n
) (or �

q
)) to represent

spectral features of overall image content. Similarly, descriptor ↵n = (↵f

n
,↵b

n
) (or

↵q) represents fractional abundance of corresponding content in the image Xn (or
Xq).

Details of each step summarized above are given in the following sections.

5.2.1 Super-pixel Based Content Segmentation

As introduced in previous sections, the proposed CBHIR system benefits from spec-
tral content vocabularies to retrieve hyperspectral images from the archive effectively
in an online manner. Accordingly, discovering material diversity in the archive to
generate the foreground and background content vocabularies is a crucial step for the
proposed CBHIR system.

To this end, a superpixel-based segmentation is performed on each hyperspectral im-
age Xn in X to group image pixels with similar spectral features and spatial relations
that belong to a phenomenon in the scene. However, an effective method is required to
perform such a segmentation that can handle high-dimensional spectral information
with low computational complexity.

In order to overcome this, the proposed CBHIR system benefits from a novel superpixel-
based segmentation algorithm dedicated to hyperspectral imagery [115], which is
a derivative of the Simple Linear Iterative Clustering (SLIC) method [116]. This
superpixel-based segmentation algorithm, namely Hyperspectral Simple Linear Iter-
ative Clustering (hyperSLIC) in this thesis, is designed to cluster pixels in local re-
gions rather than globally, which means that spatial correlation and spectral similarity
are naturally considered during the segmentation process. Details of the hyperSLIC
algorithm are given below.

The hyperSLIC algorithm begins by assigning a pre-defined number of super-pixel
centers at equal distances. In order to streamline the clustering search process, hy-
perSLIC sets a defined local neighborhood around each cluster center. This neigh-
borhood is a rectangular region with a width of w and a height of h. Limiting the
search to only the surrounding w×h pixels for each cluster center greatly reduces the
computational complexity compared to traditional clustering algorithms. During the
main loop step, the algorithm employs the SID-SAM and Euclidean spectral and spa-
tial distance criteria, respectively, to cluster each pixel in the local neighborhood for
every cluster center. Following each iteration of the clustering algorithm, the cluster
centers are updated to enhance the accuracy of subsequent iterations.
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Images presented in Figure 32 have been taken from the dataset described in detail
in Chapter 5. These images have undergone a segmentation process using the hyper-
SLIC algorithm. The minimum segment size for this process was set to 4x4 pixels,
meaning that the image was divided into smaller segments, with each segment being
at least 4x4 pixels. This step helps identify the image’s content segments, which will
be further analyzed in the feature extraction process. It is worth noting that the target
segment size in the hyperSLIC algorithm should be chosen carefully, considering the
ground sampling distance of the imaging system.

5.2.2 Background Suppression

Segmentation of hyperspectral imagery with a proper algorithm (i.e., hyperSLIC)
results in identifying semantically (both spectral and spatial) related content pixels.
This is a helpful step in dealing with highly redundant spectral information in hyper-
spectral imagery. On the other hand, the relatively high proportion of background
content in the discovered segments poses a problem for efficient and quick retrieval
of desired content.

In order to overcome this problem, the proposed CBHIR system introduces a novel
background suppression-based method to make foreground content more easily iden-
tifiable. This method examines each content segment in the images with respect to
spectral features of the territorial background content and identifies each segment’s
dissimilarity to spectral features of the territorial background regions.

Hyperspectral remote sensing image archives contain vast amounts of spectral data
representing various content types. Among these content types, some are repetitive
across multiple images and are commonly known as background. Due to their recur-
ring presence, these images tend to have similar spectral content, with little variation
between them, as given in Figure 34.

This unique feature simplifies the identification of background contents from remote-
sensing images. Therefore, the proposed method examines each hyperspectral remote
sensing payload data product in the archive to determine specific regions represent-
ing background content by considering spectral diversity. Candidate territorial back-
ground regions are identified based on minimum intra-spectral diversity from these
regions.

In addition to spectral diversity, territorial background regions can be optionally ex-
amined with respect to known spectral characteristics of background content in that
region of the Earth.

Details of the proposed background suppression method are given in the following
subsections.
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Figure 32: Sample super-pixel based content segmentation with hyperSLIC. a)
False-color original image, b) hyperSLIC super-pixel based content segmentation,
wxh=4x4, c) False-color compressed image
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Figure 33: Candidate background content regions for a hyperspectral remote sensing
payload product.

Discovering Spectral Diversity of Candidate Territorial Background Content

The proposed CBHIR system benefits from two indicators: a) spectral diversity and
b) optional apriori information to identify territorial background regions in the data
products to use these regions in the background suppression process. In the first step
of the background suppression algorithm, spectral diversity �Xn for each individual
hyperspectral image that has been created from the same hyperspectral remote sens-
ing data product, which covers a specific region on the Earth, is calculated. The
reason for adopting a regional approach in determining background contents is that
hyperspectral images, which are spatially close to each other, tend to have similar
hyperspectral background contents.

The proposed algorithm assumes that hyperspectral images that have the smallest
intra-spectral diversity are more capable of representing background and can be used
as reference background imagery for further steps, as illustrated in Figure 33. In
order to identify these reference background images, the intra-spectral diversity of
each image is calculated by measuring the average spectral angular distance as given
in Equation 21.
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(a) �X3765 = 191.08 (b) �X214 = 335.81 (c) �X2243 = 650.21 (d) �X3131 = 224.20

(e) �X796 = 2491.00 (f) �X1137 = 2513.22 (g) �X2840 = 3510.12 (h) �X406 = 2380.70

Figure 34: Sample hyperspectral images with low and high spectral diversity.

where P is the total number of pixels in image xn. xi

n
and xj

n
represent i-th and j-th

pixels of xn. Equation 21 was inspired by Spectral Angular Mapper (SAM) [117],
and the nonlinearity of the equation in calculating the dissimilarity of two spectral
signatures enables better discrimination of low and high spectral diversity in image
content.

In Figure 34, pseudo-RGB images extracted from sample hyperspectral images, with
low and high material diversity, and corresponding average spectral angular distances
are given. As illustrated in Figure 34, internal spectral diversity in a hyperspectral
image goes up as the diversity of materials is increased.

Identifying Reference Background Regions with Minimum Spectral Diversity

Subsequent to the calculation of intra-spectral diversity for each image created from
the same data product covering a specific region on the Earth, a specific number of
hyperspectral images are identified as reference background images in this step. To
this end, hyperspectral image Xn in the archive with minimum intra-spectral diversity
is identified as the first reference background image. Later on, the next hyperspec-
tral image with minimum intra-spectral diversity is chosen as a candidate reference
background image. A hyperspectral image is labeled as a reference background im-
age if the spectral dissimilarity between the mean spectral signature of this image and
the previously identified background images is bigger than a threshold defined by the
user. This process is terminated if the desired number of hyperspectral images are
identified as reference background images. In this way, the proposed system scans
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through the images created from the same hyperspectral remote sensing data prod-
uct and prevents identifying similar reference background images to better model the
background content.

Verification Territorial Background Content via Surface Reflectance-Derived
Spectral Indices

In the proposed method, in addition to spectral diversity in hyperspectral remote sens-
ing images, an optional input for determining the content of an image in terms of
background land cover in a specific geographic region is the known spectral charac-
teristics of commonly seen land-cover content types. For this purpose, widely ac-
cepted spectral indices in the literature play a significant role. Appropriate indices
within the wavelength range of hyperspectral imaging can enhance the selection of
accurate background images for that archive.

For instance, the Normalized Difference Vegetation Index (NDVI) is an important
tool used to measure the amount and health of vegetation in an area. The values of
NDVI range from -1.0 to 1.0, with negative values indicating clouds and water, while
positive values close to zero indicate bare soil or areas with little to no vegetation.
Higher positive values of NDVI (0.1 - 0.5) indicate areas with sparse vegetation,
while values of NDVI greater than 0.6 indicate areas with dense green vegetation.

Figure 36 illustrates the average NDVI values obtained from example images that
exhibit significant background content in the hyperspectral dataset used in this study.
Therefore, the use of appropriate surface reflectance-derived spectral indices score is
considered to be a crucial input in determining the background content in the geo-
graphical area being examined.

(a) (b) (c)

Figure 36: Average NDVI scores for different types of background content in hyper-
spectral imagery. a) Dominant Content: Plowed soil NDVI114 = 0.045, b) Dominant
Content: Sparsely natural vegetated areas NDVI2007 = 0.298, c) Dominant Content:
Field containing dense green vegetation NDVI2261 = 0.887

Table 4 lists the indices used by the United States Geological Survey (USGS) to
identify different land cover types in images obtained by Landsat missions with mul-
tispectral imagers. Although these indices are formulated for multispectral images in
Landsat missions, they are also suitable for use with hyperspectral images. Table 5
presents the wavelength ranges and central wavelengths of images obtained from the
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Figure 35: Background content regions designated by the proposed CBHIR system
for hyperspectral remote sensing payload products.
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Table 4: Surface Reflectance-Derived Spectral Indices
Surface

Reflectance-Derived
Spectral Indice

Equation Purpose

Normalized Difference
Vegetation Index (NDVI)

(NIR�R) / (NIR +R)
Quantifying vegetation greenness can
be done using NDVI, which is useful
for assessing changes in plant health
and understanding vegetation density.

Enhanced Vegetation
Index (EVI)

G · ((NIR�R) / (NIR + C1 ·R� C2 · B + L))
EVI can be used to measure vegetation
greenness.EVI corrects for atmospheric

conditions and canopy background
noise, and is more sensitive in areas

with dense vegetation.

Soil Adjusted Vegetation
Index (SAVI)

((NIR�R) / (NIR +R + L)) · (1 + L)
SAVI helps to correct NDVI values in

areas with low vegetation cover by
taking into account the effect of soil

brightness.
Modified Soil Adjusted

Vegetation Index
(MSAVI)

✓
2 ·NIR + 1�

q
(2 ·NIR + 1)2 � 8 · (NIR�R)

◆
/2

MSAVI minimizes the effect of bare
soil on the SAVI.

Normalized Difference
Moisture Index (NDMI) (NIR� SWIR) / (NIR + SWIR)

NDMI is used to determine vegetation
water content.

Normalized Burn Ratio
(NBR) (NIR� SWIR) / (NIR + SWIR)

NBR is utilized to detect and assess the
severity of burned areas.

Normalized Burn Ratio 2
(NBR2)

(SWIR1� SWIR2) / (SWIR1 + SWIR2)
NBR2 can be used to highlight

vegetation’s water sensitivity and may
be helpful in post-fire recovery studies.

Normalized Difference
Snow Index (NDSI) (G� SWIR1) / (G+ SWIR1)

NDSI refers to the normalized
difference between the green spectral

bands and the shortwave infrared
(SWIR).

R: Spectral band corresponding red color in visible range
G: Spectral band corresponding green color in visible range
B: Spectral band corresponding blue color in visible range
NIR: Spectral band corresponding near-infrared
SWIR1: Spectral band in shortwave-infrared range
SWIR2: Spectral band in shortwave -infrared range
L: Soil brightness correction factor defined as 0.5 to accommodate most land cover types

multispectral imager on the Landsat 9 mission. In hyperspectral images, the indices
mentioned in Table 4 can be easily calculated using the band closest to the central
wavelength specified in Table 5.

Please see Figure 35 for hyperspectral images identified as reference background im-
ages for each hyperspectral remote sensing data products introduced in Chapter 5.

Identifying Foreground-Background Content Segments

As illustrated in the block diagram of the proposed CBHIR system (please see Figure
31), foreground and background content in a hyperspectral image are discriminated
based on a background suppression-based approach. Thus, this method requires a re-
liable method to distinguish foreground and background contents using the reference
hyperspectral images with materials representing the regional spectral features of the
background for that specific territory.

Mahalanobis distance is a measure used to quantify the dissimilarity between a sam-
ple and a distribution. It considers the correlations between variables, making it par-
ticularly useful when dealing with multivariate data such as hyperspectral imagery.
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Table 5: Landsat 9 Mission Operational Land Multispectral Imager 2 (OLI-2) Spec-
tral Bands

Band Minimum Lower
Band Edge (nm)

Minimum Upper
Band Edge (nm)

Center
Wavelength (nm)

1 - Coastal/Aeresol 433 453 443
2 - Blue 450 515 4782

3 - Green 525 600 562
4 - Red 630 680 655
5 - NIR 845 885 865

6 - SWIR1 1560 1660 1610
7 - SWIR2 2100 2300 2200

8 - Panchromatic 500 680 590
9 - Cirrus 1360 1390 1375

Mahalanobis distance is widely employed in various fields, including statistics, pat-
tern recognition, and machine learning.

Mahalanobis distance accounts for the correlation between different variables in the
distribution, which is reflected in the use of the inverse covariance matrix. This is
important because it normalizes the distance in each dimension by the variability
in that dimension and the relationships with other dimensions. In other words, it
scales each variable by its standard deviation and adjusts for the correlations between
variables.

Mahalanobis distance has the following key features:

Scale Normalization: Mahalanobis distance normalizes the scale of each variable,
preventing one variable with a large scale from dominating the distance metric. Thus,
Mahalanobis distance is very suitable for hyperspectral image analysis.

Multivariate Nature: Unlike Euclidean distance, Mahalanobis distance considers
correlations between variables, making it suitable for datasets with multiple dimen-
sions.

Covariance Matrix: The covariance matrix captures the spread and orientation of
the data points in the multivariate space.

In the proposed method, the analysis of how closely a content segment resembles the
spectral characteristics of reference background image contents is calculated using the
Mahalanobis distance-based scoring approach. In other words, to determine whether
a content segment belongs to the foreground or background class, the spectral sig-
nature of the segment is compared against a set of pre-defined reference background
images. If the spectral features of the segment/pixel noticeably deviate from the spec-
tral features of all the background images, it is classified as foreground content.

The Mahalanobis distance between a spectral signature and a distribution is defined
as follows:

62



X1291

X1593

X1480

X1211

(a) (b) (c) (d) (e)

Figure 37: Foreground-background content segment classification. a) False-color
original image, b) Segmentation map, c) segmented image, d) Mahalanobis score
map, e) Foreground-background segment classification map.

�(xs
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) = (xs

n
� µB)

T ��1
B (xs

n
� µB) (22)

where xs

n
, µB, and ��1

B represent mean spectral signature vector of s-th content seg-
ment in image Xn, sample mean, and sample covariance matrix of territorial back-
ground image B that is a combination of reference background images identified for
that specific geographical region, respectively.

As a result, the similarities of content segments to the background within archive
images can be measured in an unsupervised manner, as illustrated in Figure 37.

63



5.2.3 Building Spectral Vocabularies

To enhance the semantic significance of emphasized foreground contents in the thesis
and minimize the redundant spectral information related to the background content,
two distinct methods are used to create foreground and background content vocabu-
laries. The foreground content vocabulary includes the spectral signatures of previ-
ously identified foreground content segments as is, while a clustering-based approach
is used to create the background content vocabulary. This approach helps reduce
the density of repeated background content information. By differentiating between
foreground and background contents in the images within the archive, we can create
specialized vocabularies related to each content type.

Creating the background content vocabulary through the clustering process is a metic-
ulous procedure. Research conducted in the context of the thesis has revealed the
advantages of utilizing the DBSCAN (Density-Based Spatial Clustering of Applica-
tions with Noise) [118] clustering method over other methods, including k-means and
kernel k-means.

DBSCAN is a clustering algorithm that groups together data points that are close to
each other and have a sufficient number of nearby neighbors. DBSCAN is particularly
useful for identifying clusters of arbitrary shapes in spatial data in n-dimensional
space and works as described below.

1. Initialization:

Choose an arbitrary data point that has not been visited and retrieve its ✏-neighborhood
(a set of data points within a specified distance ✏ from the chosen point).

2. Core Point, Border Point, and Noise:

If the number of data points within the ✏-neighborhood is greater than or equal to a
predefined threshold (MinPts), the chosen point is considered a core point. If a point
is not a core point but lies within the ✏-neighborhood of a core point, it is considered
a border point. If a point is neither a core nor a border point, it is classified as noise.

3. Growing a Cluster: If a data point is a core point, a cluster is formed by recur-
sively adding all directly reachable points within the ✏-neighborhood to the cluster.

4. Repeat: Repeat the process until all data points have been visited.

5.2.4 Representation of Hyperspectral Images with Low-Dimensional Descrip-
tors

The proposed CBHIR system represents each hyperspectral image Xn in X by four
low-dimensional descriptor vectors: two binary partial spectral descriptors �f

n
and

�b

n
to represent the spectral characteristics of foreground and background content, re-
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Figure 38: Illustration of low-dimensional foreground and background content de-
scriptors (where

��Vf
�� = 8 and

��Vb
�� = 8).

Figure 39: Illustration of low-dimensional overall content descriptors (where
��Vf

�� =
8 and

��Vb
�� = 8).

spectively and two partial abundance descriptors ↵f

n
and ↵b

n
to hold fractional abun-

dance of corresponding content in the image Xn, as illustrated in Figure 38.

In addition to �f

n
and �b

n
, proposed system uses the overall descriptor �

n
= (�f

n
,�b

n
)

(or �
q
) to represent spectral features of overall image content. Similarly, descriptor

↵n = (↵f

n
,↵b

n
) (or ↵q) represents fractional abundance of corresponding content in

the image Xn (or Xq), please see Figure 39.

At this point, it is important to underline that while the first part of the low-dimensional
descriptors describes the image content that defines materials having a significant dif-
ference compared to the background in terms of spectral characteristics (e.g., artificial
materials, anomalies), the second part defines the background content commonly seen
in archive images.

To compute foreground spectral image descriptors, initially a spectral distance ma-
trix D�f

n,Vf = [ds, ; s = 1, . . . , S; = 1, . . . , ] is constructed, where ds, denotes
a spectral distance estimated between s-th foreground segment mean signature ex-
tracted from the image Xn and  -th spectral term in foreground content vocabulary
Vf . This can be estimated by any distance measure, whereas in this work, we con-
sider the well-known spectral angular distance. Then, the distance matrix D�f

n,Vf is
quantized by setting the minimum element of each row to 1 and the remaining ele-
ments to 0. In this way, each image foreground segment mean signature is associated
with a spectral term in the vocabulary Vf considering the degree of spectral similar-
ity. Then, D�f

n,Vf is compressed into a fixed-size binary descriptor to obtain �f

n
by

applying Boolean OR operator along each column.
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Similarly, a distance matrix D�b
n,V

b = [ds,!; s = 1, . . . , S;! = 1, . . . ,⌦] is constructed,
where ds,! denotes a spectral distance estimated between s-th background segment’s
mean signature extracted from the image Xn and !-th spectral term in background
content vocabulary Vb. Then, the distance matrix D�b

n,V
b is quantized in the same

way to obtain fixed-size descriptor �b

n
.

Accordingly, �f

n
=

⇥
�f1

n
, . . . ,�f 

n

⇤
and �b

n
=

⇥
�b1

n
, . . . ,�b⌦

n

⇤
are defined as  and

⌦ dimensional binary spectral descriptors, where each element of the vector (i.e., de-
scriptor) indicates existence of a unique material in hyperspectral image represented
by the  -th and !-th spectral term in the spectral vocabularies Vf and Vb, respec-
tively. Obtained binary spectral descriptors have two main advantages: 1) they enable
real-time search and accurate retrieval; and 2) they reduce the amount of memory
required for storing hyperspectral image descriptors in the archives.

To calculate the foreground abundance descriptor ↵f

n
for Xn, normalized fractional

abundance of each foreground spectral term in Vf is computed as given in Equation
23.

↵
V

f
 

n =
c
V

f
 

n

P
(23)

where, c
V

f
 

n and P corresponds to the cumulative number of pixels in segments labeled
as  -th spectral term in foreground content vocabulary Vf and total number pixels in
Xn, respectively.

Similarly, background abundance descriptor ↵b

n
for Xn, normalized fractional abun-

dance of each foreground spectral term in Vb is computed as given in Equation 24.

↵
V

b
!

n
=

c
V

b
!

n

P
(24)

In addition to �f

n
and �b

n
, proposed system uses descriptor �

n
= (�f

n
,�b

n
) (or �

q
)

to represent spectral features of overall image content. Similarly, descriptor ↵n =
(↵f

n
,↵b

n
) (or ↵q) represents fractional abundance of corresponding content in the

image Xn (or Xq), please see Figure 39.

5.3 Retrieving Hyperspectral Images with Low-Dimensional Feature Descrip-
tors

The proposed novel CBHIR system allows users to perform hyperspectral retrieval
with a hierarchical algorithm. Furthermore, the proposed hierarchical algorithm sig-
nificantly reduces the image retrieval time since 1) it filters out a high number of irrel-
evant images (with respect to the spectral characteristics of distinct materials present
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in the query image) at the first step by considering simple bitwise operations on low-
dimensional spectral descriptors, and 2) in the second step the reduced set XH of
images is queried only to retrieve the set XR ⇢ XH of images with the highest sim-
ilarities in terms of spectral characteristics of distinct materials and their fractional
abundances present in the query image. It is worth noting that due to the considered
two-step strategy, the proposed algorithm can be performed by either considering
or neglecting the evaluation of the similarities among the abundances of materials.
Accordingly, the proposed strategy meets the diverse needs of CBHIR applications
defined in Table 1.

This novel approach models hyperspectral image content with spectral terms refer-
enced in the global foreground and background spectral vocabularies. Therefore, the
proposed CBHIR system enables single material query based hyperspectral image re-
trieval as well. To this end, instead of a query hyperspectral image, the user is asked to
provide a spectral signature representing material to be queried in the archive. Similar
to multiple material-based retrieval, the proposed CBHIR system retrieves hyperspec-
tral images in the archive that contain materials represented with a query signature.

Details of each retrieval scenario are explained in the following subsections.

Retrieval of Hyperspectral Images Based on Overall Content Similarity

In this retrieval scenario, the user benefits from the proposed system to retrieve hyper-
spectral images concerning overall content similarity by utilizing spectral and abun-
dance descriptors of foreground and background contents. To this end, concatenated
spectral and abundance descriptors calculated for foreground and background con-
tent of each hyperspectral image Xn in the archive and spectral and abundance de-
scriptors calculated query image Xq are employed to perform multiple material-based
retrievals.

In the first step, the similarity between Xq and Xn is computed concerning the binary
spectral descriptors �

n
= (�f

n
,�b

n
) and �

q
by estimating the Hamming distance be-

tween them. Then, a set XH of H  R images having the lowest Hamming distances
are selected, while the remaining images in the archive are filtered out. In the case of
considering only spectral descriptor-based similarity between hyperspectral images
for retrieval, XH is considered as the final set of retrieved images (i.e., XH = XR)
and the algorithm stops at this step. If the abundance of materials is also considered
for retrieval, XH is forwarded to the second step. In the second step, the similarity
between abundance descriptor ↵n = (↵f

n
,↵b

n
) of each image in XH and ↵q of the

query image is estimated by considering the Euclidean distance measure. Then, the
set XR ⇢ XH of R images that have the highest similarity to the query image Xq in
terms of the fractional abundance of materials defined in abundance descriptors are
chosen.

67



Retrieval of Hyperspectral Images Based on Foreground Content Similarity

In this retrieval scenario, the user benefits from the proposed system to retrieve hy-
perspectral images with respect to foreground content similarity with a two-steps hi-
erarchical algorithm. In other words, since foreground and background content are
modelled independently, user can perform a more effective retrieval process by forc-
ing the system to focus only on foreground content those are significantly different
from background, in terms of spectral features.

To this end, spectral and abundance descriptors calculated for foreground content of
each hyperspectral image Xn in the archive and overall spectral and abundance de-
scriptors calculated query image Xq are employed to perform multiple material based
retrieval. It is critical to note that, in this retrieval scenario, spectral and abundance
descriptors calculated for Xn are modified so that portions of the descriptors related
to background content vocabulary are discarded to perform the retrieval by focusing
on foreground content only. Similarly, spectral and abundance descriptors calculated
for Xq are modified in a way that elements of descriptors referencing terms in back-
ground vocabulary are neglected.

In the first step, the similarity between Xq and Xn is computed with respect to the
modified binary spectral descriptors �

n
and �

q
only by estimating Hamming dis-

tance between them. Then, a set XH of H  R images having the lowest Hamming
distance are selected, while the remaining images in the archive are filtered out. In
case of considering Scenario 3 (please see Table 1) for retrieval, XH is considered
as the final set of retrieved images (i.e., XH = XR) and the algorithm stops at this
step. If Scenario 4 is considered for retrieval, XH is forwarded to the second step.
In the second step, the similarity between modified abundance descriptor ↵n of each
image in XH and ↵q of the query image is estimated by considering the Euclidean
distance measure. Then, the set XR ⇢ XH of R images that have the highest similar-
ity to the query image Xq in terms of the fractional abundance of materials defined in
abundance descriptors is chosen.

Retrieval of Hyperspectral Images Based on Background Content Similarity

Similar to the retrieval of hyperspectral images with respect to foreground content
similarity, the proposed CBHIR system allows the user to query hyperspectral im-
ages by only considering the background content similarity. In contrast to foreground
content-based retrieval, in this retrieval scenario, spectral and abundance vectors of
Xn and Xq are modified to focus only on background content. To this end, in the
first step, the similarity between Xq and Xn is computed with respect to the modi-
fied background binary spectral descriptors �

n
and �

q
only by estimating Hamming

distance between them.

Then, a set XH of H  R images having the lowest Hamming distance are selected,
while the remaining images in the archive are filtered out. In the case of considering
Scenario 3 for retrieval, XH is considered as the final set of retrieved images (i.e.,
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XH = XR), and the algorithm stops at this step. If Scenario 4 is considered for re-
trieval, XH is forwarded to the second step. In the second step, the similarity between
abundance descriptor ↵b

n
of each image in XH and ↵b

n
of the query image is estimated

by considering the Euclidean distance measure. Then, the set XR ⇢ XH of R im-
ages that have the highest similarity to the query image Xq in terms of the fractional
abundance of materials defined in abundance descriptors is chosen.

As mentioned in previous sections, the proposed system supports single material
based hyperspectral image retrieval scenarios as well. To perform a single material
based retrieval, user is asked to provide a signatures describing spectral features of a
content to be queried as defined in Scenario 1. In case fractional abundance of mate-
rial to be queried is imported, user is also asked to provide minimum and maximum
fractional abundance limits to perform retrieval that conforms with retrieval Scenario
2.
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CHAPTER 6

DATA-SET DESCRIPTION

6.1 Data Source

In order to evaluate retrieval performance of proposed CBHIR system and compare
with the state-of-the-art systems available in the literature, a multi-label benchmark
hyperspectral image archive was created from a very high-resolution hyperspectral
data products. The hyperspectral data products used during archive generation were
acquired over a flight line covering Yenice and Yeşilkaya towns (which are located
on the border of Eskişehir and Ankara cities) by VNIR hyperspectral imager of a
multimodal imaging system (see Figure 40).

Sensor components of the imaging system are composed of two co-aligned very high-
resolution hyperspectral (VNIR + SWIR), one RGB multispectral imager and one
Fiber Optic Downwelling Irradiance Sensor (FODIS) to simultaneously measure the
power of incident light during flight for atmospheric correction of VNIR hyperspec-
tral images. In addition to the sensors, imaging system includes Applanix AP20 GP-
S/IMU, SOMAG GSM4000 gyro-stabilizer, two Headwall Hyperspectral Data Pro-
cessing Units (HDPU) and a power distribution unit (see Figure 41). Specifications
of sensors installed on the imaging system are provided in Table 3.

Data acquisition flight was performed with a Cessna 206 type aircraft with registra-
tion code TC-KFZ on May 04, 2019. Details of flight parameters and corresponding
ground resolution obtained with each sensor are given in Table 7.

6.2 Data Pre-processing

In order to generate a coherent benchmark archive from large consecutive hyperspec-
tral data products acquired during the mission and make the patches ready for the
labeling phase, a set of pre-processing tasks were performed on raw data. Data pre-
processing step consists of the following tasks: 1) digital number (raw image) to
radiance conversion, 2) radiance to reflectance conversion, and 3) slicing data prod-
ucts to obtain patches to be labeled. Even though the first and second activities were
performed using a commercial software named Headwall SpectralView (v3.2.0), the
technical background of each step will be explained in the following paragraphs.
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Figure 40: Fingerprint of the area imaged during flight and used in benchmark archive
generation.
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Table 6: Specifications of sensors of imaging system used during data acquisition.

VNIR
Hyperspectral

SWIR
Hyperspectral

RGB
Multispectral FODIS

Manufacturer Headwall PhaseOne Headwall

Commerical Name HE Micro-Hyperpsec
VNIR E Series

HE Micro-Hyperpsec
SWIR 384 iXU-RS 1000 FODIS

Spectral Range (nm) VNIR
400-1000

SWIR
900-2500 Visible VNIR

400-1000
Spectral Channels 369 167 3 2400
Frame Size 1x1600 1x384 1108x8708 1x1
Design Push-broom Snapshot Single Point
Dispersion/Pixel (nm) 1.63 9.6 - 0.25
Focal Plane Array Scientific CMOS MCT CCD CCD
Pixel Pitch (microns) 6.5 24 4.6 -
Aperture F/2.5 - -
Slit Length (mm) 10.5 - -
Max. Frame Rate (Hz) 250 450 1.66 5
Bit Depth 16
Cooling TE Cooled Stirling Cooled - -

Fore Optic 70 mm 100 mm 150 mm Cosine
Corrector

Figure 41: Multi-modal sensor configuration of the imaging system: a) sensors and
auxiliary components, b) Cessna 206 manned airborne platform.

Table 7: Fight parameters and corresponding ground resolutions obtained with the
sensors.

Aircraft Cessna 206
Flight Altitude (m) ⇠3000 (AGL) / ⇠3815 (ASL)
Flight Speed (knots) ⇠90
Flight Polygon Size (m) 8000 x 790

VNIR Hyperspectral SWIR Hyperspectral RGB Multispectral
FOV (m) 445.17 276.48 1696.00 x 1356.80
IFOV (cm) 27.86 72 1.32 x 1.32
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Digital number-to-radiance conversion of raw data is crucial in hyperspectral imag-
ing. Since each individual detector on the focal plane array of a push-broom hyper-
spectral imager has slightly different gain and offset coefficients, raw hyperspectral
images in digital number format are converted to radiance images before perform-
ing any analysis. This step achieves both removal of artifacts arising from non-
uniformity (i.e., darker or brighter stripes), which are caused by different gain and
offset coefficients of the detectors, and making each pixel signature in radiance unit
(mW/(cm2 ⇤ sr ⇤ µm)), so that pixel signatures are standardized. Equation 25 is ap-
plied to every spatial-spectral pixel of the raw image in digital format (DN) to obtain
a radiance (L) image.

L� =
(DN� � SN�) · coe↵�

texp
(25)

where SN�, coe↵� and texp are measured sensor noise, sensor coefficient, and expo-
sure time of the sensor during data acquisition, respectively.

The second important pre-processing task performed on images was applying an at-
mospheric correction to obtain the reflectance signature of each pixel from the radi-
ance image generated in the previous step. Atmospheric correction is usually done
with three approaches: 1) using FODIS data acquired simultaneously with hyperspec-
tral imagery, 2) using a calibrated reflectance tarp’s signature located in the scene, or
3) using proprietary or publicly available correction models.

FODIS is a single-point spectrometer that synchronously measures incident light dur-
ing data acquisition via a cosine corrector perpendicularly mounted on the top of the
aircraft. Then, measured incident sunlight is used to remove atmospheric effects from
hyperspectral data in radiance format. Thus, each pixel signature is converted to re-
flectance corresponding to the proportion of incident light reflected from that pixel at
a specific wavelength.

Using a calibrated reflectance tarp, which exists in the scene, is yet another alternative
method to obtain the reflectance of each pixel signature from hyperspectral data in ra-
diance format. To this end, an average white reference signature is obtained from pix-
els covering only calibrated reflectance tarp in the scene. Then, each spatial-spectral
pixel of the radiance data is divided by a white reference signature at a specific length
as defined in Equation 26.

R� =
L�

WR�

(26)

There have also been many proprietary and publicly available models exist to apply
atmospheric correction to hyperspectral data in radiance format i.e., Fast Line-of-
sight Atmospheric Analysis of Spectral Hypercubes (FLAASH), Atmospheric Cor-
rection (ATCOR) and Quick Atmospheric Correction (QUAC). Some of those meth-
ods use time and location information to estimate the position of the sun and the
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strength of the incident solar light to perform atmospheric correction. On the other
hand, some other methods, i.e., QUAC, do not require auxiliary information to gen-
erate reflectance data. Instead, these algorithms apply hypothetical methods based on
radiance data to perform atmospheric correction.

As compared to the third one, the first and second methods allow for obtaining more
realistic results since both methods include in-scene measurements of incident so-
lar light despite the measurements being performed with different instruments. In
this study, all the hyperspectral data products used in benchmark archive generation
were converted to reflectance using incident solar radiance data captured by FODIS
installed on the imaging system.

In the last step of data pre-processing, twelve reflectance hyperspectral payload data
products with 2000x1600 pixels were equally sliced into 100x100 pixel square patches.
By the end of this step, 3840 patches, each of which approximately covers 7.8 km2

on the ground, were obtained.

6.3 Data Labelling

Accurate labeling of samples in any benchmark archive is a crucial task that explicitly
affects performance analysis. Thus, patch labeling in the benchmark archive has been
performed thanks to an auxiliary Very High Resolution (VHR) multispectral imagery,
which provides 1.32 cm ground resolution acquired during the flight. (see Figure 42).

In addition to labeling each sample in the benchmark archive with VHR multispectral
imagery, fieldwork was also performed on October 32, 2021, along the flight path to
enhance the quality of labeling. In this fieldwork, objects existing in the hyperspectral
image archive were also photographed from the ground to have more information
about the objects (see Figure 43).

In order to perform an accurate data labeling process, a taxonomy of content labels
has been generated with three main categories: i) vegetation, ii) man-made Objects,
and iii) water bodies (see Figure 44).
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Figure 42: Proper labelling of hyperspectral images thanks to VHR multispectral
imagery acquired during the same flight.

Figure 43: Fingerprint of the area imaged during flight and used in benchmark archive
generation.
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Object / 
Material 
Labels

Vegetation

Natural 
Vegetation Tree

Type-1

(224)

Type-2

(566)

Type-3

(69)

Type-4

(192)

Type-5

(9)

Field

Type-1

(384)

Type-2

(46)

Type-3

(35)

Type-4
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Figure 44: Taxonomy of content labels and corresponding number of images labeled
under each sub-category.
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CHAPTER 7

EXPERIMENTAL SETUP AND RESULTS

This section of the thesis elaborates on the experimental setup designed for perform-
ing objective and comparative performance analysis between the proposed and other
CBHIR systems available in the literature.

7.1 Experimental Setup

A set of experiments were conducted to evaluate the performance of the proposed
CBHIR system against other CBHIR systems in the literature. To this end, it is nec-
essary to set specific variables and methods to perform the experiments presented in
this section, including the proposed CBHIR system and other CBHIR systems from
the literature. These parameters are essential for obtaining accurate experimental re-
sults. Therefore, we conducted preliminary experiments to determine the best values
for these parameters. This section gives a detailed explanation of the values deter-
mined as a result of these preliminary experiments. First, the experimental setup of
the CBHIR system proposed in this thesis and other studies in the literature are given.

Within the scope of the study, spectral-spatial segmentation is performed on hyper-
spectral images using the proposed system. In this segmentation performed with the
hyperSLIC algorithm, the local neighborhood parameter is set to 4x4 pixels. The
reason for choosing this size parameter is that, due to the spatial resolution of the
hyperspectral images, spectral properties related to any material can be observed in
an area of at least 4x4 pixels, which corresponds to an area of ⇠1 m2 on the ground.
Such an area is clear enough to observe spectral features of matter in the scene for the
spatial resolution of the imager at the given flight altitude in Table 7.

For each hyperspectral remote sensing data product, the proposed method requires de-
termining the maximum number of reference background images. When examining
the hyperspectral remote sensing data products that comprise the archive, this number
has been determined as five. When determining reference background images, it has
been observed that selecting the average spectral angular distance between images as
0.25 radians is the most suitable and sufficient for different background image sets.

The proposed CBHIR system uses Mahalanobis distance to regional reference back-
ground images to classify foreground and background content segments. At this
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stage, the threshold value is set as the highest Mahalanobis distance to the regional
background image pixels created by merging reference background images.

During the vocabulary generation stage, the spectral angular distance for foreground
content dictionaries is set to 0.10 radians to eliminate the existence of repetition for
the same material signature.

In order to evaluate the performance of the proposed BSD-SSR and system, we have
considered three state-of-the-art methods for comparison: 1) the bag-of-endmember
based method (denoted as BoE), 2) the endmember matching algorithm based on the
Grana Distance (denoted as EM-Grana); and 3) the endmember matching algorithm
that weights the distances estimated by the SAD between each endmember pair by
their abundances (denotes as EM-WSAD).

To obtain the endmembers, VCA was used in the experiments for endmember based
methods. HySime [119] was used in the experiments to estimate the number of end-
members.

In all experiments, CBHIR systems are requested to retrieve 10 most similar images
to a given query image, and each hyperspectral image in the benchmark archive is
used as a query image. Beyond each system’s retrieval performance, the retrieval
time is also measured.

Computational Environment

The experiments were conducted in MATLAB® environment installed on a Microsoft
Windows 10 operating system computer with 3.6 GHz Intel® i7-9750H processor 2.6
GHz and 32 GB RAM.

Performance Metrics

Since this study performs performance evaluation on a multi-label benchmark archive,
we considered four different compatible multi-label performance metrics, which are:
i) accuracy, ii) precision, iii) recall, and iv) Hamming loss. Let LXq and LXr be the
label sets for the query image Xq and any particular image Xr in the corresponding
set of retrieved images XR, respectively.

Accuracy is the fraction of identical content labels of the query and retrieved images
in the union of label sets of two images and is defined as:

Accuracy =

��LXq

T
LXr

��
��LXq

S
LXr

�� (27)

Thus, accuracy is directly proportional to the cardinality of the intersection of label
sets of query and retrieved images. The retrieval performance increases when accu-
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racy approaches 1. Precision is the fraction of identical content labels of query and
retrieved images in the content label set of the retrieved image and is defined as:

Precision =

��LXq

T
LXr

��
|LXr |

(28)

In comparison with accuracy, precision evaluates the retrieval performance of the
system by mainly focusing on the content labels of the retrieved image. Accordingly,
content labels of the query image those apart from the matched ones are ignored. The
retrieval performance increases when precision approaches 1. Unlike precision, recall
is the fraction of identical content labels of query and retrieved images in the content
labels of the query image and is defined as:

Recall =

��LXq

T
LXr

��
��LXq

�� (29)

Thus, content labels of the retrieved image, those apart from the matched ones, are
ignored. The retrieval performance increases when precision approaches 1. Hamming
Loss evaluates the retrieval performance by calculating the symmetric difference (�)
between two content label sets and defined as:

HammingLoss =

��LXq�LXr

��
��LXq

�� (30)

According to Hamming Loss, the system is penalized for each item not in the inter-
section of query and retrieved image content label sets. The retrieval performance
increases when Hamming loss approaches zero.

7.2 Experimental Results

In this section, the retrieval performance of the proposed CBHIR system is compared
with state-of-the-art systems available in the literature detailed in Chapter 3.

In the first subsection that follows, sample retrieval results of the proposed CBHIR
system are presented, and in the second section, a comparative performance analysis
with other systems is presented.

7.3 Sample Retrieval Results for the Proposed CBHIR System

In this subsection, the retrieval performance of the proposed CBHIR system within
the scope of the thesis is demonstrated with visual examples using different query
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images. For this purpose, query hyperspectral images are selected from different re-
gions of the hyperspectral image archive used in the study. Careful consideration
was given to selecting query hyperspectral images with varying foreground and back-
ground content.

The retrieval results presented in Figure 48 consist of content predominantly related
to railway ballast material, steel rail, natural vegetation cover, and stabilized road,
using a query image (please see Figure 45). The proposed system has successfully
retrieved other images from the archive containing materials with similar spectral
characteristics.

For the retrieval results presented in Figure 49, a query image was used with content
primarily focused on a red-tiled roof, metal sheet roof, natural vegetation cover, and
stabilized road. The proposed system retrieves other hyperspectral images from the
archive containing materials with similar spectral characteristics.

Figure 50 presents the retrieval results of a query hyperspectral image comprising
various land cover types, including a water stream, natural vegetation, bare soil, and
gravel road (please see Figure 47).

In Figure 51, retrieval results for a query hyperspectral image specifically containing
white tent tarpaulin observed in rural regions (please see Figure 46).

Figure 52 presents the retrieval results of a query hyperspectral image that is domi-
nantly composed of bare soil and a specific tree type.

Figure 45: VHR multispectral image portion of the region containing railway ballast
material, steel rail, natural vegetation cover, and stabilized road.
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Figure 46: VHR multispectral image portion of the region containing white tent
tarpaulin.

Figure 47: VHR multispectral image portion of the region containing water stream,
gravel road and vegetation.
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Query
X125

(1) - X174
d( q , n ):14

d( q , n ): 0.101

(2) - X141
d( q , n ):17

d( q , n ): 0.118

(3) - X851
d( q , n ):16

d( q , n ): 0.135

(4) - X60
d( q , n ):15

d( q , n ): 0.138

(5) - X932
d( q , n ):16

d( q , n ): 0.146

(6) - X900
d( q , n ):16

d( q , n ): 0.161

(7) - X933
d( q , n ):15

d( q , n ): 0.164

(8) - X109
d( q , n ):17

d( q , n ): 0.176

(9) - X802
d( q , n ):15

d( q , n ): 0.181

(10) - X 407
d( q , n ):13

d( q , n ): 0.19

(11) - X 126
d( q , n ):15

d( q , n ): 0.19

(12) - X 948
d( q , n ):16

d( q , n ): 0.2

(13) - X 817
d( q , n ):12

d( q , n ): 0.225

(14) - X 769
d( q , n ):16

d( q , n ): 0.226

(15) - X 342
d( q , n ):14

d( q , n ): 0.237

Figure 48: Content-based retrieval results of the proposed CBHIR system, Xq = X125

Table 8: Content labels for retrieval results, Xq = X125

Xq 1 2 3 4 5 6 7 8 9 10
X125 X174 X141 X851 X60 X932 X900 X933 X109 X802 X407

track
ballast

track
ballast

track
ballast

track
ballast

track
ballast

track
ballast

track
ballast

track
ballast

track
ballast

track
ballast

track
ballast

rail rail rail rail rail rail rail rail rail rail rail
concrete
sleeper

concrete
sleeper

concrete
sleeper

concrete
sleeper

concrete
sleeper

concrete
sleeper

concrete
sleeper

concrete
sleeper

concrete
sleeper

concrete
sleeper

concrete
sleeper

gravel
road

gravel
road

gravel
road

gravel
road

gravel
road

gravel
road

gravel
road

gravel
road

gravel
road

gravel
road

gravel
road

natural
veg.

natural
veg.

natural
veg.

natural
veg.

natural
veg.

natural
veg.

natural
veg.

natural
veg.

natural
veg.

natural
veg.

natural
veg.
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Query
X1211

(1) - X1245
d( q , n ):55

d( q , n ): 0.115

(2) - X1212
d( q , n ):44

d( q , n ): 0.153

(3) - X1100
d( q , n ):58

d( q , n ): 0.165

(4) - X1142
d( q , n ):48

d( q , n ): 0.17

(5) - X2724
d( q , n ):57

d( q , n ): 0.191

(6) - X2758
d( q , n ):56

d( q , n ): 0.2

(7) - X2769
d( q , n ):58

d( q , n ): 0.202

(8) - X1159
d( q , n ):54

d( q , n ): 0.231

(9) - X1153
d( q , n ):54

d( q , n ): 0.235

(10) - X 1143
d( q , n ):51

d( q , n ): 0.258

(11) - X 374
d( q , n ):57

d( q , n ): 0.295

(12) - X 2755
d( q , n ):58

d( q , n ): 0.298

(13) - X 883
d( q , n ):57

d( q , n ): 0.299

(14) - X 358
d( q , n ):58

d( q , n ): 0.321

(15) - X 1742
d( q , n ):58

d( q , n ): 0.327

Figure 49: Content-based retrieval result, Xq = X1211

Table 9: Content labels for retrieval results, Xq = X1211

Xq 1 2 3 4 5 6 7 8 9 10
X1211 X1245 X1212 X1100 X1142 X2724 X2758 X2769 X1159 X1153 X1143

gravel
road

gravel
road

gravel
road

gravel
road

gravel
road

gravel
road

gravel
road

gravel
road

gravel
road

metal
sheet

metal
sheet

metal
sheet

metal
sheet

metal
sheet

metal
sheet

metal
sheet

metal
sheet

metal
sheet

metal
sheet

metal
sheet

bare
soil

bare
soil

bare
soil

bare
soil

bare
soil

bare
soil

bare
soil

bare
soil

bare
soil

bare
soil

metal
sheet

red roof
tile

red roof
tile

red roof
tile

red roof
tile

red roof
tile

red roof
tile

red roof
tile

red roof
tile

red roof
tile

red roof
tile

red roof
tile

white
metal
object

white
metal
object

white
metal
object

blue
painted
object

white
metal
object

white
metal
object

white
metal
object

white
metal
object

white
metal
object

tree tree tree tree tree red
painted
object

tree tree blue
painted
object

blue
painted
object

black
painted
object

natural
veg.

natural
veg.

natural
veg.

natural
veg.

natural
veg.

natural
veg.

natural
veg.

natural
veg.

natural
veg.

natural
veg.

natural
veg.
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Query
X1770

(1) - X1813
d( q , n ):15

d( q , n ): 0.113

(2) - X1769
d( q , n ):11

d( q , n ): 0.14

(3) - X1735
d( q , n ):15

d( q , n ): 0.185

(4) - X3145
d( q , n ):16

d( q , n ): 0.191

(5) - X1756
d( q , n ):16

d( q , n ): 0.208

(6) - X1771
d( q , n ):13

d( q , n ): 0.212

(7) - X1752
d( q , n ):15

d( q , n ): 0.284

(8) - X1726
d( q , n ):14

d( q , n ): 0.313

(9) - X1700
d( q , n ):15

d( q , n ): 0.319

(10) - X 1896
d( q , n ):16

d( q , n ): 0.341

(11) - X 1338
d( q , n ):16

d( q , n ): 0.343

(12) - X 1772
d( q , n ):16

d( q , n ): 0.377

(13) - X 2462
d( q , n ):16

d( q , n ): 0.377

(14) - X 1877
d( q , n ):16

d( q , n ): 0.381

(15) - X 1778
d( q , n ):14

d( q , n ): 0.405

Figure 50: Content-based retrieval result, Xq = X1770

Table 10: Content labels for retrieval results, Xq = X1770

Xq 1 2 3 4 5 6 7 8 9 10
X1770 X1813 X1769 X1735 X3145 X1756 X1771 X1752 X1726 X1700 X1896

water
stream

water
stream

water
stream

water
stream

water
stream

water
stream

water
stream

water
stream

water
stream

water
stream

water
stream

gravel
road

gravel
road

gravel
road

gravel
road

gravel
road

gravel
road

gravel
road

gravel
road

gravel
road

gravel
road

gravel
road

bare
soil

bare
soil

bare
soil

bare
soil

bare
soil

bare
soil

bare
soil

bare
soil

bare
soil

bare
soil

bare
soil

natural
veg.

natural
veg.

natural
veg.

natural
veg.

natural
veg.

natural
veg.

natural
veg.

natural
veg.

natural
veg.

natural
veg.

natural
veg.
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Query
X1914

(1) - X1915
d( q , n ):37

d( q , n ): 0.0937

(2) - X1846
d( q , n ):43

d( q , n ): 0.0969

(3) - X1290
d( q , n ):42

d( q , n ): 0.0984

(4) - X1882
d( q , n ):43

d( q , n ): 0.132

(5) - X1862
d( q , n ):39

d( q , n ): 0.134

(6) - X1799
d( q , n ):44

d( q , n ): 0.151

(7) - X2766
d( q , n ):42

d( q , n ): 0.156

(8) - X1780
d( q , n ):43

d( q , n ): 0.16

(9) - X3376
d( q , n ):44

d( q , n ): 0.18

(10) - X 1291
d( q , n ):36

d( q , n ): 0.183

(11) - X 1424
d( q , n ):44

d( q , n ): 0.211

(12) - X 1867
d( q , n ):43

d( q , n ): 0.217

(13) - X 1260
d( q , n ):44

d( q , n ): 0.222

(14) - X 2363
d( q , n ):40

d( q , n ): 0.225

(15) - X 2578
d( q , n ):43

d( q , n ): 0.241

Figure 51: Content-based retrieval result, Xq = X1914

Table 11: Content labels for retrieval results, Xq = X1914

Xq 1 2 3 4 5 6 7 8 9 10
X1914 X1915 X1846 X1290 X1882 X1862 X1799 X2766 X1780 X3376 X1291

white
tent

white
tent

white
tent

white
tent

white
tent

white
tent

white
tent

white
tent

white
tent

white
tent

water
stream

metal
sheet

metal
sheet

metal
sheet

metal
sheet

gravel
road

metal
sheet

blue
painted
object

blue
painted
object

tree bare
soil

bare
soil

natural
veg.

natural
veg.

natural
veg.

natural
veg.

natural
veg.

natural
veg.

natural
veg.

natural
veg.

natural
veg.

natural
veg.

natural
veg.

bare
soil

bare
soil

bare
soil

bare
soil

bare
soil

bare
soil

bare
soil

bare
soil

bare
soil

natural
veg.

natural
veg.

87



Query
X2440

(1) - X2456
d( q , n ):17

d( q , n ): 0.11

(2) - X2441
d( q , n ):20

d( q , n ): 0.117

(3) - X2454
d( q , n ):18

d( q , n ): 0.123

(4) - X2455
d( q , n ):19

d( q , n ): 0.139

(5) - X2453
d( q , n ):18

d( q , n ): 0.148

(6) - X2438
d( q , n ):20

d( q , n ): 0.157

(7) - X2425
d( q , n ):17

d( q , n ): 0.167

(8) - X992
d( q , n ):17

d( q , n ): 0.182

(9) - X2486
d( q , n ):16

d( q , n ): 0.183

(10) - X 2424
d( q , n ):19

d( q , n ): 0.186

(11) - X 2469
d( q , n ):19

d( q , n ): 0.187

(12) - X 2439
d( q , n ):16

d( q , n ): 0.192

(13) - X 1008
d( q , n ):18

d( q , n ): 0.2

(14) - X 2485
d( q , n ):19

d( q , n ): 0.201

(15) - X 2470
d( q , n ):18

d( q , n ): 0.206

Figure 52: Content-based retrieval result, Xq = X2440

Table 12: Content labels for retrieval results, Xq = X2440

Xq 1 2 3 4 5 6 7 8 9 10
X2440 X2456 X2441 X2454 X2455 X2453 X2438 X2425 X992 X2486 X2424

tree
(Type-

3)

tree
(Type-

3)

tree
(Type-
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tree
(Type-

3)

tree
(Type-

3)

tree
(Type-

3)

tree
(Type-

3)

tree
(Type-

3)

tree
(Type-

3)

tree
(Type-

3)

tree
(Type-

3)
bare
soil

bare
soil

bare
soil

bare
soil

bare
soil

bare
soil

bare
soil

bare
soil

bare
soil

bare
soil

bare
soil

natural
veg.

natural
veg.

natural
veg.

natural
veg.

natural
veg.

natural
veg.

natural
veg.

natural
veg.

natural
veg.

natural
veg.

natural
veg.
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7.4 Further Performance Analysis of the Proposed CBHIR System

In addition to the above results obtained by considering both vocabularies, the pro-
posed system was also tested against only foreground and background-based retrieval
cases. The retrieval results presented in Figure 53 and the corresponding content la-
bels given in Table 13 were obtained against a query image that contains a high abun-
dance of man-made objects, particularly buildings with red roof tiles. The retrieval
results given in Figure 53 show that the proposed system is capable of retrieving im-
ages with similar foreground contents.

Query
X2678

(1) - X1130
d( q , n ):32

d( q , n ): 0.275

(2) - X1139
d( q , n ):29

d( q , n ): 0.311

(3) - X1188
d( q , n ):29

d( q , n ): 0.316

(4) - X1254
d( q , n ):31

d( q , n ): 0.323

(5) - X1135
d( q , n ):32

d( q , n ): 0.331

(6) - X2655
d( q , n ):28

d( q , n ): 0.332

(7) - X1214
d( q , n ):32

d( q , n ): 0.344

(8) - X671
d( q , n ):30

d( q , n ): 0.344

(9) - X2773
d( q , n ):31

d( q , n ): 0.345

(10) - X 2756
d( q , n ):28

d( q , n ): 0.345

(11) - X 2781
d( q , n ):31

d( q , n ): 0.345

(12) - X 1112
d( q , n ):32

d( q , n ): 0.354

(13) - X 2788
d( q , n ):31

d( q , n ): 0.355

(14) - X 1118
d( q , n ):28

d( q , n ): 0.358

(15) - X 1221
d( q , n ):32

d( q , n ): 0.369

Figure 53: Content-based retrieval result, Xq = X2678

Table 13: Content labels for retrieval results, Xq = X2678

Xq 1 2 3 4 5 6 7 8 9 10
X2678 X1130 X1139 X1188 X1254 X1135 X2655 X1214 X671 X2773 X2756

red roof
tile

red roof
tile

red roof
tile

red roof
tile

red roof
tile

red roof
tile

red roof
tile

red roof
tile

red roof
tile

red roof
tile

red roof
tile

bare soil bare soil bare soil bare soil bare soil bare soil bare soil bare soil bare soil bare soil bare soil
natural

veg.
natural

veg.
natural

veg.
natural

veg.
natural

veg.
natural

veg.
natural

veg.
natural

veg.
natural

veg.
natural

veg.
natural

veg.
tree

Type-2
tree

Type-2
tree

Type-2
tree

Type-2
tree

Type-2
tree

Type-2
tree

Type-2
tree

Type-2
tree

Type-2
tree

Type-2
tree

Type-2
gravel
road

gravel
road

gravel
road

gravel
road

gravel
road

gravel
road

gravel
road

gravel
road

metal
object

metal
object

white
painted
object

metal
object

blue
painted
object

white
painted
object

metal tile metal tile metal tile metal tile red
painted
object
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The retrieval results presented in Figure 54 and the corresponding content labels given
in Table 14 were obtained against a query image that contains a high abundance of
background content (e.g., field and bare soil). The retrieval results given in Figure
54 show that the proposed system is capable of retrieving images with similar back-
ground contents.

Query
X150

(1) - X135
d( q , n ):4

d( q , n ): 0.19

(2) - X118
d( q , n ):6

d( q , n ): 0.208

(3) - X119
d( q , n ):5

d( q , n ): 0.308

(4) - X102
d( q , n ):6

d( q , n ): 0.313

(5) - X151
d( q , n ):4

d( q , n ): 0.327

(6) - X212
d( q , n ):5

d( q , n ): 0.354

(7) - X311
d( q , n ):5

d( q , n ): 0.377

(8) - X1071
d( q , n ):3

d( q , n ): 0.382

(9) - X117
d( q , n ):4

d( q , n ): 0.389

(10) - X 277
d( q , n ):5

d( q , n ): 0.418

(11) - X 197
d( q , n ):6

d( q , n ): 0.419

(12) - X 1054
d( q , n ):3

d( q , n ): 0.44

(13) - X 133
d( q , n ):5

d( q , n ): 0.455

(14) - X 666
d( q , n ):4

d( q , n ): 0.456

(15) - X 101
d( q , n ):3

d( q , n ): 0.472

Figure 54: Content-based retrieval result, Xq = X150

Table 14: Content labels for retrieval results, Xq = X150

Xq 1 2 3 4 5 6 7 8 9 10
X125 X135 X118 X119 X102 X151 X212 X311 X1071 X117 X277

field
Type-3

field
Type-3

field
Type-3

field
Type-3

field
Type-3

field
Type-3

field
Type-3)

field
Type-3

field
Type-3

field
Type-3

field
Type-3

bare soil bare soil bare soil bare soil bare soil bare soil bare soil bare soil bare soil bare soil bare soil

A series of experiments were also performed to observe how the proposed CBHIR
system performs the retrieval in the case of query images with different ground-
sampling distances (resolutions) and spatial dimensions than the hyperspectral im-
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ages in the archive. The retrieval results presented in Figure 55 and the corresponding
content labels given in Table 15 were obtained for a query image whose resolution is
reduced by a factor of 1/4 in both spatial dimensions. The resulting image has 25x25
pixels in x and y dimensions and the same spectral bands as the original image.

Query
X1211

(1) - X1100
d( q , n ):59

d( q , n ): 0.121

(2) - X2758
d( q , n ):46

d( q , n ): 0.128

(3) - X2769
d( q , n ):44

d( q , n ): 0.166

(4) - X1159
d( q , n ):62

d( q , n ): 0.184

(5) - X2716
d( q , n ):47

d( q , n ): 0.204

(6) - X1153
d( q , n ):56

d( q , n ): 0.218

(7) - X2755
d( q , n ):58

d( q , n ): 0.224

(8) - X1096
d( q , n ):54

d( q , n ): 0.227

(9) - X1212
d( q , n ):58

d( q , n ): 0.249

(10) - X 1164
d( q , n ):54

d( q , n ): 0.266

(11) - X 1157
d( q , n ):57

d( q , n ): 0.309

(12) - X 2721
d( q , n ):55

d( q , n ): 0.314

(13) - X 1158
d( q , n ):59

d( q , n ): 0.323

(14) - X 1143
d( q , n ):58

d( q , n ): 0.332

(15) - X 883
d( q , n ):61

d( q , n ): 0.344

X1211-(Low Res.)

Figure 55: Content-based retrieval result (down-scaled), Xq = X1211

Table 15: Content labels for retrieval results (down-scaled), Xq = X1211

Xq 1 2 3 4 5 6 7 8 9 10
X1211 X1100 X2758 X2769 X1159 X2716 X1153 X2755 X1096 X1212 X1164
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gravel
road

gravel
road

gravel
road

gravel
road

gravel
road

gravel
road

gravel
road

gravel
road

metal
sheet

metal
sheet

metal
sheet

metal
sheet

metal
sheet

metal
sheet

metal
sheet

metal
sheet

metal
sheet

metal
sheet

bare soil bare soil bare soil bare soil bare soil bare soil bare soil bare soil bare soil bare soil metal
sheet

red roof
tile

red roof
tile

red roof
tile

red roof
tile

red roof
tile

red roof
tile

red roof
tile

red roof
tile

red roof
tile

red roof
tile

red roof
tile

white
metal
object

white
metal
object

white
metal
object

white
metal
object

white
metal
object

white
metal
object

white
metal
object

white
metal
object

tree tree tree tree tree tree tree tree black
painted
object

natural
veg.

natural
veg.

natural
veg.

natural
veg.

natural
veg.

natural
veg.

natural
veg.

natural
veg.

natural
veg.

natural
veg.

natural
veg.
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Similarly, another experiment was conducted on the same image by increasing the res-
olution by a factor of 4 in both spatial dimensions. The resulting image has 400x400
pixels in x and y dimensions and the same spectral bands as the original image. The
retrieval results for the up-scaled image and the corresponding content labels are given
in Figure 56 and Table 16, respectively.

Query
X1211 (High Res.)

(1) - X1212
d( q , n ):53

d( q , n ): 0.109

(2) - X2755
d( q , n ):48

d( q , n ): 0.161

(3) - X1159
d( q , n ):51

d( q , n ): 0.172

(4) - X2758
d( q , n ):43

d( q , n ): 0.184

(5) - X2769
d( q , n ):57

d( q , n ): 0.202

(6) - X2724
d( q , n ):51

d( q , n ): 0.207

(7) - X1142
d( q , n ):55

d( q , n ): 0.212

(8) - X1143
d( q , n ):54

d( q , n ): 0.222

(9) - X1153
d( q , n ):56

d( q , n ): 0.230

(10) - X 1100
d( q , n ):54

d( q , n ): 0.244

(11) - X 1245
d( q , n ):57

d( q , n ): 0.310

(12) - X 358
d( q , n ):55

d( q , n ): 0.316

(13) - X 883
d( q , n ):55

d( q , n ): 0.318

(14) - X 374
d( q , n ):58

d( q , n ): 0.324

(15) - X 1053
d( q , n ):48

d( q , n ): 0.334

Figure 56: Content-based retrieval result, (down-scaled image) Xq = X1211

Table 16: Content labels for retrieval results (up-scaled), Xq = X1211

Xq 1 2 3 4 5 6 7 8 9 10
X1211 X1212 X2755 X1159 X2758 X2769 X2724 X1142 X1143 X1153 X1100
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sheet

bare soil bare soil bare soil bare soil bare soil bare soil bare soil bare soil bare soil bare soil metal
sheet
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red roof
tile

red roof
tile

red roof
tile

red roof
tile

red roof
tile

red roof
tile

red roof
tile

red roof
tile

red roof
tile

red roof
tile

white
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object

white
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object

white
metal
object

white
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object

white
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object

white
metal
object

white
metal
object

white
metal
object

tree tree tree tree tree tree tree tree black
painted
object

natural
veg.

natural
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natural
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natural
veg.

natural
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natural
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natural
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natural
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natural
veg.
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The retrieval results shown in Figure 57 and the corresponding content labels given in
Table 17 were obtained for an image query that had its resolution reduced by a factor
of 1/4 in both spatial dimensions. The resulting image has 25x25 pixels in both x and
y dimensions and the same spectral bands as the original image.

Query
X2440 (Low Res.)

(1) - X992
d( q , n ):19

d( q , n ): 0.116

(2) - X2441
d( q , n ):22

d( q , n ): 0.121

(3) - X2454
d( q , n ):20

d( q , n ): 0.122

(4) - X2425
d( q , n ):22

d( q , n ): 0.142

(5) - X2485
d( q , n ):19

d( q , n ): 0.147

(6) - X2424
d( q , n ):21

d( q , n ): 0.162

(7) - X1023
d( q , n ):22

d( q , n ): 0.164

(8) - X2456
d( q , n ):19

d( q , n ): 0.182

(9) - X1008
d( q , n ):24

d( q , n ): 0.202

(10) - X 2438
d( q , n ):22

d( q , n ): 0.214

(11) - X 2469
d( q , n ):19

d( q , n ): 0.215

(12) - X 2455
d( q , n ):24

d( q , n ): 0.220

(13) - X 2486
d( q , n ):19

d( q , n ): 0.234

(14) - X 2453
d( q , n ):23

d( q , n ): 0.236

(15) - X 2439
d( q , n ):20

d( q , n ): 0.238

Figure 57: Content-based retrieval result (down-scaled image), Xq = X2440

Table 17: Content labels for retrieval results (down-scaled image), Xq = X2440

Xq 1 2 3 4 5 6 7 8 9 10
X2440 X992 X2441 X2454 X2425 X2485 X2424 X1023 X2456 X1008 X2438

tree
Type-3

tree
Type-3

tree
Type-3

tree
Type-3

tree
Type-3

tree
Type-3

tree
Type-3

tree
Type-3

tree
Type-3

tree
Type-3

tree
Type-3

bare soil bare soil bare soil bare soil bare soil bare soil bare soil bare soil bare soil bare soil bare soil
natural

veg.
natural

veg.
natural

veg.
natural

veg.
natural

veg.
natural

veg.
natural

veg.
natural

veg.
natural

veg.
natural

veg.
natural

veg.
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In another experiment, the resolution of the same image was increased four times in
both the x and y dimensions. The resulting image now has 400x400 pixels in both
dimensions and has the same spectral bands as the original image. The results of
the retrieval process for this up-scaled image, along with the corresponding content
labels, are presented in Figure 58 and Table 18, respectively.

Query
X2440 (High Res.)

(1) - X992
d( q , n ):14

d( q , n ): 0.114

(2) - X2424
d( q , n ):18

d( q , n ): 0.120

(3) - X2455
d( q , n ):18

d( q , n ): 0.126

(4) - X2438
d( q , n ):19

d( q , n ): 0.134

(5) - X2469
d( q , n ):21

d( q , n ): 0.140

(6) - X2454
d( q , n ):22

d( q , n ): 0.148

(7) - X2425
d( q , n ):19

d( q , n ): 0.163

(8) - X2456
d( q , n ):20

d( q , n ): 0.188

(9) - X1008
d( q , n ):18

d( q , n ): 0.191

(10) - X 2441
d( q , n ):20

d( q , n ): 0.194

(11) - X 2485
d( q , n ):21

d( q , n ): 0.196

(12) - X 2470
d( q , n ):20

d( q , n ): 0.202

(13) - X 2486
d( q , n ):18

d( q , n ): 0.207

(14) - X 2453
d( q , n ):21

d( q , n ): 0.210

(15) - X 2472
d( q , n ):20

d( q , n ): 0.220

Figure 58: Content-based retrieval result (up-scaled image), Xq = X2440

Table 18: Content labels for retrieval results (down-scaled image), Xq = X2440

Xq 1 2 3 4 5 6 7 8 9 10
X2440 X992 X2424 X2455 X2438 X2469 X2454 X2425 X2456 X1008 X2441
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tree
Type-3

tree
Type-3

tree
Type-3

tree
Type-3

tree
Type-3

tree
Type-3

tree
Type-3

tree
Type-3

tree
Type-3

tree
Type-3

bare soil bare soil bare soil bare soil bare soil bare soil bare soil bare soil bare soil bare soil bare soil
natural

veg.
natural

veg.
natural

veg.
natural

veg.
natural

veg.
natural

veg.
natural

veg.
natural

veg.
natural

veg.
natural

veg.
natural

veg.
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The results demonstrate that when the query image has a higher ground-sampling
distance (lower spatial resolution) than the images in the archive, the retrieval perfor-
mance of the system is affected since the segments extracted from the query image
in the feature extraction step represent mixed pixel signatures which are not directly
represented by a term in the vocabularies. Due to the unavailability of relevant spec-
tral terms for certain segments in the query image, the overall system performance is
negatively impacted. For instance, the white-painted object (car), located in the top-
right section of the image, in Figure 55 disappears when the resolution of the image
is reduced by a factor of 1/4. Thus, the pixels representing the white-painted object
intervene with the surrounding pixels containing bare soil.

On the other hand, it is also observed that upscaling the spatial dimensions of the
query image does not remarkably affect the system’s performance if the segment
window size required in the hyperSLIC algorithm remains the same.

7.5 Comparative Performance Analysis

In order to measure the retrieval performance of the system in this regard, each hy-
perspectral image Xn in X was used as query hyperspectral image to retrieve 10
hyperspectral images that contain similar materials. It is worth noting that while the
proposed system performs retrieval based on overall content, other CBHIR systems
perform retrieval based on the strategy they built on.

In terms of accuracy, the proposed CBHIR system shows the best performance among
all CBHIR systems if the retrieval is performed with both foreground and background
content descriptors. On the other hand, the proposed CBHIR system has the highest
scores for precision, recall, and Hamming loss in case the retrieval is performed with
foreground content descriptors.

Table 19: Performance evaluation of CBHIR systems.

CBHIR SYSTEM Method Accuracy
(%)

Precision
(%)

Recall
(%)

Hamming
Loss

Retrieval
Time
(ms)

Previously Proposed
BoE Based System

BSD-SSR 64.82 76.03 74.17 6.02 0.114
BSAD-TSHR 66.43 63.22 73.48 6.21 0.129

Proposed CBHIR
System

Overall-SSR 76.65 84.28 85.54 4.48 0.146
Overall-TSHR 82.20 83.25 82.43 5.21 0.159

Em-Grana 58.47 61.26 64.25 7.03 83.442
EM-WSAD 51.47 54.18 57.18 9.44 18756.36

In the experiments, the proposed CBHIR system was examined for the retrieval Sce-
nario 3 and the Scenario 4 explained in Chapter 1. When Scenario 3 is considered,
single-stage retrieval (SSR) is applied to the images represented by the binary spectral
content descriptors (BSD). In order to evaluate the performance of the proposed CB-
HIR system, we have considered two state-of-the-art methods for comparison: 1) the

95



endmember matching algorithm based on the Grana Distance (denoted as EM-Grana);
and 2) the endmember matching algorithm that weights the distances estimated by the
SAD between each endmember pair by their abundances (denotes as EM-WSAD).

Comparative performance results show that the proposed system performs the re-
trieval with the highest accuracy (82.20%) in case both spectral and abundance de-
scriptors are utilized by considering overall image content. On the other, while the
proposed system has the highest precision (84.28%) and recall (85.54%) values, sim-
ilarly, the lowest Hamming Loss score also belongs to the proposed algorithm when
the retrieval is performed with respect to the spectral descriptor only.

On the other hand, it has been observed that the proposed CBHIR system exhibits an
increase in retrieval time compared to the previously suggested bag-of-endmember
based CBHIR system. This is because the descriptor vector lengths in the proposed
CBHIR system are longer than those calculated in the previously suggested bag-of-
endmember based CBHIR system system.
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CHAPTER 8

CONCLUSION AND FUTURE WORK

This final chapter comprehensively analyzes the proposed Content-Based Image Re-
trieval (CBHIR) system. The methodology behind the development of the system is
discussed by highlighting its key features and benefits. In addition, a detailed account
of the system’s performance results is concluded, demonstrating its ability to retrieve
images based on their content accurately. In the future work section, comments and
suggestions regarding the suggested improvements for the CBHIR system developed
within the scope of the thesis are shared.

8.1 Conclusion

Hyperspectral imaging has become an increasingly prevalent passive optical remote
sensing technique used across various fields to solve many problems, such as iden-
tifying plant diseases in precision agriculture or detecting buried objects in military
operations. This remote sensing technique is particularly useful in applications that
require observation of unique spectral features.

The most notable advantage of hyperspectral imaging, which distinguishes this re-
mote sensing technique from other passive optical remote sensing methods, is the
abundance of information provided in the spectral domain. By capturing a large
number of observation channels at consecutive wavelengths, hyperspectral imaging
allows for precise recognition and discrimination of objects in a scene. This makes
hyperspectral remote sensing an invaluable tool in various fields. However, the dense
spectral information in hyperspectral imagery also generates more data to be pro-
cessed than other optical imaging techniques. Additionally, the vast amount of data
generated in imaging campaigns may pose challenges when it comes to effectively
utilizing hyperspectral images for interpretation and management purposes. Depend-
ing on the application requirements, this fact may limit the potential benefits that can
be obtained from hyperspectral imagery. Therefore, accurate and fast retrieval of hy-
perspectral images from image collections, in the context of spectral properties of the
matters, is one of the critical tasks in remote sensing.

Several content-based hyperspectral image retrieval (CBHIR) systems have been pro-
posed in the literature. These methods aim to facilitate the retrieval of relevant hyper-
spectral images from hyperspectral archives by exploiting the spectral information

97



contained in the images. However, these methods have some common limitations
listed below that affect the accurate retrieval of hyperspectral imagery.

1. Spectral information redundancy in archive images reduces retrieval perfor-
mance due to dominant background content.

2. CBHIR methods that model hyperspectral images by only endmembers may not
accurately extract the endmembers from the images, or pure material signatures
may not exist in the scene.

3. Strategies (i.e., bag-of-endmembers) that aim at combining and clustering all
endmembers to generate a global spectral vocabulary to model hyperspectral
images may ignore spectral signatures (endmember) of rarely seen content in
case of using an inappropriate clustering method or setting parameters of clus-
tering method inaccurately.

To address these issues, this thesis proposes a novel content-based hyperspectral im-
age retrieval (CBHIR) system to define global hyperspectral image representations
based on a semantic approach to differentiate foreground and background image con-
tent for different retrieval scenarios. Two spectral content dictionaries are utilized to
model hyperspectral images. The first dictionary consists of spectral terms related
to materials seldom present in the relevant geographical region, known as foreground
content. On the other hand, the second dictionary includes spectral terms for materials
frequently observed in the geographical region, known as background content.

The proposed system consists of two main modules. The first module characterizes
the query and the target hyperspectral images in the archive by four global descriptors:
1) two binary spectral descriptors (which represent spectral characteristics of distinct
foreground and background materials); 2) two abundance descriptors (which model
normalized cumulative fractional abundance of the corresponding materials). The
second module retrieves hyperspectral images from the archive that cover materials
most similar to the given query signature or query image based on a hierarchical
strategy that evaluates the spectral and abundance descriptor similarity.

To evaluate the retrieval performance of the proposed CBHIR system and to compare
it with state-of-the-art systems available in the literature, a multi-label benchmark
hyperspectral image archive was created from high-resolution airborne hyperspectral
remote sensing data products. Experiments carried out on this benchmark archive of
hyperspectral images demonstrated the effectiveness of the proposed system in terms
of retrieval accuracy and time.

Upon conducting a thorough analysis of the findings, it has been determined that the
suggested system outperforms the traditional method of utilizing solely endmembers
for retrieving hyperspectral images from an archive. The suggested system incorpo-
rates spatial and spectral relationships in content segments to model content types.
These outcomes underscore the significant benefits of the suggested system when
compared to the conventional approaches. By considering both spatial and spectral
properties, the proposed system enables more accurate modeling of the content types
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present in the hyperspectral imagery. In contrast, the conventional approach of using
only endmembers may result in insufficient models that fail to capture the required
content representation in hyperspectral imagery. Therefore, the proposed system is
a more effective and sophisticated approach to accessing hyperspectral images in re-
mote sensing archives.

Although the proposed CBHIR system exhibits higher retrieval performance than
other systems during the experimental process, it also has certain limitations. The
first is the input requirement from the user in modeling background content; even
though this process is carried out in a semi-supervised manner, it is believed that
fully unsupervised foreground and background content discrimination would posi-
tively impact the system’s performance. Another observed limitation of the proposed
system is the use of Hamming distance in comparing spectral descriptors. Hamming
distance evaluates two spectral descriptor vectors in a binary manner, assigning a
penalty score for each spectral term that is not common between the two vectors.
This may pose a problem, particularly when comparing spectral vectors of images
rich in content diversity and abundance. In addition to these limitations, proper speci-
fication of some parameters is a critical step affecting the overall system performance.
For instance, the segment size required by the hyperSLIC algorithm should be chosen
properly considering the ground-sampling distance of the imager and the minimum
foreground segment size required by the task to be performed.

The proposed system has also been tested for query images with different ground-
sampling distances (resolutions) and spatial dimensions than the hyperspectral im-
ages in the archive. The results demonstrated that when the query image has a differ-
ent ground-sampling distance (higher spatial resolution), the system’s overall perfor-
mance is affected since the segments obtained in the feature extraction and vocabulary
generation steps may represent different materials in the same location. For instance,
if the ground-sampling distance of the query image gets higher, this results in ob-
taining segments that consist of mixed pixels. On the other hand, it is also observed
that an increase in the spatial dimension of the query image does not affect the sys-
tem’s performance if the segment window size in the hyperSLIC algorithm remains
the same.

Finally, the data labeling process of the hyperspectral images used in the benchmark
archive also influences the performance results. Although VHR aerial photographs
were used to label the images in the benchmark archive created within the scope of
this study, it is believed that the labeling process can be improved with additional
information obtained from the field.

8.2 Future Work

Although the proposed method has demonstrated a superior retrieval success rate
compared to other methods found in the existing literature, certain aspects require
additional development to make it more versatile and adaptable to a broad range of
use cases.
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The following improvements to the proposed system should be studied as future work.

• Comparing spectral descriptor vectors in a binary manner and assigning a penalty
score for each non-common term provides a robust comparison in retrieving
images with relatively less content and a homogeneous structure. However, it
can pose challenges when comparing images with a richer diversity of content.
For this reason, it is believed that introducing a similarity measure that allows
penalty scoring relative to Hamming distance, as an alternative to Hamming
distance, would positively impact the retrieval performance.

• Beyond classifying image content as foreground and background, identifying
subclasses within these classes that are important to users. For instance, dif-
ferences may arise in some types of content due to variations in time and envi-
ronmental conditions (e.g., tiles exposed to sunlight at different angles on the
same roof). This situation is defined as a distinct content and characterized by
a different spectral term due to changes in the chemical structures of materials
over time. It is believed that modeling image content types with a taxonomic
approach would positively overcome this issue.

• Utilizing payload and altitude information as input in the proposed system’s
segmentation phase method would provide a significant advantage in modeling
image contents at various spatial resolutions without needing any specific input.

• The proposed CBHIR system has the potential to benefit a wide range of users
in various applications. To maximize its potential, it is highly recommended
to implement a cloud-based application that can cater to the varying needs of
different users. Such an application would allow users to access the system
from different locations and devices, making it more convenient and flexible.
Additionally, hosting the application on the cloud would enable users to take
advantage of the scalability and reliability of cloud services, ensuring that the
system can handle increasing demands in the future. Overall, a cloud-based
application for the CBHIR system would greatly enhance its usability and ac-
cessibility, making it a valuable tool for various usage scenarios.
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Appendix A

LIST OF AIRBORNE HYPERSPECTRAL REMOTE SENSING SYSTEMS

IMAGER MANUFACTURER
/ OWNER

AIRCRAFT
TYPE

SPECTRAL
RANGE (nm)

NUMBER OF
BANDS

NUMBER OF
SPATIAL
PIXELS

SPECTRAL
SAMPLING

(nm)

SPECTRAL
SCANNING

SPATIAL
SCANNING

BIT
DEPTH

AIS-1 [13]

NASA

Manned 900-2400 128 32 9.3 n/a n/a n/a
AIS-2 [13] Manned 800-2400 128 64 10.6 n/a n/a n/a
ASAS [14] Manned 465-871 29 512 15 Grating Push-broom 16

AVIRIS [15] Manned 400-2500 224 614 10 Grating Whisk-broom 12
HYDICE
[17, 18] HDOS 400-2500 210 320 10.2 Prism Push-broom

16

SYSIPHE [19] ONERA Manned
400-1400
1400-2500
3000-5500

8000-11500

⇠ 500
VNIR: 1024
SWIR:1024
MWIR:1016
LWIR:1016

VNIR:5
SWIR:6.1

MWIR:13 cm-1
LWIR: 6 cm-1

VNIR-SWIR:
Grating /

MWIR-LWIR:
Interferometer

Push-broom n/a

TRWIS-A [13]

TRW Space

Manned 430-850 128 240 3.3 Grating Push-broom 8
TRWIS-B [13] Manned 460-880 90 241 4.8 Grating Push-broom 8
TRWIS-II [20] Manned 1500-2500 80 242 12 Grating Push-broom 8
TRWIS-III [21] Manned 400-2450 384 256 5/6.25 Grating Push-broom 12

AAHIS-1 [22]
SETS Technology -

SAIC Manned 432-832 288 192 5.5 Grating Push-broom 12

AHS (MAS) [13]
Daedalus

Enterprises Manned 440-12700 48 n/a 200-1500 n/a n/a 12

DAIS-7915 [23] DLR Manned
450-1050
1500-1800
1900-2500

VNIR:32
SWIR-1:8

SWIR-2:32
512

VNIR:15-30
SWIR-1:45
SWIR-2:35

Grating Push-broom 15
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IMAGER MANUFACTURER
/ OWNER

AIRCRAFT
TYPE

SPECTRAL
RANGE (nm)

NUMBER OF
BANDS

NUMBER OF
SPATIAL
PIXELS

SPECTRAL
SAMPLING

(nm)

SPECTRAL
SCANNING

SPATIAL
SCANNING

BIT
DEPTH

ROSIS [24] Manned 430-860 115 512 4 Grating Push-broom 14

SMIFTS [13]
University of

Hawaii Manned
1000-5200
3200-5200 75-35 256

100cm-1 -
50cm-1 Interferometer n/a n/a

ARCHER
(NovaSol

1100-2) [25]

US Arif Force Civil
Air Patrol Manned 500-1100 52 504 11.5 Grating Push-broom n/a

COMPASS [26] US Government Manned 400-2350 256 256 8 Grating Whisk-broom 14

SEBASS [28, 29]
Aerospace

Corporation Manned
2500-5200

7500-13500 128 128
MWIR:25
LWIR:50 n/a Push-broom 24

Nano-Hyperspec
[120] Headwall Photonics

Manned /
Unmanned 400-1000 270 640 2.1 Grating Push-broom 12

Micro-Hyperspec
[121]

Manned /
Unmanned /

Satellite

400-1000
900-1700
600-1700
900-2500

VNIR:325-369
NIR:67-134

Ex-VNIR:267
SWIR:166-267

VNIR:1004-1600
NIR:320-640
Ex-VNIR:640
SWIR:384-640

VNIR:1.6-1.9
NIR:6-12

Ex-VNIR:4.1
SWIR:6-9.6

Grating Push-broom 12-16

Hyperspec
Co-Registered

[122]
Manned /

Unmanned
400-2500 VNIR:384

SWIR:166
VNIR:1600 -

SWIR:384
VNIR:1.6

SWIR:10.8
Grating Push-broom 16

Hyperspec
Flourescence

[123]
Manned /

Unmanned
670-780 2160 1600 0.1-0.2 Grating Push-broom 16

AisaFENIX
[124]

SPECIM
Manned

380-970
970-2500

VNIR:87-348
SWIR:274 384

VNIR:1.7-6.8
SWIR:5.7 Grating Push-broom 12-16

AisaFENIX 1K
[125] Manned

380-970
970-2500

VNIR:87-348
SWIR:256 1024

VNIR:1.7-6.8
SWIR:6.3 Grating Push-broom 12-16

AiSAIBIS [126] Manned 670-780 n/a 384-768 0.11-0.22 Grating Push-broom 16
AisaOWL [127] Manned 7700-12300 96 384 100 Grating Push-broom 16
AisaKESTREL

[128]
Manned /

Unmanned
400-1000
600-1640 n/a 640-2040 1.75 - 7 n/a Push-broom 12-14

Pika [129] Resonon Manned /
Unmanned

350-800
400-1000
900-1700

VNIR:196
VNIR:281-447
NIR:164-328

VNIR:1600
VNIR:900-1600

NIR:320-640

VNIR:2.3
VNIR:1.3-2.1
NIR:2.5-4.9

Grating Push-broom 12-14

SHARK [130] Corning
Manned /

Unmanned 400-1000 155 704 2 Grating Push-broom 12
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IMAGER MANUFACTURER
/ OWNER

AIRCRAFT
TYPE

SPECTRAL
RANGE (nm)

NUMBER OF
BANDS

NUMBER OF
SPATIAL
PIXELS

SPECTRAL
SAMPLING

(nm)

SPECTRAL
SCANNING

SPATIAL
SCANNING

BIT
DEPTH

CASI-1500 [27]

ITRES

Manned 380-1050 288 1500 2.4 n/a Push-broom 14
SASI-1000A

[131] Manned 950-2450 100 600 15 n/a Push-broom 14
MASI-600 [132] Manned 3000-5000 64 600 32 n/a Push-broom 14
TASI-600 [133] Manned 8000-11500 32 600 110 n/a Push-broom 14

microCASI-1920
[134] Unmanned 400-1000 288 1920 2.1 n/a Push-broom 12

microSASI-384
[135] Unmanned 1000-2500 200 384 6 n/a Push-broom 14

HyMAP [136] Integrated
Spectronics

Manned
450-890

890-1350
1400-1800
1950-2480

128 512 VIS:15 NIR:15
SWIR1:13
SWIR2:17

Grating Whisk-broom n/a

Hyper-Cam [137] TELOPS Manned
3000-5000

8000-12000 n/a 320 x 256 0.25 cm-1 Interferometer Snapshot n/a

OCI-1000 [138] BaySpec Unmanned 600-1000 100 2048 5 Filter Push-broom n/a
OCI-2000 [138] Unmanned 600-1000 20-25 400x200 12-15 Filter Snapshot n/a

HySpex [139] NEO
Manned /

Unmanned
400-1000
1000-2500

VNIR:108-182
SWIR:288

VNIR:1024-1800
SWIR:384

VNIR:3.26-5.4
SWIR:5.45 Grating Push-broom

12-16

HySpex ODIN
[140] Manned 400-2500 427 1024

VNIR:3.6
SWIR:6.1 Grating Push-broom 16

HySpex Mjolnir
V-1240 [141] Unmanned

VNIR:400-
1000 200 2048 3 Grating Push-broom 12

SOC710-GX
[142] SURFACE OPTICS

Manned /
Unmanned 400-1000 120 640 4.2 Grating Push-broom

12

Rikola [143] SENOP
Manned /

Unmanned 500-900 100 1010 x 1010 10 Filter Snapshot 12

Cubert [144] Rikola
Manned /

Unmanned 450-950 125 1 MP 4 Filter Snapshot 12
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Appendix B

LIST OF SPACEBORNE HYPERSPECTRAL REMOTE SENSING SYSTEMS

IMAGER COUNTRY /
ORGANIZA-

TION

MISSION PLATFORM SPECTRAL
RANGE (nm)

NUMBER
OF BANDS

SPECTRAL
SAMPLING

SWATH
(km)

GSD
(m)

ALTITUDE
(km)

SPECTRAL
SCANNING

SPATIAL
SCANNING

BIT
DEPTH

LAUNCH
DATE

STATUS

HIRIS
[32, 33] US / NASA EOS Satellite

400-1000
1000-2500 224

9.4 VNIR 11.7
SWIR 30 30 824 n/a Whisk-broom 12 n/a Cancelled

HRIS [34]
Multinational /

ESA n/a Satellite 450-2350 n/a 10 30 40 800 Grating/Prism
Push-broom n/a

n/a Cancelled

ARIES [35]
Australia /

ARIES ARIES-1 Satellite
400-1000
1000-2500 n/a

20-VNIR
16-SWIR 15 n/a 800 n/a n/a n/a n/a Cancelled

HIS [145] US / NASA LEWIS Satellite
400-1000
900-2500 384

5-VNIR
6.4-SWIR 7.7 30 523 Grating Push-broom 12 1997 Deorbited

FTHSI [36] US / USAF MightySat II Satellite 475-1050 256
84.4 cm-1-0.1

cm-1 7.5-30 30 556 Interferometer Push-broom 12 2000 Deorbited

COIS
[146, 147] US / USAF NEMO Satellite

400-1000
1000-2500

60-VNIR
150-SWIR 10 30 60 605 n/a n/a n/a 2000 Cancelled

Hyperion [37] US / NASA EO-1 Satellite 400-2500 220 10 7.5 30 705 Grating Push-broom 12 2000 Decomm.

OHIS [148] US / OrbImage OrbView-4 Satellite
400-905

830-1750
1580-2490

40-VNIR
80-NIR

80-SWIR
11.4 5 8 470 n/a Whisk-broom 12 2001 Failured

CHRIS
[39, 40]

Multinational /
ESA

Proba Satellite 415-1050 18-62 1.3-11.3 14 17
34

560 Prism Push-broom 12 2001 Active

MERIS
[149, 150]

Multinational /
ESA ENVISAT-1 Satellite 390-1040 15 1.8 1150 300 790 Grating Push-broom 12 2002 Failured

IIM [43, 44] China / CNSA Chang’e-1 Satellite 480-960 32 n/a 25.6 200 200 (lunar) Interferometer n/a 12 2007 Deorbited
HIS [145] China / CAST HJ-1 Satellite 459-956 115 98.5 cm-1 50 100 650 Interferometer Push-broom 12 2008 Active

HySI [45, 46] India / ISRO
Chandrayaan-

1 Satellite 421-964 32 15 20 80 100 (lunar) Filter Push-broom 12 2008 Deorbited

M3 [46, 47] India / ISRO
Chandrayaan-

1 Satellite 400-3000 260 n/a 40 67 100 (lunar) Grating Push-broom
12

2008 Deorbited
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IMAGER COUNTRY /
ORGANIZA-

TION

MISSION PLATFORM SPECTRAL
RANGE (nm)

NUMBER
OF BANDS

SPECTRAL
SAMPLING

SWATH
(km)

GSD
(m)

ALTITUDE
(km)

SPECTRAL
SCANNING

SPATIAL
SCANNING

BIT
DEPTH

LAUNCH
DATE

STATUS

Artemis
[50, 51] US / DoD TacSat-3 Satellite 400-2500 400 5 n/a n/a 425 Grating Push-broom 10 2009 Deorbited

HICO [151]
US / Naval
Research ISS Station 350-1080 n/a 5.73 42 83 350-400 Grating Push-broom 14 2009 Mulfunct.

HERO [152] Canada / CSA HERO Satellite 400-2500 >200 10 30 30 700 Grating Push-broom 12 2010 Cancelled

HIS [48, 49] China / CNSA Tiangong-1 Station
400-1000

1000-2500
64 VNIR /
64 SWIR

10 VNIR 23
SWIR 10

10
20 300-400 n/a n/a n/a 2011 Deorbited

Claire
[57, 58, 59]

Canada /
GHGSat Claire Satellite

400-1000
1600-1700 325 VNIR 1.9 VNIR n/a 50 512 Grating Push-broom n/a 2016 Active

HySIS [153]
India / ISRO Hyspex Satellite 400-950 55 10 n/a 30 630 n/a Push-broom n/a >2017 Design

phase
HYPXIM

[154]
France / CNES

HYPXIM Satellite 400-2500 >200 10 15-30 10
20

650 n/a n/a n/a >2017 Design
phase

DESIS
[52, 53, 54]

Germany /
DLR ISS Station 450-950 240 2.32 44 57 79-

104
330-435 Grating Push-broom 12 2018

Design
phase

PRISMA
[155, 156] Italy / ASI PRISMA Satellite 400-2500 239 12 30 30 615 Prism Push-broom 12 2018 Design

phase
EnMAP

[157, 158]
Germany /

DLR EnMAP Satellite 420-2450 228
6.5 VNIR 10

SWIR 30 30 652 Prism Push-broom 14 2019 Design
phase

HISUI
[55, 56] Japan / JAXA ALOS-3 Satellite

400-970
1000-2500

57 VNIR
128 SWIR

10 VNIR 12.5
SWIR 30 30 618 Grating Push-broom 12 2019 Launched

UVNS [159] Multinational /
ESA

Sentinel-5 Satellite
270-310
300-500
685-710
750-773

1590-1675
2305-2385

n/a 0.25-1 2670 7500 817 Grating Push-broom n/a 2021 Design
phase

FLORIS
[160]

Multinational /
ESA

FLEX Satellite 500-780 n/a 0.3-3 150 300 815 Grating n/a n/a 2022 Design
phase

HyspIRI
[161, 162, 163] US / NASA HyspIRI Satellite 380-2510 n/a 10 153 60 626 Grating Whiskbroom 14 >2022 Design

phase
PRISM [164] ESA PRISM Satellite 450-2500 n/a 12 50 50 666 Prism Push-broom 12 n/a Cancelled
SPECTRA

[165]
Multinational /

ESA SPECTRA Satellite 400-2350 n/a <15 50 50-
100

n/a n/a n/a n/a n/a Cancelled

HypSEO
[166] Italy / ASI

MITA
Satellite

400-1000
1000-2500 210 10 20 20 619.6 n/a Push-broom 12 n/a Cancelled

MSMI [167]
S. Africa /
SUNSAT ARM Satellite 400-2350 >200 10 15 15 660 Prism Push-broom n/a n/a

Ready for
launch
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Appendix C

SYMBOLS AND THEIR DESCRIPTIONS

Symbol Description

X = {Xn}Nn=1 Archive of N hyperspectral images
Xn n-th hyperspectral image in X
Xq Query hyperspectral image
XR The ranked set of R retrieved images that are most similar to Xq

Xr r-th retrieved hyperspectral image in XR

W Number of spectral bands
P Number of pixels

xp
n 2 RW Spectral signature vector of p-th spatial pixel in Xn, where 1  p  P

Vf =
h
vf
1 , . . . ,v

f
 

i
Foreground content spectral vocabulary, where v 2 RW and

 = 1, 2, . . . , 
Vb =

⇥
vb
1, . . . ,v

b
⌦

⇤
Background content spectral vocabulary, where v! 2 RW and

! = 1, 2, . . . ,⌦
�f

n Foreground content spectral descriptor of Xn

�b
n Background content spectral descriptor of Xn

�n Overall content spectral descriptor of Xn

�q Overall content spectral descriptor of Xq

↵f
n Foreground content abundance descriptor of Xn

↵b
n Background content abundance descriptor of Xn

↵n Overall content abundance descriptor of Xn

↵q Overall content abundance descriptor of Xq

�Xn Spectral diversity of Xn

S Number of content segments extracted from Xn

s s-th content segment extracted from Xn

xs
n Spectral signature representing s-th segment extracted from Xn

µB Sample mean for territory background image B
B Territorial background image
��1
B Covariance matrix for territorial background image

LX Set of associated category labels with archive X
LXq Set of associated category labels with Xq

LXr Set of associated category labels with Xr
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[3] Başkurt Ö., D.; Gür, Y.; Ömrüuzun, F.; Cetin, Y.Y., ‘Absorbance Estimation and
Gas Emissions Detection in Hyperspectral Imagery’, in IEEE 24th Signal Processing
and Communications Applications Conference, Zonguldak, 2016.

[4] Omruuzun, F.; Baskurt, D.; Cetin, Y.Y., ‘Hyperspectral Unmixing Based Analysis
of Forested Areas’, in IEEE 23th Signal Processing and Communications Applica-
tions Conference, Malatya, 2015.

[5] Omruuzun, F.; Baskurt, D.; and Cetin, Y.Y., ‘Gas Detection in Longwave Infrared
Hyperspectral Imagery and Black Body Effect Compensation’, in IEEE 23th Signal
Processing and Communications Applications Conference, Malatya, 2015.

[6] Pacin, Y.; Omruuzun, F., ‘Evaluation of Public Service Internet Sites’, in 30th
National Informatics Congress, Ankara, 2013.

[7] Ordu, C.; Arifoglu, A.; Omruuzun, F., “e-service performance evaluation: munic-
ipalities”, in Smart Cities, VI. Istanbul Informatics Congress, Istanbul, 2012.

127


	ABSTRACT
	ÖZ
	DEDICATION
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	Introduction
	Prologue
	Problem Definition
	Purpose of the Study
	Structure of the Thesis

	Background
	Spectral Remote Sensing
	Working Principles of Hyperspectral Remote Sensing Systems
	Hyperspectral Remote Sensing Systems
	Airborne Systems
	Spaceborne Systems

	Review of Hyperspectral Remote Sensing Applications from a Content-Oriented Point of View
	Land-Use Mapping / Classification
	Environmental Monitoring
	Precision Agriculture and Forestry
	Mineralogy and Geology
	Defense and Security


	Related Literature
	Single Material Based Content Detection Methods for Hyperspectral Imagery
	Full-Pixel Content Detection Algorithms
	Sub-Pixel Content Detection Algorithms

	Multiple Material Based Content Detection and Retrieval Methods for Hyperspectral Imagery

	RESEARCH ACTIVITIES CONDUCTED WITHIN THE SCOPE OF THE THESIS
	Research Carried on Single Material Based Content Detection
	Research Carried on Multiple Material Based Content Detection

	Proposed Content-Based Hyperspectral Imageg Retrieval System
	Problem Formulation and Notation
	Spectral Vocabulary Generation and Representing Hyperspectral Images with Low-Dimensional Descriptors
	Super-pixel Based Content Segmentation
	Background Suppression
	Building Spectral Vocabularies
	Representation of Hyperspectral Images with Low-Dimensional Descriptors

	Retrieving Hyperspectral Images with Low-Dimensional Feature Descriptors

	Data-Set Description
	Data Source
	Data Pre-processing
	Data Labelling

	Experimental Setup and Results
	Experimental Setup
	Experimental Results
	Sample Retrieval Results for the Proposed CBHIR System
	Further Performance Analysis of the Proposed CBHIR System
	Comparative Performance Analysis

	Conclusion and Future Work
	Conclusion
	Future Work

	REFERENCES
	List of Airborne Hyperspectral Remote Sensing Systems
	List of Spaceborne Hyperspectral Remote Sensing Systems
	Symbols and Their Descriptions
	CURRICULUM VITAE

